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SECTION I

INTRODUCTION

This final report has been prepared by the General Electric Company, Aerospace Electronic
Systems Department, Utica, New York under contract NAS8-28516. The report documents the
results of a thermal spreading resistance data generation technique study. The method developed
is discussed in detail, illustrative examples given, and the resulting computer program is in-
cluded.
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SECTION II

BACKGROUND

A. GENERAL

"Thermal spreading resistance" is defined as the conductive thermal resistance between a
source region and a sink region in a solid where the geometry is such as to preclude one dimen-
sional heat flow.

Knowledge of thermal spreading resistance is needed in two aerospace engineering areas.
These are the thermal design of electronic components or equipments and in the prediction and
control of thermal contact resistance.

1. Importance To The Design Of Electronic Components and Equipments

The thermal analysis of a power semiconductor or integrated circuit can be reduced to
the problem of determining the appropriate spreading and bonding thermal resistances. As an
example, the problem of calculating the junction-to-case thermal resistance of a semiconductor
bonded to a substrate which is bonded in a metal case will be considered. Figure 1 illustrates
this problem.

JUNCTION

SEMICONDUCTOR CHIP
CHIP TO SUBSTRATE BOND

SUBSTRATE
-SUBSTRATE TO CASE BOND

I.C. CASE

Figure 1. Semiconductor in an Integrated Circuit

Heat is generated in a region of known size, the junction region of the semiconductor.
The first, and most significant, spreading resistance of interest occurs between the junction and
the opposite face of the silicon chip. The next thermal resistance of interest is that across the
bond between chip and substrate. It is of significance that these thermal resistances are not in-
dependent although many thermal designers, under the pressures of a design schedule, have
treated them as such. The thermal conductance of the bond proper can vary several thousand-
fold depending on the use of a metallic or nonmetallic bonding material. The resistance to heat
flow between the semiconductor chip bond region and the rear of the substrate represents a
second spreading resistance, etc. In a typical integrated circuit package the entire bottom
region of the substrate would not be available as a sink for a single semiconductor chip due to the
presence of other heat dissipating chips. It is usually possible to estimate the effective sink re-
gion on the rear of the substrate from considerations of symmetry or because it exceeds dimen-
sions which appreciably affect the thermal spreading resistance. In those few cases where inter-
actions must be considered, the key analytical tool is superposition; Green's function approach
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may also be employed to advantage. For example, see reference 1 and the discussion beginning
on page 37 of this report.

The importance of being able to predict thermal spreading resistances in single and
multi- layered material in the evaluation of the thermal design of semiconductor or integrated
circuits has been shown. Spreading thermal resistances are important in other electrical devices
such as phased array antenna elements, Peltier coolers, Seebeck generators and many devices
which utilize conductive heat transfer.

B. PREDICTION AND CONTROL OF THERMAL CONTACT RESISTANCE

The resistance to heat flow between two mating (touching, as in a joint) pieces of metal
is called thermal contact resistance. When the actual microscopic regions of contact between
two mating surfaces are examined, it is found that metal-to-metal contact occurs in small dis-
crete regions where the asperities or microscopic protuberances make contact. References 2
and 3 describe this model of contact in great detail. Figure 2 illustrates this contact model.

REGIONS OF ASPERITIC CONTACT

Figure 2. Microscopic View of the Joint of Contacting Pieces of Metal

The heat flow to and from a region of asperitic contact into the contacting proper
is seen to be of the "spreading" type. In fact, the effective thermal contact resistance of any
contact may be considered as the sum of the parallel microscopic spreading resistances in the
contacts themselves. References 2 and 3 above deal largely with isentropic contacts in which the
thermal conductivity within the bodies of both contacts is uniform.

Analysis has shown that the bulk of the spreading resistance occurs close to the region
of actual asperitic contact and that the spreading resistance in any region varies inversely with
the thermal conductivity of the material. Figures 3 and 4 illustrate the first of these points.
Figure 3, drawn to scale, shows the equipotential lines about a circular contact region each
drawn to show one-tenth of the total spreading resistance between the circular source region and
the body of a very large contact. It is seen that half of this total resistance occurs within one
contact radius from the circular contact or source region and 80 percent occurs within three
contact radii. Figure 4 illustrates these relationships. Figures 3 and 4 are taken from
reference 4.

The thermal conductivity of contact close to the surface is of such importance that
even a thin 45 Angstrom thick layer of oxide on an aluminum contact can contribute measurably
to the thermal contact resistance of an aluminum contact. This has been shown by Gale,
reference 4.

Mikic and Carnasciali, reference 5, have utilized the above principle to enhance ther-
mal contact conductance by plating materials of higher conductivity on the contacting faces of a
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Figure 3. Temperature Profiles Described by Holm's Equation for Isothermal Circular Source
on a Semi-infinite Slab
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Figure 4. Percent of Total Constriction Resistance for a Single Isothermal Circular Source on
a Semi-infinite Slab as a Function of Distance into Body of Contact

metallic joint. They have attempted an analysis of spreading resistance from a circular contact
into a contact composed of two layers of materials with different conductivities. An exact
boundary value solution of this basic problem has proven too difficult as no mathematical function
has been found which will satisfy the boundary conditions between the plating and the body
materials.

1
Professor C. J. Moore, Jr. in his discussion printed at the end of reference 5 felt

this two layered spreading resistance problem could best be handled by a "well-conditioned
finite difference computer code. " Mikic and Carnasciali then question the economic feasibility
of such calculations.

Attempts by the author of this study to solve the two layer thermal spreading resistance
problem using a finite difference approach utilizing Gauss-Seidel iteration have shown the cost of
digital computer calculation to be great.
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SECTION III

THEORY

A. GENERAL

The governing differential equation for the thermal spreading resistance probem is
Poisson's equation. For those spreading resistance problems that are two-dimensional or may
be reduced to two-dimensional problems, the equation is:

2T .2 =q
+ q (1)

Consider a rectangular field subdivided into rectangular subregions as illustrated in
Figure 5. The heat balance equation describing the heat flow among element m, n and its four
principal neighbors is:

(T -T )H +(T - Tm ) V + (T - T )H
m,n m,n+l m,n m,n m-1,n m,n m,n m,n-l m,n-l

+(T -T = (2)m,n-T m+1, n Vm+1,n m, n (2)

where:

T is temperature

q"' heat generated per unit volume

x,y,z are spatial coordinates

H,V are horizontal and vertical conductances, respectively

qm n heat generated in mode m, n

The convention for the horizontal and vertical conductances used is shown in Figure 6.

Each of the following observations below will be helpful in understanding the discussion
which follows:

(1) When any temperature tm is known (e. g., as a boundary condition), it will
affect equation m, n by yietiing a term qm, n, which is subtracted from the
right hand side of equation (2) where qm, n is:

qm '=n T (H +V +H + n) (3)
, m,n m,n m,n m,n-1 m+l,n

1Associate Professor of Mechanical and Aerospace Engineering, North Carolina State University,
Raleigh, N.C.

2 The method developed is applicable to three-dimensional problems as will be shown later in the
report.
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n -N=5

* 0 * 0
1,1 1,2 1,3 1,4 1,5

m 2,1 2,2 2,3 2,4 2,5

* * * *
3,1 3,2 3,3 3,4 3,5

4,1 4,2 4,3 4,4 4,5
M=5

* * 0 * 0
5,1 5,2 5,3 5,4 5,5

Figure 5. Rectangular Field Divided into 25 Finite Elements

m-l,n

V
m,n

T T T
m,n-1 m,n m,n+1

Hm,n-Il -  H m,n

c = +V

m,n m,n m+1,n
T +H +VTm+l,n m,n-1 m,n

Figure 6. Nomenclature for Nodal Interconductances
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(2) If the original field is divided into M rows and N columns, and further if
M = N, then:

(a) There will be N2 linear equations.

(b) There will be not more than N2 unknowns (fewer if some temperatures
are initially prescribed).

(c) There can be as many different and distinct nodal conductances as there
are interconnections between nodes.

Now, if the system of linear finite difference equations is written in matrix form (taking thenodes of Figure 5 into consideration) from left to right, top row to bottom row, as in readingEnglish, a coefficient matrix results that has a pattern characteristic for field problems described
by Poisson's or LaPlace's equations. This pattern is illustrated in Figure 7.

It was noted by Karlqvist (Reference 6) that the matrix in Figure 7 may be partitioned as
shown. It can be seen that each of the submatrices is N x N and the coefficient matrix is N2 x N2
where the original finite element matrix was N x N in size.

B. DERIVATION OF AN EFFICIENT TECHNIQUE FOR EXACT SOLUTION OF THIS SYSTEMOF EQUATIONS

Defining the sub-matrices shown in Figure 7 as follows:

B1  C1  0 0 0 I Q1

A2  B2  C2  0 0 T2 Q2
0 A3  B3  C3  0 T3 = Q3
0 0 A4  B4  C4  T4 Q4

o 0 0 A5  B5  T Q5

Figure 8. System Of Submatrices In Matrix Notation

Expanding the partitioned matrices (Figure 8) into a system of equations,
having normalized each equation with respect to the diagonal element:

T B 1-ICIT 2  0 0 0 = 811 1

B2A2T1  T2  B 3  0 0 B Q2-12 21 2 2 3
SB3-1A3 2  3  B3-1 4 0 = B3-1 Q3

0 0 B4-1A4T 3  T4  B 4-C 4T 5 = B4 -1Q4

0 0 0 B5-1A5T 4  T5 = B-1Q5

Upon redefining constants in the following manner:

B 2 -1A 2  -B 2 , B2 -1C 2 .- A2 , and B2-1 2 Q C 2 , etc.

8
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the general equation has the form:

-BiTi_ 1 + Ti - Ai T i +  = Ci  (4)

The first equation can be solved for T:

T = C 1 + AT 2 (5)

and the ith for T.:
1

T. = C.+ + (6)1 1 AiTi+l Bi i- (6)

The goal is to find a recursion relationship built upon successive substitutions, which pro-
vides a solution for the ith unknown in terms of the (i+l)th. That is:

T. = A.'T. + B.' (7)
1i 1 i+l

Examining equation (5) for T 1 above, it can be seen that:

A' = A1 and B' = C 11 1 1

The equation for T2 is:

T2 = C2 +A2 T 3 + B2 1  (8)

which, when written in terms of the equation for T 1 , becomes:

T2 = I -B 2A1 -1 A2 T3 + [I - B2A1 [ 1 C 2 + B2B 1'] (9

The general coefficients found in this manner become

A.' = I - BA. 1' -1A.11-1

and

B.' = [I - BA. I'] B B.B ' + C]

Therefore

T. = A.' T + B' (10)- 1 1 i+1 i

The temperature matrices (columns) are found starting at the Nth row by making

TN = BN '  (11)

AN= 0 as a boundary condition results in modification of CN above [ see equation (3) ] .

The system of equations has been solved by operating on 3V' - 2 submatrices, each of
which is the square root of the size of the original N x N coefficient. 3/f-N inversions of these

10



submatrices are required. The total number of multiplications (an indication of the effort) re-
quired during solution is:

No. of Multiplications = 3N 2 + N3 /2 - N + N1/2 (12)

This may be compared against other direct methods (see Ref. 7):

Number of Multiplications
Method Required during Solution

1 .3 2  1
Gaussian Elimination 1 1 + N -- N3 3

2 2

Doolittle 1 N3 + N2 1 NDoolittle 3 3 N
3 3

Cholesky N3 + 2 N

Cornock's method (Ref. 8),a triangulation type, also makes use of the characteristic
pattern of submatrices which results during a finite difference solution for fields described by
Poisson's equation. When the field properties are homogeneous and isentropic, Cornock's
method is very powerful since only one of the above submatrices of order V/-need be inverted.
However, for the general solution of the nonhomogeneous field, the number of multiplications
required is

13 N - N -3/2 2N- 5 (13)

A serious drawback to Cornock's method is that it does not lend itself to ready general program-
ming for matrices of variable size as does the method described in this report.

That equation (12) is indicative of the computer effort required for solution has been sub-
stantiated in practice. Figure 9 shows the variation in cost realized in the solution of very large
matrices using the method developed in this report. Also, a strong feature of this method is that
very large systems of equations, e. g. , 2500, can be conveniently handled in a direct solution.

The FORTRAN Y program contained in the Appendix was used on a Honeywell 630 computer
in generating the dollar costs shown in Figure 9. Out-of-core storage of submatrices was utilized
for very large systems.

C. APPLICABILITY OF TECHNIQUE TO THREE-DIMENSIONAL PROBLEMS

The technique discussed above is suited to the solution of field problems having three
or more dimensions. Figure 10 illustrates the characteristic pattern of the coefficient matrix
for a three dimensional finite element array. It is seen that the submatrices are\y-Nin size.
The same block tridiagonal pattern of submatrices is seen to occur as in the two-dimensional
case so the derivation above for the technique of solution for two dimensional matrices is still
applicable. Thus, although the BASIC and FORTRAN Y program presented later in this report
are written for two-dimensional problems, little revision of these programs is required to handle
three dimensional programs. Since the submatrices are /-Nrather than the /-N-in size, the
technique is even more powerful for three dimensional problems. The number of multiplications

11
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Figure 9. Cost of Computation vs Size of Coefficient Matrix

required for solution of the three-dimensional problem is a function of N 4 /3 as opposed to N 2 for
the two dimensional array where N is the order of the coefficient matrix.

12



19 20 21

10 12

D 1 2 2 24

H 13

27

16 25 6 26

17

8 9

N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 I H 0 V 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T Q 1

2 H z HI0 V 0 0 0 0 0 D 0 0 0 0 0 0 0 000 0 010 0 0 0 0 T2  Q2

3 0 H zl 00 V0 0 0 0 0 D 00 0 00 00 o 0 0 00 0 0 T3  Q3

4 V 0 0 H 0 IV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 T4  Q 4

5 0 V 0H Z H 0 V 0 0 0 0 0 D 0 0 0 01 0 o 0 0 0 0 T5 Q5

6 0 0 V 0 H 10 0 V 0 0 0 i 0 D 0 0 0 0 0 _0 0 0 0 0 0 T6  Q 6

7 0 0 0 O I H 00 0 1 0 0 tD 0 0 0 0 0 0 0 0 0 0 0 T7  Q 7

80 0 010 V 0H Z H 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 T8  Q 8

0 0 0 Vlo0 HZ 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 T9  Q 9

10D0 0 10 0 0olo 0 0 H I0 V 0 010 0 0 D 0 010 0 0 0 0 0 T10  Q 10

11 0 D 0 0 0 0 0 0 0 H Z H 0 V 0 0 0 0 0 D 0 0 0 0 0 0 0 T11  Q 11

12 0 0 D 0O 0 0 0 0 0 H 0 L2 0 VI 0 0 0 0 0 0 0 0 0 0 TI2 Q 12

130 0 0 D 0 o0 0 0 V 0 0 E H 0 V 0 0 0 0 D 0 0 0 0 0 T13= 13

14 0 0 00 D 0 0 0 0 0 V 0 V OIH H 0 0 0 0 0 0 0 0 0 T14  Q 14

150 0 0 0 0 D0 0 0 0 00 H X1 0 V 0 0 0 o0 0 0 T15  Q 15

16 0 0 00 00 0 0 H 0 0 00 0 0 0 D 0 0 T16  Q16

170 0 0 0 0 0 0 D 0 0 0 0 010 V 0 HZ H 0 0 0 0 0 0 0 D 0 T17  0 17

o 0 1o o olo 0 o o lo v O H Z0 0 010 0 010 D 0 IT a,,
S 0 010 0 0 0 0 D 0 0 0 0 0 V 0 H T 0 0 0 0 0 0 0 0 D 7T18  Q 18

S190 0 o 0 0 0 oo 0 0 0 0 010 0 0 Z H 0 Iv 0 0 10 0 0 T19  Q 19

20 0 0 0 0 10 0 0 0 0 0 010 0 H Z HIO V 0 0 0 T20  Q 20

21 0 0 0 0 00o10 0 0 0 0 olo 0 o o 0 0 0 H z0 0 Vl0o T21  Q21

220 0 0 o 0 olo 0 0 0 0 01D 0 0 0 0 v 0 Ol H 0 v 0 0 T22  Q22

230 0 00 0 0 100 0 0 0 0 0 D0 00 00 0 V 0 H Z HI0 V 0 T23  Q2 3

240 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 VO H Z 0 0 V T24 Q24

25 0 00 0 0 0 0 0 0 0 0 0 ID ID 0IV 0 0 0 V 0 L0 H 0 T25 Q25

26 0 0 0 0 0 0 0 0 00 0 0 0 0 10 00 olo V 0 H H T26  Q26

270 0 00 o o o 0 00 o 00 0 0000 00o o OH I T27 27

WHERE ZM= -2 (Vm + Hm + Dm)

Figure 10. Matrix Representation of System of Equations Describing Three-Dimensional Field
Showing Pattern Established by Submatrices of Coefficient Matrix
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SECTION IV

ILLUSTRATIVE PROBLEM AND PROGRAM

A sample thermal spreading resistance problem will be solved to illustrate the tech-
nique presented in Section II. The computer program used in the problem is written in BASIC
language. A general version of the same program written in FORTRAN Y is included in the
Appendix.

A. DESCRIPTION OF SAMPLE PROBLEM

The thermal spreading resistance problem to be considered is depicted in Figure 11. Heat
is uniformly generated in a plane circular region of radius a and flows to a circular sink of radius
b both concentric with, and parallel to, the source region a distance H away in a conductive
medium. The conductive medium is divided into two regions of different conductivity. An exact
closed form solution of this problem has not been found.

T MAX

UNIFORM HEAT SOURCE WITH AREA
POWER DENSITY q"

C KI

H

K2

CONSTANT TEMP. SURFACE AT TEMPERATURE ts

Figure 11. Mathematical Model for Spreading Resistance Nomographs
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4 * * * * * 0 0 *

3 0 0 0 0 0 0 * 0
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Figure 12. Nodal Pattern for Sample Problem
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Ratios of geometries and conductivities used in the generation of sample data are sum-
marized below. All data is generated and presented in nondimensional parameters.

Parameter Number of Values Parametric Values

a/b 6 0.111, 0.222, 0.166, 0.551, 0.388, 0.5

H/b 6 0.1, 0.2, 0.5, 1, 2, 5

C/H 5 0.1, 0.2, 0.3, 0.5,

K1/K2 5 0.01, 0.1, 0.2, 0.5, 1

The above three-dimensional problem can be viewed as two-dimensional since all heat flow
within the cylinder is in the axial and radial directions. Further, there is symmetry about the
axis of the cylinder.

Figure 12 shows the arrangement of finite elements used in the illustrative data generation
program.

B. CALCULATION OF NODAL CONDUCTANCES

The convention used for the nodal conductances was that the vertical conductance V(m, n)
associated with each node was that in the upward direction and the horizontal conductance H(m, n)
was that connecting with the node on the right. This is illustrated in Figure 13.

(m+l,n)

(m,n+l)

.. (m~n) -n)

Figure 13. Convention for Nodal Conductances

The calculation of conductances is straightforward for all modes except for those nodes of
horizontal conductance lying on the axis of the cylinder, i.e., n = 1. The horizontal conductance
of this inner node was approximated by using the exact solution of Jacob (Ref. 9) for two-
dimensional heat flow within a cylinder having uniformly distributed internal heat generation for
the difference between the mean temperature of the cylinder and the outside surface with radial
flow.

The conductances of all other nodes could be calculated in an exact manner using calculus.
General expressions for the M, Nth nodal conductances in terms of M, N were developed and used
in the sample problem to facilitate changing the program to allow the use of different numbers of
finite elements.
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C. DETAILED DESCRIPTION OF ILLUSTRATIVE PROGRAM

Figure 14 shows the computer program for the illustrative program. The major steps in the

program are described below.

Line No. Description

10-60 Dimensioning symbols will be defined as used in this program.
The same symbol may be redefined several times.

70 P = 7r

80 C1 is that part of the horizontal thermal resistance of nodes 10, 1
and 1, 1 between the nodal point and the surface of these nodes.

(See discussion above concerning Jacob's formula.)

90 Expressions for entire horizontal resistance between nodes 10, 1
and 10, 2 as well as 1, 1 and 1, 2.

110 H is the horizontal conductance.

160 V is the vertical conductance to node above.

200 Generalized expression for horizontal conductance for most
modes, m, n.

210 Generalized expression for vertical conductance for most modes,
m, n.

290, 320 Entering adiabatic boundary conditions at top and sides.

380-460 A9 is the radius of the heat generating region.

470 Calculation and print of a/b (see Figure 11).

480-250 Entering uniform heat input in the circular region described by
A9. Use is made of the area dependence share by vertical con-
ductance and heat input.

530-651 Setting of H/b (see Figure 11).

680-690 Adjustment of horizontal and vertical conductance for H/b.

720-801 Setting of C/H (see Figure 11).

810-971 Establishment and assignment of values for K1/K2 (see Figure 11).

990, 1000 Optional printout of H(m, n) and V(m, n)

1010-1220 Generation of coefficient matrix.

1010 M is row number of physical nodal pattern.

1080 Sets subdiagonal and superdiagonal in the coefficient matrix (line
arrays W immediately either side of the main diagonal) to zero
(see Figure 15d).

(Continued on page 25)
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IPRINT" A/9 ""/ "C/H ";"KIl/K2 "@
2 PRINT
10 DIM H(12s12)V(C12,12),T(12,12),QC10 10)

E 20 DIM X(Ol, o),Y(0O.1O),WC(too),pzc<1OO)
30 DIM A(10,l0)PBCIO<t0 ),D(10I10)ECO10I10)
40 DIM PF( <lO10)GC10 0), (1Olt0),J(t1s0) 10 0)

. 50 DIM L( 10i 0)M(10 IO0)s(10s 10)s(10 IO0),P(10s10)
LL 60 DIM R(10 1 0),S(C10l0),U(tl0,0)

70 P=3. 14159265
90 CI.125/P
90 RI=Cl+(LOG(2))/(2*P)

LM 100 R2=RI/2
101 FOR N4=4 TO 5
102 FOR N3*I T05
103 FOR N2=I TO 6
104 FOR NI•) T09
II5 110 ( !)rH(!0=)t/R
120 FOR Mz2 TO 9
130 H(M 1)2*HC I )I

O 140 NEXT M
150FOR Ma1 TO 10
160 VCMtI)*P/2

LL 170 NEXT M
ie 190 FOR Mtl Te 10

190 FOR N=2 TO 10
2004(M.N)l/( 1/(4*P)*LOGCN/(N-I)))
210 V(MRN)=P*4 (N.1)

C. 220 IF M>1.1 THEN 240
230H(IN)a. *H(IN)
240 H(10,N).*5*H(1ON)
250 V(MlO)=P*C4*N-5)/2
260 NEXT N

S 270 NEXT M
280 FOR Mal TO 10
290 H(MI0O)0O

J 300 NEXT M

LU 310 FOR Nal TO 10
320 V(I*N)=O
330 NEXT N
380 IF NIt THEN 2660

&L 390 IF NI=5 THEN 2660
400 IF N=7 THEN 2660
410 IF NI9 THEN 2660
420 49al
430 IF NI<2 THEN 470
440 A9u2*NI-t
450 IF NI10 THEN 470
460 49=18

0 470 PRINT USING 471.A9/18,
4712 99.99
480 C(Cl)=V(2,1)*2-00000
490 IF Nial THEN 530
491 FOR N=2 Te 10
492 C(N.tl)m

Figure 14. Computer Program for Illustrative Example
(Sheet 1 of 6)
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UL. 493 NEXT N
500 FOR Na= TO NI
510 C(Nel)wV(2,N)*2*0000
520 NEXT N
S30 HI=t.
540 IF N2<2 THEN 650
550 H1*.2
560 IF N2<3 THEN 650
570 1H=.5

. 580 IF N244 THEN 650
LL 590 41H=

600 IF N2<' THEN 650
610 41=2
615 IF N2< 6 THEN 650

L", 620 H4*5

C3 630 IF N2<7 THEN 650
640 H=O10
650 PRINT USING 651,41,
651 1 # # .##

E 660 FOR M=1 TO 10
670 FOR NI1 TO 10
680 VCMN)=V(M#N)/Hl

O 690 H(MN)=H(MN)*HI
700 NEXT N
110 NEXT M

11J 720 CIl!
C 730 IF N342 THEN 800

740 C1=2
750 IF N3<3 THEN 800
760 C1=3
770 IF N3<4 THEN 800
780 C1=5
785 IF N3<5 THEN 800
790 Cl7
800 PRINT USING 801C/10I

S801: mmmmU. EU
810 K2t1
820 IF N4<9 THEN 910

%J 830 K2-2
ULJ 840 IF N4< 3 THEN 910

850 K2=5
860 IF N4<4 THEN 910
870 22.10

U 880 IF N4<5 THEN 910
CD 890 K2 100

910 FOR MCI+tI TO to
920 FOR N = 1 TO 10
930 VCM*N)aV(MN)*K2

E 940 H(M,N)HH(MN)*K2
950 NEXT N
960 NEXT M

) 970 PRINT USING 972.1/K2,
9721 tlUlU####*.
980 GO TO 1010

Figure 14. Computer Program for Illustrative Example
(Sheet 2 of 6)
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LLJ .990 MAT PRINT Hi
QZ 1000 MAT PRINT VI

1010 FOR M=l TO 10
1020 MAT X"ZER
1030 MAT YaZER

C3 1040 MAT W-ZER
1050 FOR NI1 TO 10
1060 IF Na1 THEN 1090
1070 IF N=10 THEN 1090
1080 WCN*N-I)UW(NN+I)=0
1090 IF N<2 THEN1110

0 1100 W(N,N- )=-(MN- I)
1110 IF 4o 9T4EN 1130
1120 W(N+I)-H(M*N)

LI 1130 XCN*N)O-V(M+I*N)

II 1140 Y(NON)=-V(M.N)
1150 C3"0
1160 IF Nat THEN 1180
1170 C3zW(N,N-1)

(3 1180 IF NtIO THEN 1200
1190 C3=C3+W(NN+I)
1200 W(NN)=C3+X(NN)+YCN,N)
1210 W(NaN)=-W(<NN)
I120 NEXT N
1230 MAT Z. INV(W)
1240 MAT Wa Z*X

0 1250 MAT Ta(-I)*W
S 1260 MAT W=T*Ct)

LUL 1270 MAT Xv Z*Y
1280 MAT T=ZER
1290 MAT T=(-I)*X
1300 MAT XT*(I)

LU 1310 IF M<> THEN 1350
1320MAT. AZ*C
1330 MAT C=ZER
1340 MAT B"W*(l)
1350 IF M,2 THEN 1380
1 360 MAT CfX*(I)
1370 MAT DuW*(t)
1380 IF M<>3 THEN 1410

O 1390 MAT E=X*(1)
1400 MAT FnW*(I)
1410 IF M<>4 THEN 1440

LL 1420 MAT G=X*(I)
j= 1430 MAT I=W*(1)

1440 IF M<>5 THEN 1470
1450 MAT J=X*(l)

MLA 1460 MAT K=W*(1)
(3 1470 IF M<>6 THEN 1500

1480 MAT L"X*(1)
1490 MAT M=W*(1)
1500 IF M<'7 THEN 1530
1510 MAT N=X*(I)
1520 MAT a0W*t1)

Figure 14. Computer Program for Illustrative Example
(Sheet 3 of 6)
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1530 IF M<*ST4EN 1560
0 1540 MAT PaX*(1)
%,j 1550 MAT QnW*CI)

LIJ 1560 IF M<9T EN 1590
1570 MAT R=X*(1)
1580 MAT S=W*(I)
1590 IF M<10 THEN 1630

M.3 1600 MAT T"ZER
1610 MAT T=X*(1)
1620 MAT U=W*CI)
1.630 NEXT M
1640 FGR Mtl Tre o
1650 FOR N=I TO 10

E 1660 WCMN) X(MN.J) wY(MN)IZ(M#N)=0
1670 NEXT 4
1680 NEXT M

. 1690 MAT XwC*B

LL 1700 MAT Y=IDN
1710 MAT Z=Y-X
1720MAT XzINV (Z)
1730 MAT Z=X*D

LA 1740 MAT D=Z*(1)
S1750 MAT Z=C*A

1760 MAT C-X*Z
1770 MAT Xa E*D
1780 MAT Z=Y-X
1790 MAT X-INV(Z)
1800 MAT Z=X*F
1810 MAT F=Z*C1)

O 1820 MAT Z=E*C
1830 MAT E=X*Z
1840 MAT X- G*F

LLS 1850 MAT Z"Y-X
09 1860 MAT X=INV(Z)

1870 MAT Z= X*I
1880 MAT I=Z*(I)
1890 MAT Z=G*E

C, 1900 MAT G=X*Z
1910 MAT X=J*I
1920 MAT Z=Y-X
1930 MAT X*INV(Z)
1940 MAT Z=X*K

S 1950 MAT KtZ*Cl)
1960 MAT ZaJ*G

0 1970 MAT JX*Z
LI 1980 MAT X=L*K

LM 1990 MAT Z*Y-X
2000 MAT XaINV(Z)
2010 MAT Z-X*M
2020 MAT M=Z*(I)

M.6 2030 MAT Z"L*J
2040 MAT L=X*Z
2050 MAT X=N*M
2060 MAT Z=Y-X

Figure 14. Computer Program for Illustrative Example
(Sheet 4 of 6)
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2070 MAT X=INV(Z)
2080 MAT Z=X*e
2090 MAT G*Z*C1)
2100 MAT Z*N*L

O 2110 MAT N= XeZ
2120 MAT X2P*O
2130 MAT Z=Y-X

LIJ 2140 MAT X=INVCZ)
Cg 2150 MAT Z=X*O

2160 MAT Q=Z*CI)
2170 MAT Z=P*N

&A 2180 MAT P=X*Z
2190 MAT X=R*Q
2200 MAT Z=Y-X
2210 MAT X=INV(Z)
2220 MAT Z=X*S
2230 MAT SZ*C(1)
2240 MAT Zu R*P

o 2250 MAT R*X*Z
2260 MAT Xw T*S

,. 2270 MAT ZY-S
LU 2280 MAT X= INV (Z)

2290 MAT Z=X*U
2300 MAT UsZ*Cl)
2310 MAT ZzT *R

U 2320 MAT TsZER
c 2330 MAT X. ZER

2340 MAT X=S*T
2350 MAT Y=ZER
2360 MAT Y=X+R
2373 MAT R=Y*CI)
2380 MAT X=Q*Y
2390 MAT Y=X+P
2400 MAT P=Y*(1)
2410 MAT XU=*Y
2420MAT Y=X+N

LLA 2430 MAT NYe*CI)
S2440 MAT X=M*Y

2450 MAT Y=X+L
2460 MAT LaY*(1)

*U 2470 MAT XuK*Y
2480 MAT Y*X+J
2490 MAT JaY*CI)
2500 MAT X*1*Y
2510 MAT Y=X+G
2520 MAT G=Y*(1)
2530 MAT X=F*Y
2540 MAT YIX*E
2550 MAT E=Y*(1)
2560MAT X=0 *Y

Figure 14. Computer Program for Illustrative Example
(Sheet 5 of 6)
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2S70 MAT Y"X.C
2580 MAT CYe* t)

CL 2590 MAT X=B*Y
2600 MAT YzX+A
2610 MAT A=Y*jI)
2630 R7=A(t,1)/A9

0 2640 PRINT USING 2650, R7
2650 tueue.##
2660 NEXT NI
2665 PRINT
2670 NEXT N2
2675 PRINT
2680 NEXT N3

0 2685 PRINT
2690 NEXT NA
2695 PRINT
2700 END

Figure 14. Computer Program for Illustrative Example

(Sheet 6 of 6)
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r
m

I'A W B

C W D

E W F

G W I

J W K

L W M

N W O

P W Q

R W S

T W U

INDENTIFICATION OF SUB-MATRICES OF COEFFICIENT MATRIX

(b) (c) (d)

W(N,N+1)
X (N, N)

Y (N,M) W (N,N)

MAT

W (N, N-1)

C,E, G,J,L B,D,F,I,K W
N,P,R,T M,O,Q,S

INTERNAL MAKEUP OF THE SUB-MATRICES

Figure 15. Identification and Internal Makeup of Submatrices of Coefficient Matrix
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Line No. Description

1100 Assigns values to first subdiagonal of the coefficient matrix W
(see Figure 15d) describing the mth row of the physical nodal
pattern.

1120 Assigns values to first subdiagonal of the coefficient matrix W as
in line 1100.

1130 Assigns values to the X submatrix (see Figure 15c).

1140 Assigns values to the Y submatrix (see Figure 15b).

1200, 1210 Enters elements down the main diagonal of the W submatrices.

1230 First submatrix manipulation statement.

1240 Normalizes-the submatrix to the right of the W matrix diagonal
(see Figure 15a).

1270 Normalizes the submatrix to the left of the W matrix
(see Figure 15a).

1280 Empties T matrix.

1320-1630 Assigns each of the submatrices, subdiagonal and superdiagonal,
mapped by Figure 15a after normalization. Note that matrices
X and W are functions of M, the row of the physical nodal pattern.

1640-1680 Clears matrices W, X, Y, Z, so they may be redefined below by
entering only nonzero elements.

1690-2250 These steps calculate the recurrence coefficients Ai ' and Bi' ac-
cording to equation (10) of Section II. As these are calculated,
the superdiagonal and subdiagonal matrices of Figure 15a are
sequentially redefined to be these recurrence coefficients.

2320 This statement enters the boundary condition that the temper-
atures along the bottom row of the physical matrix are zero.

2330-2610 Using the recurrence relationship developed in 1690-2250,
equation (10) is used to calculate the temperatures, one row
(of the physical nodal model) at a time. These (column) matrices
of temperatures are calculated in the following order (see Fig-
ure 15a) and with the following nomenclature: T, R, P; N, L -
J, G, E, C, A.

2630 R7 is the temperature of node 1, 1 divided by the radius of the
heat source A9, defined in statements 420-460.

D. SAMPLE SOLUTIONS

Figure 16 presents the sample solutions of the illustrative problem. tMAX is the
average temperature nodal point 1, 1, see Figure 12. It is obvious that, for these solutions,
increasing the number of nodes in the physical model would have the result of increasing the
temperature in this hottest element. This was done and the results are discussed below.
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Effect of Increasing the Number of Finite Elements on the Solution of the Illustrative
Problem

An exact closed form solution exists for the cylindrical spreading resistance problem
in a medium of uniform conductivity. Kennedy (Ref. 10) shows that, as a/b -- 0,

(tMA - t) K1
-1

q" a

Figure 17 shows this trend for the finite difference model. With1600nodes, (tMAX-ts) K1/q" was
calculated to be 0. 9788. With 2500 nodes, the nondimensional resistance dropped to 0. 9766; this
reduction is attributed to the inexact treatment of the horizontal resistance of the nodes in the
inner column using the equation of Jacob (Ref. 9) as described earlier.

KI H
K2 b

1.0

58 b 78 b 98

b 38

0.9

E a1
b 18

0.8
0 500 1000 1500 2000 2500

NUMBER OF NODES IN PHYSICAL MODEL

Figure 17. Maximum Nodal Temperature for Minimum a/b as a Function of Number of Nodes

It would appear that a nodal model of 900 nodes would be a near optimum number for
generating solutions to this particular problem using the finite element approach.
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SECTION V

THEORY OF SUPERPOSITION OF SOLUTIONS OF SPREADING THERMAL
RESISTANCE PROBLEMS

A. GENERAL

The general steady state heat-conduction equation in Cartesian coordinates, known as the
Poisson equation, is given by

62 t  2t  2t q 0 (14)x2  y2  2  K = 0 (14)

where

t = t(x, y, z) = temperature (0 F)

K = thermal conductivity (taken to be independent of temperature and position)
(Btu/hr-ft- ° F)

q"' = q"' (x, y, z) = internal volumetric heat source (Btu/hr-ft 3 )

x, y, z = Cartesian coordinates

The generalized boundary conditions vary. For example, specified temperature:

t(x, , z) Xb Yb' Zb = f(xb Yb'Yb) (15a)

where:

f = specified function

xb' Yb' Zb = values of x, y, z on the boundary (b)

or, convection to a fluid:

n= ±k t(xbz) -ontheboundary - tf (15b)

xb on the boundary fzb

where

n = outward directed vector normal to the boundary

h = Newtonian convective film coefficient (Btu/hr-ft 2o F)

tf = bulk temperature of convecting fluid (0 F)
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It is convenient to rewrite equations (14), (15a), and (15b) using a temperature difference
for the dependent variable that contains a reference temperature. This reference temperature is
typically taken to be a specified boundary temperature, as in equation (15a), or the fluid temper-
ature as in equation (15b).

Hence, we define this temperature difference by

u A - treference (16)

Equations (14), (15a), and (15b) can then be rewritten

+ + + G = 0 (17)
x2  2 2

u(x, y, z) xb' Yb, zb = g(xb' Yb zb) (18a)

6u h
n 'x, b' Zb =  u(x b' Yb' Zb) (18b)

where

G = q"'/K

These equations are linear as can be seen by observing that they contain no products of the
dependent variable (u) or its derivatives. Since they are linear, any linearly independent com-
bination of solutions will satisfy these equations due to the distributive property of linear oper-
ators, i.e.,

L(x 1 +x 2 + ... ) = L(xl)+ L(x2 )

where

L is a generalized linear operator

This property may be applied to equation (17) as follows: Take u1 and u2 to be independent
solutions to equation (17). Next, define

u3 = a1 u1 + a2 u2

where al ul + a2 u2 = 0 if, and only if, al = a2 = 0, i.e., ul and u2 are linearly independent.

Now substitute a 1 u1 into equation (17), then a2 u2 into equation (17), and add the two
expressions [using (a) the shorthand operator

2 2 2 )2
17 = + 2+2  2 2

and (b) G1 corresponding to the a1 u1 solution and G2 corresponding to the a2 u2 solution]:

2 2
v al U1 + 2 a2 u2 + G1 + G2 = 0
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Since v2 is a linear operator, and defining G = G1 + G2 , we can write:

V2(al u + a2 u2 ) + G = 0

but

al u 1 + a2 u2 = u3

therefore,

V2u3+G = 0

Thus, u3 is also a solution to equation (17). Applying the same procedure to, say, equation (18b)

Sn = K Ul

bu2 h
an K u2

Adding

u 
(u + u

an + an K u2)

Since / n is a linear operator, this can be written

a h
(ul +u 2 ) = K (u +u 2)

.But ul + u2 = u3 , then

bu3 h
F- -K u3

Thus, u3 also satisfies the boundary condition.

B. ADDITIVE SOLUTIONS

A useful ramification of the superposition principle lies in the fact that the solution to a
complicated system may be formed by linear combinations of known solutions.

Consider a rectangular plate with internal heat generation. The governing differential
equation and boundary conditions are illustrated in the following sketch:

Y

u= fa V 2 u+G=0O

u =go (y) ---- Vu=

00 w u=fo I x
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Explicitly, we have the system

V u(x,y) + G(x, y) = 0

u(x,0) = fo(x)

u(x,a) = fa(x) (19)

u(0, y) = go(y)

v u(1, y) = (h/K) u(1, y)

The solution may now be written

u(x, y) = u1(X, y) + u2 (x, y) + u3 (x, y) + u4 (x, y) (20)

The number of ancillary problems is taken equal to the number of nonhomogeneities in the sys-
tem. Since the governing equation and the first three boundary conditions are not homogeneous,
the number of ancillary problems is four.

Substituting equation (20) into equation (19), we obtain the complete system:

2 2 2 2
2 ul + V u2 + V u3 + V u4 + G = 0

Ul + u2 + u3 + u4 = fo (21)

u 1 + u2 + u3 +u4 a

l1 + u2 + u3 + u 4 =

u + u3 + u4 =() [u 1 + u2 + u3 + u4  at x = 1, y = y

The set of ancillary problems corresponding to this system can now be written as:

Problem 1 Problem 2 Problem 3 Problem 4

2 Ul+G= 0 u2  V u
3 = 0 v 2 u4 = 0

u1 = 0 u 1 = 0 u1 = 0 ul(x, 0)=f (x)

u2 = 0 u2(x, a)= f(x) u2 = 0 u2 = 0

u3 = 0 u3 = 0 u3(0, y)= go (y) u3 .= 0

h Ul y ) Vu(1,y)h
vul(1, y) =K u(1y) Vu(l, y) = u2(1, y) u3(1, Y) = u3(1, Y) )u4(1, Y)= u4(1, Y)

Note that each of the ancillary problems now contains onlyone nonhomogeneity, a much

simpler form. Note also that their sum is equal to equations (21).

Hopefully, we can solve each of the ancillary p -'lems or find the solutions in the liter-

ature. Once we have these, we merely add themto ob.Lin the total solution to equations (19).

It was mentioned that once a system has been degenerated to a set of ancillary problems,
the final solution is the sum of the individual solutions. This holds, provided the ancillary
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problems are properly defined. Care must be exercised in specifying boundary conditions so that
the sum of the individual solutions equals the total solution.

Consider, for example, the following three problems (taken from reference 10):

b3 S

H b2

CASE I CASE II CASE III

Heat, which is generated uniformly over a circular disk S, spreads by conduction through
a cylinder of height H and diameter D to a constant temperature heat sink.

At first glance, the analyst might be inclined to assume that case III is the sum of cases I
and II; he would be wrong. To understand why, we must correctly define the boundary conditions
on each ancillary problem.

The governing differential equation in each case will be the same

2u  82ux2 +  = 0 
(22)

Sx by

The boundary conditions will be written in four parts corresponding to the regions bl, b2,
b3 and S.

Case I:

u (bl) = 0

bu I (b2)
= 0 (adiabatic surface) (23a)

3u I (b3)
= 0an

U (S)
n = GI (constant flux)

where n is an outward directed unit vector normal to the surface.
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Case II:

Suii(bl)
=0n

6u I(S)

6 n GII

Case III:

uII(bl) = 0

uIII(b2) = 0 (23c)

uIII(b3)
=0an

uin(S)

3n GIII

Now, add the governing differential equations for cases I and II

+ +
2 2 2x2  + 2 + 2 6 = 0

ax ay ax y

Regrouping

'2 (u+ + 2 (u+ uH) = 0

By our initial assumption uHI = uI + uH. Thus,
2 2

+ =0
2 2

ax by

The differential equation is satisfied.

Next, add boundary conditions, beginning in region bl:

6u (bl)
u (bl) + = 0

Note that we have mixed conditions which are inconsistent. This situation also exists in regions
b2 and S (except that in region S we could define GI + GII GIII to make the boundary conditions
additive. Thus, case Ill is not the sum of cases I and II; we have, in fact, three nonanalogous
systems.

42



C. FURTHER EXAMPLES

An excellent set of examples of the application of superposition principles in the calculation
of thermal spreading resistances may be found in Reference 1 in which the auther utilizes
Green's function in the calculation of thermal spreading resistances. For a discussion of Green's
function see Reference 11.
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SECTION VI

SUMMARY OF OTHER TECHNIQUES FOR CALCULATING AND ESTIMATING THERMAL
SPREADING RESISTANCE

The two handiest "rules of thumb" relationships that can be used to calculate or estimate
thermal spreading resistances were developed by Holm (Ref. 12) and Raillard (Ref. 13). Holm
derives the equation for the thermal resistance of a circular isothermal source on the face of a
semi-infinite slab as:

1
R - 4 ak (24)

where

a = radius of circular source

k = thermal conductivity of medium

Figure 3 (Section II) shows the temperature profiles described by Holm's equation. Figure
3 shows that 80 percent of the total resistance in a semi-infinite slab occurs within three radii
of the source. It can be seen that, when the size of the source is small compared to the thickness
of a slab of finite extent, Holm's equation can be used to make a conservative (high) estimate of
thermal resistance. Such geometries occur often in microelectronic components.

Raillard presents similar exact solutions for circular and rectangular sources having uni-
form generation located on the faces of semi-infinite slabs. The equation for the thermal spread-
ing resistance of the circular source bears a close resemblance to Holm's equation:

1R ak (25)

In Appendix B of his report, Raillard presents an exact closed-form solution for the rectan-
gular source of uniform generation on a semi-infinite slab. He also derives the solution for uni-
form generation in a strip of infinite length and finite width on a semi-infinite slab.

Two references treat the case of the rectangular source of finite width and infinite length on
a slab of finite depth. Wilcox (Ref. 14) treats the uniform heat generation source, while Gale
(Ref. 15) presents thermal spreading resistances for the uniform temperature source. The re-
sults of these two studies can also be found in Reference 16.

Muller (Ref. 17) and Kennedy (Ref. 10) present exact solutions to the problem of a circular
source at one end of a right cylinder with conduction to the side of the cylinder, the other end of
the cylinder, or to both places. Kennedy's source is uniform while the intensity of Muller's
circular heat source varies exponentially within the source region.

Hein (Ref. 1.) examines stady-state heat transfer in a rectangular substrate or slab having
multiple heat sources. He has integrated circuits in mind. He considers convective heat transfer
and lead conduction for various heat-sinking conditions and his solutions are mathematically
exact.
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Finally, it might be well to point out a principle which is somewhat analogous to Saint-
Venant's Principle in the theory of elasticity. Simply stated, T, the temperature in any thermal
spreading resistance problem, varies with 1/L where L is the distance from the source, when
L is large compared with the characteristic demension of the source. That is,

T oc - when L >> a where a is characteristic source dimension
L

This is indicated by the form of the solution of Fourier's equation for spherical flow, i.e.,

A dt km (tl - t 2 ) 47Tk (tl - t 2 )q = k 2  2 -

r dr 2L 1-

47rr
2

L
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SECTION VII

PLANNED APPLICATION OF COMPUTATIONAL TECHNIQUE

General Electric's Aerospace Electronic Systems Department has developed an extremely
compact and thermally efficient packaging configuration for computer circuitry. Integrated cir-
cuits are bonded to multilayered printed wiring boards which are in turn bonded to compact
forced-air-cooled heat exchangers. This configuration is illustrated in Figures 18 and 19.

A heat transfer analysis program that calculates the temperature of each flatpack using
Gauss-Seidel iteration is currently employed. This technique has proven costly: 200 + iterations
are required. Computer costs of $25 to $50 per analysis have been experienced.

The exact computational technique described in this report will be implemented in the near
future for this type of analysis. Costs are expected to be an order of magnitude lower than those
with the iterative technique. (See Figure 9 of Section III.)
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SECTION vm

RECOMMENDATIONS FOR FUTURE WORK

I. The program should be rewritten for three-dimensional fields. Special attention to
such techniques as using the method developed in this report for the main coefficient
matrix on the submatrices themselves should be examined. The fact that very large
matrices can be efficiently handled by this technique should be capitalized upon.

2. The program as it now stands should be used in a thermal spreading resistance
parametric study similar to but larger in scope than the illustrative problem of this
study. Nine hundred to sixteen hundred finite elements should be used in such data
generation.
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APPENDIX

GENERAL FORTRAN Y VERSION OF COMPUTER PROGRAM
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$ IDENT 727-9C4*KELLY NED ,DEL-B 65078300044700
$ OPTION FORTRAN
$ USE MEMORY/1000/
S ENTRY MAIN
S FORTY

INCODE IBMF
CMAIN MAIN

SUBROUTINE MAIN
PARAMETER MAXCOR=In1O
COMMON /MEMORY/CORE(MAXCOR)
COMMON /FILES/INFILEIOFILEIFILEI,IFILE2
- COMMON /TIMFS/ITIME(21IOATF(2)D.FLTTM
COMMON /DEBUG/IDEBUG
PARAMETER MAXMAT=69
PARMFTFR MAYnFF=A
DIMENSION IOFF(MAXOFF)
DIMENSION KARD(14)

- -PARAMETER MAXTIT=12
DIHEKSION ITITLE(MAXTIT)
PARAMETER MAXTIM82
DATA KDFPUa/5HOFBUf8/
DATA IDEBUG/1/
DATA INFILE/05/
DATA IOFIL E,/06/
DATA IFILE1/07/
DATA JFILE1/6H00007/
DATA TFILF2/1B/
DATA ISIZE/4HSIZE/
DATA ICORE/MAXOR/
DATA KTITLE/6HTITLE /
CALL FXOPT(67,1,1,0)
CALL FXOPT(680,Q0,O)
CALL FXOPT(69,U 1V.0)
CALL FXOPT(70,0O,0)
CALL FXOPT(71,U0,0)
PAn (INFILF,77)KARD___
IF(KARD(1).NE.KTITLE) GO TO 94
CALL SUPERT(MAXTIT#KARD(2))

94 CO;TINUE
CALL NEWLIN
'.RITE(IOFILE,7d)KARD
CALL TIMDAT(ITIME,IDATE)

CALL ELTIME(DELTIM)
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558 CONTINUE
READ(INFILE,77)KARD

77 FURMAT(13A6,A2)
CALL NEWLIN
WRITE(IOFILE78)KARD

78 FORMAT(2H *,13A6.A2W H*.)
IF(KARD(1).NE.KDEBUG) 00 TO 557
IDEBUG=O
GO TO 558

557 CONTINUE

DECODE(KARD,I)KEY,N
1 FORMAT(A6,4X,I5)

IF(KEY.EQ.ISIZE) 0O TO 2
CALL NEWLIN
WRITE(IOFILE,55)

55 FORMAT(40H THE A8OVE CARD SHOULD BE A 'SIZE I CARD,)
STOP

2 IF(NeLT.MAXMAT) GO TO 222
CEL NEWLIN
WRITE(IOFILE,223)MAXMAT

223 FORMAT(18H SIZE GREATER THANl10O)
STOP

222 IF(N.GT.O) 00 TO 224
CALL NEWLIN
-RITE(10FILEo225)

225 FORMAT(17H SIZE LESS THAN 1)
STOP

224 NSQ=N*N
CALL SETNUM(2*N*3)

C RECORDS ARE IN SYSTEM STANDARD RANDOM FORMAT
C WHICH MEANS THAT IF A RECORD IS GREATER THAN 318 WORDS
C THEN THE RECORD WILL BEGIN IN A NEW BLOCK
C AND END A BLOCK EVERY TIME
C
C I TRIED USING PURE DATA RANDOM FILES(11-13-72), BUT
C FOR SOME REASON THEY DID NOT SEEM TD WORK PROPERLY.

N8LOCK=((NSQ-1)/318 + 1)*(2*N * 3)
CALL NEWLIN
wRITE(IOFILE,87)NBLOCK

87 FORMAT(I10,43H BLOCKS OF RANDOM DISC STORAGE ARE REQUIRED)
t LINKS=(NBLOCK-i)/12 * 2
CALL NEWLIN
WRITE(IOFILE,86)NLINKS
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86 FORMAT(I10,42H LINKS OF RANDOM DISC STORAGE ARE REQUIRED)
NTIMES=O

81 CALL GETMOR(1.IERR, NLINKS#JFILEI)
IF(IERR.EQO) GO TO 88

C REQUEST WAS REFUSED
* CAIL NEWLIN
WRITE(IOFILE,82)

82 FORMAT(29H REQUEST FOR DISC WAS REFUSED)
NTI :ENTTM~F1
IF(NTIMES.LTMAXTIM) GO TO 81
CALL NEWLIN
WRITE(IOFILE-83) NTIMES

83 FORMAT(25H REQUEST FOR DISC REFUSED#18,16H TIMES, GIVE UP,)
STOP

AR CAll LFTIZt7(o
C SEE IF WE HAVE ENOUGH CORE

MCORE=5*NSO + N
CALL NEWLIN 1
WRITE(IOFILE,101)ICORE

101 FORMAT(110l38H WORDS OF CORE ARE CURRENTLY AVAILABLE)
CALL NEWLIN
WRITE(IOFILE,102)MCORE

102 FORMAT(110I39H WORDS OF CORE ARE REQUIRED FOR THE JOB)
IF(MCORE.LE.ICURE) 00 TO 3

C GET MORE CORE
C ICORE IS AUTOMATICALLY UPDATED TO REFLECT THE ACTUAL NUMBER
C OF WORDS THERE ARE UPON RETURN
C THE ROUTINE DOES NOT FAIL
C IT KEEPS TRYING UNTIL IT GETS THE CORE IT WANTS

CALL NEWLIN
WRITE(IOFILE,103)

103 FOR'AT(33H GET THE ADDITIONAL CORE REQUIRED)
CALL GIMMF(MCORHF,CORFCORPE)

C COMPUTE LINEAR OFFSET FOR EACH MATRIX
3 IOFF(1)=1

0O 4 I=2,MAXoFF
4 IOFF(I)=IOFF(I-)+NSO

NUM =N
C RESERVE SPACE FOR 2*N MATRICES

J=2*NUM
DO 91 I=1*J

91 CALL NEWNUM(K) .
CALL FIRST(N-UCORE( ICFF(1))),NUMNUMCORE(IOFF(2) ),NUMNUM,
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1 CORE(IOFF(3))DNUM.NUMCORE(IOFF(4)),NUMNUM,
1 CORE( ICFF(5) ),NUMNUMiCORE( IOFF(6) )eNUM)

CALL FINISH
STOf
END

SUBROUTINE FIRST(NUM.Q1,NR1,NCl,02NR2iNC2o3NJ3NC3jQ'4,NR4,NC4#
1 Q5pNR5#NC5#IVEC#NVEC)

COMMON /FILES/INFILE, IOFILE, IFILEl. IFILE2
COMMO /DBfG/IDERUG

DIMENSION IYECCNVEC)
REAL 01 NR1,NCl)__________________ 

_____

REAL Q 2 ONi2.Wd2-) _________________ _____

REAL Q3(NR3,NCJ)
REAL 04(NR4,NjC4)
REAL Q5(NR5,NC5)
rIrENSION 101(4)

___IMENSION 102(4) 
___

DIMEN~SION 103(4)
rIMENSION 104(4)

-DIMENSION 105(4)

104(1 )=0

101 (2)=O
101(2)=O

103(2)=O

1 5(2 )a0
I1(3)i:NRl

_______ 102(3 ):NR2
IT; 3 ( 3 ) = N R 3
104(3 )zNR4

_____ 115(3 )=NR5_________ _____ _______ _________

14j(4 )NCI
102(4 )aC2

1,04(4)=NC4
1)5(4 )=NC5

____CALL SEUA0PR*NI oI2NC*3'R*I~ ,iRpJ4

1 Q0NR5#NC5*IVECNVEC,NUm)

55



C - - --
C

C EFAFRCRINCF!I~SA ~l8
CALRTC1!11
CALL RSTR(02,1Q2,2)
CALL RSTR.(02,1Q2,2)
CAL 10T~ Q3,AM3,3 u.~)2
CALL0 hMHPY3,I*NUMQ2,IQf2QODE
CALL MATIY(Q3,5I05NM,24,QjER

CALL MSUB(Q5,1U5,Q4,IQ4,o4#!04#IERR)
CALL MINV(Q4,NUM,NUM,IVEC*DET)
CALI ~STR( Q5-,.1j~5 aME1 ______________________

CALL MMPY(Q4,1U4,Q5,IQ5,Q2,I02#IERR)
CALL SAVE(Q?,I42.NAME,1)

C~lMMPY 031, 103, A I TrFR1
CALL MMPY(04 , Q4.Q5, IQ5,01, 101. IERR)
CALL SAVE(Q1,Il21,NAME)

I1' cO::NTiNur-_ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _
IF(IDEBUG.NE.O) 00 TO 666
CALL NEWLIN

566 FORMATC14H DEBUG POINT C)
CALL MATHAT

C
C

CALL MATZER(oloIgi)
C ojux

CALL MATZER(02,102)
CALL SAYEC02,IU2sNUM2.1)
02=T__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _N~A ME N UM *2

20 VAM4EmNAME-2

C (;3 S-,Q,0,.
CALL MMPY(03:I ,o2IJ2,o1. 101. IERR)
jF(IERR.IhEs0) CALL-RUIT(IERR)___ 

______________

CALL RSTRV.Q2,IG2,NAHE.±)
C 02. a ,~ ,

CALL MADL oQ1, I Q1 s0, 1-02 &-Q2 ,boi--#iRR)
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IF(IERR.NE.0) CALL QUIT(IERR)
CALL SAVE(02,102*NAME-1)

C 02u R.pDeN...
IF(NAMEoGE.4) GO TO 20
IF(IDEBUG,NE.0) 80 TO 667
CALL NEWLN
WRITE(IOFILE,567)

567 FORMAT(14H DEBUG POINT D)
CALL MATMAT

667 CONTINUE
C
C

C RINTCA OUTLL THE RESULTS
CALL NEWPAG
CALL NEWLIN
kRITE(IOFILE,8801)

8801 FORMAT(9H A MATRIX)
CALL RSTR(Qljj91i1)
CALL PMAT(O1lIO1(1)Il01(2)QI1(3),101(4))
CALL NEWPAG
CAll NFWITN
WRITE(IOFILE,8802)

8802 FORMAT(9H C MATRIX)
CALL RSTR(OI.1 I3)
CALL PMAT(Ol l01(1),101(2.)IOi(3),101(4))-
CALL NEWPAG
CALL NEWLIN
WRITE(IOFILE,8803)

8803 FORMAT(9H P MATRIX)
CALL RSTR(Q1,IQ ,(NUM-2)*2.1)
CALL PMAT(01, 01(1), 01(2),I 1(3)101(4))
CALL NEWPAG
CALL NEWLIN
'RITE(IOFILE,8d04)

8804 FORMAT(9H R :ATRIX)

SCALL_ RSTR( 01, Il, ( NUM-1)2-1)
CALL PMAT(Q1,I01(1),101(2),101(3),101(4))
CALL NEWPAG
CALL NEWLIN
1RITE(IOFILE,8805)

8805 FORNAT(9H T MATRIX)
CALL STR(Q1, IOQ1(NUM )*2-1)
CALL PMAT(Q1l IQC1(1)IQ(2), 101(3), IQ1(4))
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RETURN
C END FIRST

ENn
CSETUPA SETUPA.

.SUBROUTINE SETUPAINANRHNCHVDNRVDNCVCNRC.NCCP,,NRXNCX,
1 YINRYNCY, IVECNVECNUM)
COMMON /FILES/INFILE.IOFILE,IFILEIIFILE2
COMMON /DEBUGO/IEBUG
IMFNSION IVFCNYVFC)
DIMENSION H(MRH,NCH)
DIMENSION V(NRV,NCV)
DIMENSION C(NRC.NCC
DIMENSION X(NRXsNCX)
DIMENSION Y(NRYNCY)
PTmFNC TN I(4)
DIMENSION IV(4)
DIMENSION IC(4)
ITMFNSION IX(4)

DIMENSION IY(4)
DIMENSION KARD(14)
DATA IHEAT/4HHEAT/
IH(1 )NUM
IH(2)=NUM
j li(3)=NRH
IH(4)=NCH
IV(1)=NUM
IV(2)=NUM
IV(3)=NRV
IV(4)aNCV
IC(1)=NUM
[C(2)=l
IC(3)=NRC
IC( )=NCC
IX(1)=NUM
IX(2)=NUM
IX(3)=NRX
IX(4)=NCX
IY(1)=NUM
IY(2)=NUM
IY(3)=NRY
IY(4)=NCY
CALL NEWNUM(INUJELC) _
CALL NEWNUM(INJEXH)
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CALL NEWNUM(INDEXV)
CALL IATZER(H,IH)
CALL MATZER(V,IV)
C7ALL MATZER (C, IC)
PI23314159265

RlvCls(ALOG(2.a ))/(2OOPI)
R2URl/2.0
14(1,1)*l. 0/Ri

DO 1.80 Mw2*NUM-1

DO 210 '*.NUM
210 V(mol)zPI/2.o

U0 310..Mzl&NUM
DO 300 N=2,NUM

-- (PiN)aI.4.0.o/(4.pPt()(.0 FOTN)CLOTN"IQ)

IF(Ni.GT,1) 00-TO 2816
H(1,K)=.5*H(1,N)

280 b ( N ) 8. S*WNUMAN I
V(M,10 =PI'14.0o rLOAT(N)-50 0 )/2.0

300 CONTINUE

DO 340 Mzl*NUM
340 H(M#KtUM)=0,9

DO 370 Na1..NUM
370 VCIeN)xO.o

C~ru1.0

00 450 NziNiJM
V(M#N)=C3*V(m#N)
HN ( M # N ) C2 *H( f0., N)

450 CONTINUE
460 CON.TINUE -____________ _______________________

READ( INFILE,461,END@468)94010
461 FORMAT(13A6,A2)

CALL NEWLIN
IdRITE( IOFILE,464)KARD

464 FORMAT(24 *,13A6*A2#1N.)
!IF(KkARD(4).EQ.IHEAT) 00--19 482 ____________________

CALL NEWLIN
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WRITE(IOFILE,463)
463 FORMAT(35H ABOVE CARD SHOULD BE A 'NEAT' CARD)

STOP
462 DECODE(KARD,465)I1,2
465 FORMAT(IOX,215)

IF(I1.LE. OO.llGT,1 2 ) GO TO 472
IF(12.GT.NUM) 00 TO 473
GO TO 479

472 CALL NEWLIN
WRITE(IOFILE,474)

474 FORMAT(20N 11 IS OUT OF BOUNDS)
STOP

473 CALL NEWLIN
WRITE(IOFILE,475)

A47 rFOPlnuA nH y? Ig nl nor anIuni
STOP

479 CONTINUE
DO 4A66 NaINUM

466 C(Nl)=O0.

DO 467 N=I1,12
467 C(N1)iaV(2,N)*2.o

CALL NEWPAG
CALL NEWLIN
-RITF(I0FLF,469)

469 FORMAT(26H INITIAL HEAT INPUT MATRIX)
CALL PMAT(CIC(1),IC(2),IC(3),IC(4))
00 Tn 471

468 CALL NEWLIN
470 FORmAT(49H UNEXPECTED END OF FILE, EXPECTING A 'HEAT' CARD)WRITE(IOFILE.470)

STOP
471 CONTINUE

CALL NEWPAG
CALL NEWLIN
WRITE(IOFILE,701)

701 FORMAT(9H H MATRIX)
CALL PMAT(H, IH(1),IH(2)*IH(3)#IH(4))
CALL NEWPAG
CALL NEWLIN
WRITE(IOFILE,702)

702 FORMAT(9H V MATRIX)
CALL PMAT(V IV(1)tIV(2)pIV(----(4_))-...
CALL S4VE(CIC#INDEXC)
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CALL SAVE(HIHINDEXH)
CALL SAVE(V,IVINDEXV)
IF(IDEBUG.NE O) 90 TO 664
CALL NEWLIN
WRITE(IOFILE,64)

564 FORMAT(14N DEBUG POINT A)
CALL MATHAT

664 CONTINUE
C
C THE MATRICES ON THE DIAGONAL (AND OF COURSE THEIR INVERSES)C ARE DIFFERENT ONLY FOR THE FIRST.SECOND, AND LAST:TIMES.

DO 1150 M=I1NUM

IF(M.EQ.1.OR.M.Eg.2.OR.M.E.NUMN)10Os
IX(1)sNUM
IX(2)xNUM
CALL MATZER(X,IX)
IY(1)=NUM
IY(2)=NUM
CALL MATZER(Y,IY)
IF(IGO.EQ.0 (7 )=NUM
IF(IGO;EQoO)C(2)uNUM
IF(IGO.EQ,O)CALL MATZER(CIC)
CALL RSTR(H.IH INnEXH)
DO 720 NaleNUM
IF(N.Eg.1.OR.N,EQ.NUM) GO TO 590
IF(IGO.EQO)C(N,N-j)=Q,o
IF(IGO.EQ.O)C(N,No1) 0

590 IF(N.LT.2) 00 TO 610
IF( IGO.EQ.0)C(N, N-1)-H(MN.1)

610 IF(N.GE.NUM) GO TO 630
IF(IGOEQ.O)C(NN*1)8-u(M#N)

63q IF(MGENUM) GO TO 640
X(NIN)s*V(M.1,N)

640 Y(N,N)x-V(M,N)
C33=0)
IF(KEO.1) GO TO 680
C33=C(NN-1)

680 IF(N.GE.NUM) 00 TO 700
C33C33*C(N rJ2.)

700 IF(IGO*EOO)C(N,N)x*(C33*X(NeN),Y(NsN))
720 CONTINOE

IF(IGO.EQ.0)CALL MINV(CNUMNUMUMIVECDET)
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CALL MMPY(C,ICX*IX,IWI IERR)
IF(IERRNE.O) CALL QUIT(IERR)
CALL MNEG(H.IH)

C SAVE H (B*,DF,...)
CALL SAVE(HIHM*2)

-- IF--- (M.T.l) Al TO 888
CALL RSTR(H,IH#'INDEXC)
CALL MMPY(CIC, ,IM*,XIXIERR)
IF(IFRR.GT.0) CALL QUITIERR)

C SAVE A
CALL SAVE(XIX#M*2-1)
GO TO 1150

888 CALL MMPY(C,IC#YlIYPX*IX#IERR)
CALL MNEG(XIX)
IF(IERR.NE.O) CALL QUIT(IERR)

C SAVE (CE,G,...)
CALL SAVE(XIXiM*2-1)

l150 CONTINUE
IF(IDEBUG.NE,0) GO TO 665
CALL NEWLIN
wRITE(IOFILF-565)

565 FORMAT(14H DEBUG POINT 8)
CALL MATMAT

665 CO&TINUE
RETURN

C END SETUPA
FND

CSAVE SAVE
SUBROUTINE SAVE(AIAlINDEX)
COMMON /FILES/INFLEDOFLILEIFILEIIFILE2
DIMENSION A(1)
DIMENSION IA(4)
DIMENSION IP(3)
DATA NRW/O/
DATA KOUNT/0/
IF(INnEXLLj,-TOR.NDEX.GT.OUNT) GO TO 801
IF(IA(1).LE,G) CALL QUIT(1)
IF(IA(2).LE.0) CALL OUIT(1)

C CHECK TO SEE IF RANDOM RECORD SIZE IS LARGE ENOUGH
IF((IA(1)*IA(2)).GT.MAXWRD) CALL QUIT(l)
IB(1)=IA(1)

___IB(2)= IA(2)
IB(3)=1
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WRITE(IFILE2INDEX)I8
NRwIA(1)
NCEIA(2)
NCOLS=IA(4)
12.NR.
13aNCOLS*(NR-1)+1
WRITE(IFILEl' INDEX)( (A(I).e iili * 12)li= 13NCOLS)
NRWONRW*1.
RETURN

C
ENTRY RSTR(AIAINDEX)
IF(INDEX.LT.1.OR.INDEX.GT.KOUNT) 90 TO 801
READ(IFILE2IiNDEX)IB
IF(IB(3).EQ.O) CALL QUIT(INDEX)

C CHECK TO SEE IF THE DIMENSIONS OF THE MATRIX ARE LARGE ENOUGH
IF(I(1l).GT,IA(3)) CALL OUIT(1)
IF(IB(2).GT.IA(4)) CALL OUIT(1)
IA(1)a'B8(1)
IA(2).IB(2)
'RulIA(1)
C=IA(2

"COLS.IA(4)
12.NR-1
I3=NCOLS*(NR-1)+1
READ(IFILEI'INDEX)((A(I) l=ll1ll1l2)eIlz,13,NCOLS)
NRW=NRWI1
RETURN

C
ENTRY FINISH
CALL NEWPAG
CALL NEWLIN
WRITE(IOFILE,1111)NRW

1111 FORMAT(110,21H READ-WRITES EXECUTED)
CALL NEWLIN
WRITE(IOFILE,6)

6 FORMAT(12H NORMAL HALT)
STOP

C
ENTRY SETSIZ(NUMBR)
MAXWRD=NUMBR
CALL RANSIZ(IFILEIMAXWRDO)
CALL RANSIZ(IFILE2,3)
RETURN
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C
ENTRY SETNUM(NUMBR)
MA XK N YeNUM
CALL SETDUM(NUMBR)
RETURN

ETYNEW NUM(NUMOR)
KOUNT=KOUNT,1 -

* TELKmiINTIF rmAxIC an Inl 5n-
I-RITE(IOFILE,502)MAXKNT

502 FORMAT(IDH MORE THAN&110* 9H MATRICES)
CALL QUIT(i)

5011 COA!TINUE
NUMBR=KOUNT

18(2 )=0

WRITEC IFILE21KOUNT)19
RETURN

C
ENTRY HAT7FRg(L. IAl
NSOUIA (3#IA (4 )
DO 1 IU1.NSQ

RETURN'
C
C -TO NEGATE A MATRIX

ENTRY MNEG(AsIA)
NSQEIA(3)#IAC4)
DO 82 I:1,NSQ

82 A(I)=.A(I)
RETURN

C
ENTRY MATIDNCA#IA#NUM)
IF(IA(3).LT.NUM.OR.IA(4).LT,NUM) CALL QUIT(l)
IA(1):NUM_______ ___________________ ____

IA(2)xNUin
I SQ *IA ( )* IA (4)

Ila 2 TI.NJso
2 A(I)=0.O

DO 3 I1- lNUM

3 A(NSO)z1.0
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RETURN

801 CALL NEWLIN
hRITE(IOFILE,802)INDEX

802 FORMAT(20H BAD MATRIX INDEX 0Il0)
CALL 01IT(1)
STOP

C END SAVE
END

.CNEWLIN NEWLIN
SUBROUTINE NEWLIN
COMMON /DATTIM/ITIME(2)IDATE(2)
PARAMETER MAXu20
DIMENSION IHEAD(MAX)
DIMENSION JHEAD(MAX)
DIMENSION IVEC(NWORDS)
DATA JHEAD/MAX*6H
DATA IOFILE/6/
DATA MAXLIN/55/
DATA INAME/1H /
n ATA NI INES/4i
DATA 1001/Z/
DATA IPAGE/O/
DATA N2/3/
DATA IBLANK/1H /
1002=1
GO TO ( 1,32),I001

32 IF(NLINESGTO0) 00 TO 5
IPAGE=IPAGE*1
WRITE(O1FILEa18)

18 FORMAT(lHl*//)
WRITE(IOFILE,6) ITIME, IDATEIPAGE

6 FORMAT( 9H TIME IS ,2A6 , 4W ON , 2A6,80X,
1 5HPAGE=,15)
WRITE(IOFILE,87)JHEAD

87 FORMAT(10H . TITLE.,20A6)
WRITE(IOFILE,7) IHEAD

7 FORMAT(10H SUBTITLEx,20A6)
00 8 IleN2

8 WRITE(IOFILE#9)
9 FORMAT(1H )

NLINES=N2+3
5 NLINES=NLINES,1
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IF(NLINES.GTMAXLIN)NLINESO8
RETURN

C
ENTRY NEWPAG
NLINES=0O
RETURN

C
ENTRY SETHED(NWORDSPIVEC)

GO TO (1,2)IG001
1 CALL TIMDAT( ITIMEIDATE)

2 MLINES=O
IPAGE=O
00 1 T=1MAX

3 IHEAD(I)=IBLANK
GO TO (32,22),IG02

2 00D 4 I=1.NWORDS
4 IHEAD(I)slVEC(I)

RETURN.

ENTRY SUPERT(NWORDS IVEC)
DO 80 Ic1,NWORDS

80 JHFAD(I)=IVFC(I)
RETURN

C END NEWLIN
ENn

COUIT QUIT
SUBROUTINE QUIT(IERR)
COMMON /FILES/INFILEIOFILEIFILE1,IFILE2
DIMENSION IB8(3)
NSO:O
NSQ=NSQ**NSQ
WRITE(IOFILE,21)IERR

21 FORMAT(22H QUIT BECAUSE OF IERR=IO10)
IGO=1
GO TO 777

C
ENTRY MATMAT
I0020

777 CONTINUE
WRITE(IOFILEa1_2)

12 FORMAT(19H MATRIX INFORMATION)
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WRITE(IOFILE,13)
13 FORMAT(80H MATRIX NUMBER NO. ROWS IN USE NO. COLS IN1 USE EVER USED)

DO 10 I=1,MAXKNT
READ(IFILE2'I)IB

10 WRITE(IOFILED11)I,IB
11 FORMAT(4120)

IF(IGO.EQ.0) RETURN
CALL PDUMP
STOP

C
ENTRY SETDUM(IERR)
MAXKNTaIERR
RETURN

C END QUIT
END

*INVRS SUBROUTINE TO OBTAIN INVERSE OF MATR-IX, CALL DECOM FIRST INVRS0206 CD600D4,007 DATE 05/04/65 INVRS03o
SUBROUTINE INVRS(AINTRMSIZENN) INVRSO40
DIMENSION A(MSIZEMSIZ ZE),INTR(MSIZE) INVRS050* OTAINS EXPLICIT INVERSE OF DECOMPOSED MATRIX INVRS060
SUBROUTINE DECOM MUST BE CALLED FIRST INVRS07
N=NN INVRSO80
IF(INTR(N))18,17#18 INVRSo9g

1 DO 13 Kxl,N INVRS100
KMUK-1 

INVRS110
IF(KM)2,7o2 INVRS120

2 IF(K-N)3,7.3 
INVRS13o

COMPLETE REDUCTION BELOW DIAGONAL INVRS140
DO I=KP0*N INVRS160
X=A(I,K) INVRS170
IF(X)4,e64 INVRS180

4 DO 5 J=IKM INYRS190
5 A(IIJ)=A(KJ)*+A(I,J) INVRS200
5 CONTINUE 

INVRS210DIVIDE THROUGH BY PIVOT ELEMENT INVRS220
7 X=1.0/A(K,K) INVRS23o
A(KPK)2u0 

INVRS240
DO 8 JIN 

INVRS2508 A(K,J)=A(KJ)*X INVRS260I.AL L .9 
INVRS270

REDUCE TERMS ABOVE DIAGONAL INVRS281
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9 DO 12 lIrKM INVRS290
X=-A(IK) INVRS300
fIF(XIP.12,10 INVRS31n

10 A(IeK)=OO INVRS320
DO 11 Ja1,N INVRS330

11 A(IJ)=A(K,J)*X+A(IoJ) TNVRS340
12 CONTINUE INVRS350
13 CONTINUE INVRS360

INTFR.AN rF r ni IiNl INVR9137
* KM=N-1 FROM PREVIOUS LOOP INVRS380

DO 16 J=1,KM INVRS390
K=N-J INVRS400.
KP=INTR(K) INVRS410
IF(KP)14,16,14 INVRS420

14 nn ji I=i.N INVRS43
X=A(I,KP) INVRS440
A(Il KP)=A(I,K) INVRS450

15 A(IaK)=X INVRS460
16 CONTINUE INVRS470
17 RETURN INVRS48O
18 KM=N-1 INVRS490

DO 21 I=2,KM INVRS500
K=INTR(a) INVRS510
IF(K)19,21,19 INVRS520_

19 KP=I-1 INVRS530
DO 20 J=#1KP INVRS540
X=A(I.J) INVRS550
A(I,J)2A(K*J) INVRS560

20 A(K#J)SX INVRS570
21 CONTINUE INVRS58O

00O TO 1 INVRS590
END INVRS600

*MINY MATRIX INVERSE ROUTINE MINVQO20
CD600D4.007 DATE 05/04/65 lMNV0030

SUBROUTINE MINV(A,MSIZE,NINTRPDET) MINVO040
__ IMFNSION A(MSIZE.MSIZE), INTR(MSTZ ) MINVOnSn

CALL DECOM(AINTR,MSIZEN) MINV0060
CALL DTMN(A,INTReMSIZE,W,DET) MINV007n
CALL INVRS(A.INTR.MSIZEN) NINVOORO
RETURN MINVO130
END MINV0140

*MkPY CD600D4.n12 MATRIX MULTIPLY ROUTINE 05/18/66 MMPY0002
• COPYRIGHT 1966 BY GENERAL ELECTRIC COMPANY MMPYO003

68



SUBROUTINE MMPY(ADIDA,BIDB,CZDC,IND) - .MMPY0040
DIMENIsON A(l),B(1:),Cc1),IDA(4),IDB(4), IDC(4) MMPYO00
IAxIDA(1) MMPY006O

JAUIA(2)MMPYO070
hAmIDA(3), mmpyooeo
IBEIDO~i) MMPYOO90

MB&ID9(3) MMPYOI11
-L-IUDC (I) MMPYD120
JC=IDC(2) MMPYO130
MC.I DC( 3) MMPY0140

-NC*!TrC(4) ___________________________________

IND80 MMPY0160
IF(JAqNE. I8)IN0=2

IF IC*LT. IA)eOR. (NC*LT.Jg) )INDal NmPyoBoo
IF( IND *NE.0 )RETURN MMPYO190
IDO (l)ZIDA (1)

DO 1 I iDIA MMPY0209
DO 1 K:IPJB
-lLfCj.K-1 I* I MPY022ni
C(LC)=0.D MMPY0230
K89MB*(K-1) MMPY0240
DO I J= 1.18
LA =MA. CJ -1). 1 MMPY0260
LBKBij MMPY0270

1 C(LC)=CCLC),A (LA )*B(LB) MMPY0280
RETURN MMPYO290
END MMPY0300

*MDDCD60004sD10 MATRIX ADD ROUTINE 0'5/18/66 MAD00002
*COPYRIGJ-T 1966 BY GENERAL ELECTRIC1 COMPANY '4ADD06003

SUBROUTINE MADD(AIDA,8,1D8,CoI.DC,IND) MADD0040

IAwlVA(1) MADD0060
.M. IDA(2) MAD00070
18=108(i) ___________________________MAD DO08 0
JB:IDB(2) MADD0090
IC=ICC(1) MADD0093
JCUIDC(2) MAD00096
hAmIDA(3) MAD00lDO
!,BaIL8(3) MADD011D
"qcUrtIc(3) _________ __ MA DD012~
NC=IDC(4) MADD0130
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INDwC 
MIADD0140IF(( IA. NE. 18).*OR. (JA. NE JB)) INDu2

-F((MC TTA%_R.nc,-L .A)NU MAnnn16
IF(INDINE.a)RETUIRN -MADD0170

IDC(l).IDA (1)

DO I J31.JA 
M D 0 8

JMRj.j MADD019O
[AMA*JM MADh1O9nnf

LIwmMB.jm 
MADD0210

LCemc..jm MADD0220
DO I1 , 1IA MALIDO230
LA=LAl MAID0240
LB=Lg,1 MADDO250[tr I j r 

mAflOOl2An
I C(LC)*A(LA)+B(LB) M4AD00270RETURN 

MAD DO280END MhfllOl.*mSU8 CD600049011 MATRIX SUBTRACT ROUTINE 05/18/66 MSUB0002
COPYRIGHT 1966 BY GENERAL ELECTRIC COMPANY MSUB0003SUBROUTIE _MSU8(AA1DA.,,DBC,1DC.,fND) MSUB~fln4Q

DIMENSION A(1),B(I),C(1IIDA(4),ID&(4), 10CC4) MSUB0058
IA=IDA(1) MSUB006O-JA a DAt 2) msugonoZL
182108(1) NSUBOO8O
JBCIDB(2) ISUBD090

-I CalDc (l) MSUROn9Q3
JCuIDC(2) MSUB0O96MA=IDAC3) MSUBOIOO

____ MBc I DB (3). MSUBOI10
ICRIDC(3) MSUB0120
NC=*ID C(4) MSUB0130INDnfl MqLjgnl1 l

I(IA. NE. 18) 0* O.CJA.NE.JB)) INDs2
IF(CMC.LT.IA).UO(NC.'LT.JA))INDU1 MSU80160
-IfAAjQ.NEt0)RETURN4 MSU8 047L
IOC (l)zIDA (1)
IOC (2)=IDA (2 )
130 1 J=1,JA MSU80180J Mu =J-1 MSU60190
LA=MA.JM MSUB02O00
LIOuIMi8JN 

SMO
LCaDIC*JM MSU&0220
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DO 1 I=l:lA MSUB0230LA=LA*l MSUB0240LB=Le R 
MSUB0250

LCtLCLt MSUB0260
1 C(LC)sA(LA) B(LB) MSUB0270

EURN •-MSUB 2680END 
MSUB0290*DECOM SUBROUTINE TO DECOMPOSE MATRIX FOR SIMULTANEOUS EOUATIONS DECOM020

CD600D4 007 DATE 05/04/65 DECOM030
SUBROUTINE DECOM(AI1NTRMSIZEDd D DECOM040
DIMENSION A(MSIZE,MSIZE),INTR(MSIZE) DECOM05n
k NATRIX DECOMPOSITION USED WITH SOLV SUBROUTINE FOR SOLUTION DECO0M60* OF LINEAR SYSTEMS DECOH070

* IF MATRIX A IS SINGULAR INTR(N) WILL BE SET TO .ZERO DECOM080N=NN DECOMO90
rTR=1 DECOM100
N =N- DECOM110
DO 10 Jxl NM DECOM120
AMAX=ABS(A(JJ)) DECOM130
JP=J*1 DECOM140

I= ~DECOM150
DO 2 I=JPN DECOM160
ATeABS(A(I,J)) DECOM170
IFfAMAX-AT)I.2A2 DECOM8

1 AMAX=AT DECOM190
INZI DECOM200

2 CONTINUE DECOM21n
IF(AMAX)4,3,4 DECOM220

3 INTR(J)uJ DECOM230GO TO 11 DECOM240
4 IF(IN)5,7,5 DECOM250
5 NTR=-NTR DECOM260

D0 6 I=J.N DECOM270
AT=A(J*I) DECOM280
A(J I)UA(IN Il) DECON290

6 A(I',I)=AT DECOM3007 INTR(J)=IN DECOM310
AMAX-1.0O/A(J.J) DECOM320
0o 10 I=JPN DECOM330
IF(A(I, J))8,10#8 DECOH340

8 AT=A(IJ)*AMAX DECOM359A(I*J)=AT D __ ECOM360
CO 9 K=JPN DECOM37
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9 A IK)=A(JK)*AT*A(K) DECOM380
.10 CONTINUE DECOM390

IF A(NN)112.11.12O
11 NTRaO DECOM400

12 INTR(N).NTR DECOM420
RETURN DECOM4320

END 
DECOM440.*ITMN DETERMINANT EVALUATION SUBROUTINE DTMNO020* C060OD4,o07 DATE 05/04/65 DTMNO0030

SUBROUTINE DTMN(A,INTRMSIZE*NNDET) OTMN0040
VIMEKSION A(MSIZEMSIZE),INTR(MSIZE) DTMN0050* COMPUTES DET, THE DETERMINANT OF THE DECOMPOSED MATRIX DTMN0060

* SUBROUTINE DECOM MUST BE CALLED FIRST OTMN0070
* ITR(N) WILL CONTAIN INTEGER POWER OF TEN OF MULTIPLYING FACTOR DTMNOOB8

FP=1.F38
NE=38 fTMNn010

:N DTMNO010

hTlINTR(N) 
DTMN 110

IF(NTR)2l1,3 DTMN0130
1 DTTsO D TMN 0140GO TO 10 DTmN140n

2 DTT=-10. DTMN1560
GO TO 4 

DTMNU160
3 DTT=~.1 DTMN0170

4 00 9 I=1,N OTMN019n
DT=APS(DTT) DTMN0200

DTMN0200
5 IF(DT-1.)699 . OTMNN0220
6 UTTaCTT*EP DTMN023O

NTR=NTR-NE OTMNO230
GO TO 9 DTMN0250

7 IF(DT-1.0)9,9,8 - DTMN0260
8 DTT=PTT/EP DTMN0270

NTR=%TR+NE DTMN0280
9 DTTaUTT*A(IIl) DTMN0280

INIJR(N)=NTR DTMNO29n
10 DET=DTT DTMN031O

RE-TURN 
DTMN03210E , DTMNO320

*PMAT SURROUTINE TO PRINT MATRIX PMATO020
SUbROUTINE PMAT(A,NRPNCDMMPNN)
DI--NSION A(MMNN),P(6) PMATO

.-- N_~RON)N --------- P--- 05KROmNR 
PMAT0060
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NCOLrNC
jE1 PMAT0070Jrl PMATOO01 IPaj PMATOOgO
JPaJ PMAT0100
DO 2 K=1,6 ... PMAT0110
KKK PMAT0 120
P(K)OA(I,J) PMAT0130
J:J+1 PMAT0140
F(J.GT.NCOL)GO TO 3 PMATO150

2 CONTINUE PMAT0160
CALL NEWLIN PMAT0170
WRITE(6,4)IPJP, (P()eKMlKK)P

4 FORMAT(214,6(1PE16*8)) PMATO180
00 TO 1 PMAT0190

3 CALL NEWLIN PMAT020O
WRITE(6,4)IP,JP,(P(K).K=1,KK)

- Ir-i PMAT 22G

IF(I*LENROW)GO TO 1 PMATO230
FTIR PMATO240

END PMATo2 -
S GMAP DECK PMAT0260
S INCODE IBMF_ GETMOR

LBL GETMOR,GETMOR
TTL GETMOR
SYmDEF GETHOR
REM TO OBTAIN MORE CORE OR DISC
REM CALL GETMOR(TYPERESULTNUNMFC)
REM TYPE=O FOR CORE
REM TYPE1i FOR RANDOM DISC
REM TYPE=2 FOR LINKED DISCREM RESULT=O IF SUCCESSFUL
REM RESULTz IF UNSUCCESSFUL
REm NUM IS NUMBER OF LINKS DESIRED ORREM NUMBER OF K (1024 WORDSLDESIRED
REM FC IS THE FILE CODE IN THE FORM 6H000OFC
REM (USED ONLY WHEN GETTING MORE DISC)GETMOR LDA 4,1.
LDO 2*,1
~8 6H6W000001
TMI STORA CURE REQUEST
TZE RANDOM RANDOM DISC REQUEST
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LDQ 5e1. LINKED DISC REOUEST
TRA ORTOA

RANDOM LDQ 5ol*.
ORO 1,oDU

ORTOA ORA =2,DU
STORA STA ZERO

MME GEMORE
ZERO BSS 1

TrA MNA
YES LDQO 6H000000

TRA CONT
NO L00 =6a000001
CONT STO 31.

TRA 0,1

S GMAP DECK,COMDK 81524 090672GIMME
S INCODE IBMF

TTL nIVF-MF-NORF-CORF INMMFN01
LBL GIMMEsGIVE-ME-MORE-CORE IMME0002

IMME0003* SUBROUTINE TO ADJUST SIZE OF SPECIFIED ARRAY TO SPECIFIED IMMEOD04
* NEW SIZE, MME GEMORE IS USED TO ADD MORE WORDS OF MEMORY. IMME0005
* MME GEMREL IS USED TO RELEASE SURPLUS WORDS OF MEMORY. IMME0006

* CALLING SEQUENCE IMMEO008
* CALL GIMME ( NEWSIZ, OLDSIZ, ARRAY NAME ) IMME0009

IMMEOODi
* THE ARRAY SPECIFIED MUST BE LOADED AT THE VERY TOP OF MEMORY, IMMEO011
* USING EITHER A S USE CONTROL CARD OR A BLOCK DATA SUBPROGRAM, IMME012

* IT IS ALSO NECESSARY THAT THE ARRAY BE IN LABELED COMMON, ) IMME0013
0 

IMME0014
* WARING--THIS SUBROUTINE CHANGES THE SECOND ARGUMENT IMME0015* TO REFLECT THE NEW SIZE OF THE ARRAY IMME0016

IMMEO0017
SYOREF .FCNV.

IE SAVE IMMEUO18
IMME0019

* THESE ;EXT INSTRUCTIONS ARE USED TO MONITOR PERFORMANCE OF GIMME IMME0020
* THEY MAY BE REMOVED IF NOT WANTED* ALONG WITH. THE CODE AT SYMBOL IMMEO21
* DONE. SET DONE EQU GIMME+1 IF REMOVED. IMME0022

* IMME0023
AE jJJ_ GETIME GET TIME OF DAY _ IMME0024
ST3 TEMP2*1 IMME0025
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MME GELAPS BET PROCESSOR TIME USED TILL NOW IMME0026
STO TEMP2 IMME0027

IMME0028
* CHECK THAT THE REFERENCED ARRAY IS LOADED AT THE TOP OF CORE IMME0029

IMME0030
SBAR *. GET' THE ADDRESS OF THE TOP OF CORE IMME0031
LD **,DL IMME0032
ANO n0777jDL IMME0033
OLS 9
EAXG 4,1* BET ADDRESS OF ARRAY
STXo ARADR SAVE

ARADR SB **,OL SUBTRACT ADDRESS OF ARRAy
LDA LOWLOD CHECK LOWLOAD
CAKA 1lB18DL INDICATOR
TNZ LOW ...LOWLOADED

* HIGHLOAD PRE.PROCESS AND CHECKS

LDA -*1DU SET FLAG
STCA RLSFLG,70 TO ALLOW MEMORY RELEASE
STO TEMP SAVE-ARRAY SIZE
SBQ 3,1. SUBTRACT CLAIMED ARRAY SIZE
TZE **3 .,,EQUAL.
CtlPQ I;U MAYBE ARRAY WAS LOADED ON ODD LOCATION IMME0039
TfIZ ERROR o., SORRY, SOMETHING ELSE AT TOP OF CORE IMME0040
LrO TEMP RESTORE ARRAY SIZE
TRA GIM .,CONTINUE

* LOWLOAD PREPROCESS AND CHECKS

LOW LDXO ARADR ADDRESS OF ARRAY
CMPXo LIMITS COMPARE WITH LOWEST UNUSED
TMI ERROR *,ARRAY NOT LOADED ABOVE PROGRAM
LXLI LIMITS ADDRESS OF HIGH UNUSED LIMIT
CMPXO ARADR COMPARE WITH BASE OF ARRAY
THI **4 L.LOKD LIMIT IS BELOW BASE
LDXD ARADR ADJUST LIMIT
SBLXO =1,DU TO BE
SXLC LIMITS BELOW ARRAY
LDA 2,1* COMPUTE FLAG
SBA 3,1. INDICATING THAT
STCA RLSFLG,70 RELEASE HAY OCCUR (IF !IEGATIVE)

GIN STC 3,1* MAKE SURE OLD ARRAY SIZE IS CORRECT
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IMME0041* COMPUTE THE NUMBER OF 1024 WORD BLOCKS THAT ARE REQUIRED IMMEO042
IMMEO043

LD 2,1* NUMBER OF WORDS REQUIRED IMME0044Sao 3,1* NUMBER OF WORDS ALREADY IN THE ARRAY IMME0045- - -AD =1023oDL ROUNDING UP FACTOR IMME0049
ORS 10 DIVIDE BY 1024 IMME0050
STO TEMP SAVE NUMBER OF K TO GROWTZE DONE ...NO CORE ADJUSTMENT REQUIREDF

* IF GIMM~ IS NOT TO RELEASE CORE, INSERT THE FOLLOWING INSTRUCTION
* HERE

T* - DONE ...NO MORE CORE REQUIRED
LDA TEMP UPDATE THE NUMBER
ALS 10 OF WORDS INACA 3.1- THE ARRAY

IF GIME IS NOT TO RELEASE SURPLUS CORE, REMOVE THE FOLLOWING TWO IMME1056* INSTRUCTIONS. 
IMME0057

C.PA O0DL IMME0057 .
THI GIVEUP ... CORE CAN BE RELEASED IMME0059

IMME0060
LOOP TO FETCH REQUIRED CORE IN 2K INCREMENTS IMMEO061

IMMEO062LOOP STQ TEMP3 SAVE THE NUMBER OF K
- -PO 1.DL HOW MANY MORE K
TZE LAST .,. GET 1K MORE IMME0064MME GEMORE GET 2K MORE IMME0065ZERO 0.? IMME0066
TSX1 CNT ,. CORE REQUEST REFUSED IMME0067LD TEMP3 UPDATE THE
S6D 2IDL NUMBER OF K IMMED069
TZE DONE *., DONE IMME0070
TRA LOOP s* CONTINUE IMME0072LAST ,ME GEMORE GET THE LAST 1K BLOCK IMME0073ZERO 0O1 IMME0074
TSX1 CNT o.. CORE REQUEST REFUSED IMME0075
TRL nNF .,, D NF - INMMF D N L7

* 
IMME0077CNT AOS COUNT COUNT NUMBER OF REQUESTS REFUSED IMME0078LDQ 4*1 1.64.lL GO TO SLEEP FOR A WHILF GH041971

MME GEWAKE *,o ZZZ Z Z Z Z z Z IMME0080
TRA -3.1 ..t TRY AGAIN IMME0081

* SEQUENCE TO RELEASE SURPLUS CORE IMMEO83
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IMME0084GIVEUP SZk **,DU CHECK RELEASE FLAG
TPL DONE *.POSITIVE, NO RELEASE REQUESTED
LCQ TEMP GET ABSOLUTE VALUE OF NUMBER OF BLOCKS
QLS 10 MULTIPLY BY 1024 IMME0086
EAA DONE SET RETURN ADDRESS FOR GENREL IMME0087
MME GEMREL ., .RELEASE CORE IMMEO088

IMME0089
PRIT STATISTICS FOR THIS CALL TO IE IMME009IMME0091

DONE MME GELAPS COMPUTE PROCESSOR TIME USED BY GIMME IMME0092
SSO TEMP2 IMHME 09_
MME GETIME COMPUTE ELAPSED TIME IMME0094
SBO TEMP2*1 IMME0095
TPL *+2 .,,DID NOT PASS MIDNIGHT
ADO =5.5296E9 ADD 24 HOURS TO CORRECT-
TOV *41 CONVERT TO FLOATING POINT IMME0096
LDA 0,DL IMME0097
LDE u71a251DU IMME0098
FNO IMME0099
FDV =2,304E8 CONVERT TO HOURS FROM 64THS OF MILLISEC, IMMFO100
FST TEMP2*1 SAVE FOR PRINTING IMMEOl01
LDO TEM02 CONVERT PROC. TIME TO HOURS
TOV -**I
LDA O0DL
LDE =71825,DU
FNO
FDV n2,3n4E8
FST TEMP2
CALL .FPRN,(FILE,FORM1)
LDA TEMP PRINT NUMBER K CORE
TSXI .FCNV.
LDA COUNT PRINT NUMBER OF REQUESTS REFUSED IMME10 _
TSX1 .FC'NV IMMEO105
LDA TEMP2 PRINT PROCESSOR TIME USED BY 3IMME IMME0106
TSX1 .FCiYV - ___ IMME007_
LDA TEMP241 PRINT ELAPSED TIME IMME01U8
TSX1 .FCNV* IMME0109
CALL OFFIL, IMME0110
STZ COU'T RESET FOR NEXT CALL TO GIMME IMME0111
RETURN GIMME IMME0112

* IMME0113
ERROR CALL FXECM(a61DMESS,=5)
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RLSFLG EQU GIVEUP
LIMITS BOOL 37
LOWLOD BOOL 24
TEMP BSS 1 IMME0115
TEMP2 8SS 2 STORAGE FOR PROCESSOR AND ELAPSED TIME IMMEO116
TEMP3S 1 
COUNT ZERO IMME0117
MESS BCI 5sARRAY NOT LOADED ABOVE PROGRAM
FnRM RCI 9.11t9H GIMM RF UIST Fng.I4.1nHK RFFUSFn .S14.13 TIMF~.

8CI 8s USED PF7.6l11H HR, PROC.**F7.4s11H HR. ELAPS.)
BLOCK GIMMEB

FILE DEC 06
END IMME0121

S GMAP DECKjCOMDK 77739 011671TIME
5 INCODE ITMF

LBL TIMETIME AND DATE SUBPROGRAM TIMEO010
TTL DRILL CONVERSION PROGRAM TIMEO002O
TTLS TIME, DATE, AND ELAPSED TIME SUBPROGRAM TIMEOO3n

TIME0040
CALL TIMDAT (TIMEDATE) TIMEO050

TI MEO Ofl
* WHERE TIME = 2 CONSECUTIVE WORDS WHERE THE CURRENT TIME WILL BE TIME0070
4 PLACED AS HNIMMISS TIME0080
* DATE = 2 CONSECUTIVE WORDS WHERE THE CURRENT DATE WILL RE TIME0090
* PLACED AS MM/DD/YY TIME0100
4 TIME0110
TIMDAT SAVE 0 TIME0120

MME GETIME GET DATE IN A AS MMDDYY AND TIME IN 0 IN TIME0130
REM 641TNS MSEC SINCE MIDNIGHWT, TIME0140
STO TIME SAVE TIME TIME0150
LRL 36 PLACE DATE IN Q TIMEO160
LDA a6H PLACE SPACES IN A TIME0170
LLR 12 MOVE MM INTO A TIME01RO
ALS 6 TIME0190
ORA =3HOO/oDL INSERT SLASH TIME0200
LLR 12 MOVE DD INTO A TIMEO210
ALS 6 TIME0220
ORA =3HO0/oUL INSERT SLASH TIMED230
LuXr 3,1 LOAD ADDRESS OF DATE TIME0240
STA 000 STORE FIRST TIME0250
STO 1,0 AND SECOND WORD TIME0260LDQ TIME PUT TIME IN 0 TIME0270
ORS 6 CONVERT TO MSEC TIME0280
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DIV 1000,DL CONVERT:TO SEC TIMEO290.
DIV 10,DL TIME0300
STA TIME STORE UNIT SECONDS TIME0310
DIV 6sDL TIME0320
STA TIME+ STORE TEN'S OF SECONDS TIME0330
DIV 10,DL TIME0340
STA TIME*2 STORE UNIT MINUTES TIMEO350
DIV 6,DL- TIME0360
STA TIME*. STORE TEN'S OF MINUTES TIME0370
DIV 10,DL UNIT HRS TO At.10',S OF HRS IN 0 TIME0380
ALS 30 TIME0390
LLR 6 ASSEMBLE NH IN RIGHT OF 0 TIME0400
OLS 6 TIME0410
ORO =015,0L INSERT COLON TIME0420
QLS 6 TIME0430
ORQ TIME*J TIME0440
QLS 6 TIME0450
ORO TIME* -INSERT MM TIME046a
OLS 6 TIME0470
ORO =015,0L INSERT COLON TIMEO480O
LDA :6H PLACE SPACES IN A TIME0490
LLS 6 TIME0500
ORO TIME+I TIME0510
LLS 6 TIME0520
ORO TIME .INSERT SS TIME0530
LLR 24 TIME0540
LDXO 2.1 LOAD ADDRESS OF TIME TIME55n
STA 0,O STORE FIRST AND TIMEO560
STO 1,0 SECOND WORD 'TIME0570RETURN TIMnAT 'TIMEo0580_
EJECT TIME0590

TIME0600
* CALL ELTIME(TIMEL) TIME0610

TIMEO620* WERE TIMEL 2 LOCATION WHERE ELAPSED TIME IN NSECe IS PLACED. TIME0630

TIME0640
ELTIME SAVE TIME0650

MME GELAPS GET ELAPSED TIME IN 0 IN 64'THS MSEC. TIMEC660
ORS 6 CONVERT TO MSEC TIMEO670
STO 2,1* STORE IN TIMEL TIME0680
RETURN ELTIME TIME0690

TIME BSS 4 TIME0700
END TIME0710

S EXECUTE
FFTLF 07

s FILE 08,,1R
$ LIMITS 200,17K,,20K
TITLF THERMAL TEST CASE
SIZE 50
HEAT 1 5
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