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NOMENCLATURE

matrix defined in equationé (16)‘and 17

Planck's function (eq.(2b))

quantity defined in equations (15b) and (A1l2)

speed of light

exponential integral of order =

nondimensional radiative flux (eq. (6a))

boundary function

integral of the kernel function

boundary function defined in.equation (7b)
integral of B over n (egs. (15a) and (AlS))

Planck's constant, or function defined in equation

one-half the total step number

extremal function

‘kernel function

Boltzmann's constant

physical length

‘number of iterations

number of spectral modes

radiative heat

“source -function

nondimensional source function,

L ¢« if x>0
sgn(x) = |_ ifx <0

temperature

" dummy variable -

S

L
GTB

(7b)

iii



iv

independent variable, altitude
variable, g
absorption coefficient defined in equation (3a)
delta function, (eq. (6a)), or variational of the function
increment of step function
increment of frequency, Veel = k
independent distance variable, -2 +J.y8 dy
0

optical thickness for the kth frequency, o n

normalized temperature, E?'
B L
one-half the thickness, %}f B dy
0
mass absorption coefficient
constant associated with integral equation
frequency, or an arbitrary function (eq. (A7))

nondimensional frequency, %%L

B

mass density
Stefan-Boltzmann constant
optical thickness defined in equation (4b)
variational function
solution
Subscripts
at the lower boundary
at the upper boundary
at Ith point
indexes of summation, or at ith or jth step point

frequency interval corresponding to kth mode



1+

1+

at the boundary
frequency
even or odd function

Superscript

positive or negative direction
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AN ITERATIVE SOLUTION OF AN INTEGRAL EQUATION FOR RADIATIVE TRANSFER
BY USING VARIATIONAL TECHNIQUE
Kenneth K. Yoshikawa

Ames Research Center
SUMMARY

An effective iterative technique is introduced to solve a nonlinear inte-
gral equation frequently associated with radiative transfer problems. The
problem is formulated in such a way that each step of an iterative sequence
requires the solution of a linear integral equation. The advantage of a pre-
viously introduced variational technique which utilizes a stepwise constant
trial function is exploited in this report to cope with the nonlinear problem.
The method is simple and straightforward. Rapid convergence is obtained by
employing a linear interpolation of the iterative solutions. Using absorption
coefficients of the Milne-Eddington type, pk, = a,B(p,T), which are applicable
to some planetary atmospheric radiation problems, solutions are found in terms
of temperature and radiative flux. These solutions are presented numerically
and show excellent agreement with other numerical solutions.

INTRODUCTION

The variational approach is attractive for solving the integral equations
of kinetic theory boundary-value problems and aero-gasdynamics. It is versa-
tile, accurate, fast, and particularly useful in solving linear integral equa-
tions (refs. 1, 2, and 3). The variational function may be accurately
represented by polynomials which lead to extremely difficult and complex
evaluations. To alleviate these difficulties, reference 2 examined a simple
step-function representation. For nonlinear integral equations (e.g.,
Fredholm's type) the number of solution techniques available is extremely
limited and numerical calculation times are long (ref. 4).

In this report a new iterative technique is introduced to solve a nonlin-
ear integral equation. The problem is formulated in such a way that each step
of an iterative sequence requires the solution of a linear integral equation.
In a previous paper, an efficient variational technique (using a stepwise con-
stant trial function) was described for the solution of the second kind of
linear Fredholm's equation. Consequently, the advantages of the variational
method for linear equations can be exploited within the framework of an itera-
tive sequence for the nonlinear problem. The results of the present method
are compared with other numerical solutions and the significant advantages of
the present method are demonstrated. ‘



ANALYSIS

Radiative Transfer Equation

The basic transfer equation for one-dimensional atmospheric radiation is
(e.g., refs. 3 and 4)

(-3

dq@) . -2m JO' K, qzv EZ(T\,)dV - Zﬂ_{ PK, qé\) EZ(T\)L - Tv)d\)

dy
o oL
—2n;f pK vaf Bv(T)El(ITV - t])de
0 0
+ 4nf pk B (T)dv (1)

0

The net radiative heat flux g is the direct integral of equation (1),

(o]

qly) = Zﬂj; qu E3(1v)dv - 27 i a3y E3(TVL - Tv)dv

L
+ ZTTJ;‘ dv{ Bv(T)sgn(‘rv - t)Ez(lT\) - tl)dt (2a)

00

where
Y
7,®) =f Py dy 5T, = T, (D)
0 . |
E, (1) =j; 2 VT g | (2b)

-hv/kT _

B (T) = (2hv3/e2)/ (e 1)

J

The symbols qz and qg are the boundary fluxes due to the surface emissivity

(e) and reflectivity () at boundaries A4 and B, respectively (see sketch (a)).
The symbol «, is the spectral absorption coefficient assumed to be of the
Milne-Eddington type; that is,

pr, =& * B(p,T) (3a)

where the strength o, is approximated by the '"picket fence' model referring to
N different rectangles,

a = a for Vi < Visl k=1, 2,...0) (3b)



The use of the Milne-Eddington type
model, however, maybe limited to the
planetary atmospheres where pressure-
induced transition is important, as

for example, in the atmospheres of P T )
Saturn, Uranus, and Neptune. The geom- y= L LespLsss <
etry and coordinate system under con- l 9a Boundary B

sideration are shown in sketch (a).
To simplify the analysis, symmetric
coordinates have been used, a pro- A i

cess which leads to the following ! T
transformation for optical thickness
T\) = Tk = ,Q,k + nk (48)
where ' T ak )
Yy y=0 7 7 Vi
nk = -‘Q’k + akf 8 dy €ArTA Ta Boundary A
0
(4b)
zk = %'(akTL) ;T =j'LB dy Sketch (a).- Geometry and coordinate
0 system.

The heating rate in equation (1), expressed in terms of the nondimensional
internal source function s(p,T), is assumed to be given by

L g-;l = ofp (p,T) (4c)
L v P :

| i . . 3 tv ' .
so that equation (1), when combined with equations (3) and (4), can be rewrit-
ten as

N
1 1 1 .
78* § :[7 S F B2y * M) + 3 g Fg a8y - my)
%=1
(5)

L
k
+ -%-'/' akBk(T)E’l(lnk - n'l)dN' - akBk(T)] =0
-2 :

k

where s, 8, n are the nondimensional internal source function, (assumed to be
known), ratio of atmospheric temperature to the boundary temperature T/T (to
be determined), and optical thickness, respectively, and




(e

B, (8) = nj; G(av)Bv(e)dv/(oT;) = 0°1(5/0)
F = fmc + g / r
ak = (@,)qy,, dv/ (oTp)
” n
Fg = j; (e, )5, dv/ (oTy)
® - r (6a)
I(v/e) = 1s/n‘+f 6('(1\))-(5/6)3d(\°)/6)/<e'v/e- 1)
0
v = hv/kTB
_ |1 for the frequency a = o
§(a,) = {0 otherwise v K J
Nondimensional radiative flux F is given by
N
F(n) = q/oTj = ) Fp(n) (6b)
k=1

where

Fk(nk) = ZFAkE3(Ek + nk) - ZFBkE3(2k - nk)

L
k ,
+ Zizksgn(nk - n')Bk(e)Ez(lnk - n'[)dn' (6¢)

Note that the black body radiation has the relation of (which includes Bk for
a, = 0)
k

z B, (6) = 6" (6d)

where 6 = T/TB.

Equation (5) is a nonlinear integral equation to be solved for 6 = 6(n).
The description of the basic steps in solving the nonlinear equation by the
present method may be briefly outlined as follows: First, the nonlinear inte-
gral equation is rearranged to take the standard form of Fredholm's integral
equation (second kind). Second, with a pair of arbitrarily selected tempera-
ture distributions (stepwise-constant, initially isothermal distributions for
the present problem) the nonhomogeneous part of the integral equation is eval-
uated analytically for the pair of temperature distributions. The two result-
ing linear integral equations are then solved by the variational method
introduced previously, using a stepwise-constant trial function. Finally, an
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iterative method for calculating a new pair of temperature distributions is
described; this method uses the linear interpolation (or extrapolation) between
the pair of previous temperature distributions and its resulting linear solu-
tions. The iterative procedure is continued until sufficient convergence is
attained.

Linear Representation

For the present problem, equation (5) is recast into the standard form of
Fredholm's integral equation (second kind) as

1 . 4 ' .
Bl(nl) = a—f(nl) + -é-f Bl(n')E1(|n1 -7 I)dn' : (73)
1 -9
where
N )
F) = 5 @+ g (n) + Y oy ()
- k=2
2
1 [k Tydn!
() = gp(my) + ‘2‘f By (0)Ey (ny - n'[)dn' - B, (6)
_gk 4 (7b)
: 1 1
9 () = 2 P, g+ ) * 7 Py (g - )
j !
‘l | |
g = (@ /a)ny

Note that the f function in equations (7b) can be evaluated analytically since
temperature is represented by a stepwise constant function. Initial guesses
are two arbitrary isothermal approximations, for example, boundary temperature
8 = GA and 6 = GB. The detailed iteration procedure is discussed in Iterative
Calculations and Discussions (also in appendix B). The reference function B,,
a segment of B given by Eq. (6a), can be selected arbitrarily from the other
spectral functions By. However, it is desirable to pick B; from the larger
value of o,B,, calculated for the isothermal conditions, so that more accurate
solutions cCan be maintained. ' ‘

The term containing the source function will be omitted from the present
calculation. However, the general procedure will be exactly the same as for
the rest of the terms in the f function.



Extremal Function

It can be shown (e.g., ref. 1) that the linear integral equation
(Fredholm's equation of the second kind) containing the symmetric singular ker-
nel function K(n,n'), that is, '

C9(n) = £+ A S Kt )dn? ®)
can be derived from the functional
1 2 A
J(9) = 7,/:2 ¢(n)[¢>(n) - Aj_'l K(n,n")é(n")dn" - Zf(n)]dn (9)

where J takes a minimum value at ¢ = ¢, which is the solution of equation (8).

For the simplicity of numerical calculations, the linear trial function ¢,
the boundary function f, and the extremal functional J(¢) are divided into
even and odd functions, designated by subscripts + and - respectively, as

¢ =0, + ¢ (10a)
f=7f +7f (10b)
J(4) = J(¢,) + J(¢_) (10c)
where
fo= % [f(n) + F(-n)]
1 (10d)
f_=5 [f(m) - £(-n)]

Note that the extremal function due to the cross product of an even and odd
function has been eliminated since it is zero. Thus, the variational of the
function J becomes

6J(¢) = 8J(¢,) = &J(¢_) = 0O (11)
The number of points to be solved is significantly reduced (by one-half)
by equation (11) since the even and odd function of ¢ can be determined inde-

pendently. Following equation (9), the extremal function J associated with
equations (7) can be written as '

1 21 1 1 2
J(¢) = gf ¢$%(n)ddn, - 5 ¢(n1)dn1f ¢(mDE (In; - n'an’
2, -11 -2,

N 2
) k (o
- 2f¢(nl)gl(nl)dnl -2 E f ¢ g nk hk(nk)dﬂk (12)
-4 2
1 3



where By (n;) is replaced by ¢. For the conditions given by equation (10) and
(11), even and odd functions of ¢ can be determined for the minimum value of
J.

Solution by Step Function

The even and odd functions of a trial function ¢ in equation (10a) are
replaced by stepwise constant functions (see sketch (b)) given by

& A2
et
. #;
0]
) Loyt ' S i 141 4P
T T 7

T | %
t2 i 1 2H 2l

Bar-if |Dar

Sketch (b).~ Notations for the odd step
function ¢i'

. 3\
7
6,(n) =D (8,)
r=1 <
‘77: ( form; = n <.,
= A,
o_(n) =3 (8); S
J=1 ’
¢6_(n) =0 for n, S n < g,

where the interval is equally divided by 2I points, An = 2¢/(2I - 1), and by
definition

CRPERICR I (8 = (7,15 (13b)



2T | T I-1
Z(Ai)j =0 ; Z(A_)j=0;or )= - Z(A_)j (13c)
J=1 J=1 J=1

A major advantage of using the A function (rather than the direct 6. function)
is that many terms pertaining to the integral of the kernel function can be
eliminated from the calculations by virtue of equation (13c) (see appendix A).
Even though the system defined in sketch (b) is for only the odd function, simi-
lar notations apply for the even function, with the exception that the func-
tion is symmetric and the value at the center (¢, ) is not necessarily zero.
After some algebraic manipulation, substitution of equations (13) into equa-
tion (12) yields the following equations (see appendix A).

. 2 )
I 7
J(0,) = E Z: @) 1 [z - gyl
=1 |j=1 :
) I I -
T2 Z(At)i Z(Ai)j[(Gij)l + (Gi,zI+1_j)1]
1=1 j=1
Ry
- 5:4:(FA7< * k)Z B 1C 0 7 @ praid ¢ 08
=1 i=1
1 N I 21
B sz: 32(%% (AB ;) [(G'Lg)k ¥ (Gi,2I+1-j)k]
=2 ‘=1 J=1
I

+
(3]
Ny
~
>
+
A
o

Do [HE)y # (H2I+1-i)k]§

where
(Cli)k = E3[2k + (ni)k] \

Ciiln = ©1, -1k

[-E3|(ni)k - (nj)kl-l(ni)k - (nj)kl] (i 5 j)

-1
(An)kf; (B,
J=

(ABj)k = (Bj)k - (Bj—l)k ; (B )k (B2I)k =0

\ (15a)

(2,




(B;)g = By(6.)

= gk _
= ej II[(ZJ')k + (Azj)k] I[(ZJ)k]f (15b)
and
(zj)k = vk/ej , (Azj)k = Avk/ej W
V.= hv /KT + (15¢)
AV = Vke1 " Yk
Note that By, in equation (15b) includes all frequency intervals for a = oy -

In equation (14), minimizing J with respect to Ai yields the following results:

For the even function ¢+:

W) & | .
ToRr :E::Aij(A+)j ~4,=0  (i=1,2,...0) (16a)
g1 -
where
= - + -G, . R . P2
Azg = -4+ 200G 01 + (G prag)y] ford =2 (16b)
Ay;=4j for j < 1
i
A= Ay + DAy (16¢)
k=2
@;)) = -(Fgy + Fg) L0, - (01,21414')1] (16d)
and
A = - {ffhk + Py 1€ )y = € ara1-40]
2T
* ZE;(ABj)k[Gij)k" (G5 2741-52%]
J=
+ 2[(H’I:)k - (H2I+1-‘I:)k] } (16e)



For the odd function ¢_: the index of summation is reduced to I - 1 by sub-
stituting the relation given by equation (13c¢) into equation (14)

I-1
g{§¢5% = ZE:A%j(A_)j - A; =0 (2 =1,2,...I-1) (17a)
-l g=1
where
L] 3
Aij =4[(np), - (njjl] + 2[-(6,517.)1 - (Gi,z_m_j)1
ST P CA N DR GO SR CE I e )
( (17b)
A\ ot Gy for g 2
!'.
Ars = A;i for j < < J
N
A% = (A%)l + ;E;(Aé)k (17¢)
(A7), =gy = Fp) €10+ (€ hry )y - €D = (€] 1.))] (17d)
and
@)y = - I(Fhk " FydC0% * (€ ana-idx - (Crpk

27
- € il g(ABj)k[(Gij)k RSO U I Gl

= Gy, ] + 200D * Bypyg )y - Epy - (HI+1)k] (17e)

Equations (16a) and (17a) and I and (I - 1) simultaneous linear equations for
A., where coefficients of these equations are calculated from a given tempera-
ture distribution. Successive approximations follow thereafter until the con-
vergence in ¢i or ei is obtained (see appendix B). From equations (10a),

(13a), (16a), and (17a)

A 7
0; = (By)y = ;[(A,,)j v ()] (18)
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Evaluation of the extremal function J given by equation (14) and the
procedure for solving the essential equations (16) and (17), are systematic
and straightforward, requiring minimal computing time (Computing time is
roughly proportional to I2NM, where N is total number of frequency intervals
and M is a number of iterations.), Numerical calculations for I as low as 3
show surprisingly good accuracy, and the computing time on an IBM 360/67 for a
general case using I = 13 is nominal [i.e., less than 1/10 sec per frequency
interval per iteration (see appendix B)]. .

The radiative fluxes, from equations (6b) and (6c), are calculated by

N N
F(-2) = F(L) =:E:.Fk(i2), F(0) = :E: F,,(0) (19a)
k=1 k=1
where
21 w
F(-2) = Fpp - 2P B3 (20) - 2:E:Z(A3j)k B3y + ()]
I k (19b)
21
F (1) = 2F B3(28,) - 2 :E:: (8B) 3% - (n)] |
and Ij=1 .
F(0) 2 2(Fy - FrdBa(h) - 2D (B + (B,r, 3 1Es[-(n ] (199)

J=1
However, as noted in reference 2, the radiative flux F computed by the present

method is not exactly constant. The mean value, suggested in reference 2, is
therefore employed here:

F=3>[F(-2) + F(0)] (20)

N~

ITERATIVE CALCULATIONS AND DISCUSSIONS

For nonlinear equations, the successive substitution or successive
approximation methods are extremely time consuming (ref. 4) and frequently
experience stability problems if the initial approximation is not adequately
selected. The efficiency of the calculation depends on simplifications made
in the analysis, the desired order of accuracy, convergence rate, and the
scope of the results of interest (i.e., whether interest lies in the macro-
scopic physical quantity or solution itself). The convergence rate also
depends on the function to be solved; for example, in the present problem, the
solution in terms of temperature 6 converges much faster than the direct
solution of the function ¢ itself. For a faster convergence, the successive
approximation method used for the present problem is therefore modified by

11



considering a linearly weighted effect of two independent initial guesses and
their corresponding solutions. That is, two sets of arbitrarily selected
temperature distributions, 6; and 6,, are assumed (Initially, isothermal dis-
tributions are used.). The integrated Planck's function, B;(6) and the
solution function ¢ are then computed from equations (15b) and (18), respec-
tively. The results are then used to obtain one new temperature distribution
83 by linear interpolation (or extrapolation) and a second new temperature
distribution 6, by linear interpolation between 63 and either 6; or 6, (see
appendix B). With these new data, the iteration procedure is repeated until
the temperatures 6 converge. The present results show that the fourth or
fifth iterate provides sufficient convergence.

Sample calculations for several models of absorption coefficients have
been selected for this study. Included in these is the model from reference 4
which is used to compare the present results with other numerical solutions.
It is noted the number of spectrals ¥ (where ¥ > 1) in the absorption coef-
ficient has no significant effect on the convergence of the solution in the
present method. However, the selection of the reference .Planck function
(e.g., if much smaller B; is selected) will obviously affect the accuracy of
the solution.

The results for temperature distribution and normalized flux using the
simple spectral model from reference 4 are presented in tables 1 and 2. In
these tables the optical thickness is selected such that 1, = 1 and the num-
ber of steps is varied from 3 to 13 in order to determine the effect of step
size on the computed radiative flux. The present results show surprisingly
good agreement with the numerical values of reference 4 even for the minimum
number of steps, I = 3. (The midpoint values of each step function are tab-
ulated in the illustrations.) Table 1 shows the results of reference 4 and
the present results for I = 3 and 13, so that comparisons can be made for
coincident optical distance n. The results of normalized radiative flux (F)
are presented in table 2 for various step sizes. The step size for I = 13 is
more than sufficient to retain good accuracy for the cases considered in this
paper.

The present method has been used to calculate several other selected
sample cases using absorption coefficients described by a larger number of
spectral modes and a variety of optical thicknesses. The absorption coeffi-
cient and temperature 6 for a spectral model consisting of 36 nonzero and
nonrepeated values (model 3) are presented in tables 3 and 4. The optical
thickness selected for table 4 is 1y = 2. Note that the calculation will be
significantly reduced when the absorption coefficient contains zero or
repeated values. The results for a three step mode (I = 3) shows good agree-
ment with those of larger steps (I = 13) for temperature distribution and
radiative flux (Note: The last decimal in table 4 may be not correct even
though the solution converges to the fifth decimal place, since the computer
carries only five significant figures.). Results of radiative flux using
model 3 with several optical thicknesses are presented in table 5 (I = 13).

An interesting feature of the variational method is that accurate values
for a physical quantity, such as radiative flux F for the present case, can

12



be obtained without having an accurate solution for 6. For example, a linear
(or in some cases, only a one step constant mode) trial function provides
remarkably accurate values for physical quantities even though the solutions
themselves are not necessarily accurate (ref. 1). The present result substan-
tiates this conclusion; in other words, the results for macroscopic physical
quantities show much faster convergence than the solution itself. Conse-
quently, a large number of steps and/or iterations are not usually necessary.
Examples of this convergence on the solution (temperature at n = -0.96 and

n = 0.96) and radiative flux are illustrated in table 6.

The boundary gas temperature, even though it is not considered in this
paper, may be calculated in two ways: (1) by using a small step interval at
the boundaries; and (2) evaluating the right-hand side of equation (7a) by
substituting the present step solution for Bk at n = #L (also at any point).

An iterative method used in conjunction with the variational technique
which uses a step-function provides the following advantages:

1. Accurate descriptions of the solutions can be obtained with a simple
iteration scheme (nonlinear case).

2. Rapid convergence of the physical quantities may be obtained without
accurate solutions.

3. The procedure of numerical calculations is straightforward.

4. Nonlinear problems which are difficult to handle analytically by
other methods (e.g., the polynomial trial function or successive approximation
methods) may be exploited by a method similar to the present technique.

CONCLUDING REMARKS

With the aid of the variational method to the linear integral equation,
an iterative technique has been applied to solve the nonlinear integral equa-
tion which is frequently involved in physical and gas dynamic problems. It
has been demonstrated that the iterative technique, in conjunction with the
variational method which uses the step function as a trial function, provides
effective and accurate descriptions of the solutions to these problems and
related average physical quantities.

The method is relatively simple, straightforward, and requires nominal
computing time. It is expected that the method can be further extended for
solving other nonlinear integral equations of radiative transfer or problems
in kinetic theory.

Ames Research Center

National Aeronautics and Space Administration
Moffett Field, Calif., January 22, 1973
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APPENDIX A

EVALUATION AND SIMPLIFICATION OF INTEGRATIONS
INVOLVING THE KERNEL FUNCTION

Integrations of kernel functions using a step function are usually
relatively simple. Further simplifications which are important in reducing
the computation process are realized by eliminating all terms from the inte-
grated function when these terms vanish in certain summations.

Integrals of Symmetric Kernel Functions
Some major results involving the integrals of the symmetric functions can

be summarized. For the exponential integrals

L
j' Ey(In - n'])dn = sgn(n; - n")[-1 + E2(In; - n"N] + 1 - Ba(2 - n")
n

i (A1)
Similarly
R’ " = 1 ] 1 |
f Ea(|n - n"[)dn = sgn(n, - n')[— >+ E3(|n; - n I)] +3 - E3(a-n")
ng (A2)
2
f sgn(n' - n.)dn' = 'I”i - njl + (2 - ) (A3)
ng
L
j;.sgn(n' - nPEa(In' - n;Ddn' = B3(In; - ns]) - E3(2 - np) (A4)
J

Simplification of Integrated Functions

Integration of the symmetric kernel function with a singularity required
in equation (12) if ¢ is a step function can be evaluated by equation (Al)
through (A4) as follows:

2 L
Cig ~/:1.»/;J.E1(l” - n'|)dn dn'
1

1
(2 -n)+ (0 -n3) - g =g - 5= E3in; -ni])

+E3(2 - n;) + E3(2 - nj) (AS)
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Since the symmetric matrix Gij of equation (A5) will be summed over 7 and/or J
for determining the extremal values of J (eq. (14)), all terms in Gij except

(n.

7
for the step function by equation (13¢). Thus, G can be redefined as

- nj) will vanish from the summation as a result of the conditions imposed

= -Ing = gl - EsCng - i) (A6)

G..
1J d

Integration of Symmetric Functions
Since the extremal function of equations (9) or (12) is evaluated for
both even and odd boundary or trial functions (eqs. (9)), some simplifications

with regard to the single and double integrations may be made; assuming XK
represents the symmetric kernel,

2 2
_[2 5, (n)dn fz

1+

v(n')[K(n,n"') £ K(-n,n")]dn’

2 2
1] v(nan' [ o, (0" ¢ Ke-nun)]dn
-2 2

L 2 '
ZIZ%(n)dnflv(n')K(n,n')dn (A7)

where v(n) is an arbitrary function. Also

[} ) 0
f ¢, (n)[K(2,n) £ K(%,-n)]dn = 2f ¢, (M) [K(2,n) £ K(&,-n)]dn | (A8)
-2 = -2~ .

Equations (A7) and (A8) have been incorporated in the results indicated by
equation (14).

Reduction of the Index of the Summation

Since the solution is divided into the even and odd functions, the index
of double summation appearing in equation (14) can be rearranged using equa-
tions (13) as follows:

21 21

DY Gyy=
=1 g=l

|
N
~
o>
[
>
Q
~
o0
QD
+1
.
-
~
+
—
1
D,
p —

I I
= E Aiz 8:(Gyz * Goray g, 2r41-4 * Oi,21e1-5 * G21s1-2, §)

=1 J:l
I I
= (G.. 3 . ' . A9
221 ZIAJ((}'W # 0 ore1-g) (A9)
1= J:
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where

Gig = Gsg
(A10)

G; 21e1-5 = 921414, 5

Note that the minus sign in the last equation (A9) is for the even function
(or A, ) while the plus sign is for the odd function (4_). The results of equa-
tion TAQ) have been used in obtaining equation (14) of the text.

From the condition given by equation (13c), the index of summation for the
odd function in equation (A9) can be further reduced. (For simplicity, the

minus sign indicating the odd function has been dropped from the following
equation.)

T T T I-1
208 Z:Aj(c’l:j * G oara-f) C Z% ZAj(Gij * G; ore1-7 " G 7 G, 141)
=1 g=1 =1 g=1
= . A.(G..+G. . - G e
1 &t "7 1 1,27+1-7 3 :
i=1 =1 ISR LS
S Gorm Gt Crr t Cr ) (AL1)

The symbols GIj and_Gﬁ;ZI+l-j have bgen replaced by G'I and Gj,I+1 (eq. (Al10)).
The result of equation (All) is given by equation (17b) of the text.

Miscellaneous Integration

Other integrated functions appearing in equation (14) and (15) are derived
and denoted as follows:

2 21 4
[2¢¢(”)E2(2 + n)dn = z ®,); ./n' Ep(2 + n)dn

1=1 i

I
=§(Ai)i[E3 (£ + ‘ni) - E3(21)]
1=1

21
=Z(Ai)i01i (A12)
=1

By equation (13c),
27 27
Z(AJi E3(2%) = Ea(zz)zcmi =0
=1 - : =1
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APPENDIX B
THE METHOD OF ITERATION

Since equation (5) and (7) are nonlinear integral equations, a modified
successive substitution method using a pair of initial temperature distribu-
tions is introduced for solving the resulting equations; in other words, the
boundary function f in equation (7) or matrices A and 4' in equations (16)
and (17) are first calculated from the initial set of arbitrarily selected
temperature distribution 6(1) and solved for ¢ at each n;-

The value ¢ obtained from equation (18) is matched with the value (B);
calculated by equation (6) for the given 6(1). The same procedure is repeated
for the second set of arbitrarily selected temperature distribution 6(2). From
this pair of initial temperature distributions, 6(1) and 6(2)}, and their
resulting values, (B); and ¢, the first new temperature distribution 6(3) is
linearly interpolated at each point. The second new temperature 6(4) is then
calculated by the linear interpolation (or extrapolation) between 6(3) and
either 6(1) or 6(2). The scheme of the linear interpolation is formulated as
follows (for simplicity, the subscript 1 pertaining to the reference function
has been omitted):

Temperature 6(3) is given by

4 4
[6/(2) - 81(1)][6,(1) - B (1)]

) = G0 T O T 5 MY (B1)
Temperature 6(4), depending on the conditions, is given by B
(a) if
[0;(3) - B;(3)][8;(3) - 62(2)] > 0
[0/(3) - 85 (1)][¢;(1) - B,(1)] 2)

Y Ak
81(4) = 0l(1) -

[6,03) - B,(3) - ¢,(1) + B, (D]

Y\“:Mf:

»

or
(b) (replacing all the indexes 1 in equation (B2) with the index 2),

L b ;
[67:(3) - 97/(2)][437/(2) - Bi(Z)] (B3)

4 - g% -
6;(4) = 6.(2) [6;(3) - B;(3) - ¢,(2) + B, (2)]

18



For the next iterations, 6(5) and 9(6), the indexes 1 and 2 in equations (Bl1)
through (B3) are replaced by the indexes 3 and 4. Then the successive itera-
tion M follows until ¢ converges to B, as

000 - By @) 800 - 0@ - 1) (B4)
) 5 ()

For the present problem, the fifth iteration (¥ = 5) provides sufficient accu-
racy. Note that the two initial temperatures selected for the present compu-
tations are the isothermal distributions 6(1) = 6, and 6(2) = 6p, where BA and .
GB represent the respective temperatures at each of the boundaries.

From the results of the present calculations (by I = 13), the average
computing time required for the solution and flux is less than 1/10 sec per
spectral mode per iteration on an IBM 360/67; in other words, for ¥ = 36 and
M = 5, the computing time was about 18 sec.

19
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" TABLE 1.— TEMPERATURE DISTRIBUTION: 6, = 0.5 , 85 = 1.0 €, = €5 = 1.0,

r, =rg= 0, AND = 1.0
a; = 1.0(V; = 0) a; = 0.5(5; = 0)
Model 1: - Model 2: -
as = 0,5(vy = 3) ar = 1.0(vy = 3)
: Present method Present method
. [Reference . Reference
n | 4 : 4
I=3 I =13 I =3 I =13
0.5 | 0.7408 —-- - 0.7095 - -
-.4 .7726 0.7723 0.7726 .7432 0.7428 0.7432
-.2 -.8148 .8148 .8148 .7882 .7881 .7882
0 .8484 .8483 .8484 .8247 . 8245 .8247
.2 .8781 .8780 .8781 .8574 .8573 .8574
.4 ..9066 .9066 .9065 .8899 .8899 .8899
.5 .9235 -—— -— .9098 -— -—--

TABLE 2.— NORMALIZED FLUX (-F); BOUNDARY CONDITIONS SAME AS TABLE 1.

Models Present method
Reference
4

oy %, I =3 I =28 I =13
1.0 |o0.0 0.7856 0.7860 0.7860 0.7860
1.0 .1 L7371 -—- .7376 .7376
1.0 .3 L6637 - .6644 .6644
1.0 .5 .6092 -—- .6100 .6101
1.0 1.0 .5177 .5187 .5188 .5188
0.8 1.0 .5351 .5361 .5361 .5362

.5 1.0 .5693 .5701 .5702 .5702

.1 1.0 - - .6427 .6427

.0 1.0 .6696 .6703 .6703 .6703




TABLE 3.— ABSORPTION COEFFICIENT FOR MODEL 3.

v Av a- v Av O-

v AY]

0 0.25 0.65 4.05 0.04 .82
.25 .75 .10 4,09 .01 .72
1.00 .50 .80 4.10 .05 .62
1.50 .25 .25 4,15 .03 .52
1.75 .05 .35 4.18 .01 .42
1.80 .02 .88 4.19 .01 .32
1.82 .03 .78 4.20 .55 .22
1.85 .05 .68 4.75 .25 .55
1.90 .10 .58 5.00 .25 .275
2.00 .10 .48 5.25 - .25 .75
2.10 .15 .38 5.50 .50 .45
2.25 .25 .60 6.00 .25 .90
2.50 .50 .20 6.25 .25 .975
. 3.00 .25 1.00 6.50 .25 .70
3.25 .25 .30 6.75 .50 .15
3.502 .508 .852 7.25 .25 .95
4.00 .03 .40 7.50 .25 .50
4,03 .02 .92 7.75 ® .05

22
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TABLE 4.— TEMPERATURE DISTRIBUTION (6) AND NORMALIZED FLUX (-F): BOUNDARY

CONDITIONS SAME AS IN TABLE 1. MODEL 3(¥# = 36), T = 2.0.

Temperature,
Optical Thickness, 8
) T
I=3 I =13
-0.96 0.73340
-.88 .74897
-.80 0.76202 .76184
-.72 .77330
-.64 .78380
-.56 .79358
-.48 - .80281
-.40 .81174 .81159
-.32 .81997
-.24 .82804
-.16 .83583
-.08 .84338
.00 .85075 .85075
.08 .85792
.16 .86495
.24 .87185
.32 .87867
.40 .88530 .88541
.48 .89209
.56 .89878
.64 .90548
.72 .91228
.80 .91915 .91925
.88 .92657
.96 .93476
Flux, -F .5706 .57124
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TABLE 5.— NORMALIZED FLUX (-F) AS A FUNCTION OF OPTICAL THICKNESS (t

BOUNDARY CONDITIONS SAME AS IN TABLE 1.

2k

MODEL 3: (N = 36, I = 13).

Optical thickness,

Normalized flux,

T -F
0 1.00000
0.5 0.79393
1.0 .69628
2.0 .57124
3.0 .49076
4.0 .43307
5.0 . 38907
6.0 .35412
7.0 .32552
8.0 .30161

TABLE 6.— CONVERGENCE OF THE SOLUTION (TEMPERATURE AND FLUXES):

BOUNDARY CONDITIONS SAME AS TABLE 4.

24

Temperature,
Number of iteration, 9(n) Normalized flux,
M -F
n=-0.96 n=0.96
1 0.5000 0.5000 ---
2 1.0000 1.0000 ---
3 .7493 .9298 0.5703
4 .7354 .9339 .5711
5 .7334 .9348 .5712
6 .7334 .9348 .5712
7 .7334 .9348 .5712
8 .7334 .9348 .5712
9 .7334 .9348 .5712
NASA-Langley, 1973 —— 33 A-4774
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