RATES AND MECHANISMS OF THE ATOMIC OXYGEN REACTION WITH NICKEL AT ELEVATED TEMPERATURES.

Jerry D. Christian and William P. Gilbreath

Ames Research Center
Moffett Field, Calif. 94035

August 1973
RATES AND MECHANISMS OF THE ATOMIC OXYGEN REACTION

WITH NICKEL AT ELEVATED TEMPERATURES

Jerry D. Christian* and William P. Gilbreath

Ames Research Center, NASA, Moffett Field, Calif., 94035

ABSTRACT

The oxidation of nickel by atomic oxygen at pressures from 1 to 45 Nm$^{-2}$ between 1050 and 1250°K has been investigated. In these ranges, the oxidation was found to follow the parabolic rate law, viz., $k_p = 1.14 \times 10^{-5} \exp(-13410/T) \text{ cm}^{-4} \text{ sec}^{-1}$ for films of greater than 1 μm thickness and was pressure independent. The activation enthalpy for the oxidation reaction was 112 ± 11 kJ mole$^{-1}$ $(27 \pm 3$ kcal mole$^{-1}$). Of a number of possible mechanisms and defect structures considered, it was shown that the most likely was a saturated surface defect model for atomic oxidation, based on reaction activation enthalpies, impurity effects, pressure independence, and magnitudes of the rates. A model judged somewhat less likely was one having doubly ionized cationic defects rate controlling in both atomic and molecular oxygen. From comparisons of the appropriate processes, the following enthalpy values were derived: ΔH° (Ni diffusion in NiO) = 110 ± 30 kJ mole$^{-1}$ and ΔH_f° (doubly ionized cation vacancies in NiO from atomic oxygen) = 79 ± 25 kJ mole$^{-1}$.

* NRC Senior Postdoctoral Resident Research Associate.
SYMBOLS

C, C', C'' collective constants
D diffusion coefficient
(d) doubly ionized vacancy
ΔG° standard free energy of formation
ΔH° standard enthalpy change for reaction
ΔH* enthalpy of activation
K equilibrium constant
k, k' rate constant
(n) non-ionized vacancy
P pressure
R gas constant
ΔS° standard entropy change for reaction
(s) singly ionized vacancy
(s → d) singly to doubly ionized vacancy reaction
T absolute temperature
t time
w weight
x thickness
y defect mole fraction
[] concentration
□ vacancy

Subscripts
a, c refer to reactions (a) and (c), respectively
diff vacancy diffusion
formation

Ni,0,0₂ refers to process or constant involving particular element

o initial state

p parabolic

σ conductance
The oxidation rates of nickel and the defect structure and transport properties of nickel oxide in molecular oxygen have been the subjects of numerous investigations. It is generally agreed that NiO is a p-type, metal-deficient, semiconductor and that the transport and growth properties of NiO on nickel are controlled by cationic diffusion of nickel through the NiO lattice in the presence of nickel ion vacancies created at the gas-oxide interface. At present, however, there is considerable controversy as to whether the cation vacancies in NiO are predominantly singly ionized or doubly ionized under ordinary conditions of pressure and in the temperature range of about 800 to 1700°K. Furthermore, experimental values of activation energies for the various kinetic and transport processes are not all in accord.

No systematic study has been performed on the effect of dissociated oxygen on the magnitude of the oxidation rate of nickel and on the activation energy for this process. Nickel is the base metal in many high-temperature alloys for which dissociated gas exposure may occur in service. We have therefore measured the rates of reaction of nickel with atomic oxygen and, by comparing the results with those for the molecular oxygen reaction, have developed a model for the mechanism of the process.

EXPERIMENTAL

The sample was suspended from an Ainsworth Type 14 recording semimicrobalance (10 μg sensitivity) in a vacuum system and the amount of oxidation per unit time was determined from the weight increase. A small bifilar wound furnace was placed around the sample inside the vacuum system and was, in turn, surrounded by a 5-cm-diameter quartz tube connected to the metal vacuum system by means of a quick disconnect O-ring fitting. Figure 1 is a photograph of the furnace. The core and outer radiation shield were fabricated from boron nitride. The grooved core was wrapped snugly with 0.38-mm (15 mil) diameter Pt-13% Rh wire at eight turns per centimeter (four turns per centimeter in each direction) and then coated with a ceramic adhesive to improve the thermal contact between the wire and the core. The total room temperature resistance of the windings was 6.7 Ω. The steady-state temperature (in vacuum) is plotted as a function of applied power in figure 2. At an inside furnace temperature of 1475°K, the winding temperature was 1550°K. The middle 1.5-cm section of the furnace was uniform to about 5° at 1175°K. (The sample length was 1.2-cm.)

*NRC Senior Postdoctoral Resident Research Associate.
The nickel samples were mechanically cleaned by abrasion with 500-grit silicon carbide polishing paper, wiped clean, and washed two cycles with water, carbon tetrachloride, and isopropyl alcohol. A specimen was vacuum annealed at the beginning temperature of a series of measurements. An initial oxidation was allowed to occur until the oxide skin exceeded 1000 nm (see Results). This ensured also that residual organic surface contaminants were no longer present. Subsequent oxidation rate measurements were made on a single sample at several different temperatures, usually with cooling between runs. As detailed in Table I, oxidation experiments were conducted on nickel specimens of two different purities. Spark source mass spectroscopic analysis was used to determine the impurity level in the less pure material while the vendor (Alfa Inorganics) supplied the analysis on the other. The effect of the various impurities on the results is considered in the Discussion.

Oxygen was flowed through the apparatus at a linear flow velocity in the range of 40 to 1500 cm sec⁻¹. A microwave cavity of foreshortened 1/4 wave coaxial electrical configuration with resonance frequency adjustment (similar to cavity 5 of Fehsenfeld et al.¹¹ but modified to accommodate a 5-cm-diameter tube) was placed around the quartz tube and positioned at the center of the furnace and sample. It was attached via a waveguide to a Raytheon PGM 2450 MHz microwave power supply (100 W maximum) which had been modified¹² to improve

<table>
<thead>
<tr>
<th>Element</th>
<th>Concentration (ppm)</th>
<th>Element</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>0.25</td>
<td>N</td>
<td>3</td>
</tr>
<tr>
<td>Al</td>
<td>0.5</td>
<td>Na</td>
<td>0.26</td>
</tr>
<tr>
<td>As</td>
<td>5.9</td>
<td>Nb</td>
<td>0.53</td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>O</td>
<td>18</td>
</tr>
<tr>
<td>C</td>
<td>(Not reported) 37</td>
<td>P</td>
<td><1</td>
</tr>
<tr>
<td>Ca</td>
<td>1.8</td>
<td>Pb</td>
<td>9.1</td>
</tr>
<tr>
<td>Cd</td>
<td><1</td>
<td>S</td>
<td>45</td>
</tr>
<tr>
<td>Cl</td>
<td>2.7</td>
<td>Sb</td>
<td>5.9</td>
</tr>
<tr>
<td>Co</td>
<td>1500</td>
<td>Si</td>
<td>650</td>
</tr>
<tr>
<td>Cr</td>
<td>290</td>
<td>Sn</td>
<td>1.1</td>
</tr>
<tr>
<td>Cu</td>
<td>3400</td>
<td>Ta</td>
<td>1.2</td>
</tr>
<tr>
<td>Fe</td>
<td>2500</td>
<td>Ti</td>
<td>360</td>
</tr>
<tr>
<td>Ga</td>
<td>1.7</td>
<td>Th</td>
<td><1</td>
</tr>
<tr>
<td>Ge</td>
<td>0.4</td>
<td>V</td>
<td>7</td>
</tr>
<tr>
<td>Hf</td>
<td>2</td>
<td>W</td>
<td>10</td>
</tr>
<tr>
<td>K</td>
<td>1.3</td>
<td>Zn</td>
<td>1.1</td>
</tr>
<tr>
<td>Mg</td>
<td>400</td>
<td>Zr</td>
<td>0.82</td>
</tr>
<tr>
<td>Mn</td>
<td>6500</td>
<td>Ni</td>
<td>98.4%</td>
</tr>
<tr>
<td>Mo</td>
<td>37</td>
<td></td>
<td>99.99%</td>
</tr>
</tbody>
</table>

*All elements not reported, <0.1 ppm.
***All elements not reported, <1 ppm.
its stability to 0.1%. With the microwave power supply on, a discharge was initiated in the flowing O₂ with a Tesla coil. A stable discharge, which partially dissociated the O₂, could be maintained in the total pressure range of 1 to 50 Nm⁻² (0.01 to 0.4 Torr).

The discharge, as well as the flowing gas, affected the balance readings slightly but, as we were interested only in changes of weight, the constant extraneous deflections cancelled out.

The furnace temperature was allowed to reach steady state with the sample suspended in vacuo and then O₂ flow was started and the discharge begun.

The temperature was measured by a calibrated Pt-10%Rh thermocouple placed near the sample. The thermocouple junction was covered with a boron nitride cap to protect it from the effects of recombining atomic oxygen. Its temperature readings were calibrated to those of the sample by comparing its readings with those of a 0.25-mm (10-mil) thermocouple imbedded in the sample in a series of temperature calibration experiments. The true temperature of the sample was obtained by turning off the microwave power supply and extrapolating the recorded temperature back to the instant of power turnoff. In this way, extraneous voltages resulting from the microwave field and discharge were eliminated. In some later experiments, 25-μm (1-mil) lead wires were attached to a 0.25-mm thermocouple imbedded in the sample and annealed. The sample temperature was measured, as described above, directly following the weight change measurements.

The partial pressure of O was determined by titrating with NO₂ at the end of an experiment according to the method of Kaufman.¹³-¹⁵ In this method, the fast reaction

$$\text{NO}_2 + \text{O} \rightarrow \text{NO} + \text{O}_2$$

is followed by the light-emitting slow reaction:

$$\text{NO} + \text{O} \rightarrow \text{NO}_2 + \text{hv}$$

which is used as an indicator for the first reaction. Accordingly, the light output reaches a maximum when the NO₂ flow rate is half that of the O flow rate and then falls symmetrically to zero at the endpoint at which the NO₂ flow equals the O flow.

The O₂ flow rate was determined by measuring, near atmospheric pressure, the pressure drop across a capillary with a differential manometer filled with H₂O. The manometer had been calibrated by observing the flow rate through a burette using soap bubbles at a known temperature and pressure. Gas pressure at the supply tank was regulated to just above ambient pressure by a sensitive, 5-psig, regulator (Matheson Model No. 70) and, following the flow-measuring apparatus, was reduced to the system pressure by means of a very fine needle valve.
Nitrogen dioxide flow rates were determined by observing the pressure, as a function of time, in a storage vessel of known volume (about 2 liters at an initial pressure of approximately \(1.5 \times 10^4 \text{ Nm}^{-2}\)) and the temperature as the gas was introduced to the system through a needle valve. Flow rates were corrected for the amount of association to \(\text{N}_2\text{O}_4\) calculated for the average pressure of a given flow rate measurement.

Light intensity measurements were made downstream from \(\text{NO}_2\) introduction with an RCA 1P21 photomultiplier equipped with a Corning CS3-72 light filter. This combination gave the best filtering of ambient light and good response to the emitted light. In practice, we found that the endpoint could be conveniently detected visually in a darkened room just as accurately as by plotting the photomultiplier output vs. flow rate.

The fraction of \(\text{O}_2\) dissociation determined by this method was multiplied by twice the \(\text{O}_2\) pressure, measured prior to turning on the discharge, to obtain the partial pressure of \(\text{O}_2\).

We obtained very large fractions of dissociation of \(\text{O}_2\), up to 50%. The flow rate was found to be the most important parameter in the control of percent dissociation of the \(\text{O}_2\). The effects of flow rate, pressure, microwave power, and temperature on the percent dissociation of \(\text{O}_2\) are shown in figures 3, 4, 5, and 6. The introduction of a metal sample had only a slight effect on the measured concentration of atomic oxygen. We could control the presence or absence of a "tail" in the discharge in the flowing gases below the furnace and its presence increased the amount of dissociation by a factor of 1.6.

The point of introduction of the \(\text{NO}_2\), whether made adjacent to the sample inside the furnace or above (downstream from) the discharge zone, had no effect on the measured atom concentrations at room temperature and 10 \(\text{Nm}^{-2}\) \(\text{O}\) (35% dissociation). However, at 1160\(^\circ\)K, the measured quantity outside the discharge zone was 25% smaller than inside the discharge zone under conditions of \(P_0 = 1 \text{ Nm}^{-2}\) (0.01 Torr) at 4% dissociation.

RESULTS

Past investigators\(^{17-24}\) of nickel oxidation have shown that a growth rate transition occurs at oxide thicknesses of 100 to 1000 nm. At greater thicknesses, the rate of growth of the oxide is generally found to be inversely proportional to its thickness, \(x\), that is,

\[
\frac{dx}{dt} = \frac{k'}{x}
\]

In integrated form, then,

\[
x^2 = x_o^2 + 2k't
\]
where \(w - w_0 \) is the total weight increase from \(t = 0 \). This parabolic rate law has been interpreted in terms of the concentration of nickel ion vacancies formed at the gas-oxide interface controlling the diffusion rate of cations from the metal-oxide interface to the gas-oxide surface.\(^{25-27}\) Our measurements in atomic oxygen were all done with oxide film thicknesses greater than 1000 nm, and the results were found to follow the parabolic rate law. Values of the parabolic rate constants for atomic oxygen were calculated from the total rate data by applying small corrections (<5%) for molecular oxygen contributions. An Arrhenius plot of the atomic oxygen parabolic rate constants for nickel is shown in figure 7 for the two materials examined. The data were obtained in partial pressures of atomic oxygen varying from 1 to 40 Nm\(^{-2}\) (0.01 to 0.3 Torr). The parabolic rate constants were independent of atomic oxygen partial pressure in this range (see Discussion). For comparison, the data of Douglass et al.\(^{28}\) for air reaction at ambient pressure with nickel, which may be taken as representative of molecular oxygen results, were extrapolated to 7 Nm\(^{-2}\) on the basis of a \(P_{O_2}^{1/6} \) dependence (as discussed later) and are also shown in the figure. The only prior work with the Ni-atomic oxygen system was by Dickens et al.,\(^{29}\) who measured the rates at two much lower temperatures and at much smaller reported partial pressures (1 mN m\(^{-2}\) compared to the present 10 Nm\(^{-2}\)).\(^{\text{a}}\) Their data are included in figure 7; the linear least-squares fit to our data for material, for which the most complete and precise results were obtained (\(\ln k_p = -11.38 - 13410/T; k_p \) in g\(^2\)cm\(^{-4}\)sec\(^{-1}\)) extrapolated to their temperatures shows good agreement between the two investigations.

A value of 27 kcal mole\(^{-1}\) is obtained from the slope of \(\log k_p \) vs. \(T^{-1} \) for atomic oxygen reaction with nickel.\(^{b}\) Based on the standard error of estimate, we estimate the error range to be ±3 kcal mole\(^{-1}\).

\(^{\text{a}}\)These authors estimated their partial pressures on the assumption that enhanced atom recombination at the higher temperatures of their experiments decreased the atom concentration by as much as a factor of 600 from the value they measured at room temperature. However, in our apparatus, we observed little effect of temperature on the percent dissociation of \(O_2 \). It is possible, therefore, that the partial pressures of Dickens et al. may be as high as 100 times their reported values. This is, however, difficult to assess accurately because we continuously created the atoms in the furnace zone while Dickens dissociated the oxygen upstream of their furnace and sample.

\(^{\text{b}}\)To facilitate comparisons of the present work with numerous previous studies, calories are used as the unit of heat and energy (1 calorie = 4.184 Joules).
DISCUSSION
Role of Vacancies in Nickel Oxidation

The parabolic corrosion rate of nickel in molecular oxygen is considered to be controlled by the diffusion rate of nickel ions through the NiO lattice, which, in turn, is proportional to the concentration gradient of the cation vacancies between the gas-oxide interface and the metal-oxide interface. Vacancies are created by a series of reactions which may be represented by the net equations:

\[\text{Ni}^{2+} + \frac{1}{2} \text{O}_2 = \text{O}^{2-} + \text{Ni}^{3+} + \text{Ni}^{\square^+} \] \hspace{1cm} (a)

\[\text{Ni}^{\square^+} + \text{Ni}^{2+} = \text{Ni}^{3+} + \text{Ni}^{\square} \] \hspace{1cm} (b)

\[2\text{Ni}^{2+} + \frac{1}{2} \text{O}_2 = 2\text{Ni}^{3+} + \text{Ni}^{\square} + \text{O}^{2-} \] \hspace{1cm} (c)

The charged species represent ions in the NiO lattice. Ni^{\square^+} and Ni^{\square} represent singly ionized and doubly ionized vacancies for Ni^{2+}. It has been established\(^3\)\(^0\)\(^3\)\(^1\) that non-ionized vacancies, Ni^{\square^{++}}, are not significant as defects. Because of the small dissociation pressure of NiO, the vacancy defect concentration formed at the metal-oxide interface is practically zero and thus the vacancy concentration gradient in the oxide lattice between the metal-oxide and oxide-gas interfaces can be taken as equal to the vacancy concentration at the gas-oxide surface.

By a variety of methods, investigators have attempted to determine whether reaction (a) or reaction (c) predominates under the conditions of their experiments. By applying the mass action law and noting that, for reaction (a), \([\text{Ni}^{3+}] = [\text{Ni}^{\square^+}]\) (when reaction (b) occurs insignificantly), or, for reaction (c), \([\text{Ni}^{3+}] = [2\text{Ni}^{\square}]\) (when doubly ionized vacancies predominate), one can show that, for conditions where an equilibrium concentration of vacancy defects exists, for predominately singly ionized vacancies,

\[[\text{Ni}^{\square^+}] = k_a^{1/2} p^{1/4} = p^{1/4} \cdot \frac{\text{O}_2}{\text{O}_2} \cdot \exp \left[\frac{-\Delta H_a^0}{2RT} + \frac{\Delta S_a^0}{2R} \right] \] \hspace{1cm} (1)

or, for the case of doubly ionized vacancies predominating,

\[[\text{Ni}^{\square}] = 4^{1/3} k_c^{1/3} p^{1/6} = 4^{1/3} p^{1/6} \cdot \frac{\text{O}_2}{\text{O}_2} \cdot \exp \left[\frac{-\Delta H_c^0}{3RT} + \frac{\Delta S_c^0}{3R} \right] \] \hspace{1cm} (2)

Mole fractions are used for concentrations and \([\text{Ni}^{2+}] = [\text{O}^{2-}] = 1\) when the defect concentrations are small. Note that reaction (a) should produce a \(P_{O_2}\) dependence for the equilibrium vacancy concentrations, while a \(P_{O_2}^{1/6}\) dependence is expected for predominately doubly ionized vacancies (reaction (c)).
Many investigations (e.g., refs. 1, 2, 4, 6-10), both experimental and theoretical, have been performed to detect or predict the relative amounts of the two types of cation vacancies in NiO — unfortunately, conclusions from these works can support the predominance of either type. In balance, however, one factor gives more credence to those proponents of the doubly ionized vacancies. Aliovalent impurities in nickel are predominately of valence greater than 2, which would tend to increase the pressure dependence of vacancy-related properties.\(^3\)\(^2\) And since, even in high purity nickel, the impurity concentration is of the same magnitude as the defect concentration,\(^8\),\(^3\)\(^2\) those higher pressure dependence results, i.e., \(p^{1/4}\), could arise from an impurity effect.

Reaction Enthalpies in Nickel Oxidation

In the following discussion, with the aid of the results from the present investigation in atomic oxygen, a detailed examination will be made of the various types of cation vacancies which can be present in NiO and control the oxidation behavior.

If the rate of reaction of Ni with \(O_2\) is proportional to the diffusion rate of nickel ions in the oxide layer, which in turn is proportional to the cationic vacancy concentration formed at the gas/oxide interface, then

\[
\text{Rate } O_2 = C'[\text{Ni}\square] \cdot D_{\text{Ni}} = C'[\text{Ni}\square]D_0 \exp(-\Delta H^*_{\text{diff}}/RT)
\]

for doubly ionized vacancies. If the vacancy defect concentration is the equilibrium value at all temperatures of measurement, then substituting equation (2) for \([\text{Ni}\square]\):

\[
\text{Rate } O_2 = C''C D_0 P^{1/6} \exp\left(\frac{1/3\Delta H^0(d) + \Delta H^*_{\text{diff}}}{RT}\right)
\]

\(D_{\text{Ni}}\) is the diffusion coefficient of nickel ion vacancies through NiO (or of Ni vacancies, an equivalent process); \(C''\), \(D_0\) and \(C\) are constants; \(\Delta H^*_{\text{diff}}\) is the net activation enthalpy for Ni diffusing via vacancies in NiO; and \(\Delta H^0(d) = \Delta H^0_s\) is the thermodynamic standard enthalpy of formation of doubly ionized vacancies from \(O_2\), i.e., the standard enthalpy change for reaction (c). (\(d\) and \(s\) are used following \(\Delta H^0\) to indicate doubly and singly ionized vacancies, respectively.)

Furthermore,

\[
\text{Rate } O_2 = C' \cdot \exp\left(\frac{-\Delta H^*_{O_2}}{RT}\right)
\]

where \(\Delta H^*_{O_2}\) is the measured activation enthalpy for reaction of Ni with \(O_2\). Thus,
\[\Delta H^*_{O_2} = \Delta H^*_{\text{diff}} + 1/3 \Delta H_f^0 (d) \] (3)

Similarly, if one assumes that singly ionized vacancies are instead the important defects, the following expression can be derived:

\[\Delta H^* \equiv \Delta H^*_{\text{diff}} + 1/2 \Delta H_f^0 (s) \] (4)

As developed below, \(\Delta H^*_{\text{diff}} \) may be calculated from experimental values for the other terms in equations (3) and (4).

\(\Delta H_f^0 (y) \) has been determined by several means as tabulated in Table II. As shown, \(\Delta H_f^0 (y) \) calculated from diffusion data, using the equation given by Mitoff, is considerably lower (and, in one case, negative) than the other values.

TABLE II.— ENTHALPY OF VACANCY FORMATION IN NiO

<table>
<thead>
<tr>
<th>(\Delta H_f^0 (y)), kcal mole(^{-1})</th>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.8</td>
<td>Gravimetric</td>
<td>32</td>
</tr>
<tr>
<td>24 ±8</td>
<td>Gravimetric</td>
<td>8</td>
</tr>
<tr>
<td>17.8 ±3</td>
<td>Electrical conductivity</td>
<td>8</td>
</tr>
<tr>
<td>11.4*</td>
<td>Diffusion</td>
<td>8 from 33, 34</td>
</tr>
<tr>
<td>5.4*</td>
<td>Diffusion</td>
<td>calc. from 35</td>
</tr>
<tr>
<td>-6.4*</td>
<td>Diffusion</td>
<td>calc. from 36</td>
</tr>
<tr>
<td>19.1 ±0.7</td>
<td>Electrical conductivity</td>
<td>10</td>
</tr>
<tr>
<td>19</td>
<td>Electrical conductivity</td>
<td>37</td>
</tr>
<tr>
<td>19.5 ±2</td>
<td>Weighted mean (neglecting * values)</td>
<td></td>
</tr>
</tbody>
</table>

The mean (19.5 ±2 kcal mole\(^{-1} \), which neglects the diffusion results and is weighted according to the precision of the others) is apparently well representative of \(\Delta H_f^0 (y) \). This is also consistent with the observations of Koel and Gellings\(^ {30} \) who report a value of 20 kcal mole\(^{-1} \) for 1/2 \(\Delta H_f^0 (s) \) and 21.7 kcal mole\(^{-1} \) for 1/3 \(\Delta H_f^0 (d) \). (If the vacancies are doubly ionized, then 1/3 \(\Delta H_f^0 (d) = \Delta H_f^0 (y) \) and, if they are singly ionized, 1/2 \(\Delta H_f^0 (s) = \Delta H_f^0 (y) \).)

Reported values for the activation enthalpy for nickel oxidation by molecular oxygen, \(\Delta H_{O_2}^* \), range\(^ {4,19,28,38-45} \) from 38 to 68 kcal mole\(^{-1} \). An average of all results is 46 ±6 kcal mole\(^{-1} \).

By substituting the values \(\Delta H_{O_2}^* = 46 ±6 \) kcal mole\(^{-1} \) and 1/3 \(\Delta H_f^0 (d) = (19.5 ±2) \) kcal mole\(^{-1} \) or 1/2 \(\Delta H_f^0 (s) = (19.5 ±2) \) kcal mole\(^{-1} \) into equation (3) or (4), respectively, one obtains a calculated value\(^ {c} \) of \(\Delta H^*_{\text{diff}} \) of (26.5 ±7) kcal mole\(^{-1} \). This value is used in later calculations.

\(^{c}\)Recently, Koel and Gellings\(^ {30} \) reported an experimentally determined value of 24.6 kcal mole\(^{-1} \) for this quantity. In view of the close agreement with the calculated value, the error ranges given for \(\Delta H^*_{\text{diff}} \) and \(\Delta H_{O_2}^* \) are probably overestimated.
Development of Vacancy Models

We now consider the theoretical relationships between O_2 activation enthalpies and O activation enthalpies for reaction with nickel for the various possible combinations of equilibrium vacancy situations where only one type of vacancy exists in each environment. These are (1) singly ionized vacancies in both cases, (2) doubly ionized vacancies in both cases, (3) doubly ionized vacancies in O_2 and singly ionized vacancies in O, (4) singly ionized vacancies in O_2 and doubly ionized vacancies in O, (5) doubly ionized vacancies in O_2 and non-ionized vacancies in O, and (6) singly ionized vacancies in O_2 and non-ionized vacancies in O. Non-ionized vacancies in O_2 have been demonstrated30 not to be important. This is also demonstrated by the fact that electrical conductivity measurements have shown NiO in O_2 to be a p-type conductor in which positive holes (Ni$^{3+}$) are formed which requires formation of ionized vacancies.8 A seventh situation is possible in O - the vacancy concentrations (for any degree of ionization) are constant at the same value for all pressures and temperatures investigated.

Equations are tabulated below with the respective ΔH^0 symbols and relationships following each for the six different equilibrium cases. O_2 or O have been added to the symbols for $\Delta H_f^0(d)$ and $\Delta H_f^0(s)$ to distinguish between formation from O_2 or O, respectively; n following ΔH^0 denotes non-ionized vacancies.

Case (1) (O_2 single, O single):

$$\text{Ni}^{2+} + \frac{1}{2} O_2 = O^{2-} + \text{Ni}^{3+} + \text{Ni}^\square + \frac{\Delta H_f^0(s, O_2)}{0 = \frac{1}{2} O_2}$$

$$\text{Ni}^{2+} + O = O^{2-} + \text{Ni}^{3+} + \text{Ni}^\square + \frac{\Delta H_f^0(s, O)}{\Delta H_f^0(s) = \Delta H_f^0(s, O_2) - \Delta H_f^0(O)}$$

Case (2) (O_2 double, O double):

$$2\text{Ni}^{2+} + \frac{1}{2} O_2 = O^{2-} + 2\text{Ni}^{3+} + \text{Ni}^\square + \frac{\Delta H_f^0(d, O_2)}{0 = \frac{1}{2} O_2}$$

$$2\text{Ni}^{2+} + O = O^{2-} + 2\text{Ni}^{3+} + \text{Ni}^\square + \frac{\Delta H_f^0(d, O)}{\Delta H_f^0(d) = \Delta H_f^0(d, O_2) - \Delta H_f^0(O)}$$

Case (3) (O_2 double, O single):

$$2\text{Ni}^{2+} + \frac{1}{2} O_2 = O^{2-} + 2\text{Ni}^{3+} + \text{Ni}^\square + \frac{\Delta H_f^0(d, O_2)}{\text{Ni}^{3+} + \text{Ni}^\square = \text{Ni}^{2+} + \text{Ni}^\square}$$

$$0 = \frac{1}{2} O_2$$

$$\frac{\Delta H_f^0(d, O_2)}{\Delta H_f^0(s) = \Delta H_f^0(d, O_2) - \Delta H_f^0(s + d) - \Delta H_f^0(O)}$$
Case (4) (O₂ single, O double):

\[
\begin{align*}
\text{Ni}^{2+} + \frac{1}{2} \text{O}_2 &= \text{O}^{2-} + \text{Ni}^{3+} + \text{Ni}\square^+ \\
\text{Ni}^{2+} + \text{Ni}\square^+ &= \text{Ni}^{3+} + \text{Ni}\square \\
0 &= \frac{1}{2} \text{O}_2
\end{align*}
\]

\[
2\text{Ni}^{2+} + 0 = \text{O}^{2-} + 2\text{Ni}^{3+} + \text{Ni}\square
\]

\[
\Delta H^0_f(s,0_2) = \Delta H^0_f(s + d)
\]

\[
\Delta H^0_f(0) = -\Delta H^0_f(0)
\]

\[
\Delta H^0_f(d,0) = \Delta H^0_f(s,0_2) + \Delta H^0_f(s + d) - \Delta H^0_f(0)
\]

Case (5) (O₂ double, O non-ionized):

\[
\begin{align*}
2\text{Ni}^{2+} + \frac{1}{2} \text{O}_2 &= \text{O}^{2-} + 2\text{Ni}^{3+} + \text{Ni}\square \\
\text{Ni}^{3+} + \text{Ni}\square &= \text{Ni}^{2+} + \text{Ni}\square^+ \\
\text{Ni}^{3+} + \text{Ni}\square^+ &= \text{Ni}^{2+} + \text{Ni}\square^{++} \\
0 &= \frac{1}{2} \text{O}_2
\end{align*}
\]

\[
0 = \text{O}^{2-} + \text{Ni}\square^{++}
\]

\[
\Delta H^0_f(d,0) = \Delta H^0_f(d,0_2) - \Delta H^0_f(s + d) - \Delta H^0_f(n + s) - \Delta H^0_f(0)
\]

Case (6) (O₂ single, O non-ionized):

\[
\begin{align*}
\text{Ni}^{2+} + \frac{1}{2} \text{O}_2 &= \text{O}^{2-} + \text{Ni}^{3+} + \text{Ni}\square^+ \\
\text{Ni}^{3+} + \text{Ni}\square^+ &= \text{Ni}^{2+} + \text{Ni}\square^{++} \\
0 &= \frac{1}{2} \text{O}_2
\end{align*}
\]

\[
0 = \text{O}^{2-} + \text{Ni}\square^{++}
\]

\[
\Delta H^0_f(n,0) = \Delta H^0_f(s,0_2) + \Delta H^0_f(n + s) - \Delta H^0_f(n + s)
\]

Now, by methods similar to those used in deriving equation (3), one can show for reaction with atomic oxygen, considering the formation of doubly, singly, and non-ionized vacancies, respectively,

\[
\begin{align*}
\Delta H^*_o &= \Delta H^*_{\text{diff}} + \frac{1}{3} \Delta H^0_f(d,0) \\
\Delta H^*_o &= \Delta H^*_{\text{diff}} + \frac{1}{2} \Delta H^0_f(s,0) \\
\Delta H^*_o &= \Delta H^*_{\text{diff}} + \Delta H^0_f(n,0)
\end{align*}
\]

For the nonequilibrium situation of fixed vacancy concentration case (7), when the temperature is changed, the observed variation in oxidation rate would not reflect a change in vacancy concentrations but would be due only to
a change in diffusion rate resulting from the temperature effect of the Ni diffusion coefficient. Then,

\[\Delta H^*_{O} = \Delta H^*_{\text{diff}} \]

By substituting the appropriate expressions above for \(H_f^0(d,0) \), \(H_f^0(s,0) \), and \(H_f^0(n,0) \) into equations (5), (6), and (7), one then obtains the final expressions for the calculated activation enthalpies for atomic oxygen reaction with Ni for the various possible equilibrium situations:

Case (1):

\[\Delta H^*_{O} = \Delta H^*_{\text{diff}} + \frac{1}{2} \Delta H_f^0(s,O_2) - \frac{1}{2} \Delta H_f^0(0) \]

Case (2):

\[\Delta H^*_{O} = \Delta H^*_{\text{diff}} + \frac{1}{3} \Delta H_f^0(d,O_2) - \frac{1}{3} \Delta H_f^0(0) \]

Case (3):

\[\Delta H^*_{O} = \Delta H^*_{\text{diff}} + \frac{1}{2} \Delta H_f^0(d,O_2) - \frac{1}{2} \Delta H_f^0(s + d) - \frac{1}{2} \Delta H_f^0(0) \]

Case (4):

\[\Delta H^*_{O} = \Delta H^*_{\text{diff}} + \frac{1}{3} \Delta H_f^0(s,O_2) + \frac{1}{3} \Delta H_f^0(s + d) - \frac{1}{3} \Delta H_f^0(0) \]

Case (5):

\[\Delta H^*_{O} = \Delta H^*_{\text{diff}} + \Delta H_f^0(d,O_2) - \Delta H_f^0(s + d) - \Delta H_f^0(n \rightarrow s) - \Delta H_f^0(0) \]

Case (6):

\[\Delta H^*_{O} = \Delta H^*_{\text{diff}} + \Delta H_f^0(s,O_2) - \Delta H_f^0(n \rightarrow s) - \Delta H_f^0(0) \]

And, by equation (8), for the nonequilibrium situation:

Case (7):

\[\Delta H^*_{O} = \Delta H^*_{\text{diff}} \]

Examination of Vacancy Models

To determine which of the possible cases are consistent with the experimental data and which may be ruled out, the following enthalpies are used:

\[\Delta H^*_{\text{diff}} = (26.5 \pm 8) \text{ kcal mole}^{-1} \]

\[\Delta H_f^0(d,O_2) = (58.5 \pm 6) \text{ kcal mole}^{-1} \]

\[\Delta H_f^0(s,O_2) = (39 \pm 4) \text{ kcal mole}^{-1} \]
\[\Delta H_1^\circ(O) = 60.6 \text{ kcal mole}^{-1} \]

The first three enthalpies were calculated above, while \(\Delta H_1^\circ(O) \) is from the JANAF Thermochemical Tables.\(^4\) \(\Delta H^\circ(s \rightarrow d) = 25 \text{ kcal mole}^{-1} \) (Koel and Gellings\(^3\)). Bauer et al.\(^3\) estimated that \(\Delta H^\circ(n \rightarrow s) = 1/4 \Delta H^\circ(s \rightarrow d) \), so \(\Delta H^\circ(n \rightarrow s) = 6.1 \text{ kcal mole}^{-1} \).

Our observed value for \(\Delta H_0^\circ \) is 27 kcal mole\(^{-1}\). The calculated values for the various cases are summarized in table III.

<table>
<thead>
<tr>
<th>Case</th>
<th>Vacancy types</th>
<th>(\Delta H^\circ_0) (calc.), kcal mole(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s</td>
<td>15.7 ±6</td>
</tr>
<tr>
<td>2</td>
<td>d</td>
<td>25.8 ±6</td>
</tr>
<tr>
<td>3</td>
<td>d</td>
<td>13.0 ±7</td>
</tr>
<tr>
<td>4</td>
<td>s</td>
<td>27.6 ±5</td>
</tr>
<tr>
<td>5</td>
<td>d</td>
<td>-6.5 ±11</td>
</tr>
<tr>
<td>6</td>
<td>s</td>
<td>-1.2 ±8.5</td>
</tr>
<tr>
<td>7</td>
<td>fixed</td>
<td>26.5 ±8</td>
</tr>
</tbody>
</table>

\(d, s, \) and \(n \) refer to doubly-ionized, singly-ionized, and non-ionized vacancies, respectively.

The error analysis of equilibrium cases 1 and 2 is made by noting that the first two terms on the right-hand side of the enthalpy equation is, for each case, \(\Delta H_0^\circ = (46 ±6) \text{ kcal mole}^{-1} \). For the other equilibrium reactions, the error, ±6 kcal mole\(^{-1}\), is multiplied by the ratio of the sums of the values of the first two terms on the right-hand side of each enthalpy equation to 46. While this may not be strictly correct, it is considered a better estimate of error range than strictly adding individual uncertainties since the values are not independent.

By comparison of the calculated values of \(\Delta H_0^\circ \) (table III) with the observed value (27 kcal mole\(^{-1}\)), we can immediately rule out the existence of cases 1, 3, 5, and 6. One cannot distinguish, by this analysis, between cases 2, 4, and 7, which are all nearly equal in value.

Saturated Defect Model

Strong support for case 7 is provided by three experimental results from the present study, discussed below: (1) the magnitude of the \(O \) reaction rates relative to \(O_2 \) rates, (2) the pressure dependence of the reaction rate, and (3) the effect of impurities on the reaction rate.

Comparative reaction rates in \(O \) and \(O_2 \)— For atomic oxygen, one may derive (in a fashion similar to that used for eqs. (1) and (2) for vacancy concentrations in \(O_2 \)), for the formation of doubly ionized vacancies,

\[[\text{Ni} \square]_0 = 4^{-1/3} \frac{\text{p}_{1/3}^1}{\text{p}_{0}^1} \exp[-\Delta G_1^\circ(d,0)/3RT] \] (8)
Combining equation (8) with (2) and, noting that $\Delta G^0_c = \Delta G^0_f(d,O_2)$, and that the rate is equal to the same constant times the vacancy concentration for O_2 or for O, one may write, for case 2,

$$\frac{\text{Rate } O}{\text{Rate } O_2} = \frac{[\text{Ni}^{\square}]_0}{[\text{Ni}^\square]_0} = \frac{p^{1/3} O}{p^{1/6} O_2} \exp[\Delta G^0_f(O)/3RT]$$

(9)

where $\Delta G^0_f(O)$, the standard free energy of formation of atomic oxygen, is $\Delta G^0_f(d,O_2) - \Delta G^0_f(d,O)$. This expression was originally derived by Dickens et al.29 and allows one to calculate a theoretical ratio of rates.

For case 4, we derive the expression:

$$\frac{\text{Rate } O}{\text{Rate } O_2} = \frac{[\text{Ni}^{\square}]_0}{[\text{Ni}^\square]_0} = \frac{4^{-1/3} p^{1/3} O}{p^{1/4} O_2} \exp \left[\frac{1}{2} \frac{\Delta G^0_f(s,O_2) - \frac{1}{3} \Delta G^0_f(d,O)}{RT} \right]$$

(10)

The exponential term in this case can only be estimated. Gulbranson and Andrew19 have calculated a value for $\Delta S^0_f(d,O_2)$ of -7.5 cal deg$^{-1}$ mole$^{-1}$. By adding ΔS^0 for the process $O(g) + 1/2 O_2(g)$, -15.66 cal deg$^{-1}$ mole$^{-1}$, we obtain a value for $\Delta S^0_f(d,O)$ of -23.2 cal deg$^{-1}$ mole$^{-1}$. For the formation of a singly ionized cation vacancy, the calculations of Gulbranson and Andrew19 may be used to yield a value of $\Delta S^0_f(s,O_2)$ = -7.3 cal deg$^{-1}$ mole$^{-1}$. From the earlier derived values for $\Delta H^0_f(s,O_2)$ (39 ±4 kcal mole$^{-1}$) and for $\Delta H^0_f(d,O)$ (-2.1 ±6 kcal mole$^{-1}$), we may then write

$$\Delta G^0_f(s,O_2) = (39,000 ±4,000) + 7.3 T, \text{ cal mole}^{-1}$$

(11)

and

$$\Delta G^0_f(d,O) = (-2,100 ±6,000) + 23.2 T, \text{ cal mole}^{-1}$$

(12)

Note that when equations (11) and (12) are combined for use in equation (10), the errors in $\Delta H^0_f(s,O_2)$ and $\Delta H^0_f(d,O)$ are not additive and, in fact, nearly subtract out since they were derived from the same source. A maximum combined error is estimated to be ±1 kcal mole$^{-1}$. The entropy errors, likewise, nearly cancel. The estimated individual entropy errors are ±0.5 cal deg$^{-1}$ mole$^{-1}$ and the combined errors less than ±0.1 cal deg$^{-1}$ mole$^{-1}$. This is equivalent to 0.1 kcal mole$^{-1}$ error in G^0 at 1100 K and so is neglected relative to the ΔH^0 errors in the calculations.

A comparison of the theoretical ratio of oxidation rates in atomic and molecular oxygen with that observed is given in table IV for the two possible equilibrium cases, 2 and 4. These ratios were determined for the temperature extremes used in the present experiment. For observed rates in molecular oxygen, the data of Douglass et al.28 were averaged with the high
TABLE IV.—THEORETICAL AND OBSERVED RATIO OF RATES

<table>
<thead>
<tr>
<th>T, °K</th>
<th>Rate O</th>
<th>Theoretical ratio</th>
<th>Observed</th>
<th>Theoretical ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Case 2</td>
<td>Case 4*</td>
<td></td>
<td>Case 2</td>
</tr>
<tr>
<td>1050</td>
<td>67</td>
<td>130 ±80</td>
<td>30</td>
<td>2.24</td>
</tr>
<tr>
<td>1250</td>
<td>14.4</td>
<td>27.6 ±13.7</td>
<td>6.25</td>
<td>2.30</td>
</tr>
</tbody>
</table>

*The ranges are those resulting from the estimated ±1 kcal mole⁻¹ uncertainty in the combined free energies of equation (10).

The evidence considered thus far, viz, theoretical activation enthalpies and rates in atomic oxygen, compared with observed values, within the qualifications given in the preceding paragraph, indicates that, while the oxidation of nickel apparently occurs under the influence of near equilibrium concentrations of cation vacancies in O₂, the controlling concentration of vacancies in the presence of atomic oxygen is less (by a factor of 2 or more than the expected equilibrium concentration). Accepting this observation, we hypothesize that the atomic oxygen, at the pressure and temperature conditions of our experiments, with its high thermodynamic potential, causes a saturation of the surface with vacancy defects (i.e., all defect sites are filled) before an
equilibrium concentration can be attained. This model is consistent with the suggestion that the vacancy concentration is constant in our experiments (case 7).

Pressure dependence— In support of the proposed saturated defect model, we observed no dependence of the oxidation rate of nickel on the partial pressure of atomic oxygen under the following inclusive test conditions. First, all the material 1 specimen points in figure 7, which were obtained at partial pressures of atomic oxygen varying from 10 to 16 Nm\(^{-2}\), were extrapolated to a common temperature using the experimentally determined activation enthalpy and the resultant \(k_p\) values plotted as a function of \(P_O\) (see fig. 8). There was completely random variation of the points in this plot about an average horizontal line which indicated an average error of ±15% and a maximum random error of 29%. These data were obtained for the Ni sample of low purity. Similarly, a study was performed on the high purity Ni, material 2, in which the partial pressure of atomic oxygen varied between 1 and 45 Nm\(^{-2}\) (thus, \(P_O^{1/3}\) varied by a factor of 3.6) and again the variation of the temperature normalized \(k_p\)'s fell within experimental error (in this case ±20% maximum). And, lastly, if one includes the results of Dickens et al.,\(^{29}\) which coincide with our extrapolated values (fig. 7), at their reported pressure of \(10^{-3}\) Nm\(^{-2}\) (or if the correction of footnote a is valid, \(10^{-1}\) Nm\(^{-2}\)), the oxidation rate is apparently independent of \(P_O\) over a range of \(10^4\) (or 160 if \(P\) is \(10^{-1}\) Nm\(^{-2}\)). If case 2 or 4 were in effect, a \(P^{1/3}\) dependence should have been observed (eq. (8)). (For reference, a \(P^{1/3}\) relationship is indicated on the plot.)

Impurity effect in O and O2— Perhaps the strongest evidence for the saturated defect model (i.e., case 7 comes from observations regarding the influence of aliovalent impurities on the oxidation rate in atomic oxygen. Just as changes in pressure would be expected to shift the concentration of vacancies at the gas-oxide interface for an equilibrium case, via Le Chatelier's principle, an equilibrium concentration of vacancies should be changed by the introduction of impurities of valence different from 2 (see, e.g., Kofstad\(^{50}\)). Metal

\(^{d}\) A comment is required at this point regarding the near constancy with temperature of the theoretical ratio/observed ratio (T/O) for cases 2 and 4 in table II. One might interpret this as indicating that case 2 or 4 is the correct model and that the magnitude at T/O (which should then be unity) is within the range of experimental errors in measuring absolute rates. That is, a constant value of T/O would not normally be expected if the vacancy concentrations were saturated and fixed in atomic oxygen while they varied with temperature in O\(_2\). However, because \(\Delta H_f^O(d,O)\) is practically zero (-2.1 ±6 kcal mole\(^{-1}\)), these two equilibrium models for O would also predict a concentration of vacancies in atomic oxygen which remained nearly constant with temperature changes. (A calculation of \(\Delta H_f^O(d,O)\) from the T/O ratios for case 2 at the two temperatures yields a value of 1.2 kcal mole\(^{-1}\). Thus, either an equilibrium model with doubly ionized vacancies in atomic oxygen (case 2 or 4) or the saturated defect model is consistent with the observed constancy of T/O.
impurities with valences greater than 2 would be expected to increase the equilibrium concentration of cationic vacancies. As observed by Phillips, in his review of nickel oxidation data, the oxidation rate in O₂ of pure nickel was about 10% that of less pure nickel. Horn also found that small amounts of impurities increased the oxidation rate in O₂ significantly. Apparently, the impurity metals are oxidized rapidly and, in the ionized state, can diffuse to the NiO gas surface to affect the Ni vacancy concentrations.

Most of the present data were obtained with a Ni sample (material 1), which had been represented as being of high purity. Analysis (table I) showed it to contain significant amounts of Mn, Cu, Fe, and Co. Specifically observed that small amounts of Mn and Cu in Ni increased its reaction rate with O₂; and Fe (as well as Mn) have been particularly observed to generally increase the rate. Cobalt appears to have a smaller effect on the rate.

In view of the very large concentrations of foreign metals in material 1, one would predict that the oxidation rate of this material in atomic oxygen should be perhaps a factor of 10 or more higher than that of a very pure sample if equilibrium vacancy concentrations were predominant in controlling the diffusion rate of Ni through NiO. A few measurements were made on a high purity sample (< 20 ppm metal impurities, material 2, table I. These parabolic rate constants are shown in figure 7 from which it is seen that the pure sample actually exhibits a slightly higher rate of oxidation by dissociated oxygen (approximately 2.5 times faster than the 98.4% sample). This provides additional evidence that an equilibrium mechanism is inoperative. If the available defect sites of NiO were all occupied in the pure sample, then the addition of impurities, which would have the normal tendency to increase their concentration, would be ineffective in doing so. The observations regarding the impurity effects may thus be taken as strongly supporting a saturated defect model.

Vacancy Calculations for Saturated Defect Model

In molecular oxygen at 0.2 atm and at the two temperature limits of the present experiments (1050° and 1250°K), the equilibrium concentrations of cationic vacancies in NiO is of the order of 10⁻⁵ and 5×10⁻⁵ mole fraction, respectively. Since the oxidation rate (at a given temperature) is proportional to the number of vacancies (as shown above), the vacancy concentration during the reaction of nickel with atomic oxygen may be estimated. Using the mean oxidation rates found (fig. 7) for both materials purities in atomic oxygen and the mean rate (as calculated earlier) for pure nickel oxidation by molecular oxygen, a vacancy concentration, during oxidation under conditions of the present experiments, of about 5×10⁻⁴ mole fraction is calculated for both temperatures. (The constant value was expected for either of the allowed cases, case 7 by definition and case 2 and also case 4 by virtue of the fact that ΔH_f(d,0) ~ 0.)

Again, using the defect concentration equations of Mitoff and of Tripp and Tallen, the temperature at which the NiO defect concentration reaches
5×10⁻⁴ in molecular oxygen at P₀₂ = 2×10⁴ Nm⁻² (0.2 atm - the "normal pressure for oxidation experiments) is calculated to be about 1775°K. At 10⁵ Nm⁻², it would be approximately 1700°K. These are the temperatures, at the respective O₂ partial pressures, above which one would expect the vacancy sites to become saturated if, in fact, the saturated defect model (i.e., case 7) is correct for the environment of the present studies. Or, conversely, at 1700°K, the vacancy concentration and thus the oxidation rate should become constant at pressures greater than 10⁵ Nm⁻².

Bauer et al. measured oxidation rates of Ni in O₂ at pressures up to 2 MNm⁻² between 1275°K and 1475°K. At the higher pressures, above about 5×10⁵ Nm⁻², their observed rates are apparently constant at all temperatures. Further, it appears that the pressure at which the rate becomes constant may be smaller as the temperature increases. The "break" in their 1475°K data is at approximately 5×10⁵ Nm⁻². At that temperature and pressure, the vacancy concentration is calculated to be 5×10⁻⁴. This is in excellent agreement with the value obtained in the present study, particularly in view of the simplifying assumptions and, more spectacularly, the experimental uncertainties.

One would expect, however, that the high-pressure results of Bauer et al. for O₂ should yield an observed activation enthalpy identical to that observed in the present study, i.e., it should reflect only the vacancy diffusion activation enthalpy. Bauer in fact, did, not observe such a decrease in the activation enthalpy in the high-pressure range. This is not consistent with their observed pressure independence and their model. Note that their statement regarding the closeness of their observed activation enthalpy (50.5 kcal) to that for diffusion of Ni in NiO must be modified to recognize that the measured activation enthalpy for Ni diffusion also includes the term for vacancy formations. Thus, their conclusion regarding the smallness of the enthalpy of vacancy formation is incorrect and they should not have ignored the fact that their Arrhenius slopes were the same in both the low- and high-pressure regions.

Realistically, it is possible to consider that their data do not reflect a clear independence of pressure in the higher range (fig. 2 of Bauer et al.). If this is accepted, the minimum saturation vacancy concentration would have to be greater than that calculated in O₂ at 1475°K and 2MNm⁻², or 3.8×10⁻⁴. This value is still consistent with that observed in atomic oxygen.

CONCLUDING REMARKS

By considering the results of past nickel oxidation (and related) studies in molecular oxygen with the present results in atomic oxygen in terms of all possible NiO defect structure combinations in the two environments, the following equilibrium vacancy situations (designated as in Discussion) have been definitively ruled out: (1) singly ionized vacancies forming at equilibrium in O₂ at ordinary pressures and in O in the pressure range of our experiments, (3) doubly ionized vacancies in O₂ and singly ionized vacancies in O, (4) vacancies singly ionized in O₂ and doubly ionized in O, (5) doubly ionized vacancies in O₂ and neutral (non-ionized vacancies in O, and (6) singly ionized
vacancies in O_2 with non-ionized vacancies in O. Except for case 4, these were eliminated on the basis of observed activation enthalpies of reaction compared with theoretical. The third situation appeared not too probable since the observed oxidation rate in atomic oxygen was much smaller (outside of experimental and calculated uncertainties) than the theoretical rate. Additionally, all the evidence cited below, in favor of the saturated defect case, is unfavorable toward this fourth situation, as well as the other two equilibrium cases above.

On the basis of present evidence, two situations are possible: (i) doubly ionized vacancies formed in the presence of O_2 and also in the environment of dissociated oxygen, both at equilibrium concentrations near the surface, and (ii) a saturated and constant concentration of vacancies (of any degree of ionization) formed in the presence of atomic oxygen, irrespective of the situation for O_2. These are both definitely possible on the basis of the observed activation enthalpy of reaction of Ni with O. Observed rates in O and in O_2 and, thus, calculated defect concentrations, provide information that can be interpreted in terms of either model. But the apparent pressure independence of Ni reaction rates with atomic oxygen did indicate that the saturated defect model is the correct one. However, a $P^{1/3}_O$ effect, which would have supported the equilibrium case, is not large compared to experimental uncertainties and therefore the apparent absence of such an effect should not be construed as absolute proof for the saturation of defect sites. Finally, the fact that large concentrations of Mn, Cu, Fe, and Co present as impurities in the nickel did not increase the oxidation rate is quite strong evidence that atomic oxygen at the pressures and temperatures studied creates a saturation of nickel in vacancy defect sites in the NiO film.

The activation enthalpy for reaction of atomic oxygen with nickel appears to be reasonably established, within the limits of error for the theoretical value. The experimental value of 27 kcal mole$^{-1}$ determined from rate measurements on the impure sample, and which agree well with the lower temperature results of Dickens et al., may be considered as possibly a minimum value when compared with the few data points obtained with the pure material. Yet the maximum possible theoretical value is (26.5 ±8) kcal mole$^{-1}$ and so it is reasonable to expect that the true activation enthalpy lies somewhere within the range of 27 to 34 kcal mole$^{-1}$, the lower limit being more probable.

Additional work should be done, however, on accurate determinations of the reaction rate of pure Ni and, particularly, its oxygen partial pressure dependence, in order to more confidently verify the saturated defect model. Specific attention must be given to sample preparation methods for comparisons of data.

Electrical conductivity measurements, which can normally be performed more precisely than oxidation rate measurements, should be made to determine pressure effects in atomic oxygen. A value for the activation enthalpy for conductance, ΔH^*_G, in atomic oxygen is predicted to be 5.5 kcal mole$^{-1}$, the same as in molecular oxygen if the saturated defect model is controlling; or ΔH^*_G (in O_2) + 1/3 $\Delta H^f(d,O_2) - 1/3 \Delta H^f(O) = \frac{4.8 ±2}{1}$ kcal mole$^{-1}$ if equilibrium doubly ionized vacancies are present in both environments. If singly ionized vacancies are equilibrated in O_2 but doubly ionized vacancies in O (the only
other reasonably possible equilibrium case since others would require a negative ΔH^*_0 in atomic oxygen, the predicted ΔH^*_0 for O is ΔH^*_0 (in O_2) + 1/3 $\Delta H^*_F(s, O_2) + 1/3$ $\Delta H^*_F(s + d) - 1/3$ $\Delta H^*_F(O)$ or (6.6 ± 2) kcal mole$^{-1}$.

Finally, studies in molecular oxygen (oxidation of Ni or conductivity of NiO) should be extended to high pressures and temperatures to attempt saturation of defect sites to test the predictions resulting from the atomic oxygen data. Measurements in atomic oxygen should be extended to as low pressures as possible so that verified equilibrium concentrations of vacancies can be determined. (Temperature should have little effect since $\Delta H^*_F(d, O) = 0$.) Then it could be shown conclusively which degrees of vacancy ionization occur in O_2 and in O.
REFERENCES

Figure 1.— Disassembled view of reaction furnace.
Figure 2.— Steady-state power requirements of furnace.
Figure 3.— Effect of flow rate on percent dissociation of oxygen. Conditions:
Ni sample in furnace; 80% microwave power; all discharge in furnace;
$P_{O_2} = 15$ Nm$^{-2}$; $T = 1075^\circ$K.
Figure 4.— Effect of pressure on percent dissociation of oxygen. Conditions:
Ni sample in furnace; 80% microwave power; all discharge in furnace;
flow rate = 8.0 cm3 min$^{-1}$ (STP); T = 1075°K.
Figure 5.— Effect of microwave power on percent dissociation of oxygen; 100% power = 100 W. Conditions: Ni sample in furnace; all discharge in furnace; $P^0 = 15 \text{ Nm}^{-2}$; flow rate = 8.0 cm3min$^{-1}$ (STP); $T = 1075^\circ K$. O_2
Figure 6.— Effect of temperature on percent dissociation of oxygen.
Conditions: 80% microwave power; all discharge in furnace; $P_o^0 = 15 \text{ Nm}^{-2}$; flow rate $= 8.0 \text{ cm}^3\text{min}^{-1}$ (STP).
Figure 7.— Arrhenius plots for nickel reaction with atomic and molecular oxygen.

- Atomic oxygen, 27 kcal mole\(^{-1}\)
- Molecular oxygen, 46 kcal mole\(^{-1}\)

Materials:
- Material 1
- Material 2
- Dickens et al. (ref. 29)

Equation for the plots:

\[k, g^2 \text{cm}^{-4} \text{sec}^{-1} \times 10^{-10} \]

Temperature range:
- From 500 to 1100 °C

Temperature scale:
- \(10^4/T, ^\circ\text{K}^{-1}\)
Figure 8.—Pressure dependence of parabolic rate constant for atomic oxygen reaction with nickel; all rates extrapolated to 1152°K.