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ABSTRACT

Equaticns are developed which give the pressure profile, the forces
ané torques on a disk pendulum by means of point scurce wave theory from
acoustics. The pressure, force and torque equations for an unbaffled
disk are developed. These equations are thern used to calculate the

apperent mass and apparent inertia for the pendulum.
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SYMBOLS

radius of disk

distance from center line to point of pressure applica-
tion

drag coefficient

speed of sound in air (at any pressure)

complete elliptic integral of tﬁe second kind

force on the pendulum surface

Green's function

acceleration due to gravity

total moment of inertia (structural + apparent inertia)
imaginary, vy

complete elliptic integral of the first kind

wave number -%

distance from pivot point to center of disk

distance from pivot point to center of aerodynamic
pressure

mass

period

atmospheric pressure

pressure at differential element area 4{ on the disk
due to all other sources on the surface of the disk
pressure at a differential element of area s8' due

to a source at s
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ix

r dummy radial variable for integrating pressure due to

other sources on a disk

Toax value of r for source at edge of disk

) reference area

s differential area of source of pressure

s' differential area of application of pressure

t time

a maximum speed of & sinusoidally oscillating disk
v velocity of pendulum c.g.

v velocity

x upper limits of integration on r

Z impedance

z normal to boundary

0 angle of swing of pendulum

A wavelength

po smbient air density

(¢} radial pressure coordinate from center of disk

T torque

¢ dumny angular variable for integrating pressure due to

cther sources
'] dummy anguiar variable for integrating force or
torque due to other sources

w sngular rate of oscillator or pendulum



Subscripts:

a

cg

apparent

center of gravity

incident at a differential area
area of pressure source

area vwhere pressure is applied

Dots over symbols denote differentiation with respect
to time.

Yats over symbols denote maximum values. Roman numeral
sub::ripts I and 1I denote pressures due o transla-
tion and rotation, respectively. Arabic subscripts

denote successive terms in the total pressure.



INTRODUCTION

An expression for the total pressure on the surface of a rigid
circular disk vibrating in a baffle was worked out by Rayleigh
(reference 1, Vol. II page 162). However, Rayleigh did not give an
expression for the pressure distribution across the disk. This was
done subsequently by McLachlen (reference 2, p. 101Z) by means of an
expansion using hypergeometric functions. Such a pressure distribution
is necessary if correc® moments are to be calculated for a disk in
rotation about a diameter as frequently occurs in experimental work.

The work of these authors can be extended reedily, in the
special case of low frequencies, to include the pressure on a disk
pendulum. The pendulum can be considered as an unbaffled disk in
rotation and translation. The net affect of the absence of a baffle
is to reduce the pressure on both faces since alir is free to travel
around the disk to the opposite face as the pendulum swings.

The pressure acting on the face of a disk represents .n inertial
force if dissapative effects are neglected. Hence the penfulum in
motion appears more mascive than when not in motion. The result is
that the period of the pendulum will be different at different air
densities. Physically the pendulum drags a certain amount of air with
it as it swings. This alr is referred to as attached mass, entrained
mass, apparent mass, or virtual mass by various authors. For a
rendulum, rotational effects rust also be considered; so apparent

inertias are also present as shown in sketch (a).
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Pendulum = Translation < Rotation <4  Pendulum
motion length

Sketch (a)

It will be the objective of this paper to show that the theoreti-
cal acoustic pressure profile can be investigated by breaking the
equations of motion into two special cases: (a) a pure translation
and (b) a pure rotation about a center line of the disk. A combination
of these effects, along with consideration of the pendulum support
distance, affords a description of the radiation and attached mass
by means of the principle by superposition and hence represents the
total effect.

A comparison will be made of these results with the theoretical

results obtained from classical hydrodynamics and from experiment.



Theoretical Mod~l
In the present study two models can be conaidered rs technically
feasible. One of cthese consists of ignoring the absence of a baffle
and thus treating the pendulum as a di .ributed monopole sound source

at low frequency. In this case the Green's function becomes the free

space Green's function for outgoing waves with infinite boundary conditions
in the positive half space. Under these conditions the pressure is finite at
the edge of the disk. The second model consists of assuming that the
pendulum is a distributed acoustic dipole. This leads to a somewhat
more complicated model than & monopole disk since under these condi-
tions a term must be included in the Green's function for pressure which
serves t< force the free spece term to zero at tie boundary. By
symmetry it aiso follows that the pressure must be zero at all points
in the plane of the disk beyond the boundary.

In the present ».per a dipole model will be used to calculate the
attac.ed mass of the disk.

The present paper 1s similar in some respects to a number of
papers already in the literature. However, several of significant
differences are discerneble. M. Strassberg (reference 3, p. 520)
considered the radiation field only s large distances from the
oscillating body. The result is that the force may be computed
correctly but no detailed description of the pressure distribution is
possible, although an approximate value can be obtained by setting
F = ma. Bouwkomp (reference L) and Wiener (refcrence 5; ireated the

sound fields diffracted around various obstacles. As such their



papers are valuable in that they complement the present work.

However, in both papers, fixed integration limits result in a more
complicated summation formulation which must satisfy matching condi-
tions at the boundary and,as such,these papers are more like pertur-
bation problems than is the present paper. Crane (referencc 6) takes
an approach which is closest to that of the present work in that a
free space potential field is considered along with an auxiliary

field to satisfy the boundary conditions. However, crane assumes

zero potential from the edge of the disk to infinity whereas in the
present paper this condition arises out of symmetry considerations

and the pressure is guaranteed zero only at the boundary. This results
in Crane following Bouwkomp's paper by insisting or a fixed coordinate center
for integration. The result is that in references L, 5 and 6 it becomes
necessary to des-ribe the pressure from a coordinate system which is
centered at the center of the disk; and hencec these authors are forced
to use summations of Bessel and Legendre functions. In the present
paper the pressure is calculated in a coordinste system located in
each instance at the assumed receptor point. While circular symmetry
is sacrificed by this approach the algebra becomes such thet the only
expansions required are those of the ordinary exponential. It should
be noted that in none of the above references is rotational moti.:
about a disk diameter considered, hovever, Mengulis (reference T)

does consider this for a baffled disk.



MATHEMATICAL MODEL

Monopole Disk Theory
Consider, first, a rigid disk vibtrating in arn infinite baffle
vith simple harmonic motion. The total force is determined by inte~
grating the pressure over the surface of the disk. The pressure at
same infinitisimal area ds' produced by the oscillation of some

nearby area ds is given by equation (1)

3o, ckﬁe"(m - kr)

dp, = ds (1)

hunr
where r is the distance between ds and ds', i is the maximm
speed of the oscillator, k the wave nmber, ¢ the speed of sound,
Py the ambient air density, and S tae surface erea of the disk.
Thus the total pressure acting on one face can be obtained by
integrating over the surface of the disk trea:ing each infinitisimal
area ds' as a point source (reference 8, p. 178).

The total reaction force acting on the disk is the integral of

-he pressure over the surface.

Tt f[ Py de’ @
8

Substituting equation (1) into equation (2) yields



Figure 1.~ Coordinates employed in describing the acoustic pressure at
ds due to a source at ds' for a disk of radius a.



(wt - kr)

3 o cki e"
F=- f fj = ds | ds' {3)
s'

The coordinate system for performing the indicated integration over

the front s wface of the disk is shown in figure 1 (references 8, 9,
and 10).
From figure 1, it can be seen that

il2
T S0 COS ¢ (a2 - o® sin® ¢] (%)

It can aiso be seen by inspection of special cases, thet the + sign
is the correct selection for all quadrants given the convention for
¢ as shown in figure 1. Rence for all situations

1/2

Toax =0 COS ¢+ (a2 - o sin® ¢] (5)

With this expression in the limit on r the pressure at ds

due to all sources on the front surface of the disk becomes, ia polar

coordinatzs centered at ds
1/2 )
3 0 ckil e‘““'t - kr)
Y dr d¢

0 -0 (6)

Py <

fn g cos ¢ + [a2 - o© sin® ¢

This equation can be written in a form where the limit is slightly

modified as
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. g 0.2 . 2 22
[vr a[: ccs ¢ + (1 - (:) sin” ¢)] 36, ok eJ(wt - kr)
o

L dr d¢
(n

The Green's function for one side of a disk radiating to the half
space in an infinite baffle (reference 11) is

wt - kr
=.e_J.(_.____) (8)

Gmonopole 21r
Dipole Disk Theory
If the effect of the back face of the disk is also considered the
pressure at the edge, i.e. wvhen r = 2a cos ¢, must be zero since the
wave produced by one face is exactly 180° out of phase with the other

snd tr- geometries are identical. Thus we specify a general Green's

function by
Jlut —kr)  J(wt - k[ba cos ¢ - 1))
Gdipole = 4ur - Ln{ha cos ¢ - r]

(9)

It can be seen that this choice of a general Green's function does in
fact produce the desired pressure at the edge.

Thern are saveral important points to be considered in relation
to this Green's function.

1. The function G satisfies the characteristics of a

dipole
Green's function; i.e., the first term on the right contains the
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essential singularity wh.le the first and second term together satisfy the

boundary conditions and do not contain any singularities over the region.
2. With this choice of a Green's function the pressure can be
determined by the application of Green's theorem since on the boundary doth
Go and the outward normal gradient %%; are zero while the pressure is
continuous. The line integrals over the boundary therefore vanish; and

only the surface integral contributes to the pressure.

3. The physical significance of the Green's function is the
following: The first term on the right of equation (9) is a monopole
source located at any point on the front face of the disk. The
second term is a monopole located alorg r on either the front or
back face of the disk having strength Just sufficient to cancel the
source on the front face at the opposite boundary. Some examples are
shown in figure 2.

The pressure on the front face of the disk is now given by

integrating G over the surface of the front face

(o] o] 2 2 1/2

3 0, ok a[-; cos ¢ + (1 - (:) sin® ¢) ] ke

P=—%7 r
0 “0
e—.jk[he. cos ¢ -~ r)

- “Tha cos = 7] rdrde (11)

By a change of variable let
x =& (12)

also let
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(13)

]
"
®ja

for convenience. These changes reduce the foregoing equation to the

simpler form

2 2 ,.\1/2
3 9 of eJut 2r mcos ¢ + (1 - m” sin® ¢) e-J(ka)x
P=—J— (ka) f S
(4]
e-J(ka.)[h cos ¢ - x]
- x dx d¢ (14)

{k cos ¢ - x)

Since the second term in the integrand must be expanded in a
Teylor's series before integration, there is no advantage to be
gained in not expanding both terms. The expansions are, for (ka) << 1,

i.e. very long wavelength

e-.](ka)x ={l_ Lkﬂlax R Lkajhx:s R ..‘} -3 M_&E—-} ..}

x x 2! 1Y) 1! 3!
(15)

and

o~J(ka)[l cos ¢ - x] ) 1 SEQ)QIh cos & - x]
[k cos ¢ ~ x} “Y[4 cos ¢ - x] T 2!

. gkalhlh cc')s ¢ -x|3 + }

2
JL&LM.L‘L?_Q__J_ (26)




Image on
back face

Wave
cancellation

%

Source on front face,
image on back face
and receptor on
boundary

Image on
front face

Maximal path
image wave Incomplete
cancellation

Source and image on
front face and receptor
half way between

Image behind source

r

dst

Source and image on opposite
faces of boundary, receptor
on opposite boundary

Image on
back face

Incomplete
cancellation

(7N

Source on front face, image
on back face and receptor
on front face

Figure 2.- Source and image arrangements for a dipole disk.
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Hence, to sufficient accuracy

1/2
Jut 21rmcos¢+(1—m sin’ $)

Jp.cle
-——h————'(ka) J J[‘?%—gg:—'—-mxy% LL(hcos¢-2xeud¢

3 2T mcos $ + (1 - n sin’ ¢)l/2

,jp cu e

——T——'(ka)f J J-‘—)—[hxcos¢-8cos ¢lx ax a¢
(17)

The second integrand on the right above is real and corresponds to
energy being radiated away from the disk. Both terms in the first
integrand are imaginary and represent pressure due to attached mass.

It can be seen that for ka << 1 th: second attached maess term is
negiigibly small in comparison to the first. However, as this term is
larger in magnitude than the first radiation term it will be carried
in the present analysis for the sake of completeness. The integrals

will be taken one at a time.

First Attached Mass Term

The first term in equation (17) can be written

) o o e¥t T mcos ¢ + (1~ n? sin® ¢)l/2
N 8
0“0

The iirst integral of this can be found directly from tables and

is given by
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A Jut an
Jpo,cue
P = _-g-ﬁ_—- (xa) ,{ 2mcos ¢ + 2(1 - u® sin’ ¢)1/2
2 2 \1/z
+ L4 cosdnjl - B cos ‘bh‘c(()i ; m_sin_9) d¢ (19)

Since an integral of the natural logarithm term in equation (19) is
difficult it becomes expedient to expand this term to make the
expression more tractable. An appropriate and highly accurate

expansion is the standard form

2 3 N 5

zn(l-x)s-[x+§-+-§-+§—+!;—-+...1 (20)

[x2<1 and x = -1]

This expansion is accurate over most of the surface of the disk
as can be seen from examination of figure 3. Also since x is &
function of cos ¢ the integral of this expansion exists and is

finite. Then

S WD TR (ka) T {2mcos ¢ +2(1 - me sin® ¢)1/2
(o]

2
2 2 \1/2
~mecos ¢ - (1 - m° sin® ¢)1/2 - %Tsin $) "]
3
2 2 \1/2
mcos ¢ + (1 - m° sin
- L"‘—&—ﬂ'éw—ﬂ‘_‘]_ + higher order terms} d¢ (21)




1k

Raising terms to the indicated powers and carrying out the integration

gives
A J(ﬂt
J p.clie 2 2
_ 0 49 - 12 m - 5 m T l-m i

(22)

Where K(g-, m) is the complete elliptic integral of the first kind
and where E(g-, m) is the complete elliptic integral of the second
kind. Now making use of the standard approximate expansions of the

respective elliptic integrals

2 L
K(g,m)ig(lﬂf-i-?z%‘--r...) (23)
and
AR SO G T ¥ ) (24)
E2,m)-2l-r-3gn—+... 2

and carrying terms to the fourth power in m
1 1 2 1 '3 h
(ka){1 - To- n” + Jzm - -zjszm + higher order terms]
(25)

A plot of this pressure profile is given in figure U across a radius
of the disk. In addition, & pressure profile for the back surface of

the disk is identical to that of the front surface except for a 180°



15

4

£+ L4 x]- mm (x-T)my o mostavdwop -'f eamPrg

g 2*

ov*

0z’

\| (x-1) u7

LRI

1

1

|

]

LA

|

sSwId} 981y} Surureidx uorsuwedxy

3

llhlllLlll

00°01-

08°%-

09°G-

ov°e-

02°1-

(x-1)ul



16

phase shift. The total pressure difference is thus obtained by

dc 7 the pressure on one side.

Second Attached Mass Term

The second term in equation (17) can be written

Jut 2rmcos ¢ + (1 - m2 sin® 4))1/2
Jp.cle 2
p, = Olm (ka) ff -('L;-L[h cos ¢ ~ 2x} x dx 4. (26)
0 0

The first integral of this is

J o, el ert o
Py = __o_&___ (ka)3£ {cos ¢ [mcos ¢ + (1L - n® sin® «9)1/2]2

_Imecos o+ (1 - n° sin® 4’11/2)3\ a¢ (21)
3 J

Raising terms to the indicated powers and carrying out the indicated

integrations over ¢ gives

3 pg ofi eI0t
P2 = p-

(x2)? & - $11 + 2®) 2E, w)

(1 -0 BZ m) -

wii-

2. _k 2y «(L

i 9](1 ~ n°) K(3 m) (28)
It can be seen that this term is smaller than the preceeding term

by a factor on the order of (ka)2 where ka << 1 at low frequencies.

Hence this part of the pressure term is completely megligible in
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ir rvlation to ihe first attached mass term. If the ellirtic integral
expansions, equations (23) and (24), are employed as before and the

results carried up to the fourth power in = the pressure becomes

3 b, cd 23U i 4
P2= 02 (ka)3[__]3-_+m_§.m2-—izm3+}a“m] (29)

A scaled plot of equation (29) is shown in figure 5.

First Non-Cancelling Radiation Term
Strictly speaking the first radiation terms from the front and
back faces of the disk cancel each other. Ir the present analysis
this cancellation was done in the expansion of equation (14). Hence
the normal monpole radiation, proportional to (ka)a, is not present

for a dipole. The first non-cancelling radiation term is therefore

gt o m cos ¢ + (1 - m2 sin? )2
Pp U € 4 2
P3‘-’-——-37'——-—(ka) IJ [x cos ¢ - 2 cos” ¢) x dx d¢ (30)
00

The integral of this expression over x 1is

a Jut 2r 3
p.cle 2 2 ,,1/2
p3 =_.0 = (ka)h f (m cos ¢ + (1 ;m sin® ¢)7'°] cos ¢
C
2 2 1/2 2 2 ]
- [mcos ¢+ (1 -m°8in” ¢)'%] cos ¢ ) ad (31)

Squaring and cubing as indicated, and int - ~:ting again over 27 gives
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p. ci em
.o
B3 3

xa)* (1 -m+ 3 o?] (32)
Elliptic integrals do not appear in the real terms.

It can be seen that for ka << 1 c¢his term is even smaller in
magnitude than the previous two terms. However, as this iIs the first
term which radiates energy away from the disk, it is important from

a thecretical standpoint. A scaled plot of (32) is given in figure 6.

Total Pressure for a Disk in Translation
The total pressure for a disk in translation without a baffle is

given by P + P, + p3 and is explicitly, with -:- for m

49 - 12 (%) - 5 (9)
P = oy i et (afEm) | ( )5 ¢
( (°)2 ‘ 2
1 - (= 3 2
g 1(ka 2a & o} O
- \—i'a-a——‘) k(5 I “'(;-)" (-390 + Q) EG T

2
1 c " C 2a
—-—(1-(-;) ) E( .-)-(—30--)(1-(—) )K( 5> m))

11_‘9.2_[1-(9- + = (33)
ka << 1

This same equation with the ellipi "¢ integrals expanded and

carried to the fourth power in (%) is
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2 3 L
_ ~ Jut/ (ks 1,0, 1,0 1,9 g
p=o,cle {41—12 N-tD-F2G + 5@ +2 @)

3 2 3 L
(ka) 1 ] 1,0 1 (O 1_ (9
I 3e Q-5 Q) - @ rx D

L 2
+ Ll-‘t; n-@Q+3@ ] (34,

V] [

Force on & Disk in Tranalatio..
The force on one face of the disk is obtained by integrating the

pressure over the surface of the disk. Using equation (3k4)
F= o eJUt L l{ﬂ.k_al [1- (-) - "—' (g) + —6' (—) 5553 (_) ]

3 4
el il g 1)’ L@’ @)
an“n ()1 G 40 ay (35)
With the indicated operations carried out, the force is

F = py ol %% a2(3(1.0681 (ka) + 0.2962 (ka)3] + [0.6100 (ka)*]}
(36)
Since the two faces of the disk are out of phase the total force

is twice this, or

ot e a2(3[2.1362 (ka) + 0.592h (ka)3] + [1.2218 (ka)®])

F=9p
0 (37)
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Acoustic Impedance

The radiation impedance is given by

7 = —L (38)

Hence the radiation impedance of the disk is given by

z. =0, ca2{3[2.l362 (ka) + 0.592% (ka.)3] + [1.2218 (ka)l‘]} (39)
as a point of camparison, the radietion impedance of & simple dipole
is well known. 1In terms of the present notation this impedance is

given (ref. 11, p. 317) by

Z, % oy ca?{3[2.0943 (k) + L.0WT2 (ka)3] + [1.047 (xa)*1} (k0)
It can be seen that there is reasonable agreement between the disk,
which is & distributed dipole, and a simple dipole at low frequency

as would be expected, with the disk slightly the higher of the tvo.

Apparent Mass
The apparent mass is given by the non-radiating, or imaginary

part of the reaction to the force.

F=- g-; (m_ v) (41)
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Or, if the apparent mass is assumed ccnstant

dv

F=- B, 3t (L2)
In the case of a disk in translation
Lo g ettt (43)

Therefore, using equations (42), (43), and the first imeginary term

of (37)
- 3
m, = 2.1362 Py & (Lk,

Pressure on a Disk Pendulum

That the effective mass and inertia of a disk pendulum are greater
in air than in avacuum can be readily deronstrated experimentally.
However, in the past, these effects have generally been measured
mechanically (ref. 12 and 13) and theoretical treatmen: has been by
means of classical hydrodynamics. The result led to suome difficulty in
visualizing the relative part played by rotational terms and transla-
tional terms, especially wnen the pendulum is of intermediate length
so that rotation and translation contribute significantly to the tctal
motion. An alternative approach is taken in the present paper; viz.,
to consider the pendulum as an acoustic sow.ce, albeit of extremely

low frequency.
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Consider a pendulum which consists of a disk suspended by a
massless support and swinging in still air about an axis in the plane
of the disk, so that the air impinges on the flat face of the disk.
If the motion of the pendulum is undamped, as it would be if the
pendulum were suspended in a vacuum, then the equation of motion for

small amplitude oscillation is

16 + m_ g zc.g. 86=0 (45)

The period of oscillation is given by the well known formula

_ 1
P=ony——p =1 (u6)
8 c.8.

with circular angular velocity
zc
ws= e (¥7)

In contrast, the damping moment acting on a pendulum oscillating
in still air is proportional to the drag (fig. 7) which, in turnm, is
proportional to the square of the velocity. In this case, the drag
force is given * y the product of the aerodynamic pressure %-pvz,
the surface area cf the pendulum on which this pressure acts S, and
the drag coefficient of the pendulum CD. The damping moment is the

product of the drag force and the moment arm. Hence, for small

amplitudes, the equation of motion with drag added is given by
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eZovivisc e +mogl _ 08=0 (L8)

ro c.g.

The moment of inertia I includes the structural and apparent moments
cf inertia. However, the restoring moment is related to the
structural mass m only. The apparent mass produces no restoring
force, since the buoyant force balances the gravity force.

The velocity term in equation (L8) is given by

V= 2aero (k9)
Therefore, equation (48) can be written as
1§+3‘-p(z )3sc élé|+m g L 8=0 (50)
2 aero D s C.&

It should be noted that this equation differs from the more commonly
encountered equation of damped oscillatory motion in which the damping
is proportional to the first power of the velocity.

Equation (50) is a nonlinear, second-order, differential
equation which does not heve e known solution. However, the behavior
of this equation has been examined numerically for a wide range of
constant damping coefficients. A typical solution is shown in
figure 8 which was taken from reference 13. It can be seen that the
period is nearly constant, is independent of the Aamping, and is equal

to the period which would be predicted on the assumption that no
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Weight

Figure T.- Physical pendulur showing relative orientation of principal
forces and distances.
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damping is present at all. The same result was obtained in the
approximate solution of equation (50) given in appendix B. These
results have also been verified experimentally by the author (not
published). The results, therefore, indicate that, if the damping is
proportional to the squere of the velocity, the period is essentially
the same as that for the undesmped situation. Hence, the circular
velocity is given to sufficient accuracy %y equation (47). The value
of this is that the period in air gives a measure of the attached mass.
In this equation ms, g, and Ec.g. are constants. For purposes of
this wualysis, it will be assumed that I depends only on the mass and
geometric parameters c¢f the pendulum and on the density of the attached
air. Hence I can also be considered constant ard w is constant. The
disk of the pendulum miy, therefore, be considered as a distributed
acoustic source oscillating at angular rate w. Two possible types of
motion will be present, viz. translation and rotation. Both types of
motion will produce pressure effects on the face of the disk. These
pressure effects can be broken up into forces and torques in the

following manner:

Pressure Across the Disk of the Pendulum
The maximum speed @ of any infinitesimal point on the surface
of the disk is deEermined by its distance from the pendulum support
point. Thus if é is the maximum angular speed of the pendulum,

i.e.; as it passes through bottom dead center
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-~

&= (2, -D)o (51)
where b is the iistance of the point where the pressure is applied
from a horizontal line through the center of gravity of the disk
(figure 9).

From figure 9
b=rsin (¢ - ¢) + 0 sin ¥

Then (51) becomes

~ ~ A
. .

4= lc.g. é ~0sin ¢ 6 - r sin (¢ - P)O (51a)

This equation can be inserted in equation (11) so that

2 ,
2n a[-g- cos ¢ + (1,.- (%) sin2,\¢)l/2] ~
) J oq °k[£c.g,é -0 sin ¥ 8 - r sin(¢-)8) Jut o JkT
Py L r
0 0

e-Jk[h acos ¢ - r)
(4 & cos ¢ - r}

-t

r dr d¢ (52)

This can be broken into two integrals,
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Center ling
of pendulum

Figure 9.~ Coordinates used to specity speed as a function of distance
from the center line of pendulum.
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2 1/2
on a[—-cos ¢ + (1 - (—0 sin ¢) ]

I }'J pock[l 6-0 sin v O]e e—Jkr e-Jk[h acos ¢ -r.
Py = £,

vﬁﬂ r  [bacos¢ -r] rdr
0 0
2 o 1/2
2n a[-cos ¢ + (1 - (g 31n ¢) ]
3 pock[r 51n(¢-w)e]e e-Jkr e—Jk[h a cos ¢-r]
S S bw r [bacos¢-r] rdr d¢
0 0 (53)

The first of these two integrals is seen to be the same as equation (11)
except for the substitution of the term lzc.g.g - g sin g] in place
of the constant {i. Henze the in@egral of this expression is merely
equation (33) or its expanded form (34) with [zc.g.g -0 siny 5]
re_lacing {. That is, part of the pendulum pressure profile has the
same form as that of the simple disk developed previously. If (53)

is written in the convenient form

Py TP * P (54)
with p; analogous to (33)

P, poc[ G-OSnlpB]e"m{‘u—l[l-n‘(-) ﬁl(%)

3 3 4

e 2@ e e @307 0T 1)
§ka2h fof l ,0 2

3 [1-(;)+§'(;)] (55)
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and 2 1/2

or a.[-g- cos ¢ + (1 - (%) sin® ¢) )
3 pockgejum o Jir e-Jk[h a cos ¢-r] 5 ,
Pir = 7 T " Th s cos 2] r° sini¢—y) ar a¢

(56)
0 0

Again there is no particular advantage to te gained in integrating
the Tirst term in the square bracket directly so both terms are

expanded in a Taylor's series. First change the variables by letting

x == {(12)
and
<9
m=c (13)

as was done previously. Then equation (56) becomes

. 1/2
2T m cos ¢ + (1 - u° sin® ¢)

-3 oyeb &I e J jsin(w) Hkadx  -3(ka)[b cos ¢-x] |

2 b x T[4 cos ¢ - x] x dx d¢

00
(s7)

The term in brackets can now be expanded a&s before with the result

that
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2 2 1/2
2rmcos ¢ + (1 - m* sin” ¢)
< Jut
J p.cO e
- -0 - .2 b cos ¢ - 2x
15 s S ke s ssm“"’) iim%.—x%

0 0

2
+L1%L(hcos¢-2x) xadxdtb

i/2
2ﬂmcos¢+(l-mzsiu2¢)
. s Jut
Jp.ch e 3
- ka? J‘Fin(w) ‘“’;-ﬁl— [k x cos ¢ - 8 cos® $]x° dx daé

0 o (58)

Again there are two imaginary terms in lower powers of (ka) before
reaching the first real radiation term. Aguin, the integrals will be
taken one at a time. Desigrating these integrals as P> p5 and Eg

respectively, one has the following.

First Attache¢ Mass Rotation Term

The first term is

2 . 2 12
2t m cos ¢ + (1 - m° sin” ¢)
2wt ‘
J p.cO e
. o - .2 4 cos ¢ - 2x 2
P, = - = ka Ifsin(‘b—'b)[;({(rc—“%_:;'} x” ax a¢  (59)

0 0

The first integrel of this gives
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aon
J Docé ert 5 > o X,
P, = -5 ks sin(¢~¢) xm<l>hxm cos ¢+(h cos ¢)°njl - T eos §
o (60)
vhere X is the upper limit
- > 1/2
x =mcos ¢ + (1L -n" sin® ¢) (61)

as was done in equation (20) 2n(l - x) is expanded

2 3 L 5
zn(l-x)=-{x+-;—+ + +15‘-—+...1 (62)

“ﬂ“
:1%

[12<l and x = -1]

This expansion is accurate over most of the surface of the disk

es can be seen from examination of figure 3. Hence to three term

accuracy

J DOCé eJl.l)t 2 2
P, =~ i ka sin(¢ - ¢) [xm + kxm cos ¢
0

x2 x3
m

x
- (4 cos ¢)2 {W___)_m + 2 +
cos ¢ 2(4 cos ¢)2 3(4 cos ¢)3

+ higher order tems} ] a¢ (63)

d¢
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A cancellation in the X, term yields

x2 3

X
ph=_—T—najsin(¢-W) '5_5—3 C:S %) da¢ (6k)

Ir x is vwritten explicitly in terms of ¢ and use is made o5f the

identity
sin(¢ - P) = sin ¢ cos ¢y ~ cos ¢ sin P (65)

the indicated integration over 2w can be perforr~d. The result is

2 jut
_Jpocee k2 12-7m+12m2-m3\ E(-!- )
Fy = 4 a 9m ] 2?
/lZ-hm;lram2+hm3\ T .
- | 5o ] K(a, m)) sin ¢ (66)

If the elliptic integrals are expanded by (23) and (2L) and terms up
to the fourth power in m are retained the above egquation becomes

° J(ut
J poce e 2,

ph=—-—T—-——ka {- +2m-%m2-%m3+-6]=gmh}sin¢ (67)

Wi

Second Attached Mass Rotation Term

The second term is
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1/2
mcos ¢ + (1 - m2 sm2 $)

Isin(’—&) [-(—)— (4 cos ¢-cx] x° dx d¢
0 (68)

J pocé e"wt
Pg = = e

N

The first integral of this expression is

2n
Juwt
Jo Oce e 3 L 3 1 bk,
-— g (ka)’a sin(M,[g cos ¢ x- - 5 x ld¢ (69)
0
where
1/2
xm=mcos¢+ (l-m2 sin2¢)
as before.

Then writing (69) explicitly in terms of ¢ ornd making use of

(65), (€9) can be integrated. The result is

J P ce IV (k: 33 3 L4 5. 0
P = - ~ "‘[(12+6m-11an+8um-aam+6m)a(-,m)
5 z'n L5 m 2
- (12 + 6n - 88n° + 3’ + 6’ - h2w”) K(Z, )] sin ¥ (70)

as before, the elliptic integrals can be expanded and terms up to mh
retained to yield
= T Jwt 3 /2_1 e_9 3 ____mem
Pg Jpocee (ka)a[g hm+g—m €™ * 180 ] L

(11)
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First Radiation Term in Rotation (That Does Nct Cancel)

The first non-cancelling radiation tern. is

2 2 2
2vrmcos ¢ + (1 - n” sin” ¢)

<
Jut
pO ch e

pg = - 5 (ka)haf I sin(M)[x3 cos ¢ - 2:(2 cos2 ¢ldx d¢
0 0 (72)

The first integral of this is

D jut 2w 4
DC ch e N xm 2 3 2
Pg = -~ (ka)'a | sin(¢ - Y)[® cos ¢ - 5 x; cos” ¢lap (73)
0
with
1/2

xm=mcos¢+(l-mzsin2¢)

As before, meking use of (65) and writing (73) explicitly in terms of
¢, the equation can be integrated. The result is

2 Jm
po cO e

pg = 5 (ka)’a [{ - 2m + o7

+%£hmw (74)

as usual, the radiation term does not contain elliptic integrals.

Pressure Distribution of a Pendulum
The final result of the foregoing analysis is the total pressure
distribution at low frequency of a disk pendulum of arbitrary size
and length. Cne has merely to add up the pressures being careful to

substitute [2c.8_ - 0 sin YJ@ in place of {i in P> Py and Py
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I'he pressure is

g

a 2
_depelr - o0 sinyle &) Mg - 120) - 5(T) )
P = b (ka) 12 Bl

I.\ 3
- @ | 3ece et 12 - 79 + 28 - & )
Tz KTy (e e}

9 —
a

2 3
o} g g
i (12 - h(;) - 12(;) + l\\(-m-) ) .
g
9(‘;) )
- o sin y]8 2
I ka)? | (—2-- 2y + (D &, 2

n g 9
3(;)

J pclt
+ 0 C.g.

2 2
- @G D -S| a- O xE D

3 g
3(%)
5 Jut
J 0.6 e 3 2 3 }
o {elap 4 6@ - 112T) 4 8D - 28(5)
o X a a a a
k5(7)2
Gy o T g, g a,? gy’ g,
+6(0) JEG, 7Y - (12 + 6(7) - 8BC)) + 36(7) + T6(])
5 p.clt - o sin VY] ! L .2
- 820G sin p » LSk M) 11 - (& D
S Jut
p.cBe 2 3
0 by .1 g g 1.0 o ’
$ e (wa) alf - HD 4 (D 43D T s (\5)

If this same equation is written in a form with the elliptic integrals

expanded the result is



Lo

J p.clt - o gin w]e eJut 2 3
= 0 c.g. 1l,0 1,0
P 2 (ka)l1 - §3) - Q)+ Q)
b 3op ch edut 2 3
0 g 1,0 1,0
5526(2) 1+ —— (wa)al- 3+ 207) ~ {T) - )
I ) p.clL - g sin w]g eJut
+ 5D 1 sin g+ 2 > )~ 1+ @ - 5D
L’ 1 5 et (ea)? af- 3o 1O - 3O
T 16'a gila) 1 -3 Poed e (ka)” a[- 7+ 30 - 5T
3 L clt, . -0 sin vl &
P 20 - A0 ) sin g+ et 8 eI (xa)* [
°* Jwt
2 p.cO e
-k e e ) alp - 2D+ € )’ +-<-> Isin ¥

(76)
Vertical Preasure Profiles
Equation (76) contains a specisl case of particular interest.
Ir 2c.g. is assumed to be zero this equation reduces to a disk
suspended along its centerline. Under these conditions the moticn
is a pure rotation. Of course, a real disk under these conditions

would have no restoring moment, but this could be overcome by properlyv

weighting the lower edge of tue disk. The special case of (76) which

results is
2 Jwt
p.cO e 3 4
p=-—p—a a(u){ 1O -L@ - %O +5;%(-§->}
+ §(ka)3 + H9) - 3—(9-) 1 °h
J rArUdint "F(( - F50'a)

- (xa)" {% -2 + 24 stny (1)
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The pressure has a simple sine dependence on ¥ but a somewhat
more complicated dependence on radius. The terms of (77) are plotted

in figures 10, 11, and 12 in scaled form with Y = Hence these

LS
5
plots represent vertical pressure profiles across the pendulum. Since
no translation is present the pressure given by (27) appears along with
its mirror image for ¢ = - -g— as 8 torque on the disc which gives rise

to an apperent inertia. As usual, it can be seen that at low

frequencies, ka << 1, the higher order terms are insignificant in

relation to the first term.

Force on the Pendulum
The effect the pressure has on the pendulum can be broken up
into pure forces and torques. The force is obtained by applying

equation (76) for the pressure in equation 2. In this case

a
j{d pOC[1C;B
0

o N J poCé e 2 1 g 2 0

-555-6(-;)]4-———6———-1(9. -'§'+2(:)-%(§') - 'a' %E(—) }sin ¢

- 0 8in Y]

D] Do

2 3
el a1 - HD) - D+ D

Q\————‘g

Jpc[l O-Osin\p]e A 3 L
+ 0 5 (ka)3[- 1 =+ (c i‘( ) T(%) + %g(%) ]
Y Jwt
J p.cO e
-2 (ke)3 a[ 1(" 2(%) -%%9-(%) Jsin ¥

2 2
+ ogelty g6 = 0 stn W1 (ma)' 2 - (@) + 1))

2 3
¢ ) e} - 2D @) Il vl (18)
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€ince the order c? integration is immaterial in this instance,
it is advantageous to integrate over Y first. In this case &ll

terms containing «in ¢ drop out; and the force equation becomes

2 3 a - 16 a
k 2
+ﬂ?—u-(%+%@;\am (19)

This is seen to be identical to equation (35) except that © is

replaced by lc g 8 . Thus with the second integratlion carried out,

the force on one face is found to be

F = -pyel, 6.8 ejwtaz{J[l.OGBI(ka) + 0.2962(ka)3] + [0.6109(ra)h]}
(80)

The force on both faces is twice this, or

F= -poclc'g.g eIte2(412.1362(ka) + 0.5924(ka)3] + [1.2228(ka)"]}
(81)

Attached Mass cf the Penduium

Since the acceleration of the peadulum is given by
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v _ § et
it Jw zc.g.e e (82)

the attached mass is found by dividing the first term of (81) vy (82)
z = 2.1362 p a3 (83)
a 0

This is exactly tue same as was found for a simple disk in translation.

Torque on the Pendulum Disk
The torque equation is obteined by integrati.g the pressure
equation over the disk with the appropriate moment arm. If the moment
arm is selected from the centerline of the disk
2n

T = =

O'—-—ﬂ

a
Jp(o sin ¢)o do QY (84)
0

or, applying equation (76) for pressure
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2n & Jut
3 o.cl2 - o sin w]e e 2 3
-jj S— (ka'(1 - H1S) - G + T
0 0

32'a

L JoceeJ“"‘ 3 y

- 5220+ ——— (madal- 3+ 2@ - ,;( -5+ HD) sy

<
3 pOC[zcgg - o sin y]0 ert(ka)3 1 2 3

N-& o 1,0 1
+ 2 -3+ Q-3 -3

J9t(xa)3 af-

1 U 0
vHD 3@

O\

-3 poce e

poc[IQ;B;,- o sin Y] @
3

2
(ka)h-() -—()]

"ocgejmt b 1 3,0y . (62 . 1,03
+ ——— (ka) a[‘l'; - %(;‘) + (;) + 3‘(;) }sin @) (o sin ¢)o do ap

3
< (85)
As before, since the order of integration is immaterial, the best
policy is to integrate over § first. In this instance terms

containing lc g drop out of the integral and one has



a
- L 5 6 7
- _ - Jut (ka) 3_1¢0 1o 1 o _ 5 6.
T "I{""ocee > O -Fe "2 32'1E 256 %)
a a a
0
'.‘Jut
joecde 2 3 L 5 6
0 o€,20° 19’ _192,1 g
M B e bl R Sl S R I
a a a
‘.‘Jut
J pcO e h 5 6 f
0 3 i 3,0 1o 1 ¢ .1 g
- 2 (ka)” {307+ -3~ 18 3 & ]
~ 3 N 5 6
f dut 3 12,100 506,90 1o
-3 0408 e (ka)a [~ g 0" + ¢ . " %- S+ %g- - 156 ]
a a a
° Juwt
p.cO e b 5
- () [P -S4 1
a
2 Jut
p.cO e 3 4 5
¢ e uuhqﬁf-%§-+%w§2§}m (86)
a a

If this equation is integrated again and simplified the torque due to
the pressure acting on one face of the disk is

~

T= npocé Wt

ka’(3[0.0372 - 0.1046(ka)?] + [0.0565(ka)31} (87)

The total torque due to the pressure on both faces is twice this, or

Jwt

T= npocg e kaS{J[O.(r{hk - 0.2092(ka.)2] + [o.1130(xa)3]} (88)

Apparent Inertia
The apparent inertia is given by the reaction to the torque.

In the cas2 of a simple disk in translation there is no torque and,
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therefore, nc apparent inertia. However, in the case of a pendulum

_ . a8
=1, & (89)
and since
dé - 2 Jwt
ag-duwbe (90)

The real part of Ia’ to first order, is given by
- L'y 3, .2 \
Ia = 90[3 m a]) a“ [0.0279] (91)

or

- 5
Ia 0.1169 Po2

The apparent inertia due to both faces ia twice this, or
L 3, .2
3 . 2
Ia = 90[3 m a”] a“ [0.0558] (92)
or

5

I, = 0.2338 Pt (93)
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DISCUSSION OF RESULTS

The results of the present investigation can be compared with
krowr results from similar investigations in several instances. First,
the impedance from a distributed dipcle is somewhat larger than that
which would be calculated from a point dipole of equivalent strength
as was shown in equations (38) and (39). The reason for this is thet
a distributed disk dipole acts to some extent as its own baffle. That
is, pressure waves originating in the center of the disk have to travel
farther to get around the edge than is the case for a point dipole. In
doing this the sound is attenuated by %- and thus cancellation be-
tween the out of phase components is less pronounced. If this is the
case, then an upper limiting case should be available in the face Space
Green's function model since this is equivalent to an infinite baffle
with no phase cancellation. A comparison of the dominant first order
pressure along a radius between the free space model given in Appendix
A end the dipole model is given in figure 13. It can be seen that the
pressure due to the dipole drops off wore rapidly all along the
radius. If more terms had been carried in the expansions the dipole
pressure would be exactly zero at the edge of the disk. That is, of
course, not true for the free space model since zero boundary condi-
tions were not specified in the Green's function. A similar comparison
of pressures is given in figure 1L for pure rotation. Here the pressure
builds more rapidly and to a higher value before falling off near the

edge. The result is that a dipole model predicts less torque since the
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meximum pressure is applied near the center of the disk with a
shorter effective lever arm.

The results of the present analysis can also be compared with
experiment. Table I (modified from reference 13) gives experimental
values of (ka) for the pendulum experiment done in this reference. It
is apparen. that for all measurements ka < .006. Hence the pendulum
of this experiment should be ée<scribed acoustically to sufficient
accuracy by the first order terms developed in the present paper. No
direct acoustic pressures were measured in this experiment. However,
the attached mass and inertia were calculated. These parameters are
given in Table II. In addition accepted values of these parameters
from hydrodynamics are given. In this latter instance (referepce 1k4)
the attached mass is calculated from the kinetic energy and free
stream velocity of air flowing past e disk for a non-viscous fluid.

The conclusion to be drawn from this table is that the dipole
model gives the lowest attached mass value of all models.

Since the experimental values are higher than the values of any
of the theoretical models it seems likely that additional air is
dragged along with the pendulum which remains unexplained. Some of
this mass is likely to lie beyond the edge of the disk where only the
model given by Lamb is rigorously applicable. Some support for this
idea is to be found in that the free field model of Appendix A s.so
gives higher values, and it waas pointed out previously that this model
does not presuppose zero j. :ssure at the edge of the disk. An

additional physical effect not accounted for by the present theory is
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the possibility of wake formation behind the disk as it swings.

Since the period of the pendulum is not measurably different for
amplitudes between approximately thirty degrees and the limits of
visual perception this is not considered significant. However, the
possibility of vortex shedding in a wake is not to be completely
discounted. For the same reason direct friction effects on the
pendulum are not thought to be significant. However, it is quite
possible that attenuation of the pressure wave as it travels around
the edge of the disk occurs. This could be of two forms. Either

the wave shape could spread so that peak amplitude is lowered, or the
wave could fail to diffract around the edge of the disk for reasoas
which are not at present explained. It is not thought that node
formation is a factor in the present situation since the effect would

be to lower further the already low attached mass values (reference 2).



CONCLUSIONS

It is feasible to describe the motion of a disk pendulum by
breaking the motion up into pure rotation and pure trenslation and
treating <he surface as a distridbuted acoustic oscillator operating
at very low frequency. However, the dipole model aanalysis of the pre-
sent paper gives lower values for attached mass and attached inertia
at low frequency then either the hydrodynamic model of Lamb or
previous experiment undertaken by the author. The conclusion is
reached that, although this model is reasonable from a qualitative
standpoint, it is only marginally adequate in its present form to
explain the experimentsl results. The model is also not in satisfactory

numerical agreement with hydrodynamic theory.
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SUGGESTIONS FOR SUBSEQUENT RESEARCH

Since the present analysis gives a theoretical value for pressure
at any point on a disk pendulum it would be useful to know actual
experimental relative pressure profiles across a large disk pendulum.
The scaled nature of the theory suggests that it would not be necessary
to obtain absolute numerical results since pressure relative to pressure
at the center of the disk would be satisfactory; thus a simple experi-
ment could be devised. It would also be useful to have wind tunnel
pressure profile data for a simple disk in a very low speed air stream
at various angles of attack. Wind tunnel data at the extremely low
speeds suggested have not been readily available in the past. This
information should be useful in determining the effects of wake and
vortex action if present and should also give an idea of the air flow
pattern across the leading and trailing faces of the disk.

It is also suggested that a study be made of the effect of the
test facility walls as the necessity for working in a finite cham“er,
the wavelength is one to three kilometers in reference 13, may impose
additional boundary conditions not taken into account in the present
study. In addition this problem is amendable to scaling as has been
done in the present paper by means of the factor ka. Thus it should
be possible to obtain results a higher frequencies for shorter wave-

lengths as, for example, by loudspeaker experiments.
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TABLE .- SUMMARY OF EXPERIMENTAL DATA USING TWG DATA-REJECTION CRITERIA

[Disk ragius =0.9525 meter)

o

Speed of : 2o data-rejection criterion | 1.50 data- rejection criterion
A sound y x Mass, m, Denmya, h i m @) ®

meters m/c'm C:) k9 kg m @ Mean period, | Standard deviation,| Mean period, |Standard deviation, |
sec 0, sec 4 0, Sec
1098.46 | 3a0.6% | 0.00572 {0.00545 42 0.00161 0.00 3220 0.00¢ 3.0 0.000
121532 { 340.237 | .00572 | .00545 X"} 0339 | weighted slug 3.2% .000 3.2% 000
1126.02 | 341.3% | 00558 | .00532 42 287 of mass 320 005 3.297 005
1142.48 { 339.218 | 00549 .00523 LX 3 509 6.850 kg in 010 EXx 153 ol0
1167.89 339598 | 00538 | .00512 4.8 815 09 mwom , 343 009 3.440 000
1190.00 | 338.429 | 00527 ) .00503 X 1.24 cg. sn 018 517 0i8
1521.35 { 351.790 { 0.00413 10.00393 421 0.60150 457 433 0.005 433 0.005
1468.03 ) 335.327 | .00428 | .00408 421 349 457 435 005 4375 005
1602.85  341.39%5 | .003% | .00373 421 28 457 45% .000 469 000
1702.76 ] 336.739 | .00369 | .00351 421 618 - 457 5.060 006 5.060 .000
1795.201 337.483 | 00350 | .00333 421 886 457 5.7 00 5307 010
1886.84 | 333.429 | .00333| .00317 421 1.2¢ 457 5.582 de 5.582 016
1712.C3 | 335.520 | 0.00%7 |0.00350 42 0.00166 6.40 5.100 0.000 $.100 0.000
174533 337.755 | .00360| .00343 421 Bu 6.0 5.168 .008 5.165 005
1875.58 | 339.624 | .00335, .00319 a2\ 29 LY ] 5.524 .008 5.524 005
2046.64 | 341.185 | 00307 | .00292 421 602 5.0 5.99%0 018 5.987 0i0
23713 | 340572 | .002M | .00280 471 810 620 6.285 G15 6.290 ot
2284.79 1 34).1% | 00275 | .00262 42 L2 640 6.691 010 6.691 010
1945.26 ; 340,69C | 0.00373 [0.00308 421 0.00161 8.04 5.705 0.005 5.706 0.005
1969.65 | 340.740 | .00319 | .00304 [ ¥3 0% 8.04 5.175 016 5114 012
211555340212 | .00297 | 00263 421 9 8.04 6.208 016 6214 .on
2293.13 | 341,468 | 00274 | .0026) [ ¥ 60 8.04 6.705 o 6.705 037
2425941 339.5%8 | 00259 | .0qed7 42] a1 8.04 1.140 016 1.140 016
575.08 | 338.429 | .00244 | 00232 421 1.24 .04 1.504 019 1.600 .000
2073.66 | 340.639 | 0.00303 }0.0L289 421 0.0016) 9.14 6,088 0.008 6.089 0.007
2004.40 | 340237 | .0030C | .00286 421 0% 9.14 6159 008 6.15¢ 008
Z268.30 1 341.395 | .00277 | 00264 a2 2 9.14 6,640 016 6635 on
2260.14 | 339.001 | 00278 | .00265 42) . 9.14 6.668 020 6.6% 005
244482 | 339.218 | 00257 | .00245 421 609 9.14 1.208 018 1208 o010
2435341 337.834 | 00258 | 00246 42 614 9.4 1195 018 1.200 .000
2585.67{ 339.192 | .00243 | 00231 42 ;1) 9.14 7.5%6 oM 1.608 .010
257508 | 338.247 | .00244 | 00232 (¥ 82 9.14 1.602 016 71.602 016
20,151 338.829 | 00229 | 018 421 1.24 9.14 8.0 05, 8.009 015

2)Data are rejected if the absolute value of the deviation sxceeds two times the standard deviation.
©)0ata are rejected.if the absolute value of the devistion exceeds 1.5 times the standard deviation.



TAELE 1I.- SUMMARY OF APPARENT MASS AND APPARENT INERTIA

RESULTS OF SEVERAL INVESTIGATIONS

Lamb (Hydrodynamic )
Dunning (Dipole)
Dunning (Free space)

Dunning (Experimental)

n
a

2.667 poa3

2.136 poa3
2.699 poa3

(2.9269 :_0.1195)poa3

I
a

0.355 Doas

5
0.234 Po2
5
0.279 ol

(0.3933 + 0.0127)p 8°
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APPENDIX A

Monopole Disk Model

It is useful for comparison purposes ‘- determine the results for
a pendulum using only the free space Green's function. Under those
conditions the pendulum would be so arranged that pressure on one face
has no (fect on the other face. Such would be the case, for instance,
for an idealized pendulum with the faces isolated from each other by
an irfinite baffle. Since the translational part of the normal pendu-
lum analysis corresponds 80 closely with a distributed dipole disk, it
staads to reason that a baffled pendulum would correspond closely to
the well known example cf a distributed monopole as, for instance, a
loudspesker in a baffle. The pressure distribution for this configuration
is well known (reference 2).

A starting point is to be had with equation 7.

2 1/2
on a[% cos ¢ + (1 - (%} sin® ¢) ]
[ J DOCk ﬁ e.j(h)t-h"
P, = J - dr d¢ (1

o0

Since the first radiation term is not self-cancelling in this case it

is sufficient to retain only the first order power of k.
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2 1/2
on a[—- cos ¢ + (1 - (-—) sin’ ¢) ]
J(Ut)

J Po ck G
P; =J J' Tin (1 - Jkr] dar a¢ (A-1)

0 0

The first integral of this is found readily and is

an
pock @ eI ka° .. . 0%, 2 2
L T = 11+ () (cos” ¢ - 8in” ¢)
o
2 1/2 2 1/2~
+ 2(%)cos (1 - () sin? ¢) 1+ a[2 cos o+ (1-(D) sin® ) 1)aé
a a a a
(A-2)
The second term in the first bracket integrates to zero beccause of
symmciry. Hence the pressure is
p,cl eJut 2
_ Yo J(ka) _.m o _
p; = [(ka)” + SE=EE(3, )] (A-3)
When the elliptic integral is expanded by means of (24) this becomes
. %o ct Wt
-—;;—— [(ka) + 23 xa {1 - %5-(-) + ...} (A-h)

This result is exact to the first power of (ka).

The force on the disk is found by integrating over the surface

p
F=- o°d a s S [(xa)® + 2] ka{1 - %r(-"—) }lo do ay
0 (A-5)
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where Y is measured about the center of the disk. This can be
integrated directly to give

T p.cli W

24
F=- ._._°..2_..__ l‘-%—-c. 3(&) ka3 (a~6)

The imaginary part of this equation can be used to calculate the

apparent mass. With k = -'3

- 3 ~ Jut _
Fymai = (%%)w Pes [ wie] (A-T)
The term in brackets is the acceleration of the disk. Hence the
apparent mass is
m= 2.699 p. a3 (a-8)
a 0

Equation (7) can be transformed to the pendulum form by inserting
(51a) in place of {i. Then equation (A-L) still holds f - p; vitk

(Ec g. = O sin V)6 instead of @ and an additional ter. :cessary to

complete the description. This term is

2 1/2
on a[% cos ¢ + (1 -(%) sin® ) 1

N Juwt
JockBe
Pyp = - 0 Tn I K re 3% cin (¢ - y)ar ap (A-9)

-

0 0

Expanding the exponential and keeping the first order terms as before

this equation integxrates over r to the form
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3 Jdwt  2m
J p.ck 6 e 3 3 2
by = - —O l [!-;— (D) con ¢+ 3D cos® o1

h] -~

2 x/z 2

- (-E-) sin® ¢)  + 3(%) cos ¢(1 - (g-) sin® ¢)

2 5 3/2 2 2
+ (- sin®0) )+ A (E) (cos® ¢ - sin® §)

o g2 2
+1+ 2(;) cos ¢(1 - (;) 8in“ ¢)}] sin (¢ - ¢) a¢
as before, making use of the identity
siu (¢ = ¢) = sin ¢ cos Y - cos ¢ sin ¢

and integrating, most terms drop out; and the result is
~ 2
poca el 2 .0 L 1+ (%) y
Py T w(ka) a(';) +J 3‘“)‘ -—?!-_;—— E(:‘;, Y

e
1- (@
- ___(_&_)_a___ K('g" %) ] sin ¢

a

(A-10)

(A-11)

With the elliptic integrals expanded by (23) and (2i4) this becomes

"ocaeamo 2 1,0:2 1,0

pI and Pry are then added to get the total pressure

(A~12)
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< Jwt '
P,CcO e 2 i
Py = —_Io — {lc.g_(ka)a + J(n)“’c.g.{a - %(%) - %5(%) }
free space
-osiny {1 - D 21;.(9.) 13 (A-13)

The torque equation is obtaired by integrating the pressure

equatic: over the disk with the appropriate mcment arm

-~ ar a
Jwt
c0 e’ - 1,0 2 3_(0 b
T= ——T-— {(xa) L. g * J(ka)[l-c.g.(Z - '2'(;) *35 ;’) )
g O
- ¢ sin P2 - H9) 25(°) )]} ¢ sin ¥ 0 do 4y (A-1k)

Integration over ¢ first gives zero for all terms containing

A . Thus the result is
c.g.

a

= K {03 3¢ °7} d

R e LG SRk
0

5 Jut
== [(y;) 512)00 ] we e

(A-15)

Then dividing by (90) the attached inertia becomes

= 5 -
I, = 0.2792 pya (A-16)



APPENDIX B

SOLUTION TO THE EQUATION OF MOTIONK OF A PENDULUM WITH AERODYNAMIC DRAG

A perturbation solution to equation (50) is given in this appendix.

This solution is due to E. M. McDaid and is given he e for the sake of

completeness.

Equation (5C) can be written

)sc, . . n gl
___!EEQ.__SE.glel +‘_£_1fidi; 6=0 (E~1)

3
l.gff )y’s ¢

Then equation (B-1) becomes

€ =3 3 (B-2)
m gl
0+c0|6] +28=0 O0<e<<1 (B-4)

where the fact that 0 < € << 1 can be verified by the substitution

of numerical values.

Extend the domain of the function to the sdditional variatble
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T = e g(t) (B~5)

Now apply the principle of maximal balance to determine v:

-3 tE 835 (B-6)
2 2 . ne . 2
a6 3°8 v ' 38 2v ‘2938 v " 90
SZ=22s0eVg reV gl Vg2 (B-7)
dt2 at2 atot at2 oT

Then applying these derivatives back in the original differential

equation results in

2 a2 . .2 . 2
2% ., v 2% . 2v:3% . vuae 208 Vil ° 30 28
st Byt e 8 e*e“ar*e(at) +2e 3t 31
at T
+2v’29-9-2+626 0-3-9->
€ 3t * 3t
(8-8)
or
2 . .2 2 2 )
o, ,vi2% , 2v:d®e, voe (2 w1 : 38 20
2t By tE BT ptE 8t'£(3t) -2 T ey
at 3T
B I 3 | N N LI
& \or1 * 3t
(B-9)

Consider the algebraic equations. They contain terms in the

following powers of =¢: eo, ev, ea\’. €, evﬂ, and €2v+l. Solving

for Vv by equating exponents of varions pairs of terms, the possibdble



values of Vv are: -1, - %3 0, %3 and 1. The € terms thus

become, for each choice of V:

v=_0 v = -1 \)=--]2= v=1 \)=+%
e0 E0 EO eo 80
80 C-l € % € € %
e 2 et e et
El € € € 81
t»:l E0 € 1 62 81
2
El e'l € 53 E%

The best balance is yielded by v = 1 (the case v = 0) is the trivial

case of no scaling at all). Thus (B~5) becomes
T = ¢ g(t)

Now assume a solution of the form

[}
6= Z ei(t, r)e:jL

J=0

Then

(B-10)

(B~11)



48 _ 39 * 38 . 2 .
at “at tEB837 = Ogy v (B v Oy) v (O, +gf )+ ... (B12)
: 46,48, _ 2 2 .
If 8>0,¢ —-dtl-—dtl = (8, ) + e“(20,, (0, +6,,)) + ... (8-13)
. a8,d8; _ 2 2 . ,
If 6<0, ¢ EEJEZJ = -(8,,)° - €°(26,, (6, + & 6,.)) ... (B-14)
2 2 . a2 2 )
a<e _ 3% %8 -~ 38 . 2 "223% -
2=t eyprteeyte 8 To=0,, velb, +2, +eb,)
dat ot 9T
+ ez(e + 2&6 + 820, + éze )
.t 1ltt 1t ott
(B-15)

Thus if 0 > 0

2 2 . . 2 2 3
(0 + eo) + ¢[o + el + 2390tr + geoT + 00t] +e°(...) +€7(...)

ott 1tt

+...=0 (B-16)
The resultant system to second order is

2
Bpee * 5 0 =0 (B-17)

2, . : . 2
84t & 8, = - [2880tt + B8, *+ 90t] (B-18)

with the initial conditions at ¢t = 0
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ot 0
(B-16)

1t Y8 =0

Also, if 6 <0
2 ‘ . 2 2 3
+ 0 e1 + 2390tT + geoT - QOt) + e“(...) + €°(...)

2
(6 st e 90) + (8

ot 1tt

+ ...=0 (B~20)
This system of equations is
2, _
) +8. =0 (B-21)
8 + cze = - [2;6 + @6, - 62, ] (B-22)
1tt 1 ott ot ot
with the initiel conditions at t=0
8.=0 . 8 = %
(B-23)

8. =0 °1t"é°o¢’°

The above two systems of equations are equivalent to
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GOtt + 60 =0 (B-24)
2 ‘ o
B4 * 50y = - (280, + &6, + |e°t|00t] (B-25)
with the initial conditions
60 =0 . eOt = 60
(B-26)
61 =0 R elt + gGOt =0
Solving for 60
8y = AO(T) sin(gt) (B-27)

The function Ao is determined from the second equation:

By * 8y = - [2&&6(1‘)(:08((1’.) + @ad(t)sin(gt) + Ag('t)c2c08(l;t)|005(l;t)|]

(B-28)
In order for secular terms to be absent,
2r
J sin(ct){ZécA(')(T)cOS(ct) + gA'(1)sin(gt)
0
+ A5(1)z%co0s(zt)|cos(zt) at = 0 (B~29)
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and

an
‘j COS(Ct)f2éCA6(T)cos(;t) + gA'(1)sin(gt)
0
+ Ag(‘t)czcos(t;t)lcos(ct)[}dt = 0 (B-30)

First, choose g = 0

This implies é = { since the integration constant is arbitrary

g =1t (B~32)
and

T = gt (B-33)

This simplifies the above equations to

on
f sin(ct){2;2A6(T)cos(ct) + czAg('r)cos(t;t)[coa(ct)|}dt = 0 (B-3k4)
0
o
J cos(;t){etaAa(T)cos(ct) + CeAg(T)cos(ct)lcos(ctH}dt =0 (B-35)
0

The first equation is satisried regardless of the value of A The

o
second equation yields

T2



2 8§ 2.2 _ .
ang A(')('r) +3¢ AO(T) =0 (B-36)
The frequency term drops out. Hence
Al(T)
—-- % (3-37)
Ay(T)
Thus
1 It
W= -3'17+ K (B-38)
= ke—;.t'. + K
3n
or
1
a(T) = Tert (B-39)
0 gﬁt + K

It is now necessary to solve for K. From (B-27), taking the tir -

derivative

20 A (1)

=2 s 8a,(T)con(Lt) + - sin(13) (B-40)

ot

If this is evaluated at t = 0

T3



= CAO(O) (b-b1)

But from the initial conditions (B-26) this is equal to 90, so

‘ay = 8
AO\O) =7 (B-42)

also frow (B-39) et t =0

=1
Ao(o) =X (B-43)
Hence
k=5 (B-bk)
e0
So, in (B-39)
éO 1
{ 2 ewame
AO.T) 2 R (B-45)
1+ D )
3n

The final solution is then

0 1
= — sin(zgt) + o(e) (B-46)
0 I ( €8 t
-0
1+ \ 3r

It c2i be szen that the smplitude is strongly influenced by the

freque:.cy. However, thue period remains essentially the same as for

7%



undamped motion. This solution is essentially the same as that of
Bogoliubov and Mitropolsky (ref. iS), p. 75-77. However, it is thought

that the method used here is somewhat simpler and more clegant.
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