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Equations are presented which govern the dynamics of the lines-

firs_ parachute unfurling process, including wave motion in the para-

chute suspension lines. Techniques are developed for obtainir_ numeri-

cal _olutions to the governing equations. Histories of tension at

the vehicle obtained using the techniques are compared with flight

test data, and generally good a_reement is observed. Errors in

computed results are attributed to several areas of uncertainty, the

most significantbeing a poorly defined boundary condition on the wave

motion at the vehicle-suspension line boundary.
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! Vn partial derivative with respect to time of deflection
at Juncture of suspensior lines and canopy,
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INTRODUCTION

Tb,e successful operation of a parachute depenas not only on a

proper inflation phase, during which large aerodynamic drag forces

are generated by the inflating parachute, but also on a proper phase

of deployment, during which the parachute suspension sysuem and

; canopy are extended downstream of the towing vF_nicle to a stage at

which the inflation phase can begin in a satisfactory mannel', In a

;, general configuration, the parachute suspension lines and canopy are

folded and packed into a deployment bag which is stowed in the towing

i vehicle until desired trajectory conditions are reached. The bag is

then deployed rearward from the vehicle, either by some forced-

, _ _ec+ion device such as a mortar or by a small drogue or pilot para-

I lute. As the bag travels rearward, the packed suspension system and,

t.h_n_canopy are unfurled from the b_. A typical vehlcle-parachute ,

configuration during a lines-first deployment is shown in figure ] °'_//"

Interest in such decelerator systems for planetary entry

vehicles has stimulated research in deployment dynamics which h_s

resulted in significant improvements over earlier empirical methods

(references i and 2). A primary need for simulating the deployment :

process is to determine the motion of the deplo_Inent bag relative to

the towing vehicle. Knowledge of sequence of events and unfurling /
times, the rates at which parachute material is unfurled from the (

I

deployment bag, and the levels of tension generated in the suspension (

f

system during the process of unfurling are important from mission

analysis and deployment system design standpoints 'i
!

i 1

;.... j
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, Reference 3 prese_.ts an extencive aiscussion of deployment

. systems and methods for analyzing deployment dynamics. Though res-

tricted to the case of an inextensible parachute, the tecb_-.iques

._ _ ceveloped in reference 3 provide accurate simulation of vehicle

trajectories and histories of deplo_nment bag motion. The techniques
L

also can be used to calculate ressonably accurate suspensicn-systt_

i tension histories, provided that averaged (as opposed to I_recise)

parachute linear-mass-density profiles are employed.

The results presented in refer,:nce h indicate that suspenslon-line

elasticity is an important parameter in the prediction of tension loads

I
experienced during parachute inflation. The significance of eiast_city

during the lines-first deployment process is indicated by the anal;rsi_

i presented in reference 5. Through a steady-state solution to the
linearized one-dimensional wave equation governing suspension-llne

elasticity, a technique was developed in reference 5 which provides

quite accurate prediction of the snatch force generated ac th_ paru-

chute c_nopy begins to unfurl from the deployment bag. The conse-

quences of neglectlng wave mechanics in the modeling of suspension-

liLe elasticity during the unfurling process were studied in reference
6. It was found that, by usir_ a massless-spri_-type model for the ,_

elasticity, quite accurate histories of vehicle and deployment bag

motion could be calculated, as w_s the case using the inextensib_e

model. Generally accurate histories of suspension-system tension

could be calculated except durin_ periods nf rapid load fluctuation

i caused by abrupt chics in the linear mass density of successive iS!
I
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canopy mass elements unfurling from the dcplos_uent _:_-. L_L_

fluctuations in material unfurling rate corresponding to these _inear-

mass-denslty changes wer., calculated, but the accuracy of these ca!-

culations _as questioned due to the relative inaccuracy of t_e tension

calcu2ations. As a general coA_clusion, the inaccuracies were- attribute4

to neglecting wave mechanics in the formulation of the model.

The present paper _ploys the equations developed In refers.nee _

for governing the two-body planar motion of a lines-first forced-

i ejection deployment in conjunction with the one-dimensional nonlinear

wave equation governing suspension-line elast response. ]n light _.

: the solution accuracy discussed in reference 6, the unfurling pr_ce'_s

is treated as two phases: a suspension-line unfurling phase, du_'in_

which the formulation can be reduced to the massless-spring class_

and a canopy unfurling phase, during which a solution to the complete

set of equations must be obtained. Technlqt,__sare developed for
_p4-

obtaining a numerical solution to the governing equatiol_s. Generally

good agreement between calculated results and flight test data is

obtained by using the present model to simulate denloyment loads and

motions of two disk-gap-band par_chut_ deployment flight tests.

1973020256-013



ANALYSIS

In the anaiysi.- +.ef_llow, equations are presented which govern

-i
_, the dynamics of lines-first deployment of a parachute having elastic

, susp.nsion lines. Equations are presented which govern the motion of

the towing vehicle and the motion of the deployment ba_ relative to the

_ vehicle. An expression relating the tensio- developed at the mouth of

the deployment bag to the rate at which the parachute exits the mouth

i of the bag (the unfurling rate) is given. The equation and h_undary
conditions governing the longitudinal wave motion in the elastic

_ suspension lines are developed. In addition, expressions are deveiop_.d

by which the elastic behavior of the suspension lines can be approxi-

I mated by a massless-spring-c!ass model during the phase of suspension-
line unfurling.x _

For the purposes of this analysis, the vehicle and the deployment

: bag and its instantaneous contfnts are considere _ to be mass particles. --_/"'

The surface of the planet is considmrcd to be flat, and surface-

: relative accelerations are considered to be inertial The vehicle is

assumed to be non-lifting, and its motion is restricted to a

i vertical plane. The motion of the deployment bag relative to the _.

vehicle and the orientation of the tension vector in the parachute

_ suspension lines are assumed to be parallel to t_e vehicle relative

'-, ",rind.

' I

s
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Equations of Motion

'i The forces affectir_ the mo_ion of the --_*"_v_,_- _r_ d,.:_n__,.__.... _

: are shown in Figure 2.

The motion of the vehicle is influenced by aerodynamic drag,

tension in 5he parachute suspension system, and gravitational attrac-

tion. Under the previously mentioned assumptions, an expression

was developed in reference 6 which governs the acceleration of the

vehicle in the direction of its velocity vector, which is

l

CDA4--% + g si_ 4- (_)
L

In addition, the following trajectory equa_l_,,_ ���\_q_ired..... i:_ order

to specify fully the earth-relative planar motion of the vehicle
?

i

• h = vv sin V (2) __

= _ coz_zq_l (3)
v
v

The motion of the deployment bag is influenced by aerodynamic

drag, an unfurling resistance force, and gravitational attraction.

An expression was developed, also in reference 6, which governs the _
_.

acceleration of the deployment bag in the direction of the vehicle I[

velocity vector, which is

i
.......I Imil
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Vb = -L _e re + g sin (h)._J

In this expression, the reduction in dynamic pressure acting on the

bag due to the motion of the bag relative to the vehicle is also

neglected. The velocity of the deployment bag relative to the

_! vehicle can then be written, subsequent to solution of equation_ (i)

and(_),as

, _ - Vv - vb (5)

An additional expression relating the tension developed in the

,!
unfurling parachute at the mouth of the deployment bag to the linear

mass density of the parachute element exiting the bag and the unfurl-

ing rate was given in reference 5, and can be written as

TB = m'u 2 + Fre (6)

The unfurling rate is, by definition, the rat[ of change of the

spatial coordinate of the mouth of the depl_yment bag, or

u = R,_ (7)

t
L .

I
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Suspension-System Elasticity

Complete definition of the motions of the deployment process

requires the formulation of some relationship between the tension

generated at the mouth of the deployment bag, the tensiJr: transmitted

to the vehicle, the relative motion of the deplo}_nent bag, and the

unfurling rate. Such a relationship is furnished by a m_thematieai

model of the parachute elaRticity. In the present paper, the part,chute

canopy is considered to be an Inextensible struct'Are due to _ts complex

cloth-tape configuration, which is thought to undergo very little, if

any, deformation during the unfurling process. The dynamic response

of the suspension lines during the unfurling process can be determined

most accurately by a mathematical model which considers the wave

mechanics of the lines (reference 6). As the deployment motion is

considered 'n the present paper to be one-dlmenslonal, such a model

requires only a single partial differential equation to govern the

longitudinal wave motion in the lines.

The present model considers the parachute suspension system to

consist of s_pension lines only, which have negligible aerodynamic

dr_ an_ _miform elastic and mass properties. The elastic state of

the _uspension lines can be represented by use of the coordinates '_."

_nd variables shown in Figure 3. The governing equation for the

longitudinal motion of an arbitrary suspension-line element was

developed in reference 6 and can be written, in light of the present

-ss mptions, as

_,.......... "LL
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_, I0

Bt2 nslmsl BE = - mv (e)

_ne elastic behavior of the element can be described by a relationzhip
_L

between the tension, T, and the displacement, 6, and its derivatives.

Considering the tension to be a sum of static and dynamic components,

this relationship can be written as

T = nsl sea S-_+ C _ (9)

i The present model considers the specific secant modulus, K' to be

see '

_6

_[_ a function of the strain, _-K ' and assumes the damping coefficient, C,

to be constant.

Boundary conditions at the point at which the suspension lines

attach to the vehiclc and at the mouth of the deployment bag (or at

the Juncture of the suspension lines and the canopy, for times after

i which the lines have been completely unfurled) must also be prescribed.

The present paper considers the suspension lines to be attached to the

'_ vehicle in a manner such that no deflection in the lines is allowed

• at that point. Mathematically, this condition can be stated as

' I - o (lO)6£=0

i
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C

i _ _ ..... _l

: ii Unstressed condition_ _ : - .- _ r---_,
4( "-""

_ / r AI Stressed Condition

: TV _ ---'I T1q ,_._f-,

\ Suspension lines L A Deploy meat
Bag

Vehicle

'a:

l
t

Figure 3.- Coordinates defining suspension-line geometry.

"I

L:.:;
1973020256-020



12

The tension is subject to the boundery condition at the mouth of the

deployment bag which is given in equation (6). Additionally, an

r
! equation of compatability between the motion of the deployment bag

: and the motion of the exiting parachute element can be written as

_ £=£B

• Suspension-Line Unfurling Phaze

i i It was concluded in reference that a massless-sp_Ang-type6

model of the suspension-line elasticity provides acceptable simulation

of deployment loads and motions during periods of small lo_d

_ fluctuations, as is the case during the suspension-line unfurling

• _ phase. In order to avoid the numerical complexities of solving a

partial differential equation in an expanding space, a similar model
m

is employed in the present analysis to govern the suspension-line _/-,

unfurling phase. Under the assumption of a massless-spring model,

equation (8) reduces to

a_T 0 (0 < £B < Lsl) (12) z_£ , _ _

Therefore the t_nsion is constant t_moughout the lines at any /

i partlctO.-_rtime, or

i _v'_B ' (0£_B£Lsl) (131 '
! ,
i ,

i
1
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, The total derivative in equation (ii) can be expanded into local

_ and convective terms and, considering the definition of the unfurling

_._t_ as _iven by equation (7), can be written as

9++9+=B +'_I + u _I (z_)£=£B £=_By

i Since the strain rates experienced during suspension-line unfurling

.+ are very small, the dynamic component of the tension expressed by
"i

!! equation (9) can be neglected. Then equation (9) can be solved for

+'i the strain _-_ , which can _ _valuated at _=£B and substituted

_+, into equation (lh), resulting in

++_ D6 a6 TB
+_ = + u (15)

_+!. _" '_'I+__mBnsmK,_ec

TR can be replaced in equation (15) by its definition as g_ven in _'_+/

equation (6) and the entire expresbion substituted into equation (ll).

This results in a cubic expression for the equilibrium unfurling

rate at any time, which is

K' F K'
sec re sec _6 _'_

u3 + _ + K' u --- - --0 (16) "nsl sec msl £=£

_6, " several
However the deflectiom rate at the l_g mouth, _I , is orders

of magnitude smaller than the rel&tive b_ velocity _during the

I suspension-line unfurling phase. Thus, equation (16) can be reduced

to

1973020256-022
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K' (l nsl'Fm" m lK'

sec se___Ec.

# Equations (1) through (7), in conjunction with equations (13) and (17),

thus govern the suspension-llne unfurling phase.

Canopy Unfurling Phase

_i The canopy unfurling phase begins when the suspension lines are

•i completely unfurled from the bag. As rapid load fluctuations

characteristically occ'_r during this phase, a solution to the equation

"_ governing w_ve motion in the suspension lines must be obtained _equa-
t

tion (8)). Initial conditions on the motion of the suspension lines

:_ at the beginning of this phase are prescribed by the massless-spring-

ii type solution obtained during the previous phase. As the tension

! (and thus strain) at any particular time is uniform throughout the

: length of the lines in that solution, the initial displacement profile

must be linear (with 61 o= O) in order to assure compatabi].ity

between the phases. The initial displacement rate profile is assumed

to be identically zero, in accordance with the assumption in effect

during the previous phase. During the canopy unfurling phase, the

boundary condition expressed by equation (ii) is applied at the

spatial coordinate of the Juncture of the suspension lines and canopy,

which is stationary. Thus, the boundary condition car,be reduced

to partial derivative form and can be expressed as

r

I
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i £=Lal
4

A simultaneous solution of equations (I) through (9), in conjunction

i with the boundary conditions given in equations (i0) and (18) and the

initial conditions described previously, defines the loads and

motions of the canopy unfurling phase.

,I

I
!
!

=

i
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TECHNIQUES FOR NUMERICAL SOLUTION OF GOVERNING EQUATIONS

In order to define the loads and Lotions of both the suspension-

line and canopy unfurling phases, a solution to the ordinary

differential equations governing the motion of the vehicle and _eploy-

ment bag must be obtained. During the canopy unfurling phase, a

3 solution to the partial differential equation governing wave motie,n

in the suspension lines, subject to prescribed initial and boundary

" conditions, must also be obtained. Techniques for obtaining proper

solutions during both unfurling phases have been developed usingi

_, standard finite-difference methods, such as those described in

_. reference 7, and are described in this section.

m

; Suspension-Line Unfurling Phase

• _ The suspension-line unfurling phase is governed by six first-order

ordinary dlfferen%lai equatlu,,_ q....._'__"" (i (_ .n_

in conjunction with an algebraic equation for calculating the unfur]-

ing rate (equation (17)) and two expressions for calculating the

tension generated at the mouth of the deployment bag and the tension

transmitted to the vehicle (equations (6) and (iS)). Initial values

of the variables (vv, h, y, vb, Xb, and _B ) of course depend on

flight trajectory conditions and the individual system configuration.

The set of differential equations is integrated using the single-3tep

forward-difference technique su_es_ed by Euler. Given the value of

I the first derivative of a time-variant function y at time station i,

Eu/er's technique is used to calculate y at time station i+l as follows:

_ v

1973020256-025
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Yi+l = Yi • At[Yi] (19)

This procedure is quite simple and _s particularly useful for integrat_

in6 smooth functions such as those derivatives of interest durin_

this phase. Since the frictional resistance force F and the zuspen-re

:_ sion-line linear mass density msl are constants and the speci£1c

secant modulus K' is a smoothly varying function of the strainsec

" (and, actually, is nearly constant during this phase) equations (17)

and (6) can be solved without iteration for the unfurling rate and

tension at the deployment bag mouth, respectively.

1 Canopy Unfurling Phase
n,

The motions of the vehicle and deployment bag during the canopy

unfurling phase are again governed by the six first-order ordinary

differentia] equations as described in the previous _zction. V,_lues of

the variables of concern at the initiation of this phase are, (,I"

course, their values at the end of the suspension-line unfurling

phase. These differential equations are again integrated using Euler's

technique.

A solution must be obtained rlmultaneously to tl_ second--orde.'

partial differential equation governi_ wave motion in the suspension

lines (equation (8)) in conjunction with the elastic model expressed by

equation (9). The wave equation is subject to the boundary condition

of no deflection at the vehicle attachment point, as expressed by

equation (lO), and to the boundary condition of compmtability at the

1973020256-026
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Juncture of the suspension lines and canopy, as expressed by

equation (18). Initial conditions on the wave motion are those

discussed in the an,.ij_iB section, namely, the initial strain profile

is linear, with 61£=0 = O, and the initial deflection rate profile is

identically zero. The wave equation can be solved by using standard

central-difference formulations which can be derived using the gric

pe.ttern _.nd subscripts shown in Figure 4.

The derivative B26--_ at any interior point can be appro. Jmat,.d Lj

the following central-dlfference equatlon:

_2__61 = _i+l,J -26i,J + 6i-l_J (_0

@t2' (At)2
i,J

BT
The tension gradient _ at any interior point can be approximated

by a central difference equation by using the half-station concept,

as follows:

B_Ti = Ti,J+l/2 - Ti .J-l/2 (2]
_£' A£

i,J

The tensions at the half stations i,J+I/2 and i,J-i/2 are a

function of the local strain and strain rate, as expressed by

equation (9). The strain at stations i,J+i/2 and i,J-1/2 can

be evaluated by using the following difference approximations: I

#

"I

_I _i..1+l- _i.J '-(22)l '

i,J+l/2 A_

r
I
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:' Deploy m ent

ba_

_ <_, i-l_ i i+l,2

' i-l,l i,1 i+I,I __

+ _ ]_ t"_ +++Vehicle At

i

Figure 4.- Grid pattern for finite-difference approximations.
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_I _i.j- _i,j-I 12B
i,j-]/2 A_,

The strain rates at these two stations c_u be evaluated by using the

following difference approximations in ccnJunction with equations

(22) and (23).

_K (_l)I = , i,j+I/2 i-l,J+i/T _2_
-- i,J+i/2 At

, o
i_j-i/2 i-I.j-_/2

a61 = _t (25
at (_)i,j-i/2

A value of the specific secant modulus at each of the half-stations

can be found explicitly as a function of the local strain. Then
-

values of local strain, strain rate, and specific secant modulus

car.be used in equation (9) to calculate the tension at the half- _

ztation:_. Thus, the approximationu given by equations (20) and (21)

can be substituted into equation (8), resulting in a difference

approximation to the wave equation which can be used for calculating

future values of the deflection 6 at station J. This

approximation is

2 F F(CDA)v_+ TVI
8i+l,J = 26i,J- 81-l,J + (At) _L-- _

 973o2o256-o29
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In usin_ the difference approximation given by equation (26), care

must be taken in the selection of values of At and A£ in order to

a_m&re a ztable solution. Stability can be assured if the ratio of

A£ to At is greater than the maximum wave propagation velocity

anticipated in the course of the solution. Using the classical

definition of wave velocity, the stability criterion which must be

- satisfied can be stated as

At- _ msl /

where K' is the maximum value of the specific secant modu3.us
'_ sec,max

in the range of suspenslon-llne strains expected in the course of the

solution.

The deflection at spatial station n, which is located at the

Juncture of the suspension lines snd canopy (£ = Lsl),m_st be obtained ,_/

through a simultaneous solution to the wave equation (equation QS))

and the boundary condition of compatability expressed by equation

(18). In the development of a technique for obtaining this solution,

it is assumed that the tension level is constant at all points through- :,.

out the canopy (acceleration of the unfurled portion of the canopy is

neglected). Then the tension at the Juncture of the suspension lines

and canopy equals the tension being generated at the mouth of the

" deployment bag, which is expressed by equation (6). It is also assumed

i that the linear-mass-density profile of the canopy can be represented

mathematically in a manner such that no discontinuities are present.

I
%

i
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The inter-relatlonshlp of equations (6), (8), az.d (18) suggests

some type of iterative solution technique. Such a technique can be

developed by first treating the wave equation, equation (8), as twc

first-order equations. By defining

Vn =_I (28)

£=Lsl

equation (_) can be written as

n 1 _T DA T
-- -- - (29)

_t _s1_lgl_=LsI

The tension gradient _n equation (29) can be approximated by the

following backward-difference equation (again using the subscripts

shown in Figure h_: J

- T
_-Ei .

i,n i_A£
2

In this equation, TB ib pre.qcribed by equation (6) and T. can' i,n-i/2

be calculated using the difference procedures outlined previously. A _:4,

first estimate of the integral of equation (29) can then be calculated

using Euler's method as g_en by equation (19), or /
I

]Vn ,

Vn, = V ' + At L_--- _ (31) " I
i+l n"i t i ",, ,

I
I
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Provided that an estimate of _ at time station i+l is known, a

first estimate of the unfurling rate at that time station can be

calculated using equation (18), or

ui =i I -v I
b i+l n i+l

This value for the unfurling rate is used in equation (6) to calculate

a first estimate of the tension at the bag mouth (and, t_us, at

• spatial station n) at time station i+l. However, since the linear

mass density of successively unfurling elements can be varying quite

J
rapidly, this value of the tension at the bag can be substantially

., _ different from the value at the previous time station. Therefore, it

i is necessary to iterate on the solution. Ideally, the iteration

I procedure should include solution of equation (26) (so all spatial

stations other than station n) and integration of equation (28), in

order to update the array of deflection values 6 for a updated

estimate of the tension at station n - 1. In consideration (,f the

fact that such a series of calculations would require extensive

computer time, and also that, for sufficiently small time steps,

changes in the deflection array will be small in comparison to

changes in Vn, the deflection array is not updated until the iteration

on the boundary solution has converged.

In light of these considerations, the iteration procedure is

structured as follows:

t
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(i) The first estimate of Tr_I , which has been calculated
i+l

previously, is substituted back into equation (30) and an estimate of

the tension gradient at time station i+l is calculated as follows:

TBJi+I - T.i,n-i/2 (33)

i+l ,n i_A£
2

Z

(2) This value of the tension gradient can be substituted into
3v

equation (29) and a value for _-T_I can be calculated. If this
_V _ i+l

new value is within some error bouu_d of the previous value
BV i+l

--'*_-_-I, the i+eration procedure has converged.

(3) If the error criterio _ is ._t satisfied, a new estimate of

the integral of equation (28) can be obtained using the trapezoidal
4

, method of numerical integration, which can be written as

n_ rSVn _Vn

V , --VnJ + _-[_-_-Ji + _-_-Ji+l_ (3_)
n i+l i "_

This new estimate of VnJ can then be substituted into equation
i+l

(32) to calculate a second estimate of the unfurling rate ui+ I. A

second estimate of TBJ can then be calculated, again using
i+l

equation (_). The procedure is then repeated until two successive
_v

values of '_-_j lie within the error bound of each other.
i+l

Since a converged value of VnJ has also been found, it can
i+l

be used in a trapezoi_l integration scheme to find 6i+l,n, as follows:

" IVnJi i; (35)
6i+l,n 6i,n + _ + VnJi+

1973020256-033
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"i" The final parameter to be evaluated is the tension at the point

_ at which the suspension lines attach to the vehicle, TV. The deflec-

tion _ at this point is assumed to be equal to zero, as expressed by

equation (i0). The basic partial differential equation (equation (8))

also holds at this point. By _mbining these two equations, an

expression for calculating the tension gradient at the vehicle attach-

ment point can be derived.

Since the deflection at the attachment point is always zero, its

_ derivatives with respect to time, namely 1 , are also zero.

j_ _ _t2'_=0
Thus, for this point, equation (8) can be reduced to

(CDA) q_ + TV

i =nslm l[ vv (36}

_' An additional expression for this tension gradient can be found by

, exI_nding the tension at the mid-point of the grid space between

spatial stations 1 and 2 (station 3/2) Into a Taylor's Series about

station 1 (at which £ _ 0). Neglecting second- and higher-order

terms, this expansion is

i (37) •

The tension at station i, l,2 can be calculated numerically by using

the difference procedures outlined previously, with _he s_oscript

J = i. Since the tension gradient in equation (37) c m be evaluated

directly by using equation (36), the tension at the attachment point, 2

I
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Ti, I, can then be evaluated directly as

A£ (CDA)vq_ + TV

Ideally, since Tv (which, numerically, is also Ti_l, I) appears

on the right-hand side of equation (38), a scheme for iterating on

this equation in some manner until TV and • converge to the"i,l

same value would be preferred. However, since m' is generally an
sl

i extremely small number, appreciable changes in TV result in only
minute changes in the magnitude of %he tension gradient (equation (36)),

and thus would alte. only slightly the value of Ti, 1 in successive

iterations. Thus, equation (38) is solved only once at each time

step in the present paper.

The sequence of numer4cal calculations described in this section

is outlined in Figure 5.

f

'217

L
i

] 973020256-035



- / / '

i 27

Initialize vart_Jie_

%, %,%, _ Vv,_,,h i.o

I Calculate demvahves ]

.... i

Vv_ vb, y, h

J Integrate all first derivatives usin_ [

_ I Euter's method _equation (19)) to i i : t+l; i' find Vv, Vb, x.o, Xb, _,_ h, ;B Imtl_ize

i I on hr_t pa_

" i Solve cubic equation Calculate 8_,T[ and , equations (30) and (29).
(equatzon (IT)) for u _1[ li,n i

Estimate Vnl i+l (equation (31)), Ul+ l (equation (32)),

C_dcutato T v • T B .;V

E.u.-.o_1 (eq_,o.(33))._,,_I
,_t li4.|.n "'" h+i

(equation (29)). gNtimateVnli+ I _n (equmti,m (34)),

ut,l (eq,_tim (3:)), _d TBli,1(equ.tion(6)).
Repeat these steps until two successive

values _ "_li_l c_mverge

J 61+1,j (J - _,n-l) using equation (26).

! Figure 5.- Sequence of numerical procedures.

I
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'I _ RESULTS AND DISCUSSION

r_

A precise treatment of suspenslon-llne wave motion during the

, parachute unfurling process is virtually impossible due to non-

uniform mass and elastic characteristics, multi-dimensional motion,

. and poorly defined boundary conditions to which the motion is subject.

_ The present method combines the planar representation of vehicle and

i bag motions with an idealize,/ treatment of the wave motion in an effort

i _ to achieve reasonably accurate simulation of motions and loada IrA

_ order to evaluate the accuracy of the present method, it was used to

i calcul_te deployment loads and motions for two flight tests of disk-

! gap-band parachutes: the second balloon-launched flight test of the

i NASA Planetary Entry Parachute Program, B/L-2 (reference 8) and the

• _ flight test of vehicle AV-4 of the NASA Balloon Launched Decelerator

?
Test Program (reference 9). Physical system data and parachute mass

; distributionz for the two flig_ht tests are presented and discussed

in the appendix. As there is an absence of data, a numerical value

for the suspension-line d_nping coefficient was determined parametri-

cally. As the suspension system never became slack during the two

flight test deployments the dampik_ coefficient selected was the

smallest value required to numerically maintain tension at the vehicle

attachment point during the unfurling process.

- Computed histories of unfurled length for the two flight tests

i are shown in Figure 6 and compared with test data points corresponding
to mortar fire, line stretch, and estimated bag strip, The computed

28
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J
histories exhibit very good agreement with flight test data.

w-

} A sequence of computed profiles of tension in the parachute

t
suspension lines is pre_.ented for the B/L-2 flight test in Figures 7,

, !_ 8, and 9. Figure 7a shows the state of the suspension lines Just

prior to the emergence of the skirt of th_ TJarac"_ute canopy from the

bag. The tension is constant along the length of the lines as is

consistent with the assu=ptions made in the _o='._tionduring the

suspension-line unfurling phase. Unfurling of the lower edge of the

i band from the bag generates a sharp peak in the tension profile, as

is shown in Figure To. A_ this peak travels down the suspension

lines, it is damped and spread; Figure 7c shows the wave a_ it str_kes

_ the vehicle. The reflected wave is shown traveling back up the

suspension lines in Figure 8a. The unfurling of the top of the band

t

section of the canopy from the bag generates a second peak in the

tension profile, which is shown in Figure 8b. This wave again is

' damped and spread as it travels toward the vehicle; the tension _rofile

as the second wave strikes the vehicle is shown in Figure 8c. Un-

furling of the bottom edge of the disk section of the .anopy from the

bag generates a third wave, which is shown departing the Juncture of

the suspension lines and canopy in Figure 9a. Figure 9b shows the third

wave strikJng the vehicle as the r_flected second wave reaches the

Juncture. Although interaction of generated and reflected waves
k

: causes some fluctuation in the tension at the vehicle attachment

)

i point after the third wave has reflected, the tensior at that point
) decays rather smoothly due to the decreased tension being generated at

I
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Figure 6.- Comparison of computed histories of unfurled length with ,

i flight test data. :
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Figure 7.- Computed profiles of tension in suspension lines during
PEPP B/L-2 par&chute deployment.
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the bag mouth as the disk unfurls. A fourth wave (of smaller magnitude)

is generated upon the unfurling of the vent edge from the bag as is

shown in the profile in Figure 9c However, bag strip occurs before

; this fourth wave reaches the vehicle.

Tension profiles very similar in nature to those shown in

Figures 7, 8, and 9 were obtained in the simulation of the AV-h flight

; test. In the interest of brevity, only three of these are shown.

Figure los shows the _ve which is generated by the unfurling of the

: ! lower edge of the band as it leaves the Juncture of the suspension

t lines and canopy. Figure 10b shows the second wave, which is generated

: i
_ by the unfurling of the top edge of the band, as it leaves the Juncture

[ and also shows the damped, reflected first wave traveling back toward

the juncture. The profile shown in FiNe 10c shows the third wave,
i

which is generated by the unfurling of the lower edge of the disk,

leaving the Juncture as the second wave is approaching the vehicle.

•. Histories of the computed tension at the vehicle attachment i)oint

are compared with flight test data histories in Figure ll, for B/L-2,

and in Figure 12, for AV-h. Peak loads shown in the initial half of

each flight test history are attributed to phenomena which are not

associated with the dynamics of unfurling and, as such, are not _

included in the present mathematical model. There is very good

.i

agreement in occurrence times of peak loads between the flight-test-

data histories and the histories ceres!ted using the present method.

Although agreement in peak load magnitudes is only fair, the results

computed using the present method show considerable improvement over

1973020256-043
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_- the results obtained using the massless-spring model (reference 6)°

Errors in the present computed histories can be attributed to several

areas of uncertainty:

(i) Lack of data concerning the elas_ reapor.se of suspension-

line material at very high loading frequencies.

(2) Probable damping of waves generated by the unftu'ling of upper

sections of the canopy as they are propagated through

sections of the canopy which have been unfurled previously.

i (3) Dispersions of wave propagation velocit_ es between individual

suspension lines.

_ (_) A poc_'ly-defined boundary c_ndition at the vehicle boundary.
: T

_ In flight tests, the suspension-lines are, in general,

attached to a multi-legged, webbed bridle system, which in

; turn is attached in some manner to the vehicle itself. The

i bridle webbing probably exhibits rather severe damping

:_ effects and, in addition, waves reaching the vehicle itself

are probably partially absorbed rather than totally reflected.

Computed histories of relative deployment bag velocity and

unfurling rate for the two flight tests are presented in Figure 13.

_;_ Similar trends are exhibited in both flights. The relative bag _

¢ velocity decays smoothly due to deceleration of the towing vehicle.

i The general tre_d of the unfurling rate is a similar decay. ;

However, sharp decreases in the unfurling rate occur when sudden

increases in the linear mass density of the unfurling parachute

are encountered; conversely, when sudden decreases in the linear

] 973020256-045
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Figure ii.- Comparison of computed and flight-test histories of

tension at vehicle during I:_P B/L-2 parachute deployment.
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Figure 12.- Comparison of computed and flight-test histories of _ , !
tension at vehicle during BLDT AV-4 parachute deployment.
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_j mass density are encountered, the unfurling rate increases sharply.

In comparing the computed B/L-2 unfurling rate history with the results

_ presented in reference 6, it is evident that the magnitudes of the

! maxima and minima are decreased and increased, respectively, in the

_ present history. Specifically, the unfurling rate as the gap portion

of the canopy emerges from the deployment bag exceeds the local

_ relative bag velocity but does not exceed the B/L-2 flight-test mortar

ejection velocity, as the results in reference 6 showed. Although

i there is an absence of data concerning unfurling rate, the magnitudespresented in the present paper are thought to be good approximations

i to the magnitudes experienced during the flight-test deployments

being studied.

i

!
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_ CONCLUSIONS

_ The present paper has presented the equations governing the
lines-

%

first parachute unfurling process including the equation and boundary
t

: conditions governing idealized longitudinal wave motion in the para-

chute suspension lines. Numerical techniques for obtaining a solution

z to the governing equations have been developed. Based on numerical

solution of the governing equations for two disk-gap-band parachute
i

deployment flight tests, the following conclusions can be made in

_ evaluation of the present methods of simulation:

_ i. Computed histories of unfurled length agree very well with
5

_ flight test data.

" _ 2. Computed histories of tension at the vehicle agreed well, in

_ general, with flight test data histories. Errors in the

. computed histories were attributed to several areas of uncer-

tainty, the most significant of which is probably a poorly

defined boundary condition on the wave motion at the vehicle

boundary.

3. Computed histories of unfurling rate exhibited fluctuation

about the smooth histories of relative deployment bag

velocity. However, the amplitudes of this fluctuation were

attenuated as compared to the fluctuation experienced with

the use of a massless-spring-type model of suspension-line

elasticity. Specifically, no local values of unfurling rate

computed using the present methods were observed to exceed

i the respective flight-test mortar ejection velocities. The

1
I
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_2

present computed histories are thought to be good approxlma-

tions to the unfurling rates experienced during the flight

tests being studied.

]

i

:!
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I APPENDIX

__ PEPP B/L-2 AND BLDT AV-4 SYSTEM DESCRIPTIONS

i AND FLIGHT TEST DEPLOYMENT CONDITIONS

Proper simulation of the PEPP B/L-2 and BLDT AV-h flight t,.at

deployment requires, of course, correct numerical input data. These

data include mortar-fire trajectory conditions; vehicle mass, diazeter,

and aerodynamic characteristics; deployment bag mass, diameter, (_rag

coefficient, and the velocity with which it is eJe.ted by the mortar;

parachute size_ and mass distributions; and suspenslon-line elastic

characteristics. The data which were use_ to obtain the results

presented in the present paper are described in this appendix.

Mortar-Fire Trajectory Conditions

Trajectory conditions at mortar fire for simulation of the two

flight tests were selected so as to match the most important (with2

respect to the dynamics of the deployment process) variables, namely,

the vehicle velocity vv, the flight-path angle y, and the freestream

dynamic pressure q_. Values of these initial parameters are listed

in references 8 and 9. The present simulation technique utilizes

tables of atmospheric data from the U. S. Standard Atmosphere, 1962

(reference i0). Atmospheric data obtained prior to each of the flight

tests were noticed to deviate slightly from those of the Standard

Atmosphere. These deviations were taken into account by adjusting

the input values for altitude at mortar fire downward to values at

] 973020256-054
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_6

wh;ch the tabular densities matched thosa local data values obtainr:d
r

prior to the flight tests. Mortar-fire trajectory parameters which

were used in the simulation are listed in Table I.

I •

t

|
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TABLE I

INPUT TRAJECTORY CONDITIONS AT MORTAR-FIRE

PEPP B/L-2 BLDT AV-4

_!ti_ude, h, kilometers 39.8 hh.h

Vehicle velocity, Vv, me" ._rs/second 518 698

Freestream dynamic pressure, q_, newtons/meter 2 555 522
[

Mach number i.63 2.13

Flight-path angle, y, degrees 50 12

r
.-_ Vehicle Descriptions
t

i The B/L-2 flight test vehicle consisted of a 120°-inciuded-angle

_" cone aeroshell which enclosed a cylindrical payload. Mass, diameter,

and drag characteristics (as a function of Math number) for this

: vehicle were obtained from reference II. The AV-4 flight test vehicle '_

was a full-scale model of the Viking '75 entry vehicle. Mass,

diameter, and drag characteristics for this vehicle were obtained from

" reference 9. As the flight test Mach numbers for B/L-2 and AV-h

varied only slightly during the unfurling process, the respective __

i drag coefficients can be approximated by constants (see Table II).

;_ Tables of the wake parameter n as a function of distance aft of the

!' vehicle bases were calculated using flow properties (namely, dynamic
.5

.-.- press,_e and flo_ velocity) at the center of the wake of the two

vehicles, which are presented in reference 12. _le wake parameter

" !_'_t
I
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!
varies from a value of 0 at the base of the vehicle to values near

_ 0.75 in the region of the wakes in which bag strip occttrs. Vehicle

\ masses, diameters, and approximate drag coefficients are summarized in
Table II.

I

!
L

I
f

+ ._

iI,

!ll

I

1973020256-057



!

TABLE II

VEHICLE PHYSICAL CH_S_ACTERISTICS AND DRAG COEFFICIENTS
j_ PEPP B/L-2 BLDT AV-4

i_ Reference diameter, meters 4,6 3.5

Mass, mv, kilograms 566 817
j •

_ Approximate drag coefficient, CD,v i. 5 i. 6

Deployment-Bag Ch_acteri_tlcs and

Mortar Ejection Velocities
{

: The parachutes for the respective flight t_sts were pressure-

_ packed into cylindrical fabric deployment bags. Approximate ba@ masses

{ were obtained from references 8 and 9. The bag diameter for each

'_ flight test was taken to be 0.3 meters. Drag coefficients for the bags

were assumed to be constant and equal to 0.8, which is the approximate

drag coefficient of a cylinder in uniform axial flow (reference 13).

The unfurling resistance force F was determined in laboratoryre

test_ to be equal to an essentially constant value during the zuspension-
7

line unfurling phase and another essentlally constant value during the r

canopy unfurling phase. Mortar ejection velocities were determined

parametrically as those values required to obtain agreement between ,

computed and _'light-test data times from mortar fire to line stretch.

These values, along with the previously mentioned deployment bag

characteristics, are summarized in Table III.

p £"
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i TABLE III

_ DEPLOYMENT BAG CHARACTERISTICS
AND MORTAR EJECTION VELOCITIES

{

PEPP B/L-2 BLDT ^" '#iV --_

Mass, kilograms 0.9 0.8
Z

Diameter, meters •3 •3

Drag coefficient, CD,b .8 .8

Suspension-line unfurlir_ resistance force, newtons 8.9 8.9

Canopy unfurling resistance force, newtons 26.7 26.7

Mortar ejection velocities, meters/second _o'"._ oo_r.6

Parachute Configurations

The PEPP B/L-2 flight test parachute was a di_k-gap-band configura-

tion having a nominal diameter of 19.7 meters. The linear-mass-density "_

distribution for this parachute was calculated from detailed construe-

tion diagrams which are given in reference 14. This calculated mass

distribution, for which it is assumed that the suspension system

consists of saspension lines only, is shown in figure lha. The BLDT

AV-4 flight test parachute was also a disk-gap-band configuration and

m

had a nominal diameter of 16.15 meters. The linear-mass-density

distribution for this parachute was calculated from unpublished

detailed construction blueprints. Figure lhb shows the calculated

AV-4 distribution. The in the calculated distributionsspikes mass

i denote areas in which there are several overlapped layers of cex,opy

5o _

u

I
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i

cloth and a layer of fabric tape sewn onto the cloth layers around

i the circumference of that canopy section for reinforc__ent p,_pose_

In the present solution method, these spikes are approximated by

_ half-sine curves which attain the appropriate maximum amplitude at the

mid-points of the spikes. Physical characteristics of the two para-

< chutes which are used in the present simulation are summarized in

:" Table I':.

g

).

g-

#

p. ,,
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:_!_ _ Suspension lines Ven_

2 _ 20

} _' to

i _ _" 0 22 24 26 28 30 32 34

[ (a) PEPP B/L-2 Unfurled length, m

, _ 40

e
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._.,)
0 2 30 32 34 36 38 40

(b) BLDT AV-4 Unfurled len_d_, meters

Figure 1_.- Parachute linear-n_ss-denstty dlstribut$ons.
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TABLE IV

i PHYSICAL CHARACTERISTICS OF PARACHUTES

_i PFPP B/L-2 BLDY A_-_

Nominal diameter, meters 19.7 16.156-

_ Number of suspension lines, nsl 72 48
i

_" _ Total mass, kilograms 32.4 36.6

_< Suspension-line length, Lsl, meters 23.8 30.1

" ! Total unfurled length of

o parachute, Lp, meters 3h. 3 38.8

r

- Suspension-Line Elastic Characteristics

_ Suspension lines for the PEPP B/L-2 parachute were fabricated

_ from corelcss braided dacron cord having a rated tensile strength

: of 2h50 newtons. Suspension lines for the BLDT AV-h parachute were _/

fabricated from similar cord having a rated tensile streng%n of 3900

newtons. Force-strain curves for representative samples of each type

cord were obtained in laboratory tests using an Instron tensile-

' testing machine at a near-zero strain rate. These curves are shown in -_

figure 15. A value of suspension-line damping coefficient was

determined parametrically. As the tension at the vehicle never became

zero during either of the flight-test deploy=ents being studied, the

'_ damping coefficient was selected as that value required to maintain

tension at the vehicle during both of the computed deployment histories.
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(a) PEPP B/L-2 Suspension lines
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Figure 15.- Force-strain curves for parachute suspension lines.

I

1973020256-063



/

55

_ Those particular values were determined to be 0.0465 N-see/line Cot

PEPP B/L-2 and 0.07 N-sec/llne for BLDT AV-h.

f
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