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EqUatiGnS arc developed which give the pressure profile,  the forces 

mc torques on 8 disk pendulum by means  of point source wave theory PKlrm 

acoustics. 

disk are developed. 

apparent amss and apperent inertia for the pedulm. 

The pressure, force and torque equations for an unbnffled 

These equations are then used t o  calculate the 



The author wishes t o  express h i s  sincere apprecietion t o  all per- 

sons who have contributed inspiration, counsel, and assistance i n  t h i s  

undertaking. 

I n  particular. the author vishee t o  acknowledge the assistance cf 

Dr. George K. Kuhn of the  University of southampton, England for  his 

detailed review of the acoustical aspects of the paper and for  

useful suggestions toward 

stand. The author is also indebted to  Dr. guhn fo r  mch of the 

reference material upon which this work is based. I n  the saae vein, 

the author wishes t o  thank &. Joseph A. Drischler, Jr., of the  

Langley Research Center's Theoretical Acoustics Section for his  

suggestions which have contributed greatly toward increas iw the 

elagance of the pathematical treatment. 

t h i s t h e s i s c l e a r  and easy to  under- 

The author also wishes t o  express his thanks to Mr. W i l l i a m  E. 

Phil l ips  of the Flight Dynenics and Control Division of Langley Research 

Center for originally suggesting the appl icabi l i ty  of a dipoLe model 

and t o  Dr. Manuel J. QueiJo, also of the Flight Dynamics and Control 

Division, who kindly went out of his  way to review the or iginal  draft 

of th i s  thes i s  and who made a number of valuable suggestions which 

have been incorporated in to  the final product. 

Finally, the author wishes t o  express his thanks t o  Dr. John L. 

Whitesides of George Washington University who served as f o n d  thes i s  

-3visor and who orchestrated the e n t i r e  production i n  addition t o  h is  

regular duties. 

iii 



ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . .  . . i i  

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . .  iii 

COlmZNTs . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i v  

L:'ST OF T U l S " 1 O N S  . . . . . . . . . . . . .  
LISTOFSP4BOLS. . . . . . . . . . . . . . . .  
INTRODUCTION . . . . . . . . . . . . . . . . .  

TheoreticalModel . . . . . . . . . . . .  
MWiBX4TICAtMODEL . . . . . . . . . . . . . .  

Monopole Disk Theory . . . . . . . . . . .  
First Attached Mass Term . . . . . . . . .  
Second Attached Mass Tern . . . . . . . .  
F i r s t  Non-Cancelling Radiation Tenn * . . 
Total Pressure for a Dick in Tr8nelation . 
Force on a Disk i n  Translation . . . . . .  
Acoustic Impedance . . . . . . . . . . . .  
ApparentMaEs . . . . . . . . . . . . . .  
Pressure on a DSsk Pendulum . . . . . . .  
Pressure Across the Disk of the Pendulum . 
First Attached Mass Rotation Term . . . 
Second Attached Mass Rotation Term . . . .  
F i r s t  Radiation Term i n  Rotation . . . . .  
Pressure Distribution of a Pendulum . 
Vertical Pressure f i o f i l e s  . . . . . . . .  
3orce on the Pendulum . . . . . . . . . .  

. . . . . . . .  . v i  

. . . . . . . . .  v i i i  

. . . . . . . . .  1 

. . . . . . . . .  3 

. . . . . . . . .  5 

. . . . . . . . .  5 

. . . . . . . . .  12 

. . . . . . . . .  16 

. . . . . . . . .  18 

. . . . . . . . .  20 

. . . . . . . . .  22 
. 823 

. . . . . . . .  023 

. . . . . . . . .  24 

. . . . . . . . .  29 

. . . . . . . . .  34 

. . . . . . . . .  36 

. . . . . . . . .  38 

. . . . . . . . .  38 

. . . . . . . . .  40 

. . . . . . . . .  41 



V 

Attached Mass of the Pendulum . . . . . . . . . . . . . .  45 
Torque on the Pendulm Diaii . . . . . . . . . . . . . . .  46 

Apparent Inertia . . . . . . . . . . . . . . . . . . . . .  48 
DISCUSSION OF RESULTS . . . . . . . . . . . . . . . . . . . . .  51 

CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

SUGGESTIONS FOR su~sam RESEARCEI . . . . . . . . . . . . . .  56 

TAIJILEI . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5? 

TriBISII . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

IlEFEmcES . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

mm~x A - MONOPOLE DISK MODEL . . . . . . . . . . . . . . .  61 

APPE~PDIX B . EQURTION OF m o r 4  OF P ~ U  mm 66 AERODYHAMICDRAG e .  . . . 



Figures 

&Is" 01' ILYJSTRATIONS 

Page 

Figure 1.- Coordinates employed i n  describing the acoustic 
pressure a t  ds due t o  a source a t  ds' for  a 
disk of radius a . . . . . . . . . . . . . . . . .  . 6  

Figure 2.- Source and image arrangements fo r  a dipole disk . . .  11 
* x2 Figure 3.- Comparison of h ( l - x )  with -[x + $- + -1. . . . . .  15 3 

Figure 4.- Acoustic pressure due t o  the  first attached mass 
term as a f'unction of scaled disk radius. . . . . .  .17  

Figure 5.- Acoustic pressure due to the second attached m a s s  
term as a function of scaled disk radius. . . . . . .  19 

Figure 6.- Radiation pressure due t o  the first non-vanishing 
radiation term 88 a function of scaled disk 
radius. . . . . . . . . . . . . . . . . . . . . . .  . 2 1  

Figure 7.- Physical pendulum showing re la t ive  orientation of 
principal forces and distances. . . . . . . . . . .  . 2 7  

Figure 8.- Typical time his tor ies  for  damped and undamped 
osci l la t ions of a pendulum. . . . . . . . . . . . . .  28 

Figure 9.- Coordinates used t o  specify speed as a function of 
distance fram the center l i n e  of pendulum . . . . . .  31 

Figure 10.- Vertical pressure across a disk i n  rotat ion due t o  
the  first attached inert4.a term as a fmct ion  
of scaled disk radius . . . . . . . . . . . . . . . .  42 

Figure 11.- Vertical pressure across a disk in rotahion due t o  
the second attached mass term 88 a funct im of 
scaled disk radius . . . . . . . . . . . . . . . . .  43 

Figure 12.- Vertical pressure due t o  rotation for  the first 
non-vanishing radiation term as a function cf 
scaled disk radius . . . . . . . . . . . . . . . . .  44 

Figure 13.- Comparison of the first attached mss pressure 
term for a dipole with the free space Green's 
function for  the  same disk as a function of 
scaled disk radius . . . . . . . . . . . . . . . . .  50 

V i  



Figures Page 

Figure 14.- Comparison of the vertical pressures between a 
dipole model and the corresponding free space tena 
a8 a ftmction of' scaled disk radius . . . . . . . . .52 



SYMBOLS 

radius of disk a 

b 

cD 
C 

F 

G 

3 
ll K(?, m) 

k 

' 1  
cg 

aero a 

m 

P 

P 

Pi 

distance from center l i n e  t o  point of pressure appllca- 

t ion  

drag coefficient 

speed of sound in air (at any pressure) 

complete e l l i p t i c  integral  of the second kind 

force on the pendulum surface 

Green's function 

acceleration due t o  gravity 

total moment of i n e r t i a  (s t ructural  + apsarent iaertia) 

imaginary, Li 

complete e l l i p t i c  integral  of the first kind 

wave number - 
distance from pivot point t o  center of disk 

w 
C 

distance from pivot point t o  center of aerodynemic 

pressure 

ma85 

period 

atmospheric pressure 

pressure at  d i f fe ren t ia l  element area i on the disk 

due t o  all other sources on the surface of t h e  disk 

pressure at a dAfferential element of -ea s f  due 

t o  a source a t  s 

v i i i  



r 

r 

S 

max 

S 

S' 

t 
A 

U 

V 

V 

x m 

2 

2 

0 

x 

PO 

U 

d w a y  redial variable for  integrating pressure due t o  

other sources on a disk  

value of r for so-ice at  edge of disk 

reference area 

d i f fe ren t ia l  area of source of pressure 

different ia l  area of application of pressure 

time 

maximum speed of a sinusoidally osci l la t ing disk 

velocity of pendulum c.g. 

velocity 

upper limits of integration on r 

impedance 

n o m  t o  boundbly 

angle of swing of pendulum 

wavelength 

ambient air demity 

rad ia l  pressure coordinate fran center of disk 

torque 

dupmy angular variable for  integrating pressure due t o  

other sources 

dummy anguiar variable for integrating force or  

torque due t o  other sources 

angular r a t e  of osci l la tor  or pendulum 



X 

Subscripts : 

a 

cg 

i 

S 

S' 

apparent 

center of gravity 

incident at a differential.  area 

area of pressure source 

axpea where pressure is applied 

9ots  over symbols denote differentiation with respect 

to  time. 

-%ts over syxbols denote maxim\mr values. 

sub:xip+,s I ana ?I denote pressures due f,o transla- 

tion and rotation, respectively. 

denote successive terms i n  the t o t a l  pressure. 

Roman numeral 

Arabic subscripts 



An expression fo r  the t o t a l  pressure on the surface of a r i g i d  

circular disk  v ibra t i ig  i n  a baffle was vorked out @- Reyleigh 

(ref $Fence 1, Vol I1 page 162). 

expression for the pressure dis t r ibut ion across the disk. 

done subsequeutly by McLachlen (reference 2, p. 1012) by means of an 

expansion using hypergeometric W c t i o n s .  

is necessary if correc', moments are t o  be calculated fo r  a d i sk  i n  

rotation about a diameter as f'requently occurs in experimental work. 

However, Rayleigh d id  not give an 

This was 

Such a pressure dis t r ibut ion 

The work of these authors can be extended readily, i n  the 

special case of low frequencies, t o  include the pressure on a disk 

pendulum. 

rotation and translation. The net affect of the  absence of a baffle 

is t o  reduce the pressure on both faces eince air i s  free t o  t rave l  

around the  disk t o  the  opposite face as the pendulum swings. 

The pendulum can be considered as an unbaffled disk in 

The pressure acting on the face of a disk represents -n i n e r t i a l  

force i f  dissapative effects  are neglected. 

motion appears more maeoive than when not in motion. 

that the period of the pendulum will be different at different air 

densities. 

it as it swings. 

mass, apparent mass, or v i r tua l  mass by various authors. 

Heice the  penpulum i n  

The result is 

Physically the pendulum drags 8 cer tain amount of air with 

This ai- is  referred t o  as attached mass, entrained 

For a 

pendulum, rotat ional  effect8 rcuet slso be considered; so apparent 

iner t ias  are also present as shown i n  sketch (a).  
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- Pendulum I 

motion 
Translaticm + Rdatim + Pendulum 

le@ 

Sketch (a) 

It will be the obdective of this paper t o  show that the theoreti- 

ca l  acoustic pressure prof i le  can be investigated by breaking the 

equations of motion in to  two special  cases: 

and (b) 8 pure rotat ion about a cebter l i n e  of the  diek. 

of these effects ,  along w i t h  consideration of the  pendulum support 

distance, affords a description of the  radiation and attache0 ma88 

by means of the principle by superposition and hence represents the 

t o t a l  effect .  

(a) a pure translation 

A combination 

A comparison w i l l  be made of these reeulte with the theoret ical  

results obtained from class ica l  hydrodynamics and from experiment. 
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Theoretical Modml 

I n  the preaent study two models can be considered p.8 tezmiically 

f2asible. 

and thus treatiw the pendulum as a dS 

a t  low frequency. 

space Green's function for outgoing uaves with inf in i te  boundary conditions 

I? the positive he.1  space. Under these conditions the pressure is  f i n i t e  at 

the edge of t h e  disk. 

pendulum is a distributed acoustic dipole. This leads t o  a somewhat 

xore complicated model than 6r monopole disk since under these condi- 

t ions a term must be includedin the Green's function for  pressure which 

serves fs  force the free spwe term t o  za.0 a t  tile boundary. 

symmetry it ais0 follows tba t  the pressure must be zero at all points 

i n  the plane of the dl.sk beyond the boundary. 

One OT :?est= consists of ignoring the absence of a baff le  

ributed monopole sound source 

In this case the Green's function becomes the f ree  

The second model consists of assumiug that  t h e  

By 

I n  the present 7 **r a dipole model w i l l  be used t o  calculate the 

attaL ,ed mass of the disk. 

The present paper is  similar i n  some res-cts t o  a number of 

papers already i n  the literature. However, several of significant 

differences a r e  discernable. M. Strassberg (reference 3, p. 520) 

considered t h e  radiation f i e ld  only e?, large distances from the 

osci l la t ing body. The result is that the force may be computed 

correctly but no detailed description of the prerswe distribution is 

possible, although an approximate value can bd obtained by set t ing 

F = ma. 

sound f ie lds  diffracted around various obstacles. As such the i r  

Bouwkomp (reference 4 )  and Wiener (reference 5 ;  created the 
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papers are valuable in t h a t  they complement the present work. 

However, i n  both papers, fixed integration limits result in a m r e  

complicated sumation formulation vhich must satisFy ratching condi- 

tions at the  boundary md,as such,these w r s  are =re l ike pertur- 

bation problems than is the present paper. 

an approach which i s  closest to that  of the present work i n  that a 

f ree  space po ten t i a l  f ie ld  is considered along with an auxiliary 

f i e ld  t o  sat isfy t h e  boundary conditions. 

zero potential from the edge of the disk to inf in i ty  vhereas in the 

present paper t h i s  condition arises out of m e t r y  considerations 

and the pressure is guaranteed zero only at the boundary. 

i n  Crane following Bouwkanp*s paper by insis t ing on a fixed Coordinate center 

for integration. 

necessary t o  des-ribe the pressure fkcm a coordinate system which is  

centered a t  the center of the disk; anci hencc these authors are forced 

t o  use summations Gf Bessel and Legendre functions. In the present 

paper the pressure is calculated i n  a coordinste system located in 

each instance a t  t he  assumed receptor point. While circular s-etry 

is sacrificed by this approach the algebra becomes such t&.t the 0QI.y 

expansions required arc  those of the ordinary exponential. It should 

be noted that i n  none of the above references is  rotat ioaal  moti . . : .  

about a d i sk  diameter considered, however, Man&is (reference 7) 

does consider t h i s  for a baffled disk. 

Crane (reference 6 )  takes 

However, crane assume8 

This results 

The resdt is  that i n  references 4, 5 and 6 it becomes 



Nonopole D i s k  Theory 

Consider, first, a r ig id  disk ribratirrg in at in f in i te  befile 

v i t h  s h p l e  harmonic motion. 

grating the pressure over the surface of the disk. 

scme infinitisimal ere8 ds' produced by the  osci l la t ion of sope 

netwby area ds is given by eqyation (1) 

The t o t a l  force is deterrined bJr inte- 

The pressure at 

where r is the distance betvecn ds a d  ds', ii is the muimum 

speed of the  osci l la tor ,  k the ware niuber, c t he  speed of sauad, 

Po 

Thus the t o t a l  pressure acting on one fsce can be obtaintd by 

integrating over the surface of the disk t reat ing each infinitisirsl 

area ds' as a point source (reference 8, p. 178). 

the ambient air density, and S the surfwe sea  of the dish. 

The t o t a l  reaction force acting on the disk is the int=al of 

..le pressure over the  surface. 

Substituting equation (1) in to  equation (2) yields 

5 
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Figure 1.- Coordinates eraployed in describing tbc ecaufstic pressure at 
ds due t o  a source at ~€8' for a disk of radius a. 
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The coordinate system for perfondag the indicated integration over 

the front slrface of the disk is ahovn i n  figure 1 (references 6, 9 ,  

aad 10). 

Prom figure 1, it cacl be seen that 

It can also be seen by inspection of qecial cases, t h q t  the + 

is the correct selectior? for all Quadrants given the convention for 

@ as shown in figure 1. Hence far all si tuat ions 

sign 

With this expression i n  the l i m i t  on r the pressure at ds 

due to all sources on the front surface of tk disk becomes, ia polar 

cmrdinatEs centered at ds 

P 

This equation can be written in a form where the  l i m i t  i a  sl ight ly  

modified as 



a 

The Grees's function for  one side of a disk radiating t o  the half 

space i n  an i n f in i t e  baffle (reference U) is 

Dipole Disk Theory 

If the effect  of the back face of the  disk is a lso  considered the 

pressure at the -e, i.e. when r = 28 cos 4, must be zero since the 

wave produced by one face is exact- 180' out of phase vith the  other 

a d  t k .  geaaetries are identical. 

function by 

Thus we specify a general Green's 

It can be seen the& this choice of 8 general Green's function does i n  

fact  produce the desired pressure at the w e .  

Them are smeral important points t o  be considered in re lat ion 

t o  this Green's Function. 

1. The function Gdipole satisfies the characterist ics of 8 

Green's f'unction; i . e . ,  the first term on the  r ight  contains the 



9 
essential  singularity *,le the first and second term together sa t i s fy  the 

boundary conditions and do not contain any singularities over the region. 

2. With th i s  choice of a Green's function the pressure can be 

determined by the application of Green's theore. since on the boundary both 

G and t h e  outward normal gradient - are  zero vhile the pressure i s  

continuous. The l i n e  integrals over the boundary therefore vanish; and 

only the surface in t eg ra l  contributes to the pressure. 

0 

3. The physical significance of the Green's f b c t i o n  is the 

f o l l d h g :  

source located at any point on the front race of the disk. The 

second term is a monopole located alocg r on e i ther  the front or  

back face of the disk having strength just sufficient t o  cancel the 

source on the front face at the opposite boundary. 

The first term on the  right of equation ( 9 )  is a monopole 

Some examples Bre 

s h m  in figure 2. 

The pressure on the  front face 

integrating G over the surface of 

r d r d 4  1 -Jk[ka cos 4 - r] 
[ba cos 4 - rl 

e - 

of the disk is now given by 

the f ront  face 

(11) 

By a change of variable l e t  

r 
X f '  

8 

also l e t  
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U p L = -  
a (13) 

for convenience. 

simpler form 

These cbaages reduce the foregoing equation to the 

e -j(ka)[b cos 9 - x]  - [4 cos Q - X I  

Since the second term in  the integrand must be expanded in a 

Taylor's series before integration, there is  no advantage to  be 

gained i n  not expanding both terms. 

i.e. very long wavelength 

The expansions are, for (b) << 1, 

1 - _(kd*t4  cos cp - X I  
-j(ka)[4 cos 4 - x] e 
[4 cos 4 - X I  ={  [4 COS 4 - Xf 2: 

kaI4[4 cos 4 - X I  3 
+ (  4' 

cos .. 2 + ..> (16) 

3: 



Wave 
cancellation 

Image on 
back face 

Source an front face, 
image on back face 
and receptor on 
boundary 

Maximal path 
i m a w  wave 

Image on 
frmt face 

Incomplete 
'cancellation 

Source and image on 
front face and receptor 
half way between 

Wave 
cancellaticn 

Image behind Source 

Source and image on opposite 
faces d boundary, receptor 
on opposite boundary 

Image on /- back face 

Incomplete 
cancellat ion 

Source on front face, image 
on back face and receptor 
on front face 

Figure 2.- Source and image arrangements for a dipole disk. 
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Hence, t o  sufficient accuracy 

ja 

2 2  1/2 
2m m cos 4 + (1  - m s in  $) 

1 
2 J (ka) I \EM. + kf ( 4  COS Q - 2x1 x dx dQ 

j p0 c6 e 
4.n cos Q P =  

0 0  

2 2 112 m cos + + (1 - m sin I$) 
jwt j p0 CG e 

+ 47r (ka) I j [ h x  cos Q - 8 cos2 I$]x dx d4 

0 0  (17) 

The second integrand on the  right above is real and corresponds t o  

energy being radiated away fromthe disk. 

integrand are imaginary and represent pressure due t o  attached PYLSS. 

It can be seen tha t  for  ka << 1 thz second attached maes term i s  

negiigibly small  i n  canparison t o  the first. 

larger i n  magnitude than the f i r s t  radiation term it w i l l  be carried 

i n  the present analysis for the sake of com2leteness. The integrals 

Both terms i n  the first 

However, RS t h i s  term i s  

w i l l  

.. 
*1 - 

be taken one a t  a time. 

F i rs t  Attached Mass Term 

Tfie first term i n  equation (17) can be wr i t t en  

The iirst integral of t h i s  can be found direct ly  from tables and 

is given by 
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+ 4 c o s $ a n  m cos 6 + (1 - 
4 cos 4 1 -  

Since an integral of the natural logarithm term i n  equation (19) i s  

diff icult  it becomes expedient t o  expmd this term to make the 

expression more tractable. An appxopriate and h i w  accurate 

expansion is the standard form 

[x2 1 and x = -11 

This expansion is  accurate over most of the surface of the disk 

as can be seen from exemination of figure 3. Also since x is  a 

function of cos $ the integral of this expansian exists  and is  

f in i te .  Then 



Raising terms t o  the indicated powers and carrying out the integration 

gives 

Where K ( Z ,  m)  is  the camplete e l l i p t i c  integral of the f i r s t  kind 

and where E(? m) is the complete e l l i p t i c  integral of the second 

U r d .  

respective e l l i p t i c  integrals 

lr 

Now making use of the standard approximate expansions of the 

and 

and carrying terms t o  the fourth power in m 

A plot of this pressure prof i le  is given in figure 4 across a radius 

of the disk. 

the disk I s  identical t o  that of the front surfact except for 8 180' 

In  addition, 8 pressure prof i le  for the back surface of 



1 5  

0 0 s d: 
7 I 

v) 

K 

+ 

+ 
K 
I 
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phase shift. 

d G  

The t o t a l  pressure difference is thus obtained by 

t the pressure on one side. 

Second Attached Mass Term 

The second term i n  equation (17) caa be written 

The first integral  of t h i s  is 

Raising terms t o  the indicated parers and carrying out the indicated 

integrations over @ gives 

It can be seen that t h i s  tern is  d l e r  than the preceeding term 

(ka)2 where ka << 1 at low frequencies. by a factor on the order of 

Hence t h i s  part of the pressure term is  completely negligible i n  
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ir rdation t o  ihe first attsched mass tam. 

expansions, equations (23) and (241, arc employed as before and the 

results carried up t o  the fourth povcr in P the pressure becomes 

If the el l i f i ic  integral 

A scaled plot of equation (29) is shown i n  figure 5. 

F i r s t  Ron-Cancellitlg Radiation Term 

Strictly speaking the first radiation terms Fram the front and 

back faces of the disk cancel each other. 

this cancellation was done i n  the expansion of equation (14). 

the normal mnpole radiation, proportional t o  ( l ~ 8 ) ~ ,  i e  not present 

for a dipole. The first non-cancelling radiation term is therefore 

IC the present analysis 

Hence 

- 
*3 - 

The 

2 2 1/2 21r m cod 9 + (1 - m sin $) Jwt po cii e 
(30) 2 - ( k d  j fx cos 0 - 2 cos 91 x dx dQ 3.R 

0 0  

ntegra l  of this expression over x 3.8 

Squaring and cubing as indicated, m d  intt .. * ) - t % ~ g  again over 2lr gives 
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Elliptic integrals do not appear in the real turns. 

It can be seen that for ha << 1 chis tera is evm smaller in 

W t u d e  than the previous tur, ttrrs. 

t e r m  vhich radiates en-- amy fra the disk, it i s  important fkca 

a theeretical standpoint. 

However, as this is "&e first 

A scaled plot of (32) is given i n  figuFe 6. 

%tal Pressure for a Disk in Translation 

The total pressure for a disk i n  tmnshtion vithout a bafne is 

given by pl + p2 + p3 and is crplfcitly, vith for a 

This same equation tdth the ellipi'c i a t e g r a l s  expanded and 

carried to the fourth pod- i n  (e) i r  
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Fmce on a Disk in Ranslatio.. 

The force on one face of the disk ie obtained by integrating the 

pressure over the surface of the disk. Using equation (34) 

With the indicated operations carried ont, the force is 

F = cci ejwt a2{j[i.oai (ka) + 0.2962 ( ~ ~ 1  + [0.6iog (ka) 4 11 0 

(36) 

Since the two faces of the disk are out of phase the tota l  force 

is twice th is ,  or 

3wt  F = p c6 e 0 a2{j[2.1362 (ka) + 0.5924 (ka)3] + [1.2218 
(37) 
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Acoustic Impedance 

The radiation impedance is  givenby 

Hence the radiation impedance of the disk is given by 

Zr = po ca2{J[2.1362 (ka) + 0.5924 (kd3] + r1.2218 (ka)4]) (39) 

as a point of canparison, the radiation impeaance of a simple dipole 

is w l i  known. 

given (ref. ll, p. 37) by 

In terms of the present notation th is  impedance is 

It can be seen that there is  reasonable agreement between the disk, 

wh3.ch is  a distributed dipole, and a simple dipole at low frequency 

as wculd be expected, with the disk slightly the higher of the two. 

Apparent Mass 

The apparent mass is given by the non-radiating, or imaginary 

part of the reaction t o  the force. 
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O r ,  i f  the  apparent mass i s  assumed constant 

I n  the case of a d i sk  i n  t ranslat ion 

Therefore, using equations (421, (431, and the first imaginary term 

of (371 

3 m = 2.1362 po a 
8 (441 

Pressure on a Disk Pendulum 

That the effective mass and Iner t ia  of a disk pendulum are greater 

i n  air  than i n  avacuum car; be readily dezonstrated experimentally. 

However, i n  t h e  past ,  these effects have generally been measured 

mechanically (ref. 12 ami 13) and theoret ical  treatmen: has been by 

means of c lass ica l  hydrodynamics. 

visualizing the r e l a t ive  part played by ro ta t iona l  terms and transla- 

t iona l  terns, especially when the pendulum is of intermediate length 

so that  rotat ion and t ranslat ion contribute s ignif icant ly  t o  the tctal 

motion. 

t o  consider the pendulum as an acoustic BOuL'ce, a lbe i t  of extremely 

low f'requency. 

!The result led t o  dome d i f f i cu l ty  i n  

An alternatLve approach is taken i n  the present paper; v iz . ,  
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Consider a pendulum vhich consis ts  of a disk suspended by a 

massless support and swinging in sti l l  air about an axis  i n  the plane 

of t h e  d isk ,  so t ha t  the air impinges on the  f la t  face of the disk. 

If the  motion of the pendulum is undamped, as it would be i f  the 

pendulum were suspended i n  a vacuum, then the  equation of motion for 

small amplitude osc i l la t ion  is 

The period of osc i l la t ion  is  given by the  well known formula 

with  c i rcular  angular velocity 

W '  +=.II..,. (471 

I n  contrast, the  damping moment acting on a pendulum osc i l la t ing  

in st i l l  air  is proportional t o  the  drag (fig. 7)  which, i n  turn,  is  

proportional t o  the  square of the velocity. 
1 2  force i s  given ' 3  the product of the aerodynamic pressure 5 pV , 

the  surface area cf the  pendulum on which t h i s  pressure acts 

the  drag coefficient of the  pendulum 

product of the drag force and the moment arm. 

amplitudes, the equation of' motion with drag added i s  given by 

In  t h i s  case, the drag 

S, and 

The damping moment is the 

IIence, for small  
CD. 
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The moment of i ne r t i a  I 

cf inertia. 

st ructural  mass rns only. The apparent mass produces no restoring 

force, since the buoyant force balances the gravity force. 

includes the st ructural  and appa;-ent moments 

However, the restoring moment is related t o  the 

The velocity term in equation (L8) is  given by 

v = a  il aero 

Therefore, equation (48) can be written as 

It should be noted that t h i s  equation differs from the more commonly 

encountered equation of daarped oscillatory motion i n  which the damping 

is proportional t o  the  first paver of the velocity. 

Equation ( 5 0 )  is  a nonlinear, second-order, differen+.ial 

equation which doe3 not heve e known solution. 

of t h i s  equaticn has been examined nrlmerically for  a wide range of 

constant damping coefficients. 

figure 8 which WFLS taken from reference 13. 

period is nearly constant, i o  inb-ndent o f t h e  fiamping, and is equal 

t o  the period which would be predicted on the assumption that no 

However, the  behavior 

A typical  solution is shown i n  

It can be seen t ha t  the  
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Weight 

Figure 7 . -  Physical pendulun: showing relative orientation of principal 
forces and distances. 
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damping i s  present at a l l .  

approximate solution of equation (50) given i n  appendix B. 

The same reslrlt was obtsined i n  the  

These 

r e su l t s  have a l so  been ver i f ied  experimentally by t h e  author (not 

published). The r e s u l t s ,  therefore ,  indicate that, i f  the damping i s  

proportional t o  the squpxe of the velocity,  the period is e s s e n t i a l l y  

the  same as t h a t  for t h e  undemped s i tuat ion.  Hence, the c i rcu lar  

velocity i o  given t o  suf f ic ien t  accuracy ??y equation (47). 

of t h i s  is t h a t  the period i n  air gives a ureaeure of the  attached mass. 

The value 

I n  th i s  equation m , g, and IlCeg. are constants. For purposes of 

t h i s  b.islysis, it will be assumed t h a t  I depends only on the mass and 
S 

geometric parameters cf  the  pendulum and on the  density of the attached 

air. ?ience I can also be considered constant aLd w is constant. The 

disk of t he  pendulum mi-w, therefore,  be considered as a d is t r ibu te2  

acoustic source osc i l l a t ing  at angular rate w. Two possible types of 

motion w i l l  be present, viz .  t rans la t ion  and rotat ion.  

motion w i l l  produce pressure e f f ec t s  on the  face of the disk.  

Both types of 

These 

pressure e f fec ts  can be broken up i n t o  forces and torques i n  t h e  

following manner: 

Fressure Across the  Diak of the  Pendulum 

The maximum speed 6 of any inf ini tes imal  point on the surface 

of the  disk is  determined by i ts  distance from the pendulum support 

point. Thus if 8 is  the  maximum angular speed of the  pendulun, 
A 

i . e .  ; as it passes through bottom dead center 
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A 

where b 

from a horizontal l ine  through the center of gravity of the disk 

(figure 9). 

i s  the distance o€ the point where the pressure is  applied 

From figure 9 

b = r s i n  ($ - I)) + u s in  9 

Then (51) becomes 

h n n 

This equation can be inserted in  equation (11) so that 

r dr de 
-Jk[4 a cos $ - r] 

[ 4  a cos 4 - r] e - 
a 

This can be broken into two integrals, 
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Center !inla 
of pendulum 

Figure 9.- Coordinates used to specify speed as a function of distsnce 
from the center l ine  of pendulum. 
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I J  
0 0  

L r  4n 

21r 

- I  
0 

-3k[4 a cos 4 - r: 
[4 a cos 9 - rl 3 e 

-jk[4 a cos +r] e 
[4 a cos 4 - r]  

r dr &$ 

r dr d+ 

(53) 

The first of these two integrals is Been to be the same as equation (11) 

except for the  substitution of the term [ a  

of the constant 5.  

9 9 
8 - u sin J, e] i n  place c .g. 

Hence the integral  of this expression is mereu 
A 9 

8 - (J s i n  J, 01 equatioii (33) or its expanded form (34) with [ a  
C . 6 .  

re.alacing 3. That is, part of the  pendulum pressure profile has the 

stme form as that  of the simple disk developed previously. If (53) 

i s  written i n  the convenient form 

with PI analogous t o  (33) 
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Again there i s  no particular advantage t o  t e  gained i n  integrating 

the Zirst term i n  the square bracket directly so both terms are 

expanded i n  a Taylor's series. First change the variables by letting 

r 
a x = -  

and 

Q m t -  
8 

(13) 

as was done previously. Then equation (56 )  becomes 

The term i n  brackets can now be expanded as before with the result 

that 
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+ kf ( 4  cos 0 - 2x1 2 
i/2 2 2  J 

m cos (O + (1 - m s i n  (o) 

Again there are tvo imaginary terms i n  lower powers of (ka) before 

i-wching the first real radiation tern. Again, the integrals will be 

taken one at a time. Desigmtiag these integrals as p4, ps and F6 

respectively, one has the following. 

Firs t  Attachec Mass Rotation Term 

The first term is 

0 0  

The f i r s t  integrsl of th i s  gives 
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- 
p4 - 

where x is the upper limit n 

112 2 2  x = m cos Q + (1 - m sin 4 )  m 

as was done i n  equation (20) in(1 - x )  is expanded 

x2 ,3 4 5 t n ( 1 - x )  = - i x + - + - + + + - +  X . . . I  
(62) 2 3 4 5  

[x2 < 1 and x = -11 

T h i s  expansfon is accurate over most of the surface of' the  disk 

as can be seen from examination of figure 3. Hence t o  three tern 

accuracy 

3 
m 

3(4 cos $)3  

X 
2 - (4  cos 02( m X 

+ 
-+ 2(4 COP $)2 

+ higher order terms 1 d4 1 (63) 
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A cancellation i n  the xm term yields 

If xm is  written explicit ly  i n  terms of @ and use is  made af the 

identity 

the indicated integration over 2n can be perforn-d. The result is  

If the e l l ip t i c  integrals are expanded by (23) and (24) and terms up 

to  the fourtf.. power i n  m are retained the above equation becomes 

Second Attached Mass Rotstion Term 

The second term is 
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The f i r s t  integral of this expression is 

vhere 

1/2 2 2  x = m cos + + (1 - m s in  $1 m 

as before. 

Then writing (69) erpl ic i t ly  i n  terms Gf 9 md making use of 

( 6 5 ) ,  (69) can be integrated. The result is 

4 
as before, the e l l ipt ic  integrals can be expanded and terms up to 

retained to yield 

m 
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First Radiation Term in Rotation (That Does Nct Cancel) 

The f i r s t  non-cancelllng radiation t en  i s  

The first i n t e g r a l  of this is 

0 

1/2 2 2  x = m cos @ + (1 - m sin 9) m 

As before, making use of (65) and writing (73) expl ic i t ly  i n  terms Of 

a, the equstion can be integrated. The result is 

as usual, the radiation term does not contain e l l i p t i c  integrals. 

Pressure Distribution of a Pendulum 

The f i n a l  r e su l t  af t h e  foregoing analysis is the t o t a l  pressure 

distribution at low frequency of a disk pendulum of arbi t rary s i ze  

and length. Cne has merely t o  add up the pressures being careful t o  
h 

subst i tute  [ R c .g .  - U s i n  $14 i n  place of 6 i n  pl, p2, and p3, 
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I -'2' a' 
A c 

If t h i s  same equation is written i n  a form with the elliptic integrals 

expanded t h o  result is 
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(76) 

Vertical Pressure Profiles 

Equation (76) contains a special case of particular interest. 

is assumed to be zero this equation reduces to a disk 
c .g. 

If II 

suspended along its centerline. Under these conditions the rnotica 

is a pure rotation. Of course, a real disk under these condition8 

would have no restoring mment, but this could be overcome by properly 

weighting the lower edge of the disk. The special case of (76) which 

results is 
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The pressure has a simple sine dependence on J, but a somewhat 

more caanplicated dependence on radius. 

i n  figures 10, 11, and 12 i n  scaled form with J1 = 5 . 
plots represent ver t ica l  pressure profiles across the  pendulum. 

The terms of (77) are plotted 
TI Hence these 

Since 

no translation is  present t he  pressure given by (27) appears along with 

its mirror image for  JI = - as a torque on the disc which gives r i s e  

t o  an apparent iner t ia .  
2 

As usual, it can be seen that at low 

frequencies, ka << 1, the higher order terns are insignificant i n  

relation t o  the  first term. 

Force on the  Pendulum 

The effect the pressure has on the  pendulum can be broken up 

into pure forces and torques. The force is obtained by applying 

equation (76) for  the pressure i n  equation 2. I n  t h i s  case 

0 -0 
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Since the order c? integration is immaterial i n  t h i s  instance, 

it is advantageous t o  integrate over JI first. In t h i s  case &ll 

terms containing s in  J1 dmp out;  and the  force equation becomes 

J 
This is seen t o  be ident ica l  t o  equation ,351 except that 

zeplaced by & 6 . Thus with the second integration carr ied out ,  

u is 
Pb 

C.8. 

the  force on one face is found t o  be 

The force on both faces is twice this, or 

Attached Mass cif t he  Pendulum 

Since the  acceleration of the pe..ldulum is given by 
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Jw 11 a JWt dv - = -  
dt c .g. (82) 

the attached mass is  found by dividing the first term of (81) by (82) 

This is exactly tue same as vas found for 8 simple disk i n  translation. 

TorqQe on the ?enddun Disk 

The torque equation is obtained by integratug the pressme 

equation over the disk vith the appropriate moment arm. 

arm i s  selected fran the centerline of the disk 

If the rnament 

0 0  

or, applying equation (76) tor pressure 



t7 

As before, since the order of integration is inmaterial, the best 

policy is  t o  integrate over J, first. In th i s  instance terms 

containing L drop o\rt of the internal and one has 
c.g. 
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a 

4 5 jot 

( b ) 4  [a3 - Q + - l a ]  - 
3 a 2 a2 

POCO e - 

If t h i s  equation is integrated egain end simplified the torque due to 

the pressure acting on one face of the disk is 

The tota l  torque due t o  the pressure on both faces is  twice this, or 

Apparent Inertia 

The apparent inertia is  given by the reaction to the torque. 

In the cas2 of a simple disk i n  translation there is  no torque and, 



therefore, nc apparent inertia. However, i n  the case of a pendulum 

dB t = I I I z  

and since 

de * jot - = J  WB e dt  

The real part of Ia, to first order, i s  given by 

4 3 2  'a = po[5n a I a [0.02791 

I = 0.1169 poa 5 
a 

The apparent inert ia  due to both faces is twice this, or 

fa = p o [ j  4 1 a31 a* C0.05581 

or 

I = 0.2338 p0a 5 
a 

(91! 

(92) 

( 9 3 )  
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DISCUSS1011 OF RESULTS 

The results of the present investigation can be compared with 

krowr resul ts  f r o m  similar investigations i n  several instances. 

t h e  impedance f r o m  a distributed dipole is samewhat larger  than that  

which would be calculated f rcm a point dipole of equivalent strength 

as was show i n  equations (38) and (39). 

a distributed disk dipole ac t s  t o  some extent as its own baffle. 

is, pressure waves originating in the  center of the disk have t o  t rave l  

farther t o  get around the edge than is the case for  a point dipole. In 

Fi r s t ,  

The reason for  this is tha t  

That 

doing 

tween 

case, 

1 
r this the sound i s  attenuated by - and thus cancellation be- 

the out of phase canponents is  less pronounced. 

then an upper l imiting case should be available i n  the face Space 

If t h i s  is the  

Green's fbnction m o d e l  since this is equivalent t o  an i n f in i t e  baffle 

with no phase cancellation. A camparisos of the dominant first order 

pressure along a radius between the free space model given i n  Appendix 

A and the dipole m o d e l  is given i n  figure 13. It can be seen that the 

pressure due t o  tine dipole drops off sore rapidly all along the 

radius. If more terms had been carried in the  expansions t h e  dipole 

pressure would be exactly zero at the edge of the  disk. That is, of 

course, not t rue  fo r  the  free space model since zero boundary condi- 

t ions were not sgecified i n  the Green's function. A similar ccwparison 

of pressures is given i n  figure 14 lor pura rotation. 

builds more rapidly and t o  a higher value before falling off near the  

edge. 

Here the pressure 

The result is  that B dipole model predicts less torque since the 

51 
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maxbum 

shorter 

pressure is applied near the center of the disk with a 

effective lever am. 

The resu l t s  of the present analysis can also be compared wi th  

experiment. 

values of (ita) for t h e  pendulum experiment done i n  t h i s  reference. 

is apparen; that for all measurements ka < .006. Hence t h e  pendulum 

of t h i s  experiment should be $%scribed acoustically t o  sufficient 

accuracs. by the first order t e r m  developed i n  the  present paper. 

direct  acoustic pressures were measured in t h i s  experiment. However, 

the attached mass and ine r t i a  vere calculated. 

given in Table 11. 

fran hydrodynsmics are given. 

the  attached mass is calculated PFom the kinetic energy and f ree  

stream velocity of air flowing past a disk for a non-viscous fluid. 

Table I (modified from reference 13) gives experimental 

It 

No 

These parameters are 

In addition accepted values of these parameters 

In  this latter instance (reference 1 4 )  

The conclusion t o  be drawn from t h i s  table is tha t  the dipole 

model gives the lowest attached mass value of all models. 

Since the experimental values are higher than the values of any 

of the theoretical  models it seems l ike ly  that additional a i r  is 

dragged along with the pendulum which r d n s  unexplained. 

t h i s  mass i s  l i ke ly  t o  lie beyond the edge of the disk where only the  

model given by Lamb i s  rigorously applicable. 

idea is t o  be found i n  tha t  the f ree  f i e ld  model of Appendix A &so 

gives higher values, and itwaa pointed out previously that t h i s  model 

does not presuppose zero ~.*,‘ssure at  the edge of the disk. 

additional physical effect  not accounted for by the present theory i s  

Same of 

Some support for t h i s  

An 
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the possibil i ty of wake formation behind the disk a6 it swings. 

Since the period of the pendulum i s  not measurably different for 

amplitudes between approximately t h i r t y  degrees and the  limits of 

visual perception t h i s  is not considered significant.  

possibil i ty of vortex shedding i n  a wake is not t o  be completely 

discounted. For the same reason direct  f r ic t ion  effects  on the 

pendulum a r e  not thought t o  be significant. 

possible that  attenuation of the pressure wave as it travels  around 

the edge of the disk occurs. 

t h e  wave shape could spread so that  peak amplitude is  lowered, or the 

Wave could f a i l  t o  d i f f rac t  around the edge of the  disk for reasons 

which a re  not at present explained. 

formation is  a factor i n  the  present si tuation since the effect  would 

be t o  lower further the already low attached mass velues (reference 2). 

Howwer, t h e  

However, it is quite 

This could be of two forms. Either 

It is  not thought that  node 



It i s  feasible t o  describe the motion of a disk pendulum by 

breaking the motion up in to  pure rotation and pure translation and 

treating the surface as a distributed acoustic osc i l la tor  operating 

at very low frequency. 

sent paper gives lower values for  attached mass end attached iner t ia  

at low frequency then either the hydroaynemic model of Lamb or  

previous experiment undertaken by the author. 

reached t h a t ,  although t h i s  model is  reasonable f r o m  a quali tative 

standpoint, it i s  only marginally adequate i n  i ts  present form t o  

explain the experimental results. 

numerical agreement with hydrodynamic theory. 

However, the dipole m o d e l  analysis of the pre- 

The conclusion is 

The model is also not i n  satisfactory 
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SUGGESTIONS FOR SUBSEQUENT RESEARCH 

Since the present analysis gives a theoretical  value for pressure 

at any point on a disk pendulum it would be useful t o  know actual 

experimental relative pressure profiles across a large disk pendulum. 

The scaled na ture  of the theory suggests that it wuld not be necessary 

t o  obtain absolute numerical resu l t s  since pressure re la t ive  t o  pressure 

a t  the center of the d isk  vould be satisfactory; thus a simple experi- 

ment could be devised. It would also be useful  t o  have wind tunnel 

pressure profile data for  a simple disk i n  a very low speed a i r  stream 

a t  various angles of attack. Wind tunnel data at the extremely low 

speeds suggested have not been readily available i n  the past. This 

informstion should be useful i n  determining the  effects of wake and 

vortex action i f  present and should also give an idea of the air f low 

pattern across the leading and t r a i l i ng  fsces of the  disk. 

It is  also suggested that a study be made of the effect  of the  

test f a c i l i t y  walls as the necessity for working i n  a f i n i t e  CFmPer, 

the wavelength is one t o  three kilometere i n  reference 13, may impose 

additional boundary conditions not taken into account i n  the present 

study. I n  addition t h i s  problem is  amendable t o  scaling as has been 

done in the  present paper by means of the factor ka. 

be possible t o  obtain resul te  a higher frequencies for shorter wave- 

lengths as, for example, by loudspeaker experiments. 

Thus it should 
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A 
meters 

-- 
10FB.46 
1215.32 
1126.U2 
1142.48 
1161.89 
119o.w 

1521.3s 
1468.03 
16[12.85 
l7U2.16 
1)QS.M 
1alb.81 

lI12.C1 
1745.33 

-- 

-. 

TABLE 1.- SUMMARY OF EXPERItAENTAl DATA USING Twc: OAlA-REJECTION C R I l f R I A  

Disk radius =O.puS mete0 

sound 
c. 

m/ su 

340.690 
W.237 
341.395 
339.218 
339.598 
338.429 

351.lW 
335.321 
341.395 
336.139 
331.483 
338,429 

335.520 
331.755 

.-- 

, 

4.42 
4.62 
4.42 
4.62 
4.62 
4.42 

0.00161 
.OD9 
.a1 
.bo9 
.m 

1.24 

3.00572 
.m72 
.m58 
. m 9  
.m33 
.m2n 
~.mn 
.mm 
.m 
.00369 
.W3M 
,00333 

D.fm67 
.w#o 
. a 3 5  

0.00 
*righted slug 

d mss 
C.S50 kg 

0.W m mom 
C.9. 

0.00545 
.a545 
.m2 
.m23 
. a 1 2  
.0803 

o.mm 
.00373 
.am 
.00351 
.m33 
.00311 

0.00350 
.00383 
.m319 

4.21 
4.21 
4.21 
4.21 
4.21 
4 3 1  

3.4a 
3.517 

4.323 
4.315 
4.690 
5.060 
5 .m7 
5.w 
5.100 
1.165 
5.524 
5.981 
6.290 
6.691 

5.706 
5.714 
6214 
6.706 
1.110 
7 #a 

6.a9 
6.159 
66% 
bb% 
12W 
1.200 
1 . a  
7 .a 
8 r n  

0.w1n 
w 1 9  
287 
.618 
886 

1.24 

.010 

.ow 

.OM 

0.m 
,005 
.OM 
.0b0 
.010 
.016 
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TABLE 11.- SUMURY OF APP- MASS AND APPARElJT INEtTI.4 

RESULTS OF SEVERAL MVESTIGATIONS 

Lamb (Hydrodynamic) 

m a 

3 2.667 poa 

Dunning (Dipole) 

Dunning (Free space) 

2.136 poa 3 
3 2.699 P0a 
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APPRJDIX A 

Monopole Disk Model 

It is useful for comparison purposes ts determine the results for 

a pendulm using only the f ree space Green’s f’unction. 

conciitions the pendulum would be so srrexiged tha t  pressure on one face 

has no czfect on the other face. Such would be the case, for instence, 

for an idealized pendulum with the Paces isolated frm each other by 

an if if inite bafflo. Since the translational part of the normel pendu- 

lum analysis corresponds so closely with a distributed dipole disk, it 

s ta ids  t o  reason tha t  a baffled pendulum would correspond closely t o  

the well known example CD e distributed nonopole 88, fo r  instance, a 

loudspeaker i n  a baffle. The pressure distribution fo r  this configuration 

is  we= known (reference 2). 

Under those 

A star t ing point ie to be had with equation 7. 

2. 
2 1/2 
sin2 6) I 

0 0  

Since the first radiation term is not self-cancelling i n  t h i s  case it 

is  sufficient to re ta in  only the f i r s t  order power of k. 

61 



62 

0 0  

The first integral of this i s  found readily and is 

2 1/2 2 112 - U U U 
+ 2(;)Cos - sin* cp) J + q.1: cos + + (1 - (--I sin2 $1 9 d+ 

(A-2) 

The second term i n  the first bracket integFstes to zero because of 

symnctry. lienee the pressure is 

When the e l l ip t i c  integral is expemded by plca~ls of (24) t h i s  becomes 

5 p o d  e 2 4 
pi = -7 [(kal2 + 23 ka il - - + ... 11 (A-4 

This result is =act t o  the first power of (ka). 

The iorce on the disk is found by Integrating over the surface 
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vhere J, is measure4 about the center of t he  disk. This can be 

integrated direct ly  t o  giyt 

The imaginary pert of t h i s  equation can be used t o  calculate the 

w apparent mass. With k =; 

(A-7) 

l'kz term in brackets is the  acceleration of the disk. Hence the 

apparent mass is 

(A-8 1 3 m = 2.699 po a a 

Equation (I) can be transformed t o  the pendulum form by i n s e r t h g  

place of 6. Then equation (A-4) still holds f - pI with 
n 

u sin $ ) 8  fnetead of a and an additional ten.. Jcessery t o  

the description. Thia term is 

0 0  

Expending the exponential and keeping the first order terms as before 

t h i s  equation i n t e g a t e s  over r t o  the form 



as before, d i n g  use of the identit? 

and integrating, most terms drop out; and the result is 

( A-ll ) 

With the eE5ptic integrals expanded by (23) aad (24) this becanes 

pI and pII are then added to get the total pressure 



free space 

(A-13) 

The torque equation is obtahed by integrating the pressure 

equaticz oyer the disk vith the appropriate merit arm 

2 4 
f = T  a c .g. + J(ka)[ll c .g. (2 - *") 2 s  + 3:) ) eJot r i 

0 0  

2 4 - u sin $(1 - - &E) )]I u sin JI d dU dJ, 

Integration over J, first gives zero for a 3 l  terms containiag 

11 . Thus the result is c.g. 

Then dividing by (90) the attached inertia becanes 

(A-14 ) 

(A-15 

5 IB = 0.2792 p0a (A-16 1 



SOLUTION To THE EgfATfOEl OF m I O N  OF A PEWDULUM WITH AERODYNAMIC DRAG 

A perturbation solutior, to equation ( 5 0 )  is given in this appendix. 

This solution is due to E. M. McDaid and is given he 'e for the sake of 

ccmtpleteness . 
Equation (5C)  can be m i t t e n  

and 

Then equation (B-1) becaces 

3 
& = - -  1 '('eem) "D 

2 I 

where the fact that 0 E <u 1 can be verified by the substitution 

of numerical values. 

&tend the damein of the function to the sdditional variable 

66 



T &'e(t) 

lfcw apply the principle of maximdl bslance to determine v: 

Then applyin43 these derivatives back in the original differential 

equation results in 

ae 2 
+ €  ;2 (g) + s2e = 0 ,  at > 0 

or 

- E  2u+1 ;2 (E) * + s2e f 0, at ae < 0 

Consider the algebraic equations. They contain tenus i k  the 

o v  following powers of' E: & , E , ea, E, and &2u+1. Solving 

for v by equating exponents of variolas pairn of terms, the possible 



1 1 values of u are: -1, -. 2 0, 5, and 1. The E t e r n  thus 

becane, for each choice of V: 

v = O  

0 
E 

0 
E 

0 
€ 

1 
E 

1 
E 

1 
€ 

v = -1 

0 
E 

-1 
€ 

-2 
E 

& 

0 
E 

-1 
€ 

1 v = - -  
2 

0 
E 

1 
€ 2  

- -  

1 E 

E 

1 
5 

& 

0 
8 

E; 

2 
E 

t 

2 
€ 

3 E: 

1 v = + -  
2 

0 
E 

1 
E- 5 

1 
€ 

1 E 

1 
E 

2 
e2 

The best balance is yielded by v = 1 (the case v = 0) is  the trivial  

case of no scaling at a l l ) .  Thus (B-5) becomes 

Now assume a solution of the form 

Then 
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n u s  if  e > o 

. 
(ernt + 2 eo) + €[eltt + t 2 el + 2gem, + gem + ern] 2 + 6 2 (... 1 + E 3 (... 1 

+ ... = o (B-16) 

The resultant system t o  second order i s  

2 em. + r; eo = o 

%tt + c e1 = - [2ge,, + gem + e,] 
. 2 2 

with the initial conditions at t = 0 
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eo = o 9 = eo 

This system of equations is 

with the initial conditions at t=O 

eo = o 9 em = eo 

el = 0 

The above two systems of equations arc equivalent t o  



2 eltt + 5 e1 = -  GO^, + ii eM + le,le,J (33-25) 

with the i n i t i a l  conditione 

Solving for eo 

The function A. ie determined fromthe second equation: 

In order for secular terms to be absent, 



and 

First, choose = 9 

This implies g = C since the integration constant is arbitrary 

and 

T = €Ct (B-33 

The first equation is satiaried regardless of the value of 

second equation yields 
Ao. The 
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The frequency term drops out. Hence 

Thus 

or 

I t  is now necessary to  solve for 

der ivat PJe 

K.  From (B-27). taking the t i r  ? 

If this i s  evaluated at t - 0 
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But *an the initial conditions (B-26) this i s  equal to eo, so 

Hence 

b 

The final solution is then 

. r  
L J 

7 
$46) 

It CpiJ  be sseri that the aPlplitude is strongky influenced by the 

l’reque:.zy. However, the period ransins essentiall;r the same as for 
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undamped motion. 

hgoliubov and Mitmpolsky (ref. is), p. 75-77. 

that the method used here is soaevhat simpler and more elegant. 

"+'his solution is essential> the same as that of 

Hovever, it is thought 
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