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Abstract

A finite-difference machine code is brought to bear on the

wake-vortex problem in the quasi-cylindrical boundary-layer approxi-

mation. A turbulent-energy model containing new features is

developed that accounts for the major effects disclosed by more

advanced models in which the parameters are not yet established.

Several puzzles are resolved that arose in previous theoretical

investigations of wake vortices.
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Introduction

Methods for reduction of velocities in trailing vortices of

large aircraft are of current interest for the purpose of shortening

the waiting time between landings at central airports. Procedures

for estimating the response of the vortices to stimuli such as air

injection or special flap deflections are required. The favorable

effect of a special ogee extension at the wing tip has been investi-

gated in wind tunnel experiments by Rorke and Moffitt.1 It is

necessary to determine the effects of this and possibly numerous

other proposals in the far flow field as well as the near field

that can be investigated in wind tunnels. Computer simulation of

this problem may eventually produce competitive flexibility.

At the present time definitive simulation of the rate of decay

and growth in core size due to turbulent viscosity has not been

achieved. A useful review of previous work on this problem and

contributions to its solution have been given by Govindaraju and

Saffman.2 Several attempts have been made to stimulate the effects

of turbulence in wake vortices using integral methods, notably

Kuhn and Nielsen
3 and Fernandez and Lubard.

4 Additional useful

information resulted from these efforts. The wind-tunnel measure-

ments of Hoffman and Joubert
5 and Chigier and Corsiglia

6 have been

used extensively and have contributed to the present knowledge of

turbulent wake vortices. A preliminary calculation of the flow

-2-



in an isolated vortex has been made by Donaldson
7 based on a sophis-

ticated turbulence theory. The method of invariant modeling employed

should be useful in the development of future turbulence theories.

Investigators at the Imperial College in London (e.g., Launder

et al.8) have developed turbulence models in which the length scale

is governed by an additional differential equation in lieu of assign-

ment of a length scale as in Donaldson's model. Application of this

concept to turbulent wake vortices in the present paper leads to

significant departure from Donaldson's prediction of the rate of

decay of such vortices. An effect of suppression of turbulence

due to curvature of the flow contained in Donaldson's model, but

not in that of Launder et al., also plays an important role. A

method for including these two effects in an extension of Prandtl's

turbulent energy model is developed in the present paper. The

relatively slow rate of decay of turbulent wake vortices that has

been observed in flight experiments
I 0 is thereby explained. The

approach to self-similar solutions predicted in earlier investiga-

tions by Donaldson7 and Baldwin et al.11 does not occur when both

of the above effects are considered.

Notation

al parameter in turbulent energy model (0.15)

C1  parameter (0.5 Ce C, = 0.0643)

C2  parameter (2a 3/2CE2 = 0.223)
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C3  parameter (1.0)

CEl parameter (1.43)

C 2  parameter (1.92)

2
C parameter (4a1 = 0.09)

f dimensionless kinematic viscosity (Eq. (7))

f maximum value of f in a given profile
max

L mixing length

PRE Prandtl number in dissipation equation (= 1.3)

PR Prandtl number in energy equation (= 
1.0)

p dimensionless pressure (Eq. (3))

pw approximate dimensionless total pressure (Eq. (6))

--2 specific (amount per unit mass) time-averaged turbulent

fluctuation kinetic energy (times 2)

r,z dimensionless radial and axial coordinates

(r = W R/r. , z = W z/r.), (e.g. Eq. (1)-(5))

r 1dimensionless radius at the position of maximum circumfer-

ential velocity (e.g. Eqs. (16) and (17))

r2  dimensionless radius at outer boundary of computational

mesh (e.g. Eq. (9))

R,Z dimensional radial and axial coordinates

s dimensionless rate of strain

S dimensional rate of strain

u,v,w dimensionless radial, circumferential, and axial velocity

components (e.g., u = U/w ), (e.g., Eqs. (1) - (5))
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U,V,W dimensional radial, circumferential and axial velocity

components

W dimensional free stream velocity

r circulation (= 2TVR)

Fl circulation at position of maximum circumferential velocity

F circulation at large R

Ar computational mesh size of r coordinate (= r2/100)

Az variable computational step size

C specific dissipation of turbulent energy

v kinematic viscosity

VT turbulent kinematic viscosity

Theory

Quasi-Cylindrical Flow

The basic equations in the boundary-layer approximation are

taken from Lilley and Chigier.
1 2 Attention has been confined to

incompressible flow in this paper and the equations reduced to a

nondimensional form through division of velocities by the free-stream

velocity W., division of pressure by p W 2 , and multiplication of

axial and radial coordinates by the factor W ,/Fr. The resulting

equations in a nondimensional form suitable for finite difference

solution are

p awu +  fr (1)

z 3r rr r r
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S_- -u (3 + ) + fr3  (2)
aZ W a r 2 r ar r

2
ap = V (3)
3r r

w= 2 (p- p) (4)

3ru -r ( 5)
ar aw

where

p, = p+ 12(6)w 2

f = T + V (7)
r r

The turbulent viscosity coefficient vT is determined from a

turbulence model to be discussed. The boundary condition are

u (r 2 ,z) = 0 (8)

v r2 'z) =2nr (9)

w (r 2 ,z) = 1 (10)

p (r 2 ,Z) = 0 (10a)

where r2  is a radius large compared to the size of the core (r1).

At the center of the core
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u(0,z) = 0 (11)

v(O,z) = 0 (12)

The initial conditions are

u (r,Z 0) = 0 (13)

v (r,zO)= fv i (14)

w (r,z0)= 1 + f () (15)

where rl is the radius at which the circumferential velocity is a

maximum.

Turbulence Model

Since detailed experimental information on the flow in turbulent

vortices is not yet available, methods that depend on evaluation of

parameters from the particular experiment at hand cannot be used.

Instead a complete model is needed that bears an approximate relation-

ship to the exact flow in a manner analogous, for example, to the

relationship between simple kinetic theory and the rigorous kinetic

theory of gases. It has been shown by Launder, et al.8 that Prandtl's

1945 turbulent energy model9 works reasonably well in axisymmetric

wakes. The basic equation can be written (in the notation of A.

Townsend 3)
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1 q 1 2 - 3/2 (-2 3/2
2 T 2 + 1i L S 2  - a /L + F (16)

where F is an additional term developed in this paper. The

kinematic-turbulent-viscosity coefficient VT and local shear are

given by

vT a- L 2r (17)

S= 'W) 2 (18)

For later discussion it is worthwhile to consider the production

term of equation (16) in more detail. Since

2 2
3- - 3 2 W (19)

3 R 2 2 aR

The production term can be written

2 22 2 2 -

al LS q = alL( 2 3 + 3 2 2 2 R L q (20)
R R R

In axisymmetric wakes, the mixing length L is assigned a uniform

value that is taken to be a constant fraction of the width of the

wake. However, Launder, et al., have developed an additional

equation from which the mixing length can be computed rather than

assigning its value (again in Townsend's notation)

Dt PR T + C q2S2 _ C2 /L (21)
E-8-
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and

L = a/2 (2) 3/2 (22)

Launder, et al.8 and Hanjalic and Launder 4 have shown that computation

of the mixing length in this manner leads to improvement of comparisons

with measurements in a variety of turbulent free shear flows as well

as boundary layers.

The foregoing turbulence model does not apply to turbulent

vortices because it does not account for suppression of turbulence

due to curvature of the mean flow that has been disclosed by more

advanced models such as that of Donaldson . This effect is illustrated

in figure 1, which represents a rotating flow in cross section. The

Rayleigh stability criterion indicates that if the product VR decreases

in the outward direction, the flow is unstable against disturbances

that would interchange fluid between inner and outer regions. Con-

versely, if the product VR increases in the outward direction, there

is a damping effect on turbulent eddies produced by the shearing motion.

This concept can be made quantitative by finding the energy per unit

mass of fluid required to interchange fluid between the inner and

outer annuli, while retaining an unchanged angular momentum of the

fluid transferred

12 1 2 1 V DVR 2
A2 2_Ad(VR) x - ~ -2 2 B L

R R
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The rate of transfer of fluid by an eddy of size L and velocity

q is approximated by

1 dm Z 2/
m dt L

These relations can be combined to obtain an additional term to be

included in the turbulent energy equation (18). The new turbulence

suppression term is

V V)
F = -2 2 R L C3  (23)

R q 3

This relation applies more generally to flows with curvature if R

is taken to be the local radius of curvature of streamlines. Present

information does not permit determination of a better value of the

magnitude of this term than that resulting from the above derivation

(C3 = 1.0).

It is interesting to note that the suppression term is of the

same form and same sign as a term arising from the shear that is

already present in Prandtl's energy equation, namely the last term

in eq. (20). One might wonder whether the curvature suppression

effect discussed above is already included in Prandtl's model. How-

ever, as can be seen in equation (18), the shear contribution to the

production of turbulence must always be positive because it consists

of a sum of squared quantities. It seems clear that Rayleigh in-

stability should enhance the growth of turbulence and an opposite

stabilizing condition of the mean flow should be capable of stopping \
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the growth entirely as in the suppression of turbulence due to

buoyancy forces (e.g., Townsendl ). We therefore conclude that the

term given in equation (23) should be included again even if it does

already appear in the production term due to a different mechanism

(shearing motion rather than curvature of the mean flow).

It may be possible to simulate the suppression of turbulence

by making the length L smaller so that the effect of turbulent

mixing is reduced and the rate of production due to shear decreased.

An improvement in the agreement of calculations with measurements in

curved boundary layers was achieved in this manner by Bradshawl6

In near-equilibrium situations it may be possible to relate that

method to the present one. However, the mechanism by which such an

effect would enter the dissipation equation (eq. (19)) is not clear

to the present authors, whereas the origin of the energy suppression

term (eq. (23)) seems relatively transparent.

As mentioned earlier, the turbulence model of Donaldson 7 con-

tains a curvature suppression effect that enters through the tensor

formalism used in the method of invariant modeling. Ultimately, such

an approach may be more satisfactory than that employed here. We

have been unable to relate our method to that of Donaldson and have

not been convinced that his treatment of the effect is yet in final

form. For the present, we prefer simple physical reasoning applied

to the special type of flow under consideration in which the origin

of the effect seems understandable.
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The nondimensional forms of the energy and dissipation equations

used in the finite-difference calculations are

3K 1 3K P 1 - 2
3z w -PR r 3r V3r J+ C yW s

(24)
S2 32/2 C v 3(vr)

S3 2 Dr
r jK

+C 1 BC P 1 ' ( 2- u + r - + C C Ks
3z w Dr PR r r r(r 30

4/3] (25)

- C E2  2/3

where

2
= 2 (26)
2W2

r

=- (27)

The dimensionless local shear s and length Z are given by

s = 2 + r 2 (28)

Or Dr r

3/2
S= (29)

The numerical values of the constants (taken from Launder et al. )

are given in the list of notation. The dimensionless turbulent
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viscosity coefficient is

VT
T = C V (30)

Computational Procedure

A machine code was developed for finite-difference solution of

the foregoing relations according to the explicit predictor-corrector

method of MacCormack.17 Equations (1), (2), (24), and (25) are stepped

forward in z to obtain values of pw, v, K, and 5. At each step

Eq. (3) is integrated by quadrature to obtain p. Equation (4) can

then be used to evaluate w. The derivative Dw/az\ is computed by

finite-difference and Eq. (5) integrated by quadrature to obtain u.

In the explicit method used to step forward in z all auxiliary

quantities are evaluated in terms of the independent and primary de-

pendent variables by means of the remaining formulas. One hundred

equally spaced mesh points are used for the radial coordinate r. The

step size of the axial coordinate z is dictated by the requirements

of numerical stability. Instabilities arising from the last term

in Eq. (1) are dominant according to an analysis based on the methods

of Lomax and Bailey.18 A workable stability criterion was found to

be

Az < 0.3(Ar)2
f(32)
max
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RESULTS

For isotropic shear flows the simplified turbulence model described

accounts for the major effects disclosed by more advanced models in

which the parameters are not yet established. It therefore applies

to turbulent vortices with small axial velocities and can be expected

to lead to realistic predictions of changes taking place in the far

flow field of wake vortices. We have made finite difference calcu-

lations based on this model in the quasicylindrical approximation.

Information on initial values of the axial and radial velocities

being unavailable, they have been set equal to zero. Thus calculations

in this report correspond to an isolated vortex extending from -- to

+~ through the transformation t = Z/W .

In the middle of figure 2 are shown computed circulation profiles

with free-stream velocity W , circulation at large radius F , and

wing chord c assigned values corresponding to the Cherokee flight

10
data of McCormick, Tangler, and Sherrieb 0 . The calculations were

started at z = 0 with an initial circulation profile corresponding

to that of a self-similar laminar vortex (Lamb vortex). As shown in

the profile at 34.5 chord lengths behind the wing, an overshoot

develops in the circulation and moves outward. In the inner regions

where the circulation rises steeply the curvature suppression results

in reduced mixing so that changes take place more slowly than in the

outer regions. The corresponding velocity profiles appear at the top

in figure 2.
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At the bottom of figure 2 a typical turbulent intensity profile

at a downstream station 34.5 chord lengths behind the wing is shown.

The solid curve represents the computed turbulent intensity and the

dashed curve indicates the equilibrium values that would be present

if the production and dissipation terms in the turbulent energy

equation (eq. (18)) were balanced to zero. The equilibrium values

are large at a radius of 40 inches because the gradient of circula-

tion is negative in that region as can be seen in the middle curves

of figure 2. This negative gradient leads to an enhancement rather

than suppression of turbulence as indicated by equations (18)1 and (23).

However, there is a lag of the actual turbulence below the equilibrium

values. The turbulence is weak inside the radius of maximum velocity

so that relatively slow changes in velocity occur there. The local

peak in turbulent intensity near the radius of maximum velocity can

be attributed to changes outside this radius which enhance the local

shear leading to production of turbulence.

Figure 3 contains profiles of the computed mixing length at

three axial stations. The calculation was started with a uniform

mixing length at z = 0. However, the values quickly change within

10 chord lengths and become highly nonuniform across the profile.

In the region of circulation overshoot where the turbulence is en-

hanced, the eddies become quite large. The eddy size quickly goes

to very small values inside the radius of maximum velocity where the

turbulent intensity is also small due to curvature suppression. In
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figure 4 are shown turbulent viscosity profiles. These results

indicate that there is considerable turbulent mixing in the outer

part of the vortex, but very little near the point of maximum

velocity.

Figure 5 contains estimates of the decay of maximum circumferen-

tial velocity according to several turbulence models. The circles

10
represent the flight data of McCormick et al. . The lower curve

indicates a typical result from previous investigations4'1 1 in which

the suppression of turbulence due to curvature of the flow is not

accounted for. In the middle curve, this effect was included but

the mixing length was taken to be a constant fraction of the radius

of maximum velocity. In that case the calculation indicates appre-

ciable encroachment of turbulence into the core by diffusion as in

Donaldson's calculation . However, if the variable mixing length

is accounted for by integration of equation (21), such diffusion is

inhibited by the very small mixing length that exists near the radius

of maximum velocity. The top curve is based on the complete model

with all large effects accounted for.

There are several possible explanations for the discrepancy

between the upper curve and the flight data represented by the

circles. Calculations based on different initial circulation pro-

files may lead to better agreement. Also it is known that the level

of ambient atmospheric turbulence affects the rate of decay. Rapid

decays occur in rough air possibly due to time dependent distortions
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of the circulation profiles introduced by the buffeting. In calm

air slow decays take place that would be in better agreement with

calculations not including such effects. The important point is

that the present simplified turbulence model predicts slow decays

in contrast to previous results that were in gross disagreement with

flight data. This model indicates that the level of turbulence

inside the radius of maximum velocity is much lower than previously

supposed. The initial roll up is more nearly inviscid than many of

us believed, particularly in the inner regions. Two basic mechanisms

are responsible for this. One is the suppression of turbulence due

to curvature of the flow (eq. (23)). The other is the variable

mixing length (fig. 3) which becomes small near the radius of maximum

velocity, thereby inhibiting the inward diffusion of turbulence.

These effects lead to small turbulent mixing in the inner regions of

the vortex such that the approach to self-similar solutions noted

in previous investigations 7 ,1 1 does not occur.
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Figure Titles

Fig. 1 Rotating flow in cross section.

Fig. 2 Profiles in wake vortex (W. = 132 ft/sec, r. = 112 ft2/sec,

c = 5.26 ft).

Fig. 3 Mixing length (W = 132 ft/sec, ro = 112 ft2/sec, c = 5.26 ft).

Fig. 4 Turbulent viscosity profiles (W. = 132 ft/sec, r. = 112 ft2/sec,

c = 5.26 ft).

Fig. 5 Decay of wake vortex (W = 132 ft/sec, rT = 112 ft2/sec,

c = 5.26 ft).
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