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ABSTRACT

’.,Tbe-ﬁurposeﬂof this"paper is to show the effects of experlmental 1mpreclsionm
.tonqtheestrESS intensity factors cslculated for various practical specimen
#4_ ‘ 'typégf -A'geﬁéral form equetion for: ‘the stress 1nten31ty fhctor is presentedt
=~ .: 'nnd g,éemeral'erfor equatiom is derlved The expected error in the stress

- lnten31ty fnctor is glven in terms of the. prec131on levels of the b331c

'experlmental measurements and derivatives of the stress 1nten31ty callbratlon

'faotor. Nlne common fracture spec;men_types are consldered, and theggnsltlvity

. of'the various types'tO'experimental error is illustrated; Some impllcations

‘for fracture toughness testlng and crack growth rate testlng are dlscussed

7
/

and methods of ana1y51s are proposed. to compensate for the effécts of experi—

nental error,
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INTRODUCTION

Scientific e)cperlments, even when carefully controlled, will always con-
tain experlmental errors. Prior knowledge of the effects of these errors will
allow the proper design of an experiment before it is run. The purpose - of
this paper is to show the effects of precision errors on the stress intens:.ty
" factors computed for nine common specimen types |

In most experlments the quantlty of interest cannot be measured directly.
Rather, other quantltles must be measured (often smultaneous]y) and then com—
~ bined through some mathematlcel process. ‘If the prooess involves only simple
functions of tce measurements, it is not difficult t..o_comp\_x‘_ce the éxpécted
error in the quantity of interest from the precision levels of the individual
measurements. But if the process involves more complicated functions, then -
the computation is not as simple and the effect of imprecision in .' any one |
measuremenf- may be hard to- visualize. | |

In this paper a general form equation for the stress intensify facto.r is
presented and a general error equation is derived. The expected error -in the -
stress intensity factor is given in terms of the expected errors (precision
levels) of the masurable constituents and a derivative of the stress :'1.1'1:bens:’L‘l:.}.r
callbration factor Cahbratlon factor expressions for nine common fracture
specimen typeq are collected tabulated, and dlfferentlated The sensitivity
of the different specimen types to experimental error is illustrated. Some
implications for fracture toughness testing and crack growth rate festin’g are

.discussed.
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."ANALYSIS

: Anexpres'sion for the stress intensity factor can be ﬁr_itteri in a

general form as

- where K = .;Stres's"intensity factor

Y = (Calibration factor
0 = Nominal applied stress
a - = Characteristic crack dimension -

cr o= "P-la‘sti‘c. zone correction factor
" If Irwin's [1] form is taken for ‘the. plastic zone correction‘factor, “then -
r = (K/Tyg) /nT - - - (2)

. - where '- n is 2 for plane stress or. M’Q—_ for plane strain and 0;,73 is the

material yield strength

The expected error in- the computed Value of the stress intennty factor is:

'IBK .

where 'E' and E_ are the expected errors (prec:LsJ.on l.evels) in the measured R

values of nominal stress and crack 1ength and E is the expecfed varlation

ys
of the materlal yield strength After substltutlng Eq. 2 into Eq. l, perform-

ing the required differentiations, and rearranging terms, Eq. 3 becomes

E - .. E E 3y |Ba
£ el W i o



‘But a fundérnéntal tenet of applied linear elastic fracture mechanics is that
‘ 'r«a . Thus the presence of a small plastlc zone w111 have little effect on
the preclslon of a K-Calculatlon (although 1t may affect the - accuracy) and

we can write Eq b, as .

B S O R
where i 'o("r-_v 1 +‘§..a_l
’ ' 12 Y da

“and o may be con51dered a crack 1ength sen.31t1v1ty factor._

Tt remalns to- dlfferentlate the callbratlon factor approprlate to the
"speclmen geometry in questlon Callbratlon factors [2-8] for the nine spec:L- .
Amen geometrles cons:Ldered (Fig. 1) are’ complled in Table I. They and their

; clalmed ranges of appllcablllty are expressed in terms of 7\ y the relatlve N
Vcrack length (see Flg l) Where necessary, the original expressions were :

' rewrltten in ‘the. form prescrlbed by Eq. 1. Calculated values of the crack

'length sen51t1v1ty fnctor o are plotted in Flg. 2 for six specimen configu- I.
rations. On thls scale, curves for the SENBL. and SENBB speclmens would be
'almost 1nd13t1ngruishable from that for the SENB specinen. o

-For the PTC spec1rren two crack dlmensmns must be considered; the depth I» .‘

(a) and the half length (c) of the semlelllpse Thus the terms

dK
dec.

0
C

e amd Js3) f‘g_

must be added to the right. sides of Eq. 3 and Eq. L re,spectively. It is
reasonable to assume that the error in crack half-length measurement (E.) will

be the same as the error in crack depth measurement (E ). Then for the PTC o



specimen the term of in Eq. S can be replaced by

o

- 1 a dY ale Y|
B = |-+ 23 4 22
2 Y da clY ocl

To simplify differentiation, the approximation [9]
2 = 1 + L.59(a/2¢)1-65

was used here. Calculated values of the crack dirrension"sensitivity factor
B for the PTC specimen are presented in Fig. 3 .
~ In cyclic crack propég'a_tidh testing, a parameter of interest is the

stress intensity factor range,
LK = Kpax = Kpin = (Opax .',“_a—r’njn)YJé— . (6

" If we assume that the méxir’num and minimum cyclic stresses will both have the

Same abéolu_te error E, , ‘then correéponding to Eq. 5 we have

Bk 2 Be , Fa (1)
AK 1-R -ar:ax oo an ‘
where ‘R = 0 in/ Pnax

Note that the first term on the right side of Eq. 7 becomes large as R
approaches unity. In other words, in a test where the alternating load is
small compared with the mean load, AK is extremely sensitive to errors in

1load control and measurement.



DISCUSSION

General Comments

- After examining FlF 2 we can make the following general conclusions
»regardlng the sensitivity of various specimen types to errors in crack length
measurement. Sens1t1v51tyv generally increases with :mcneas_ing nelative 'crack |
length. The singletip-crack specimens (SENT, | SENB, SENBlL, SENBS , CT) are
more sensitive than the doubletip-crack specimens (IEN, OC). Spscifically,
‘.the SENT specims=n is thg' most Sgrisitive’ s;;ecimen of all. The remaining |
singletip-crack specimens and the NR specimen are less sensitive and all haﬁ-
very nearly -the same sensitivity for A>0.L . The EN speéimén is lésstsensi- '
tivé than the CC specimen and is the least sénsitive of the types so far
considered. | | _

The reader should be Eautioned that some values of o( may not be. very
accurate at the lowest applicable values of A. The cahbration factor
‘-eX'pI'eSSIOnS were or1g1m11y obtained by flttlng polynomials to sets of boundary
.collocnti'on data points, le_fexentlation of a fitted polynomial often .gives
highly unsatisf'nctory slopes, especiélly neaf either end of the fitt'ing range
- . This seems to be especially true for the dT specirﬁen below sbout A=0.L .

At the higher ends of the polynomials' ranges, a siight amount of ~f§iring ﬁas
usedkin Fig. 2 to ble_nd the curves de_riired from polynomials into :those dé'rive.d
ffbm extrapolation equations [3,L]. | '

Eq. S and Fig. 2 can prove useful in any of the following appliéations.
Fof given measurement pre’ciéion levels (Ea./bf and E,/a), tﬁe expected error
"Eg/K can be determined for any spécimen. This will be done later for the

ASTM standard specimens Lsl. Or, for any givén specimen the effect of changes



'in the measurement precision levels can be eetermined This in turn couid
help determlne for example,'whether aVallable funds would be better spent on
new load cells or on a new optical mlcrometer. ,
In the discussion so far it has been tacitly aésumed”thet the eipected

"error in the applled 1oad is unrelated to speclmen type and crack - length
ThlS is true if the load in questlon is an 1ndependently—def1ned occurence
such as the maximum load. But in some tests (for example, [5]) the load in B
ﬁiquestlon 1s the. load correspondlnp to a glven percent crack exten51on, Thgt1
load is usuallyvdetermined by the intersection of the load-COD (crack opening
.diépiacement) trace.and a‘éecént'offSet'line' The secant offset correspondlng
:to a fixed percent crack ext9n51on varles with spec1men type and relatlve crack
._length ThlS is dlscussed in more detall in (2] In general, the seuant off-.;
set is larger fbr the 51ng1et1p—crack spec1mens than for the doubletlp-crack |
.jspeclmens_and ;ncreases_wlth the_relatlve crack length., In;most practical
applications,'iflthe'required secant offset beCOnes too small it may beccne
'difficnlt‘tc'achieye the deeirea ioad'precisicn:1eve1{w1thfekiéting instru}‘:

mentation.

The PTC Specimen

‘_ Dlscu851on of the PTC spe01mpn must be prefaced W1th ; con31derat1cn of
‘the callbratlon factor. At present there is no exact sclutlon for the_prcblem'
of a semielliptical surface crack in a finite plate.’ The expression used (8] .
is a polynomial approximation'to curves preeented by Kobayashi and Moss L101l,
which in turn are hased on analogy to an earlier approximate'eclution [11]..
R1lthough lacking_in rigor, the Kobayashi—Moss_estimétion'ie probably adequate

for illustrative purposes. The polymomial approximation is a fairly good fit,



it is mathematically tractable, and its derivatiues appear reasonable;for,.»
sy, A £0.9 . | | | | A_ |
The-senSitiyity factor‘ﬁr for the PTC specinen is shown-in Fig;f34. Sen;'.

sitivity to dimensional measurement error appears toﬂbe reletivelyilow-ahd o
}independent of Z, for shallow surface cracks, but increases markedly above

about A = 0.7 . Although the analy31s is onLy approximate, the PTC spec1men
would'appear to be 1nherently morevpre01se than the specinens ovaig 2.
‘ However, there are many dlfflcultles 1nvolved in the appllcatlon of the PTC

spe01men, some of which are dlscussed in [2] and [12]

. ASTM Test Method E399-72

A'This testtmethod is thorOugh in that it specifieS{preCision lerels:for
every p0331b1e measurement , ~ but it‘ does not give the. expected“error in
'fracture toughness assoc1ated with these pre01sion levels. ’The errOr-cenvbe
~ calculated using Eq. 5, Fig. 1, ‘and Flg. 2, with one precaution. : |

The'test?method‘allows some‘misalignnent of ‘load 'oreck, and supports
for the bend specimen. If the load and the crack are not in line, an 1nplane f,;
Ashear (Mode 1I) IOadlng w111 be present This shear load will alter both
- the crack-tlp stress field and the crack mouth dlsplacement kt present
' there seems to be no adequate aua1y51s for the mlsallgned bend speclmen. But
unpublished crack mouth displacement measurements by ‘M. H. Jones .and R.T. Bubsey
of NASA- Iew1s imply that the effect of the allowable mlsallgnment will be
qulte small For lack of a proper. analy31s (but hav1ng some experimental
Justlflcatlon), errors due to bend specimen mlsallgnment will be neglected.
Based on the precision levels specified in the test method fbr_speclmens_

thicker than 1.0 inch (25 .mm), Eq. 5 becomes’



Eg/K = 0.018 + 0.005( - for the bend specimen

Ex/K = 0.012 + 0.005X for the compact specimen

‘nnd these are plotted in Fig. L. For the dimensions B or W»'lésé-thén 1.0
inch (25 mm), the test method specifies an absolute rather than a ﬁercéntage
preciéion,level. In this case the error in applied stresé (Ea.ﬁ77_ will .
increase with decreasing width or thickness and the curves of'Fig; L will

" translate upwards. For thick specimens, the maximum error in fractﬁre tqugh-
_ ness due only to imprecision of physical measurements will be abouﬁ 2%'peréent
for the bend Speciﬁen and about 2 percent'for the compact spécimen; Although
there may Be other reasons for selecting one specimen over the other, the
compact specimen appears to be inheréntly more precise. than the bend sbeéimén,-
and this was found in [13] to be the case. In two series of '“rﬁund robin®
tests involving about LOO bend and compact specimens of four materials, the
reported standard deviations of Ky, ranged from L.2 to 5.85 percent for bend
specimens and from 2.6 to 3.75 percent for combact specihens;' The.maXimum
error due to imprecision of physical measurements is not iﬁsignifidant.ﬁhen -
cbmpared with these measures of experimental data scatﬁer.

The test method itself does not consider the question of feplicate tests.

In a smooth tensile test, for example, all replicate data will normally' have
the same precision, and a simple average is an appropriatevcharacterizatioq. |
But it is not reasonable to expéct that replicate fatigue-cracked fracture
sﬁecimens will &1) have exactly the same crack length. If the crack lehgths
vnry,.even over the narrow'range permitted'by,the test method, the repliéates :
will not all have the same precision. In this case we want to place the
greatest emphasis on the test which is expected to be the most precise, and

S0 a weighted average is called for. £ weighted average should giVé a better



estimnte of" the true population mean (i.e., KIc) cy accounting for tne ;‘
prec1slon of the individual observatlons. It i$ customary [lb] to weight

Pach observation 1nversely proportional to the square of its expected error. :
.If thls is. done for the fracture speclmens,_a specimen hav1ng A= 0.h5 will
carry about 4O percent (compact speclmen) or 26 percent (bend spe01men) more
weight than a specimen with A= 0.55 .’_Or, a compact speclmen,w1ll have about

78 percent more weight than a bend specimen of the same relative crack length.’

Gyclic Crack Propagation Testing

'Tne treatment of experlmentel error is even'more.important in analysis
| of cycllc crack growth data than in fracture toughness testing, and may even
be of cr1t1Cal 1mportance ‘It is more important for two. reasons. Flrst, the
errors in the basic neasurements are generally larger, since 1oad control and :
msasu:enent and crack length me asurement are more dlfflcult in cyclic testlng.
Some of the factors affectlng the prec151on 1evels of the basic experimental
measurements are dlscussed by wei [ 15]. Secondly, the reductlon and analy31s
" of the basic data is a three- or four-step process. Experimentel errors
enter into each step in a d;fferent way,vand errors ln any cne stepiwill be
carried into subsequent steps. | |
When the crack length is obtained indirectly, as in-the compliance_and
electric potential methods { 2], the basic measurement represents some ihnction
(usually nonlinear) of tne crack length. 'The expectedAerror in the inferred
crack length can be calculated in terms of the precision level of the besic
measurement and a derivative of the functional relationshin, and will probably

be nonlinear. Now having the crack lengths aj at cycle numbers N; , we
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must obtain the growth rate Ada/dN . preferaﬁly by mathematical means.' Sev-
eral methods of numerical differentiation are evaluated by--'Frank' and Fisher
[16]. 1If we know the expected error in crack length and ha_ve a clésed-foﬁ
expressi»bn'for the derivative, we can compute the expgct.ed efror in g-rqwth-
rate; which agéin will probably be nonlinear. Thé streéélintens_ity range AK
~is then computed (Eq. 6) at each value of- crack length. 4Thge errors thaf. may |
ogcﬁr in this step have ;been discussed earlier in this paper, and they are
overlooked by most in-vestigators. If the cyclic loads are fixed, the.érrbr-
in AK will change as ‘the crack grows; a short-crack high-load é;ﬁecimen and
.a 1ong-crack low-load specimen may have the same AK but different error expec-
tations; tests havingl the same AK but different load ratiés will haj;e diffe:ﬁn‘b,
é-xpected errors (see Eq.’ ?).- The presence and variab’ilitj of these errors |
severely complicate the final step, wherein an attempt is made to correlate
the crack érowth rate with the stfess intensity range usihg one or more :

analytical models. The most popular‘model is that of Paris (173,
™ C_(AK)

wheré C ahd n are empirical constants. This iexponentiail equaﬁion can be
linearized by taking the logarithm of both sides. One is then tempted to fit
a straight line using the method of least _sqﬁares. ﬁoﬁever', to do so in this
case would be to violate one of the basic assumptions of the ‘method. |

The classical method of least squares assumes that errors Ey in the
- independent variable 'y are normally distributed and that the dependent

variable x is known without error (or at least that E K& Ey). But here



we have error in the independent variable (log AK) which is not. aiwmrs.insig-_

" nificant. ‘The very complicated problem of linear regression wit};h'e'rlrox_' in e

- bcth‘ variables is often cited in _~thé literature (18,19], andcthere.‘ Aa:‘e‘_'solu-_ ,
tions for special cases, but there appears to bé no generalized solution
applicable to tﬁe crack grcﬁth rate 'problem. In ’th-e- absélnc‘e'_o_f.a. rigorous
method, a good'éngineefing ‘épproﬁm’ation might be to use a weighted'.lea‘st-
-squares fit with'the ﬁeighting factor being the inverse s,quafe root of the '
sum of the squares. of t',he expected errors in log(da/dN) ' .and: log(aK) .

. Such an apﬁroach wculd‘ be relatively simpie métheinatic’al].y’ and would tend to
place ;*reat.est empha31s on the po.mts expec‘oed to be the most precise :

. ‘The errors 1nvolved in cycllc crack growth testlng can be quite lacge
evén when the t_,ests are carefully controlled. Frank and F:_'Lsher [16] used,_a

test from the literature as an illustrative example. In this test, the crack

half-length increased from 2 mm to 55 mm in a CC-specimen 160 mm wide of 2024=T3

altuﬁinum alloy 2 mm thick as the stress was cycled bétween 6.5 and 11. 5‘ kg/mm2 -

' Assume that the errors in the cycllc stresses were O 115 kg/m and the error
in crack half—length measurement (E,) was O. 25 mm (0.010 1nch) ' Then at the .
| beginning of the test the error in growth rate (secant method, [16]) is 50 |
percent and the error in AK (Eq. 7) is about 11 percent; at the end of the
test the error in growth rate has decreased ‘tor 10 péroent and the error in AK
to about S percent. In the opiﬁiori of this author, such errors are much too ,

large to be ignored.

1l.



12,

SUMMARY AND GONGLUSIONS

For th@ §9@cm@n Wng G@Rﬁd@?@d here, the sensitivity ef the semputed
stress intensity faetors %e e¥¥9¥§ in eraek length measurement inereases with
- the relative erack l@ng’eh; and is greater fer singletip-crack opecimens than
for deubletip-craek specimens. BSensitivity is greatest for the remote=-load
gingle éég@ neteh tensien speeimen and l@gg'@ fer the double edge notch tension
specimen. Based en an approximate stress intensity analyeis, the part-through-
=¢rack speeimen is relatively insensitive for erack depths less than about 70
pareent of the plate thieskness.

Based on the precision levels speeified in ASTHM Test Method B399-72, the
Raximum expeeted ePrer in Kp, due %o test imprecision is about 2 percent
for the compact specimen and abeubt 23 pereent for the bend speciwen (only for
‘%%3%% thicker than eme ineh). It ii;é suggested that replicate tests be
weighted inversely preopertional %o the square of their expected errow. If
i3 15 domRy & SPRCIPRR Witk a relativwe oradk lemgih of 0.45 will have 4O
percent (compact specimen) or 26 percent (bend m@mm)) mere weight than ore
whth 2 Telabive oredk lengih of 0.5 5 or, 2 compact specimen Vil have 78
peEceRt MRRe WRight Yham a bend specimen with the same relative orack lemghh.

The treatmert of experinental errer is evem mere impertant im amalysis
of eyehic evadk gReWith ity tham im frechure toughress testing, and may evem
be off ewitieal impewtance. Evem il carefully confzelled tests ﬁh@ ePrers
e beeoR hite ke & b0 aeeimulation and compomding.
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a

SENB4 3-POINT BEND,
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