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APPROXIMATIONS FOR NEUTRON EMISSION SPECTRA FROM
PROTON COLLISIONS SBETWEEN 20 AND 500 MeV
ON NUCLEI OF A > 12

INTRODUCTION

The approximations given in this report are based on the intranuclear-cascade data
generated by H.W. Bertini of Oak Ridge National Laboratory (ORNL) [1]. R.G.
Alsmiller, Jr., and associates have made detailed fits of this data as described in
References 2 and 3. The present effort was undertaken for those space shielding
applications where the neutron spectrum may be chosen less accurately but may be more
easily integrated into a larger computer transport code with access to a limited computer
memory. In addition, the present fits are more satisfying because the number of
coefficients for the data has been reduced by a factor of more than 30 over those of
Reference 2, while also providing an analytical expression of the neutron emission spectra
as a function of neutron energy, proton energy, and target A number. In Reference 3,
Alsmiller required an elaborate double interpolation formula between ten elements and
nine energies in order to find a neutron energy spectra formula for a given proton energy
and target, whereas the approximate analytical expression given here completely defines
the neutron spectra for any given proton energy and target in the range of validity.

Of course, one should suspect that if the number of coefficients is reduced by a
factor of 30, then the accuracy of-the fits might vary accordingly. However, this was not
the case. The difference between Alsmiller’s fits and the present work over a neutron
spectrum was usually quite small, with a few bad exceptions, notably evaporation
neutrons from carbon and oxygen. The agreement is better than was observed between
the Bertini intranuclear cascade calculations and experiment. In order for the reader to
evaluate the accuracy of the present work, as compared to Alsmiller [2,3], graphs are
given at the end of this report for all energies and target nuclei generated by Bertini and
given in References 2 and 3.

USE OF CURRENT FITS

This report provides analytical fits for two specific neutron source groups. The
first group is the proton-induced evaporation neutrons which are integrated over all
directions (0 to 180 deg). By dividing the analytically fit neutron energy spectrum
by 4n, one can derive a very reasonable estimate of the true isotropic emission spectra
in units of neutrons/(MeV-steradian). The second group of neutron spectra is the
proton-induced cascade neutrons which are also integrated over all directions (0 to 180
deg). However, since cascade neutrons are fairly directional, one must use judgment in



deriving a reasonable angular emission spectra from the given fits. If one needs an
accurate angular emission spectra, then Alsmiller’s [2,3] data are recommended since he
has given fits for four angular intervals (0 to 30 deg, 30 to 60 deg, 60 to 90 deg, 90 to
180 deg). However, many good approximations for thin shields can be made using the (O
to 180 deg) fits given here, if one can assume a straight-ahead approximation (i.e., assume
all cascade neutrons are emitted in the same direction as the incident proton). This
should provide a conservative estimate for normal incident protons on a slab or isotropic
incident protons on the surface of a spherical shell with detectors at the center of the
sphere.

No detailed attempt will be made to explain how the data should be used except
for the following example for neutron flux estimation:

[ Z neutrons
¢(EN, x) = (Ep»> A) 04 (E,) F(Ey| By, A, Z)dE = —F , (D)
p X p
Ep in gm-MeV
where
¢(EN , X) = neutron emission energy spectrum created at depth x (gm/cm?) ,

Z (E A) = inelastic cross section for proton (of energy E on elements of
mass number A) in units of cm?/gm,

2.4 x 107
2027

IR

(cm? /gm),
by (Ep) = proton spectra at depth x(gm/cm?) in units of proton/(cm? - MeV)
and

F(EN!Ep , A, Z) = neutron emission spectra function fit in units of neutrons/
' MeV for a proton of energy Ep having an inelastic

collision on a target defined by mass number A and atomic
number Z.



Observing the function ¢(Ep,x) in equation (1), one sees that to find the

neutron energy spectrum at depth X* , the function must be integrated over x for all
values from 0 to X* ; thus, for thin shields

X*

t
ox+ (BN =‘§) (BN, X) T (BN, X* - x) dx = B0

(2)
cm? ~-MeV

where T(Ep, X* - x) ‘is a dimensionless transport kernel for the attenuation of neutron

flux from x to X*. When X* is sufficiently large (perhaps a mean free path), a neutron
transport code should be used. For space vehicle shielding, it is worth noting that a
1-MeV neutron has a mean free path in aluminum of about 15 gm/cm?, a 20-MeV
neutron has a mean free path of about 25 gm/cm?, and a 100-MeV neutron has a mean
free path of about 45 gm/cm?. If the shield contains hydrogen, the value of X* should be
fairly small, perhaps less than 0.5 mean free path. Methods for performing the integration of
equation (2), and especially the choice of a transport kernel will be left to the reader.

. ANALYTICAL APPROXIMATIONS FOR NEUTRON EMISSION SPECTRA

The following pages give the neutron emission spectra for an incident proton of
energy Ep on targets of A> 2. Table 1 gives the derived cascade neutron spectra

formula for the angular interval of O to 180 deg. However, most of the cascade neutrons
are emitted in the forward direction (0 to 60 deg) as measured from the proton
direction.

Table 2 gives the derived evaporation neutron spectra formula for the angular
interval of O to 180 deg. Here it can be assumed that the neutrons are emitted
isotropically from the excited nucleus.

The original data generated by Bertini [1] and fit by Alsmiller, et al. [2,3],
consisted of ten target nuclei and nine incident proton energies from 25 to 400 MeV.
Since this report attempts to simplify the original ORNL curve fits, it seems appropriate
to show a comparison of our results for each energy and target element that was
originally fit by Alsmiller, even though the number was extremely large (90). Also, many
of the neutron spectra shown here are not depicted in other reports, even though ORNL
has extensively published most of their results.

Figures 1 through 10 depict the cascade neutron spectra for ten target nuclei with
the nine proton energies shown per figure. It should be noted that the spectral data are



TABLE 1. CASCADE NEUTRON ENERGY SPECTRUM FOR PROTONS
INCIDENT ON NUCLEIOF A > 12

F(EN[E, A ,Z) = [B1 # By(A2) + Bs(AZ)] exp(Bat+Bst? +Bet);  [ar]

where

e< By <E; s 20'<Ep<500MeV ,

2
€ = -3.018(-1) + 4.265(-1) ~2— +5.591(-3) —L_ * |
RE £2/3

€ = minimum neutron energy,
E\; = cascade neutron energy = €+ t(Ep -e); 0t
E_ = incident proton energy,

p

A7 = mass number and atomic number of target nuclei,

B, = +5.763(-2) - 1.795(-4)E p+2.194(-7)Ep2 ,

By = -9.499(-4) + 1.805(-5)E,, + 9.225(-8)Ep2 + 2.582(—10)Ep3 - 2.986(-13)Ep“ ,
By = 4.513(-6) - 1.0603(-7)E, 6.406(—10)Ep2 - 2.022(-12)14:p3 + 2.481(—15)Ep4 ,
By = -2272- 12283(-1)E,, + 5.288(—4)Ep2 - 1.1356(—6)Ep3 + 9.691(-10)Ep4 , |
By = +7.845+ 17.040(-1)Ep —2.260(4)Ep2 + 1.1429(57)Ep3 . and

By = -8.007 - 6.950(-3)E,, - 7.495(—5)Ep2 + 2.0826(-7)Ep3 .

*a.bc(Y) = abex 10¥




TABLE 2. EVAPORATION NEUTRON ENERGY SPECTRUM FOR PROTONS
INCIDENT ON NUCLEIOF A> 12

. : E Ey\ 2
= N N Neut.
EIE. ,A,Z) = Cy. Coil — ) +Cqil — N v

where

E | '
A=—2L __ ; 0<Ey<A; 20<E, <500MeV; i=1,2.
Cai * CsiEp P

Ey = evaporation neutron energy,
Ep =-incident proton energy,

A = maximum neutron energy,

A,Z = mass number and atomic number of target nuclei.

When i=1 A = 65

Cyy = +246 % 107 +55x 10° (AZ) + 5.2 x 10 (A-Z)?
Cyy = -1.87+1.12x10'2~4A

. C3, = +5.305x10" - 9.646 % 107 Az’

64, = +1.92+3.0x 107 (A-Z)

Csy = +3.2766x 1072 +9.874 x 107 (A-Z) '/?

When i =2 12< A <65
Ci2 = +70x107 (A-Z)+ 18 x 10% (A-Z)?
C,, = -7.3594 + 1.882 (A-Z)'/3
Cyy = +6479-3.774 (A..Z)l/“

A?

Caz = 5307 0316A

Cs, = 439x102+340x10% A




plotted as a function of t in the interval of O to 1. This permits a simple comparison of
all data on the same scale. The t scale is converted to the Eyy scale by the relationship

En=ett (Ep - €) , where the variables are defined in Table 1.

Figures 11 through 19 present the evaporation neutron spectra plotted as a
function of the neutron energy. Each of the nine figures is for a single incident proton
energy (25 MeV-400 MeV) on each of eight target elements from oxygen through lead.

Figures 20 through 22 show the evaporation neutron spectra for protons on
carbon and uranium for the nine incident proton energies. The evaporation neutron
spectra for 25-MeV protons on carbon (Fig. 20) was the poorest fit of all sets. The
second poorest is 25-MeV protons on oxygen (Fig. 11).
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projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliogtraphies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION

Washington, D.C. 20546

If Undeliverable (Section 158
Postal Manual) Do Not Return



