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ABSTRACT

A theoretical model is developed to establish an adhesion criterion

for the interaction of a gas atom or molecule with a nonmetallic sur-

face. As a first approximation a linear lattice mass points of the

solid surface is considered and the classical lattice dynamical model

is used.
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INTRODUCTION

1 2 3' Classical as well as quantum mechanical approaches ' ' have been

developed by different investigators in arriving at satisfactory

models for the trapping of gas atoms by solid surfaces. In this in-

vestigation the classical approach using the formalism of lattice

dynamics is used. As a plausible potential for the interaction be-

tween the surface and the impinging atom, the well-known Lennard-

4
Jones potential is used.

The intermolecular interactions are represented by appropriate

spring constants; a uniform spring constant for the binding between

the atoms of the solid and a different value for the interaction be-

tween the incoming gas atoms and the nearest surface atom are used

in this approach.

The required adhesion criterion is developed in the form of an

estimated potential well depth which is used to compare the kinetic :

energy of the incident molecules. It is assumed that molecules with

energies greater than the well depth will be reflected back whereas

those with energies less than this amount will be absorbed.

The one-dimensional semi-infinite lattice model used in the

present discussion can be extended to the more realistic three-

dimensional situation. "
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THEORETICAL APPROACH

One dimensional chain lattice

The solid surface can be approximated to a semi-infinite one

dimensional lattice with identical point masses at each lattice

site holding each other through a potential which can be represented

by a suitable spring constant k. The interaction is limited to only

the nearest neighbors. Any change in energy at any of the lattice

points will be transmitted to nearest neighbor and from that to the

next and so on.

o 0 '"

X X . -
n n + 1

Fig. 1. one dimensional lattice

Let the instantaneous position of the n and (n + 1) atom

in the chain be denoted by X and X respectively. Further, let
n n + 1

the equilibrium distance be denoted by d.

Let there be a disturbance in the linear chain by an approaching

impurity atom (gas atom) leading to a displacement <}> for the n
n

atom, thereby bringing the n atom to i*ts instantaneous position de-

noted by X . Under these circumstances one can write

Xn = nd + <frn . 1

In a similar manner one can write for the (n + 1) atom

X , . = (n + l)d + $ . 2
n + 1 n
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The interaction energy between the n1-^ and (n + 1) atom will

be a function of the positions and can be represented by a potential

function of the form

V(x) = V(|Xn+ l - Xj). '3

Equation 3 can be rewritten using equations 1 and 2 and one

obtains

V(x) = V I [(n + l)d + <j> I T ] - [nd + <j>n] |

4

= V {d + |<{>n + l - $n\} .

The change in displacements between successive lattice mass

points will be much smaller than the mean distance between successive

lattice sites.

~ *

Therefore, it is reasonable to make a Taylor expansion of the potential

function v(x) about x=d which leads to

V(x) = V(d) + |x=d

l ;x=d

In equation 6, v(d) is a constant. Since d is the equilibrium dis-

tance, the potential function should be an extremum at x=d. This would

mean that,
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3v . = 0.
x=d

At equilibrium position force is zero. Using the analogy from

^

spring, one can assume a relation of the form fa - kx or — akx.
o3^v

This would imply that at —— i will be a constant. This simplifi-
9x2 'x=d

cation yields from equation 6.

V(x) = G! + --K(|<J,n + x - <f,J) .

At the site of the ntn atom, there is a similar contribution

from the (n-1) atom. Thus the total potential at the site of the

n atom can be written as

2 2
V(x) = -i-K(|<j> , , - <f> |) + •oK(U r i - < ! > „ _ i I) + c« 9

The force on the n lattice atom is then written as

F o-

10

Or F = K

The corresponding equation of motion is written as

d2<|>
m —-2 = K (* + * ' - 2<f, )

2 n + 1 n-1 n
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Equation 11 is a representative equation which can be used to.

study the propogation of energy transfer through a lattice medium.

The above considerations can be further simplified by adopting the

following notations:

Let .2 „£; 12

And T = (Ot . 13

' "

n

Similarly, d—£ =
dt2

Using equation 14 in equation 11, one obtains for the (n +

particle

ma)0 *n + 1 = K(<J>n + 2 - 2*n

Equation 15 represents the motion of the (a + 1) atom in terms of

the displacement of the nearest neighbors.
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When an external impurity atom approaches the zeroth atom,

the motion of the coupled system can be written as given in 10 if

the relative displacement of the incoming atom is denoted by £, and

the spring constant representing the coupling between the zeroth

atom and the trapped atom is denoted by K , then equation 10 leads
o

to ,

2

m— -° = K((f»1 - <f>0) + KQa - < f > 0 ) . 16
dt

This is the equation of motion of the zeroth atom on the surface.

2
m(°0 ~~r =

dr
d2<j>n K

Or 1H ^r = <*i - *o> + r (? - *o>- 17

K 2 K0
Since — is defined as co , and if one further defines - as 3 ,

K

equation 17 reduces to

- *0). 18

The motion of the impurity atom alone can be described by

mO 7 2
dt

Or HlQ. u2 ? = K0 m(<j> - ^) ,
K 0 K~ 0

Or m 5 = 3m(<j> - C) . 19m0 5 = 3m(<j>0 -
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If one writes m /m = W» equation 19 reduces too

= 6(<f>Q - C) = ByOr).

One then rewrites equation 18 in terms of equation 20 to obtain

*0 = (*1-*0) + Vt> 21

y(r) = *Q(T) - ?(T)

and v = *' - f. 22

Equation 21 can be rewritten in terms of 20 as

~ V + By(T)' 23

Equation 23 when applied in equation 22 one obtains

= ($i - 4>o + 0y(r) - — yC?), 24

y + 1
Or y(r) = (<}>-, - 4>o) ~ 3(—T—) y(T); 25

Or y(r) + 3(-̂ -̂ ) y(r) = ^ - <|>0. 26

Equation 26 represents coupled equation of motion. This is similar

to a harmonic equation with a forcing term. At this stage it is
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convenient to revert the variables back in terms of real time.

- - - ' l - Vdt

2 ? V + 1
Let « = oi B(— -) 28

2
and W ( - <j,) = f(t).

Equation 27 is now rewritten as

ft2y = f(t). 29
dt2

1/2
The factor which modifies the free lattice frequency is

and this is the effect of the coupled external molecule. Equation 28 is

a harmonic equation with a forcing term and the forcing function is

f (t) = WQ ( 4>^ - <f>(p •

TRAPPING ENERGY

Molecular potentials

In a simple classical model, the molecular interaction potential

can be expressed by various different potentials such as Lennard-Jones

which is usually written as

V(r) = 4ef(—}12 - (—)61 30V V.i I HtI V r ' \ r / 1 t

where r is the distance from the surface lattice atom, a is the distance

of closest approach by the incoming atom and e is the depth of the poten-

tial.
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A more realistic potential would be the Buckingham potential

which includes the induced dipole-induced dipole interaction and

the induced dipole-induced quadrupole interactions. Buckingham po-

tential is usually written as

$(r) = be - cr - e r .31

While it is a more realistic potential than the Lennard-Jones (6-12)

potential, it is more difficult to handle. A third potential which

is flexible and often used in calculations is the Modified Buckingham

(6-Exp) potential which has the form

t \ e r f(r) = - - [— exp(

a r>
— max

*(r) -a- r « r 32

This is somewhat more flexible than the Lennard-Jones potential since

it permits the variation of the low velocity collision diameter. Another

potential often encountered in literature is the Stockmayer Potential

which is a superposition of the Lennard-Jones potential.

q 12 a 6n Ua Vb
ea, eb, <f,b - <,a) = 4E[(~) - (T) ] r g(ea,eb,*b,-*a). 33

The last term in the expression on the right-hand side of equation 33

accounts for the angular dependence of the dipole-dipole interaction.
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This potential describes well the interaction between such polar,

molecules for which dipole-quadrupole and higher multipole inter-

actions are not important.

a. Southerland model b. Lennard-Jones potential

Fig. 2. Spherically symmetric potentials

The interaction of an adsorbed impurity atom by a solid surface,

it is assumed, can be best described by the Lennard-Jones potential

which is shown in Fig. 2b. The potential itself is described by

equation 29. It can be reasonably assumed from the shape of the
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potential, that the intercept 0 can be taken as the distance of closest

approach for an external molecule. One further makes the stipulation

that the depth of the potential well, e, can be interpreted as the

mean binding energy of an incoming atom xvhen it is absorbed. Under

these circumstances, it is reasonable to assume that an incoming mole-

cule will be trapped if it comes closer than the mean distance of

closest approach and if the magnitude of its kinetic energy is less

than the potential depth. This is a classical concept. It must be

noted that the interaction potential does not become a trapping poten-

tial until the approaching molecule is closer than Rg vrtiere RB is

shown in Fig. 2b.

An estimate of trapping energy

Equations 28 and 29 may now be used to estimate the trapping

energy Eg as follows. A simplifying assumption that one can make is

that the lattice response forcing function, which is given by

f(t) = O)

is small compared to the relative acceleration —o~ and the average dis~
dt

placement ft y. This would lead to further simplifying situation that

the system would oscillate essentially with free angular frequency n.

Further, if one approximates equation 29 to be of harmonic form, which

can be written in the form

V = l/2<n2 34
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where K is an equivalent spring constant which is related to

n2 = —
m0 '

The approximated Lennard-Jones potential and the modified harmonic

potential are shown in Fig. 3.

35

Fig. 3. Approximate harmonic well potential
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Obviously one can then write the expression for the lower potential

(Fig. 3) in terms of the harmonic potential as

V = V - E . . 36
B

Using equation 34 in -36 and evaluating the potential for the lower

curve (Fig. 3) for r is equal to 0, one obtains

0 = ^ - EB . 37

1 2
E = -Kn . 38B 2 o-

One makes use of the relations given in equations 28 and 35 to reduce

equation 38. Thus,

2 2 u + 1
K = mn ft = m_ a) [3(- )]. 39

U U y

From Fig. 3,

= R - a . 40
a , B

The use of equations 39 and 40 in equation 38 leads to,

41

Obviously, equation 41 is an expression for the binding energy in terms

of the quantities on the right hand side of equation; where nu is the

mass of the trapped molecule, u>Q,Xirhich is equal to (—) , is the frequency
m
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term, K being the lattice spring constant, m the mass of lattice atom;

3 is the ratio K^/K where K~ is the equivalent spring constant between
mothe trapped atom and the surface atom; y or — is the ratio of the
m

masses of trapped and surface atoms; R the mean molecular trapping dis-
. B

tance and a is the distance of closest approach.

It is obvious that if the quantities on the right hand side of

equation 41 can be evaluated that would provide the necessary informa-

tion on the probability of adsorption of an incoming molecule by a

knoxm target surface.

Distance of closest approach

In the preceding discussion several simplifying assumptions have

been made in order to arrive at an expression for the trapping or bind-

ing energy E as given in equation 41. The more important parameters
B

which are to be determined to evaluate E are cr, the distance of
B

closest approach; R_ , the mean molecular trapping distance; and Kn,B v

the intermolecular spring constant between the trapped atom and the sur-

face atom. One makes further simplifying assumptions to evaluate these

quantities. The quantity a which is the collision diameter can be

reasonably defined to be the distance of closest approach between two

colliding molecules. The value of r, occurring in the Lennard-

•0

Jones potential expression, for which <f"(r) becomes zero, will be a

measure of 0. The collision diameter is related to the molecular co-

volume 'b ' through the relation,

^
. 42
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An alternate method to evaluate a is to use the diffusion data for

molecules. However, the results obtained thus are in reasonable agree-

ment with values obtained from the molecular co-volume as given in

equation 42.

In published literature there are available values of molecular

co-volume and a of various molecules. Table 1 is adopted from Curtiss

and Herschfelder to show some typical values of these quantities.

Compound

CHC13

CHC12F

C2H5C1

H20

NH3

cr

(A°)

2.98

4.82

5.41

2.65

2.60

bo
cc/mole

33.45

141.0

199.7

23.45

22.12

Table 1

Sample Values of cr and b

In terms of the constants appearing in equation 42, one can express

molecular co-volume as

bQ - 1.265150 .
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The trapping distance R^ is of interest here now. From Fig. 3, it

is seen that when r is equal to IL.,
D

V(r) = V(RB) = -e = -E . 43

This information can be used in the Lennard-Jones potential

a 1 2 a6
V(r) = 4e[(—) - (-2-) ].

r r

From equation 43, this becomes

a 12 a 6
-e = 4e[( ) - ( ) ]. 44

R R
B B

Equation 44 leads to quadratic of the form

o 12 06 l

(~\ '̂  +T"°' "5

Or

This leads to two equal roots

o 6 1
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This leads to a solution

or

R = 1.122a. 47

When the value of RR from 47 is used in equation 41, one obtains

for binding energy

(.122a)2.. 48

It remains to calculate the spring constants K between the lat-

tice mass points of the target and KQ, the similar parameter relating

the incident molecule to the surface atom. In the latter case, where

Lennard-Jones potential is adopted, Curtiss and Herschfelder have

elaborately discussed the applicability of thermal diffusion data in

conjunction with ordinary diffusion data to determine a and e which

occur in Lennard-Jones potential which describes the interaction of a

pair of dissimilar molecules. On the other hand, this can be treated

as a dipole-dipole interaction in xjhich case the force of attraction

can be written as

V2
FIZ = -6 — 49
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where y.. and y£ are the dipole moments and r the mean distance. Since

we have replaced this force by a spring, equation 49 can be written as

F12<V = K0Rs 5°

where R is the separation distance at which the attractive potential of
o

the surface atom is experienced by the incoming molecule.

Equations 49 and 50 immediately lead to the result

51
U 5
V

y^ and U2> the induced dipole moments, can be evaluated from molecular

data. The separation distance R can be approximated from the shape
s

of the potential in terms of r\ and a. From fig. 3 one can write
a

R = 2r) + a = 2RD - a.
S o " o

Finally, the lattice spring constant can be obtained from the properties

of the material. Thus for example the speed of sound in a material is

given by

1/2

where y is Young's modulus, and p the density. Using the relation between

(o and v the frequency, one can then write

v = X<D,
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where X is the wave length. In the linear approximation of a spring

type force between the atoms, then one can write

0) - .
van

or K = mu

v 2-

Thus the various quantities appearing in equation 48 are evaluated to

obtain an estimate of the trapping energy.
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