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ABSTRACT

This research has been concerned with the synthesis of unusual compounds

by techniques employing cryogenic cooling to retard their very extreme reac-

tivity. Examples of such species that were interesting in .this program are

diimide (NJO, cyclobutadiene (C,H,) , cyclopropanone (C_H,0) , oxirene (C2H20) ,

and many others.

New and generally applicable analytical techniques using the mass spec-

trometer were developed. These instrumental adaptations permitted the quali-

tative and rough quantitative analysis of compounds such as the above. Special

purpose cryogenically cooled inlet arrangements were designed such that the

analyses incurred no warm-up of the cold, and frequently explosively unstable,

compounds. Controlled energy electron impact techniques were used to measure

critical potentials and to develop the molecular energetics and thermodynamics

of these molecules and to gain some insight into their kinetic characteristics

as well.

Three and four carbon strained ring molecules have been studied. Several

reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and 0

in hard quench configurations have been studied. And the quench stabilization

of BH_, though of little astrophysical interest, has been explored as a model

system in cryochemistry. Unfortunately, the species could not be prepared as

a stable cryochemical.

This research program was initiated on January 1, 1966 and terminated on

June 30, 1971 when the principle investigator moved to Virginia Polytechnic

Institute and State University. The research formed the doctoral theses of

five students and the masters thesis of one student. The program was continued

at VPI&SU under grant NCR 47-004-080 effective July 1, 1971.
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CHAPTER I "

INTRODUCTION AND BACKGROUND INFORMATION

This research program has been concerned with the development

of chemical information at cryogenic temperatures, particularly on

systems that astronomers and astrophysicists feel are important in

comets and in the atmospheric and surface chemistry of the Jovian planets.

Each of these astronomical objects is very cold, and clearly insofar as

chemistry plays a role in the behavior of these objects, that chemistry

must be occurring at very low temperatures by terrestrial standards.

This objective rather quickly resolves itself into studies of low

molecular weight compounds of the four elements of maximum cosmic abundance,

namely hydrogen, carbon, nitrogen and oxygen.

The approach here is not one of free radical stabilization, i.e.,

centered upon attempts to isolate labile species in inert matrices at very

low temperatures. . All evidence suggests that the activation energy for

the reaction of low molecular weight free radicals is zero (or close to

it), and hence it will be possible to prepare these species in "stable"

forms only by such diffusional inhibition techniques. The resulting

concentrations of labile species are limited to a maxiumum of a few tenths

of a per cent (usually much less), and hence the importance of such systems

in cosmic chemistry would seem to be minimal. The matrix technique, par-

ticularly when combined with ir or epr instrumentation, does, of course,

provide a powerful means to study the physical and chemical properties

of free radicals.

By contrast, low molecular weight labile species which have

singlet electronic ground states, i.e., species that are highly reactive

but are not free radicals, are in an altogether different category. Examples

of such substances are cyclobutadiene, cyclopropanone, oxirene, diimide,

ammonium ozonide, benzyne, tetrahedran, and many others. One would expect



such species to exhibit an activation energy for reaction, but we would

also expect this energy to be unusually small. If an activation energy

exists, then substances such as these may be preparable as stable cryo-

chemical reagents and a true chemistry at a very low temperatures may be

developed. Since the activation energies involved in these systems are

small, it will usually be necessary to maintain the compounds below some

critical temperature if they are to be manipulated as stable, pure reagents.

Hence, new cryogenic manipulative techniques had to be developed, for

ideally one must transpose all of the common or usual operations of bench

scale chemistry to permit their convenient utilization at cryogenic tem-

peratures. The most important operation in any chemical investigation is

analysis. Several unique cryogenically cooled reactor-inlet attachments

to the time-of-flight mass spectrometer have been developed under this

grant. The cryogenic mass spectrometer has proven to be an efficient

analytical tool in low temperature chemistry.

The best characterization of those strange nomads of space, the

comets, is the so-called "dirty snowball" model of Whipple as modified by

Bonn and Urey. Here the comet's nucleus is considered to be composed of

frozen ices of simple compounds such as H20, NH,, H-O-, C^H-, etc., and

some meteoric dust. However, it has been necessary to postulate highly

energetic reactions occurring at very low temperatures in order to explain

some of the cometary phenomena that are observed by astronomers. It is

possible, if not highly probable, that these reactions involve as yet

unknown species which are stable when cold but which react vigorously upon

slight warming. The search for the existence of such species and the study

of their chemistry and energetics was one of the primary objectives of this

NASA research program. Other than the comets, the atmosphere and surfaces

of the Jovian planets are also very cold (even Mars is much colder than

earth), and hence the equivalents of earthbound meteorology, geochemistry,

and possibly other areas of geophysics in which chemistry is important,

must be understood, as it applies to that particular planet, in terms of

low temperature chemistry. A build-up of general knowledge in the phenome-

nological chemical behavior of species likely to be present in such environ-

ments will be valuable inputs to the engineering designs of landing vehicles

for both manned and unmanned explorations of the future.



As this work has developed, we have found rather eager interest

on the part of segments of the chemical process industry in many of these

same sorts of reactions. These people are interested in energy storage

and conversion and in chemical synthesis. Our way of life depends upon

the inexpensive availability of a wide variety of chemicals in tonnage

quantities, and any process or technique which offers hope of economy or

variety in these syntheses is sure to attract attention. The low tempera-

ture procedures developed here represent a totally new dimension of pre-

parative chemistry, and since industrial chemistry is preparative chemistry,

they also represent new dimensions (however embryonic) of industrial chemistry.

This broad interest in developing such a new dimension of industrial chemistry

in addition to the above enumerated areas of application in space chemistry,

have formed the objectives of this program.

Accomplishments under this grant have been in the areas of (1)

instrumentation development, (2) the development of phenomenological chemical

information at cryogenic temperatures, (3) the energetics of low molecular

weight, highly unstable and reactive molecules which have been synthesized

by cryochemical procedures, and (4) in the training of doctoral students.

The details of accomplishments in these several areas have been presented

in a series of semi-annual progress reports and in a series of reprints of

journal articles and theses which have from time to time been forwarded

to NASA as they were published. These details will not be enumerated here.

It is, however, appropriate to include a capsule resume of the completed

research.



CHAPTER II .

RESEARCH RESULTS - EQUIPMENT DEVELOPMENT

Before chemistry at very low temperatures will progress very far,

the common operations of bench scale.experimentation must be translated to

the point of convenient utilization at cryogenic temperatures, and perhaps

the most fundamental operation of all is that of chemical analysis. The

analytical facility that was invented during this program was designed for

the study of the synthesis, stability, reactivity, and energetics of that

interesting class of compounds which usually must be synthesized and main- •

tained. below some rather low temperature if the compound is to exist as a

stable entity or chemical reagent. Examples of such compounds that are

either known or pseudo-known are H20 , H^, BH3, HNO, NO , N2tt , NH,03,

etc. Manipulations with these species must be conducted at temperatures

below the onset of that loss process having the lowest activation energy,

and this may be 100 K or lower.

A. General Design Considerations

Both the synthesis reactions and the subsequent studies of the

reactivity and energetics of the species of interest must be conducted in

cryogenically cooled systems. Experience has shown that simple transfer

operations such as pipetting, liquid flow, or vaporization and recondensa-

tion become difficult operations when the working substance is thermally

unstable at cryogenic temperatures. Also the purification techniques that

might be applicable to such systems are complicated by the temperature

requirement, and hence each will require development prior to its use.

Therefore, it was desirable to combine into one device, insofar as it was

possible, the features of a versatile chemical reactor, some capability

for separative operations, and chemical analysis by mass spectrometric means.

Almost without exception, reactions which proceed at cryogenic

temperatures involve at least one reactant which is a free radical and

which is usually generated by electric discharge, pyrolysis, photolysis,

or by chemical reaction (such as a low pressure flame). So the experi-

mental arrangement should also be versatile enough to reasonably accommo-

date these several free radical generation operations.

The mass spectrometer was selected as the primary analytical

device for these investigations because, unlike electron spin resonance



or Infrared, which have both been widely and successfully used in related

experiments, the mass spectrometer detects all species. It also affords

a direct observation of the species of interest and the output data re-

quire a minimum of equivocal interpretation. Very small quantities are

adequate for analysis. An identification may be obtained in the present

system provided only that a species exert a vapor pressure of about 3 x 10

torr and that the vapor will, upon electron impact, give a sufficient in-

tensity and variety of either positive or negative ions having a lifetime

at least of the order of 50 microseconds. The identification is also

aided by the use of an ionizing electron beam of controlled energy, and

by the control of the temperature of the inlet system which takes advantage

of the relative volatility and hence the separability of the several compo-

nents that may be present from a particular experiment. The open structure

of the source of the Bendix spectrometer, which makes it possible to assemble

complex hardware adjacent to and even within the source itself, was the

deciding factor in the selection of that machine. Many other adaptations

of the TOF instrument in situations where this open source structure has
2

been advantageous have been recently summarized. The disadvantages of

the TOF instrument stem from the low duty cycle of 0.005 which results from

its control pulse of 0.25 microseconds at a frequency of 20 Kc, i.e., the

machine is effectively off 99.5 per cent of the time. The only earlier

mass spectrometer adaptation that seems reasonably related to the present
4

arrangement was described by Blanchard and LeGoff. In their apparatus,

the walls of the ionization chamber were cooled with liquid nitrogen, and

the system was employed in unsuccessful attempts to condense and revaporize

I atoms.

The innovation of cryogenic mass spectrometry is described in

some detail below. But the system could be viewed in some sense, as rather

similar to a heated filament inlet system for use with the Bendix instrument
3

that was developed by Biemann and in which termally sensitive organic sub-

stances contained in a tiny capsule may be positioned inside the source

adjacent to the ionizing electron beam of the instrument. Heating the

capsule produces vaporization directly into the electron beam, and hence

there are few collisions and therefore little reaction or degradation before

ionization. Our system is similar, but it operates at the far opposite

end of the temperature spectrum.



B. Mechanical Description •

A schematic of the apparatus appears in Figure 1 where the

reactor-inlet system is shown in operating position near the electron

beam. The reactor-inlet system is suspended from a vacuum header and

consists of a thermostated refrigerant chamber made of copper for rapid

thermal equilibration which was nickel plated on the outside to reduce

the emissivity and hence the refrigerant use rate. The monel reactor

and condensation tube in which the low temperature species are prepared

and manipulated is inside this refrigerant chamber. Thermostating is

accomplished by offsetting the natural inward heat leak with a controlled

influx of refrigerant which is adjusted to be slightly in excess of that

required to just balance the natural heat leak. Fine control is then

maintained automatically by a recorder-controller (Leeds and Northrup

Company, Adjustable Zero-Adjustable Range-Speedomax H) which controls the

power dissipated in 100 ohm constantan heaters wound on the inside of the

chamber. Electrical trimming of the heat balance can be much more precisely

controlled than is possible with flow control of the liquid refrigerant.

Proportional control of these heaters was not required since simple

two-position operation resulted in oscillations about the control point

which increased to a maximum of only +0.5 K when the apparatus was cooled

to near 77 K.

A gas pressurized refrigerant delivery system maintains the flow

of liquid N_. Close control and monitoring of the influx of refrigerant

is accomplished by adjusting a micrometer valve until the desired flow

rate is attained as indicated by a flowrator in the frigerant chamber

exhaust line . From the measured vented gas flow rate, one can immediately

deduce the liquid refrigerant use rate.

The end of the condensation tube nearest the source is fitted

with any one of several flat extension pieces which are positioned to

protrude into the ionization chamber of the spectrometer when an analysis

is being performed; a channel in this extension piece conducts the sample

from the condensation tube into the ion source. The inlet port itself

(0.089 cm dia.) may be positioned at any point relative to the electron

beam including its being actually submerged in the beam, and hence the

cold gaseous sample emerges from the inlet tube directly into the ionizing

electron beam, and ionization of the sample occurs prior to any wall

collisions. A sample molecule must be considered to be background after
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Figure 1. Top view of the "Cross" vacuum chamber of the TOF mass
spectrometer which contains the source structure and
which is depicted with the cryogenic reactor-inlet
system in analytical position.



only one such wall collision. Design calculations, which were confirmed

subsequently by experimental measurements, show that the 0.4 x 1.6 cm

cross section of the nickle plated copper extension piece provides

sufficient conductivity along its 2.5 cm length to insure that the sample

is not heated significantly above the temperature of the refrigerant

chamber when it passes through the inlet channel. The maximum calculated

AT was 0.8 K and the measured value was somewhat less than 2 K. The

difference was probably due to the thermal resistance at the solder joint

where the extension piece joins the refrigerant chamber. These AT's were

however quite acceptable. The lateral positioning of the reactor inlet

device is accomplished with a screw, and an observation port is provided

to visually follow the advance of the extension piece into the ion source

structure. Sidewise positioning adjustments in the plane perpendicular

to that of Figure 1 are made during this advance by a pair of oppositely

placed, vacuum sealed push rods which are mounted on the "cross" vacuum

chamber. This rather delicate alignment situation is apparent in Figure 1.

Fast pumping in the source region is provided by a nominal 750 I/sec system.

The reactor-inlet system passes through a vacuum lock arrangement so that

the system can be withdrawn for adjustment without the necessity of break-

ing the vacuum in the mass spectrometer.

C. Ion Source Collision Dynamics

Maximum detectability corresponds to the observation of usable

spectra at the lowest sample pressures, hence at the lowest temperatures

of the condensed samples that are of interest here, and therefore in the

region of greatest thermal and chemical stability of these rather labile

compounds. •

As originally developed by Clausing , it is possible to calculate

the intensity of molecules effusing into a vacuum from a circular inlet
2

port of area irr which has some particular ratio of length to radius, L/r.

The molecular intensity, Ng at any solid angle, du, located at some angle,

9, with respect to the center line of the port (see Figure 2), may be

developed in the form of the cosine distribution function multiplied by a

deviation factor, J, which is a complicated function of L/r and 9,

N0 = [(N /TT)(COS 9)(dw/dA]J (1)y t '
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Figure 2. Spherical coordinate system for calculating the number
density of molecules at any point, (p, 0, <}>), for the
efflux of a gas through a hole in a thin edge orifice.
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From the variation of J with L/r and 8 , it is evident that both the

intensity at any angle and the total flow will be a maximum for a sharp

edge orifice for which case J has its maximum value of unity. N is the

rate at which molecules enter the sample inlet channel and is given by

the product of the molecular number density in the sample reservoir, the
1/2

average molecular speed, and the inlet area, i.e., by PA/(27TmkT) . We

are concerned, of course, with the ionization of molecules which have

suffered no collisions since leaving the inlet port. The sensitivity,

S, is directly proportional to the number of these molecules that are

ionized per unit time which is given by the product of the electron

flux, N , the molecular or the target number density, D(x,y,z), and the

ionization cross section, a.. Considering the case for which the cosine

distribution of intensities is correct, i.e., J = 1 or a sharp edge orifice,

the number of molecules emitted per unit of time through the shaded solid

angle, dco, shown in Figure 2 is N ~dco where dco = sin6d8d(f>. Hence, the
2

molecular flux at that point is given by N fl(dco/dA) where dA = p sin6d8d<j>.

The number density of molecules, D(p,9), at any point is given by the molecu-

lar flux divided by the average molecular velocity,

D(P,6) = (Ntesined0dq>)/(vp
2sineded<p)' (2).

which reduces to

Ntfl ' ' /OND(P,Q)=-^ <3)
vp . . •

and since N ~ = N cos6/TT,

N ' .
D(P,e)=—&- cose (4)

Equation (4) gives the number density of molecules at any point in spheri-

cal coordinates and corresponds to Equation (1). Transforming Equation (4)

into rectangular coordinates yields the expression

N

D(x,y>2) =-I ' 2, 2, 2,3/2
•nv (x + y + z ) '
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Since the probability that a given molecule will be ionized during a

single pass through the electron beam is very small, it can be assumed

that the number of target molecules is undiminished as a result of

ionization and is therefore correctly represented by Equation (5).

The sensitivity, S, becomes,

S = K f , Ne d. dN(x,y,z) (6)
Jcovol. i

where

dN(x,y,z) = D(x,y,z) dV(x,y,z)

and N and 0 are the electron flux and ionization cross section, respec-
G JL.

tively. Figure 3 illustrates the general rectangular effective collision

covolume of the electron beam of cross section, 2a x 2b and

length, (c_ - c ), where c.. and c« are the perpendicular distances from

the inlet port to the nearest and far faces of the beam, respectively.

Assuming that O. and N are constants and using Equation (5) and (7),

Equation (6) can be written, using symmetry properties, as

eo.KAv) J J J°
2 [z/(x2 + y2 + z2)3/2]dxdydz

After some manipulations, this equation can be integrated to. yield,
S = {4M t N e a .KAvUa ln[Y 2 (b + f^)/^ (b + p,,) ] (9)

- a ) ]

c2tan~ (a/c2) - 2c2tan"
1[

2c1tan"
1[ac1/(a +b)(ai"1 1 i j j

where, a = (b
2 + c2)1/2; p = (a2 + a2")1/2; Y = (a2 + c2)1/2; and where

the factor, J, has been taken to be constant and equal to its maximum

value of unity. Equation (9) predicts the approximate number of molecules

ionized per unit time with the near face of the electron beam a distance

c1 away from the sample inlet port for the case where (1) the flow out

of the inlet channel is molecular, (2) the inlet channel is a thin edge

orifice, i.e., cosine distribution of intensities f ran the inlet port,

(3) the axis of the inlet channel is aligned with ;the:: .center axis of the

electron beam, and (4) the inlet port is approximately.̂ ' point source.
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(-a, -b, c2)

(a, -b, c2)

(-a, b, c2)

(a, -b,

EFFECTIVE
COLLISION
COVOLUME

SAMPLE INLET
CHANNEL

Figure 3. Rectangular coordinate system for integrating over the
effective collision covolume to determine the total
sensitivity for a given position of the inlet port relative
to the electron beam.
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For the perpendicular arrangement of the inlet port relative to

the electron beam, the geometical parameters in the Bendix source structure,

a, b, and (c? - c..), are 0.038 cm, 0.318 cm, and 0.50 era, respectively. for

the coaxial arrangement these parameters are 0.25 cm, 0.318 cm, and 0.076 cm,

respectively. Substitution of these values into Equation (9) for various

values of a. gives the variation in sensitivity for the two arrangements

as a function of the distance of the sample inlet port from the electron

beam. The factor S v /N N a.K (more conveniently written Fv) was computed
C " 1

from Equation (9) for both the perpendicular and coaxial arrangements for

values of c1 between c1 = 0 and c1 = 3.0 cm at intervals of 0.005 cm. Some

of the values of this factor are tabulated in Table I. Fv is equivalent

to the fraction of molecules effusing from the inlet port per unit time

that appear in the effective collision covolume of the electron beam

multiplied by the average molecular speed (i.e., N,v/N ) where N, is the

number of molecules in the collision covolume. The paramount importance

of minimizing the distance between the inlet port and the electron beam

is clear, for if the inlet port is only two mm away from the beam, the

sensitivity is-down by a factor of four for the perpendicular case.

From Table I it was concluded that both the perpendicular and coaxial

arrangements provide about the same sensitivity at equal displacements

from the near face of the electron beam. These predicted trends have been

experimentally verified; e.g., moving the inlet port about 6 mm away from

its optimum position results in sensitivity losses of an order of magnitude.

The major deductions from these results were: (1) that the

coaxial arrangement and the perpendicular arrangement are equivalent so

far as sensitivity is concerned, and (2) the investigation of species that

are destroyed in a single collision should be performed with the sample

inlet port as close as possible to the electron beam, within less than

3 mm if possible. In view of deduction (1), and the mechanical conveniences

discussed earlier, it was concluded that the perpendicular arrangement was

preferable to the coaxial arrangement, and the system was designed in that way.

The sensitivity for a stable species also decreased appreciably as

the distance of the inlet port from the electron beam was increased, despite

the fact that, unlike the cryochemical species, there is an appreciable back-

ground due to the stable species. A stable C0_ ion current from C02 was

observed, and the variation of this current with distance of the inlet
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TABLE I. Variation of Sensitivity with Relative
Configuration of Electron Beam and Inlet Port

Configuration

Perpendicular
Arrangement

Coaxial
Arrangement

Geometrical Parameters
(cm)

a

0,038
Oo038
Oo038
Oo038
0,038

0,250
0,250
0,250
Oo250
0,250

b

0,32
0,32
0,32
0,32
0,32

0,32
0,32
0,32
0,32
0,32

Cl

0,0
0,2
0,8
1,4
2,0

0,0
0,2
0,8
1,4
2,0

C2

0,5
0,7
Io3
1,9
2o5

0,076
0.276
0,876
1,476
2,076

- »
v F

(from Eq, (9))

0,156
0,0387
0,0070
0,0028
0,0015

0,134
0.0594
0,0087
0,0036
0,0018

F is the fraction of molecules entering the inlet channel per unit
time that appear in the collision covolume and is equivalent to S/d.N.N K,
Maximum detectability with respect to the relative configuration of the
electron beam! and the inlet port corresponds to a maximum value of F.
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port from the electron beam was studied. Figure 4 illustrates the variation

that was obtained. It can be seen that the intensity decreases by a factor

of about 13 when the inlet port is moved from its optimum position, where

the electron beam is in grazing incidence, to a distance about 2.5 cm away

from the near edge of the electron beam. This is an order of magnitude

less than the factor of about 150 indicated from Table I for an unstable

species, i.e., with no allowed background sample, but the decrease still

represents a considerable loss of sensitivity.

The above calculations are for the case where the inlet port is

a thin edge orifice which corresponds to the optimum design for a circular

channel. A better arrangement would be a thin edge slit which would take

advantage of the entire effective length (0.64 cm) of the electron beam.

This would be particularly advantageous for the perpendicular arrangement.

It should be noted that if it is not necessary to maintain a

minimum pressure, i.e., a minimum temperature, in the inlet system, then

a greater sensitivity can be obtained by using a long inlet channel rather

than a thin edge orifice. The limiting variable in this case would be

the total sample influx that can be handled by the mass spectrometer

pumping system, A more directed flow is obtained with a channel and would

result in more molecules in the region of the electron beam for the same

total mass flow rate through the inlet port.

Calculation of the sensitivity for this case would involve

integration over the effective collision covolume where the factor J is

included. The integral involved is a very complicated function of L/r

and 9 would be very difficult to compute.

A qualitative indication of the sensitivity permitted with various

channels can be obtained without integrating over the collision covolume.

That is, the fraction of molecules, n, entering an inlet channel of finite

length which finally emerge within an angle 8 with respect to the axis of

the channel can be computed from the following integral

.e .
J sin 2 0 d 6 (10)"-JJr

where J is the deviation factor discussed above.
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Figure 4. Variation of sensitivity with relative configuration of
electron beam and inlet port for the perpendicular
arrangement using CO,, .as a test gas.
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The value of n has recently been computed numerically and tabulated

for numerous values of the parameters L/r and 6. Using these results, the

fraction of molecules that actually effuse from the inlet port within an

angle 6 with respect to the channel axis was calculated and is summarized

in Table II. The first row (i.e., for L/r = 0) is. for the case of an in-

finitely thin edge orifice for which J = 1. It is quite obvious from Table II

that the floxj of sample becomes increasingly more directed in the forward

direction for larger values of the length to radius ratio, L/r. For instance,

the fraction of molecules emitted within an angle 0 = 20 is more than twice

as great for a channel with L/r = 10 than for an infinitely thin orifice.

These results indicate that a long exit channel would be quite desirable

for experiments in which it is permissible for the cold sample to be main-

tained at pressures of several torr.
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Table II. Fraction of Molecules Effusing From a Cylindrical
Channel Within an Angle 8 With Respect to the
Axis of the Channel.

L/r

0

.1

.2

.5

1.0

1.2

1.5

2.0

3.0

4.00

6.00

10.0

20°

0.1170

0.1219

0.1267

0.1405

0.1610

0.1682

0.1784

0.1933

0.2167

0.2329

0.2509

0.2663

30°

0.2500

0.2594

0.2686

0.2940

0.3294

0.3411

0.3563

0.3763

0.3996

0.4100

0.4225

0.4341

40°

0.4132

0.4269

0.4401

0.4749

0.5185

0.5313

0.5461

0.5609

0.5721

0.5787

0.5871

0.5949

50°

0.5868

0.6034

0.6188

0.6573

0.6974

0.7059

0.7133

0.7179

0.7241

0.7283

0.7334

0.7385

60°

0.7500

0.7670

0.7820

0.8154

0.8383

0.8400

0.8415

0.8438

0.8471

0.8493

0.8519

0.8542

70°

0.8830

0.8971

0.9084

0.9272

0.9311

0.9315

0.9321

0.9332

0.9346

0.9352

0.9364

0.9373

80°

0.9699

0.9774

0.9817

0.9835

0.9838

0.9839

0.9840

0.9843

0.9848

0.9848

0.9850

0.9850
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CHAPTER III

RESEARCH RESULTS - CRYOCHEMISTRY

Studies have been conducted on a variety of chemical systems with

the general objective of developing new chemistry under the extreme condition

of cryogenic cooling. Some new phenomena have been observed. Although the

compounds discussed here may seem large, they are not so large as to be

meaningless vis a vis the astrophya'cal questions that are at hand. For

example, in the last two or three years, similar compounds have been observed

in space by radio astronomy including H CO, CH OH, NH , HCN, HCCCN, HCOOH,
^ J O

CH_CCH, HNCO, and HNC. Some of these same compounds appear in the following

discussion of results from our cryochemical investigations. Some of these

compounds also have biological significance, and they are of great concern

in exobiology. Mass spectrometric cracking patterns and molecular energetics

by electron impact techniques have been the primary means of characterization.

In this chapter, we present a cursory summary of these research results.

A. Three Carbon Strained Ring Compounds - Cyclopropene, Cyclo-

propanone, and Cyclopropenone.

CO., is a possible important species in the atmosphere of Mars.

We became interested in this compound and in closely related species such

as the isoelectronic cyclopropanone. This latter compound would have a higher

probability of successful synthesis than would C0_. These species possess

abnormal bonding in the form of small valence angles, and this leads to poor

bonding orbital overlap and weak bonds—a condition that is commonly described

by the term "ring strain." This abnormal bonding creates a driving force

for the molecule to enter into those reactions that would lead to relief of
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this strain. Thus, at room temperature, the reactivity may be so great that

some molecules exhibit only a fleeting existence. Our interest is in the

quench stabilization of such species. The primary effort in this work was

to investigate four ring compounds and, from mass spectral and energy

measurements at low temperatures, to derive a consistent body of calculated

results which would relate such quantities as heats of formation (AH ),

bond energies (E), bond dissociation energies (D ), activation energies

(AH ), and ring strain. Studies at room temperature versus those at
3C L

low temperatures were used to discern changes in structure, decomposition,

etc. with temperature for these reactive molecules. The causes and results

of the instability of these.molecules would necessarily determine procedures

and precautions for their convenient handling. When this work was begun,

two of the target molecules, cyclopropanone and cyclopropenone, had never

been isolated as pure species and much of .the work involved synthesis and

separation problems. Cyclopropene, a reactive olefin; cyclopropane, an

energetic model for cyclopropanone; and cyclobutanone, a by-product of the

cyclopropanone synthesis, were also investigated.

Although it had long been postulated as a reaction intermediate

and although it had shown fleeting, but detectable, existence, cyclopropanone

had not been isolated as a pure species. Shortly after this work was begun,

two papers appeared almost simultaneously, both describing the low temperature

synthesis (-78 ) from ketene and diazomethane in solutions of methylene

7 ' 8
chlorine and liquid propane . These reports on the stability and the

polymerization of the reactive product agreed with the results from our

study.
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In an unusual and unique process, we synthesized cyclopropanone

by the direct liquid-liquid, solvent free, reaction of diazomethane and ketene

at -145 . This is a synthesis with many novel and interesting facets. It

is very unusual to find a liquid-liquid reaction which will proceed at such

a low temperature without any external form of activation. The reactor,

submerged in a coolant at -145 , quickly conducted away the heat of reaction

and prevented the molecule from decomposing. The species had been reported

9
to decompose into CO and CLH, upon its formation in the gas phase . The

low temperature also served to slow the rate of cyclopropanone polymerization.

The use of low temperatures, pure reagents, and a great excess of ketene led

to yields of better than 50 per cent cyclopropanone with the four membered

ketone ring, cyclobutanone, as the only side product. Although cyclopropanone

can be kept indefinitely at -196 , it appears to begin to slowly polymerize

at -90 and reacts so rapidly at room temperature that samples are destroyed

within minutes. This reactivity at room temperature causes a severe analysis

problem and cyclopropanone can be conveniently studied only at low temperatures.

Although cyclopropanone had been reported to decompose upon its

formation in the gas phase reaction of CH N and CH-CO, after quenching to -196 , we

found that heating the molecule to room temperature produced no evidence of

decomposition or structural changes, but rather an increase in the rate of

polymerization. The polymer formed was a white, porous looking solid. The

ionization potentials, appearance potentials, and excess energies of the

principal ions from cyclopropanone and cyclobutanone were experimentally

measured,both over the quenched product and after purification, and their

molecular energetics were calculated therefrom. The ionization potentials

of cyclopropanone and cyclobutanone were measured to be 9.1 eV and 9.4 eV,
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respectively. Both of these values were supported by molecular orbital

calculations that were performed in this laboratory and which are discussed

later in this report. The important mass spectral and critical potential

measurements on cyclopropanone are summarized in Table III. With diazomethane

in excess, the reaction products were largely C, and some C,- ketones, but

very little of the CL ketone. In metal systems which catalyzed the

decomposition of CH^N-, cyclopropane was observed due to the reaction

of CfUN with its decomposition product ethylene at very low temperatures.
£~ £j

There was also some evidence for the formation of the unknown species

allene oxide from the attack of the CH^ upon the C-0 rather than the C-C bond

of ketene. Thus,

A
/-*• c - c = o

C = C = 0 + CH
\-!~ C = C - 0

\ /
C

It is also interesting to note that the IP of cyclopropanone is

more than an eV lower than that of its open chain isomer acrolein at 10.25 eV.

This is due to the increased ground state energy of cyclopropanone plus the

decreased energy of its ion due to the ability of the ring to accommodate

the positive charge. The appearance potential of C-H, and CH-CO are 10.2

and 9.9 eV respectively which are lower than the IP's of the parent species

themselves. This again is expected in view of the highly strained (see

following discussion) ring system which needs very little energy to break.

Cyclopropene, described in the literature as very reactive and

explosive, was investigated both because of this reactivity and as an

energetic model for cyclopropenone. It was found to be much easier to

handle than one would expect from the literature as it was synthesized,
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TABLE III

Summary of Mass Spectral and

Cyclopropanone and Its

m/e

70

56

42

41

39

38

37

36

28

27

26

15

14

C3H40 at -90°
a

15

15

5

4

4

4

3

100

35

34

Appearance
Potentials

(eV)

9.1

9.9

10.2

12.9

13.5

11.6

Critical Potential Data On

Coproduct Cyclobutanone

C.H,0 at -70°a
4.6

20

3

100

14

16

5

5

2

12

8

7

Appearance
Potentials

(eV)

9.4

11.0

13.0

14.1

15.7

16.7

temperatures of -90° and -70° for the G- and C, ketones respectively

were levels at which the species exerted convenient vapor pressures in

the cryogenic mass spectrometric inlet system. It was however not

possible to ccmplfitely separate the C_ ketone from the C, species due

to the similarity of their vapor pressures.



24

distilled, and transferred at room temperature with no change in structure

and with only an insignificant loss from polymerization (which only became

noticeable at room temperature). A one week exposure to room temperature

destroyed most, but not all of the species. Some dimer was also formed,

Unfortunately, the mass spectrum of cyclopropene consists of very intense

ion peaks corresponding to the positively charged, intact ring and very

weak ions resulting from ring fragmentations. The ionization efficiency

curves of the weak ion signals were of such poor quality that reliable

experimental appearance potentials could not be obtained and hence it was

impossible to unambigously develop the molecular energetics. The

ionization potential of cyclopropene was measured to be 9.6 - 9.7 eV which

was supported by our molecular orbital calculation of 9.6 and close enough

to a literature value of 9.95 eV to attribute the differences to experimental

errors.

Cyclopropene was studied at -145 and room temperature (~ 25 ).

Although it is known to polymerize at -80 and although the polymerization

is believed to be a reaction of the excited double bond .diradical , no

experimentally detected change in the ionization potential (9.6 - 9.7 eV)

from -145 to 25 proved that any formation of a triplet species occurs

in such small amounts as to be experimentally unimportant.

Cyclopropanone was simiarly studied at -90 and at 25 . Although

it was seen to polymerize quite rapidly at room temperature and although

many of its reactions in solution are postulated to proceed through the ring
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qpeiEd dipolar ion (23 kcal/mole more stable than the closed ring ), no change

in the ionization potential with temperature (9.1 eV) likewise implies no

detectable presence of these structures. A difference in structure would,

of course, have invalidated physical data taken at room temperature. Mass

spectral and energetic data are summarized in Table IV.

12
According to Breslow , the reaction of tetrachlorocyclopropene

with tri-n-butyltin hydride at room temperature produces a volatile mixture

of chlorocyclopropenes which, when collected in CC1, and hydrolyzed with

water, produces cyclopropenone in water solution. Breslow postlates the

existence of the free ketone, not the gem diol, even in water solution;

however, he states that all attempts to separate and isolate the molecule

have led to ". . .at least partial polymerization of the compound." He

also reports that the ketone may be extracted from water solution by polar

solvents and that it is much less reactive and more stable than its

saturated analog, cyclopropanone. His paper strongly suggests that

cyclopropenone was synthesized and implies that the failure to isolate

cyclopropenone was due only to its tendency to polymerize.

Based on our previous work on cyclopropanone and these reactivity

statements, we reasoned that cyclopropenone would most certainly be stable

enough for cryogenic mass spectrometric analysis once it.was separated from

its solution. Since it could be extracted, the obvious approach was to find

a polar solvent which would allow separation of the ketone at a low enough

12temperature to prevent polymerization. Although the reported synthesis

and nmr analysis for cyclopropenone were reproduced, we were unable to

isolate the ketone by any of the following techniques: extraction of the
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TABLE IV

Summary of Mass Spectral and Energetic Data on Cyclopropane

m/e

40

39

38

37

36

28

27

26

15

1*

13

Intensity At Appearance
-140° Potential

.(eV)

60 9.7

100 10.9

36

23

6.8

<5

< 2.3

5.7

< 0.6

5.7

< 2.3
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ketone from water solution using different solvents; performing the hydrolysis

step in water soluble solvents; partial hydrolysis of the dichlorocyclopropene

sample with less than the stoichiometric amount of water; and drying of the

solutions to remove dissolved water. We are unable to reasonably explain

these failures, and hence we conclude that this very interesting compound

must be ascribed as being as elusive as ever.

B. Excess Energy in Molecular Fragmentations.

The literature abounds with examples of fragmentations that contain

excess energy. In general, the parent molecular ion contains no excess

translational energy and rarely does it contain excess vibrational energy

as well. For fragment ions however, the probability of excess energy

increases with increase in the number of bonds that are broken. In general,

for a molecule R-iR^ in which I(R-,) < I(R_), R« will usually appear with

excess energy. Thus we expect at least half of all fragment ions will occur

with excess energy. Also we observe that a more abundant fragment ion has

less excess energy and vice versa. Thus the ions of low abundance from the

necessary breaking of two bonds in the 3-carbon ring compounds will very

likely contain excess energy.

Recently a technique for determining excess energy from a peak shape

analysis, i.e., based upon the focusing properties of the energetic ions,

has been developed for the TOF spectrometer . In addition, this measured

kinetic energy of a fragment ion has been rather well correlated with the

total excess energy, E , in the fragmentation event by the relation,

ej. = E*/aN (11)



28

where a is an empirical constant which was found to be approximately the

same for a large number of fragmentation processes in a wide. variety of

molecules, and N is the number of classical oscillators in the parent molecule.

The form of this expression comes from a consideration of the distribution

*
of energy E among N classical oscillators. In the fragmentation event,

R^ + e -»• Rj* + R2 + 2e

the excess energy is

E* = A(Rl
+) - AH° .

The total translational energy of the fragments, e , is calculated from the

measured translational energy of the fragment ion, e. , from momentum balance

considerations, and the result is

M.+M M.
t " (-f--) e - () (3/2kt)

n n

where M. and M are the masses of the ion and the neutral species from the

fragmentation event. From measurements of A(R_ ) and thus E and from

measurements of e. and thus e on a wide variety of molecules, a was found

to be very nearly equal to 0.44 for all fragmentations.

A consideration of the ion optics in the Bendix TOP machine leads

to the following expression for e..

e± = (NQ
2/3.69) (qEg)

2 (W1/2 - /M) (15)

where e. is in eV, N is Avogadro's number, q is the charge on the

ion, E is the ion accelerating potential in the source, W-j/2 is the peak

width at half-height and M is the mass of the ion. The broadening of an

ion signal results from the fact that ions are formed in the source with
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initial velocities in the direction of acceleration, hence they do not all

start from rest, and thus their flight times are different. The method

employed here then merely uses the degree of broadening to determine the

initial kinetic energy of the ions.

Instrumental factors that affect the intensity of an ion peak in

a multiplicative manner did not significantly affect the peak shape. However

all of the ion focusing controls were crucial to the measurements.

The excess energies were a function of energy as typically shown

in Figures 5 and 6. The data of Figure 5 were reproductions of previous

work to authenticate our technique. The curves vary widely in character

depending on the potential energy surface of the activated complex. The

data of Figure 6 for CH from cyclopropane are particularly interesting.

Neglecting the rapidly falling data very near the AP, and extrapoling the

ft
more gentle higher energy data to the AP yields e. = 0.35 eV and E = 103

kcal/mole which is in good agreement with earlier data on this process.

Rather if we accept this unusual phenomenon (which we have observed only in

these strained ring systems) the energetics can be interpreted by assuming

that C_H, and CH_ are produced in excited triplet states. As the

bombarding electron energy is increased, some ions are produced as excited

triplets with little excess energy while others degenerate to the ground

electronic singlet states with the concommitant production of large amounts

of excess vibrational and translational energy in the fragments. At

some still higher electron energy, almost all of the fragments are produced

in the ground electronic states with excess vibrational energy and the

upper curve is produced.

The extrapolated excess energies at the appearance potentials for

all ions studied here are summarized in Table V. The precision of the data
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TABLE V

Summary of Excess Energies (kcal/mole) at.AP

for All Compounds Studied in This Research

Parent
Molecule

CH2C12

C2H2

CH3N02

cy-C3H6

cy-C3H40

cy-C4H60

cy-C3H4

Ion -

CH2
+ 5.5

CH+ 3.7

CH3
+ 3.5

C2H3
+ 1.4

C2H2+ 1>A

CH2
+ 8.0

1.6

C2H4+

CH3
+

C2H4
+ 1.54

C2H2°+ 1>22

C2H2°+ -1-53

C2H4
+ 1.27

C2H3
+ 2.25

CH2
+ 2.08

CH+ 1.5

Ĉ * 1.25

•t

6.5

7.0

4.2

2.1

1.8

11.5

2.2

2.2

2.5

1.7

3.1

2.3

1.8

2.0

* Literature

E

28 36

21 19

29 29

19 21

16 15

103 113

18

—

0

17

17

26

18

33

24

12

13

1. M. A. Haney and J. L. Franklin, J. Chem. Phys.. ^8, 4093 (1968).
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*
varies greatly, but the resulting correlated excess energies, E , have

explained the molecular energetics of this family of strained ring compounds

as is evident in the following section of this report.

C. Derived Molecular Energetics.

The molecular energetics of highly reactive cryochemicals is

important in understanding both their reaction kinetics and stability

characteristics as well as, of course, their thermodynamics. In this research,

the molecular energetics were developed by electron impact techniques. One

of the major problems in the interpretation of such data is the occurance

of energy of excitation in either or both of the ion and neutral fragments

in the ionization process itself. The cyclic, strained compounds are a

convenient mechanism for the general study of this problem, and the data

are, of course also directly applicable to these compounds of astrophysical

interest.

In our work, it was found to be very common for the fragments

produced upon electron impact of ring compounds to possess excess trans-

lational and vibrational energy, but rare for the measured appearance

potential to correspond to a fragment in an excited electronic state. This

excess energy may be viewed as residual energy from the formation of

multiple bonds in the fragments. The introduction of a rearrangement

correction term for the energetic difference in the initial and final

ring fragmentation products, i.e., the excess energy of the fragmentation

process, allowed us to assign ring bond energies to particular bonds and

enabled bond dissociation energies and an estimation of ring opening

activation energies to be calculated which seem to relate well to

literature data from various other kinds of experiments.



Cyclopropane was investi gated as an energetic model from which

the.molecular energetics of cyclopropanone could be discussed. The

literature on cyclopropane discusses strain energies, heats of formation,

ionization and appearance potential measurements, structure, mechanisms,

and reactions. If our mass spectrometric data could be correlated with

other existing data for this molecule, a similar and confident interpretation

of the new molecule, cyclopropanone, would be possible. The energetics of

cyclopropane were successfully explained by the insertion of an energetic

^ V*

rearrangement term, R(R..) , in the equations for calculating bond

energies, D (R̂ -R') and D (R..-R-). This energetic rearrangement term represents

the energy difference between a hypothetical initial diradical and the final

ground state structure for the fragments which result from breaking two

carbon-carbon (C-C) ring bonds. From our measurements with cyclopropane,

we were able to calculate the following values (kcal/mole) which compared

well with literature data:

AH° = 13 ± 3 (lit. = 12.7)

ring strain = 36 (lit. = 27 relative to paraffins)

E(C-C) = 75

D° (C-C) = 52 (lit. = 49)

AH (ring opening) = 65 (lit. = 65)
act

and wherein the ring strain is localized to the carbon-carbon ring bonds.

Heats of formation in the gas phase of cyclopropanone and cyclo-

butanone were calculated from our mass spectrometric data to be 27 ± 8 and

13 ± 5 kcal/mole. Bond energies were used to calculate additional ring
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strains pf 36 and 19 kcal/mole with respect to cyclopropane and cyclobutane,

respectively. By a procedure analagous to the one used for cyclopropane, the

following values were prediced for cyclopropanone:

ECC-C1") = 66; E(C-C) = 40

D°(C-Cf) = 45; D°(C-C) =20

AH (C-C ) = 61; AH (C-C) = 35
act act

It would be quite interesting to predict an activation energy

for ring opening at the C-C (rather than the C-C ) bond in cyclopropanone

in order to support or dispel the theory that cyclopropanone reactions in

solution proceed with a low activation energy via the ring opened dipolar

ion. The latter value above supports the theory that cyclopropanone

solution reactions do indeed proceed via such a ring opened dipolar ion,

but this conclusion is totally dependent upon inclusion of the rearrangment

GX
energy term. Without the inclusion of R(R1) terms, mass spectrometric

results would predict a stronger bond at the distant carbon-carbon bond,
0 j. 0

d(C-C) = 1.58 A, than the shorter carbon-carbon bond, d(C-C ) = 1.49 A.

This result particularly points out the necessity of the rearrangement

term.

In this work, an experimental procedure was developed to calcu-

late, from mass spectrometric data, the AHf for molecules to within about

± 5 kcal/mole. Any lack of precision in the appearance potential and excess energy

measurements is partially overcome by using more than one fragment ion to

calculate AHf. This measurement is only worth the trouble for molecules

carbonyl carbon
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with structures from which it is not possible to make a good estimate of

AH° from other more precise methods. It is particularly adaptable to small

rings because the fragments are produced in ground electronic states and

correspond to molecules for which AHf and ionization potential are usually

known and need not be measured. However, it is necessary to check for

the occurrence of excess translational and vibrational energies. This

technique is simply the reversal of the normal energetic treatment from

which the heat of formation of the fragment ion is calculated from the

appearance potential by knowing the AHf of the parent molecule.

During the course of this work, secondary efforts were needed

to develop techniques for the measurement of appearance potentials of ions

with long-tail ionization efficiency curves (a more asymptotic-like approach

to zero intensity with decreasing electron energy). The determination of

critical potentials from ionization efficiency curves that have standard

shaped curves (positive slope at zero intensity) is obtainable by any

number of methods with varying degrees of precision. These methods include

initial break, .semi-log matching, retarding potential difference, linear

match, and extrapolated difference techniques. On the other hand, the

appearance potential of ions with long-tail curves required methods that

would separate the curve into sections pertaining to single processes

each of which must be interpreted individually. The appearance potential

of some of these long-tail, low abundance ions were experimentally

undeterminable by any of the above electron impact methods. In any event,

by looking for good match of the curves over the first two eV of the curve,

one could obtain higher precision and still have a method that emphasizes

the initial onset region of the ionization efficiency curve.
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An effort was made to apply molecular orbital theory to these

ring systems. This work involved no development of molecular orbital

theory but merely the application of each of four available computer

*3

programs to these ring molecules. Although MO calculations have been

performed for some time, it is only in the last few years that new

notions, particularly semi-empirical theory, as well as efficient

computer programs have been developed which seem to permit the calculation

of quantities of chemical interest to within useful accuracies. The

14 15
four programs used in this work were written by Klopman and Baird ,

both working with M. J. S. Dewar, Pople and Hoffmann . We wished

to calculate the ionization potential and heats of atomization (AH ) for

comparison with experimental data and to use the molecular orbital theory

to help predict the structure of these reactive molecules. For these

very reactive species, experimental structure determinations may be a long

time forthcoming and it was hoped that mass spectrometric data reinforced

by molecular orbital theory could provide some valuable insights. Because

of the inability of molecular orbital calculations to predict known

molecular structures or even most stable structures from which accurate

AH and ionization potentials could be calculated, theoretical chemists
3

have had to adjust molecular parameters by empirical means such that AH
O

and ionization potentials could be calculated accurately (on the average)

.
All four programs were obtained from the Quantum Chemistry

Program Exchange at Indiana University.
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for broad classes of compounds whose actual experimental bond lengths

and angles are similar enough to allow a set of "standard" molecular

geometries to be used for all molecules in the calculations.

Of the four molecular orbital programs used in this work, the

Baird and Klopman programs calculated usable numbers for AH and ionization

potentials while only the Pople program appeared to show any promise of

structure prediction. Because of the insensitivity of the ionization

potential to geometry changes and the good accuracy of calculated versus

experimental ionization potentials, the Klopman and Baird programs appear

to be usable for calculating ionization potential for cryogenic ring

molecules. However, the strong geometry dependence (especially the C-C

ring bonds) of both Baird and Klopman programs prevents the use of these

two programs for calculating AH. until some confidence is gained in assigning

standard geometries to abnormal rings. This assignment is further complicated

for ring molecules having unmeasured geometries. Although the triplet

calculations appear usable for parent molecules, the application to

fragments appears to be also dependent on some better understanding of

standard geometries. This confidence in assigning standard geometries may

be obtainable by working with many known strained rings, or for a particular

ring molecule with a family of substituted derivatives of known structure

and properties, good agreement may result from calibrating the programs for

this family of molecules as has been done for the cyclopropane and cyclopro-

18
pene families . Once this confidence is gained, the programs offer a

strong potential for mass spectrometric identification and distinction
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between closed ring and open chain isomers whose AH and ionization
3.

potential usually differ significantly. For very unstable molecules not

amenable to nuclear magnetic resonance or infrared analysis, this seems

a very worthy goal.

Although parts of the molecular orbital programs may not yet

be sufficiently accurate for absolute use, they still offer the possibility

of relative comparison of different structures, triplets, isomers, etc.

from which qualitative trends or relative quantitative data can be used

for mass spectrometric analytic decisions and calculations. Also included

in this area is the prediction of relative stabilities of competing

products.

D. Cyclobutadiene - The Cyclic Dimer of Acetylene.

Acetylene is a likely cometary constituent and indeed cyanoacetylene

(N=C-CECH) has been recently observed in certain regions of space by radio

astronomers. This five atom molecule is, of course, strickingly large.

We were thus attracted to a study of Cyclobutadiene, which is

the 8-atom cyclic dimer of acetylene that had successfully eluded all attempts,

many of them very extensive, of synthesis. The molecule was expected to be

energetic and intensely reactive. Theoretical calculations have disagreed

as to the nature of the ground state of Cyclobutadiene, for, depending upon

the method of calculation, both singlet and triplet states are predicted.

The many experimental failures of synthesis by conventional techniques and

the divergent results of theoretical calculations when combined with the

seeming relevance of the species in certain astrophysical problems, led

us to undertake the synthesis and characterization of Cyclobutadiene by

our newly developed cryochemical procedures.
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Several chemical procedures were explored. An earlier report of

indirect evidence for the isolation of cyclobutadiene from the reaction of

* o
CIT with eerie ion at 0 was based on the identification by gas chromatography

of very small amounts of methyl benzoate produced by the reaction of the

isolated cyclobutadiene with methyl propiolate in the presence of a large

19
amount of cyclobutadiene dimer . This research, reported in 1965 created

quite a stir, and it was written up in Chem. and Engineering News. In our

research, cyclobutadiene was both liberated from CIT and observed to react

immediately with,methyl propiolate and other dienophiles upon pyrolysis in

the injector of a gas chromatograph. In view of the conditions maintained

19
in the earlier rqxrted experiment , the formation of methyl benzoate could

be due to this process instead of the assumed .reaction of isolated

cyclobutadiene with methyl propiolate, and thus this earlier report,

though promising, must be discounted accordingly.

We conducted the oxidation of cyclobutadieneirontricarbonyl (CIT)

at 0 , the volatile products were transported at 0 , and were then quenched

at -180° to -196° in the cryogenic inlet arrangement attached to the mass

spectrometer. Upon slow, controlled warming, free cyclobutadiene, was not

detected, but cyclobutadiene dimer was observed.

The dehalogenation of cis-3,4-dichlorocyclobutene with sodium

amalgam at room temperature followed by immediate quenching of the volatile

products at -180 to -196 in the cryogenic inlet system also failed to

yield evidence of cyclobutadiene although cyclobutadiene dimer was again

observed.

Cyclobutadieneirontricarbonyl
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We also attempted the radio frequency discharge of cis-3,4-dichlorocy-

clobutene at room temperature at pressures of 10 torr followed by immediate

quenching at -196°.HC1, C^, C2HC1, C^, C^, C^Cl, and Ĉ Cl̂  were

observed upon slow controlled warm-up in the cryogenic inlet system, but

the mass spectra and ionization potentials of the C, species showed it to be

vinylacetylene rather than cyclobutadiene as is evident in Table VI. The

C, spectrum at -120 has been corrected for the presence of diacetylene,

HC=C-(ECH, m/e 50, which was produced in the discharge and which revaporized

at the same temperature as did the C, species. The comparison spectra of

Table VI were determined at temperatures of equivalent vapor pressures.

Pyrolysis of CIT was conducted in a specially designed furn.ace

inlet system to the mass spectrometer in which the furnace exhaust was

only 1/8 inch from the ionizing electron beam. With pressures of CIT of

10 to 10 torr and furnace temperatures of 350 to 400 , cyclobutadiene

was produced along with cyclobutadiene dimer, benzene, 1,3-butadiene,

vinylacetylene, acetylene, and carbon monoxide. The ionization potential

of cyclobutadiene was measured to be 9.3 to 9.4 eV. In the pyrolysis of

CIT followed by a rapid quench inside the cryogenic inlet system, C.H, was

revaporized and detected at -100 , but the IP was measured to be 9.5 to

9.6 eV as shown in Table VII. Although the mass spectrum and ionization

potential of this C.H, species were different from its isomers vinylacetylene

and butatriene (see Table VIII) the evidence for the existence of a stable

cyclobutadiene at low temperatures was not totally conclusive because

of the unavoidable presence of vinylacetylene. The nearness of the

ionization potentials and vapor pressures was such that we were never able

to measure either the mass spectrum or the ..IP of the pure species.
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TABLE VI

Summary of Important Mass Spectral and IP Data

From C,H, Synthesis Experiments

With

m/e

52

51

50

49

48

39

26

lonization
Potential

C,H, From rf Discharge

of C.H.Cl0
a

44 2

100

59

51

21

7

1

11

(eV) 9.7-9.9

Vinylacetylene

at -108°

100

56

49

19

8

1

12

9.8-9.9

Butatriene

at -90°

100

72

51

26

8

1

18

9.2-9.3

C, species was observed at -120 after quenching the discharge

products to -196 followed by slow controlled warm-up for sequential

revaporization and analysis.
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TABLE VII

lonization Potentials of C.H, Isomers

Compound

cyclobutadiene (singlet)

cyclobutadiene (triplet)

vinylacetylene

butatriene

Exp.

9.3 - 9.4

8.2 - 8.6C

9.8 - 9.9 (9.9)

9.2 - 9.3 (9.4)'

Theoretical

8.83, 8.56

8.43

9.60

8.99, 9.16

aE. Hedaya, et. al. , J. Amer. Chem. Soc. , 9JL, 1875 (1969).

F. H. Field and J. L. Franklin, "Electron Impact Phenomena," Academic
Press, New York, New York, 1957, pp. 261.

These theoretical calculations were performed in our laboratory using

LCAO-MO-SCF computer programs obtained from the Quantum Chemistry

Program Exchange at the University of Indiana.
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TABLE VIII

Summary of Important Mass Spectra From CIT

Pyrolysis and Quench Experiments

m/e

52

51

50

49

48

39

26

C.H.from Pyrolysis

of CITa

100

59

51

17

1

5

26

Vinylacetylene

at -108°

100

56

49

19

9

1

12

Butatriene

at -90°

100

70

51

26

8

1

18

xhis C, species was observed at -105 after quenching the products

from the pyroysis of CIT at 380 to -196 followed by sloxv controlled

warm-up for sequential revaporization and analysis.
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The larger percentage of vinylacetylene after the quench accounts for the

somewhat higher IP of the revaporized C, components. The only other

measured IP is for triplet cyclobutadiene produced by the pyrolysis of

photo-a-pyrone at 800 C . The agreement with our theoretical value for

the triplet is encouraging.

Critical potential measurements on fragment ions sufficient to

allow a calculation of the heat of formation of cyclobutadiene were

accomplished, but the resulting calculations were inconclusive. Calculations

from several perspectives using AP data on several ions yielded values .

clustered near 30 kcal/mole and near 70 kcal/mole. The discrepancy was

probably due to excess energy in the ionization processes, but experimental

difficulties prohibited the necessary measurements.

The mechanism of the pyrolysis of CIT was examined. The formation

of benzene was evidently due to the reaction of cyclobutadiene and acetylene

and not due to the pyrolysis of acetylene. Vinylacetylene was also not due

to the pyrolysis of acetylene. The lack of formation of these species from

acetylene was demonstrated by blank pyrolysis experiments under the same

conditions using only pure acetylene.

Cyclobutadiene was observed to react as expected with dienophiles

in the copyrolysis of CIT with methyl propiolate or with dimethyl

acetylenedicarboxylate. The reaction of cyclobutadiene with oxygen from

the copyrolysis of CIT and oxygen, produced furan. This result agreed with

21that of flash photolysis of CIT in the presence of oxygen but disagreed

20
with that of the pyrolysis of photo-a-pyrone in the presence of oxygen

in which 2-butene 1,4-dione had been produced. The lack of reaction of

cyclobutadiene with CH~ or CH- in the copyrolysis of CIT with methyl
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bromide or with dibromoethane again suggested that cyclobutadiene produced

from CIT had a singlet ground state.

A preliminary account of these results was published, however,

because of the remaining uncertainties detailed above, a more complete

communication must await further experiments.

E. Cryoquenched Reactions of Oxygen Atoms with Simple Hydrocarbons.

The reactions of oxygen atoms with several simple hydrocarbons

followed by rapid quenching to cryogenic temperatures have been studied with

the use of low temperature mass spectrometry. The rapid quenching was

carried out in an attempt to stabilize the initial reaction products, and

the inlet system permitted the detection of any compounds which might be

stable only at low temperatures. The systems that were studied were the

reactions of oxygen atoms with acetylene, ethylene, and ethane which were

99.6, 99.8 and 99.9 per cent pure respectively as obtained from the supplier,

and hence no purification was attempted.

The atoms were produced by means of an efficient radio frequency

electrodeless electric discharge arrangement which consisted of a 50-turn

copper coil 33 mm O.D. and made of 14 gauge wire. An impedance matching

network insured the maximum power transfer from the transmitter to the plasma

and hence, maximum production of atomic species. The network was very simple

as is evident in Figure 7. The transmitter, operating at 3.5 mHz, had an

output impedance of 52 ohms, and hence the network, with its 50 turn coil

and plasma core, must be adjusted to 52 ohms. Proper adjustment was

indicated by a SWR of near unity. The discharge was self igniting, would

operate in pyrex with no cooling, and would maintain an intense discharge
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in, e.g., hydrogen at pressures up to 80 torr. Tests for the presence of

0 and H atoms using the emission from

0 + NO -»• NO + hv

and the yellow to blue color change in

2H + Mo03 (yellow) •-»• Mo02 (blue) + H20

were always positive, but no attempts at quantitative analysis were ever

attempted.

The resulting mixture of atomic- 0 and both ground state and excited

molecular 0_ species contacted the second gaseous reactant in a pyrex reactor

cooled to very low temperatures, thereby resulting in fast quenching of the

reaction products. The quenching temperature was varied from 77 to 100 K

and the reactions occurred in a pressure range of 0.5 to 2.5 torr. The low

temperatures were produced by immersing the reactor in a dewar of a suitable

liquid refrigerant which was stablized with an automatic temperature control

system. The reaction products were studied during a controlled warm-up

from the quenching temperature by use of the low temperature inlet system.

The reaction of oxygen atoms with ethane followed by a rapid

quench to 90 K produced small amounts of ethanol as the only reaction product

in strong contrast to the room temperature reaction which produces C0_, CO,

ethanol, CH_0, CH CHO, and HO. These results are an example of a successful

attempt to stabilize the initial reaction product.by low temperature quenching,

and they thus shed light on the reaction mechanism. The reaction probably

occurred by an insertion of an excited D oxygen atom into the carbon-

hydrogen bond rather than by reaction of the ground state P which would

have abstracted an H atom and resulted in a different product array. Unlike

the case with either C.H, or C2
H2' the reaction with C.H, seemed to catalyse

the formation of 0,,. No 0» was observed when operating with the lighter



hydrocarbons nor when pumping only discharged 0~-He through the reactor under

the same reaction conditions. However, the 0_ formation could have been

a physical artifact of the reactor design as well.

The reaction of oxygen atoms with ethylene followed by a rapid

quench to 90 K produced products with appearance temperatures as shown

in Table IX. . •

No new or unusual products were observed, and hence these results

were first thought to be rather disappointing. However, the presence of

relatively large amounts of ethylene oxide supported a proposal by

22 23
Cvetanovic ' that the initial reaction product was an energy-rich

ethylene oxide molecule. The increased quantities of ethylene oxide produced

in the present work was then a result of the low temperature quenching.

Formaldehyde, methanol, and formic acid were probably formed from the

free radical scavenger action of 0- that was also present in the reaction

zone. These results then are a second example of a rapid quench

stabilizing the initial product and thereby giving us insight.into the

reaction mechanism.

The reaction of atomic oxygen with acetylene followed by a

rapid quench to 90 K produced carbon dioxide, glyoxal, formic acid, water,

a red compound or complex disappearing at -123 , and a white solid which

slowly changed to a yellow and finally to a brown color on exposure to

the atmosphere at room temperature. These products and their appearance

temperatures appear in Table X. The red color and double C9H? evolution

were not reproduced in blank experiments. The red substance was tentatively

explained in terms of a charge transfer complex between unreacted acetylene

and formic acid wherein the acid proton of the formic acid interacts with
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TABLE IX

Products from the Reaction of Discharged Oxygen with C^H,

Followed.by Quench to 90°K

Temperature Range, C Product

-176 to -152 unreacted CJH,

-163 to -131 CO

-145 to -121 . . ECHO

-127 to -94 CH3CHO and

-82 to -54 CH OH

-65 to -10 HO

-60 to -10 HCOOH

*
The mass specral data permitted a product ratio estimate of acetaldehyde

to ethylene oxide of 30:70.
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TABLE X

Products from the Reaction of Discharged Oxygen with

C,H Followed by Quench to 90°K
£- £,

Temperature Range, C Evolved Cpd. Observation

-163 to -135 Unreacted C^

-163 to -135 C02

-135 to -116 secondary ^oH2 ret^ c°l°r fading

-103 to -79 Q yellow color fading

-82 to -54 (CHO)2 yellow color fading

-50 to -20 HCOOH

-79 to -20 H20

room temperature white, fluffy solid
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the TT electrons of the acetylene. The red color of the complex would be

caused by the transfer of electrons from the acetylene to the formic acid.

This electron transfer would be to a lower excited state and cause a shift

toward longer wavelengths of absorption. This type of absorption is well

known, for example, when chloranil (yellow) and hexamethylbenzene (colorless)

24
are mixed, an intensely red solution is formed . In our studies, the

proposed charge transfer complex would exist only at low temperatures.

Upon warming, the bonding would weaken and the C_H. would be evolved.

We have also found that this same sort of reaction configuration

but with benzene rather than C9H_ will also yield red deposits at 90 K.
4, L*

25
Charge transfer complexes of benzene are well known

Glyoxal is yellow, and thus its evaporation would explain the

observed color change, but the origin and significance of the accompanying

slight 0_ evolution was not established. The room temperature solid was

not identified but was found to contain functional groups of aldehydes

and esters. Upon exposure to the atmosphere, it gradually- became yellow

and finally dark brown after about 48 hours. The expected initial reaction

product, ketene, was not detected presumably due to the insufficient speed

O

of the quench. 0( P) does react at 20 K in an argon matrix to yield

ketene. Interestingly, 0( D) would be expected to react with C_H. to

form oxiene,

HC — = CH ,

a very strained and presently unknown species. The initial hot species

would decompose .
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H2C20 + CO + CH2

HCOCH* •*- CHO + CH

and these radicals would react further to form the observed product

distribution.

The results obtained from the study of these three reactions

indicated that, depending on the molecular complexity and the energetics

of the initial reaction products, a variety of intermediates could be

stabilized by low temperature quenching.

F. Cryoquenched Reaction of 0 Atoms with NH_.

The products of the reaction of.atomic oxygen with ammonia

with an immediate quench to 90 K are presented in Table XI.

When the 0;NH_ reaction was conducted at room temperature with

no quenching, NO and N«0 were the main products. When cooled below -115

the peaks due to these oxides began to decrease indicating that a portion

of their precursors were being removed from the reaction zone by the

quench. This removal was never completely effective since some NO and

N_0 remained even when quenching at 90 K.

The product mass was yellow as previously reported over 40 years

26
ago , but the color was due to the normally unstable diimide, N_H_, rather

than HNO or NHJD as was then proposed. The color bleached as the N_H_

was removed between -125° and -110 . The ionization potential of diimide

27
was measured to be 9.8 f 0.2 eV in good agreement with a previous value

The AP of N2H
 + from N^ was found to be 11.3 ± 0.2 eV.

Hydrazine could have been formed from the dimerization of two NH^ radicals

or from the disproportionation of diimide,
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TABLE XI

Products of the Reaction of Discharged

Oxygen with NH_ Followed

by Quench to 90°K

Temperature Range, C

-183 to -141

-125 to -110

-61 to 1

-50 to -15

-1 to > 1

room temperature

Product

NO

, N, N0, unreacted

N2H4
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2N0H0 •> N0H. + N0 + 86 Kcal2 2 2 4 2

which would also explain the evolution of N^ with the appearance of N _ H , .

The detection of NH OH was important in that it had previously
2

28
been proposed to exist as an intermediate in the oxidation of NH . The

compound could have been formed by

0 + NH- ->• NH2 -f OH + NH2OH

or by direct insertion. The conversion is exothermic by 119 kcal/mole.

G. Cryoquenched Reaction of H Atoms with NO.

The reaction of hydrogen atoms with nitric oxide followed by a

rapid quench to 77 K produced only small amounts of nitrous oxide and water.

The expected intermediate, HNO, was not detected; however, the presence

of nitrous oxide and water indicated that HNO was produced during the

29
reaction process . The failure to stabilize and detect HNO is supported

30
by a concurrent study made by Robinson

H. Low Temperature Reaction or Ozone and Ammonia.

While discharged oxygen and NH. produced a yellow colored product

mass upon quenching to 90 K as described above, quenching to 77 K

produced an orange-red mass which proved to be formed by the reaction of

condensed ozone with the NH». In subsequent experiments, a layer of

ammonia was condensed on top of a layer of ozone at 77 K. A bright yellow

deposit was produced, and as the reactor was slowly warmed, the yellow

color changed to a orange-red. In another experiment, the orange-red

solid could be formed at 90 K if the discharged oxygen was first forced

to strike the liquid oxygen cooled surface before contacting the gaseous

NH~. The preliminary cold wall contact evidently led to ozone,
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The orange-red solid bleaches at -70 and white solid NH.NO.,

is produced. Ozone and oxygen appear over a wide temperature range of

-153 to -112 during slow warming. Thus we conclude that the original

product was NH.CL which decomposed according to

31 32
This proposal is in keeping with earlier related observations '

I . The Lower Boron Hydrides .

Borane, BH«, should be a stable species at sufficiently low

temperatures, as should, for that matter, BH as well. The simplest known

boron hydride is diborane, B0H, , which is itself a very energetic andi o

uniquely bonded molecule. And BH and BH should be even more energetic.

Thus the objective here was the identification and determination of the

energetics of these molecules by mass spectrometric techniques, and an

attempt to prepare each as a stable liquid or solid phase by utilization

of cryogenic reactor techniques. A secondary effort was made to produce

H_BF in order to obtain more information concerning unstable trivalent

compounds of boron.

The boron hydrides, particularly B_H, , and also the higher

alkylated boranes had received considerable attention because of their

parctical usefulness, especially as rocket and jet aircraft fuels. In

addition, much interest and controversy has been focused upon the

unusual bonding present in these compounds due to their so-called

"electron deficient" nature.
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Initial attempts to detect BH_ in the pyrolysis of B_H, and

dimethylanilineborane involved the introduction of the pyrolysis products.

into the ionization region of the mass spectrometer by effusion through

small diameter orifices. This approach had been -used successfully in this

33
laboratory in the study of CF2 as well as in other investigations of

34
unstable molecules and free radicals . However, BH- could not be

detected in a lengthy and sometimes frustrating series of hot filament and

tubular furnace pyrolysis experiments. When BH» was finally observed by

introducing the pyrolysis products directly into the electron beam without

the presence of a beam collimating orifice, it became clear that future

investigations of unstable species should be conducted, if possible, in

this manner. Whereas CF~ was not lost upon effusion through a 0.032 inch

33
diameter orifice , BH_ suffered decomposition or reaction under similar

experimental conditions.

A radio frequency discharge of B_H, failed to produce evidence

of BH-. If BH» were actually formed in the discharge, it would have been

depleted by the time the discharge products reached the ionization region

of the mass spectrometer approximately one foot away. This became

apparent only later during the cryogenic quenching experiments when it was

found that BH_ could not be successfully transferred through a 1-1/2 foot

long by 3/8 inch diameter tube which had been cooled over its entire length

to a temperature approximately that of the melting point of oxygen (54.8 K).

BH_ was finally detected successfully in the pyrolysis of B_H, in

tubular furnaces of quartz, aluminum, and stainless steel at pressures

of 10~ to 1Q~" torr and at temperatures of 250° to 400°. BH~ was also

produced by the pyrolysis of B-H- on incandescent filaments of platinum,
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tungsten, nichrome, zirconium, molybdenum, niobium, titanium, and tantalum.

The ionization potential of BH_ was determined by two independinet methods

to be 12.32 ± 0.1 eV. By comgining this with a value of 14.88 ± 0.05 eV

for A(BHt) from B0H,, D(BH0 - BHJ was calculated at 2.56 eV or 59 kcal/mole.
o 2. o J j

The appearance potentials of B , BH , BH~ , BH , and B H from

B«H.., as well as from BH wherever applicable, were determined. Although

several of these values are in major disagreement with other studies, the

numbers presented are considered to be accurate because of the experimental

precision, and the excellent self-consistency of the resulting numbers.

The latter is demonstrated by three determinations of D(BH_ - BtO as

approximately 2.6 eV from the appearance potentials of three separate fragment

ions. All of the appearance potential data from B0H^ and BH,. are2 o j

summarized in Table XII.

The experimental appearance potentials permitted the direct

determination of either the values of or the lower and/or upper bounds for

D(B+ - H), D(BH+ - H), DCBH* - H) , D(BH3 - BHj) , D(BH* - BHj), KB̂ ), and

I(B2H5). The calculation of D(B - H), D(BH - H), D(BH2 - H), and I(BH2)

was made possible by introducing the spectroscopic value of I(BH) =9.77

35
eV . The values are consistent with some of the data from spectroscopic,

kinetic, and mass spectrometric studies and also are upheld by theoretical

arguments in several cases. These calculated energetic quantities are

summarized in Table XIII.

The utilization of the derived bond energies to calculate the

heat of formation of B2H- as -40.9 kcal/mole at 298 K allowed an analysis

of the errors in the experimental bond energies from this research. This

was accomplished by comparing the calculated heat of formation from our

oc
data with an experimental value of 7.53 kcal/mole which is believed to
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TABLE XII

Appearance Potentials of Fragment Ions from BH and B0H^j 26

Fragment Appearance Potential from Appearance Potential from
Ion Parent in eV (This Work)0 Parent in eV (Literature)

B10 15.833 18.39 ± 0.02 18.7 ± O.ld 19.5 ± 0.2e

B10H+ 13.66 ± 0.02b 16.39 ± 0.3 14.9 ± 0.1 16.6 ± 0.2

B10H2
+ 12.95 ± 0.05 15.5 ± 0.05 13.4 ± 0.1 13.5 ± 0.5

B1:LH3
+ 12.32 ± 0.1 14.88 ± 0.05 11.4 ± 0.2f 13.1 ± 0.2e 12.1 ± 0.2s

B1^4" 11.84 ± 0.1 11.9 ± 0.2 11.3 ± 0.5

B10H6
+ 11.9 ± 0.1 12.1 ± 0.2

B 1 " * " 11.9 ± 0.1 12.0 ± 0.3

Calculated as A(B+) from B^ or (18.39 eV) minus D (BH- - BH ) or 2.56 eV.

Error represents maximum deviation from average of experimental values.

£

Average of experimental values.

W. S. Koski, et. al., J. Amer. Chem. Soc.. &), 3202 (1958).

6J. L. Margrave, J. Phys. Chem.. 61, 38 (1957).

T. P. Fehlner and W. S. Koski, J. Amer. Chem. Soc., 86, 2733 (1964).

8Fragment ion is B H,+.
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TABLE XIII

Bond Energies and lonization Potentials Calculated or Estimated

from Appearance Potential Measurements

Bond Energy
or

lonization
Potential

D(B - H)

D(BH - H)

D(BH - H)

D(B+ - H)

D(BH+ - H)

D(BH* - H)
i

D(BH, - BHJ

This
Research

3.64

4.83

3.58

2.17

5.23

0.63

2.56

Energy , eV
Literature

Calculated or
Experimental Estimated

< 3.5135 3.39a, 3.40b

4.7C

3.2d 3.2°

<2.0435 3.0C

5.2°

0.9C

1.7d, > 2.39e 1.23h, 1.611

D(BH+ -

I(BH2)

<3.67; > 3.04

< 11.84; > 11.21

9.37

> 8.26

11.9f, 12.I8

9.8

2.253, < 1.66*

8.2'

7.86

A. C. Hurley, Proc. Royal Soc. (London) Ser. A., 261, 237 (1961).

F. 0. Ellison, J. Chem. Phys.. 43, 3654 (1965).

^W. C. Price, et al., Discussions Faraday Soc., 35, 201 (1963). .

T. P. Fehlner and W. S. Koski, J. Amer. Chem. Soc.. &6, 2733 (1964)
£E. J. Sinke, et al., J. Chem. Phys,, 41, 2207 (1964).

W. S. Koski, et al., J. Amer. Chem. Soc.. jBO, 3202 (1958).
5J. L. Margrave, J. Phys. Chem. , j61, 38 (1957).

R. E. McCoy and S. H. Bauer, J. Amer. Chem. Soc., 78, 2061 (1956).
LT. P. Fehlner. and W. S. Koski, ibid. . JJ7, 409 (1965).

'R. P. Clarke and R. N. Pease, ibid. , _7_3, 2132 (1951).
<M. E. Garabedian and S. W. Benson, ibid., J56_, 176 (1964).
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be a correct number. This calculation involved D(BH_ - BH ), the heat of

sublimation of boron, the dissociation energy of hydrogen, and two times

the value of the heat of atomization of BH_. If all values except the

latter are assumed to be accurate, it may be seen that an error of 24.2 kcal/

mole in the heat of atomization of BH , i.e., D(BH2 - H) + D(BH- H) + D(B - H),

would produce the rather large disagreement between the two heats of formation.

That is, an average error of approximately 8 kcal/mole or 0.35 eV exists

in the derived bond energies of BH, BH«, and BH». This is believed to

be the case as opposed to assigning what would be a considerable error to

D(BH_ - BH«). The errors are not believed to be due to the experimental

appearance potential values, but to be inherent in the electron impact

method of energy determinations, e.g., FrankeCondon problems.

Free BH0 was not detected in the pyrolysis of B.H, even though/ z b

the experimental conditions under which BH^ was reportedly synthesized

37in earlier studies in another laboratory were essentially reproduced

Equilibrium partial pressures calculated from free energies

of reaction based on the bond energies from this research and entropy

values from estimated thermodynamic tables showed that the pyrolysis of

B.H,. should produce approximately equal amounts of BH,j and BH_. However,

by again employing the experimental bond energies, the magnitudes of the

activation energies for the dissociation of B~H, into BH0 and into BH0
2. O f. .. J

were estimated and a comparison of the resultant kinetic rate constants

indicated that BH2 would not play a significant role in the kinetics of

the pyrolysis of B.H,,.
i o
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; The quench of the products of the pyrolysis of B^H^ in the

cryogenic reactor inlet system at temperatures as low as approximately

the melting point of oxygen (54.8 K) failed to produce evidence of

stabilized BH_. That is, BH. was not observed either by monitoring the

pyrolysis and quenching operation or by monitoring the gas evolved

from the deposit upon warm-up. However, the observation of an increase

in the H_ ion peak at approximately 60 K followed by a decrease in its

intensity at higher temperatures led to the initial conclusion that BH«

had been stabilized at the quenching temperature, but was reacting or

decomposing to liberate H as the temperature of the system was increased.

This concurred with an earlier x-ray detection of an unidentified phase with

a triple point of 60 K in the quenched products of a microwave discharge

38
of B9Hfi . A subsequent blank experiment in which unpyrolyzed B_H, and

H_ were subjected to the cryogenic quench produced the same variation

of the H9 ion peak upon warm-up. The final conclusion was that H9 was
£* £,

trapped in the B0H., matrix and liberated at approximately 60°K.
£ D

H-BF was not detected in similar cryogenic quenching experiments

in the products of an rf discharge of BF_ and B_Hfi. However, HBF2 was

observed upon warm-up of the quenched discharge products to about 90 K.

The lowering of A(BF_) to approximately 13 eV was evidence that HBF and

+ 39
not BF_ was the parent compound since A(BF9) from BF- is 16.2 eV . Also,

the appearance of HBF and BF» peaks at a temperature slightly lower than

that at which peaks from BF_ begin to appear agreed with the reported

40similarity of the vapor pressures of HBF^ and BF_ ' Finally, the
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approximate 1:1 ratio of m/e ion peaks 31 and 49 concurred with a mass

40
spectrometric study of HBF_
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CHAPTER IV

SUMMARY LISTS

A. Graduate Theses

1. "Mass Spectrometric Study of the Products Obtained from Fast Cryogenic
Quenching of Several Reactions Involving Atomic Hydrogen or Atomic
Oxygen*

Author: D. B. Bivens
Degree; Ph.D. in Chemical Engineering

2. ''Synthesis, Stability and Energetics of Cylobutadiene'1

Author: P. H. Li
. Degree: Ph.D. in Chemical Engineering

3. "'Synthesis and Mass Spectra of Cyplopropene and Cyclopropenone"

Author: M. A. Bell
Degree; M.S. in Chemical Engineering

4. "The Preparation of Some Highly Reactive, Three Membered Ring Organic
Compounds as Cryochemical Reagents, and the Low Temperature Mass
Spectrometric Study of Their Stability and Molecular Energetics"

Author; R. J. Holt
Degreei Ph.D. in Chemical Engineering

5. l;Mass Spectrometric Studies of the Synthesis, Energetics, and Cryogenic
Stability of the Lower Boron Hydrides"

Author:' J. H. Wilson
Degree: Ph.D. in Chemical Engineering
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B. Publications

1. "A Refrigerated Inlet Arrangement for Mass Spectrometric Studies
of Unstable Species at Cryogenic Temperatures, " Rev. Sci. Instr.
37, 561 (1966), T. J. Malone, W. J. Martin and H.A. McGee, Jr.

2. "Low Temperature Synthesis," Chem. Eng. Prog. 62, 113 (1966),
D. B. Bivens, T. J. Malone, J. H. Wilson and H. A. McGee, Jr.

3. "Mass Spectrometric Studies of the Synthesis, Energetics, and
Cryogenic Stability of the Lower Boron Hydrides," J. Chem. Phys.
46_, 1444 (1967), J. H. Wilson and H. A. McGee, Jr.

4. "Mass Spectrometry in Cryochemistry," presented at 157th National
ACS Meeting, Minneapolis, April, 1969 and reviewed in Chem. and .
Eng. News, <47, No. 17, 50 (1969), H. A.. McGee, Jr.

5. "Mass Spectrum and lonization Potential of Condensed Cyclobutadiene,"
Chem. Comm., 592, 1969, P.H. Li,and H. A. McGee, Jr.

6. "Cryochemical Technology," Cryog. Technol. , _7_, 109 (1971),
R. J. Holt and H. A. McGee, Jr.

7. "Cryochemical Synthesis of Cyclic Three Carbon Compounds",
J. Am. Chem. Soc., in press, R. J. Holt and H. A. McGee, Jr.

8. "Molecular Energetics in Highly Strained Three Carbon Ring Compounds",
R. J. Holt, H. A. McGee, Jr., and E. F. Rothgery, in preparation.
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35. B.aier, S. K. et̂ âl. , J. Mol. Spec try. JL3, 256 (1964).

36. Gunn, S. R., and L. G. Green, J. Chem. Phys., 36, 1118 (1962).

37. Fehlner, T. P. and W. J. Koski, J. Amer. Chem. Soc. 87, 409 (1965).

38. Bolz, L. H., et al., J. Chem. Phys. 3JU 1005 (1959).

39. Law, R. W. and J. L. Margrave, ibid. 25_; 1086 (1956).

40. Lynds, L. and C. D. Bass ibid. 43, 4357 (1965).


