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FLAW GROWTH BEHAVIOR IN THICK WELDED PLATES OF

2219-T87 ALUMINUM AT ROOM AND CRYOGENIC TEMPERATURES

By Royce G. Forman, Samuel V. Glorioso, and James D. Medlock
Lyndon B. Johnson Space Center

SUMMARY

Smooth tensile specimens and surface-cracked fatigue and fracture specimens
for three types of welds in thick aluminum plate were tested to determine mechanical
properties and flaw growth behavior. Specimens were tested in both the as-welded
and aged after welding conditions. For all three types of welds, aging after welding
increased the tensile yield strength but decreased the fracture toughness. In the
as-welded condition, the electron beam and pulse current gas tungsten arc weld
specimens had higher toughness values than the gas metal arc weld specimens. After
aging, the pulse current gas tungsten arc weld specimens had the highest toughness
values. The fatigue crack growth rate for weld specimens was generally greater than
for previously tested base metal specimens, and the growth rate experimental data
compared favorably with analytical results.

INTRODUCTION

One of the many alternatives considered for the first stage of the space shuttle
was a pressure-fed booster in which liquid oxygen and liquid propane propellants were
used. The large diameter of 8. 2 meters (27 ft) and the high internal tank pressure of

22. 76 MN/m (400 psi) necessitated tank wall thicknesses greater than anything that pre-
viously had been built. A fabrication feasibility assessment was therefore undertaken
at the NASA Lyndon B. Johnson Space Center (JSC) for three materials: 2219-T87
aluminum alloy, Inconel 718, and 200 grade maraging steel. The investigation included
preliminary assessments concerning potential problems in the areas of welding, forging,
machining, roll forming, heat treatment, corrosion, fracture toughness, and mechani-
cal properties.

Areas in which data were necessary but were almost completely lacking were
fracture toughness, fatigue flaw growth rates, and mechanical properties of thick welds
in 2219-T87 aluminum and Inconel 718. The data were required in order to evaluate
weldability, to determine flaw detection requirements, to determine weld-land dimen-
sions, and to estimate proof test requirements for preventing failures at operating pres-
sure levels. The testing that was undertaken during the spring of 1972 to obtain
experimental data relating to tensile properties, fracture toughness, and fatigue flaw
growth behavior of welds in thick 2219-T87 aluminum plate is discussed in this report.
Correlation of the fatigue crack growth rates with analytical predictions is also included.



The experimental results were determined for three types of weld techniques:
electron beam (EB), gas metal arc (GMA), and pulse current gas tungsten arc (pulse
GTA). The tests were conducted on specimens left in the as-welded condition and on
specimens that were aged after welding. The test environments were room tempera-
ture (RT) air and liquid nitrogen (LN2). With one exception, all weld joints were per-
pendicular to the longitudinal (loaded) axis of the specimens. The one exception was an
EB welded flaw growth specimen with the weld running along the longitudinal centerline
of the specimen.

SYMBOLS

The International System (SI) unit conversion factors used with these symbols are
listed in the appendix.

A crack depth, centimeters (in. )

B crack half-length, centimeters (in. )

CA material constant for crack growth in the A-direction

n />

E modulus of elasticity, GN/m (10 psi)

F correction factor for the effect of the cracked plate surface (front face) on the
growth of a crack through the thickness

2
F_,TT ultimate tensile strength, MN/m (ksi)

2
F_Y tensile yield strength (0. 2-percent offset), MN/m (ksi)

K stress intensity factor, MN/m '

K. stress intensity factor at the minor axis of the semielliptical crack,

K_r critical stress intensity factor for fracture, MN/m (ksi ^Tn. J

M correction factor for the effect of crack shape and depth on the growth of a
crack through the thickness

N number of fatigue load cycles

Q flaw shape correction factor



R ratio of minimum applied stress to maximum applied stress in a fatigue cycle

S numerical exponent in the fatigue crack growth equation

T plate thickness, millimeters (in.)

W specimen width, millimeters (in.)

AK. stress intensity factor range at the minor axis during a fatigue cycle,

MN/m3'2 (ksi-y/TiT.)

Aa stress range during a fatigue cycle, maximum a minus minimum a,

MN/m2 (ksi)

0 angular coordinate

2a applied stress, MN/m (ksi)

$ complete elliptic integral of the second type

Subscripts:

avg. average conditions for N cycles

c conditions at failure

f final conditions after N cycles

-i initial conditions before N cycles .

TEST SPEC I MEN DESCRIPTION

The 2219-T87 aluminum alloy used in the test program was obtained from Apollo
Program surplus material. The material consisted of five plates, each 8.25 centi-
meters thick by 229 centimeters wide by 279 centimeters long (3-1/4 by 90 by 110 in.).
The plates were machined, welded, and cut into 31 smaller plates that were then
shipped to the JSC for the test specimens to be made. Thirty of the plates were used
to make specimens with the welds perpendicular to the longitudinal (loaded) axis of the
specimens (referred to as cross-weld specimens). The size of the cross-welded plates
was 7. 62 by 83. 8 by 101. 6 centimeters (3 by 33 by 40 in.), with the welds along the
83. 8-centimeter (33 in.) width. The extra welded plate was 7. 62 by 38.1 by 83. 8 centi-
meters (3 by 15 by 33 in.) in size and was used to make a single specimen with the weld
centrally located along the longitudinal axis (referred to as a longitudinal weld
specimen).



The welding processes selected were based on past experience and on available
technology for welding thick aluminum alloy plates. Electron beam, gas metal arc,
and pulse current gas tungsten arc processes were selected. The welding contractor
developed all weld procedures used in the program and provided all facilities for doing
the welding. The joint configuration and weld parameters for the plates for the three
types of welds are shown in figures 1, 2, and 3.

r-i

7.6 cm
(3.0in.)

Plate)
thickness
8.25cm
(3.25 in.)

I

Is) Before welding.

Fusion Face
zone v. -H H- 0.18 cm

n \! ! n
— T 71 f-H
Test specimen 1
5.1cm If 7 '0cm

(.2-.°!i
n;l__ L!-Vn:'.

0.07 in.)

—II—Root 0.1 cm
(0.04 in.I

(b) After welding and
cleanup machining.

3.3 cm (1.3 in.)

(typical)—i
-1 \

•0.92cm
(0.38 in.)

(a) Before welding.

-Test specimen I—Root 0.50 cm
5.1cm (2.0 in.) (0.20 in.)

(b) After welding and
cleanup machining.

Material: 2219-T87 aluminum alloy

Process: EB

Power: 24.5-kilovolt potential, 374-milliampere beam current

Sequence: Single pass; travel: 150 cm/min 160 in/min)

Filler metal: Wire (0.16-cm (0.063 in.) diameter) of 2319 alloy added at
face to prevent concavity

Remarks: 1. Joint scraped before welding

2. Cleanup machining (crown and drop-through removal)
done to facilitate inspection and to remove root porosity

Figure 1. - Joint configuration and weld
parameters for 2219-T87 aluminum
EB welds.

Material: 2219-T87 aluminum alloy

Process: Pulse GTA (20-kHz pulse frequency) and GMA

Filler metal: Wire (0.16-cm (0.063 in.) diameter) of 2319 alloy;
feed: 150 cm/min (60 in/min) typical

Sequence.- 1. Root pass, free fall; no filler,-travel.- 20 cm/min
(8 in/min); power 300 amperes, ll.5vol.ts; pulse GTA

2. Cap pass at root (with filler); travel: 20 cm/min
(8 in/min); power: 250 amperes, 12 volts; pulse GTA

3. Fill "U" grooves with approximately 34 passes; travel:
36 cm/min (14 in/min); power: 530 to 585 amperes,
24 to 27 volts; GMA

Remarks: 1. Joint scraped before welding
2. Joint wire brushed and vacuumed after each weld pass
3. Interpass temperature 380° K (225° F) maximum
4. Sequence of filler passes: two passes per side to sixth

pass; four passes per side to 14th pass; six passes per
side to 34th pass

5. Cleanup machining (crown removal) done to facilitate
inspection

Figure 2. - Joint configuration and weld
parameters for 2219-T87 aluminum
GMA welds.

The welding of 2219-T87 aluminum
alloy in thicknesses greater than 5.1 centi-
meters (2. 0 in.) has rarely been accom-
plished or required in the past. As a
result, little experience was available to assist in establishing the weld parameters for
the selected processes (EB, GMA, and pulse GTA). In addition, because of the limited
material and time available for developing the parameters, the weld contractor was
unable to establish the optimum welding procedures for producing consistent aerospace
quality structural welds.



15=(typical)
Radius 1.3 cm (0.5 in.)
typical)

(a) Before welding.

Plate
thick-
ness
8.25 cm
13.25 in.

Test '
specimen
5.1 cm
(2.0in.)

Filler 6.35cm
2.50 in.)

Root \
|.30 cm

10.12 in.)

2.8cm(l.l in.Utypical)

(b) After welding and
cleanup machining.

Material: 2219-T87 aluminum alloy

Process: Pulse GTA (20-kHz pulse frequency)

Filler metal: Wire (0.16-cm (0.063 in.) diameter) of 2319 alloy:
feed: 150 cmlmin (60 in/mini typical

Sequence: 1. Root pass, free fall; no filler; travel: 20cm/min
(8 in/mini; power 300 amperes, 11.5 volts

2. Cap pass at root (with filler); travel: 20 cm/min
(8 in/min); power: 250 amperes, 12 volts

3. Fill "U" grooves with approximately 55 passes;
travel: 180 cm/min ( 71 in/min); power:
250 to 325 amperes, 13.5 volts

Remarks: 1. Joint scraped before welding

2. Joint wire brushed and vacuumed after each weld pass

3. Interpass temperature 390° K (240° Fl maximum

4. Sequence of filler passes: three passes per side to 19th
pass; four passes per side to 55th pass

5. Cleanup machining (crown removall done to facilitate
inspection

Figure 3. - Joint configuration and weld
parameters for 2219-T87 aluminum
pulse GTA welds.

The EB welds generally exhibited
significant porosity defects in the weld root
area. The basic weld thickness was
7. 6 centimeters (3. 0 in.), and difficulty
was experienced in obtaining full penetration
in a single pass by the use of the maximum
output power (9. 2 kW) from the available
EB welding equipment. To compensate for
material loss at the face of the weld result-
ing from the use of high beam power, suffi-
cient filler metal of the same alloy was
added during welding to fill any concavities
formed in the weld face. After welding,
cleanup machining was done to remove the
significant porosity at the v/eld root, to
remove the filler metal concentration at
the weld face, and to facilitate radiographic
inspection of the weld zone of each plate.

The GMA welds produced for this
study (fig. 2) were actually dual-process
welds. The joint root was welded by means
of the pulse GTA process at the recommen-
dation of the welding contractor. After the
root weld was completed, the conventional
GjMA process was used to complete the
weld. The weld faces were machined flush
to remove the weld crowns for facilitation
of radiographic inspection.

The pulse GTA welding process is
similar to the conventional GTA process,
except that the weld current is pulsed from

low to high levels at a high cyclic frequency. Pulse GTA welding has been reported to
produce better weld properties because of the resulting finer grain structure and fewer
defects (porosity, cracks, etc.) than the conventional (nonpulsed) GTA welding. As a
result of these reported advantages, the welding contractor used the pulse GTA weld
process for all GTA welding requirements. All pulse GTA welding in this study was
done at a pulse frequency of 20 kilohertz.

After the plates were welded and the weld faces were machined, the plates were
shipped to the JSC for machining into test specimens and for aging heat treatment. Of
the 30 large plates that were shipped and machined into specimens, 12 were EB welded,
12 were GMA welded, and six were pulse GTA welded. The one small plate for the
longitudinal weld fatigue specimen was EB welded.

Out of each of the 30 large plates, three 22. 9-centimeter (9. 0 in.) wide cross-
weld fracture specimens were machined in accordance with the drawing in figure 4.
Bars from which weld tensile specimens were machined also were cut from the
30 plates. Two types of tensile specimens were machined from the bars. The first



7.6 cm (3.0 in.)

22.9cm 17.8cm
(9.0 in.) (7.0 in.)

Lift-hole diameter,
one end only
2.5cm(1.0in.)

EDM notch

•5.08cm (2.00in.)
thick

^—Electron discharge machine
notch (surface flaw)
3.8cm (1.5 in.Hong,
1.0cm (0.4in.)deep,
0.25cm (0.01 in.(wide

Material: 2219-T87 aluminum alloy plate

Weld process/joint configuration:

1. EB/butt joint (fig. 1)
2. GMA/modified double "U" joint (fig. 2)
3. Pulse GTA/modified double "U" joint (fig. 3)

type, a partial-cross-section tensile speci-
men, is shown in figure 5; its purpose was
to determine the weld strength at three
locations through the thickness of the plate.
The second type, a full-cross-section ten-
sile specimen, is shown in figure 6. It
has almost the same thickness as the welded
plate from which it was cut. The purpose
of the full-cross-section tensile specimens
was to determine the gross strength proper-
ties of the thick welded plate.

After final machining, the aging heat
treatment performed on some of the speci-
mens was done at 435. 9° K (325° F) for
24 hours in a circulating-air-type furnace.
However, more than half the specimens
were left in the as-welded condition.

Figure 4. - Surface flaw cross-weld
fracture specimen.

For the complete program, a total of
82 surface-flawed specimens, 21 full-cross-
section tensile specimens, and 50 partial-
cross-section tensile specimens was used.
(Only nine of the 12 GMA welded plates were

machined into specimens and tested.) For each of these three types of specimens,
approximately half were tested in air at room temperature and half were tested in liq-
uid nitrogen.

1.0cm (0.4 in.)
t i

Specimen length
25.4 cm (10.0 in.)

-Original plate thickness
7 .6cm (3.0in.)

Specimen location
F: face side
C: center
R: root side (EB
welds only)

u, i-j
70np

-Specimen thickness
0.25cm (O.lOin.) for EB welds
0.38 cm (0.15 in.(for
GMA andpulseGTA welds

2.54cm
(l.OOin.)

Material:

Each specimen marked with
original plate number and specimen location
(e.g., EB1-R, MG2-C, etc.)

2219-T87 aluminum alloy plate

-101.6 cm (40.0 in.)-
25.4cm i

- (10.0 in.) —/ Radius 5.
(typical) ]/ (2.0 in.Id

1 cm
)(typical)

6.10cm (2.40 in.)

Weld process/
joint configuration: 1. EB/butt joint (fig. 1)

- 2. GMA/modified double "U" joint (fig. 21
3. Pulse GTA/modified double "U" joint (fig. 31

-3.81 cm (1.50 in.)
or 4.45 cm (1.75 in.)

Material: 2219-T87 aluminum alloy plate

Weld process/joint configuration:

1. EB/butt joint (fig. 1)
2. GMA/modified double "U" joint (fig. 21
3. Pulse GTA/modified double "U" joint (fig. 3)

Figure 5. - Location of partial-cross-
section aluminum tensile specimens.

Figure 6.- Full-cross-section aluminum
tensile specimens.



TEST APPARATUS AND PROCEDURES

The testing of the 2219 aluminum alloy welded specimens was conducted at room
temperature and in liquid nitrogen to obtain the following weld properties.

1. Tensile properties (F
partial-cross-section specimens

TU' TY, E) of the welds in full- cross- section and

2. Critical stress intensity factor for fracture Kj_ of welds in thick plate

3. Crack growth rates dA/dN of surface-flawed welds in thick plate

Except for the tests with the partial-cross-section specimens, all testing was
conducted using a 272 000-kilogram (600 000 Ib) capacity hydraulically operated axial-
load fatigue testing machine. The loads were applied through self-alining hydraulically
operated friction grips. The tension tests on the partial-cross-section specimens were
done on a smaller 4500-kilogram (10 000 Ib) capacity tensile testing machine. The
cryogenic tests were conducted by installing an open-top polyurethane foam box around
the specimens and maintaining the container full of liquid nitrogen. Approximately
20 minutes of soaking time was required to stabilize the specimen at LN« temperature
before each test. A photograph of an LN« fracture test is shown in figure 7 (a).

(a) LN« fracture test. (b) Specimen precracking setup.

Figure 7. - The LN« fracture test and specimen precracking setup.



To initiate fatigue cracks in the surface-flawed specimens, the specimens were
notched with an electron discharge machine (EDM) and cracks were then grown from the
notches by subjecting the specimens to bending fatigue. The machined notches were
approximately 3. 8 centimeters (1. 5 in.) long and 1. 0 centimeter (0. 4 in.) deep. The
precracking was done at a load ratio R of 0.1 and a maximum load such that a fatigue
crack 1. 27 centimeters (0. 5 in.) long developed on each end of the notch in an average
of 160 000 cycles. Thus, the growth rate for precracking was very low and was less
than any measured in the subsequent growth rate tests. The specimens were therefore
not preconditioned in any way because of prestressing. A photograph of a specimen
being precracked is shown in figure 7(b).

Initially, precracked fracture specimens for each type of weld were pulled to
failure to obtain fracture toughness values. Later, most specimens first were axially
fatigue tested at given load levels and number of cycles and then were pulled to failure.
By the application of low stress cycles, then higher stress cycles, then low stress
cycles again, two growth rate data points, along with retardation effect data and a frac-
ture toughness value for each specimen, were obtained.

The tensile yield strength for the weld material was obtained from strain gages
on the tensile specimens. The strain gage lengths were approximately one-half the
width of the welds. The gages were installed back-to-back on the faces of the speci-
mens, and the strain readings were averaged to cancel bending effects.

RESULTS AND DISCUSSION

Metallography and Hardness Measurements

In the metallography study, the three types of weld specimens (EB, GMA, and
pulse GTA) were sectioned, polished, and etched to show the weld. Photographs of
these sections are shown in figures 8 to 13. The photographs of the weld sections show
that the EB and GMA welds were essentially without defect. However, subsequent ex-
amination of the fractured surfaces of the EB weld test specimens showed cylindrical
voids and insufficient melting in the weld root. The photograph of the pulse GTA weld
(fig. 10) shows a crack resulting from lack of fusion at a depth of approximately one-
fourth the thickness of the plate. At this location, two passes were used to cover the
width of the joint. After the problem had been discussed with the welding contractor,
it was determined that the weld joint on the first pulse GTA welded plate was machined
incorrectly. The weld joint was 0. 5 centimeter (0. 2 in.) wider than required, which
undoubtedly contributed to the lack-of-fusion crack. However, this welding defect did
not appear to influence the fracture toughness and crack growth data obtained from these
specimens (PT1 specimens). Rockwell hardness traverse measurements were con-
ducted on the specimen sections, and the results are also shown in the figures. Hard-
ness readings for the as-welded condition are shown in figures 8, 9, and 10; hardness
readings for the aged after welding condition are shown in figures 11, 12, and 13. The
results of the hardness measurements show that postweld aging significantly increased
the hardness of the weld material, but the effect on the hardness of the base metal was
negligible.
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Figure 8. - Full-cross-section photograph and Rockwell hardness readings for
EB welded 2219-T87 aluminum alloy (as welded).
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1
22.4 39.3 62.8 74.3 77.2 78.7

79.1 78.1 48.5 12.7 19.6 20.3 16.5 20.2 48.7 65.3 77.7 78.3 78.7

80.5 81.2 79.5 73.8 55.8 42.0 55.5 64.8

79.5 79.3 69.8 44.2 26.2 21.4 30.3 21.9 31.0 51.2 67.3 79.0 78.1

79.6 79.6 78.9

79.1 75.8 65.7 45.7 24.0 18.2 15.5 20.0 13.2 43.0 67.8 76.7 78.1

Figure 9. - Full-cross-section photograph and Rockwell hardness readings for
GMA welded 2219-T87 aluminum alloy (as welded).
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(0 . 50 in.)
1.27 cm
(0.50 in.) 77

74.3 6 4 . f

I
Weld

I

I I I f I I I I I I
46.0 19.7 21.0 22.6 25 .9 26.8 44.8 65.7 74.7 78.3

I
26 .7 41.5 68.3 76.0 78.0 77.9

79.0

78.377.9 75.6 6 5 . 7 39 .5 2 9 . 3 24 .6
I

7 9 . 5 79.8 79.0 74.8 50.0 41.2 49.9 71.8 78.0 78.2 78.0 73.2 77.1

T

78.5 77.1 69.8 67.1 41 .5 32.2
I

75.8 67.7 4 7 . 5 26.1 25 .8 22.2

I

3 5 . 5 31.0 42.0 70.0 76.5 78.2 78.2

24 .9 2 4 . 2 43 .8 63.2 74.0 76.8 77.9

•Crack

Figure 10. - Full-cross-section photograph and Rockwell hardness readings for pulse
GTA welded 2219-T87 aluminum alloy (as welded), showing crack in top half of weld.

0 . 5 cm
(0.2 in . )

Weld

h- I I I I t I I I I I I
79.2 78.2 78.0 77.9 77.5 65.0 41.9 67.0 77 .3 77.9 78.0 78.3 78.3

1.9 cm
(0.75 in.)

78.6 78.0 78.6 77.9 77.4 64.1 45.0 69 .5 76.4 77.4 78.3 78.0 78.6

78 .5 78.5 78.9 78.4 77.8 71.7 51.0 7 6 . 8 77.9 78.4 77.6 78.2 78.2

Figure 11. - Full-cross-section photograph and Rockwell hardness readings for EB
welded 2219-T87 aluminum alloy (aged after welding).
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0.5cm
(0.2 in.)

J_
I I I

Weld

I

77.9 77.5 76.8 59.8 37.5 30.3 30.7 24.3 36.1 59.8 75.7 77.2 76.6
1.9 cm
(0.75 in.)

T
79.0 78.7 79.5 79.4 74.8 61.2 52.3 55.2 74.8 78.2 78.3 77.8 77.3

78.0 78.0 75.9 57.5 37.2 32.5 38.7 36.3 40.5 65.2 77.5 78.4 77.9

Figure 12. - Full-cross-section photograph and Rockwell hardness readings for GMA
welded 2219-T87 aluminum alloy (aged after welding).

0.5 cm
(0.2 in.)

Weld
I

I I I I I I I I I

76.2 76.0 72.3 64.8 58.6 41.3 47.6 45.8 47.5 69.0 75.8 76.3 75.8
1.9cm
(0.75 in.)

76.3 76.5 77.5 77.3 69.8 52.4 50.4 58.5 75.3 76.7 77.4 77.5 76.1

76.0 75.8 75.6 67.5 42.5 45.8 41.3 47.6 42.6 68.7 76.2 76.0 75.7
i

Figure 13. - Full-cross-section photograph and Rockwell hardness readings for pulse
GTA welded 2219-T87 aluminum alloy (aged after welding).
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The results of microhardness trav-
erse measurements midway through the
thickness of an unaged EB weld section are
shown in figure 14. As expected, the re-
sults show that the heat-affected zone for
an EB weld is relatively small. The joint
attained full hardness at approximately
0. 75 centimeter (0. 3 in.) from the weld
fusion line.

Tensile Strength Tests

A total of 71 cross-welded specimens
consisting of 50 partial-cross-section spec-
imens (fig. 5) and 21 full-cross-section
specimens (fig. 6) was tested to obtain
tensile strength data. A summary of the
tensile yield strength results is listed in
table I. The complete results (FTU, FTY>
and E) for the partial-cross-section speci-
mens are listed in tables II to IV, and the
results of the full-cross-section specimens
are listed in table V.
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•
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'

t i l l

.1 .2 .3 .4
Distance from weld centerline, in.

_l | i i i
.2 .4 .6 .8 1.0

Distance from weld centerline, cm
1.2

Figure 14.- Microhardness readings
compared to distance from weld
centerline for section of unaged
EB weld specimen.

TABLE I. - SUMMARY OF TENSILE YIELD STRENGTH RESULTS FOR 2219-T87 ALUMINUM WELDS

F_v for partial-cross-section spec
7

of the weld face, MN/m (ksi

As welded

RT LN2

mens

Postweld aged

RT LN2

FTV for partial-cross-section specimens
n

of the weld center, MN/m (ksi)

As welded

RT LN2

Postweld aged

RT LN2

FTY forfull-cross-section specimens, MN/m (ksi)

As welded

RT LN2

Postweld aged

RT LN2

EB welds

120 .0 (17 .4 )

115.8(16.8)

148.2 (21.5)

144.8 (21.0)

162.7 (23.6)

166.2 (24. 1)

242.0(35.1) 140.0(20.3)

150.3 (21.8)

190.3(27.6)

203 .4(29 .5)

206.8(30.0)

210.3(30.5)

224.1 (35.4)

277.9 (40.3)
Not measured

GMA welds

127.6 (18.5)

122.7 (17.8)

125.5(18.2)

115.1 (16.7)

151.7(22.0)

156.5(22.7)

140.7(20.4) 219.3(31.8)

224.1 (32.5)

180.6 (26.2)

171.7 (24.9)

206.8 (30.0) 180.6(26.2) 297.9 (43.2) 139.3 (20.2)

128.2 (16.6)

164.1 (23.8)

176 5(25.6)

166.9 (24.2)

176.5(25.6)

203.4 (29.5)

186.2(27.0)

High-frequency pulse GTA welds

127.6(18.5)

135.1 (19.6)

129.6(18.8)

131.7 (19.1)

160.6(23.3)

173.7(25.2)

201.3(29.2)

184.8 (26.8)

215.8(31.3)

201.3 (29.2)

173.7(25.2)

184.1 (26.7)

224.1 (32.5) 203.4 (29.5) 283.4 (41.1) 124.1 (18.0)

149.6(21.7)

197.9 (28.7) 177.9(25 8) 196.5 (28.5)
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TABLE H.- PARTIAL-CROSS-SECTION-SPECIMEN TENSILE TEST RESULTS FOR 6. 35-CENTIMETER (2. 5 IN.)

THICK 2219-T87 ALUMINUM ELECTRON BEAM WELDS

Specimen
number

EB1-R3

EB1-C°

EBl-Fd

EB2-R

EB2-C

EB2-F

EB3-R

EB3-C

EB3-F

EB4-R

EB4-C

EB4-F

EB5C-Af

EB5F-A

EB6R-A

EB6C-A

EB6F-A

EB7R-A

EB7C-A

EB7F-A

EB11C-A

Test
environment

RTb

RT

RT

RT

RT

RT

RT

LN2
6

LN2

RT

LN,

LN2

RT

RT

RT

LN2

RT

RT

LN2

LN,

RT

Specimen
width, cm (in. )

2.606 (1.026)

2.601 (1.024)

2.581 (1.016)

2.570(1.012)

2.598 (1.023)

2.598 (1.023)

2.570 (1.012)

2.570 (1.012)

2.555 (1.006)

2.558(1.007)

2.550 (1.004)

2.532 (.997)

2.522 (.993)

2.504 (.986)

2.576 (1.014)

2.570 (1.012)

2.548 (1.003)

2.558 (1.007)

2.543 (1.001)

2.553 (1.005)

2.555(1.006)

Specimen
thickness, cm (in.)

0.287 (0.113)

.295 (.116)

.279 (.110)

.292 (. 115)

.305 (.120)

.300 (.118)

.295 (.116)

.295 (.116)

.292 (.115)

.297 (. 117)

.302 (.119)

.284 (.112)

.292 (.115)

.295 (.116)

.302 (.119)

.292 (.115)

.282 (.111)

.305 (.120)

.292 (.115)

.295 (.116)

.384 (.151)

E, GN/m2 (106 psi)

--

73.8 (10.7)

74.5 (10.8)

--

68.3 (9 .9)

63.4 (9.2)

--

84.1 (12.2)

83.4 (12.1)

-

77.9 (11.3)

91.0 (13.2)

75.8 (11.0)

75.2 (10.9)

--

81.4 (11.8)

74.5(10.8)

-

80.0 (11.6)

82.7 (12.0)

73.1 (10.6)

FTY, MN/m2 (ksi)

—
140.0 (20.3)

120.0 (17.4)

-

150.3 (21.8)

115.8 (16.8)

-

190.3 (27.6)

148.2 (21.5)

-

203.4 (29.5)

144.8(21.0)

206.8 (30.0)

162.7 (23.6)

--

244. 1 (35.4)

166.2 (24.1)

--

277.9 (40.3)

242.0 (35.1)

210.3 (30.5)

FTU, MN/m2 (ksi)

191.7 (27.8)

285.4 (41.4)

268.9 (39.0)

164.1 (23.8)

283.3 (41.1)

266.8 (38.7)

132.4 (19.2)

406. 1 (58.9)

367.5 (53.3)

149.6 (21.7)

350.9 (50.9)

412.3 (59.8)

321.3 (46.6)

304.1 (44.1)

328.2 (47.6)

457.8 (66.4)

310.3 (45.0)

161.3 (23.4)

472.3 (68.5)

435. 1 (63.1)

305.4 (44.3)

"R" in specimen number refers to root of weld.

RT denotes room temperature exposure in air at 294° K (70° F).
MCM in specimen number refers to center of weld.
MF f I in specimen number refers to face of weld.

LN2 denotes liquid nitrogen exposure at 77. 6° K (-320° F).

fSpecimens ending in "A" were postweld aged for 24 hours at 436° K (325° F).
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TABLE HI. - PARTIAL-CROSS-SECTION-SPECIMEN TENSILE TEST RESULTS FOR 6. 35-CENTIMETER (2. 5 IN. )

THICK 2219-T87 ALUMINUM GAS METAL ARC WELDS

Specimen
number

MGlF-la

MG1CC

MG1F-2

MG3F-1

MG3C

MG3F-2

MG4F-1

MG4C

MG4F.-2

MG5F-1A6

MG5C-A

MG11F-1A

MG11C-A

MGI1F-2A

Test
environment

RTb

RT

RT

RT

RT

RT

LN2
d

LN2

LN,

RT

RT

LN,

LN,

LN2

Specimen
width, cm (in.)

2.592 (1.021)

2.581 (1.016)

2.563 (1.009)

2.593 (1.021)

2.569 (1.011)

2.562 (1.009)

2.540 (1.000)

2.542(1.001)

2. 534 (.998)

2.533 (.997)

2.533 (.997)

2.560(1.008)

2.560 (1.008)

2.540 (1.000)

Specimen
thickness, cm (in. )

0.374 (0. 147)

.371 (. 146)

.371 (. 146)

.376 (. 148)

.374 (. 147)

.371 (. 146)

.376 (. 148)

.374 (. 147)

.368 ( .145)

.376 (. 148)

.376 (. 148)

.358 (.141)

.365 (. 144)

.360 ( .142)

E, GN/m2 (106psi)

70.3 (10.2)

75 .8 (11 .0 )

67.6 (9 .8)

6 7 . 6 ( 9 . 8 )

69.6 (10. 1)

6 8 . 3 ( 9 . 9 )

81.4 (11.8)

84.1 (12.2)

80.0(11.6)

66.9 (9.7)

57.9 (8 .4 )

82.7 (12.0)

82.7 (12.0)

79.3 (11.5)

FTY, MN/m2 (ksi)

127.6(18.5)

180.6 (26.2)

122.7 (17.8)

125.5(18.2)

171.7(24.9)

115. 1 (16.7)

151.7(22.0)

206.8(30.0)

156.5 (22.7)

140.7(20.4)

180.6 (26.2)

219.3 (31.8)

297.9 (43.2)

224.1 (32.5)

FTU, MN/m2 (ksi)

225.5 (32 .7)

300.6 (43.6)

195.8(28.4)

209.6 (30.4)

292.3 (42.4)

233.0(33.8)

228.2 (33.1)

338.5 (49.1)

218.6 (31.7)

276.5 (40.1)

324.7 (47.1)

304.7 (44.2)

453.7 (65.8)

268.9 (39.0)

"F" in specimen number refers to face of weld.

RT denotes room temperature exposure in air at 294° K (70° F).

"C" in specimen number refers to center of weld.

LN2 denotes liquid nitrogen exposure at 77. 6° K (-320° F).

eSpecimens ending in "A" were postweld aged for 24 hours at 436° K (325° F).

TABLE IV.- PARTIAL-CROSS-SECTION-SPECIMEN TENSILE TEST RESULTS FOR 6. 35-CENTIMETER {2. 5 IN.)

THICK 2219-T87 ALUMINUM HIGH-FREQUENCY PULSE CURRENT GAS TUNGSTEN ARC WELDS

Specimen
number

PT2Fa

PT2CC

PT2F-2

PT3F-1

PT3C

PT3F-2

PT4F-1

PT4C

PT4F-2

PT5F-lAe

PT5C-A

PT5F-2A

PT6F-1A

PT6C-A

PT6F-2A

Test
environment

RTb

RT

RT

RT

RT

RT

LN2
d

LN2

LN2

RT

RT

RT

LN,

LN2

LN2

Specimen
width, cm (in. )

2.595(1.022)

2.591 (1.020)

2.583(1.017)

2.583(1.017)

2.578(1.015)

2.570(1.012)

2 .527( .995)

2.543 (1.001)

2.543(1.001)

2.543(1.001)

2.548(1.003)

2.553(1.005)

2.550(1.004)

2.578(1.015)

2.576(1.014)

Specimen
thickness, cm (in.)

0.376 (0.148)

.376 ( .148)

.360 (. 144)

.363 ( .143)

.376 ( .148)

.368 (. 145)

.373 (.147)

.373 (.147)

.363 (. 143)

.366 (. 144)

.361 ( .142)

.356 ( .140)

.363 (. 143)

.371 (. 146)

.361 ( . 142 )

E, GN/m2 (106psi)

68.3 (9 .9)

75.2 (10.9)

73. 1 (10.6)

7 4 . 5 ( 1 0 . 8 )

72.4 (10.5)

73. 1 (10.6)

82.7 (12.0)

82 .0(11 .9)

87.6 (12.7)

84.1 (12.2)

75.8(11.0)

7 4 . 5 (10.8)

78 .6(11 .4)

85.5 (12 .4)

--

FTY, MN'm 2 (ksi)

127.6 (18.5)

173.7(25.2)

135.1 (19.6)

129.6 (18.8)

184.1 (26 .7 )

131.7 (19.1)

160 .6(23 .3)

224 .1 (32.5)

173.7(25.2)

201.3 (29.2)

203.4 (29.5)

184.8(26.8)

215.8(31.3)

283.4 (41. 1)

201.3 (29.2)

FTU, MN/m 2 (ksi)

268.2(38.9)

•307.5 (44.6)

283.4 (41.1)

264. 1 (38.3)

308.9(44.8)

263.4 (38.2)

377. 1 (54.7)

426. 1 (61.8)

376.4 (54.6)

308.9 (44.8)

304.7 (44.2)

307.5 (44.6)

231.0 (33.5)

439.2 (63.7)

302.0(43.8)

a"F" in specimen number refers to face of weld.

RT denotes room temperature exposure in air at 294° K (70° F).
C"C" in specimen number refers to center of weld.

"L

Specimens ending in "A" were postweld aged for 24 hours at 436° K (325° F).
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TABLE V.- FULL-CROSS-SECTION-SPECIMEN TENSILE TEST RESULTS FOR

6.35-CENTIMETER ( 2 . 5 IN . ) THICK 2219-T87 ALUMINUM WELDS

Specimen
number

Test
environment

Specimen
thickness, cm (in.)

Specimen
width, cm (in.) E, GN/m2 (106 psi) FTY, MN/m2 (ksi) FTU, MN/m2 (ksi)

EB welds

EB2-la

EB3-1

EB4-1

EB5-1

EBl-Ad

EB2-A

EB6-1A

EB6-2A

LN2
b

RT°

LN,

RT

RT

LN,

RT

LN,

6.383 (2.513)

6.248 (2.460)

6.304 (2.482)

6.281 (2.473)

6.340 (2.496)

6.391 (2.516)

6.345 (2.498)

6.368 (2 .507)

4.475 (1.762)

4.496 (1.770)

4.483 (1.765)

4.509 (1.775)

4.595 (1.809)

4.493 (1.769)

4.509 (1.775)

4.501 (1.772)

--

79.3 (11.5)

--

86.9 (12.6)

--

-

-

-

--

-

-

--

--

--

--

-

253.7 (36.8)

335.1 (48.6)

371.6(53.9)

275.8 (40.0)

282.7 (41.0)

362.7 (52 6)

289.6 (42.0)

348.9 (50.6)

High-frequency pulse GTA welds

PT2-A

PT3-A

PT4

PT5

FT 6

RT

LN2

LN,

RT

RT

6.114 (2.407)

6.035 (2.376)

6.111 (2.406)

5.657 (2 .227)

6.076 (2.392)

3.851 (1 .516)

3.846 (1.514)

3.866(1.522)

3.856(1.518)

3.825 (1.506)

73. 1 (10.6)

100.7 (14.6)

87.6 (12.7)

71.0 (10.3)

74.5 (10.8)

177.9 (25.8)

196.5(28.5)

197.9 (28.7)

124.1 (18.0)

149.6 (21.7)

311.6 (45.2)

375.8(54.5)

319.9 (46.4)

312.3 (45.3)

306.1 (44.4)

GMA welds

MG1

MG2

MG3

MG4

MG5-A

MG6-A

MG7-A

MG8-A

RT

RT

LN,

LN,

RT

RT

LN,

LN,

6. 139 (2.417)

6.139 (2.417)

6.149 (2.421)

6.106 (2.404)

6.126 (2.412)

6.132 (2.414)

6.154 (2.423)

6.106(2.404)

3.840 (1.512)

3.848 (1.515)

3.830 (1.508)

3.835 (1.510)

3.825 (1.506)

3.815 (1.502)

3.870(1.524)

3.832 (1.509)

82.7 (12.0)

66.2 (9.6)

78.6 (11.4)

80.7 (11.7)

66.9 (9.7)

68.9 (10.0)

77.9 (11.3)

77.9 (11.3)

139.3 (20.2)

128.2 (18.6)

164. 1 (23.8)

176.5 (25.6)

166.9 (24.2)

176.5 (25.6)

203.4 (29.5)

186.2 (27.0)

226.1 (32.8)

203.4 (29.5)

164.1 (38.3)

256.5 (37.2)

242.7 (35.2)

262.0 (38.0)

284.1 (41.2)

213.0 (30.9)

Specimen had significant porosity at weld root.

LN2 denotes liquid nitrogen exposure at 77. 6° K (-320° F).
CRT denotes room temperature exposure in air at 294° K (70° F).

specimens ending with "A" were postweld aged for 24 hours at 436° K (325° F).

The following conclusions can be made regarding the tensile test results.

1. As expected, the weld strength was well below (from 43 to 71 percent) the typ-
o

ical ultimate strength reported in reference 1 for base material (469 MN/m (68 ksi)).

2. The results from the partial-cross-section specimens showed that both yield
and ultimate strength values for all three types of welds were greater at the weld cen-
ter than at the weld face.
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3. Both postweld aging and testing at LN« temperature increased the yield and
ultimate strength properties, particularly for the EB weld specimens.

4. The ultimate strengths of the EB and pulse GTA welds were higher than for
the GMA welds.

5. There was considerable scatter in the tensile test data, especially for the
EB weld root and EB full-cross-section specimens. Although the metallography for the
EB welds looked satisfactory, the strength and ductility of the weld root material was
very low. This situation is shown in the data listed in table n and in figure 15, where
weld defects and a lack of a shear lip can be seen at the weld root. As mentioned pre-
viously, the capacity of the EB welding equipment contributed to the weld root problem.
If higher capacity equipment had been used, the EB weld strength would probably have
been significantly greater than the strength of the pulse GTA welds.

Tl ' l ' l ' l ' l ' l ' l ' ' I ' l ' l ' l ' l ' l ' l 1 ' I ' l ' l ' l ' l ' l ' l ' l ' l ' l ' l ' l ' l ' l ' l
ll 2 3 4l !

(b) Fracture specimen EB6-2.

Figure 15.- Fracture face photographs of EB welded specimens.

(a) Tensile specimen EB3-1 (weld root
at left).

Fracture Toughness Results

The fatigue crack growth and fracture data were analyzed using the stress
intensity factor method. The calculations were made using the equation below for the
stress intensity factor at the minor axis of a semielliptical surface-type flaw.

M (1)

where Q is a flaw shape correction factor given by the equation
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Q= * - 0.212 (2)

and $ is an elliptic integral of the second kind with the values listed in table VI.

TABLE VI. - VALUES OF S"2 AS A FUNCTION OF A/B

"I7T/2

rB - A ] . 2sm

1/2

A/B

0.00000

.22361

.31622

. 38729

.44721

. 50000

. 54772

.59161

.63245

. 67082

.70710

*2

1.000000

1.124605

1.220527

1.307354

1.388838

1.466656

1.541746

1.614772

1.685915

1.755688

1.824239

A/B

0.74162

.77459

. 80622

.83666

. 86602

. 89443

.92195

.94868

.97468

1.00000

*2

1.891730

1.958297

2.024049

2.089074

2.153444

2.217225

2.280468

2.343220

2.405517

2.467400

Equation (1) is basically Irwin's expression (ref. 2) for an elliptical crack em-
bedded in an infinite solid, with correction factors F and M applied to account for
the finite thickness of the specimens. Correction factor F is for the effect of the free
front surface (flawed side) of the plate on growth of the crack through the thickness. It
was determined by using the equation below proposed by Kobayashi and Moss (ref. 3).

F = 1.0 + 0.12 (3)

17



The correction factor M is a function of
A/T and A/2B and accounts for the effect
of the back surface on flaw growth through
the thickness. The factor was determined
by a linear interpolation between Kobayashi's
solution for A/2B = 0 and Smith's solution
for A/2B = 0.5. The use of the Kobayashi
and Smith solutions for back-face correction
factors is discussed in reference 4. The
linear interpolation procedure used for
determining M is shown in figure 16. More
recent and less approximate solutions exist
for the correction factor M, such as by
Kobayashi and Moss (ref. 3). These solu-
tions were not used because it was desired
to keep the publication of fracture toughness
values consistent with those of other pro-
grams at the JSC. Also, because most
flaws were not more than approximately
halfway through the thickness, the variation
in stress intensity factor values by using
more rigorous solutions for M would not
have been significant.

Figure 16.- Deep flaw magnification
factor M used by the JSC.

To determine the fracture toughness values from the test data, equation (1) was
written in the following form.

= Fa (4)

where, in determining Q for the above equation (from eq. (2)), the values of F
were assumed as follows. TY

As-welded specimens

RT

145 MN/m2

(21 ksi)

LN2

193 MN/m2

(28 ksi)

Aged specimens

RT

207 MN/m2

(30 ksi)

LN2

262 MN/m2

(38 ksi)

The preceding values for the yield stress FT are the average values from those

listed in table I for the EB welded specimens that were machined from the center sec-
tion of the welds. The yield stress at this location does not differ significantly from the
values at the center of either the pulse GTA or GMA welded specimens.
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The fracture toughness test results were all obtained from the cross-weld speci-
mens. These specimens were used to obtain both fracture toughness and fatigue crack
growth rate data. The test results are listed in tables VII to X. A summary of the
fracture toughness results for the three types of welds is presented in table VII. Listed
in tables VEH to X are the detail data for each specimen tested. The fracture toughness
values determined from the test data using equation (4) are listed in the tables as "ap-
parent K,p" because the failing stress a , based on the gross cross-sectional area,
approached or exceeded the yield stress in some tests. In addition, the flaw length
2B was sometimes too large, with respect to the specimen width (2B/W > 0.20), to
give valid K--, results.

The results of the fracture toughness tests indicate that, in all cases, the tough-
ness of the welds was reduced considerably as a result of aging. Of the three types of
welds, the pulse GTA had the least drop in toughness caused by postweld aging. A
comparison of the three types of welds showed that, in the unaged condition, the frac-
ture toughness of the GTA and EB welds was approximately the same and was higher
than for the GMA welds; whereas, in the aged condition, the fracture toughness of the
GTA welds was the highest. Also, although the GMA weld results were lower, the true
toughness of GMA welds would not be as high as the average values listed because the
GMA welded specimens had a pulse GTA weld root section that retarded the flaw growth.
The retardation was actually observed in the examination on the fracture surfaces. For
each of the three types of welds and the two aging conditions, the toughness values at
room temperature and the values at LN? temperature were about the same.

TABLE VII.- SUMMARY OF APPARENT Kjc TEST RESULTS FOR 2219-T87 ALUMINUM WELD SPECIMENS

fL for EB welds, MN/m3/2 fksi ,/irT)

As welded

RT air

51.9(47.2)

52 .6 (47 .9 )

50.8(46.2)

56.7(51.6)

59.9 (54.5)

57.9 (52.7)

4 9 . 7 ( 4 5 . 2 )

52.6(47.9)

72.2(65.7)

5 6 . 4 ( 5 1 . 3 )

52 .5(47.8)
a55.7 (50 .7)

LN2

59 .0(53 .7 )

60.3 (54.9)

73.4 (66.8)

63.2 (57.5)

53.4 (48.6)

53.3(48.5)

55.0(50.0)

56.8 (51.7)

--

--

59.3 (54.0)

Aged

RT air

32.3 (29.4)

37.4 (34.0)

32.3 (29.4)

33.3 (30.3)

31.5 (28.7)

34.3 (31.2)

-

--

--

—

33.5 (30.5)

LN2

37.9 (34.5)

38.2 (34.8)

45.5 ( 4 1 . 4 )

37.8 (34.4)

39.1 (35.6)

36.6 (33.3)

-

--

-

—

38.5 (35 0)

KJJ, for GMA welds, MN/m3/2 (ksl .JTrT)

As welded

RT air

39.1 (35.6)

44.3(40.3)

39.7 (36.1)

39.2 (35.7)

44 .0 (40 .0 )

45. 1 (41.0)

45.5(44.4)

44.0 (40.0)

--

--

4 2 . 6 ( 3 8 . 8 )

LN2

40.7 (37.0)

42.1 (38.3)

49.2 (44.8)

53.4 (48.6)

50.4 (45.9)

43.2 (39.3)

48 .7 (44 .3 )

42.9 (39.0)

--

—

46.2 ( 4 2 . 1 )

Aged

RT air

36.3 (33.0)

30.3(27.6)

36.9 (33.6)

36.3 (33.0)

35.2 (32.0)

31.3 (28.5)

-

--

--

—

34.4 (31.3)

LN2

30.9 (28.1)

35.3 (32.1)

34.5 (31 .4 )

34.9 (31.8)

36 .6(33 .3)

-

--

--

—

34.4 (31.3)

K]c for pulse GTA welds, MN/m3 2 (ksi ^i^)

As welded

RT air

48.8 (44.4)

55.8(50.8)

59.1 (53.8)

57.4 (52.2)

-

--

--

--

--

—

55.3 (50.3)

LN2

54.1 (49.2)

55.0(50.0)

53.3(48.5)

61.0(55.5)

56.0(51.0)

54.7 (49.8)

--

—

55.8(50.8)

Aged

RT air

40.0(36.4)

45.5 (41.4)

44.9 (40.9)

47.9 (43.6)

--

--

--

-'-

—

44.6 (40.6)

LN 2

55.0(50.0)

42.9 (39.0)

41.0(37.3)

41.5 (37.8)

--

-

--

--

-

--

45.1 (41.0)

low lists computed average values.

19



£ 5

4-i CM
C \
0) CO

« y Ja^ ^
< s

CM

>"as <x g<i s

0)

?*f

s""
r, p

< !

d~%
~~ £

CM

»°i

C
yc

lic
fr

e
q
u
e
n
cy

,
H

z

W
V

*1
CJ

IX

CM

s
< §

afS

H'fi

ill
H > £

w

S
p
e
ci

m
e
n

n
u
m

b
e
r

a

tn

i

OS
OS
CM

CD

O
o
CD

*••

i

C-
CO

C-
O
CM

!

;.

;

•̂
eg
01

eg
eg

eg
co
eg

m

M

•̂ "
-OS

S-. eg

<

at

s
w

CO

eg
CO

1

O
CD
OS

CD

in

in

eg

,

[

tf»
in

S

!

!

!

T
CD
OS

eg
eg

o
§
m'

H

•̂
. CD

t- eg

<

&

a

<

3
U

•̂

t-^
CO

i

01
O3
CD

CD

O

in

CM

,

!

c-

•*r
m

1

:

!

co
OS

eg
CM

in

8
in

X

*f
• 01

t- M

<

CM

<

s
w

: : :

OS CO

CD ^ 1
1-H CO

a> o
00 -̂
•^ OO t

eg eg i
O
TT
eg

eg co •***
CD CO r-
•V m m

CD CD CD

O) O
m CD -
CD CO ,

eg co

1-1 eg ao
O CD CO
rj" Tf m

CD CD CD

in o> i—

in CD oo
eg eg co

•*
CM

1 1 T
CO

U5 ,-1

O ' ,-.

§ in o
O

in ao

in in in
O O O

O

ao t- co

in T-I in
CD CO to

O
0) i

eg
eg

•*r
CO ,

o ! !
in"

w
•̂ <

- OS
t-> CM

<

<
eg

egnw

OO
1 1
1 1 C-

co

CD <-< a>
o eg in
*-( CO -̂i

eg o eg
o o o
-̂ r̂ ,-•

CM
m

sli
c- t- t-

CO CO ^H
CD OS O
in m co

eg eg eg

CO 5* CD
000

c- r- c-

O CO CO

in in in

eg eg eg

eg
r-

i i eg
m

10 ,_i

O CM O
0 0
in ao
CM

in in in
O O O

O

— Oi Oin in eg
co o m
Tj" CO CD

•«*•

CO
a> i i

• i i
eg
eg

o

§ : i
in

egz,
J

<
CO

eg
m
U

O

oi
m

. i

CO
CO

00

5?
OS

CM

!

eg
CO

o>
O
eg

!

i

!

eg
CD
OS

CM
eg

o

§
iri

CM

J

CO

CQ
U

CD

eg
in

!

CO
Ifl

CO

en
CD
c-

w

,

j

CO
•̂
o
01

!

!

!

CD
CO
OS

eg
CM

CO

§
in

M

v
-OS

t- eg

<

rt
CM

CO

09
Ed

eg
i i
i i CM

c-

CO 01 j~>

m CD CD
^ m T

OS O O
in o t-
C- O ,-1

CO r-« 0

c?
01
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ĈM

m ^H r-i

O

§ *-• o
CM

in

in

O o O

OS 1-1 CM
eg c- 01

CO CM CO
CD O CD

eg i-i

CD

OS 1 1

eg
CM

B-
Oi ,
un ! ]

•"*•

M

%•
- OS

t- CM

<

CO

CO

en
u

CO

o
in

i

CM
V
V

c-

CO
V
OS

CM

|

J

£

CM
as

!

I
I

!

I

CD
CO
OS

CM
CM

CO

§
in

M
•̂

- OS
fc. CM

<

•<r
nw

i i

CD

00 1

: i

OS

5 :
OS

eg o
c- gstn o
^« in

CM os
t- -^
t- ^

t- OS

in eg

co m

CM -̂

1 1
1 1

m

§5ifl
CM

O 1-1
in CD
0 0

o

OS CD
O CD

in oo
CD CM

CM
CD
CS 1

CM
CM

0

S !
' in

M

•̂ <

-OS
'- eg

<

CM

*n
Ed

OS

1 I>
CO

i-l O CO

i-i CM *-t

eg co CM

CM o o
O CO i-l

CO 00 CO

CO CM CO
CO

CD CO 0)

CD CD CD

OS T-I OS
TJ. TJH t~
CD t- I>

CM eg eg

t- CO CO
O CO CO

CD CD CD

CD Ol *-(

CD CD e-
CM CM CM

CM
CD

1 CO
in

-

§""§

in in in
O O O
C5

CD O CD
in O in

C- T_| t~'

CO CO 00

CO
OS
00 1 1

CM
CM

C-
in ,
o ! !
in

CM

2
j

<
CO

•V
au

CO

1 ! CM
CO

^ oo OS

o •* m
i-< CM î
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Even though the fracture specimen geometry and failure stress levels were not
completely satisfactory for generating valid plane strain fracture toughness data, the
test results gave pertinent information on critical flaw sizes for thick welded plate.
This information was important for estimating nondestructive inspection and proof test
screening requirements. Essentially, the test results showed that for every case, the
critical flaw size for failure was relatively large. For all unaged-weld-specimen tests
at room temperature, the toughness was so high that the failure stress exceeded the
weld yield strength. This was even true at LN0 temperature for the EB and pulse GTA

£t

welds. However, for all aged-specimen tests, the failure stress was below the weld
yield stress, which means that a proof test could be used to screen flaws in aged welds
but not in unaged welds. However, the critical flaw sizes in unaged welds are so large
that nondestructive inspection would be adequate for locating any that occur, particu-
larly after the flaws have been opened up in a proof test.

Fatigue Crack Growth Tests

As mentioned previously, most of the fatigue crack growth rate tests were con-
ducted by the application of low stress cycles, then higher stress cycles, then low
stress cycles again. In some cases, usually where fatigue bands were difficult to dis-
tinguish, only single fatigue stress levels were applied. The appearances of the fatigue
bands for the three types of welds are shown in figures 15 and 17. As can be seen, the
EB weld fracture and fatigue surfaces had the most distinctive appearance. The fatigue
surfaces were unusually smooth for weld material, and the fracture surfaces looked
almost similar to glue-joint-type failures between bonded plates. The fatigue bands
on the EB weld specimens were also the most visible and the easiest to measure ac-
curately with a microscope. The growth of the fatigue cracks for discrete numbers of
fatigue cycles was measured using the crack dimensions A and 2B represented by
the distinctive bands. The results are shown in tables VIII, IX, and X. The experi-
mental crack growth rate per cycle was then computed, and these results are shown
as (A- - A. )/N in the same tables along with the stress intensity factor range for
each test.

' I1 'I ' l ' l ' N ' l ' l ' l ' l ' l ' l ' l ' l ' l ' l 1 ' I ' l ' l ' l ' l ' l ' l ' l ' l ' l ' l ' l ' l ' l ' l
1 21 3 4J

(a) GMA welded specimen. (b) Pulse GTA welded specimen.
Figure 17. - Fracture face photographs of GMA and pulse GTA welded specimens.
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To determine the stress intensity factor range in fatigue crack growth rate data
analysis, equation (1) was put into the following form.

AKA = FAcr
A. + A.

ITS 1 f
^Q- 2 M (5)

where

Q= «T - 0.212
"Aa/(I - R)'

TY
(6)

In equation (6), Irwin's original expression has been modified to account for cyclic
2

loading at different values of R. The values of $ and FTY used to calculate Q are

the same as those used for determining K-c from equation (4).

An examination of the fatigue crack
growth results plotted in figures 18 to 22
shows that the growth rates are greatly
accelerated by aging of the welds. This
information correlates with the observed
reduction in K,p caused by postweld aging.

Other observations with respect to the three
types of welds are as follows.

1. The crack growth rates of EB
welded and pulse GTA welded specimens
were similar and varied only with the value
of K that was a function of heat treat-

ment and test temperature.

2. The crack growth rate for GMA
welds was generally greater than the growth
rate of EB and pulse GTA welds.

60

= 50

„- 40

* 3°

20

z 10

Co 0

Open points • unaged-weld test

results
Solid po'mts= aged-weld test

results

Equation (7) for
unaged welds, R = 0.05

Equation (7) for

aged welds, R - 0.05

101 102 103 104 It)5

Crack growth rate. dA/dN, ^in/cycle
I i i i_ i i

102 103 104 105 106 10'

Crack growth rate, dA/dN, nm/cycle

10"

Figure 18.- Comparison of theoretical
crack growth rate with experimental
EB weld data for air environment.

3. As shown in figure 21, the growth rate of pulse GTA welded thick plate is the
same as some previous unpublished results for GTA welded thin plate.

4. By comparing the weld results with 2219-T87 aluminum base metal results
reported in reference 5, the conclusion is that fatigue crack growth rate in weld metal
is significantly faster than in base metal.
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Figure 19. - Comparison of theoretical
crack growth rate with experimental
EB weld data for LN0 environment.

Figure 20.- Comparison of theoretical
crack growth rate with experimental
GMA weld data.
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Figure 21.- Comparison of theoretical
crack growth rate with experimental
GTA weld data.
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Figure 22.- Comparison of theoretical
crack growth rate with experimental
data for R = 0. 5.

Correlation of Crack Growth Data With Analysis

Because fatigue crack growth rate is a complicated function of the stress intensity
factor range AK plus other secondary effects, it is not easy to evaluate test data di-
rectly. The most useful evaluations are made by first correlating the test data with a
crack growth rate equation. This procedure not only provides an analytical model but
also gives information on the ability to calculate fatigue crack growth rate behavior
accurately. This ability is imperative for developing an adequate fracture control plan
for propellant tanks with welded joints.
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The fatigue crack growth rate equation used to correlate with the experimental
data was obtained from reference 6. This equation was earlier found to have good cor-
relation with 2219-T87 aluminum base metal data, and the correlation was reported in
reference 7. For the analysis of semielliptical surface-type flaws, the equation is ex-
pressed as follows.

dA_
dN (1 - -

Equation (7) was originally proposed for growth of through-the-thickness cracks in
thin plates. The symbols have been changed in equation (7) and also in equations (1)
to (6) to be consistent with the computer analysis described in reference 7.

For determining the empirical constants CA and S in equation (7), the equation
was rewritten as follows.

(8)

Equation (8) plots as a straight line on log-log coordinates and is referred to as
the linearized form of equation (7). All crack growth rate test data from tables VIII,
IX, and X were plotted into this linearized form using log-log coordinates, and the re-
sults are shown in figures 23 and_24. A straight line was then faired through the data
points to derive the constants CA and S in equation (8). The reasonably good agree-
ment between the faired straight line and the data points confirms the validity of
equation (7).

The empirical constants that produced the most accurate curve fits are listed in
table XL In this table, the average values listed for K_r were essentially obtained

from table VII. The K,p values for the EB welds were taken directly with no change.

For the GMA and pulse GTA welds, the K,p values at room and LN2 temperatures

were so similar that an average was used for both temperatures. Also, because the
toughness of GMA weld material would be less than the average values shown in
table VEI (because of the GTA weld root), a minimum value was selected from the
listed data. The reason for the selection was that the lower toughness values occurred
for the smallest flaws that were completely in GMA weld metal. Making this change
improved the fit of the data in figure 24 with the straight-line relationship.

Also shown in figure 23 are upper and lower bounds for the empirical constant
CA. The difference between the best fit and limit values for CA is approximately a
factor of four. These values indicate, then, that a scatter factor of four is required for
crack growth rate analysis of welded aluminum plate.
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100 r 100 r
D • EB weld, air data

o = EB weld, LN2 data

A • GTA weld, air data

O • GTA weld, LN2 data

Open points = unaged welds

Solid points • aged welds

s-4.5.amin-i/4esavg

Equation (7) where 5 =4.5, CA - CA

S =4.5, CA • 4CA
max avg

I j I I I I I _J I I

(0.95K..-AK.)^. (ksiVInT) Ipin /cycle)
\ 10 A/ (jN

o .95K I(, - }—• (MN/m3'2) (nm/cycle)
'W dN \ /

Figure 23.- Comparison of theoretical crack growth rate (linearized) with experimental
EB weld and pulse GTA weld data.

100 r
100

10 -

1 L

A « air data
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Equation (7) where S = 5.0
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105
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Figure 24.- Comparison of theoretical crack growth rate (linearized) with experimental
GMA weld data.
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TABLE XI. - VALUE OF CONSTANTS IN EQUATION (7)

fatigue environment

Unaged EB weld in air

Unaged EB weld in LNg

Aged EB weld in air

Aged EB weld in LN~

Unaged GTA weld in air
and LN2

Aged GTA weld in air
and LN0A

Unaged GMA weld in air
and LN_

Aged GMA weld in air
and LN0z

s

4.5

4.5

4.5

4.5

4.5

4.5

5.0

5.0

KiC

MN/m3/2

55.7

59.3

33.5

38.5

55.5

44.8

42.8

32.4

ksiVTn"

50.7

54.0

30.5

35.0

50.5

40.8

39.0

29.5

OS

nm/cycle
3/2 S-l

(MN/ni /<J)

0.213

.213

.2:3

.213

.213

.213

.035

.035

Min/cycle

(ksiVuT)8"1

0.0117

.0117

.0117

.0117

.0117

.0117

.002

.002

in/cycle

(psiViiO

0.37 x 10"18

.37 x 10" 18

.37 xlO"1 8

.37 x 10" 18

. 37x 10"18

.37X10"1 8

.2X10" 2 0

. 2X10- 2 0

In figures 18 to 22, the correlation is shown between experimental and theoretical
crack growth rates for each type of weld. The first four of these figures are for the
comparisons with test data having the load ratio R equal to 0.05. The last one, fig-
ure 22, is for a comparison with the load ratio R equal to 0. 5. Unfortunately, the
scatter in the data is very significant, which is often typical for flaw growth in welds;
but the results do indicate that equation (7) is acceptable for analyzing crack growth
rate in welded 2219-T87 material.

LONGITUDINAL WELD SPECIMEN RESULTS

The previously discussed cross-weld specimen tests gave information on basic
weld properties and flaw growth behavior for flaws in a direction parallel to the weld
(representative of lack-of-fusion cracks). However, flaws often occur that are in a
direction perpendicular to the weld. An example of this would probably be a weld
shrinkage crack. To study this problem, the single longitudinal weld specimen (weld
parallel to direction of load) was tested in air to determine the growth characteristics
for a flaw in a direction normal to the weld. The results of this test are listed in
table xn. A photograph of the fractured specimen is shown in figure 25. A curve of
crack extension compared to number of load cycles is shown in figure 26.
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TABLE XH. - CRACK GROWTH TEST RESULTS FOR LONGITUDINAL EB WELDED

SPECIMENaOF 2219-T87 ALUMINUM ALLOY

Number
load
cycles

0
600

1
1776

1
3013

1
2573

1
1100

1
1270

bl

Accumu-
lative
load
cycles

0
600
601

2 377
2 378
5 391
5 392
7 965
7 966
9 066
9 067
10 337

10 338

Stress range,

ACT, MN/m2 (ksi)

207 (30.0)
320 (46.4)
207 (30.0)
303 (43.9)
207 (30.0)
312 (45.3)
207 (30.0)
299 (43.3)
207 (30.0)
292 (42.4)
207 (30.0)

306 (44.4)

Stress
ratio,
R

0.05
0
.05
0
.05
0
.05
0
.05
0
.05

0

Final flaw size

A., cm (in. )

1.24 (0.49)
1.30 (.51)
1.35 (.53)
1.47 (.58)
1.52 (.60)
2.16 (.85)
2.18 (.86)
2.69 (1.06)
2.72 (1.07)
3.28 (1.29)
3.30 (1.30)
4.01 (1.58)

2Bf, cm (in.)

4.06 (1.60)
4.37 (1.72)
4.70 (1.85)
4.95 (1.95)
5.00 (1.97)
5.92 (2.33)
6.02 (2.37)
7.21 (2.84)
7.29 (2.87)
8.00(3.15)
8.00 (3.15)
9.07 (3.57)

ar̂Specimen dimensions: 4.919 centimeters (1.937 in.) thick, 23.01 centimeters
(9. 061 in.) wide, and 84 centimeters (33 in.) long.

Specimen fractured.

(a) Front view. (b) Fracture face.

Figure 25. - Fracture appearance of longitudinal EB weld specimen.
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Longitudinal EB weld

1.24cm (0.49 in.

L|
AA

Specimen cross-section showing flaw

Failure at 1 cycle to 306 MN/rn (44.4 ksi)

3.0

. 2.5

- 2.0

1.5

1.0

1.4

•1.2

j l . O

1 cycle to 292 MN/m (42.4 ksi)

1 cycle to 298 MN/m2 (43.3 ksi)

The results of the longitudinal weld
specimen test show that a flaw growing
perpendicular to an EB weld in a thick
2219-T87 aluminum plate would be difficult
to analyze using fracture mechanics theory.
Because of base-material delamination at
the crack front when an attempt was made
to load the specimen to failure, difficulty
was experienced both in conducting the test
and in analyzing the results. Crack front
delamination is fairly common for 2219-T87
aluminum base material when tested in air
at room or elevated temperatures. When
delamination occurs, crack growth is re-
tarded both for static loading and for fatigue
loading. In the test of the longitudinal weld
specimen, five attempts were made to load
the specimen to failure before failure ac-
tually occurred. In each attempt, the spec-
imen was subjected to the maximum load
capacity of the test machine and required
additional fatigue loading to increase the
flaw size for ultimate failure. The test
results indicate that a flaw in a direction

perpendicular to an EB weld in 2219-T87 aluminum would have to be many times longer
than the width of the weld to cause failure at operating or proof stress levels. Also,
the use of a proof test to ascertain minimum cyclic life at operating stress levels
would give significantly conservative results because of crack retardation when delami-
nation occurs. Compared with the growth rates for the cross-welded specimens, the
data from the longitudinal weld specimen showed much slower crack growth rates.

Fatigue loading at 216 MN/m
(31.3 ksi) maximum cyclic stress

1 t L
1000 2000 3000 4000 5000 6000 7000 8000 900010 00011 000

Number of fatigue cycles

Figure 26. - Change in flaw depth com-
pared to number of fatigue cycles for
longitudinal EB weld specimen.

CONCLUSIONS

The results of the test program to investigate fracture toughness and flaw growth
behavior in thick welded plates of 2219-T87 aluminum alloy can be summarized as
follows.

1. The welding of 6. 35-centimeter (2. 5 in.) thick 2219-T87 aluminum plate is
feasible, but the weld parameters need better definition.

2. Aging the welds at 436° K (325° F) for 24 hours increased the tensile yield
strength of the welds but significantly decreased the fracture toughness.

3. In the as-welded condition, the electron beam and pulse current gas tungsten
arc welds have higher toughness values than gas metal arc welds. After aging, the
pulse current gas tungsten arc welds have higher toughness than either the electron
beam or gas metal arc welds.
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4. The fatigue crack growth rate for weld metal was generally greater than for
parent metal.

5. The fatigue crack growth rate experimental data correlated satisfactorily with
analytical results from equation (7).

6. From the limited amount of data available, the fatigue crack growth rate of
pulse current gas tungsten arc welded thick plate was the same as the rate for gas tung-
sten arc welded thin plate.

7. For cracks that are perpendicular to a longitudinal weld, extensive delamina-
tion occurs at the crack front, and fracture mechanics analysis becomes conservative.

8. The critical flaw sizes in the welds are relatively large and would be readily
discernible by existing inspection techniques.

Lyndon B. Johnson Space Center
National Aeronautics and Space Administration

Houston, Texas, May 2, 1973
986-15-31-01-72
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APPENDIX

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

The SI was adopted by the Eleventh General Conference on Weights and Measures
in Paris during October 1960, in Resolution Number 12.

TABLE A-I. - CONVERSION FACTORS FOR SI UNITS

To convert from
U.S. customary units

Ibf

in.

kips per square inch (ksi)

ksiVin.

Min/cycle

Multiply by —

4.448222

2.54 x 10"2

6.894757 x 106

1.0988

25.4

To obtain SI units

newtons (N)

meters (m)
2

newtons/meter (N/m

MN/m3/2

nm/cycle

2>

TABLE A-n.- PREFIXES AND SYMBOLS TO INDICATE

MULTIPLES OF UNITS

Multiple

io-9

io'f
-3

10
6

10°
gio9

Prefix

nano

micro

milli

mega

giga

Symbol

n

M

m

M

G
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