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ABSTRACT

Equations are presented which govern the dynamics of the lines-
first parachute unfurling process, including wave motion in the para-
chute suspension lines. Techniques are developed for obtaining numeri-
cal solutions to the governing equations. Histories of tension at
the vehicle obtained using the techniques are compared with flight
test data, and generally good agreement is observed. Errors in
computed results are attributed to several areas of uncertainty, the
most significant being a poorly defined boundary condition on the wave

motion at the vehicle-suspension line boundary.
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1 first spatial statior, which is located at suspension-
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INTRODUCTION

The successful operation of a parachute depends nrot only on a
proper inflation phase, during which large aerodynemic drag forces
are gererated by the infleting parachute, but slso on a proper phase
of deployment, during which the parachute suspension cys.em &nc
canopy are extended downstream of the towing vehicle to a stage at
which the inflation phase can begin in a satisfactory manner. 1n a
general configuration, the parachute suspension lines and canopy are
folded and packed into a deployment bag which is stowed in the towing
vehicle until desired trajectory conditions are reached. The bag is
then deployed rearward from the vehicle, either by some forced-

Jection device such as a mortar or by a small drogue or pilot para-~

wte., As the bag travels rearward, the packed suspension system and,
th:m. canopy are unfurled from the bag. A typical vehicle-parachute
configuration during a lines~firet deployment is shown in figure 1.

Interest in such decelerator systems for planetary entry
vehicles has stimulated research in depioyment dynamics which has
resulted in significant improvements over earlier empirical methods
(references 1 and 2). A primary need for simuleting the deployment
process is to determine the motion of the deployment bag relative to
the towing vehicle. Knowledge of sequence of events and unfurling
times, the rates at which parachute material is unfurled from the
deployment bag, and the levels of tension generated in the suspension
system during the process of unfurling are important from mission

analysis and deployment system design stcndpoints.
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Reference 3 presents an extencive ilscussion of deployment
systems and methods for analyzing deployment dynamics. Though res-
tricted to the case of an inextensible parachute, the techniques
ceveloped in reference 3 provide accurate simulation of vehicle
trajectories and histories of deployment bag motion. The techniques
also can be used to calculate reesonably accurate suspensicn-system
tension histories, provided thuat averaged (as opposed to precise)
parachute linear-mass-density profiles are employed.

The results presented in refer«nce L4 indicate that suspension-line
elasticity is an important parareter in the prediction of tension loads
experienced during parachute inflation. The significance of eiasticity
during the lines-first deployment process is indicated by the analysis
presented in reference 5. Through a steady-state solution to the
linearized one-dimensional wave equation governing suspension-line
elasticity, a technique was developed in reference 5 which vprovides
quite accurate prediction of the snatch force generated ac the paru-
chute canopy begins to unfurl from the dcployment bag. The conse-
quences of neglecting wave mechanics in the modeling of suspension-
line elasticity during the unfurling process were studied in reference
6. It was found that, by using a massiess-spring-type model for the
elasticity, quite accurate histories of vehicle and deployment bag
motion could be calculated, as was the case using the inextemsible
model. Generally accurate histories cof suspension-system tension
could be calculated except during perioda of rapid load fluctuation

caused by abrupt chunges in the linear mess density of succescive



P o %Eﬁw

Seq juewm Lordag

PR

‘ucT3BJINITJUOD suauwkoTe

‘aour)s1p paforda(Q

anyoered pararjuf)

S s bk AR S fodon
e R

e s
B e AR g ] e e e S Lt

319TYA

R

L
I10309A 3100194
SIOWAA




I T2 o

ot abe,

o

canopy mass elements unfurling from the deployment Caf.  Large
fluctuations in material unfurling rate corresponding to these linear-
mass-density changes wer: calculated, but the accuracy of these cal-
culations was questioned due to the relative inaccuracy of tlie tension
calculations. As a general ccuaclusion, the inaccuracies were attributed
to neglecting wave mechanics in the formulation of *he model.

The present paper employs the equations developed in reference F
for governing the two-body planar motion of a lines-first fcrced-
ejection deployment in conjunction with the one-dimensional nonlinenr
wave equation governing suspension-line elaust response. In light o
the solution accuracy discussed in reference 6, the unfurling prucess
is treated as two phases: a suspension-line unfurling phase, during
which the formulation 2an be reduced to the massless-spring class;
and e canopy unfurling phase, during which a solution to the complete

set of equationes must be obtained. Techniqua28 are developed for

N

obtaining a numerical solution to the governing equations. Generally

good agreement between calculated results and flight test data is

obtained by using the present model to simulate devlcyment loads and

motions of two disk-gap~band parachute deployment flight tests.
f
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ANALYSIS

In the anaiysis +o fallgw, equaticns are presented which govern
the dyramics of lines-first deployment of a parachute having elastic
susp- nsion lines. Equations are presented w+hich govern the motion of
the towing vehicle and the motion of the deployment %ag reistive to the
vehicle. An expression relating the tensio- developed st the mouth of
the deployment bag to the rate at which the parachute exits the mouth
of the bag (the unfurling rate) is given. The equation and toundary
conditions governing the longitudinal wave motion in the elastic
suspension lines are developed. In sddition, expressions are developed
by which the elastic behavior of the suspension lines can be approxi-
mated by a massless-spring-class model during the phase of suspension-
line unfurling.

For the purposes of this analysis, the vehicle and the deployment
beg and its instantaneous contriuts are considere?® to be mass particles.
The surface of the planet is considercd to be flat, and surface-
relative acceleretions are consider=d to be irertial. The vehicle is
assured to be non-lifting, and its motior is restricted to a
vertical plane. The motion of the deployment bag relative to the
vehicle and the orientation of the tension vector in the parachute
suspension lines are assumed to be parallel to tre vehicle relstive

wind.
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Equations of Motion

The forces affecting the motion of ilie vehiclc and drployment ha
are shown in Figure 2.

The motion of the vehicle is influenced by serodynamic drag,
tension in the parachute suspension system, and gravitationsl attrac-
tion. Under the previcusly mentioned assumptions, an expression
was developed in reference 6 which governs the acceleration of the
vehicie in the direction of its velocity vector, which is

VvV = - (bDA)vqw M Tv + g sin Y (1)

v m
v

In addition, the foliowing trajectory equaticns are required in order

to specify fully the earth-relative planar motion of the vehicle

L=v siny (2)
) cos
v

The motion of the deployment bag is influenced by aerodynamic
drag, an unfurling resistance force, and gravitational attractiou.
An expression was developed, also in reference 6, which governs the
acceleration of the deplcyment bag in the direction of the vehicle

velocity vector, which is
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b = " D :e L g sin v (L)
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In this expression, the reduction in dynamic pressure acting on the
bag due to the motion of the bag relative to the vehicle is alsc
neglected. The velocity of the deployment bag relative to the
vehicle can then be written, subsequent to sclution of equations (1)

and (4), as

ib V% ™Yy (5)

An sdditional expression relating the tension developed in the
unfurling parachute at the mouth of the deployment bag to the linear
mass density of the parachute element exiting the bag and the unfurl-

ing rate was given in reference 5, and can be written as

The unfurling rate is, by definition, the rate of change of the

spatial coordinate of the mouth of the depl.yment bag, or

u= L (1)

NG
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Suspension-System Elasticity

Complete definition of the motions of the deployment process
requires the formulation cf some relationship between the tension
generated et the mouth of the deployment bag, the tensior transmitted
to the vehicle, the relative motion of the deplcyment bag, and the
unfurling rate. Such a relationship is furnished by a mathematical
model of the parachute elasticity. In the present paper, the parachute
canopy is considered tu be an inextensible structure due to its complex
cloth-~-tape configuration, which is thought to undergo very little, if
any, deformation during the unfurling process. The dynamic response
of the suspension lines during the unfurling process can be determined
most accurately by a methematical model which considers the wave
mechanics of the lines (reference 6). As the deployment motion is
considered 'n the present paper to be one-dimensional, such a model
requires only a single partial differential equation to govern the
longitudinal wave motion in the lines.

The present model considers the parachute suspension system to
consist of svspeusion lines cnly, which have negligible aerodynamic
drug and uniform elestic and mass properties. The elastic state of
the suspension lines can be represented by use of the coordinates
and variebles shown in Filgure 3. The governing equation for the
longitudinal motion of an arbitrary suspension-line element was
developed in reference 6 and can be written, in light of the present

~«s wmptions, as
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Tne elestic behavior of the element can be described by a relationship
between the tension, T, and the displacement, §, and its derivatives.
Considering the tension to be a sum of static and dynamic componentc,
this relationship can be written as
98 ) 98
= \ — |
T Bg1 [sec oL ¢ ot (39.)] (9)
The present model considers the specific secant modulus, K;ec, to be
a function of the strain, %% , and assumes the damping coefficient, C,
to be constant.
Boundary conditions at the point at which the suspension lines
Ny

attach to the vehicle and at the mouth of the deployment bag (or at
the juncture of the suspension lines and the canopy, for times after
which the lines have been completely unfurled) must also be prescribed.
The present paper considers the suspension lines to be attached to the

vehicle in a manner such that no deflection in the lines is allowed

[P

at that point. Mathematically, this condition can be stated as

6lg = =0 (10)

Lol
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The tension is subject to the boundery condition at the mouth of the
deployment bag which is given in equation (6). Additionally, an
equation of compatebility between the motion of the depicyment bag

and the motion of the exiting parachute element can be written as

Del,_, (0<2, <L ) (11)

B
Suspension-Line Unfurling Phace
It was concluded in reference 6 that a massless-sp.ing-tyve

model of the suspension~line elasticity provides acceptable simulation

of deployment loads and motions during periods of small losad

fluctuations, as is the case during the suspension-line unfurling

phase. In order to avoid the numerical complexities of solving a

partial differential equation in an expanding space, a similar model

is employed in the present analysies to govern the suspension-line

unfurling phase. Under the assumption of a massless-spring model,

equation (8) reduces to

<L..) (12)

Therefore the tension is constant throughout the lines at any

particular time, or

(13)
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The total derivative in equation (11) can be expanded intc local
and convective terms and, considering the definition of the unfurling

rate as given by equation (T), can be written as

s, 38
Dtlz 2t o Y an' mt, (14)
*5 B

Since the strain rates experienced during suspension-line unfurling
are very small, the dynamic component of the tension expressed by
equation (9) can be neglected. Then equation (9) can be solved for
the strain %% s, which can *: =valuated at 2=2B and substituted

into equation (1k), resulting in

T.

ol I e o (15)
k'l sl sec
T. can be replaced in equation (15) by its definition as given in -~ S

R
equation (6) and the entire expression substituted into equation (11).

This results in a cubic expression for the equilibrium unfurling

rate at any time, which is

K! F K' ¥
R i (e o Lol U %%I =0  (16)
sl sl “sec 8l 2=lB i
However the deflection rate at the bag mouth, Btl s, 1s several orders

of magnitude smaller than the relative bag velocity during the
suspension-line unfurling phase. Thus, equation (16) can be reduced

to
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u + —Bee 1 —E—)u- % =0 (17)
sl sl sec sl

Equations (1) through (7), in conjunction with equations {(13) and (17),

thus govern the suspension-line unfurling phase.

Canopy Unfurling Phase

The canopy unfurling phase begins when the suspension lines are
completely unfurled from the bag. As rapid loed fluctuations
characteristically occuir during this phase, a solution to the equation
governing wave motion in the suspension lines must be obtained (equa-
tion (8)). 1Initial conditions on the motion of the suspension lines
at the beginning of this phase are prescribed by the massless-spring-
type solution obtained during the previous phase. As the tension
(and thus strain) at any particular time is uniform throughout the
length of the lines in that solution, the initial displacement profile
must be linear (with Glzao = Q) in order to assure competability
between the phases. The initial displacement rate profile is assumed
to be identically zero, in accordance with the assumption in effect
during the previous phase. During the canopy unfurling phase, the
boundary conditicn expressed by equation (11) is applied at the
spatial coordinate of the Jjuncture of the suspension lines and canopy,
which is stationary. Thus, the boundary condition can be reduced

to partial derivative form and can be expressed as
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A simulteneous solution of equations (1) through (9), in conjunction
with the boundary conditions given in equations (10) and (18) and the
initjal conditions described previously, defines the loads and

motions of the canopy unfurling phase.
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TECHNIQUES FOR NUMERICAL SOLUTION OF GOVERNING EQUATIONS

In order to define the loads and rotions of both the suspensiocn-
line and canopy unfurling phases, a solution to the ordinary
differentiel equations governing the motion of the vehicle and deploy-
ment bag must be obtained. During the canopy unfurling phase, u
solution to the partial differential equation governing wave motion
in the suspension lines, subject to prescribed irnitial and boundury
conditions, must also be obtained. Techniques for obtaining proper
solutions during both unfurling phases have been developed using
standard finite-difference methods, such as those described in

reference T, and are described in this section.

Suspension-Line Unfurling Phase
The suspension-line unfurling phase is governed by six first-order
ordinary difterential equatious {egquations (1) through (5) and (7))

N/
in conjunction with an algebraic equation for calculating the unfurl-
ing rate (equation (17)) and two expressions for calculating the
tension generated at the mouth of the deployment bag and the tension
transmitted to the vehicle (equations (6) and (13)). Initial values
of the variables (vv* By Ys Vs X and 13) of course depend on
flight trajectory conditions and the individual system configuration.
The set of differential equations is integrated using the single-step
forward-difference technique suggested by Euler. Given the value of

the first derivative of a time~variant function y at time station i, o

Euler's technique is used to calculate y et time station i+l as follows: %
Z

16
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Yigp =¥y * O003] (19)

This procedure is quite simple and is particularly useful for integrat-
ing smooth functions such as those derivatives of interest during

chis phase. GSince the frictional resistance force Fre and the swocpen-
sion~line linear mass density m'

sl

secant modulus Kéec is a smoothly varying function of the strain

are constants and the specific

(and, actually, is nearly constant during this phase) equations (17)
and (6) can be solved without iterstion for the unfurling rate and

tension at the deployment bag mouth, respectively.

Canopy Unfurling Phase

The motions of the vehicle and deployment bag during the canopy
unfurling phase are again governed by the six first-order ordinary
differential equations as described in the previous n2ction. Values of
the variablee of concern at the initiation of this phace are, of
course, their values at the end of the suspeneion-line unfurling
phase. These differential equations are again integrated using Euler's
technique.

A solution must be obtained rimultaneously to the second--orde.
partial differential equation governing wave motion in the suspension
lines (equation (8)) in conjunction with the elastic model expressed by
equation (9). The wave equation is subject to the boundary condition
of no deflection at the vehicle attachment point, as expressed by

equation (10), and to the boundary condjtion of compatability at the

W s i - -
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Juncture of the suspension lines and canopy, as expressed bty
equation (18). 1Initjal conditions on the wave motion are those
diccussed in the anul,sis section, namely, the initiael strain profile
is linear, with &|,_ = 0, and the initial deflection rate profile is
identically zero. The wave equation can be solved by using stenuard
central-difference formulations which can be derived using the gric
patterr end subscripis shown in Figure L.

The derivative QE% at any interior point can be appro. imnted oy

t”
the following central-difference equation:

0%, Ll gyt 8, o)
2 2 ‘
ot 1, (at)
a1

The tension gradient 3% at any interior point can be approximated
by a centrel difference equation by using the half-station concept,

as follows:

~N
ar,  _ Tige/e ~Tigeaye (21)
az'i,J AR
The tensions at the half stations 1,jJ+1/2 and i,)-1/2 are s
function of the lcecal strain and strain rate, as expressed by
equation (9). The strain at stati:ns i,J+1/2 and 1,3}-1/2 can
be evaluated by using the following difference aprroximations: {
[
36 Jiam m 8y (20) ‘
ot 1,J+1/2 ot ]
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The strain rates at these two stations can be evaluated by using the
following diffzrence approximetions in ccnjunction with equations

(22) and (23).

CLY - 8
328, gy Mgy (o0
at ALy gy ot

26 26

3t -l
_ (&4 - —ia=1/2 in1y4-1/2 (25)
3 ‘3 At

A value of the specific secant modulus at each of the half-stations
can be found explicitly &s a function of the local strain. Then

values of local strain, strain rate, and specific secant mcdulus

car. be used in equation (9) to calculate the tension at the half- o

stations. Thus, the approximations given by equations (20) and (21)
can be substituted into equation (8), resulting in a difference
approximation to the wave equation which can be used for calculating
future values of the deflection 6 at station j. This

approximation is

(CDA)vqw + T,

_ 2
Sia2,3 =283 5= 85y, 4+ (BE)7C- m,
T -7
+ 1 1..!"'_1/2 i,J—ljZ (26)
nslms'sl aL
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In using the difference approximation given by equation (2€), care
must be teken in the selection of values of At and A% in order to
ascsure & stable solution., Stabllity can be assured if the ratio of
A to At is greater than the maximum wave propagation velocity
anticipated in the course or the solution. Using the classical
definition of wave velocity, the stabllity criterion which must be

satisfied can be stated as

' 1/2
AL secemax (27)
At — m
sl
where K! is the maximum value of the specific secant modulus

sec,max

in the range of suspension-line strains expected in the course of the
solution.
The deflection at spatial station n, which is located at the

Juncture of the suspension lines end canopy (% = Ls ) ymst be obtained ~

1
through a simultaneous solution to the wave equation (equation {(8))

and the boundary condition of compatability expressed by equetion

(18). In the development of a technique for obtaining this solution,
it is assumed that the tension level is constant at all points through-
out the canopy (acceleration of the unfurled portion of the canopy is
neglected). Then the tension at the juncture of the suspension lines
and canopy equals the tension being generated at the mouth of the
deployment bag, which is expressed by equation (6). It is also assumed

that the linear-mass-density profile of tht canspy can be represented

mathematically in a manner such that no discontinuities are present.

foss ot
R
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The inter-relationship of equations (6), (8), ardi (18) suggests
some type of iterative solution technique. Such a technique can be
developed by first treating the wave equation, equation (8), as twc

first-crder equations. By defining

98 P
Vo < atll= (28)

sl

equation (£) can be written as

r (
3\n 1 §21 ‘CDA)qu + T, (29)
—_—n - )

ot nslmsl oL 2=le oy

The tension gradient in equation (29) can be approximated by the
following backward-difference equation {again using the subscripts

shown in Figure U4):

iJn—J/? (

I1n this equation, T, is prescribed by equation (6), end T, n-1/2 °88
-

B i
be calculated using the difference procedures outlined previously. A
first estimate of the integral of equation (29) can then be calculated

using Euler's method as given by equation (19), or

vl o=V loeae a—i‘-: (31)

N

c.‘”v .
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Provided that an estimate of ib at time station i+l 1is known, =&
first estimate of the unfurling rate at that time station can be

calculated using equation (18), or

This value for the unfurling rate is used in equation (6) to calculate
a first estimate of the tension at the bag mouth (and, t*us, at
spatial station n) at time station i+l. However, since the linear
mass density of successively unfurling elements can be varying quite
rapidly, this value of the tension at the bag can be substantially
different from the value at the previous time station. Therefeore, it
is necessary to iterate on the solution. Ideally, the iteration
procedure should include solution of equation (26) {(ec &ll spatial
stations other than station n) and integration of equation (28), in
order to update the array of deflection values § for a updated
estimate of the tension at station n - 1. In consideration of the
fact that such a series of calculations would require extensive
computer time, and also that, for sufficiently small time steps,
changes in the deflection array will be small in comparison to
changes in Vn, the deflection array is not updated until the iteration
on the boundary solution has converged.

In light of these considerations, the iteration procedure is

structured as follows:
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(1) The first estimate of Tnl , which has been calculated
i+l
previously, is substituted back into equation (30) and an estimate of

the tension gradient at time station i+l is calculeted as follows:

T_| - T
i+ i,n-1/2 .
. _Blitl i,n-1/ (53)

. 1
i+l,n E-Al

(2) This value of the tension gradient can be substituted intc
av
r

equation (29) and & value for —— can be calculated. If this
at
avn i+l
new value 3% is within some error bound of the previous value
BV1 i+l
gzil » the iteration procedure has converged.

i
(3) If the error criterior is ..ot satisfied, a new estimste of

the integral of equation (28) can be ovtained using the trapezoidal

method of numerical integration, which can be written as

At avn BVn
AR ANES o il (34
i+l i i i+l
This new estimate of V | can then be substituted into eqguation
i+l

(32) to calculate a second estimate of the unfurling rate Ujpe A

second estimate of T can then be calculated, again using

B i+l
equation (5). The procedure ies then repeated until two successive
v
values of 5?2 lie within the error bound of each other.
i+l
Since a converged value of an has also been found, it can
i+l

be used in a trapezoidal integration scheme to find 61+1 o’ 88 follows:
]

At
L L UR A (35)
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The final parameter to be evaluated is the tension at the point
at which the suspension lines attach to the vehicle, TV' The deflec~
ticn ¢ at this point is assumed to be equal to zero, as expressed by
equation (10). The basic partial differential equation (equation (8))
also holds at this point. By . mbining these two equations, an
expression for calculating the tension gradient at the vehicle attach-
ment point can be derived.

Since the deflection at the attachment point is alweys zero, its
derivatives with respect to time, namely QEQ , are also zero.

3t? =0
Thus, for this point, equation (8) can be reduced to

(CA) g + T
3T' =n .m D'y v (36)
-} 2=0 sl sl m
= v

An additional expression for this tension gradient can be found by
expaending the tension at the mid-point of the grid space between
sputial stations 1 and 2 (station 3/2) intoc a Taylor's Series about
station 1 (at which £ = 0). Neglecting second- and higher-order
terms, this expansion is

AL

= AL 9T

Qo>

The tension at station i, -, 2 can be calculated numerically by ueing
the difference procedures outlined previously, with ine subscript
J = 1. Since the tension gredient in equation (37) c¢.n be evaluated

directly by using equation (36), the tension at the attachment point,
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T1 1 can then be evaluated directly as

(CA) g + T }
= AL ' D v v
Ti,l - Ti,3/2 T~ 2 Pai®al o _} (38)

v

Ideally, since Tv (which, numerically, is alsoc Ti—l’l) appears
on the right-hand side of equation (38), a scheme for iterating on
this equation in some manner until TV and Ti,l converge tc the
same value would be preferred. However, since mgl is generally an
extremely small number, appreciable changes in TV result in only
minute changes in the magnitude of the tension gradient (equation (36)),
and thus would alte. only slightly the value of Ti,l in successive
iterations. Thus, equation (38) is solved only once at each time
step in the present paper.

The sequence of numerical calculations described in this section

is outlined in Figure 5.
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L) (equation (32)), and TB] (equation (6)),
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Y

Calculate 6“1'“ (equation (35)). Calculate
LAY j (J = 2,n-1) using equation (26).
{1

i

Calculate T (equations (37) and (38),

Figure 5.- Sequence of numerical procedures.
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RESULTS AND DISCUSSION

A precise treatment of suspension-line wave motion during the
parachute unfurling process is virtually impossible due to non-
uniform mass and elastic characteristics, multi-dimensional mocticn,
and poorly defined boundary conditions to which the motion is subject.
The present method combines the planar representation of vehicle and
bag motions with an idealized treatment of the wave motion in an effort
to achieve reasonably accurate simulation of motions and loads. In
order to evaluate the accuracy of the present method, it was used to
calculiite deployment loads and motions for “wo flight tests of disk-
gap-btand parachutes: +the second balloon-launched flight test of the
NASA Planetary Entry Parachute Program, B/L-2 (reference 8) and the
flight test of vehicle AV-L of the NASA Balloon Launched De.elerator
Test Progrem (reference 9). Physical system data and parachute mass
distributions for the two flight tests are presented and discussed
in the appendix. As there is an absence of data, & numerical value
for the suspension-line damping coefficient was determined parametri-
cally. As the suspension system never became slack during the two
flight test deployments the damping coefficient selected was the
smallest value required to numerically maintain tension at the vehicle
attachment point during the unfurling process.

Computed histories of unfurled length for the two flight tests
are shown in Pigure 6 and compared with test data points corresponding

to mortar fire, line stretch, and estimated bag strip. The computed

28
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histories exhibit very gcod agreement with flight test data.

A sequence of computed profiles of tension in the parachute
suspension lines is presented for the B/L-2 flight test in Figures 7,
8, and 9. Figure Ta shows the state of the suspension lines just
prior to the emergerce of the sk%irt of the vavac’ute cancpy from the
bag. The tension is constant along the length of the lines as is
consistent with the assumrptions made in the soivtion during the
suspensi~n-line unfurling phase. Unfurling of the lower edge cf the
band from the bag generates a sharp peak in the tension profile, as
is shown in Figure Tb. A. this peak trevels down the suspension
lines, it is damped and spread; Figure Tc¢ shows the wave asn it sirikes
the vehicle. The reflected wave is shown traveling back up che
suspension lines in Figure 8a. The unfurling of the top of the band
section of the canopy from the bag generaies a second pesk in the
tension profile, which is shown in Figure 8b. This wave again is
damped ard spread as it travels toward the vehicle; the tension profile
as the second wave strikes the vehicle is shown in Figure 8c. Un-
furling of the bottom edge of the disk section of the . anopy from the
bag generates a third wave, which is shown departing the Juncture of
the suspension lines and canopy in Figure 9a. Figure 9b shows the third
wave striking the vehicle as the reflected second wave reaches the
Juncture. Although interaction of generated and reflected waves
causes some fluctuation in the tension at the vehicle attachment
point after the third wave has reflected, the tensior at that point

decays rather smoothly due to the decreased tension being generated at

w

a e e
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Figure 6.~ Comparison of computed histories of unfurled length with

flight test data.
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the bag mouth as the disk unfurls. A fourth wave (of smaller magnitude)
is generated upon the unfurling of the vent edge from the bag as is
shown in the prefile in Figure 9c. However, bag strip occurs before
this fourth wave reaches the vehicle.

Tension profiles very similar in nature to those shown in
Figures 7, 8, and 9 were obtained in the simulation of the AV-L flight
test. In the interest of dbrevity, only three of these are shown.
Figure 10a shows the vave which is generated by the unfurling of tihe
lower edge of the band as it leaves the juncture of the suspension
lines and canopy. Figure 10b shows the second wave, which is gererated
by the unfurling of the top edge of the band, as it leaves the juncture
and also shows the damped, reflected first wave traveling back toward
the juncture. The profile shown in Figure 10c shows the third wave,
vhich is generated by the unfurling of the lower edge of the disk,
leaving the Juncture as the second wave is approaching the vehiclie.

Histories of the computed tension at the vehicle attachment point
are compared with flight test data histories in Figure 11, for B/L-2,
and in Figure 12, for AV-L, Peak loads shown in the initial half of
each flight test history are attributed to phenomena which are not
associated with the dynamics of unfurling and, as such, are not
included in the present mathematical model. There is very good
agreement in occurrence times of peak loads between the flight-test-
data histories and the histories ccmputed using the present method.
Although agreement in peak load magnitudes is only fair, the results

computed using the present method show considerable improvement over

IRRE St S VIR Rt ]
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Figure 10.- Computed profiles of tension in suspension lines during
BLDT AV-4 parachute deployment.
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the resul*s obtained using the massless-spring model (reference €).

Errors in the present computed histories can be attributed to several

areas of uncertainty:

(1)

(2)

(W)

Lack of date concerning the elastic response of suspension-
line material at very high loading frequencies.

Probable demping of waves generated by the unfurling of upper
sections of the canopy as they are propagated through
sections of the canopy which have been unfurled previously.
Dispersions of wave propagation velocities between individual
suspension lines.

A pocsly-defined boundary condition at the vehicle boundary.
In flight tests, the suspension-lines are, in general,
attached to a multi-legged, webbed bridle system, which in
turn is attached in some manner to the vehicle itself. The
bridle webbing probably exhibits rather severe damping
eflects and, in addition, waves reaching the vehicle itself

are probably partially absorbed rather than totally reflected.

Computed histories of relative deployment bag velocity and

unfurling rate for the two flight tests are presented in Figure 13.

Simiiar trends are exhibited in both flights. The relative bag

velocity decays smoothly due to deceleration of the towing vehicle.

The general trend of the unfurling rate is a similar decay.

However,

sharp decreases in the unfurling rate occur when sudden

increases in the linear mass density of the unfurling parachute

are encountered; conversely, when sudden decreases in the linear
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mass density are encountered, the unfurling rate increases sharply.

In comparing the computed B/L-2 unfurling rate history with the results
presented in reference 6, it is evident that the magnitudes of the
maxime and minima are decreased and increased, respectively, in the
present history. Specifically, the unfurling rate as the gap portion
of the canopy emerges from the deployment bag exceeds the local
relative bag velocity but does not exceed the B/L-2 flight-test mortar
ejection velocity, as the results in reference 6 showed. Although
there is an absence of date concerning unfurling rate, the magnitudes
presented in the present paper are thought to be good approximations
to the magnitudes experienced during the flight-test deployments

being studied.
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CONCLUSIONS

The present paper has presented the equations governing the lines-

first parachute unfurling process, including the equation and boundary

conditions governing idealized longitudinel wave motion in the para-

chute suspension lines. Numerical techniques for obtaining a solution

tc the governing equations have been developed. Based on numerical

solution of the governing equations for two disk-gap-band parachute

deployment flight tests, the following conclusions can be made in

evaluation of the present methods of simulation:

1.

Computed histories of unfurled length agree very well with
flight test data.

Computed histories of tension at the vehicle agreed well, in
general, with flight test data histories. Errors in the
computed histories were attributed to several areas of uncer-
tainty, the most significant of which is probably a poorly
defined boundary condition on the wave motion at the vehicle
boundary.

Computed histories of unfurling rate exhibited fluctuation
about the smooth histories of relative deployment bag
velocity. However, the amplitudes of this fluctuation were
attenuated as compared to the fluctuation experienced with
the use of a massless-spring-type model ~»f suspension-line
elasticity. Specifically, no local values of unfurling rate
computed using the present methods were observed to exceed

the respective flight-test mortar ejection velocities. The

b1
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present computed histories are thought to be good approxima-
tions to the unfurling rates experienced during the flight

tests being studied.
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APPENDIX

PEPP B/L-2 AND BLDT AV-L4 SYSTEM DESCRIPTIONS

AND FLIGHT TEST DEPLOYMENT CONDITIONS

Proper simulation of the PEPP B/L-2 and BLDT AV-L flight test,
deployment requires, of course, correct numerical inpat data. These
data include mortar-fire trajectory conditions; vehicle mass, diameter,
and aercdymanic characteristics; deployment bag mass, diameter, urag
coefficient, and the velocity with which it is ele.ted by the mortar;
parachute sizes and mass distributions; and suspension-line elastic
characteristics. The data which were used to obtairn the results

Presented in the present paper are described in this appendix.

Mortar-Fire Trajectory Conditiocns

Trajectory conditions at mortar fire for simulation of the two
flight tests were selected so as to match the most important (with
respect to the dynamics of the deployment process) variables, namely,
the vehicle velocity vv, the flight-path angle 7Yy, and the freestream
dynamic pressure q,+ Velues of these initial parameters are listed
in references 8 and 9. The present simulation technique utilizes
tables of atmospheric data from the U. S. Standerd Atmosphere, 1962
(reference 10). Atmospheric data obtained prior to each of the flight
tests were noticed to deviate slightly from those of the Standard
Atmosphere. These deviatinns were taken into account by adjusting

the input values for altitude at mortar fire downward to values at
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vhich the tabular densities matched thosa local date values obtained
prior to the flight tests. Mortar-fire trajectory parameters which

were used in the simulation are listed in Table I.
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TABLE I

INPUT TRAJECTORY CONDITIONS AT mMORTAR-FIRE

PEPP B/L-2  BLDT AV-k

Aliitude, h, kilometers 39.8 Ly
Vehicie velocity, v, me’. _rs/second 518 698
Freestream dynamic pressure, Q> newtons/meterg 555 522
Mach number 1.63 2.13
Flight-path angle, Y, degrees 50 12

Vehicle Descriptions

The B/L-2 flight test vehlcle consisted of a 120°-included-angle
cone aeroshell which enclosed & cylindrical payload. Mass, diameter,
and drag characterisiics (as a function of Mach number) for this
vehicle were obtained from reference 11. The AV-L flight test vehicle
was a full-scale model of the Viking 'S entry vshicle. Mass,
diameter, and drag characteristics for this wvehicle were obtained from
reference 9. As the flight test Mach numbers for B/L~2 and AV-L
varied only slightly during the unfurling process, the respective
dreg coefficients can be approximated by constants (see Table II).
Tables of the wake psrameter n as a function of distance aft of the
vehicle bases were calculated using flow properties (nsmely, dynamic
pressure and flow velocity) at the center of the wake of the two

vehicles, which are presented in reference 12. The wake parameter
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H varies from a value of O at the base of the vehicle to values near
5 0.75 in the region of the wakes in which bag strip occurs. Vehicle

masses, diameters, and approximate drag coefficients are summarized in

i Table II.
¥

i

w R e

o F

LPER T Tttt s o L. ATRIEAE
—

SR




L

P Witk -

e

e ISR e ey

St fan S <o TR g S T e L f

Femane

RIS gt

;
2
{v
f
¥
#

TABLE IIX

VEHICLE PHYSICAL CHARACTERISTICS AND DRAG COEFFICIENTS

Reference diameter, meters
Mass, mv, kilograms

Approximate drag coefficient, CD v
’

PEPP B/L-2 BLDT AV-k

L.6 3.5
566 817
1.5 1.6

Deployment-Bag Characteristics and

Mortar Ejection Velocities

The parachutes for the respective flight “~sts were pressure-

packed into cylindrical fabric deployment bags.

Approximate bag masses

were obtained from references 8 and 9. The bag diameter for each

flight test was taken to be 0.3 meters. Drag coefficients for the bags

were assumed to be constant and equal to 0.8, which is the approximate ~/

drag coefficient of a cylinder in uniform axial flow (reference 13).

The unfurling resistance force Fre was determined in laboratory

testc to be equal to an essentially constant value during the cuspension-

line unfurling phace and another essentially constant value during the

canopy unfuriing phase. Mortar ejection velocities were determined

perametrically as those values required to obtain agreement between .

computed and Clight-test data times from mortar fire to line stretch.

These values, along with the previously mentioned deployment bag

characteristics, are summarized in Table III.
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TABLE III

DEPLOYMENT BAG CHARACTERISTICS

AND MORTAR EJECTION VELOCITIES

PEPP B/L-2 BLDT AV-i

Mass, kilograms 0.9 0.8

Diameter, meters .3 .3

Drag coefficient, C .8 8
D,b

Suspension-line unfurling resistance force, newtons 8.9 8.9

Canopy unfurling resistance force, newtons 26.7 26.7

Mortar ejection velocities, meters/second L46.4 36.6

Parachute Configurations

The PEPP B/L-2 flight test parachute was a disk-gap-band configura-
tion having a nominal dismeter of 19.7 meters. The linear-mass-density
distribution for this parachute was calculated from detailled construc-
tion diagrams which are given in reference 1i4. This calcu.ated mass
distribution, for which it is assumed that the suspension system
consists of suspension lines only, is shown in figure lha. The BLDT
AV-l4 flight test parachute was also a disk-gep-band configuration and
had a nominal diameter of 16.15 meters. The linear-mass-density
distribution for this parachute was calculated from unpublished
detailed construction blueprints. Figure 1kb shows the calculated
AV-L distribution. The spikes in the calculated mass distributionz

denote areas in which there are several overlapped layers of canopy
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cluth and a layer of fabric tape sewn onto the cloth layers around

the circumference of that canopy section for reinforcement purposes.
In the present solution method, these spikes are approximated by
half-sine curves which attain the appropriate maximum amplitude at the
mid-points of the spikes. Physical characteristics of the two para-

chutes which are used in the present simulation are summarized in

Table I7.
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TABLE 1V

PHYSICAL CHARACTERISTICS OF PARACHUTES

PFPF B/L-2 DLDT AV-b
Nominal diameter, meters 19.7 16.15
Number of suspension lines, n_; 712 L8
Total mass, kilograms 32.4 36.6
Suspension-line length, le, meters 23.8 30.1
Total unfurled length of
perachute, Lp’ meters 34.3 38.8

Suspension-Line Elastic Characteristics
Suspension lines for the PEPP B/L-2 parachute were fabricated

from coreless braided dacron cord heving & rated tensile strength

of 2450 newtons. Suspension lines for the BLDT AV-U parachute were N

fabricated from similar cord having a rated tensile strengtn of 3900

newtons. Force-strain curves for representative samples of each type

cord were obtained in laboratory tests using an Instron tensile-

testing machine at a near-zero strain rate. These curves are shown in

figure 15. A value of suspension-line damping coefficient was

determined parametrically. As the tension at the vehicle never became

zero during either of the flight-test deployments being studied, the 5
damping coefficient was selected as that value required to maintein

tension at the vehicle during both of the computed deployment histories.

. S

53

ﬂ.b;v%kﬁf-;ﬂ‘ -

> e
o adi
h

e



4y

s Chates o sy o 3

na

]

n B R A i L TR

Al s 4

g

SRARE LR

AN S s T

R

{
&
‘o
£,
:i--.
ks

Y
&
L

¢

54

250

200 I~

150

100 |-

Force, newtons/line

50 |-

| I | 1 i

(a) PEPP B/L~2 Suspension lines
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Figure 15.- Force-strain curves for parachute suspension lines.
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Those particular values were determined to be 0.046S N-sec/line for

PEPP B/L-2 end 0.07 N-sec/line for BLDT AV-L,



