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IMPROVING THE ACCURACY OF ANGULAR -MOMENTUM PROJECTION
v - - • ' - . . . _

by William F. Ford

Lewis Research Center

SUMMARY

A connection is established between Ullah's new method of angular-momentum pro-
jection and the conventional Hill-Wheeler method. They are studied for the case where
series truncation of some sort is required. It is shown that for a particular choice of
angles the analysis simplifies greatly and at the same time leads to reduced truncation
error.

• • • i"

INTRODUCTION

Recently Ullah proposed a new method (ref. 1) for performing angular-momentum
projection, designed to avoid the difficulties associated with numerical integration of
rapidly oscillating rotation matrices. Considering the case of axially symmetric intrin-
sic wave functions <!>„, he used Lo'wdin's representation (ref. 2) of the projection oper-
ator P ,v to write ,
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where fi is some rotationally invariant operator (usually H or 1) and

(Both J2T and C_ depend on K, but for simplicity this dependence will be left implicit.)J n
Rather than evaluate equation (2) directly,
be found by means of a generating function
Rather than evaluate equation (2) directly, Ullah showed that the coefficients C could
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and then devised an elegant transformation to reduce the left side to
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where

sin(-

If equation (3) is considered for a set of N + 1 different values of X, a simple matrix
inversion (ref. 3) will yield the coefficients C .

CONNECT I ON WITH HARMONIC ANALYSIS METHOD

Basically, Ullah's method is an improvement of one developed previously by
Mihailovic, Kuhawski, and Lesjak (ref. 4). Working from an expression which can be
written (for rotationally invariant operators) in our notation as
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they obtain the coefficients C*^ by means of harmonic analysis and then numerically
solve the set of linear equations '• •

max

n

J=K+n
(J - K - n) ! (J + K) ! J , . (6)

to find the desired quantities
by writing

. This is unnecessarily cumbersome, however, since
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and using the identity
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we may easily solve the linear equations analytically, obtaining

Jmax'L
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the form proposed by Ullah. The identity (8-) may be established by noting that the left
side is proportional to the hypergeometric function o^V^ + J + 1, L - J; 2L + 2; 1).
This in turn may be written in closed form, and the left side reduces to
(2L + 1)/(L + J + 1 ) ( L - J)!(J - L)! , - . . .

Another difficulty is that the transformation used by Mihailovic, Kujawski, and
Lesjak to render their equations harmonic requires evaluation of equation (5) at 2N + 1
different complex values of 9 to obtain the N + 1 coefficients C*. Since calculation
of the overlap integral in equation (5) is difficult and lengthy on even the fastest compu-
ters, the direct method proposed by Ullah, which requires only N + 1 different evalua-
tions, is to be preferred.

There still remains a problem, however. If the dimensionality of the model space
used to define *K is allowed to increase, or an "inert" core is allowed to become
"active", the value of Jmax can become enormous. In that case the expansion (3)
must be truncated for practical reasons, and it is not clear how to choose the set of X
values so as to minimize the truncation error.

CONNECTION WITH HILL-WHEELER METHOD

It is instructive to compare Ullah's method with the conventional one employing the
HiU-Wheeler integral (ref. 5) ,- ;
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where

- JK
-1/3J,

JK

is an element of the reduced rotation matrix. It has been pointed out by Ripka (ref. 6)
that direct numerical integration of equation (10) is likely to be inaccurate for large

T - • ,

values of J, because of the rapid oscillations of d^UX/3). The factor
i . • ,. 7 ;- -. • • - i JtVJV. , . . . . . . ,

(*K|n exp(-i/3Jv) |$K>, oh the other hand, is relatively smooth except for a strong peak
at |3 = 0 (and possibly at j3 = it) (refs. 7 and 8). This suggests an expansion in powers
of some suitable function of j3, and from Ullah's work (see eqs. (3) and (4)) it is appar-
ent that one such expansion, with only a finite number of terms, is

K (11)

Using equation (11) in (10) results in
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Here the reduced rotation matrix has been replaced by its representation in terms of a
Jacobi polynomial (ref. 9). Because of the orthogonality property of Jacobi polynomials,
the integral in equation (13) vanishes :unless ;n > J - K. ' Its nonvanishing values are



given by (ref. 10)

K+n --K+n (J _ K), n !(2 J +-n

and we recover Ullah's result.

A SIMPLIFIED METHOD BASED ON ORTHOGONAL POLYNOMIALS

The previous section illustrates the connection between JJllah's expansion and the
conventional Hill-Wheeler integral treatment. The orthogonality, feature, however, sug
gests a different expansion of the integrand factor in equation (10), namely, that.the
terms i n equation (11) b e rearranged s o that , . ' . - • ; . . . .

J=K

max

aJ

J=K

We then obtain the remarkably simple result

Of course, this is really not so surprising, since equations (10) and (15) together form a
statement of the expansion theorem for orthogonal functions, that is, one implies the
other. The importance of equation (15), however, is npt only that its coefficients
aT = fiT may be obtained by exactly the same procedure suggested by Ullah, namely,
J u "•

matrix inversion, but in addition that for a particular choice of angles it is possible to
arrange matters so that the matrix inversion can be done trivially and yet furnish a
superior approximation to the integral if the expansion is truncated at J = J .

This is accomplished by using the roots j3n of the first neglected rotation matrix

1 (<V=-° n = 0, 1, . . . . , N 0 . , J o -K. (1.7)

(excluding the 2K-multiple root '/3 = ir), because for these angles the Christoffel-Darboux

5



formula (ref. 11) for Jacob! polynomials yields an "orthogonality" relation:

(18)

J=K

With this relation the N + 1 linear equations obtained by setting /3 = 0n in equation (15)
are easily solved, yielding ^ , ,

u

n = > wJ /y n
n=0
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where
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Since the Christoffel-Darboux formula is of the form

(20)
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y - x

it follows that if y - x + e with e--» 0, then
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This may be used to suni the series in equation (20), with the result
- . : : . . ' . • • . : • - • • - , 2

(JQ + l)sin /3n' • '

(J0 + 1 + K)(JQ + 1 - K)d^

(21)

These formulas have the appearance of an algorithm for the numerical integration
of equation (10) and iniact are identical to those which would be ̂ obtained from; a Gauss
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quadrature method of order N based on the orthogonal functions dj tX/ 3)- As such,
they are known to be exact if the integrand can be expressed in terms of the first. 2N + 1
such functions. We conclude that, if the expansion (15) is terminated at J = J and its
coefficients are determined by equation (19), truncation error will affect only those OT

for which J > 2J + 1 - J m " , those with J < 2J + 1 - J^ov will remain exact. The
\j IIlcwC U

magnitude of the .truncation error is difficult to estimate, but the Gauss method is known
to be remarkably accurate.

CONCLUDING REMARK

One caveat should be sounded: if the dimensionality or number of riucleons is large,
the number of terms which can be taken is severely limited by the computing time re-
quired to evaluate <*Klfi exp(-i/3j ) |OK) . At the same time, the behavior of the inte-
grand places a greater burden of accuracy on the series expansion. In a typical calcula-

" 2 0 - ' . , . .
tion for Ne, for instance, with all nucleons active and states up to lgg/o included, the
left side of equation (15) falls from 1.00 at |3 = 0° to 0.070 at j3 = 45° to 0.001 at
|3 - 65°. Here the strong forward peaking is of more concern than oscillations of
dj^(/3), and it may be profitable to consider a transformation on the variable of integra-
tion before attempting numerical procedures. In that event it would probable be best to
treat the transformed integrand by means of a Gauss quadrature based on Chevyshev
polynomials, because of the ease in calculating weights and abscissas.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, July 2, 1973,
503-10.
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