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NONITERATIVE ESTIMATION OF A NONLINEAR PARAMETER*

ARNE BERGSTROM

ABSTRACT

An algorithm is described which solves the parameters x = (x1, x2, ..., xm) and
p in an approximation problem Ax*«y(p), where the parameter p occurs non-
linearly in y. Instead of linearization methods, which require an approximate
value of p to be supplied as a priori inf ormation, and which may lead to the find-
ing of local minima, the proposed algorithm finds the global minimum by
permitting the use of series expansions of arbitrary order, exploiting an a pri-
ori knowledge that the addition of a particular function, corresponding to a
new column in A, will not improve the goodness of the approximation.

I. INTRODUCTION

In the present paper the following approximation
problem will be studied. Given

(1) a function y(s, p) of an independent variable s (the
extension to functions of several variables is trivial) and
containing a parameter 5? which occurs nonlinear ly, and

(2) a set of functions fi(s), /2(s), •••, fm(s) °f s>

determine a linear combination g(s, x) =x1 f^s) + x2 /2(s) +
... + xm fm(s) of the functions in (2), and a value of the
parameter p in (1), such that the residual function
e(s) =g(s, x) —y(s, p) over a certain interval in s is mini-
mized in some sense.

In discrete formalism, where the functions are given
at discrete points s1( s2, ..., sn, the approximation problem
may for a large class of minimizing criteria be expressed
as

Be = 0,

(la)

(Ib)

where A is a nxm matrix with elements «(/=//$()>

/*!

x is the column vector I ,2 I,

is the column vector

and B is a matrix which is derived from the criterion used
for minimizing the residuals

£ =

The most extensively used minimizing criterion is the
least squares criterion, in which e^e is minimized. As
is easily seen by differentiation, this criterion leads to
a matrix Ba equal to AT, the transposed coefficient
matrix, with an additional row due to the nonlinear
parameter and containing elements

, P)
"dlm+1.1 dp

Another example of a minimizing criterion is moment
matching, where the first m +1 moments of the right and
left sides of Eqn. (la) are set equal. In the above formal-
ism this is accomplished by using a matrix

The approximation problem may be illustrated by the
following geometrical picture, see Fig. 1. We represent a

* This work was in part performed at Southern Methodist Uni-
versity, Dallas, Texas, on NASA Grant NsG 708.
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Fig. 1. Geometrical representation of the nonlinear approxima-
tion problem.

function 93(5), given at the discrete points s^ s2, ..., sn

, as a point in a n-dimensional

space. AS^J varies, the vector y (p) discussed above will in this
representation describe a curve C(p)', similarly, the left-
hand side of Eqn. (la) will be represented by a
m-dimensional hyperplane T/^ spanned by the columns
of the matrix A, and the vector e will connect a point
on C(p) with a point on "UA. The criterion quantity
which is used to measure the goodness of the approxi-
mation, or in general how "close" two functions are to
each other, defines in this picture a metric of the n-
dimensional space. In the class of minimizing criteria
expressed above as Eqn. (1) the metric is erMe with
ArM=B. This metric corresponds to the ordinary
Euclidean metric eTe after an affine transformation
characterized by a n x n transformation matrix N such
that N rN=M, and is expressed in differential form by
Eqn. (Ib) with the implication that the shortest length
of the residual vector e in the sense of the criterion used
is when it is perpendicular to the hyperplane "JIB which is
spanned by the rows of B.

II. PARAMETER SEARCH AND TAYLOR
LINEARIZATION

For the linear approximation problem of determining
x for a fixed value of p from Eqn. (1), there exists an
explicit and, if (BA)"1 is nonsingular, unique solution,
x = (BA)~1By. [To insure numerical stability, a somewhat
different computational approach is, however, in general
required (Householder, 1953; see also Golub, 1965).]
The nonlinear part of the problem, i.e. the determination
of the nonlinearly occurring parameter p, constitutes
a somewhat more intricate problem both because there
exists no such simple algorithm as in the linear case and
because there may be several minima for the criterion

quantity and ways must be found to ascertain that
actually the lowest one is found. For this problem two
classes of methods, employing parameter search or
Taylor linearization, are usually used, either separately
or in combination, and as a background for the following
chapter a brief outline of these methods will here be
given.

In the parameter search, the linear approximation
problem is solved for different fixed values of the non-
linear parameter, and the corresponding measures of the
goodness of the approximation are computed. In this
way one aims at obtaining a coarse picture of the
criterion quantity as a function of the nonlinear para-
meter in order to discriminate between the region
where the absolute minimum lies and regions where
possible local minima may be found. In the former
region a successively finer subdivision can then be made
until the minimum is known within a required accuracy.

In the linearization methods, a Taylor expansion of
y(p) to the first order in p is performed around a value
p0 (which is assumed to be sufficiently close to the exact
value), y(p) = y(p0) + y'(pc) Ap + 0(Ap2), where

8p

If we let A' denote a matrix which consists of the coeffi-
cient matrix A as above with the additional column

— y'(p0), a first approximation of the vector x' =

is obtained as x' = (BAT'Byfpo), where B = (A')rM. A
new linearization and solution is then made around p™ =
p0 + Aj)(0>, and the procedure is repeated until Ap lies
within the required accuracy.

Of the two classes of methods, the Taylor linearization
is the fastest. A restriction is, however, that the initial
guess must be sufficiently close to the exact value,
otherwise there is always the risk that the method will
find a local minimum. At the cost of a substantially more
tedious computational procedure, the parameter search
to a great extent excludes the possibility of finding local
minima. However, if a too coarse scanning is made, there
is also in this case a small risk that the absolute minimum
may be lost.

To illustrate the above difficulties we will study the
following approximation problem.

FOA Reports, Vol. 7, No. 3, 1973



2.0

Fig. Z. The function /(«) = 3 + a - exp (3s/2) + $(0.9 sin (3s/2), 0.1)
on the interval 0.5<«<1.0. Solid line represents least-squares
fit.

Example: Determine the parameters xlt xz and p in the
expression

g(s) = x1 + xzs—ef"

to give the best approximation in the least-squares sense
to the pouits given in Fig. 2. (These points are computed
as

f(s) = 4 + 8 - e** + <X>( - 0.9 sin f s, 0.1),

where O(ra, a) denotes a gaussian distribution with
mean m and standard deviation a, which is included in
order to simulate a disturbance with a systematic as well
as a stochastic component.)

Results: As is seen in Fig. 2, the function f(s) has a main
trend which is convex from above. As long as p is
sufficiently different from zero, this is also the case for
the approximating function g(s), both if p is negative
and if p is positive. When p becomes closer to zero,
however, the approximating function degenerates to a
linear function, and it is to be expected that the
possibility to obtain a good fit to f(s) is less than with a
convex function. This explains the appearance of a local
minimum at p «* —2.5 in addition to the lowest minimum
at p&1.5 in Fig. 3, where the criterion quantity Q
(the sum of squares of the residuals) for the best choice of
the corresponding linear parameter is plotted against the
values of the nonlinear parameter p. This structure of the
functional dependence of the criterion quantity may
lead to difficulties when attempting to use the two algo-
rithms discussed above to compute the nonlinear para-
meter. If a negative value of p is used as starting value
in the linearization method, the iterative procedure will
in general find the local minimum instead. This turns
out to be true also for more elaborate linearization
methods such as those proposed by Davidon (1959) and
Powell (1965). Due to the sharpness of the lowest mini-
mum there may be some danger that also the parameter

-0.5

-5 -4 -3 -2

Fig. 3. Sum of squares of residuals Q versus the value of the non-
linear parameter p. (Note the suppressed zero.)

search misses this minimum if a too coarse initial scanning
is performed.

In the new, noniterative algorithm which will be
discussed in the following, these difficulties are removed.

III. THE NEW ALGORITHM

In contrast to the Taylor linearization method, which
requires an approximate value of the nonlinear para-
meter as a priori information, the new algorithm which
we will develop here exploits a possible a priori knowledge
that the addition of a particular function to the
left-hand side of Eqn. (la) will not improve the goodness
of the approximation, i.e. that the vector in the above
geometrical model which corresponds to the additional
function is orthogonal, in the sense of the criterion, to
the residual vector e. Especially if the dimensionality
of the space is high, as is desired for reasons of numerical
accuracy, there is a multitude of functions obeying this
orthogonality requirement and, as we shall see in
Chapter IV, experience also shows that there is as a
rule no difficulty in finding such functions; suitable
functions are even in many cases suggested by the very
assumptions made in formulating the problem, e.g. that
certain terms can be neglected in the mathematical
description of the actual problem.

Using the picture of Chapter I, the original approxima-
tion problem corresponds to the geometrical problem of
finding a point on the curve C(p) and a point on the
hyperplane HA such that the residual vector e, orthogonal
to T/B, is minimized. By including a new function (as
column ra + 1) in A as discussed above, a new hyperplane
"U'A, now of dimension m +1, is formed (Fig. 4). Due to the
assumptions inherent in the choice of the additional
function, this hyperplane has the property of being

FOA Reports, Vol. 7, No. 3, 1973



Fig. 4. The nonlinear parameter is solved from the best intersec-
tion between the hyperplane VA (in the figure one-dimensional)
and the projection of c(p) on the hyperplane VA.

orthogonal in the sense of the metric to the residual
vector e above.

The solution to Eqn. (1), x = (BA)-1By(p), for brevity
called c(p) in the following, gives x as a function of p
corresponding to a curve on the hyperplane 11' ' A which ia
the projection of C(p)- (We here assume that the vector
corresponding to the additional function is not ortho-
gonal to C(p)-) As follows immediately from the above
constructions, one of the intersections between the
projected curve and the original hyperplane 11A is
identical with the endpoint of the residual vector e,
which we wanted to determine. This implies that the
value of the nonlinear parameter can be solved by
setting the coefficient xm+1 for the additional function
equal to zero, i.e. the nonlinear parameter is one of the
roots to the equation cm+1(j>)=0. This expression is
greatly simplified if y(p) is given in the form of a series
expansion.

If the functions j(p) are given as power series expan-
sions, assuming the power series expansion of cm+l(p) to be
convergent, the new algorithm can be expressed ia
algorithms for the solution of linear approximation
problems and polynomial roots by using the following
lemma.

LEMMA. Let a linear approximation problem with n
observations and m unknown parameters be given as

Be = 0,

where (BA)-1 is nonsingular, so that there exists a unique
solution. If we perform an arbitrary decomposition of
y into y=yi+y2 + ...+yi, the solution x to the original
problem may be written as x=x1+x2 + ...+x,, where

Fig. 5. Geometrical interpretation of the decomposition lemma.

x,, t = l, 2, ..., I, are the solutions x, = (BA)-1By, to
the decomposed approximation problems

Be, = 0.

Proof. In each of the decomposed approximation
problems, AXj=y (+£ ( , B£,=0, we have n +m equations
which, since (BA)-1 is assumed to be nonsingular, com-
pletely determine the n+m unknowns x, and e(. By
summing over i, t = l, 2, ... I, we obtain

A(x1+x2-K..+x,)=y1+y2 + .

and, since yi+y2+...+yi=y, obtain

Q.E.D.

In the geometrical picture described in Chapter I this
lemma has a simple interpretation, see Fig. 5. The
vector Ax is the projection of the vector y on the
hyperplane "UA. The lemma merely states that when
y is expressed as a sum of vectors ylt y2, ..., y,, the vector
Ax may be expressed as the sum of the projections of
Fi. V2> •• •» Ji on 11A, i.e. the vectors Axj, Ax2, ..., Ax,.

Returning now to the nonlinear approximation prob-
lem discussed earlier,

Be=0,

where the coefficient for the artificial dimension in-
troduced is xm+1, we write the first system of equations
in explicit form

... +«2t

+£„•

In correspondence with the power series expansion in the

FOA Reports, Vol. 7, No. 3, 1973



right-hand side, we now decompose xv x2, xa, ..., xm+1

as X1=x10+x11 + x12 + ..., xz=x20+xzl+xM + ..., etc. After
introduction of the new unknowns x(o=x10, x'n=xlllp,
X'i2=x1!ilp

z,...,x2o=xzo, xzi^XzJp, afe2=aW.P2> ..., etc.,
we may from the overdetermined equation system above
form a new set of overdetermined equation systems:

2/20 + £20

from which the unknowns xj = (£10, a;zo ..... a4+i.o) can °e
determined;

«21 *U P + «22 *21 P + • • • + OWl a4+l.l P = 2/21 P + 621

-l.lP = 2/nlP+enl>

from which, after division by p, the unknowns xj = (x'n,
a^i, ..., a4+i,i) can be determined (since all residuals
EU, £21,..., enl are affected equally by the divison wiihp,
the division does not change the problem);

+ Ol2 Xzz P2 + ... + (h.m+1 *'m+1.2 P2 = 2/12 P2 + «12

•••+a
2.m+la;m-l-l,2P2

. . . + an>m+1 Xm+^z <p* =

from which after division by p2 the unknowns X£ =
(x(z, x'zz, ..-, a;'m+i.2) can be determined;

etc. for the other powers of p.

Since only the right-hand side differs between the
cases, the solution of these equation systems is a very
fast procedure.

According to the decomposition lemma the solution
vector x to the original problem is given as

Following the discussion in the beginning of this chapter,
the value of the nonlinear parameter can then be solved
from the equation a;m+1=0, selecting the best root in
the sense of the criterion used. Once the value of p is
known, »i, xs, ..., xm can also be computed as xt =
x'i0+x'llp+x'izpz + —, xz=-x'2o + x^ip+x'zzp2 + ..., etc.

To illustrate the conciseness with which the new
algorithm can be programmed using existing algorithms
for linear least-squares problems and polynomial roots,
and to provide a model for its implementation in other
programming languages, a FORTRAN program of a least-
squares version expressed in subroutines from the IBM
Scientific Subroutine Package (IBM, 1970) is given in
Fig. 6.

An alternative to the above geometrical approach of
describing the algorithm is as follows.

The a priori assumption is equivalent to saying that
the approximation problem

(A

has the solution a;m+1 = 0. Euminating e we obtain

/BA Bam+1

Assuming the matrix (BA) to be nonsingular, xm+1 can
be solved from this equation, e.g. by the method of
bordering (Faddeeva, 1959), i.e.

—
TJl

where
, = A(BA)-JB

is a projection operator, and we have assumed that
ara=t=0. If we define rffl+1 by

(note that rm+1 is easily computed as the residual vector
corresponding to the approximation problem with right-
hand side bm+1), we get the simple formula

The condition *m+1=0 now gives a nonlinear equation
from which p can be solved. In particular, if y(p) is given
by a power series expansion y(p)=y0 + yiP+y22)2 + — •
we get a0 + a1p+a!ip* + ...=Q, where afc=r£+1yfc.

In the case of the least-squares criterion, ¥A/B is sym-
metric, and the formula for rm+1 reduces to

As above, rm+1 is here easily computed (as the residual
vector corresponding to the least-squares problem with
right-hand side bm+1).

The method can be characterized by saying that an a
priori vector am+1 is used instead of — dy/8p in the (m + 1)-
th column in A. To guard against an unfortunate choice of
the artificial dimension, one can after the first value p =p*
has been obtained choose Sm+1= — (dy/3p)p-p* as new vec-
tor and recompute p. This method can of course easily
be iterated, and since only the right-hand side changes,
it is a very fast procedure.

We will here also give the expressions for the statistical
uncertainties in the estimates of the parameters under

FOA Eeports, Vol. 7, No. 3, 1973



c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SUBROUTINE TGTHPL

PURPOSE
LEAST SQUARES SOLUTION OF THE VECTOR X AND THE PARAMETER P
IN AN OVERDETERMINED EQUATION S Y S T E M WRITTEN IN MATRIX FORM
AS A*X=YJP) , WHERE P OCCURS NON-LINEARLY IN THE VECTOR Y < P )

USAGE
CALL TGTHPL<A,V,S,X,R,AX,Y,Q,E,W1,W2,N,M,L, IER1, I£R2, IER3)

DESCRIPTION OF PARAMETERS
A - THE N BY M INPUT MATRIX OF COEFFICIENTS FOR THE

LINEAR UNKNOWNS. THE M-TH COLUMN REPRESENTS THE
ARTIFICIAL DIMENSION USED TO FORM THE TANGENT
HYPERPLANE, SEE UNDER METHOD BELOW

V - THE N BY L INPUT MATRIX OF COEFFICIENTS IN THE
.TAYLOR EXPANSION OF THE RIGHT HAND SIDE IN POWERS
OF THE .NON-LINEAR UNKNOWN, ORDERED FROM LOW TO
HIGH ORDER

S - OUTPUT VARIABLE CONTAINING THE SUM OF SQUARES OF
THE RESIDUALS

X - OUTPUT VECTOR OF LENGTH M CONTAINING THE SOLUTION.
LOCATION M CONTAINS THE NON-LINEAR UNKNOWN

R - CONTAINS ON RETURN ThE M BY L MATRIX OF COEFFI-
CIENTS IN THE EXPANSION OF THE LINEAR UNKNOWNS

AX - WORKING STORAGE OF LENGTH MAX12*N,LJ. THE FIRST
N LOCATIONS CONTAINS ON RETURN THE LEFT HAND SIDE
VECTOR A*X

Y - CONTAINS ON RETURN THE RIGHT HAND SIDE VECTOR Y
OF LENGTH N

Q - VECTOR OF LENGTH L-l CONTAINING ON RETURN THE REAL
PARTS OF THE ROOTS TO THE POLYNOMIAL EQUATION FOR
THE NON-LINEAR UNKNOWN

E - VECTOR OF LENGTH L-l CONTAINING ON RETURN THE
IMAGINARY PARTS OF THE ROOTS TO THE POLYNOMIAL
EQUATION FOR THE NON-LINEAR UNKNOWN

Wl - WORKING STORAGE OF LENGTH KAXIN*M,L»
W2 - WORKING STORAGE OF LENGTH N*L
N - NUMBER OF ROWS IN EQUATION SYSTEM
M - NUMBER OF COLUMNS IN EQUATION SYSTEM {INCLUDING

ARTIFICIAL DIMENSION)
L •- NUMBER OF TERMS IN T/SYLOR EXPANSION OF YJP)
IER1 - ERROR MESSAGE FROM LINEAR LEAST SQUARES SUBROUTINE
IER2 - ERROR MESSAGE FROM POLYNOMIAL ROOTS SUBROUTINE
IER3 - ERROR MESSAGE FROM TGTHPL

IER3=0 - NO ERROR
IER3=1 - NO REAL ROOTS. THE RESULTS GIVEN IN

THIS CASE ARE COMPUTED USING THE BEST
REAL PART OF THE ROOTS

REMARKS
MATRICES A,V,R ARE GENERAL MATRICES

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
IBM SYSTEM/360 SCIENTIFIC SUBROUTINE PACKAGE ROUTINES:
MCPY,RCPY,GMSUB,GMPRD,MATA,LLSQ,PVAL,PaLRT
(REFERENCE: IBM PUBLICATION GH20-0205-4)

METHOD
THE ROUTINE USES THE NON-ITERATIVE ALGORITHM DESCRIBED BY
Ao BERGSTROM, FOA REPORT B4059-M4 11973 )„
A VECTOR CORRESPONDING TO A FUNCTION WHICH WILL NOT IMPROVE
THE GOODNESS OF THE APPROXIMATION HAS TO BE SUPPLIED BY
THE USER AS COLUMN M IN MATRIX A. THIS VECTOR IS USED
TO FORM A TANGENT HYPERPLANE UPON WHICH THE CURVE Y ( P I IS
PROJECTED. THE SOLUTION TO THE ORIGINAL PROBLEM IS THEN
OBTAINED BY SETTING THE COEFFICIENT FOR THE ADDITIONAL
VECTOR EQUAL TO ZERO

Fig. 6. FORTRAN IV program print-out of least-squares version of the algorithm.

10
20
30
40
50
60
70
80
90

TGTH
,TGTH
TGTH
TGTH
TGTH
TGTH
TGTH
TGTH
TGTH
TGTH 100
TGTH 110
TGTH 120
TGTH 130
TGTH 140
TGTH 150
TGTH 160
TGTH 170
TGTH 180
TGTH 190
TGTH 200
TGTH 210
TGTH 220
TGTH 230
TGTH 240
TGTH 250
TGTH 260
TGTH 270
TGTH 280
TGTH 290
TGTH 300
TGTH 310
TGTH 320
TGTH 330
TGTH 340
TGTH 350
TGTH 360
TGTH 370
TGTH 380
TGTH 390
TGTH 400
TGTH 410
TGTH 420
TGTH 430
TGTH 440
TGTH 450
TGTH 460
TGTH 470
TGTH 480
TGTH 490
TGTH 500
TGTH 510
TGTH 520
TGTH 530
TGTH 540
TGTH 550
TGTH 560
TGTH 570
TGTH 580
TGTH 590
TGTH 600
TGTH 610
TGTH 620
TGTH 630
TGTH 640
TGTH 650
TGTH 660
TGTH 670
TGTH 680
TGTH 690
TGTH 700
TGTH 710
TGTH 720
,TGTH 730
TGTH 740
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SUBROUTINE TGTHPL<A,V,S,X,R,AX.Y,Q ,E,Wl,W2,N,M,L,IER1,lER2tIER3> TGTH 750
DIMENSION Al II, V(l) ,XU) ,RU ),AX( 1 ),Y( 1) ,Qt 1) ,E(1) , Wl(l) ,W2(1) TGTH 760
CALL ICPYIA,H1,N,M,0) TGTH 770
CALL MCPY(V,W2,N,L,0) TGTH 780
CALL LLSQlWl,W2,N,MtL,R,Y,0.,IERl,£X) TGTH 790
CALL RCPY(R,M,Wl,M,L,0) TGTH 800
IR=L-1 TGTH 810
CALL POLRT<Wl,W2tIR,Q,E,IER2) TGTH 811
IER3=1 TGTH 820
DO 10 1=1,IR TGTH 830
CALL EVALU,Q,R,X,V,Y,A,AX,S,N,M,L,W1,W2) TGTH 840
IF(I.NE.loAND.(IER3oNE0l.AND.(E<I)oNEoOo oOR0S<,GE<,SO ),ORo TGTH 850

& E(I).NE.O..ANO.S.GE.SOI> GO TO 10 TGTH 660
IF{E(I),EQ.O.HER3=0 TGTH 870
10=1 TGTH 880
SO=S TGTH 890

10 CONTINUE TGTH 900
CALL EVALUO,Q,R,X,V,Y,A,AXtS,N,M,L,Wl,W2) TGTH 910
X(M)=QIIOJ TGTH 920
RETURN TGTH 930
END TGTH 940
SUBROUTINE EVAL(I,Q,R,X,V,Y,A,AX,S ,N,M,L,W1,W2» TGTH 950
DIMENSION Q(l),RU),Xm,vm,Y(l) ,A<1),AX(1),W1C1),W2<1> TGTH 960
DO 10 J=1,M TGTH 970
CALL RCPYIR,J,W1,M,L,0) TGTH 980

10 CALL PVAL<X(J),Q(I),W1,L) TGTH 990
DO 20 J=1,N TGTH1000
CALL RCPY(V,J,W2,N,L,0» TGTH1010

20 CALL PVALIYiJ),QU),W2,LJ TGTH1020
CALL GMPRDJAtXiAXtNiHil) TGTH1030
CALL GMSUB(Y,AX,Wl,Nfll- TGTH1040
CALL MATA(Hl,StNfltO) TGTH1050
RETURN TGTH1060
END TGTH1070

Fig. 6 (continued).

the assumption that the e, are independent, have zero
mean, and standard deviation a. As discussed above, the
solution to the approximation problem is given as
x = (BA)-1By(j)), with xm+1 = Q. Denoting a particular
estimate by x* and the matrix (BA)~1B by D, we im-
mediately obtain x* = D(Ax + e)=x + De. By definition,
the variance-covariance matrix of x* is

i.e.
*) = E[(x*-x)(x*-x)T],

V(x*)=<r2DDr.

(1) When using the program given in Fig. 6 on the
example in Chapter II, which as we saw proved to be
a rather difficult task for the customary methods, no
difficulties were encountered at all, and the program
gave a very fast and accurate determination of the
lowest minimum. If, for instance, a ninth order Taylor
expansion around p=0 was performed and the function
s2 was used to form the artificial dimension, the value
obtained for the nonlinear parameter differed only by
about 0.1 % from the exact value of the lowest minimum,
a difference which of course is far within the uncertainty
of the order of 5 % in p inherent in the problem due to
the statistical scatter in the input data. To illustrate the
statement in Chapter III that there is a multitude of
possible functions available for the construction of the
artificial dimension, parameter estimates were also made

using the functions s1, I/a1, ]fs, cos's, In1 s, with I — 3,
4, 5, 6, 7 to form the artificial dimension; in all
these cases the value obtained for the nonlinear para-
meter was far within the statistical fluctuations in p
just as in the case of s2 above.

(2) The algorithm assumes, in the formulation of Chapter
IV. APPLICATIONS ni the functions y(p) to be given as Taylor expansions
In this chapter we will discuss some applications and of arbitrary order in p, i.e. y(p)
limitations of the proposed algorithm. In some cases an expansion of the type

In the least-squares case B=Ar, and V(x*) reduces to
the familiar expression V(x*)=ff2(ArA)~1. Since xm+l is
forcibly set to zero, an uncertainty Aa;*m+1 in x*m+1

corresponds directly to a change — Ax*m+1 in the
constant term in the Taylor expansion of xm+1(p). Such
a change irx the constant term is related to a change in
p by an amount Ap from the computed value p0, given as
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may be more suitable to approximate the functional be-
havior of y(p). This case is easily reduced to the one
previously discussed by multiplying both sides in the
approximation problem, Eqn. (1), by the unknown
constant p' (since p1 is constant, this merely corresponds
to a change of all weights by the same amount), after
which the algorithm can be used to calculate plx and p.

(3) An important limitation to the applicability of the
algorithm in the form presented here is the requirement
that the problem can be brought on the form Ax =
y(p)+e, i.e. to separate the linear and nonlinear para-
meters. This means that an approximation problem of the
type, say, f(s)^a + bs+c6as+dGxs', where we want to
determine a, b, c, d, and a, cannot be solved using the
algorithm described here. (A problem of the type g(s) «*
a + bs + cexs is, however, after division by c easily
reduced to a form gr(s)/c—a/c —&s/c«*eas, for which the
algorithm is applicable.)

(4) Potential limitations to the applicability of the algo-
rithm are also inherent in the construction of the artificial
dimension as discussed in Chapter III and the con-
vergence properties of the power series expansion of the
right-hand side. For reasons of numerical accuracy
alone, one aims in general to have a number of observa-
tions which is large compared to the number of para-
meters to be determined; to find a function which does
not improve the approximation will then as a rule, and as
we also saw in paragraph (1) above, offer no problem.
Also the convergence properties of the series expansion
is in practice seldom any serious limitation, since the
algorithm uses the projection c(p) of y(p) on "U'A rather
than j(p) itself, and the projection has in general a more
tranquil behavior than the original function.

V. CONCLUDING REMARKS

The noniterative algorithm presented in this paper
might, if used within the limitations discussed in
Chapter IV, be a useful alternative to the customary
methods for solving approximation problems containing
one nonlinear parameter.

In a general problem with several linear and nonlinear
parameters

B(p)e = 0,

the solution of the linear parameters x should always in
virtue of their uniqueness be separated from the solution
of the nonlinear parameters p. Especially simple is this in
the case of gradient-free algorithms such as the one
given by Powell (he. cit.). In this case the criterion
quantity

<2(x, p) =

can be reformulated as

<2(P) = [A(p)x*(p) -y(p)fM[A(p)x*(p) -

where the solution of the linear parameters,

= [B(p)A(p)]-iB(p)v(p),

is calculated in the function-evaluating routine in the
program. Here the present algorithm might be introduced
instead to calculate both x* and one of the nonlinear
parameters, thus reducing the dimensionality of the
nonlinearity, which may lead to a substantial increase in
safety as well as computational economy.

ACKNOWLEDGEMENT

The author wishes to express his gratitude to Dr H. O.
Zetterstrom for many clarifying discussions and to Prof.
Ake Bjork for several valuable suggestions to improve-
ments of the presentation.

REFERENCES

Davidon, W. C., Variable metric method for minimization.
A.E.C. Research and Development Report ANL-5990
Rev. (1959).

Faddeeva, V. N., Computational Methods of Linear
Algebra, § 15. Dover, New York 1959.

Golub, G., Numerical methods for solving linear least-
squares problems. Numer. Math. 7, 206-216 (1965).

Householder, A., Principles of Numerical Analysis, Ch. 6.
McGraw-Hill, New York 1953.

IBM, Systemj360 Scientific Subroutine Package, Version
III. IBM Manual GH20-0205-4 (1970).

Powell, M. J. D., A method for minimizing a sum of
squares of non-linear functions without calculating de-
rivatives. Computer J. 7, 303-307 (1965).

FOA Reports, Vol. 7, No. 3. 1973



FOA REPORTS

Vols. 1 (1967), 2(1968), 3(1969), 4(1970), and 5 (1971), see back cover of earlier, issues.

Vol. 6 (1972)

No. 1 Evald von Zeipel, Axially Symmetric Air-Core Coils with Homogeneous and
Strong Magnetic Field (FOA 2 Rapport B 2031-El)

No. 2 Peter U. Tamm, Design of Multistage Transistor Amplifiers Using Scattering
Parameters (FOA 3 Rapport B 3028-E1)

•No. 3 Peter Erman, Gordon Berry, Lennart Lundin and Bertil Sigfridsson, Vacancy
Cascade Spectroscopy: A Convenient Way of Studying Spectra and Lifetimes of
Highly Ionized Atoms and Molecules (FOA 4 Rapport B 4053-A3)

No. 4 Lars-Henrik Andersson and Elise Halloff, Spectrophotometric Determination
of Iron in Plutonium with Bathophenanthroline (FOA 4 Rapport B 4054-A29 )

No. 5 Per Atterby, Plastics on Fire—Corrosion (FOA 1 Rapport B 1202-G1)

No. 6 Sylve Arnzen, An Experimental Investigation of the Accuracy of the Omega
System in Sweden (FOA 3 Rapport B 3029-E4)

No. 7 Gunnar Walinder, Beta Doses in Wet Tissue (FOA 1 Rapport B 1205-A3)

No. 8 Bruno Slettenmark, Superconducting Quantum Interference Devices. I. Prom-
ising Designs for Stable Partly Resistive Quantum Interference Devices and
an Easily Constructed Superconducting Quantum Interference Device (FOA 2
Rapport B 2034-El)

No, 9 J. Gavin Park and Bruno Slettenmark, Superconducting Quantum Interference
Devices. II. A Model for the Operation of a Partly R-esistive Superconducting
Point Contact Quantum Interference Device (FOA 2 Rapport B 2035-El)

No. 10 Knut-Fredrik Aim and Lars-Henrik Andersson, Determination of Hydrogen,
Carbon and Nitrogen in Plutonium Metal by a Combustion Technique and of
Hydrogen by a Hot-Extraction Technique (FOA 4 Rapport B 4057-A2)

No. 11 Carl-Olov Criborn, Correlation Between Man and Mouse in Respect of Physi-
cal Activity and Oxygen Consumption (FOA 1 Rapport B 1233-A5(B2,C2))

No. 12 Elise Halloff, Spectrophotometric Investigation of Plutonium(III) Ions in Aque-
ous Solutions of Various Acids (FOA 4 Rapport B 4058-A2)

No. 13 Anita Meyerhoffer, The Molecular Structure of Some Anticholinergic Drugs
(FOA 1 Rapport B 1242-C2)

Vol. 7(1973)

No. 1 Johan Lundin, Considerations on a Chemical Arms Control Treaty and the
Concept of Amplified Verification (FOA 1 Rapport B 1256-C1)

No. 2 Per Atterby and Lars Schon, An Electrochemical Method for the Investiga-
tion of Pitting on Mild Steel (FOA 1 Rapport B 1243-G1(G3))

No. 3 Arne Bergstrom, Noniterative Estimation of a Nonlinear Parameter (FOA 4
Rapport B4059-M4)



Cover printed by FOA Repro
Stockholm 1973

Printed in Sweden

ISBN-91-7056-023-4


