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Abstract

Transpiration cooling and liquid metals both provide highly effective heat transfer. Using Darcy1 s law in
porous media, and the inviscid approximation for liquid metals, the local fluid velocity in these flows
equals the gradient of a potential. The energy equation and flow region are simplified when transformed
into potential plane coordinates. In these coordinates the present problems are reduced to heat conduc-
tion solutions which are mapped into the physical geometry. Results are obtained for a porous region with
simultaneously prescribed surface temperature and heat flux, heat transfer in a two-dimensional porous bed,
and heat transfer for two liquid metal slot jets impinging on a heated plate.

NOMENCLATURE

b

CP

F

K

n
Pe
P
Qtot
q
s

t
U, V

u
X,Y

x,y
a
K

P

<P

Subscripts
r
s

0

1, 2

Characteristic dimension; half width of
jet or coolant slot, m

Specific heat of fluid at constant pres-
sure, kcal/kg K

Volume flow rate per unit depth, nr/ s
Dimensionless jet widths, Fig. 6(a) .
Thermal, conductivity of porous matrix

kjjj, or liquid metal k, kcal/m s K
Outward unit normal vector
Peclet number, F/a
Static pressure, N/nr
Total amount of heat transferred, kcal/s
Heat flux, kcal/s m2

Surface; coolant exit from porous medium;
half-spacing between jets, m

Dimensionless temperature, (t - t^kjj/
qg2b for porous region with free sur-
face, (t - tooJk/^w213 for Jet>
(t - tM) A^ r - too) for porous bed

Temperature, K5

x and y velocity components, m/s
Vector velocity, m/s; U = u/(F/2b)
Dimensionless coordinates, x/2b, y/2b
Jet stagnation point
Rectangular coordinates, m
Thermal diffusivity, K/pCp, m2/s
Permeability of porous medium, m2

Fluid viscosity, N s/m2

Fluid density, kg/m3

Dimensionless potential, cp/F;.$s = cps/F
Velocity potential, for porous medium

<P = (PO - PJf/W <PE = (PO " Ps)K/M>
m^/s

Stream function, m2/s; dimensionless

Dimensionless gradient, i(d/dX) +

Reference value
On surface where coolant exits from

porous medium
Wall
At reservoir condition
On surface where coolant enters porous

medium
At wall' 1 or' 2

INTRODUCTION

In connection with advanced power producing devices,
the heat transfer engineer must contend with high

heat fluxes arising from increasing temperatures of
working fluids to raise thermal efficiency, or from
high operating temperatures required in devices
such as fusion reactors. Two means of effective
cooling are transpiration-cooled porous walls and
liquid metal coolants. A common feature of these
flows is that locally the fluid velocity is equal
to the gradient of a velocity potential. This is
true for Darcy flow in porous media, and for the
inviscid flow approximation in liquid-metal heat
transfer analyses. As a consequence the energy-
equation acquires a simplified form when transform-
ed into a "natural" system of potential and stream-
line coordinates. For the present problems the
solutions in the potential plane are reduced to heat
conduction solutions which are mapped into the
physical system.

The use of the potential plane was developed for
two- and three-dimensional porous cooling in [1]
and [2], and for liquid metal heat transfer for
flow across cylinders in [3]. The technique is fur-
ther developed here to obtain: (l) the shape of a
two-dimensional porous region to provide a desired
surface temperature for a specified surface heat
flux, (2) the heat transfer for a two-dimensional
porous bed with specified boundary temperatures,
and (3) the temperature distribution on a uniformly
heated plate cooled by impinging liquid metal jets.

ANALYSIS • ' -

Figure 1 shows a two-dimensional porous region with
coolant supplied through a slot. The upper surface
receives a uniform heat flux and is to be main-,
tained at a specified temperature. The shape of the
surface is to be found to meet these restrictions.
The geometry is in dimensionless form in Fig. 4(a)
and, as will be discussed, maps into potential
plane coordinates as shown in Fig. 4(b). Figure 2
shows a porous region between solid walls S]_ and
Sg with specified temperature distributions. It
is desired to obtain the total heat transferred to
the flow. Figure 5 shows the dimensionless form
and the mapping into the potential plane. The
third situation analyzed is the impingement heat
transfer of the parallel liquid metal, slot jets in
Fig, 3. The dimensionless form and mapping into
the potential plane are in Fig. 6.

Governing Equations

The solutions obtained here are for constant prop-
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COOLANT RESERVOIR, p., ta)

Fig. 1 POROUS LEADING EDGE REGION WITH SPECIFIED
UNIFORM HEAT FLUX AND TEMPERATURE AT SURFACE

COOLANT
RESERVOIR,

Fig. 2 POROUS BED WITH NONPOROUS SIDE WALLS MAIN-
TAINED AT SPECIFIED TEMPERATURES

UNIFORM HEATING,

STAGNATION POINT

STAGNATION STREAMLINE-1
u IMPINGEMENT

PLATE

Fig. 5 PARALLEL SLOT JETS-IMPINGING AGAINST A
UNIFORMLY HEATED/PLATE , • , ' . . . , •

erties. For heat transfer in a porous medium it is
assumed that the coolant and porous matrix are in
sufficiently good thermal contact that locally they
are at a common temperature. With these limltar
tions the heat transfer in the porous medium or jet

is governed by the continuity and energy equations,

V • u = 0 (1)

E^t - pCpU • Vt = 0 . (2)

In the porous medium the velocity is governed by
Darcy's equation,

u = - (<c/u)VP (3)

while in the liquid metal flow (assumed irrotation-
al and invi'scid) the velocity can be written as the
gradient of a potential

V<p (4)

Define a potential <p = (p. - p)/c/V and Eq. (3)
becomes the same as Eq. (4". Thus the continuity,
energy and flow equations have the same form for
both the porous media and jet flows.

Boundary Conditions

The thermal boundary conditions are discussed in
relation to each problem so only the pressure bound-
ary conditions are given now. The static pressure
drop as the fluid accelerates from the reservoir to
the coolant inlet is usually small conpared.with the
pressure drop in the porous medium. Hence, along
S0 in Figs. 1 and 2

constant x,y on SQ (5)

S is also at a specified
P = P0 = Poo

The coolant exit face
constant pressure

p = ps = constant x,y on S (6)

Similarly the inlet and outlet of the jet are at
constant pressure. .

Equations and Boun̂ »ry Conditions in Dimensionless
Form

Let F be the volume flow rate, per unit depth nor-
mal to the x,y plane, through the porous medium or
in one of the jets. For the porous medium F is
found in the analysis in terms of the pressure dif-
ference PQ - pg, while for the jet it is specified
as 2bv00 (fig. 3). A characteristic velocity is
F/2b as 2b is used as a reference length in
Figs. 1 .and 2. Using dimensionless variables
Eqs. (1), (2), and (4) become

V1 • U = 0

Vs! - PeU • VT

U = VO

(7)

(8)

(9)

From the definitions of q> and 0, conditions (5)
and (6) become

(10)

(11)

* = 0 X,Y on SQ

$ = Os = constant X,Y on S

Transformation into Potential and Stream Function
Coordinates

Conditions (10) and (11) show that the inlet and
outlet faces of the porous media are at constant
potential. From Eqs. (7) and (9)

= 0 (12)

so that in the flow regions the potential satisfies
Laplace's equation. Orthogonal to the * lines
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(a) DIMENSIONLESS COORDINATES WITH BOUNDARY
CONDITIONS IN TERMS OF A POTENTIAL
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(b) REGION IN POTENTIAL
PLANE.

ions to map into simple rectangles and strips in
potential-stream function coordinates in Figs. 4(b),
5(b), and 6(b). This geometric simplification as
well as simplifications in the differential equa-
tion and boundary conditions make it convenient to

hi-
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(a) DIMENSIONLESS PHYSICAL PLANE.

Fig. 4 POROUS LEADING-EDGE EEGION WITH OOOLAHT
SUPPLIED THROUGH SLOT

S0, T • 0, * • 0
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(a) REGION AND POTENTIAL BOUNDARY CONDITIONS IN DI-
MENSIONLESS PHYSICAL PLANE,
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(b) REGION IN POTENTIAL PLANE.

Fig. 5 POROUS BED WITH SPECIFIED WALL TEMPERATURE
VARIATIONS

are streamlines that satisfy

V2? = 0 (13)

The impervious boundaries 23 and 56 in Fig. 4(a),
and S-, and S2 in Fig. ,5(a) ar£ streamlines.
For the" Jet in Fig. 6(a) 12 and 45 are free stream-
lines, and the flow must_be along the line of sym-
metry and the plate so 6W9 is along a streamline.
The dividing streamline 38 terminates at the stag-
nation point. These conditions cause the flow reg-

.n2 **
I &T J_
I ,rd^ * " U(<8

3-hf—-T—J, j ( ,

ma

(W FLOW REGION IN POTENTIAL PLANE.

Fig. 6 IMPINGING LIQUID METAL SLOT JETS

obtain solutions in the potential plane and then
conformally map the results into physical coordi-
nates.

The pressure boundary conditions are in terms of
the potential in Eqs. (10) and (ll). To express
the energy equation in terms of potential coordi-
nates, Eq. (9) is used to eliminate U from Eq. (8).
The resulting equation has the same form as Eq. (16)
of [1], and in [1] the details are given of the
transformation into the potential plane. Using
Eq. (26) of [1] yields the energy equation,

o-2T

do2
(14)

This is the same equation as for convective heat
transfer in a parallel plate channel with uniform
flow in the * direction and with the channel
width in the ¥ direction.

From the definition of the stream function the dif-
ference between the upper and lower streamlines in
Figs.. 4(b), 5(b), and 6(b) is the volume flow rate
between them. Since ¥ = */F, the range of ¥ is
unity. When the geometries in Figs. 4 and 5 are
mapped into the potential plane the range in 0 is
0 to Os. Thus the determination of $s from the
mapping yields the volume flow rate,

i (P0 -
A U * J »

(15)
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Leading Edge Region with Unknown Surface Shape

In Fig. 1 a porous leading edge region is held by
tvo insulated supports. The upper surface is sub-
jected to a uniform heat flux and it is desired to
maintain this surface at a uniform temperature tg
set by design considerations. By not having any
portion of the surface below ts, the surface is
not locally over cooled and coolant is not wasted.
Thus the boundary conditions along S are both
uniform heat flux and uniform temperature, and the
shape of S is to be determined. Along the inlet
face S0 conservation of energy requires that any
energy conducted out of the porous medium be ac-
quired by the incoming fluid. Summarizing these
conditions:

kjjig • Vt = qs = constant"!

t = tg = constant J

Vt = pC (t0 - x,y on

In dimensionless form these become

VI = 1
S,Y on S

VI = Pe Trio • U X,Y on SQ

(I6a)

(16b)

(IV)

(I8a)

(18b)

(19)

Since S- is a line of constant potential n =
and Eq. (19) becomes °

V* • VT = Pe T |V*|2 X, Y on SQ (20)

This problem can be reduced to a heat conduction
solution which win yield the shape of S. The
surface S has potential and temperature both uni-.
form. This suggests trying a solution where T is
only a function of *. Then Eq. (14) becomes

(d2T/a*2) - Pe(dT/da>)

Integrating gives

- Pe T = G!

(21)

(22)

To obtain Oj_ apply the boundary condition (20) at
SQ where 9 = 0. Using VT = Vn(dT/d*) reduces
this to

(23)

C]_ = 0. ThenApplying Eq. (23) to Eq. (22) gives
by integrating Eq. (22) from 4> to

-Be(*s-o)
= Te = T (24)

There still remains to satisfy the uniform heat
_fLux along S, condition (ISâ , Using VI =
V* dT/dO and from Eq.
the condition for

(22) fL = PB Ts, yields

l/(PeTs) X,Y on S (25)

fhe boundary conditions for $ are summarized in
Fig. 4(a) and from Eq. (12) <D is a solution to
Laplace1 s equation. The shape of surface S has
to be determined such that 0 will be constant and
have a-constant normal derivative along S. As
shown in [4] and [5] this type of heat conduction
problem can be solved by conformal mapping by using
an auxiliary potential derivative plane. The freez-
ing problem [4] depends on the same boundary value
problem as the present case. The conformal trans-
formations are given in [4] for mapping Fig. 4(b)
into 4(a); to apply these results here requires
only a change in notation. Results are given in
Fig. 7.

Two-Dimensional Heat Transfer in Porous Bed

When the porous bed in Fig. 5(a) is mapped into
Fig. 5(b) the problem becomes convective heat trans-
fer to uniform flow in a parallel-plate channel of
unit width. Assuming the conformal mapping is known
between Figs. 5(a) and 5(b), the T(x,y) along Si
and 82 are transformed to yield the boundary con-
ditions in the potential plane

!]_(«) «,? on 12

T2(4>) «,* on 34

(26a)

(26b)

For convective heat transfer in a channel the axial
conduction term can be neglected unless Pa is less
than about 10 so for most situations Eq. (14) can
be approximated as

0 (27)

Without axial conduction the fluid and solid at the
entrance of the bed are at the reservoir tempera-
ture,

T = 0 *,¥ on 14 (28)

Equation (27) has the same form as the one dimen-
sional transient conduction equation. The solution
in the potential plane is found by using results for
a slab of constant thickness initially at zero tem-
perature and then heated in a time dependent manner
as given by conditions (26). From Eq. (1) on
page 103 of [6] the temperature distribution is
given by

Pa

.
J n

n=l

(29)

Since there is the same volume flow in each dY
layer, the average exit temperature from the bed i's

T(«a) = (30)

The total heat transferred by the bed to the fluid
is Qtot = PCpF(ts - tj = pCpF(tWjr - tjT(«8).
Inserting T(*S,Y) from Eq. (29) and integrating
to obtain T(c>s) yield

Qtot -(nz/Pe)fl?*s

(31)

The F is obtained from Eq. (15) by using the <t>s
found in the mapping.

Heat Transfer for Two Impinging Jets

As given in [7] the impinging jet in Fig. 6(a) maps
into the potential region in Fig. 6(b),- this repre-
sents a uniform flow in the 0 direction. With
axial conduction neglected the heat transfer can be
computed as convection to two separate flows in
channels h^ and h2 wide. The heat losses along
the free streamlines are neglected. The normals to
the free streamlines are along the ¥ direction so
that

(9T/9?) =0 on 12 and 45 (32)
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From symmetry about streamline 67

(oT/cVJ-) = 0 *,? on 67 (33)

The plate 789 is heated with a uniform flux qw =
-k St/oy|y=0 or

(oT/dY) = -1 X,Y on 789 . (34)

This must be transformed into the potential plane.
Using ST/oY = (or/ô d̂ /dY) +• (oT/o*)(d*/oY) and
the relations along 789 that ? = 0 and dJ/oT = 0
(since v = 0) yield

-1= (dT/cvJÔ o (d?/oY)|Y=0 (35)

From Eq. (9) and the Cauchy-Eiemann equations, U =
o¥/oY. Condition (35) becomes

= -1/U(*) 9,1 on 789 (36)

The boundary conditions ajê  summarized in Fig. 6(b).
The velocity U(«) along 789 needed in Eq. (36) is
given by the conformal mapping solution for imping-
ing jets in [7].

With these boundary conditions the channels of width
hi and hg have nonuniform heat addition along 78
and 89, and the other boundaries are insulated.
Since Eq. (27) has the same form as the transient
conduction equation, the condition (36) can be
thought of as a heat flux variation with time. In
[6] the transient temperature solution is given for
suddenly imposed heating at one surface of a slab
with the other surface insulated. The temperature
variation at the heated surface for an imposed flux
of unit magnitude is G(j>). By superposition, for
a variable heat flux,

•/ U(* - T)
(37)

Differentiating the G(«) given in [6], page 112,
the temperature distribution along the heated plate
becomes,

and hj. = h~ for

T
hg are in [7J . The map-

7] are used to transform Tw(o)
to TW(X). Typical temperature distributions are
'in Fig. 8.

DISCUSSION

The shapes of a porous cooled region are shown in
Fig. 7(a) that simultaneously satisfy the conditions
of uniform heat flux and temperature along the cool-
ant exit face. -The governing parameter involves the
overall temperature and pressure differences, and
the surface heat flux. If the allowable surface
temperature t is increased, less coolant flow is
required. The region thickness is increased there-
by reducing the flow since the pressure difference
is fixed. If the surface flux qs is increased, a
greater flow .is required which corresponds to a
thinner region. The coolant flow is given in
Fig. 7(b).

0 .2 .4 .6 .8 LO 12 L4 L6
X - x / b

(a) SHAPES OF REGION FOR VARIOUS VALUES
OF IMPOSED PHYSICAL CONDITIONS.

10

•a- 6

£ *

I
.4 .6 .81.0.2

(b) COOLANT VOLUME FLOW AS A FUNC-
TION OF IMPOSED PHYSICAL CONDI-
TIONS.

FIG. 7. - POROUS LEADING EDGE REGION.

Figure 8 shows the temperature distribution along a
uniformly heated plate for two impinging slot Jets
(from symmetry only half the geometry is shown).
The surface temperature goes toward infinity as the
velocity approaches zero in the backflow region at
x = 0; this is a consequence of neglecting heat con-
duction along the streamlines (see Fig. 8 of [3]).

L6

Fig. 8 DIMENSIONLESS TEMPERATURE ALONG HEATED
WALL FOR IMPINGING PARALLEL LIQUID METAL SLOT
JETS, S/b = 3.
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