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CALCULATED DIPOLE MOMENT AND ENERGY IN COLLISION OF A

HYDROGEN MOLECULE AND A HYDROGEN ATOM

by R. W. Patch

Lewis Research Center
'».

SUMMARY

Ab initio calculations of the interaction energy and electric dipole moment of a hy-
drogen molecule (Hg) colliding with a hydrogen atom (H) were carried out on a digital
computer using three Slater-type Is orbitals in the orthogonalized valence-bond theory
of McWeeny. Each orbital exponent was optimized. The internuclear distance in the
H0 molecule was varied from 7.41599X10"11 to 7.67292X10"11 meter (1.401446 to

101.450000 bohrs). The intermolecular distance was varied from 0.529167x10 to
2.11667x10 meter (1 to 4 bohrs). Linear, scalene, and isosceles configurations were
used. A weighted average of the interaction energies of the three equilibrium configura-
tions was then taken for each intermolecular distance.

The interaction energies obtained appear to be qualitatively correct but are higher
than a number of published curves. This is because of the simple model used. The
electric dipole moment should not be so sensitive to the model.

The electric dipole moment and its derivative with respect to Ho internuclear dis-
tance were consistent with classical values at large intermolecular distances with one
minor exception, which is explained. Both sets of values are intended for use in calcu-
lating pressure-induced vibrational absorption coefficients in the infrared.

INTRODUCTION

In high-temperature propulsion devices such as gas-core nuclear rockets, an im-
portant mechanism of heat transfer is radiant energy exchange between volumes of gas
and between the gas and the wall. When such devices use high-pressure hydrogen, it is
necessary to know the strength of pressure-induced infrared absorption to calculate the
heat transfer. This strength depends on the interaction energy and electric dipole mo-
ment of the two colliding chemical species. The strength has been calculated for two



colliding hydrogen molecules (Hg) (ref. 1) but not for H2 colliding with a hydrogen atom
(H). For this second case, which is the motivation of this report, the interaction energy
is fairly well agreed upon (ref. 2), but the electric dipole moment had never been calcu-
lated. For large intermolecular distances the electric dipole moment can be found from
the quadrupole moment of H« and the polarizability of H, but for small intermolecular
distances the H« wave function must be known.

The object of the work described herein was to calculate the electric dipole moment
and its derivative and energy after determining the H, wave function. The energy was
desired only for comparison with experiments and other calculations.

- Past work on H2-H interaction may be divided into ab initio calculations, semi-
empirical calculations, and experiments. These three types of work will be discussed
in subsequent paragraphs.

Ab initio calculations for H«,-H or H~ have been carried out by a large number of in-
vestigators (refs. 3 to 31). Much of the early work utilized rough approximations for
some of the molecular integrals, making it of little contemporary value. This pitfall
was avoided by Hirschfelder, Eyring, and Rosen (ref. 3), Hirschfelder, Diamond, and
Eyring (ref. 4), and Hirschfelder (ref. 6), who exhausted a basis of three Is atomic
orbitals centered on the protons. More recently, Shavitt, Stevens, Minn, and Karplus
(ref. 27) exhausted a basis of 15 orbitals (Is, Is', 2pv, 2p ' 2p,, on each proton). Thisx y z
work was extended by.Porter, Stevens, and Karplus (ref. 30). The most accurate work,
however, is probably that of Conroy and Bruner (ref. 26), who improved the electron
correlation by using a wave function that was the product of a shape series, a singlet-
pair correlation series, and a triplet-pair correlation series.

A large number of semiempirical calculations for H2-H or Ho have also been made.
For large intermolecular distances the treatments of Margenau (ref. 32) and Mason and
Hirschfelder (ref. 33) are noteworthy. For small intermolecular distances, the treat-
ment of Porter and Karplus (ref. 2) correlates experimental data best. None of these
are useful in finding electric dipole moment.

Experimental studies of H2-H interaction are also numerous. Amdur (ref. 34)
measured the scattering of an H-atom beam in H,, gas. The potential he obtained is
.lower than that of Porter and Karplus (ref. 2). Schulz and LeRoy (ref. 35) measured
' the rate for the reaction

H + p-H2 - o-H2 + H

in a flowing system. Karplus and Porter (ref. 36) compared this with the potential of
Porter and Karplus (ref. 2) and found fair agreement. Geddes, Krause, and Fite
(ref. 37) used modulated crossed beams to obtain the reaction



D + H 2-HD + H

They measured velocities and angular distribution of HD. Brumer and Karplus (ref. 38)
found that the results of reference 37 agreed with the potential of Porter and Karplus
(ref. 2).

In this study no attempt was made to do the most sophisticated possible ab initio
calculation for H« - H because accuracy within a few percent for the dipole moment was
all that was desired. To achieve this, a full valence-bond ab initio calculation for
H2 - H was carried out with accurate values for all molecular integrals. In order to
cover nuclear configuration space, linear, scalene, and isosceles configurations (see
fig. 1) were included with intermolecular distances from 0.529167x10 to
2.11667X10"10 meter (1 to 4 bohrs). In three of the configurations (figs. l(a), (c),

Side view End view
x

,4'
(a) Linear configuration A with equilibrium internuclear distance.

O O1.45
(b) Linear configuration B withgreater-than-equilibrium inter-

nuclear distance.

JC

(c) Scalene configuration C with equilibrium internuclear distance.

(d) Scalene configuration D with greater-than-equilibrium inter-
nuclear distance.

Ob

1.401446
a
O

(e) Isosceles configuration Ewith equilibrium internuclear distance.

O

1.45 O

o
(f) Isosceles configuration Fwith greater-than-equilibrium inter-

nuclear distance.

Figure 1. - Six configurations of a hydrogen molecule and a hydrogen
atom used in calculations. Intermolecular distance R. had values
from 0.53xlO"10 to 112xlO"10 m (1 to 4 bohr). 1 nternuclear dis-
tances in the figure are in bohrs (1 bohr = 5. 29167x10"^ m).



and (e)) the H2 molecule had equilibrium internuclear distance. The average H« - H
interaction energy was then calculated for a given inter molecular distance by taking
weighted averages of the interaction energies of these three configurations. In the other
three configurations (figs. l(b), (d), and (f)) the Hg molecule had a greater-than-
equilibrium internuclear distance so that the derivative of the dipole moment with re-
spect to internuclear distance could be calculated from the electric dipole moment of all
six configurations.

Professor V. Magnasco of the Istituto di Chimica Industriale dell'Universita,
Genoa, provided listings and a deck of various computer programs for evaluating molec-
ular integrals. Although these programs were not used for this report, they were use-
ful for checking and provided ideas for the programs that were used.

ANALYSIS

Model and Configurations

The interaction of H2 and H may be.calculated by the orthogonalized valence-bond
theory of McWeeny (refs. 39 and 40), which utilizes symmetrically orthogonalized
atomic orbitals in the Born-Oppenheimer approximation. In this method orthogonalized
orbitals are formed from linear combinations of atomic orbitals. These are multiplied
by spin eigenfunctions to give orthogonalized spin orbitals. Formal orthogonalized .
valence-bond structures are formed from linear combinations of antisymmetrized
products of the orthogonalized spin orbitals. The system wave function consists of
linear combinations of these structures. This involved procedure merely amounts to
taking the proper linear combination of the hextuple products of three atomic orbitals
and three spin eigenfunctions. This method allows full configuration interaction without
unduly complicating a digital computer program and allows straightforward calculation
of the electric dipole moment. It has previously been successfully applied to the inter-
action of two Hn molecules by Magnasco and Musso (refs. 41 and 42) and Patch (ref. 43).

The model chosen had a basis of three Is Slater-type atomic orbitals \ centered
on the protons and had full configuration interaction. The three normalized Is atomic
orbitals were

= a,b,c s (1)



where the i in parentheses indicates the i electron, and r . is the distance be-
tween proton p and electron i (symbols are given in the appendix). An orbital
Y (i), of course, reduces to the wave function for the ground state of an H atom if
? =' 1.88976X1010 reciprocal meters (1.0 bohr"1).

If all the atomic orbitals were assigned the same orbital exponent •£, ' the model
would not accurately represent H2 + H at large inter molecular distances because isolated
H2 and H have different optimum orbital exponents. If the two orbital exponents belong-
ing to orbitals centered on H2 protons were assigned the value for isolated H2, and the '
other was assigned the value for isolated H, inconsistencies at small inter molecular dis.-
tances would result (the linear symmetric configuration would have different orbital ex-
ponents for the end protons, and the equilateral triangle configuration would have unequal
orbital exponents). Hence, each orbital exponent was optimized for each intermolecular
distance and each H2 internuclear distance of each configuration.

In ab initio calculations the'average interaction energy should be based on the energy
of the complex minus the energies of the two separated chemical species (in this case H2

and H) calculated in a consistent manner. In the limit of infinite intermolecular dis-
tance, the model in this report results in an H atom and a molecule (H,) described by the
covalent-ionic valence-bond model of Weinbaum (ref. 44). Because of the ultimate ap-
plication of this report to pressure-induced absorption, the experimental equilibrium
internuclear distance of 7.41599x10 meter (1.401446 bohrs) for H0 (ref. 45) was used

-11rather than Weinbaum's value of 7.4962x10 meter (1.4166 bohrs). Hence an isolated
H0 molecule had an energy E^ of -5.0037X10"18 ioule (-1.14779 hartrees) rather than£, m •< o
Weinbaum's value of -5.0042x10 joule (-1.14790 hartrees) (ref. 43). The average
interaction energy is found by averaging over nuclear configurations, which was facili-
tated by choosing the configurations shown in figures l(a), (c), and (e). The other three
configurations possessed a greater -than-equilibrium internuclear distance.

In all six configurations the intermolecular distance R was varied. It had values
of 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5, and 4.0 bohrs (1 bohr =
5.29167X10"11 m).

v Energy and Interaction Energy

To find the electronic energy of the H2 - H complex, a Lbwdin transformation was
performed on the orbitals, resulting in orthogonalized orbitals. Formal orthogonalized
valence-bond structures were formed, and the matrix elements of the Hamiltonian were
found. An eigenvalue problem was then solved to obtain the electronic energy. The nu-
clear repulsion energy was added to the electronic energy to get the energy of the
complex. The energies of isolated H and H2 were subtracted from the energy of the



complex to yield the interaction energy. This entire procedure was repeated for differ-
ent values for the orbital exponents to enable the three orbital exponents to be optimized
by numerical methods. These steps are given in the following subsections.

Lowdin transformation. - The symmetric orthogonalization procedure of Lowdin
(ref. 46) was applied to the Y • The overlap integral is

(2)

Let

pq (3)

where R is the distance between protons p and q. If ?
Slater (ref. 47). If ?p t ?q,

, S is given by

where

q2 q3

-w.pq
w,pq

(4)

(5)

It is desired to find the Lowdin transformation matrix M"1/^
X _

such that

where x is a row vector with elements xn» and xl is a row vector of the three
orthogonalized orbitals xl- First the eigenvalue problem

(6)



USU = d (7)

is solved, where J5 is a matrix with elements S . The matrix d_ is diagonal, with
eigenvalues as diagonal elements. Thus

H — /

Vl/2dll

0

0

0

d22

0

0

0

d-l/2d33

(8)

Finally,

(9)

Use of equation (6) then accomplishes the Lowdin transformation to obtain x]_.
Formal orthogonalized valence -bond structures. - To produce the proper anti-

symmetry, the xl are combined in antisymmetrized products of orthogonalized spin
orbitals.

(pqf) = (3'.r1/2 (10)

where o?(l) is the spin eigenfunction of electron 1 with the component of spin angular
momentum along the axis of quantization equal to K/2, and /3(3) is the spin eigenfunction
of electron 3 with the component of spin angular momentum along the axis of quantiza-
tion equal to -K/2. The shorthand notation is given on the left side of equation (10),
wherein a bar indicates j3 spin and no bar indicates a spin. To facilitate computing
for some purposes, the (pqr) are arranged in dictionary order in a three by three matrix
(ref. 48):

(aba) (abb) (abc)

(aca) (acb) (ace)

(bca) (bcb) (bcc)

(ID

For our purposes we will regard the (pqr) as a nine-element row vector with the ele-



ments numbered down the first column in equation (11), then down the second column,
etc . When numbered in this way , set

>. = (pqf) i= 1, 2, . . ., 9 (12)

where p, q, and r are given in equation (n) .
The formal orthogonalized valence-bond structures . are linear combinations of

the (p. . These \f/. are eigenfunctions of the total electron spin with total spin quantum
number of 1/2 and component of the total spin angular momentum along the axis of quan-
tization of K/2. These are obtained by temporarily putting a phantom orbit
finity as outlined by Pauling (ref . 49) and are

at in-

1 /2
= 2" ' *-< = -<Pg

(13)

where formal singly polar structures are included. All \fs. are orthonormal (see
ref. 50) except \l/^ and i//^. These may be made orthonormal by the Schmidt ortho-
gonalization procedure, which results in replacing »//„ in equation (13) by a new ^/2

such that

(14)

Equations (13) (excluding i / / ) and (14) can be represented by

where V is a nine by eight matrix. The wave function of the system was taken as

(15)

(16)

where C is a column vector determined by minimizing the electronic energy E . This
is accomplished by the variation principle for orthonormal functions (ref. 51), which
poses an eigenvalue problem.



HC = EeC (17)

' where the smallest of the several eigenvalues Eg is the ground state electronic energy
and H_ is a matrix whose elements are given in the following sections.

Matrix elements of the Hamiltonian. - The Hamiltonian operator for the electronic
energy in atomic units with the hartree as the unit of energy is

3 3 c 3 i-1
1 9 V^ X ^ 1 X V

- i V i + > > - — + > > — <18)
n >• / / — / / —

i-1 i=l p-a i=2 j=l

o
Here V. is the Laplacian operator for the coordinates of electron i, and the p sum-
mation is over protons a, b, arid c. The elements of the H matrix in equation (17)_
are then

(19)

where r includes electron configuration and spin coordinates. From equations (15)
and (19)

V (20)
\

where

(H )
\ <?/ij

The matrix elements (H ) can be found from Slater's rules (ref . 50 after correction of
\ <?/ij

a typographical error) if two kinds of integrals are known.

,'i(l)dv1 (22)



= f f X'iWx'XDx'KWx'i (2) -i-
J J r!2

GijkZ = X'iWx'XDx'KWx'i (2) -i- dvj dv2 (23)

where r.., is the distance from electron 1 to electron 2, dv.. is the volume element for
electron 1, and dv« is the volume element for electron 2. From equations (6), (22),
and (23)

G..
/ j \ 'mi
m=l n=l o-l p=l

where

(26)

L^s / X«(l)x t(D[—Vlv, (27)
"piy

5 f f
,/c/

Gmnop 3 / / Xm(l)xn(Dx0(2)xp(2) -1- dvt dv2 (28)
12

The methods of evaluating K, 7, L., n. and G^nnn are given by Patch (ref. 43).
K.t 3*^P mnup

Energies. - The energy E is the electronic energy plus the nuclear repulsion
energy:

in TTI . -L . •*• . A

Rab Rac
(29)

10



The interaction energy E. , is the energy E minus the energies Em(r) and E^'
the isolated Hg molecule with internuclear distance r and the isolated H atom, re-
spectively:

Eint = E - Em<r> - Eat

The diatomic internuclear distance used in equation (30) was the same as in the H« - H
complex (see fig. 1), and the corresponding Em(r) have been tabulated by Patch
(ref. 43) for Weinbaum's covalent -ionic valence-bond model of H0. Of course, E .

1 H ^ dt

was -2.17972xlO~iB joule (-0. 5 hartree).
Optimization of orbital exponents. - To optimize the orbital exponents, it is neces-

sary to solve the eigenvalue problem (eq. (17)) for a number of sets of orbital expo-
nents. A least-squares fit is made to the resulting values of Eint, and the values of the
orbital exponents that minimize E. . are found from the fit coefficients.

The simplest case involves isosceles configurations because by symmetry £b = £c

(see fig. l(d)). If the optimum values ? and £bo are known approximately, then a
least-squares fit may be made.

Eint * Wo + Wl^a + W2^b + Wll^a + W22^b + W12^b (31)

where the Eint to be fit are calculated from equations (17), (29), and (30) for values

*a = ̂ ao - ^ *ao' Sao
 + ^' and ^b = ̂ bo ' A^> ^bo' ^bo + A^ (nine sets of ^a

and £b). Here, A^ is an arbitrary number much smaller than £ao or ^Q, and ^aQ

and ?b are estimates. After the least-squares fit coefficients W have been found ,
the minimum of equation (31) can be found by direct calculation, yielding the true £ao

and £bo.
The other case applies to linear and scalene configurations. Here, the optimum or-

bital exponents are generally all different so the least-squares fit is of the form

Eint ^ Wo + Wl^a + W2?b + W3^c + Wll^a + W22^b + W33^c + W12^b

where the Eint to be fit are calculated from equations (17), (29), and (30) for values

^a - ^ao - ̂  ^ao' *ao + ̂  ?b = ̂ bo ' ^ ^bo' ^bo + A^ ^c = ^co ' ^' ?co« ?co
(27 sets of ^ ^, , and £ ). The rest of the procedure is the same.

11



Average Interaction Energy

The average interaction energy E. , of an H« molecule and ah H atom is, to a first
approximation, the interaction energy for equilibrium diatomic internuclear distance av-
eraged over all possible orientations of the H« molecule.

° i (33)
477 "" ,

where £2 is the solid angle for H« orientation.
Since only three configurations with equilibrium diatomic internuclear distances

were considered in this report, an additional approximation was necessary. This was
the truncated expansion of E. t in terms of Legendre polynomials 0^

E. , = fn0n(cos 0) + f000(cos 9) + f.O.fcos 0) (34)mi uu £i & 11

where the f's are expansion coefficients and 6 is the angle between the internuclear
axis of H« and the line through the H atom bisecting Hg. Odd Legendre polynomials
were ruled out by symmetry. The result of substituting equation (34) into (33) is

• ~ ~~ 1 Q 9
T ? ' — T T j - T T j - T r ("%*))

Electric Dipole Moment

Calculation of the dipole moment requires an electron population analysis in terms
of the original nonorthogonal orbitals Y • A column vector C' may be defined by

.; * = 550; • (36)

From equations (15), (16), and (36)

C^= VC . (37)

The electron population in the orbital density x' X* irrespective of spin state is
(ref. 41)

12



(38)

where n
mana and n™fn^ are coefficients of spin-orbital products and are called n^rs rs rs

by Magnasco and Musso (refs. 41 and 48), who also give rules for evaluating them
(ref. 48).

The electron population in the orbital density XDXa irrespective of spin state is
(ref. 41)

(39)

m=l n=l

The normalized 1-electron population is

@> ' = P S (40)TV1 TTQ iVl w/

where the three diagonal elements of the matrix 0* give the atomic populations and the
off-diagonal elements give the overlap populations. For instance, the population in the
overlap between orbitals centered on protons a and b is &*„. +<^L,' The elements

cLQ Del

of the @P matrix, of course, add to three, the number of electrons.
To find the dipole moment from c^, it is necessary to know locations of the atomic

charge centers and the overlap charge centers. Cartesian coordinates with the origin
one-third of the way from the molecule toward the atom were chosen (see_fig. l(a)). The

-j Carte'sian coordinate of either type of charge center was designated C_. , where p
and q correspond to the two orbitals XD

 an<* Xa involved in an overlap charge or
where p and q are equal and correspond to the one orbital involved in an atomic
charge. The C . for atomic charges are, of course, identical to the coordinates of
the protons C .. For overlap charges

where A is the displacement of the overlap charge center from the p - q geometric
center, measured in the direction from p towards q and expressed in units of R .

Apq = ° b

13



pq w_

pq

e ^ -
-2 13 "4.q q q /j

(42)

The j component of the dipole moment in atomic units is then

3 3
X ^ X "^ —

' cpq pqjv-2-2,
p=l q=l

(43)

By symmetry, only the x and z components may be nonzero.

Computer Program

All calculations including optimizing the orbital exponents were done by one
FORTRAN IV IBM version-13 program for an IBM 7094 digital computer. To obtain a
set of optimized orbital exponents, interaction energy, and dipole moment, the running
times were 4. 5, 8.7, and 2.1 minutes for the linear, scalene, and isosceles configura-
tions, respectively.

RESULTS AND DISCUSSION

In this section values for the orbital exponents, interaction energy, average inter-
action energy, dipole moment, and dipole moment derivative are given and compared
with the results of other investigators.

Orbital Exponents and Interaction Energy

In optimizing the orbital exponents, it was found that the estimates had to be fairly
accurate for the coefficients of equation (31) or (32) to give meaningful values for the op-

14



TABLE II. - AVERAGE INTERACTION ENERGY

FOR H0 + H

Intermolecular distance,
Rr

m

5.29167X10"11

5.82084
6.35000
6.87917

7.40834
7.93751
8.46667
9.52501

-1 n
1.05833X10 1U

1.32292
1.58750
1.85208
2.11667

bohr

1.0
1.1

1.2

•1 .3

1.4

1.5

1.6

1.8

2.0
2.5
3.0

3.5

4.0

Average interaction energy,

Eint

J

2.5712X10"18

2.0969
1.7730
1.4969

1.2400
1.0374
0.8753

.6367

.4732

.2353

.1173

.0569

.0267

hartree

0.58980
.48100
.40670
.34336

.28445

.23797

.20079
' .14605

.10854

.05398

.02690

.01305

.00613

15



I 100

=- a

n-17

n-18

n-19

n-20

n-21

Source of theory
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(a) Linear configuration A (see fig. l(al).
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(b) Scalene configuration C (see fig. Kcl). (c) Isosceles configuration E (see fig. l(el).

Figured - Interaction energy for three configurations of a hydrogen molecule and a hydrogen atom, each configuration having equilibrium inter-
nuclear distance in the molecule.
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timum orbital exponents. Consequently, before running the program in the mode for
automatic least-squares fit to E. . and optimization of £^, it was run in another mode
that allowed one ^ to be varied at a time, and the resulting Eint's were hand plotted.
In this way good estimates for the £. were eventually obtained, allowing the program to
be run in the automatic-fit mode. In some cases the automatic-fit mode had to be re-

o
peated with progressively smaller A£ until a A£ of 1.89x10 reciprocal meters (0.01
bohr" ) ran successfully, producing optimum £.'s that fell within the £. grid used to
obtain the least-squares fit for that run. The final orbital exponents and interaction
energy are given in table I for 3 nuclear configurations and 13 intermolecular distances.
The apparent discontinuity at Rr = 6.422x10 meter (1.2136 bohrs) for orbital expo-
nents of configuration E (isosceles) is due to a change of symmetry of the eigenfunction
as the isosceles triangle goes through the equilateral triangle configuration.

The interaction energies are plotted in figures 2(a), (b), and (c) for configurations
A, C, and E. The change of symmetry mentioned produces a slight Jahn-Teller cusp in
the interaction energy of configuration E. For all configurations, the interaction energy
increases monotonically as R is decreased. For large R the order of increasing
interaction energy is configurations E, C, and A. For small R the linear configura-
tion A has the highest interaction energy. For intermediate Rr it is difficult to gen-
eralize.

Average Interaction Energy

The average interaction energy is given in table II and plotted in figure 3. It in-
creases monotonically as R decreases.

Electric Dipole Moment and Its Derivative

The components of the electric dipole moments for configurations A, C, and E are
given in table in for 13 intermolecular distances. They are plotted in figure 4. Again,
there is an apparent discontinuity due to the change of symmetry as the isosceles con-
figuration goes through the equilateral triangle configuration. The x-component of the
dipole moment for configurations A and E is zero by symmetry.

To obtain the derivatives of the components of the electric dipole moment with re-
spect to the Ho internuclear distance, all calculations were repeated for a greater-than-
equilibrium internuclear distance (configurations B, D, and F of fig. 1). The derivatives
were found from the approximation 3|U./9r « A/i./Ar- The results are given in table III
and plotted in figure 5. There is the usual apparent discontinuity for the isosceles con-
figuration.
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TABLE I. - ENERGY AND ORBITAL EXPONENTS FOR H, + H

Inter molecular distance,
Rr

m

5.29167X10'11

5.82084X10'11

6.35000X10"11

6.87917X10"11

7.40834X10"11

7.93751X10'11

8.46667X10"11

9.52501X10"11

1.05833X10"10

1.32292X10"10

1.58750X10"10

1.85208X10"10

2.11667X10"10

bohr

"l.O

1.1

1.2

1.3

1.4

1.5

1.6

1.8

2.0

2.5

3.0

3.5

4.0

Con-
figura-
tion2

A
C
E

A

C

E

A
C
E

A
C
E

A'
C
E

A -
C
E

A
C
E

A
C
E

A
C
E

A
C
E

A
C
E

A
C
E

A
C
E

Orbital exponent,

^
1/m

2.4966X1010

.2.4421
3.1118

2.4870X1010

2.3651
3.0355

2.4567X1010

2.2972
2.9606

2.4145X1010

2.2364
1.7928

2.3658X1010

2.1818
1.8188

2.3146X1010

2.1334
1.8344

2.2639X1010

2.0912
1.8444

2.1708X1010

2.0241
1.8582

2.0940X1010

1.9782
1.8673

1.9774X1010

1.9252
1.8844

1.9314X1010

1.9101
1.8942

1.9125X1010

1.9037
1.8970

1.9029X1010

1.8990
1.8960

1/bohr

1.32113
1.29230
1.64667

1.31605
1.25154
1.60630

1.30003
1.21560
1.56663

1.27769
1.18341
0. 94870

1.25189
1.15454
0.96243

1.22481
1.12894
0. 97072

1.19799
1.10657
0.97600

1.14871
1.07111
0. 98332

1.10808
1.04678
0.98813

1.04637
1.01876
0.99714

1.02201
1.01077
1.00237

1.01204
1.00737
1.00381

1.00696
1.00491
1.00328

Orbital exponent,

?b

1/m

-3.7651X1010

3.1230
1.9325

3.6068X1010

3.0987
1.9094

3.4497X1010

3.0642
1.8866 ,.

3.3139X1010

3.0197
2.3230

3.1988X1010

2.9724
2.3199

3.1002X1010

2.9216
2.3177

3.0136X1010

2.8681
2.3155

2.8651X1010

2.7571
2.3093

2.7389X1010

2.6475
2.3020

2.4945X1010

2.4308
2.2849

2.3544X1010

2.3260
2.2749

2.2973X1010

2.2884
2.2706

2.2781X1010

2.2756
2.2690

.1/bohr

1.99239
1.65260
1.02262

1.90860
1.63971
1.01037

1.82548
1.62145

0.99831

1.75359
1.59791
1.22928

1.69272
1.57288
1.22763

1.64052
1.54600
1.22647

1 . 59469
1.51773
1.22530

1.51611
1.45896
1.22200

1.44931
'1.40097
1.21812

1.32001
1.28630
1.20908

1.24587
1.23083
1.20382

1.21567
1.21093
1.20155

1 . 20548
1.20415
1.20070

Orbital exponent,

«c

1/m

1.8262X1010

1.8172
1.9325

1.8652X1010

1.8481
1.9094

1.8951X1010

1.8765
1.8866

1.9199X1010

1.9039
2.3230

1.9416X1010

1.9294
2.3199

1.9612X1010

1.9537
2.3177

1.9794X1010

1.9768
2.3155

2.0133X1010

2.0210
2.3093

2.0455X1010

2.0638
2.3020

2.1268X1010

2.1625
2.2849

2.1983X1010

2.2240
2.2749

2.2382X1010

2.2500
2.2706

2.2554X1010

2.2604
2.2690

1/bohr

0.96636
.96159

1.02262

0.98700
.97796

1.01037

1.00284
0.99298

.99831

1.01596
1.00749
1.22928

1.02742
1.02100
1.22763

1.03780
1.03382
1.22647

1.04744
1 . 04607
1.22530

1.06535
1.06944
1 . 22200

1.08239
1 . 09209
1.21812

1.12541
1.14432
1 . 20908

1.16326
1.17686
1.20382

1.18440
1.19065
1.20155

1.19347
1.19613
1 . 20070

Interaction energy,
Eint

J

8.7946X10"18

2.3052
1.8885

5.5201X10"18

1.8935
1 . 7975

3.6986X10"18

1.5612
1.7344

2.5893X10"18

1.2967
1.5816

1.8747X10"18

.1.0868
1.3386

1.3964X10"18

9.1962X10'19

1.1346X10"18

1.0672X10"18

7.8522X10"19

9.6348

6.6961X10'19

5.8578
6.9912

4.5787X10"19

4.4641
5.1136

2.2612xl0^19

2.3275
2.4029

1.2180X10."19

1.1875
1.1452

6.2427X10"20

5.8286
5.4057

90
3.0254x10
2.7552
2.5023

hartree

2.01737
0.52878
.43321

1.26625
0. 43434

.41233

0.84841
.35811
.39786

0. 59395
.29744
. 36281

0.43003
.24930
. 30705

0.32032
.21095
.26026

0.24481
.18012
.22101

0.15360
.13437
.16037

0.10503
. 10240
.11730

0.05187
.05339
.05512

0.02794
.02724
.02627

0.01432

.01337

.01240

0.00694
.00632
.00574

aSee fig. 1.
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10-17

This report (eq. (35))
Porter and Karplus (ref. 2) (averaged by

eq. (35))
Amdur (ref. 34)
Mason and Hi rschfelder (ref. 33)

10,-18 \

10,-1

E10r!9

1°,-2

\

\

\

10

10,-3

-20

8

6

4

\
\\

I
2.6xlO~10.4 1. 2 1. 6 2.0

I ntermolecular distance, Rr, m
2.4

1 2 3 4 5
I ntermolecular distance, Rr, bohr

Figure 3. - Average interaction energy for a hydrogen molecule and a hydrogen atom. For the curve
labelled "This report" the molecule had an internuclear distance of 7. 41599X10'!1 meter (1. 401445
bohr).
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Inter molecular distance,
Rr

m

5.29167X10"11

5.82084X10"11

6.35000X10"11

6.87917X10'11

7.40834X10"11

7 93751X10"11

8 46667X10"11

9.52501X10'11

1.05833X10"10

1.32292X10"10

1.58750X10"10

' 1.85208X10"10

2 11667X10"10

bohr

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.8

2.0

. 2.5

3.0

3.5

4.0

Con-
figura-

A
C
E

A

C
E

A

C
E

A

C
E

A

C
E

A

C
E

A

C
•E

A

C '
E

A

C
E

A

C
E

A

C

E

A

C
E

A

C
E

Component of dipole moment,

"x

C-m

0
1.81431X10"30

0

0
1.69238X10'30

0

0
1 . 57656X10"30

0

0
1.45789X10'30

0

0

1.34361X10"30

0

0

1.23119X10"30

0

0

1.12113X10"30

0

0

9.11158X10"31

0

0

7.19679X10"31

0

0

3.47420X10"31

0

0

1.46979XKT-31

0

0

6.44396X10"32

0

0

3.05200X10"32

0

-at. units

0
.214008

0

0

.199625

0

0

.185964

0

0

.171966

0

0

.158486

0

0

.145225

0

0

.132243

0

0

.107476
0

0
.084890

0

0

. 040980

0

0

.017337

0

0

..007601
0

0
..003600
0

Component of dipole moment,

V-L

C-m

2.67638X10"30

2.80947

2.12124

2.34716X10"30

2.52880

2.48750

2.09418X10"30

2.17885

2.85553

1.85676X10"30

1.77748

-4.18773

OA
1.61116x10 JU

1.34934

-3.95336

_<>n
1.35294X10 u

9.18763X10"31

-3.75114X10"30

1.08738X10"30

5.08998X10"31

-3.55798X10"30

5.74480X10"31

-1.76507

-3.14938X10"30

1.56746X10"31

-6.21218
-2.71693X10"30

-2.47144X10"31

-8.27457

-1.66838X10"30

-1.59772X10'31

-5.31294

-9.12345

-6.15572X10'32

-2.79674X10"31

-4.75036

-2.06773X10"32

-1.41019X10"31

-2.43143

at. units

0.315693
:331392
.250212

0.276860

.298285

.293414

0.247020

.257007

.336825

0.219015

.209663
r; 493965

0.190045
.159162

-.466320

0.159586
.108373

-.442467

0.128262

.060039
-.419683

0.067763

-.020820

-.371486

0.018489

-.073276
-.320476

-0.029152

-.097603

-.196794

-0.018846

-.062669

-.107616

-0.007261

-.032989

-.056033

-0.002439

-.016634

-.028680

Derivative of component
of dipole moment,

C

0
.823X10"20

0

0
OA

1.203X10
0

0

1.405X10'20

0

0

1.762X10"20

0

0

1.964X10"20

0

0

2.107X10"20

0

0

2.185X10"20

0

0
90

2.148x10

0

0

1.913X10"20

0

0

1.043X10"20

0

0
20

.418X10

0

0

.165X10"20

0

0-

.069X10"?0

0

at. units

0
.0514

0

0
.0751

0

0
.0877

0

0
.1100

0

0

.1226

0 '

o • • • •
.1315

0

'o
.1364

0

0
.1341

0

0
.1194

0

0
.0651

0

0
.0261

0

0
.0103

0

0
.0043

0

Derivative of component
of dipole moment,

C

-2.595X10"20

-1.554
-1.352

-2.719X10"20

0.003
-2.022

-2.113X10'20

1.774

-2.494

on
-1.032X10
. 3.571

1.956

0.178X10"20

5.120
1.182

1.354X10"20

6.263
0.644

2. 378X1 0"20

6.919
0.364

3.685X10"20

6.825
-0. 328

3.872X10"20

5.466
-0.692

2.075
1.804

-0.838

1.237
0.535
-.546

0.907
.282

-.279

0.594
.179

-.130

at. units

-0 . 1620
-.0970
-.0844

-0.1697
.0002

-.1262

-0.1319

.1107

-.1557

-0.0644
'.2229
.1221

0.0111

".3196
.0738 .

0.0845
.3909
.0402

0.1484
.4319
.0227

0.2300

.4260

-.0205

0.2417

.3412

-.0432

0.1295

.1126

-.0523

0.0772
.0334

-.0341

0.0566
.0176

-.0174

0.0371
.0112

-.0081

aSeefig.
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Figure 4 - Components of electric dipole moment for three configurations of a hydrogen
molecule and a hydrogen atom. Coordinates are shown in figure l(a). Components
not shown are zero.
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Figure 5. - Derivatives of electric dipole moment with respect to molecular inter-
nuclear distance for three configurations of a hydrogen molecule and a hydro-
gen atom. Coordinates are shown in figure l(a). Derivatives not shown are
zero.

Comparison with Other Investigators

The accuracy of the molecular integrals was checked against Magnasco and Musso
(refs. 41 and 42) among others. Comparison of the values of energy, average interac-
tion energy, dipole moment, and dipole moment derivative with values of other investiga-
tors is made in the following subsections.

Energy. - The energy of H2 - H or Ho has been calculated by a great many investi-
gators. However, many of them used inaccurate molecular integrals. Others used
over-simplified models. The most convincing check of the present calculation was made
with a special linear symmetric configuration of Shavitt, Stevens, Minn, and Karplus
(ref. 27, table XT). Their model was the same as in this report except that they may not
have used orthogonalized orbitals. They used a %•. of 2.27149x10 reciprocal meters

1 n
(1.202 1/bohr) and £ = r of 1.99937xl0lu reciprocal meters (1.058 1/bohr). They

18got an energy of -7.0213x10" joule (-1.6106 hartrees), which is exactly what the method
of this report gave.

A comparison of interaction energies for the linear configurations of this report
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(r ss 7. 41x10 m (1.40 bohrs)) is made with other investigators in figure 2(a). .The
energies of Hirschfelder, Diamond, and Eyring (ref. 4) are higher than this report be-
cause they used the same value of orbital exponent for all three Slater-type Is orbitals.
The energies of Conroy and Bruner (ref. 26) are lower, presumably because they in-
cluded electron correlation in their wavefunction in a more realistic manner. The ener-
gies of Shavitt, Stevens, Minn, and Karplus (ref. 27) are lower than this report because
they used 15 Slater-type orbitals rather than three. The energies of Edmiston and
Krauss (ref. 29) are lower than this report presumably because their molecular-orbital
wave function, constructed from 36 s- and p-type Gaussian orbitals, was closer to the
true wave function. In addition, two semiempirical calculations have been included,

\
although a comparison with ab initio calculations is not entirely fair. The Porter and
Karplus potential (ref. 2) correlates exchange reaction rates and trajectories fairly well
(refs. 36 and 38) and is presumably realistic at intermolecular distances less than
1.75x10 meter (3.3 bohrs). The Mason and Hirschfelder potential (ref. 33) is the sum
of a first-order perturbation energy and two dispersion terms and is presumably real-
istic for intermolecular distances greater than 2.65x10" meter (5 bohrs).

A comparison of interaction energies for the scalene configurations is made in fig-
ure 2(b). The Porter and Karplus potential (ref. 2) is again lower than the interaction
energy calculated in this report.

A comparison of interaction energies for the isosceles configurations of this report
(r « 7.41x10 m (1.40 bohrs)) is made with other investigators in figure 2(c)
Hirschfelder's energy (ref. 6) is higher than this report because he assumed all Slater-
type Is orbitals to have orbital exponents of 1.88976x10 reciprocal meters
(1.0 1/bohr). Conroy and Bruner's energies (ref. 26) are lower, presumably because
they included electron correlation in their wavefunction in a more realistic manner.
Aroeste and Jameson's energies (ref. 15) are lower than this report, presumably be-
cause they approximated some molecular integrals. Trivedi's results (ref. 31) are not
shown because of only one-place accuracy for some of his three-center molecular inte-
grals and other errors. The semiempirical potentials of Porter and Karplus (ref. 2)
and Mason and Hirschfelder (ref. 33) are also shown.

Average interaction energy from this report is compared with other investigators in
figure 3. The semiempirical potential of Porter and Karplus (ref. 2) was averaged over
Hn orientations by use of equation (35) and is lower than this report because their poten-
tial was lower for each configuration. The semiempirical potential of Mason and
Hirschfelder (ref. 33) was averaged by means of the approximation

F int%E int ,A+fE int ,E
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which is fully analogous to equation (35). The interaction energy obtained by Amdur
(ref. 34) from scattering of an H atom beam in H2 gas is the lowest of all for small in-
termolecular distances.

In summary, the interaction energy in this report is within the scatter of other ab
initio calculations and has the proper dependence on inter molecular distance. At small
intermolecular distances the dependence on EU orientation agrees with the Porter and
Karplus potential (ref. 2). (It does not contradict Conroy and Bruner's finding (ref. 26)
that the path of minimum energy involves a linear symmetric configuration because we
fixed the H2 internuclear distance at 7.41599X10"11 m (1.401446 bohrs), but their saddle-
point in their minimum energy path occurs for H0 internuclear distance of 9.2604711 ^
xlO m (1. 75 bohrs).) At large intermolecular distances the dependence of interaction
energy on Hg orientation agrees with the Mason and Hirschfelder potential (ref. 33). In
any case, the interaction energy is a sensitive function of the model used because it is a
small difference between two large numbers (the first number being HO energy and the
second being the sum of isolated H2 and isolated H energies).

Dipole moment and its derivative. - There are no previous calculations of either of
these quantities themselves, but for large enough intermolecular distance accurate re-
sults may be obtained by classical methods: the H2 quadrupole moment induces a dipole
in the H atom. To draw meaningful conclusions from such a comparison, the compo-
nents of the dipole moment should be expanded in normalized Legendre polynomials or
normalized associated Legendre functions as follows:

(45)

im* (46)

I m

where 0 and $ are shown in figure 6. In atomic units the classical method gives

(47)
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x-z plane-'

Figure 6. - Both sets of coordinates used in Ho-H collisions. The polar angle 9
is measured from the z axis. Theazimuthafangle $ is measured from the
x-z plane.
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Figure?. - Expansion coefficients of components of dipole moment for H2 + H. Valence bond values
are plotted from 1 to 4 bohr. Quadrupole induced values are plotted from 4.5 to 5 bohr. Dashed
lines connecting corresponding coefficients were added from 4 to 4.5 bohr for clarity.
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where a is the polarizability of the H atom and Q is the scalar quadrupole moment of
Hg The value of a has been given by Pauling and Wilson (ref. 52), and the value of Q
by Kolos and Wolniewicz (ref. 53), who use a different definition so that their values
must be divided by two. The results are plotted for Rr of 2. 38xlO~10 to 2..65X10"10

meter (4. 5 to 5 bohrs) in figure 7. For comparison, the valence-bond results in figure 4
were expanded by equations (45) and (46) and plotted in figure 7 for R of 0. 53X10

10to 2.12X10 meter (1 to 4 bohrs). The valance-bond CQ and C4 correctly approach
0 as R_ becomes large. The valence-bond C0 is in good agreement with the classi-r £t
cal Cg. However, there is a minor difficulty in the case of G21: at large Rr the
valence-bond and classical values differ in sign, although both are small. This is be-
cause the Is orbital centered on H in the valance-bond model cannot be polarized in the
x direction. At smaller R x-polarization of H will be approximated by changes in
orbital populations.

The derivatives of the components of dipole moment with respect to H2 internuclear
distance can be examined the same way. First they are expanded

3r
Dj(Rr)0z(cos0) (48)

I m

im* (49)

In atomic units the classical method gives

3 • (2/5)1/2
aQ'X

J21 = -

(50)

where Q1 is the derivative of Q with respect to H« internuclear distance. The results
are plotted for Rr of 2.38xlO"10 to 2.65xlO~10 meter (4. 5 to 5 bohrs) in figure 8. For
comparison, the valence -bond results in figure 5 were expanded and plotted in figure 8
for R of 0. 53X10"10 to 2. 12X10"10 meter (1 to 4 bohrs). The valence-bond DQ

and D. correctly approach 0 for large. Rr> The valence-bond D2 is in excellent
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Figures. - Expansion coefficients of derivatives of components of dipole moment for h -̂H. Valence
bond values are plotted from 1 to 4 bohr. Quadrupole induced values are plotted from 4.5 to
5 bohr. Dashed lines connecting corresponding coefficients were added from 4to 45 bohr for
clarity.

agreement with the classical D^. However, for the reasons mentioned in the previous
paragraph, the valence-bond J21 and classical Jgl have different signs at large Rr.
Fortunately they are both small.

CONCLUDING REMARKS

Full valence-bond ab initio calculations of molecular hydrogen-atomic hydrogen
(H2-H) interaction energy and electric dipole moment -were carried out with accurate
values for all molecular integrals and optimization of each orbital exponent. Linear,
scalene, and isosceles configurations were included with intermolecular distances from
0. 53X10"10 to 2.12xlO~10 meter (1 to 4 bohrs). A weighted average of the interaction
energies of the three equilibrium configurations was then taken.

The interaction energies obtained were within the scatter of other ab initio calcula-
tions and had the proper qualitative behavior. However, they tended to be higher than
other published values.

Neither the dipole moment nor its derivative with respect to H2 internuclear distance
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had been previously calculated. The values obtained by the valence-bond model appeared
to have the correct trends at large intermolecular distances and to be consistent with
values obtained classically with one minor exception: the sign of the small transverse
component was different for the valence-bond and classical methods. This was attribu-
ted to a lack of polar izability of the H atom in the valence-bond model for large inter-
molecular distances.

The electric dipole moment and its derivative can be used to calculate pressure-
induced vibrational absorption coefficients.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, May 8, 1973,
503-04.
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APPEND IX -SYMBOLS

(abc) shorthand notation for antisymmetrized product of orthogonalized spin-
orbital s

C_ column vector of coefficients of \{/.

C' column vector of coefficients of <p.
' ™" 1

C7 expansion coefficient for /i
6 , Z

C . j Cartesian coordinate of proton p
tr J

C . j Cartesian coordinate of center of atomic charge p

C . j Cartesian coordinate of center of overlap charge pq

C^. element of C^

D7 expansion coefficient for 9jm /3r
t- Z

d matrix of overlap eigenvalues

-1/2d ' inverse square root of d

diagonal element of d"1/2

E electronic and nuclear repulsion energy of complex

E . energy of atom

E electronic energy

E' t A interaction energy for configuration A

E. . average interaction energy

E electronic and nuclear repulsion energy of diatomic molecule

F. . one-electron integral of orthogonalized orbitals

f. expansion coefficient for E. .

G. - two-electron integral of orthogonalized orbitals

G7 expansion coefficient for 2" ' (\i + ifi )x y

G two-electron integral of Is orbitals
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H Hamiltonian matrix with basis functions i^.

H Hamiltonian operator for electrons
Hnk element of H

H Hamiltonian matrix with basis functions <p.

(H^ element of H^

K Planck constant divided by 2-n

i (-1)1/2

J^m expansion coefficient for 8/3r 2" ' (nx + ijti )

KkZ kinetic energy integral

L.i nuclear attraction integral
JKP

1/2M ' Lowdin transformation matrix

element of M"1/2

ki . —X —

m integer in expansions in normalized associated Legendre functions

nrno;nQf coefficients of spin-orbital products with two a spins

coefficients of spin-orbital products with two /3 spins

P' electron population in the orbital density x' X' irrespective of spin state

P electron population in the orbital density XDXQ irrespective of spin state

^_ matrix of ^n_
PT.

cPm normalized one -electron population

Q scalar quadrupole moment

Q' 3Q/3r

q (£p - ?q)
Rpq/2 (subscripts vary)

R distance between points p and q

R intermdlecular distance (see fig. 1)

r internuclear distance of diatomic molecule
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r^ distance between electron or proton i and electron j

S matrix of S

S overlap integral for XD and xa

U unitary matrix

IJ transpose of IJ

V matrix relating \j/_ and <p

V transpose of V

v. volume in configuration space for electron i

W.,W.. expansion coefficient for Eint
J

x,y ,z Cartesian coordinates

a polarizability

a(i) spin eigenfunction of electron i with component of spin angular momentum
along the axis of quantization equal to fi/2

/3(i) spin eigenfunction of electron i with component of spin angular momentum
along the axis of quantization equal to -K/2

A displacement of overlap charge center from p-q geometric center, mea-
sured in direction from p towards q and expressed in units of R

£ orbital exponent

£ orbital exponent of XD

£ approximate optimum orbital exponent of x

6. normalized Legendre polynomial

0.. normalized associated Legendre function

Q angle between internuclear axis of molecule and line through atom bisecting
the molecule

\i. j component of electric dipole moment

T volume in configuration and spin space of three electrons

$ azimuthal angle about z axis
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(p row vector with elements <p-

(p. afltisymmetrized product of orthogonalized spin orbitals

X row vector with elements XD

X' row vector with elements x'n
r

X (i) 10 orbital of electron i centered on proton p

X' (i) orthogonalized orbital of electron i

ty wave function of system

\L row vector with elements i//.

i//. formal orthogonalized valence-bond structure
J

n solid angle for molecule orientation

n

Vr Laplacian operator for the coordinates of electron i
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