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Abstract

The paper introduces a technique to deal with the problem
of an elastic domain containing an arbitrarily oriented internal
crack. The problem is formulated as a system of integral equa-
tions for a fictitious layer of body forces imbedded in the plane
along a closed smooth curve encircling the original domain. The
problems of a half plane with a crack in the neighborhood of its
free boundary and of an infinite strip containing a symmetrically
located internal crack with an arbitrary orientation are consid-
ered as examples. In each case the stress intensity factors are
computed and are given as functions of the crack angle.

1. INTRODUCTION

The plane elastostatic problem for a strip of finite width

containing a crack perpendicular to the boundary was considered

by Isida [1, 2], and more recently, by Sneddon and Srivastav [3].

In [2] and [3] the crack is symmetrically located, whereas in [1]

its location with respect to the boundaries is arbitrary. In [1]

and [2] the Kolosov-Muskhelishvi1i functions, and in [3] the

integral transforms are used to solve the problem in which the

external load is assumed to be uniform pressure on the crack

surface.

This work was supported by The National Science Foundation under
The Grant GK 11977 and by The National Aeronautics and Space
Administration under The Grant NGR-39-007-011.
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The plane problem of two bonded elastic half planes contain-

ing a crack perpendicular to, and terminating at, the interface

was recently considered in [4]. The problem of a half plane with

a crack perpendicular to the boundary is given in [4] as a special

case. In [4] the singular integral equation governing the problem

was obtained by using the M e l l i n Transforms.

In the solutions given in [1-4] symmetry in the geometry of

the medium as well as in the external loads with respect to the

plane of the crack is essential for the formulation of the problem.

Generally, when the crack problem loses its geometric symmetry it

becomes necessary to use techniques which are more and more numer-

ically oriented such as the finite element or boundary collocation

methods. The technique described in this paper is developed as

an alternative to the boundary collocation method. The paper con-

siders the two-dimensional elastostatic problem for a domain

bounded by a smooth curve and containing a straight crack. The

problem is formulated by imbedding a fictitious layer of body

forces in the plane containing the crack along a closed curve

which encircles the original boundary of the domain. By express-

ing the boundary conditions one obtains a relatively simple system

of Fredholm integral equations for the unknown body forces. In

limit when the outer curve is shrunk on the boundary the integral

equations become singular. The technique is borrowed directly

from the potential theory and may be traced back to the works

of Betti , Somigliana, and Lauricella [5]. Its application to

problems in elasticity has recently been revived and elaborated
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in [6-10]*.

2. FORMULATION OF THE PROBLEM

Let the smooth curve L be the boundary of a plane elastic

domain D, containing a crack along y=0, -a<x<a (Figure 1). Let

the external loads acting on the body be the tractions (a , T )

on L, (concentrated) body forces P., Q. acting at z, (j = l ,. .. ,m),'j j j
and the tractions a , T + and a" T" acting on the crack sur-

Jr Ay y xy

faces x+iO and x-iO respectively. The problem is the determina-

tion of the stress state in the body, particularly the evaluation

of the stress intensity factors at the crack tips, x =+a, y=0.

Let t=x+iy be a point on L which is defined by the follow-

ing parametric equations:

t = x+iy , x = x(s) , y = y(s) , t = t(s) (1)

where s is the arc length on L measured in the positive direction

from a fixed point (Figure 1). Consider another smooth curve,

LQ, in the plane enclosing the domain D. It is assumed that L

and LQ do not intersect. Let the parametric equations of L be

*o = V^o • *0=x0(s0). y0
 = Vso)' to = to^so) <2>

where SQ is the arc length on LQ.

Consider now the infinite x-y plane (of the same material)

containing a crack along -a<x<a, y=0, which is subjected to the

After the work for the present manuscript was completed the
application of the same technique to the plane elasticity
problem for a truncated infinite wedge appeared in [11].
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Figure 1. Geometry of the elastic medium



same body forces P., Q. (j=l,...,m), and the same crack surface
J J

tractions a , T , a", T " ' as that acting on D, and a layer ofy *y y xy
unknown body forces, X(tQ), Y(tQ) distributed along LQ. The basic

idea underlying the method used in this paper, which is directly

borrowed from the potential theory, is that the body forces X and

Y can be determined in such a way that the normal and tangential

stresses, ap , Tn, on the line L in the infinite plane are equal

to the specified surface tractions on the boundary L of the orig-

inal domain D. It is obvious that the stress state within the

portion bounded by the line L of the infinite plane, which is

subjected to the external loads P., Q., a*, TV
+.., a", T", X, Yj j y *y y xy

is identical to the stress state in D under the original system

of external loads. Thus, once X and Y are determined, the problem

is solved.

To derive the integral equations for the unknown functions

X and Y, two elementary solutions for an infinite plane with a

straight crack are needed. The first is the cracked plane under

a concentrated body force (X,Y) acting at an arbitrary location

t , and the second is the same plane subjected to the (arbitrary)

crack surface tractions a*, T , a", T~. Let (j)-, , fl, and 4>9, fi?y xy y xy i i e. t-
be, respectively, the Kolosov-Muskhel ishvi 1 i functions for these

two problems. The solutions are given in [12]; here only the

results will be stated.

<00(z) ,
°
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2 ( z < - a < )

KS

C" z> -

z-t.
z- C K z ) - KtJ]

< z - t 0 )
( 3 . a - c )

S = 2ir(l+KT '

Hz) - (z2 -a2 ) ' /2 - z

( 4 . a - c )
3-a

where X, Y are the components of the body force per unit thickness

acting at tQ, and tc = 3-4v for plane strain and K = (3-v)/(l+v) for

general ized plane s t ress, v being the P o i s s o n ' s ratio.

, a

-a " - ""' -a

-i a
2 T r i R ( z ) -a

ar R ( x ) p ( x ) d x 1 ar g ( x ) d x
{ x-z 2iri { x-z '

q ( x ) d x
•

( B . a . b )

R ( x ) p ( x ) d x
x-z :iri i x-z— a

R ( z ) =* ( z 2 -a 2 ) 1 / 2

p ( x ) =* o- [ (aw + a!

R ( x ) = R + ( x ) ,

- i(xx
+

y

q ( x ) = \ [(oj - a') - i(Tx
+

y - rx"y)] . ( 6 . a - d )

where the constant C is determined from the following condition

of single-valuedness of displacements [13],

K J <f>,,(z)dz - / fl(z")dl = 0 . (7)
r * T
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In (7) r is a closed contour encircling the crack. Also, the

stress states at a point t in the plane corresponding to the two

basic solutions mentioned above are given in terms of the complex

potentials <f>. and n. , (k = l,2) by
K K

K X K JF K K

aky - akx + 2lTkxy = 2[(t-t)«>k'(t) - *k(t) + nk(t)] ,

(k=l,2). (8.a,b)

In particular, for the infinite plane subjected to uniform pres-

sure on the crack surface we have a = a" = -p , T = T " = 0,y y o xy xy
and

a2x + a2y

a2p (tf-t)
* a2x + 2lT2xy = ' 2 _ 2 3 / 2 '

 (9'a'b)

At a point t on the line L the normal and tangential

stresses °"n(t) and Tn(t) are given in terms of the stress com-

ponents ax(t),
 a
y(t),

 T
xy(

t) by C6]

2(an - 1rn) - (ax + ay) - (ay - ax + 2irxy)e
2l'a . (10)

where a is the angle between the outward normal and the x-axis,

and is a known function of the arc length s (Figure 1). In this

problem since the crack surface tractions are specified, the

stress state (o2x> a2 , T2xy) or (a2n, T2n) is assumed to be

known (see equations 5-8 and 10).

From (3), (4), (8), and (10) the stress components at a

point t on L for a concentrated body force S at a point tQ on LQ

-6-



may be expressed as

aln(t'to) - iTln{t'to) = skl(t'to) + Sk2(t,t0) (11)

where k-j and k2 are known functions and are given in the Appendix

(11) constitutes the Green's function for (a-, - it-i ). If we

now assume that the body force S is a continuous function of the

arc length s on L , and in the original problem the tractions

an(t) and ^n(t) on the boundary L of the domain D are known along

with the crack surface tractions, p, q, and the concentrated body

forces, P., Q., through superposition we obtain the following
J J

integral equation:

[S(s0)k1(t,tQ) + S(s0)k2(t,t0)]ds0
o
m _

+ I [Rjk^t.z..) + Rjk2(t,z..)] + I>2n(t) '
 iT2n(t)]

= on(t) - iTn(t) , (t£L) (12)

where t = t(s), t = tQ(so),
 ancl

Rj = 2^(1 +V) ' (J'l.-..,««) (13)

is the concentrated body force at an internal point z.. (12)
J

gives two real integral equations of the first kind for the un-

known functions X(s ) and Y(s ). These are Fredholm-type inte-

gral equations with bounded and continuous kernels and may be

solved by the standard numerical techniques (see, for example,

[14]).

If R. is a distributed body force, then the summation in (12)
mustjbe replaced by a line or a surface integral, g i v i n g again
a known function of t.
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3. THE CASE OF L0-> L

From the viewpoint of applications a more effective method

to solve the problem would be the reduction of the integral

equation (12) to a singular integral equation by shrinking LQ

to L. As seen from the Appendix, if t and t are points on the

same line L the kernel of the integral equation (12) will have a

Cauchy type singularity. In this problem (12) with the Cauchy

singularity separated as shown in the Appendix would not be the

correct integral equation and the limiting process LQ -»• L requires

some care. First, let us consider the infinite plane loaded by

the crack surface tractions p and q (see (6)), the body forces

P. and Q-, (j = l,...,m), and the distributed line load S acting on
J J

t which is now assumed to be a point on the boundary L of theo
given domain D. The left hand side of (12) then gives the ex-

pression for the stress vector (a - IT ) at any point t inside

the line L (i.e., in D , see Figure 1). This stress vector must

approach the known tractions on the boundary, an(t) -it (t), as

the point t goes to L from inside (i.e., from the positive side).

In this lim i t i n g process the Fredholm kernels K-,(t,t ) and

Ko(t,t ) given in the Appendix will remain unchanged. The

remaining part of the integral equation has a Cauchy kernel.

Hence as t goes to L from inside the limiting process has to be

treated as taking the boundary value of the holomorphic function

represented by the Cauchy integral. Thus, by using the Plemelj

Formulas [13] the integral equation (12) may now be expressed as
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T

(l+K)7re1aS(s) + / S(sQ}(̂ -̂ - + -1—)dso
L ° to"t tQ-t °

+ / [K^t.t^SCsJ + K2(t,t0)S(so)]ds0

m _
+ I CRjk^t.Zj) + RjkgU.z.,)] + a2n(t) - lT2n(t)

= crn(t) - lTp(t) , (t£L), (14)

where the bounded kernels K1.(t,tQ) and k..(t,z.), (i=l,2) are

given in the Appendix. Referring to the definition of S in

(4.a), (14) gives two real singular integral equations in the

unknown functions X(s) and Y(s).

4. THE HALF PLANE AND THE STRIP

If the domain D is bounded by simple curves such as a

circle or infinite straight lines, the analysis given in the

previous section is somewhat simplified. As an example, consider

the cracked half plane, x'<d, -oo<y'«»J shown in Figure 2. If

the arc lengths s and SQ are measured from the points B and B ,

respectively, in the positive direction shown in the figure,

then t=x+iy and t = x +iy give the equations of the lines

L and LQ and may be expressed as

t = eia(d + is) , t0 = e
ia(d0+is0) , (15.a,b)

where d, dQ, and a are constant and are shown in Figure 2. Here

L and L are infinite lines on which the real variables s and SQ

vary from -«> to +°°. In the examples considered in this paper,

namely the half plane and the strip of finite width, it is

assumed that
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Figure 2. Half plane containing a crack.



on(t) - iTn(t) = 0 , RJ = 0 , (j = l,...,m), (16.a,b)

that is, the only external load acting on the medium is the crack

surface traction. Thus, separating the real and the imaginary

parts, (12) may be expressed as

_/ [k11(so,s)X(so) + k12(so,s)Y(s0)]ds0 - - a2n(s) ,

_/ [k21(s0,s)X(s0) + k22(s0,s)Y(so)]ds0 = r2n(s) ,

(_oo<s<oo)} (17.a,b)

where k.. are real bounded functions obtained from (12), (15)
' J

and the expressions given in the Appendix, and the input func-

tions cr2n and T2n are obtained from (5), (6), (8), (10) and (14)

in terms of the given crack surface tractions.

In solving the system of integral equations (16), it is

expedient to make a change in variables such that the range of

integration is finite. An appropriate change in variables for

this purpose is the following:

s = tan-jj*- , s = tan 2 »
(18)., / \ ^ i ^ f j . ± \ ^ i-°° < (S,SQ) < °° , -i < (4>»<P0; < 1 •

In the case of the strip, if there is no symmetry with

respect to the y1 axis (see Figure 2), there are four unknown

functions and the system of integral equations g i v i n g these

functions are obtained in a similar way.

In the alternate formulation of the problem d Q = d ,

t = ela(d + is), tQ = e
la(d+iso), S = (X+iY)/27r(l+K), and instead

-10-



of the system of Fredholm-type integral equations, from (14) we

obtain the following singular integral equation:

Ja u- i Ja °° x(so) - 1Y(sn)
V [X(s) - 1Y(s)] + £l f-r / —5—- 2_ d.

1Y(s0)]

H2(s,so)[X(s0) - TY(so)]}ds

= - a0[Re(t/(t
2-a2)172) - 1 -

2(t'-a^)

+ T0[lm(t/(t
2-a2)1/2) + ie

21a{l 2 \ 1/2^ r*"?* +0 2(t -a'V'̂  t -a^

(t = ela(d + is), -oo<s<°o), (19)

where

H / c c \ _ i / / 4 . 4 . \ / •? — i 9 ̂  i o r\\j^s,s0; - N . ̂ t,t0; , vJ- ' » t ; . l^u;

In (19) it is assumed that the crack surface tractions, which are

the only external loads acting on the half plane, are constant

and are given by (see Figure 2)

0 +ix = - (o" + i t ) , (v=0, -a<x<a). (21)y x y o o \ j ' / \ /

5. THE STRESS INTENSITY FACTORS

Let <j)(z) and fi(z) be the Kolosov-Muskhel ish v i l i functions

for the infinite plane subjected to the body forces X(s ), Y(s ),

P., Q., and the given crack surface tractions. From (3-6) it is
<J J

seen that in the close neighborhood of the crack we can write

-11-



,z
n(z) = ' + F,(Z) , (z =x+iy), (22. a, b)

r-K R" °
/z -a*1

where F^z), (k = l,2,3) is holomorphic in the entire z plane.

Referring to [12] for details, the stress intensity factors at

the crack tips y=0, x = +a may be expressed as

2F,(a)
- ik2(a) =

/a

2F,(-a)
k^-a) - 1k2(-a) = --

 ! - . (23. a, b)
/a

The constants F^(a) and F-|(-a) are easily obtained from <j>(z) as

fol lows :

F,( + a) = lim [(z2-a2)1/2c(>(z)] (24)

Using (3), (15), (22), (23) and (24), the stress intensity

factors at x=a, y=0 for the half plane shown in Figure 2 may be

obtained as

k^a) - ik2(a) = k°(a) - ik°(a)

CO

+ / [h1(a,s0)X(so) + h2(a,s0)Y(s0)]ds0 , (25)
— oo

where the (Green's) functions h-, and h2 are easily obtained from

(3), (23) and (24), and k and k« are the stress intensity fac-

tors for the infinite plane subjected to the known crack surface

tractions (and the body forces P., Q., if any). Stress intensity
J J

factors at x = - a , y=0 may be obtained in a similar way.

Here the def ini t ion of k-j and k2 is such that at y=0, x - a = r
the asymptot ic va lues of the s t resses for smal l r are g iven by
a s a i / J r , r « k / /2T .

-12-



6. ON THE SOLUTION OF THE INTEGRAL EQUATIONS

The solution of the system of Fredholm-type integral equa-

tions given by (17) is, in principle, straightforward. However,

to improve the effectiveness of the numerical solution, it may

be necessary to make a change in variables such as. suggested in

(18) and to use a Gaussian-type integration formula rather than

one based on dividing the domain into equal subintervals as

mentioned in [14]. In this type of problem an appropriate inte-

gration formula would be the following [15]:

1 n
/ f(x)dx - I w.f(x.) ,

wi = 2/(l-x.)2[P;i(x1)]
2 , (1 = 1 ..... n) (26.a-c)

where the Legendre polynomials Pn(x) are the related orthogonal

polynomial s .

Two singular integral equations obtained from (19) for the

unknown functions X(s) and Y(s) may be considered as a special

case of the following system:

Af(x) + 4- / |fjp- dt + / K(x,t)f(t)dt = g(x) ,
— 00 -OO

(-«<x<~) (28)

where

A = (a.,) , B = (b.,) , K(x,t) = (k..j(x,t)) ,i j i j I j

f(x) = (f^x)) , g(x) = (gn.(x)) , (i, j = l,. .. ,n). (29)

The matrices A and B are constant and are such that (A+B) and

-13-



(A-B) are nonsingular, the kernels k. . and the input functions
' J

g.j are known bounded functions, and the functions f. are unknown,

Generally the quantities given in (29) may be complex. The sys-

tem of singular integral equations given by (28) may formally be

regularized as follows: Define

-. t-z dt '

fF(z) , (z6S+)
H(z) = {

)F(z) , (z€S"), (30.a,b)

F.(z) = (Fj(z)) . H(z) = (Hj(z)) . (j = l,....n),

(A-B)"1 = C = (c.j) , (A+B)'1 = D = (d^) , (31. a, b)

In terms of the matrix of sectionally holomorphic functions,

H(z) (28) may be expressed as

H+(x) - H"(x) = D[g(x) - / K(x ,t)f (t)dt] , (32)
— 00

the solution of which is

H(z) = P / [9(s) - / K(s,t)f(t)dt] - + P(z) , (33)~

where P(z) is an arbitrary (matrix) polynomial. Now imposing

the condition that F(z) should vanish as |z|->-«>, it is clear that

P(z) must be zero. From

f(x) = F+(x) - F"(x) = H+(x) - C(A+B)H'(x) , (34)

the solution of (28) may then be obtained as

oo

f(x) + / M(x,t)f(t)dt = p(x) , (.»<x<oo)f (35)
-00

where

-14-



p(x) . Bc g(x) + 0,0 aM ds

M(x,t) = (D+C)K(x,t) + fef / KS't ds , (36. a, b)
~

M(x,t) = (m.jk(x,t)), p(x) = (PJ(X)), (j,k = l,...,n).

(35) is now a system of ordinary Fredholm integral equations of

the second kind and may be solved numerically by using the trans-

formation (18) and the integration formula (26). In (28) if

K(x,t) = 0, then (35) gives the closed form solution of the sys-

tem as f(x) = p(x). This is the generalization of the Hilbert

transforms for one unknown function [16].

The foregoing technique would be highly recommended provided

one can evaluate the kernels m.j<(x,t), ( j ,k = 1 , . . . ,n) in closed

form. On the other hand if these kernels have to be evaluated

numerically through the singular integrals given by (36. b), the

technique could be quite laborious. In this case the following

simpler and more direct approach may be preferable: Noting that

7 dt . Q
J t-x "

-03 L *

(28) may be expressed as

A f ( x ) + 4- / f(t|"^x) dt + / K ( x , t ) f ( t ) d t = g ( x ) ,
171 -oo l"X -oo

(_oo< x<oo) . ( 3 7 )

Unlike the solution of the singular integral equations defined

on arcs, the solution of the singular equations defined on infi-

nite lines and smooth closed contours (e.g., (28) and (14)) are

usually bounded and continuous functions. Hence for the purpose

-15-



of numerical analysis, in these equations the singularity of the

kernel can always be removed and the integral equation can be

treated as a Fredholm equation. In (37) note that at t=x the

integrand in the second term becomes the derivative of f(t)

which is assumed to be bounded. To solve (37) again a transfor-

mation such as (18) would be very useful.

It should perhaps be pointed out that in ordinary applica-

tions one may prefer to work with the Fredholm equations (12)

rather than the singular equations (14). One reason for this is

that the advantage of working with an integral equation of the

second kind (14) instead of that which is of the first kind (12)

is somewhat eliminated by the necessity of evaluating the Cauchy

principal value of singular integrals in (14). Another reason

for preferring (12) over (14) may be the flexibility it offers

for improving the accuracy of the results without exhaustive

numerical work. For example, in solving (12) the results can be

improved over that obtained through the conventional numerical

techniques for solving Fredholm-type integral equations either

by selecting the number of intervals, N on LQ in the integrations

(and hence, the number of unknowns) less than the number, M of

the "collocation points", tis (j=l,...,M) and using a least
J

square technique, or by selecting N>M and solving the resulting

system of equations in some optimal sense .

*
The "distance" between L and Lq may also be considered as another
parameter which could be varied to improve the convergence of
the calculated results. For the straight boundaries a< dQ-d <2a
(see Figure 2) appears to give the fastest convergence. Final
numerical results in this paper were obtained by selecting
dQ-d = 1. 5 a.
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7. NUMERICAL RESULTS

As a first example we consider an elastic half plane con-

taining an arbitrarily oriented internal crack near its free

boundary. The results for uniform normal and shear tractions on

the crack surfaces are given in Figures 3 and 4. For the special

cases 9=0 and 6= ̂  these results reduce to that given in [17]

and [4], respectively, which are partly reproduced in Figures 5

and 6. The inclined crack results are given for two values of

d/a, a and d being the half-length and center-to-boundary dis-

tance of the crack. Two general observations which could be made

on the basis of these results are that the stress intensity fac-

tors increase with decreasing distance of the crack tip to the

free boundary, and generally for the same crack surface tractions,

the resistance of the medium to (brittle-type) fracture would be

higher for crack angles around 6 = £ (i.e., for cracks nearly

perpendicular to the boundary) than for e-0 (i.e., for cracks

parallel to the boundary).

The results for the infinite strip with a symmetrically

located internal crack are given in Figure 7. The results are

obtained for d =3a and for uniform normal and shear tractions on

the crack surfaces. In limit when 6 =5- and 6= 0 these results

reduce to (and agree with) that found in [2,3] and [18], respec-

tively. In a superposition to obtain the results for other load

combinations it should be noted that in the results given by

Figures 3-7 the following crack surface tractions have been used:

ay(x,0) = -aQ , Txy(x,0) = -TQ , (

-17-
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stress intensity factors for a crack in a half
plane under uniform pressure a .
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Figure 4. Normal and shear components of the stress intensity
factors for a crack in a half plane under uniform
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for that perpendicular to the free boundary;
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loads: crack surface pressure, a = - a or crack
surface shear traction TXV

 = ~T0'
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APPENDIX

The expressions for the kernels k-j and k«

| . / t t \ _ f / 4 . 4 . \ + f / 1 . + \ _ f / t 4 . \p<- I L l

l o 1 * 0 2 o 3 * ' o '

^ i n
^ f 4. 4. \ _ .f / 4. 4. \ + f ( t t } - f ( t t ) P

2 o 1 o 2 o 1 4 v u » L o ' >

f ( 4. t \ - 1 ' + 1 f f f t t 1 ir f f t F ^1T1U'V t - t 2 R ( t ) L T ^ t > r o J K T v t » t o ; j ,

, t - t n T
f / 4. 4. \ - ' / ° 0 \ P f ^ t T } + 1 1
' o l t , t n j ~ O D ^ + - \ V y L T V T ' j L J T 1 J ,2 0 2 R ( t ) 4..̂  o R ( to )

R( t ) = ( t 2 -a 2 ) 1 / 2 ,

f~_"f"
1 r ^ D ^ t ^ n t / 1 - 1 ^

f /4- 4- \ — • f ^ - * * \ ^ / / ^\ f ( 4- 4- ^ r * * \ * 1 * ' /
o \ l * j U _ / QDT + A 1 +• *h »" f " "f" ' ' \ ^ 9 ^ * / ^ / L O O

0 0 "C ™" 3

. ¥"TOn ,. ^,4. - xrt(I-t) ^ ̂ 0-,
4 - 4 - J ^ T \ t j t _ / L o * ? J

o t -a t-t.
0

, t -if
+ IT t ^ l f t ^ f K 1 + Hi- W Hf v t- 1 ; u v L / L t _ t _ - " ^ n t - t ^

0 t-t 0
0

I(t) - I ( t 0 )
frt t- ^ = °

( A . I )

(A . 2 )

(A . 3 )

(A. 4)

(A . 5 )

, (A. 6)

f A . 7^

= R(t) - t , J(t) = - 1 , (A.8.a,b)

) +J(t) - 2f(t)t))

jt0) - J(tQ))]
t ~ a

[̂t} + f(t,t0) - Kf(t,t0)} . (A. 9)
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As L shrinks on L (Figure 1), the kernels k, and k~ con-

tain Cauchy type singularity which may be separated as follows:

f2(t.t0) = F2(t,t0) .

f4(t'to) =-t^F"+ F4(t'to) ' ((t,t0)€L), (A.lO.a-d)

giving

kz(t.t0) = + ̂4̂ + K2(t.t0) .

(̂t.tj,) = F^t,^) + F2(t,tQ) - e
21<xF3(t.,t0) ,

K2(t,t0) = F^t.t^ + F2(t,t0) - e
21otF4(t,t0) , (A.ll.a-d)

where F., (j = l»..,4) and K . , (j=l,2) are bounded functions on L
J J

obtained from (A. 3 -A. 11).
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