FEASIBILITY OF AN ON-LINE
FISSION-GAS-LEAK DETECTION SYSTEM

by Paul H. Lustig

Lewis Research Center
Cleveland, Ohio 44135
NASA TM X-2870

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle
FEASIBILITY OF AN ON-LINE FISSION-GAS-LEAK DETECTION SYSTEM

5. Report Date
August 1973

6. Performing Organization Code

7. Author(s)
Paul H. Lustig

E-7007

9. Performing Organization Name and Address
Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio 44135

10. Work Unit No.
503-25

11. Contract or Grant No.

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, D.C. 20546

13. Type of Report and Period Covered
Technical Memorandum

15. Supplementary Notes

16. Abstract
Calculations were made to determine if a cladding failure could be detected in a 100-kW zirconium hydride reactor primary system by monitoring the highly radioactive NaK coolant for the presence of I131. The system is to be completely sealed. A leak of 0.01 percent from a single fuel pin was postulated. The 0.364-MeV γ of I131 could be monitored on an almost continuous basis, while its presence could be verified by using a longer counting time for the 0.638-MeV γ. A lithium-drifted germanium detector would eliminate radioactive corrosion product interference that could occur with a sodium iodide scintillation detector.

17. Key Words (Suggested by Author(s))
Fission leak
Reactor control
Nuclear instrumentation

18. Distribution Statement
Unclassified - unlimited

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
16

22. Price*
$3.00

*For sale by the National Technical Information Service, Springfield, Virginia 22151
FEASIBILITY OF AN ON-LINE FISSION-GAS-LEAK DETECTION SYSTEM

by Paul H. Lustig

Lewis Research Center

SUMMARY

The feasibility of an on-line fission-gas-leak detection system was studied for a 100-kilowatt zirconium hydride reactor. To be considered effective, the system must detect some fission product within the highly radioactive sodium potassium (NaK) coolant in a completely sealed loop. A proposal for accomplishing this includes a bypass in the primary loop in which a sample may be retained (frozen) to improve the fission product activity with respect to background.

The fission product iodine-131 (131I) was chosen for its 8-day half-life, fairly energetic γ ray (0.364 MeV), high fission yield (2.9 percent), and high γ fraction (84.9 percent).

The background (NaK) activity at equilibrium was estimated to be 3.79×10^{10} dis/sec/kg of NaK, and after decaying 8 days to be 4.0×10^{6} dis/sec/kg NaK.

The activity of 131I per kilogram of NaK, assuming a 0.01-percent release from a single pin, is 1.76×10^{6} dis/sec at equilibrium and 8.8×10^{5} dis/sec after 8 days. Activity within the 0.08-MeV peak width of two 131I gamma-ray energies was calculated for a 7.6- by 7.6-centimeter (3- by 3-in.) sodium iodide (NaI) detector. Background and 131I activities (dis/sec) were 2.48×10^{10} (background), 1.1×10^{6} (0.364-MeV γ), and 6.7×10^{4} (0.638-MeV γ) at equilibrium and 3.33×10^{6}, 5.6×10^{5}, and 3.4×10^{4}, respectively, after 8 days.

These numbers were translated into the counting time necessary to assure the presence of 131I. Counting times are 2 seconds for the 0.364-MeV γ at equilibrium and 10 minutes for the 0.638-MeV γ. A counting efficiency of 5 percent was assumed. It was concluded that a lithium-germanium detector would be best for the detection of a fission product leak. Both this type of detector and the 7.6- by 7.6-centimeter (3- by 3-in.) NaI detector could detect the postulated leak on an essentially continuous basis. However, the lithium-germanium detector can improve resolution by a factor of 10 or more, thereby eliminating interference from activated corrosion products.
INTRODUCTION

The zirconium hydride nuclear reactor is being developed for use with a space-electric power system. The fuel contains sufficient hydrogen to make the neutron flux spectrum slightly epithermal. It is contained in a glass-lined Hastelloy cladding. The coolant is liquid sodium potassium (NaK) circulating in a closed loop that is maintained completely full at all times for operation in a zero-gravity environment. The study reported in this memorandum was made to determine the feasibility of detecting a cladding failure in the prototype ground test by means of monitoring the coolant for released fission products. Since the coolant loop is maintained full of liquid at all times, there is no chance of separating gaseous fission products, which could then be measured away from the highly radioactive coolant.

A fuel-element failure can occur whenever there is a break in the Hastelloy cladding. The glass liner which cuts down on hydrogen (H₂) diffusion will probably already be cracked and the mobile fission products will move through these cracks and into the coolant through the break in the cladding. It may be possible to measure the activity of some fission product against the intense background of the coolant either on a continuous basis or at intervals by allowing the background to decay faster than the selected fission product. One way of accomplishing this would be to have a small bypass line in the primary loop that could direct the coolant to a well-shielded area. At planned intervals the line would be frozen and the retained inventory allowed to decay for a predetermined length of time. The gamma activity would be scanned in the energy ranges of expected fission product activity. The frozen portion could then be reheated to allow flow in the bypass line.

PROPOSED SYSTEM

Figure 1 is a schematic representation of the primary loop and the bypass diagnostic loop. A heavy gamma shield is needed to prevent interference from reactor gamma radiations. A neutron shield must be provided to protect the sensitive detection equipment. The electromagnetic (EM) pump in the bypass line is used to aid flow prior to sampling and to stop it during the freezing operation.

CHOICE OF FISSION PRODUCT ISOTOPE

The fission product chosen for detection should have the following properties:

(1) Long half-life relative to Na²⁴ and K⁴² (of the order of a day or more): This will improve the isotopes relative activity over background with time.
(2) High activity throughout reactor life:
 (a) A half-life of less than a few weeks will ensure that the maximum activity
 the isotope can achieve will be reached quickly and also that the decay rate will be
 high when it is being scanned.
 (b) A high cumulative fission yield provides a large inventory for escape into the
 coolant.
(3) Volatility: This requires that the product be in a gaseous or vapor state at the
 fuel operating temperature so that it can move more freely to a failure site.
(4) High-energy gamma: The γ-ray emitted should be of sufficiently high energy
 (>0.2 MeV) to avoid the cluttered background of Na24 and K42 scattered gamma rays in
 that range.
(5) High yield: The yield of the gamma ray under observation should be high for
 ease of detection.

Selection of an isotope for observation was relatively simple. Of the volatile fission
products, only iodine-131 (I131), iodine-133 (I133), and xenon-133 (Xe133) have suffi-
ciently long half-lives to improve their activity ratio with respect to Na24 and K42 after
prolonged decay (ref. 1). However, Xe133 emits a relatively low-energy gamma-ray
(0.1 MeV) which may easily be obscured in the low-energy scatter, particularly of K42.
Iodine-133, while it is produced in greater quantity than I131 by a factor of about 2.5,
has only a 21-hour half-life compared to 8 days for I131. Thus, in only about 1$\frac{1}{2}$ days of
decay the I131 activity will exceed and continue to exceed the I133 activity. Both produce
about the same energy γ with the same frequency. Thus, the feasibility of this type of
detection was based on the practicability of detecting I131 activity amid the activated
NaK alloy background. It was assumed that any direct reactor background activity could
be sufficiently shielded so as not to interfere with I131 detection.

FEASIBILITY CALCULATIONS

Sodium Potassium Background Activity

Calculation of the NaK activity has been done by Aerojet General (private communi-
cation) for the 600-kilowatt SNAP-8 zirconium hydride reactor. The equilibrium activ-
ity of the Na24 was 4.4 Ci/kg of NaK, and that of the K42 was 1.77 Ci/kg of NaK. For a
100-kilowatt reactor, these values reduce to 0.73 Ci/kg of NaK for Na24 and 0.294
Ci/kg of NaK for K42. Sodium potassium activity was presumed to come from those two
isotopes, which is a valid assumption for short-term decay (as long as several days)
(ref. 1). The proposed thermal power in our applications is 100 kilowatts. Table I
summarizes the activity of NaK from equilibrium through 8 days of decay.
Iodine-131 Activity

It was necessary to estimate the amount of ^{131}I that might be present in the coolant in the event of a cladding failure. The total activity of ^{131}I in the core at equilibrium is given by

$$A_{^{131}\text{I}} = 3.1 \times 10^{10} \text{Py} \quad \text{(ref. 1)}$$

In this equation the reactor power P is 1×10^5 watts and the fission product yield of ^{131}I γ is 0.029. The symbol A denotes the fission product activity in dis/sec.

Hence, the total ^{131}I activity in the core is 9.0×10^{13} dis/sec. The following assumptions were then made:

1. One out of the 85 fuel pins fails. The activity in each depends on location in the reactor. Conservatively, the pin with the lowest relative power was chosen as having failed. Its power relative to average power is 0.75. The activity available for release to the coolant is thus $9.0 \times 10^{13} \times \frac{1}{85} \times 0.75 = 7.93 \times 10^{11}$ dis/sec.

2. One-hundredth (0.01) percent of the activity escapes from the pin and is distributed evenly throughout the NaK (7.93 $\times 10^{11}$ dis/sec distributed in the NaK).

3. The activity of ^{131}I per kilogram of NaK is 1.76×10^6 dis/sec, assuming there are 45 kilograms (100 lbm) of NaK in the primary and diagnostic system at equilibrium. The activity of ^{131}I is compared to the NaK activity on a per-kilogram basis for various decay times in table II.

The question at this point is whether or not the ^{131}I activity in the energy range of its primary decay γ (>0.36 MeV) can be detected through the NaK background in that same energy range. The first step would be to determine this background. It is necessary to introduce a particular detector since gammas of a wide spectrum of energies are produced within the detector itself. The choice made here was a 7.6-by-7.6-centimeter (3-by-3-in.) NaI detector.

In the 7.6-by-7.6-centimeter (3-by-3-in.) NaI detector the fraction of γ's absorbed (photoabsorption absorption) is 35 percent for the 1.37-MeV γ's (ref. 2) and 20 percent for the 2.75-MeV γ's from Na24. Therefore, the scattered γ's account for 65 percent and 80 percent of the γ's, respectively. These give the continuous spectra behind the peaks, as shown in the typical spectrum analysis in figure 2.

The large peaks are the photoabsorptions or unscattered γ's; the remainder represents primarily the Compton or scattered γ's.

Similarly, for K42 the photoabsorption of the 1.52-MeV γ is 32 percent and the Compton fraction 68 percent. Assuming that the distribution of the counts is uniform over the Compton range, the number of Compton counts per second per MeV can be calculated. The Compton counts occur over an energy range between zero and the maximum β
energy attainable from Compton scattering, which can be calculated from the following formula:

\[
E_{\text{max} \beta} = \frac{E_0}{1 + \frac{m_0c^2}{2E_0}}
\]

(ref. 3)

where

- \(E_{\text{max} \beta}\) maximum energy of dislodged \(\beta\) particle
- \(E_0\) energy of \(\gamma\) ray
- \(m_0c^2\) rest mass of electron, 0.51 MeV

It is the \(\beta\) energy that is seen by the crystal.

The maximum \(\beta\) energy and resultant Compton background are summarized for the two Na\(^{24}\) \(\gamma\)'s and the K\(^{42}\) \(\gamma\) in table III.

We may perform a similar analysis for the I\(^{131}\), except that here we are interested in the photofraction (or the peak at 0.364 MeV), as well as in a second peak at 0.638 MeV. It is felt that simultaneous appearance of both peaks constitutes more positive identification of I\(^{131}\) in the coolant. In the case of the I\(^{131}\) \(\gamma\) rays, table IV summarizes the relevant data.

The width of the peaks for I\(^{131}\) is about 0.08 MeV for both the 0.364-MeV and 0.638-MeV \(\gamma\)'s. The \(\gamma\) activity in those intervals produced by Compton scattering of radiations from the NaK is the counts per second per MeV from table III multiplied by 0.08 MeV. This amounts to \(2.0 \times 10^{10}\) counts/sec/kg of NaK. When these numbers are compared with the equilibrium activity of I\(^{131}\) in the range of the two \(\gamma\)-ray energies from table IV, it can be seen that it might be difficult to distinguish the photofraction peaks of I\(^{131}\) from the background if counting were attempted on a continuous basis. However, this prospect will be investigated further. The advantages of using freezing followed by a decay period can be seen from table V. The table shows that the I\(^{131}\) counts can become comparable to or even exceed the background level after several days of decay. The numbers for counts per second all assume a 100-percent counting efficiency.

Counting Time

Now that the expected counts from the contributing sources have been determined, it is necessary to estimate the counting time that would be required for adequate statis-
tics. Adequate statistics is defined for these purposes as that activity of an isotope which will yield $10\sqrt{N}$ counts, where N is the number of background counts and the \sqrt{N} represents one standard deviation. In terms of the individual count rates, C_1 (^{131}I activity) and C_2 (background activity), the required time of counting works out to $t_c = 10^2/C_2(C_2/C_1)^{1/2}$. The ratio C_2/C_1 can be obtained from table V, but C_2 depends on the efficiency of the source-detector geometry. An efficiency of about 5 percent would be obtained for a point-source-to-detector distance of 6 centimeters (ref. 4). Let us assume that this efficiency is obtainable with a 1-kilogram sample by some relation of source to detector geometry. Hence, C_2 would equal 0.05 of the total NaK activities of table V. Table VI shows counting time as a function of days of decay. It can be seen that a 0.01-percent ^{131}I release would be detectable in a reasonable amount of counting time for the 0.364-MeV γ even at equilibrium and in only 3 days of decay for the 0.638-MeV γ, where the necessary counting time would be 32 seconds. This latter γ could also be detected in only 10 minutes of counting time at equilibrium.

DISCUSSION

A premise for this feasibility study was that it may be necessary to retain (by freezing) a sample of the primary loop liquid metal (NaK) to allow favorable relative decay of the fission product with respect to the coolant in order to detect a fission leak. For this reason also a fission product with a long half-life relative to Na and K was selected. As it turned out, ^{131}I with an 8-day half-life was capable of being detected if as much as 0.01 percent was released from a single fuel pin from either reactor. This could be done with as little counting time as 2 seconds even at equilibrium radiation levels. Hence, it is possible to count the 0.364-MeV γ of ^{131}I on a continuous basis. A counter timer set every few seconds could yield a plot of any drifts in the background level as well as continually monitor for an abrupt change that would indicate a fission leak. A second channel could be tabulating counts in the 0.638-MeV range every 10 minutes to look for that particular ^{131}I emission as confirmation.

Thus, it appears that sample retention is not necessary for detection of this magnitude of failure. However, it may be desirable in any event to have the capability of detecting failures of even smaller magnitude than a 0.01-percent leak. Since it has been shown that it is possible to continuously monitor for ^{131}I (8-day half-life), it should be possible to monitor for a fission product with a higher fission yield which would have a higher specific activity. Such isotopes as ^{132}I (2.4-hr half-life, 4.7 percent fission yield), ^{134}I (52.5-min half-life, 6.7 percent fission yield), and ^{135}Xe (9.13-hr half-life, 6.5 percent fission yield) would have higher specific activities and be detectable during fission gas leaks smaller than 0.01 percent. For example, since the equilibrium activity of ^{134}I is some 2.3 times that of ^{131}I, it would be possible to detect a 0.0042-
percent leak of this isotope in 2 seconds of counting. Of course, this depends on the energies of the radiations and the decay schemes of the isotope.

Although it appears possible to detect fission product releases of very small magnitude, the problem of interference arises - interference not from the general background radiation, but from corrosion products that may be released to the NaK coolant. If any of these products produce radiations within the 131I peaks, their presence might be interpreted as a cladding failure. As has been stated, confirmation of the presence of 131I could be obtained by the simultaneous observation of a second emission at a different energy. This would be true for any fission product isotope.

The ambiguity of the single determination can be demonstrated by reference to some of the isotopes that may interfere with readings in the range of the 0.364-MeV γ of 131I peak, that is, between 0.33 and 0.41 MeV (0.08-MeV width). Some isotopes with γ's in the range 0.33 to 0.41 MeV (ref. 5) are given in table VII. Even with the second measurement at the higher γ energy, confusion may still occur from the appearance of chromium-51 (51Cr) with a 0.65-MeV γ since this may be a corrosion product from the piping along with iron-53 (53Fe).

The possibilities of impurities interfering with positive identification of 131I, rather than any interference from a high background, is considered the primary problem. The significance of the problem can be somewhat modified by use of a detector with a higher resolution capability. Lithium-drifted germanium detectors offer peak bandwidths in the neighborhood of 6 keV (0.006 MeV) compared to the 80 keV (0.08 MeV) of the NaI detectors. This means the range of interference would be from 0.361 to 0.367 MeV, compared to the wider range discussed previously. Hence, none of the isotopes listed in table VII would interfere with the identification of the 0.364-MeV γ of 131I. The difficulty with these detectors, however, is that their efficiency is much lower, which may hamper the counting statistics. Hence, background counts would be reduced because of the narrower resolution, but so would the total counts from both 131I and background because of reduced efficiencies. An efficiency of 5 percent of that of a NaI detector is possible with lithium-germanium detectors. Background counts are additionally reduced by the amount 0.006 MeV/0.080 MeV because of the better resolution. It is possible to calculate, similar to the results of table VI, the counting time necessary with these detectors to obtain sufficient counts for adequate statistics $(10\sqrt{N})$. Again we are trying to detect a 0.01-percent leak from a single fuel pin. The results of such a calculation show that the counting time is increased by 50 percent. This does not affect the conclusions about counting continuously for both γ's.

Use of the lithium-drifted germanium detector would provide other advantages besides the ability to distinguish the 131I. It may be possible to distinguish other isotopes, the source of which may be corrosion of the piping or cladding material. The limits of detection of possible corrosion products have to be determined to see if this is feasible, but it may be possible to use a retention and decay period technique for this purpose only.
Finally, it appears that even though the primary coolant is highly radioactive, it may be possible to scan for and identify a relatively small fission gas leak (0.01 percent from one pin) by continuous scanning (~2-sec counting time) for the 0.364-MeV γ of ^{131}I. More positive identification can be achieved by counting for 10-minute periods to confirm the presence of the 0.638-MeV γ of ^{131}I. It is best to use the lithium-drifted germanium type detector because of its high resolution so that interfering radiations can be filtered out and perhaps identified as corrosion products.

It may also be wise to be looking for the γ rays from other volatile fission products that have a higher yield (higher activity) and escape more easily to the coolant. Recognition of γ peaks from two γ rays from the same isotope or from two different isotopes will provide verification if it is needed with the narrow-bandwidth lithium-drifted germanium detectors.

For a reactor design with more fuel elements or a greater primary coolant inventory, the time required for adequate statistics would be greater than that calculated for the specific reactor design herein considered.

CONCLUSIONS

An on-line fissions-gas-leak detection system for the zirconium hydride reactor appears feasible in spite of the high background radioactivity in the coolant. The counting can be done on a continuous basis when looking for the 0.364-MeV γ of iodine-131 (^{131}I). A 2-second counting time will identify that γ ray. Verification can be obtained by counting for 10 minutes for the 0.638-MeV γ ray of ^{131}I. Use of a lithium-drifted germanium detector appears to be the best choice. While counting time is increased by about 50 percent over a 7.6- by 7.6-centimeter (3- by 3-in.) sodium iodide (NaI) detector, the ability to distinguish between fission product activity and possible corrosion product activity makes it a necessary choice. The energy bandwidth of the scintillation-type device is so wide as to include radiations from other isotopes that could accumulate in the sodium potassium, such as iron-53, nickel-57, and chromium-51 from corrosion of the cladding and/or the stainless-steel piping. However, the bandwidth of the lithium-drifted germanium detector can be of the order of 0.006 MeV, compared to the 0.08 MeV of the NaI detector. This means that not only is it possible to easily distinguish the fission product activity, but it may also be possible to do some diagnostic corrosion study with the same equipment. The efficiency of the lithium-drifted germanium detectors is of the order of only 5 percent of that of the NaI type. This in combination with the narrower bandwidth results in a 50 percent increase in counting time. The improvement in resolution is well worth this increase in counting time. There were no isotopes that could be present in the NaK that would interfere with the counting of the two γ's from the ^{131}I.

8
A further improvement would be to scan for fission products other than 131I. The isotope could have a higher yield and could provide indication of a smaller leak than the 131I. For instance, 134I has a fission yield of 6.7 percent and might provide information on a leak of 0.0042 percent from a single fuel element.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, June 15, 1973,
503-25.
APPENDIX - SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>fission product activity, dis/sec</td>
</tr>
<tr>
<td>C_1</td>
<td>activity of 131I measured by a detector</td>
</tr>
<tr>
<td>C_2</td>
<td>activity of background measured by same detector as in C_1 above</td>
</tr>
<tr>
<td>c</td>
<td>speed of light</td>
</tr>
<tr>
<td>$E_{\text{max} \beta}$</td>
<td>maximum energy of dislodged beta particle</td>
</tr>
<tr>
<td>E_0</td>
<td>energy of incident gamma</td>
</tr>
<tr>
<td>M_0</td>
<td>rest mass of electron - when combined with c^2 gives the energy associated with that mass</td>
</tr>
<tr>
<td>N</td>
<td>total number of background counts recorded by detector</td>
</tr>
<tr>
<td>P</td>
<td>reactor power in watts</td>
</tr>
<tr>
<td>t_c</td>
<td>time required for counting</td>
</tr>
<tr>
<td>y</td>
<td>fission product yield</td>
</tr>
</tbody>
</table>
REFERENCES

TABLE I. - ACTIVITY OF SODIUM POTASSIUM FOR VARIOUS DECAY PERIODS

<table>
<thead>
<tr>
<th>Active specie</th>
<th>Half-life, hr.</th>
<th>Decay constant, λ, per day</th>
<th>Decay period, days</th>
<th>Activity of NaK in a 100-kW reactor, dis/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na24</td>
<td>15.0</td>
<td>1.11</td>
<td>0</td>
<td>2.70×10^{10}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>9.67×10^{8}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>1.05×10^{8}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>3.46×10^{7}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>3.76×10^{6}</td>
</tr>
<tr>
<td>K42</td>
<td>12.4</td>
<td>1.34</td>
<td>0</td>
<td>1.09×10^{10}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1.95×10^{8}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>1.34×10^{7}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>3.51×10^{6}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>2.40×10^{5}</td>
</tr>
<tr>
<td>Total sum of Na24 and K42</td>
<td>0</td>
<td></td>
<td>3</td>
<td>3.79×10^{10}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>1.16×10^{9}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>1.81×10^{8}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>4.00×10^{6}</td>
</tr>
</tbody>
</table>

TABLE II. - ACTIVITY OF IODINE-131 AND SODIUM POTASSIUM FOR VARIOUS DECAY PERIODS

<table>
<thead>
<tr>
<th>Decay time, days</th>
<th>Activity per kilogram of NaK, dis/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I131</td>
</tr>
<tr>
<td>0</td>
<td>1.76×10^{6}</td>
</tr>
<tr>
<td>3</td>
<td>1.36×10^{6}</td>
</tr>
<tr>
<td>5</td>
<td>1.14×10^{6}</td>
</tr>
<tr>
<td>6</td>
<td>1.05×10^{6}</td>
</tr>
<tr>
<td>8</td>
<td>8.84×10^{5}</td>
</tr>
</tbody>
</table>
TABLE III. - MAXIMUM BETA ENERGIES AND BACKGROUND COUNTS FOR SODIUM-24 AND POTASSIUM-42 GAMMAS

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Gamma-ray energy, MeV</th>
<th>Maximum beta energy</th>
<th>Compton fraction</th>
<th>Total equilibrium activity per kilogram of NaK, γ/sec</th>
<th>Counts per second per MeV<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Na<sup>24</sup></td>
<td>1.37</td>
<td>1.155</td>
<td>0.65</td>
<td>2.70×10<sup>10</sup></td>
<td>1.52×10<sup>10</sup></td>
</tr>
<tr>
<td>Na<sup>24</sup></td>
<td>2.75</td>
<td>2.516</td>
<td>0.80</td>
<td>2.70×10<sup>10</sup></td>
<td>8.59×10<sup>9</sup></td>
</tr>
<tr>
<td>K<sup>42</sup></td>
<td>1.52</td>
<td>1.30</td>
<td>0.68</td>
<td>1.96×10<sup>9</sup></td>
<td>1.03×10<sup>9</sup></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5.6×10<sup>10</sup></td>
<td></td>
<td>2.5×10<sup>10</sup></td>
<td></td>
</tr>
</tbody>
</table>

^aEach disintegration of Na²⁴ is accompanied by the emission of both a 1.37-MeV γ and a 2.75-MeV γ, while only 18 percent of the K⁴² disintegrations result in a 1.52-MeV γ, 82 percent yielding pure β decay.

^bAssumes 100-percent counting efficiency for the 7.6- by 7.6-cm (3- by 3-in.) NaI detector.

TABLE IV. - SUMMARY OF DATA FOR PRIMARY GAMMA RAYS EMITTED BY IODINE-131

<table>
<thead>
<tr>
<th>Gamma-ray energy, MeV</th>
<th>0.363</th>
<th>0.638</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction of disintegrations yielding gamma ray</td>
<td>0.849</td>
<td>0.069</td>
</tr>
<tr>
<td>Photofraction</td>
<td>0.75</td>
<td>0.55</td>
</tr>
<tr>
<td>Equilibrium activity per kilogram of NaK for 100-kilowatt reactor, counts/sec</td>
<td>1.12×10<sup>6</sup></td>
<td>6.7×10<sup>4</sup></td>
</tr>
</tbody>
</table>
TABLE V. - COMPARISON OF SODIUM POTASSIUM BACKGROUND ACTIVITY WITH IODINE-131 PHOTOFRACITION PEAK

ACTIVITIES FOR VARIOUS DECAY PERIODS

<table>
<thead>
<tr>
<th>Decay time, days</th>
<th>Source</th>
<th>Gamma energy, MeV</th>
<th>Half-life</th>
<th>Gamma rays within 131I photofraction peak, counts/sec/kg of NaK</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>24Na</td>
<td>42K</td>
<td>Total NaK</td>
<td>131I</td>
</tr>
<tr>
<td>1.37</td>
<td>2.75</td>
<td>1.52</td>
<td>--------</td>
<td>0.364</td>
</tr>
<tr>
<td>15 hr</td>
<td>12.4 hr</td>
<td>--------</td>
<td>8.05 days</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decay time, days</th>
<th>Gamma-ray energy, MeV</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.52x1010 8.6x109 1.03x109 2.48x1010 1.12x106 6.7x104</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.44x106 3.1x108 1.85x107 8.70x108 8.6x105 5.2x104</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5.91x107 3.3x107 1.27x106 9.38x107 7.3x105 4.4x104</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1.95x107 1.10x107 3.32x105 3.08x107 6.7x105 4.0x104</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.11x106 1.20x106 2.28x104 3.33x106 5.6x105 3.4x104</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.30x105 1.30x105 1.56x105 3.61x105 4.7x105 2.8x104</td>
<td></td>
</tr>
</tbody>
</table>

TABLE VI. - COUNTING TIME FOR $10\sqrt{N}$ COUNTS FOR VARIOUS DECAY PERIODS

<table>
<thead>
<tr>
<th>Decay time, days</th>
<th>Gamma-ray energy, MeV</th>
<th>Counting time, sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.364 0.638</td>
<td>2.0 552</td>
</tr>
<tr>
<td>3</td>
<td>0.12 32</td>
<td>0.18 4.8</td>
</tr>
<tr>
<td>5</td>
<td>0.007 1.9</td>
<td>0.001 0.29</td>
</tr>
<tr>
<td>8</td>
<td>0.0002 0.05</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.0002 0.05</td>
<td></td>
</tr>
</tbody>
</table>

TABLE VII. - SOME ISOTOPES WITH GAMMA ENERGIES IN THE RANGE OF THE 0.364-MEV GAMMA OF IODINE-131 PEAK

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Gamma-ray energy, MeV</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe57</td>
<td>0.370</td>
<td>Fe in NaK, piping, and cladding</td>
</tr>
<tr>
<td>Ni57</td>
<td>0.40</td>
<td>Ni in piping and cladding</td>
</tr>
<tr>
<td>Ni65</td>
<td>0.37</td>
<td>Ni, Zn, and Cu in NaK, piping, and cladding</td>
</tr>
<tr>
<td>Mo99</td>
<td>0.372</td>
<td>Mo in piping and cladding</td>
</tr>
<tr>
<td>Na25</td>
<td>0.40</td>
<td>Na in NaK</td>
</tr>
</tbody>
</table>
Figure 1 - Schematic of system with cladding-failure diagnostics in line.

Figure 2 - Typical spectrum (Na24) from multichannel scintillation counting.
"The aeronautical and space activities of the United States shall be conducted so as to contribute ..., to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546