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. '-..'.. ABSTRACT • '

The purpose of this paper is to show the effects of experimental imprecision

on the stress intensity factors calculated for various practical specimen

r-T types. A general form equation .for the stress intensity factor is presented
< o ' . ' ' • ' • • ' • " - ' • • ' • ' ' • • • . '
T and a general error equation is derived. The expected error in the stress

, intensity factor is given in terms of the. precision levels of the basic

experimental measurements and derivatives of the stress intensity calibration

factor. Nine common fracture specimen types are considered, and the sansitivity

of the various types to experimental error is illustrated. Some implications

for fracture toughness testing and crack growth rate testing are .discussed
. •• . ' " -• /

and methods of analysis are proposed to compensate for the effects of experi-

mental error. .
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INTRODUCTION

Scientific experiments, even when carefully controlled, will always con-

tain experimental errors. Prior knowledge of the effects of these errors will

allow the proper design of an experiment before it is run. The purpose of

this paper is to show the effects of precision errors on the stress intensity

factors computed for nine common specimen types.

In most experiments the quantity of interest cannot be measured directly.

Rather, other quantities must be measured (often simultaneously) and then com-

bined through some mathematical process. If the process involves only simple

functions of the measurements, it is not difficult to compute the expected

error in the quantity of interest from the precision levels of the individual

measurements. But if the process involves more complicated functions, then

the computation is not as simple and the effect of imprecision in any one

measurement may be hard to visualize.

In this paper a general form equation for the stress intensity factor is

presented and a general error equation is derived. The expected error in the

stress intensity factor is given in terms of the expected errors (precision

levels) of the measurable constituents and a derivative of the stress intensity

calibration factor. Calibration factor expressions for nine common fracture

specimen typss are collected, tabulated, and differentiated. The sensitivity

of the different specimen types to experimental error is illustrated. Some

implications for fracture toughness testing and crack growth rate testing are

discussed.
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. ANALYSIS

An expression for the stress intensity factor can be written in a

general form as

where

K -

K »

Y -

<T -

YtTY a + r

Stress intensity factor

Calibration factor

Nominal applied stress

Characteristic crack dimension

Plastic zone correction factor

If Irwin's [ l _ J form is taken for the plastic zone correction factor, then

r »

(1)

(2)

where n is 2 for plane stress or UYT for plane strain and (T is theys

material yield strength.

The expected error in the computed value of the stress intensity factor is

E. (3)

where and Efl are the expected errors (precision Levels) in the measured

values of nominal stress and crack length and Ev_ is the expected variation
V ^

of the material yield strength. After substituting Eq. 2 into Eq. 1, perform-

ing the required differentiations, and rearranging terms, Eq. 3 becomes

a

E,
U)



But a fundamental tenet of applied linear elastic fracture mechanics is that

r«a . Thus the presence of a small plastic zone will have little effect on

the precision of a K-calculation (although it may affect the accuracy) and

we can write Eq. h as

EK/K •••

where o( = 11+ 2. Al I
12 Y £a I

and c* may be considered a crack length sensitivity factor.

It remains to differentiate the calibration factor appropriate to the

specimen geometry in question. Calibration factors [2-8] for the nine speci

men geometries considered (Fig. l) are compiled in Table I. They and their

claimed ranges of applicability are expressed in terms of A , the relative

crack length (see Fig. l). Where necessary, the original expressions were

rewritten in the form prescribed by Eq. 1 . Calculated values of the crack

length sensitivity factor o( are plotted in Fig. 2 for six specimen configu-

rations. On this scale, curves for the SENBU and SENB8 specimens would be

almost indistinguishable from that for the SENB specimen.

For the PTC specimen two crack dimensions must be consideredj the depth

(a) nnd the half-length (c) of the semiellipse. Thus the terms

and
EC

must be added to the right sides of Eq. 3 and Eq. k respectively. It is

reasonable to assume that the error in crack half-length measurement (Ec) will

be the same as the error in crack depth measurement (E_). Then for the PTC
**



specimen the term o( in Eq. 5 can be replaced by

1 a c)Y

2 Y ^ a

To simplify differentiation, the approximation [93

was used here. Calculated values of the crack dimension sensitivity factor

ft for the PTC specimen are presented in Fig. 3 .

In cyclic crack propagation testing, a parameter of interest is the

stress intensity factor range,

AK Kmax (6)

If we assume that the maximum and minimum cyclic stresses will both have the

same absolute error EQ- , then corresponding to Eq. 5 we have

EJAK 2 E(T

where

AK !-R Omax

R = ^niin/^ax

(7)

Note that the first term on the right side of Eq. 7 becomes large as R

approaches unity. In other words, in a test where the alternating load is

small compared with the mean load, AK is extremely sensitive to errors in

load control and measurement.



DISCUSSION .

General Comments .

After examining Fig. 2 we can make the following general conclusions

regarding the sensitivity of various specimen types to errors in crack length

measurement. Sensitivity generally increases with increasing relative crack

length. The singletip-crack specimens (SENT, SENB, SENBU, SENB8, CT) are

more sensitive than the double tip-crack specimens (DEN, CC). Specifically,

the SENT specinen is the most sensitive specimen of all. The remaining

singletip-crack specimens and the NR specimen are less sensitive and all have

very nearly the same sensitivity for X>0. U . The DEN specimen is less sensi-

tive than the CC specimen and is the least sensitive of the types so far

considered.

The reader should be cautioned that some values of oC may not be very

accurate at the lowest applicable values of A. The calibration factor

expressions were originally obtained by fitting polynomials to sets of boundary

collocation data points. Differentiation of a fitted polynomial often gives

highly unsatisfactory slopes, especially near either end of the fitting range.

This seems to be especially true for the CT specimen below about A » 0.k .

At the higher ends of the polynomials' ranges, a slight amount of fairing was

used in Fig. 2 to blend the curves derived from polynomials into those derived

from extrapolation equations [3>U].

Eq. 5 and Fig. 2 can prove useful in any of the following applications.

For given measurement precision levels (E^/CT and Ea/a), the expected error

Ef(/K can be determined for any specimen. This will be done later for the

ASTM standard specimens [5.]. Or, for any given specimen the effect of changes



in the measurement precision levels can be determined. This in turn could

help determine, for example, whether available funds would be better spent on

n e w load cells o r o n a n e w optical micrometer. . , : ' • . . .

In the discussion so far it has been tacitly assumed that the expected

error in the applied load is unrelated to specimen type and crack length.

This is true if the load in question is an independently-defined occurence

such as the maximum load. But in some tests (for example, C5J) the load in

question is the load corresponding to a given percent crack extension. That

load is usually determined by the intersection of the load-COD (crack opening

displacement) trace and a secant offset line. The secant offset correspending

to a fixed percent crack extension varies with specimen type and relative crack

length. This is discussed in more detail i nC2 l . In general, the secant off-

set is larger for the singletip-crack specimens than for the doubletip-crack

specimens and increases with the relative crack length.. In most practical

applications, if the required secant offset becomes too small it may become

difficult to achieve the desired load precision level with existing instru-

mentation.

The PTC Specimen .

Discussion of the PTG specimen must be prefaced with a consideration of

the calibration factor. .At present there is no; exact solution for the problem

of a semielliptical surface crack in a finite plate. The expression used [8]

is a polynomial approximation to curves presented by Kobayashi and Moss

which in turn are based on analogy to an earlier approximate solution

Although lacking in rigor, the Kobayashi-Moss estimation is probably adequate

for illustrative purposes. The polynomial approximation is a fairly good fit,
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it is mathematically tractable, and its derivatives appear reasonable for,

say, A £ p . 9 . . • . ' ; • _ . - ' . .

The sensitivity factor 6 for the PTC specimen is shown in Fig. 3 . Sen-

sitivity to dimensional measurement error appears to be relatively low and

independent of A for shallow surface cracks, but increases markedly above

about A » 0 . 7 . Although the analysis is only approximate, the PTC specimen

would appear to be inherently more precise than the specimens of Fig. 2 .

However, there are many difficulties involved in the application of the PTC

specimen, some of which are discussed in [23 and [123.

ASTM Test Method £3^9-72 . .

This test method is thorough in that it specifies precision levels for

every possible measurement, but it does not give the expected error in

fracture toughness associated with these precision levels. The error can be

calculated using Eq. 5, Fig. 1, and Fig. 2, with one precaution.

The test'method allows some misalignment of load, crack, and supports

for the bend specimen. If the load and the crack are not in line, .an inplane

shear (Mode II) loading will be present. This shear load will alter both

the crack-tip stress field and the crack mouth displacement. At present

there seems to be no adequate analysis for the misaligned bend specimen. But

unpublished crack mouth displacement measurements by :M.H. Jones .and R. T.Bubsey

of NASA-Lewis imply that the effect of the allowable misalignment will be

quite small. For lack of a proper.analysis (but having some experimental

justification), errors due to bend specimen misalignment will be neglected.

Based on the precision levels specified in the test method for specimens

thicker than 1.0 inch (25 mm), Eq. 5 becomes



EKA " 0.018 + O.OO^OC for the bend specimen

EK/k " 0.012 + O.OO^CX. for the compact specimen

and these are plotted in Fig. U. For the dimensions B or W less than 1.0

inch (25 nan), the test method specifies an absolute rather than a percentage

precision level. In this case the error in applied stress (E^/CT) will

increase with decreasing width or thickness and the curves of Fig. U will

translate upwards. For thick specimens, the maximum error in fracture tough-

ness due only to imprecision of physical measurements will be about 2-^ percent

for the bend specimen and about 2 percent for the compact specimen. Although

there may be other reasons for selecting one specimen over the other, the

compact specimen appears to be inherently more precise than the bend specimen,

and this was found in L131 to be the case. In two series of "round robin11

tests involving about 1;00 bend and compact specimens of four materials, the

reported standard deviations of Kjc ranged from U. 2 to 5.8f> percent for bend

specimens and from 2.6 to 3.75 percent for compact specimens. The maximum

error due to imprecision of physical measurements is not insignificant when

compared with these measures of experimental data scatter.

The test method itself does not consider the question of replicate tests.

In a smooth tensile test, for example, all replicate data will normally have

the same precision, and a simple average is an appropriate characterization.

But it is not reasonable to expect that replicate fatigue-cracked fracture

specimens will fell have exactly the same crack length. If the crack lengths

vary, even over the narrow range permitted by the test method, the replicated

will not all have the same precision. In this case we want to place the

greatest emphasis on the test which is expected to be the most precise, and

so a weighted average is called for. A weighted average should give a better



estimate of the true population mean (i.e., Kjc) by accounting for the

precision of the individual observations. It is customary ClU.1 to weight

each observation inversely proportional to the square of its expected error.

If this is done for the fracture specimens, a specimen having A • O.U5 will

carry about IjO percent (compact specimen) or 26 percent (bend specimen) more

weight than a specimen with A = 0.55 • Or, a compact specimen will have about

78 percent more weight than a bend specimen of the same relative crack length.

Cyclic Crack Propagation Testing

The treatment of experimental error is even more important in analysis

of cyclic crack growth data, than in fracture toughness testing, and may even

be of critical importance.. It is more important for two.reasons. First, the :

errors in the basic measurements are generally larger, since load control and

measurement and crack length measurement are more difficult in cyclic testing.

Some of the factors affecting the precision levels of the basic experimental

measurements are discussed by Wei [ 15]. Secondly, the reduction arid analysis

of the basic data is a three- or four-step process. Experimental errors

enter into each step in a different way, and errors in any one step will be

carried into subsequent steps.

When the crack length is obtained indirectly, as in the compliance and

electric potential methods C2], the basic measurement represents some function

(usually nonlinear) of the crack length. The expected error in the inferred

crack length can be calculated in terms of the precision level of the basic

measurement and a derivative of the functional relationship, and will probably

be nonlinear. Now having the crack lengths a^ at cycle numbers Nj_ , we
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must obtain the growth rate da/dN , preferably by mathematical means. Sev-

eral methods of numerical differentiation are evaluated by Frank and Fisher

[16]. If we. know the expected error in crack length and have a closed-form

expression for the derivative, we can compute the expected error in growth

rate, which again will probably be nonlinear. The stress intensity range AK

is then computed (Eq. 6) at each value of crack length. The errors that may

occur in this step have been discussed earlier in this paper, and they are

overlooked by most investigators. If the cyclic loads are fixed, the error

in AK will change as the crack grows; a short-crack high-load specimen and

a long-crack low-load specimen may have the same AK but different error expec-

tations; tests having the same AK but different load ratios will have different

expected errors (see Eq. 7). The presence and variability of these errors

severely complicate the final step, wherein an attempt is made to correlate

the crack growth rate with the stress intensity range using one or more

analytical models. The most popular model is that of Paris Cl?3>

S • °(M>»

where C and n are empirical constants. This exponential equation can be

linearized by taking the logarithm of both sides. One is then tempted to fit

a straight line using the method of least squares. However, to do so in this

case would be to violate one of the basic assumptions of the method.

The classical method of least squares assumes that errors E in the

independent variable y are normally distributed and that the dependent

variable x is known without error (or at least that EX« E ). But here
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we have error in the independent variable (logAK) which is not always insig-

nificant. The very complicated problem of linear regression with error in '•>

both variables is often cited in the literature [l8,19], and there are solu-

tions for special cases, but there appears to be no generalized solution

applicable to the crack growth rate problem. In the absence of a rigorous

method, a good engineering approximation might be to use a weighted least- .

-squares fit with the weighting factor being the inverse square root of the

sum of the squares of the expected errors in log(da/dN) and log(AK) .

Such an approach would be relatively simple mathematically and would tend to

place greatest emphasis on thd points expected to be the most precise.

. The errors involved in cyclic crack growth testing can be quite large

even when the tests are carefully controlled. Frank and Fisher [l6] used a

test from the literature as an illustrative example. In this test, the crack :

half-length increased from 2 mm to 55 mm in a CO specimen 160 mm wide of 202U-T3

aluminum alloy 2 mm thick as the stress was cycled between 6.5 and 11.5 kg/mm^.

Assume that the errors in the cyclic stresses were 0.115 kg/Jim and the error

in crack half-length measurement (Ea) was 0.25 mm (0.010 inch). Then at the .

beginning of the test the error in growth rate (secant method, [ 163) is 50

percent and the error in AK (Eq. 7) is about 11 percent; at the end of the

test the error in growth rate has decreased to 10 percent and the error in AK

to about 5 percent. In the opinion of this author, such errors are much too

large to be ignored.
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o • 3PS/2BW2
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SENB8

o • 3PS/2BW2

A = a/W
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0 - P/BW
A - a / W

CC
0 = P/BW

^ Pw P-

X_L
2a

CT
0 = P / B W
A = a/W

-LIE-

DEN
0 = P/BW
X - 2a/W

Figure 1. - Specimens and nomenclature.

NR
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PTC
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T
2c

CRACK
LENGTH

SENSITIVITY
FACTOR.

a
SENT
NR—
SENB

SENB43-POINTBEND,
S PAN = 4x width3

SENB8 3-POINTBEND,
S PAN = 8x width3

SENT SINGLE EDGE NOTCH,
REMOTE TENSION

NR NOTCHED ROUND BAR,
TENSION

SENB SINGLE EDGE NOTCH,
PURE BENDING

CT COMPACT TENSION
(ASTM E399-72)

CC CENTER RACK,
TENSION

DEN DOUBLE EDGE NOTCH,
TENSION

3USE CURVE FOR SENB; SEE
TEXT.

.2 .4 .6 .8 1.0
RELATIVE CRACK LENGTH, X

Figure 2. - Crack length sensitivity factor.
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CRACK DIMENSION
SENSITIVITY 1
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Figure 3. - Crack dimension sensitivity factor for PTC specimen.
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EXPECTED ERROR IN
FRACTURE TOUGHNESS,

EK/K
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BEND SPECIMEN-,
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COMPACT SPECIMEN

.3 .4 .5 .6
RELATIVE CRACK LENGTH, X

.7

Figure 4. - Expected error in fracture toughness due to test imprecision (ASTMTest
Method E399-72; specimens thicker than 1 in., misalignment of band specimen
neglected).


