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ABSTRACT

A formulation of wave energy flow has 'been developed for motion in
curved ducts, A parametric study over a range of frequencies determined
the ability of circular bends to transmit energy for the case of perfectly
rigid wallso

t̂  INTRODUCTION
o
OJ

*T Propagation of waves in curved ducts and pipes is characterized by
w wave patterns totally different from those Known in straight ducts or in

unlimited space« The curvilinear boundaries are responsible for t^«
appearance of a continuous standing radial wave which in turn affects
the transmitted tangential waves. General theory for motion of long and •" •-
acoustic wave? in bends has been developed and published (refs, 1 and 2).
However, no fcrmulatior. was given for energy density or energy flux for
motion of acoustic waves in circular bends. In 1956 Karpman (ref» 3)
attempted to develop expressions for the kinetic and the potential energies
of standing waves in torus., Because of mathematical difficulties, he
limited himself to partial results in terms of acoustic energy density°
An interesting analysis on reflection and transmission coefficients due
to circular bends in rectangular wave guides was published in 19̂ 3 by
Marjshak;,j(ref̂  ̂ r̂;£ŷ  approximate-' met hods applicable to electromagnetic
waves ""iri gradual' be'rfds' a"qualitative formulation was given for motion of
waves in bends in generals His transmission coefficient was defined as
amplitude ratio of the first mode of the transmitted to incident vibrations*
In 1955 Lippert (ref0 5) published experimental data on characteristic trans-
mission factors of square and rounded mitered elbows. He defined the
amplitude of the transmission factor as the ratio of sound pressure ampli-
tude of the transmitted wave at the output plane to the sound pressure
amplitude of the incident wave at the input plane.

There are both scientific and engineering reasons to study the ability of
bends to transfer energy of waves, For example, calculation wave energy
flow may be desired in acoustical studies of air conditioning ducts» The cal-
culated energy flux does not give any measure of the ability of any given bend
to transmit soundo It will be of interest, however, to compare energy flow



in a "bend to energy flow in a straight infinite duct. See figure 1.
The ratio will give transmissivity of a "bend "because motion in a straight
duct is without reflections or diffraction and may be considered one-
dimensional. To be successful in the analytical approach, the comparison
must involve propagating waves only. The standing and evanescent waves
in the vicinity of the junction of the two ducts must be excluded. In
the series solution of the wave equation all terms pertaining to higher,
evanescent modes will be dropped and only terms of the basic mode retained.
From the energy balance viewpoint such a procedure is perfectly correct.
The evanescent waves do not constitute a loss because eventually all energy
in them is transferred to the steady, uniform field some distance downstream
from the discontinuity. From previous studies, references 1 and 2, general
expressions for the motion of waves in curved ducts are available. For
waves in the very low frequency range (wave length is at least one hundred
times larger than the width of the duct) approximate expressions have been
obtained by simplified series expansions of Bessel functions of fractional
orders. For acoustic frequencies, (wave length is of the order of the
width of the duct) the analysis was based on closed form solutions of
Bessel functions of the order v = (n + i-), n = 0,1,2...10. This paper
presents a study of the ability of circular bends to transmit wave energy
iii a wide range of frequencies and for the case of perfectly rigid walls .

ANALYSIS

In a system with progressive waves, energy flux, called sound inten-
sity, is given, in most general terms by

. Pv dt an • (i)

The v designates the vector of particle velocity of the progressive
wave and p is the acoustic pressure and ft is the area of .bend's
cross section. The first integration, over a period of oscillation, is
designed to replace instantaneous values with time averages. The second
integration over area ft is necessary in all cases where p or v
depend on two coordinates as in the case of motion in bends . The equations
for pressure p = - p8<j)/3t, (d> is the velocity potential and p the
density), and velocity VQ = =~g§" have been derived in previous studies,

references 1 and 2. The general solution for the velocity potential in
cylindrical coordinates and without the axial dependence is

i(u>t - v 6 + a) I A J (kr) + B Y (kr)3 n I v v v v l(^ n n n n J
(2-)

n=0
where k = co/c, v are the angular wave numbers to be determined for



different --odes-of motion. The phase angle a is an arbitrary constant„
The three integration constants v , A and B will be determined byn v vn n
the following boundary conditions:

(a) at R and R (the two cylindrical walls of the bend) 3$/3r = 0

(b) at 8 = 0 (at bend's inlet) the 1 angential velocity is equal to
,axial velocity of a piston v exp (iwt)

(c) the bend is infinite. This condition implies that there will be
no backward reflected waves.*

• Evaluation of the integral (l) requires solution of equation (2)
for fractional v in order to obtain a solution for propagation waves„
Also ^termination of v itself requires application of boundary condi-
tion 3<J>/9r =0 at Rn and R to the derivative with respect to the
radius of equation (2)̂

J' (akRjJ1 (kIL) - J' (akRjJ1 , (kR,} = 0
\) 1 -' 1 -V J. V • 1n n n n

For the case of long waves it was possible to solve equation (3) for
v directly. For shorter waves it was not possible to solve this cross
product of Bessel functions for an arbitrary argument and obtain values
for v , The difficulty was by passed by use of discrete values of
v = (n •*• 1/2), n = 0,1,2...10, which correspond to Bessel functions
characterized by closed form solutions. This basically the approach
taken in reference 2. Figure 2 illustrates the result?. The graph gives
the angular wave numbers v's for any arbitrary imposed wave number
parameter kR,. The calculated curves are for a = R_/R, = 1.5, 2«0 and
2.5. The graph indicates that for a = 2.0 up to kR.. = 3°2 only a
single'mode will be transmitted. In order to interpolate between v = Oc5»
1.5, etc, the fuction of equation (3) was formed using a general expan-
sion of Bessel functions, limited to fifteen terms, for arbitrary, non-
integer v« By such general expansion v'n are calculable with high
".r-r>•!'*'f•-y -i -f~v.r> "j-facHi-- (-7.OTO' h) i'ode and .̂f. fi^ first tnoflf! up ^.o v - 3"5»
For tiigheJ- aiodss and higher kF aeeuraoy decreases re:p3'll:,y,

In a straignt duct the Tiiidth of a due* has no influence on the
character of the basic mode. In the curved duct the width of the channel
has a significant effect. The wave manber will change, and the distri-
bution of velocities will be altered* In both the straight and the curved
ducts, the narrower the duct i- the less chances era that higher modes
will be transmitted, A wide duct admits higher modes much more easily,
see refei-ence 2. with known characteristic numbers kR, corresponding
to v = 0.5j l « 5 - « - evaluation of the integral in equation (i) is
possible. The obtained values for energy flux in the bends have been

*An infinite bend could be imagined as a tightly wound coil=



compared with energy flux in straight ducts which has a well known form
pv = pcv|/2 where VQ is the uniform particle velocity across the duct
and pc is the characteristic impedance and the specific acoustic .im-
pedance for plane propagating waves. Calculations have been done on a
digital computer with the help of available subroutines for sine and
cosine integrals and for the Fresnel integrals.

Figure 3 gives results of the.analysis of the transmissivity of
curved ducts. In this figure the independent variable is the nondimen-
sional wave number kR1, proportional to frequency. The three curves
on this figure correspond to three ducts of different radii ratios
a = 1.55 2.0 and 2.5. Should R be the same for some three ducts, the
three curves would pertain to three ducts of different width. The
parameter a strongly influences the transmissivity. The curves exhibit
a maximum with progressively lower amplitude but are more prominent as
parameter a increases; The three points calculated for kR^ = 0.01
have been obtained using the theory of reference 1. It is interesting
to note that the transmission at these low frequencies is not one hundred
percent. The dotted extremities of the curves pertaining to a = 2.0
and 2.5 correspond to.regions where two modes may be transmitted by the
ducts. As the present analysis concerns just the basic mode, these parts
of the curves may be altered by the coexistence of a second mode.

Ability of bends to transmit acoustic energy strongly depends on
frequency, the bend's radii ratio and the inner radius R]_. These
parameters, along with the product pc, determine the specific acoustic
impedance of.the bend. Narrow rectangular ducts, whose mean radius of
curvature of the bend is large compared to the width of the duct, trans-
mit energy very well over a wide range of frequencies. With a = 1.5
and up to kR., = U.U transmission is at least 0.993. Consequently,
tubing of a regular orchestra trumpet (a = 1.2, R]_=5 cm) is indeed trans-
mitting energy very well over a frequency range in excess of 5000 Hz.
In bends characterized by radii ratio a = 2 or more the transmissivity
decreases rapidly .at .higher frequencies. To account for the difference
between the rated energy flux in bends and the rate of energy flux in
straight ducts.(infinite, to consider only waves going in one direction)
it is necessary to recall that the power radiated by the piston at
6 = 0 in the first mode is. proportional to the strength of the source
(which is measured by VQ) and the acoustic impedance at the inlet.
Since the specific acoustic impedance in a bend in the case of zeroth
mode of the progressing wave is, by reference 6,

z =*-= pc(kR1/vo)(r/R1)
6

while for a straight duct it is just pc, the radiated power (the rate
of energy flux)in the two cases is different.
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CONCLUDING REMARKS

Ability of circular bends to transmit acoustic energy flux has been
examined. Transmissivity of bends strongly depends on frequency, the
bend1 s radii ratio and the .inner radius R-j_.. The well known fact that
bends may act as low pass filter has been analytically confirmed. The
analysis included bends of radii ratio a = Rg/̂ i = 1-5, 2.0 and 2.5
and was not restricted in the inner radius R-. . The range of acoustical
frequencies studied was from wave number parameter kR]_ = 0.01 to 4.4.
The basic, zeroth mode was the only mode considered.
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Figure 1. - The two physical systems
considered: (a) infinite bend
(b) infinite straight duct.
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Figure 2. - Characteristics of motion in bends for three bends of different widths.
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Figure 3. - Transmission of wave energy in curved ducts.


