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~ APPLICATION OF PHASE-CHANGE TECHNIQUE TO THIN SECTIONS |
WITH HEATING ON BOTH SURFACES .. . - ~

| By James L. Hunt JoanI Pitts, and Chr1stme B. RlChle '
Langley Research Center '

SUMMARY

A numerical digital computer. program has been developed to calculate the heat-
transfer coefficients for both sides of a one-dimensional finite slab subject to the bound-
ary conditions ascribed to the phase-change coating heat-transfer techniqué In a typical
tunnel test situation where a thin wing was exposed to heating on both sides, the data
reduction procedures for a semi-infinite slab gave heat-transfer coefficients as much as
375 percent too high on the side with the lowest heating. The results from the one-
dimensional finite-slab procedure are presented in the form of correction factors to the
solution for a:semi- 1nf1n1te slab in terms of parameters normally used with the phase-
change heat- transfer technique. These correlations are not restricted to slab thickness
or thermophysical properties and are easily used to obtain accurate data on thin model
sections.

INTRODUCTION

. . Existing solutions-(ref: 1) for obtaining quantitative heat-transfer data from the-- - - - — - -
phase-change coating techmque are restricted by the assumptmn of a one-dimensional
semi-infinite slab. In practlce this assumptmn requires that the’ depth of heat penetra-
tion into the model be small compared with the wall thickness. The depth of heat pene-
tration has been shown to depend pr1mar11y upon the thermal propert1es of the model :
material and the test time. A simple empirical equation given in reference 1 as

L 1 R o - | (1)

where @ is the thickness of the slab and @ the thermal d1ffus1v1ty, determmes the
maximum test time for which the assumption of a semi- -infinite slab can be apphed with
negligible error. However, models of many configurations tested in hypersomc wind
tunnels have very thin wings and tails so that practical test times excéed the allowable
time given by equation (1). In addition, for many tests, heat enters at both surfaces of
such thin wings. At the present time no solutions are available for determining the



magnitude of the errors incurred when the semi-infinite-slab assumption is violated. v
Therefore, a computer program was developed to calculate the heat- transfer coefficients
for both sides of a one-dimensional finite slab subJect to the boundary conditions ascribed
to the phase-change coating technique (ref. 1). 'The results are presented in the form of
correction factors to solutions for a semi-infinite slab in terms of parameters normally
used with the technique. These correctlon factors are not restricted to slab thickness or
thermophysical properties and can be easily used to obtain accurate data on thin model

sections.
SYMBOLS
A | area
c specific heat
h aerodynamic heat-transfer coefficient
~hg ‘ 'heat-trainSfer coefficient to stagnafidn point of reference sphere
k thermal conductivity
l thickness of SIab, Z wj
, &

M free-stream Mach number
N " number of blocks upon which heat balance is performed
Nnu finite-slab heat-transfer parameter (Nusselt number), l—l}; '
Q ' heating rate
q heating rate per unit area
R  free-stream Reynolds number
T  temperature
— ' TpC - Ti
T temperature parameter, ————

: abtanhl tahatet aw - Ti
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Subscripts:
aw

BG

. time parameter for finite slab, =

time

thermal-interference diffusion time for thickness of slab
thermal-interference diffusion time for one-half thickness of slab
delta time or computing interval

volume of block

thicknesé of block

coordinates

chord length

. .. k
thermal diffusivity, o¢
heat-transfer parameter for semi-infinite slab, h___Vkat

emissivity

angle of attack

Sdensity T v s s e e

Stefan—Boltzmann constant

ot

12

adiabatic or recovery conditions
background
convection surface .

initial conditions



i variable integer (either 1 or 2) which refers to surface of slab at which heat
is entering

m variable integer which refers to block upon which heat balance is being
performed
n variable integer which refers to any other block that affects heat balance

for block m

pc phase change

sis semi-infinite slab

w o wall

1 front side of finite slab
2 back side of finite slab

R

A prime indicates the value in the previous time step.
ANALYTICAL METHOD FOR FINITE SLAB

A computer code (appendix A) which calculates the heat-transfer coefficients for
both sides of a one-dimensional finite slab subject to the boundary condition ascribed to
the phase-change coating was developed in the following manner. The finite slab of
thickness ! (fig. 1) with heat exchahge at both surfaces is divided into N blocks. The
block thicknesses are graduated inversely with the distribution of the temperature gradi-
ent expected in the slab. These thicknesses are given in appendix A as a percentage of
the total thickness of the slab 1 for two values of N (20 and 30). These two thickness
distributions are built into the computer code and selected according to the input value
of N. A heat balance is performed on each block. In the heat-stored term, each block
is assumed to be at a uniform temperature throughout its volume. In the heat-conduction
term, a linear temperature variation between centers of blocks is assumed, with heat
passing through an area equal to the touching surfaces.

Convection blocks (surfaces 1 and 2):

¢

Qconvection = quc,j = thc,j(T_aw,j ) Tc,j)



S _ r \4 4
Qradiation = UejAc,j[(Tc,j> - <TBG):]
: T,, - T,
m m
Qstored Pm®m V At

T, -T
=2 A m_n

Q e
conducte m,n"'m,n w,, + W,

Qconvection ~ Qradiation ~ Utored ~ Qeonducted = 0

The surface temperatures T are assumed to be equal to the temperature of their

respective surface blocks T which are kept extremely thin.

c,m’
Conduction blocks (internal):

. T, - T,
- m m
Qstored - pmcme At

- Tn
Qconducted ka nAm Dwo, o+ Wy

Qconducted-in ~ Utored ~ Qeonducted-out = ©

"~~~ The resulting systemof linear equations-is solved simultaneously ateach-succes-—"——""— -
sive time step with a subroutine (ref. 2) which solves the matrix equation AZ=B '
(Z denotes the unknown variables taken as temperatures of blocks here, A denotes a

"7 square coefficient matrix, and- B “denotes a vector of constants). The values of specific- —-~ -~

heat and thermal conductivity are updated at the new temperatures obtained for each
block after each time step. This heat-balance procedure is implicit and is therefore not
bound by a stability criterion. The réSulting computer program was checked against
exact solutions of finite-slab problems (ref. 3) to determine the effect of the number of
blocks, the distribution of the thickness of the blocks, and the computational time
interval (At) on the accuracy of the solution for various heating rates, slab thicknesses,
and thermophysical properties. (See appendix A.)

As described thus far, this program calculates the temperature-time profile in each
block for a prescribed heat flux gy = hy(Tyy 1 - Te 1) and Qg =hy(Tyy o - T o).
This procedure is now incorporated into an iterative cycle which enables the determina-
tion of the heat-transfer coefficients h; ~and hy. This iterative cycle includes (1) a
method to approximate the heat-transfer coefficient at the two surfaces to be used as
starting points in the cycle and (2) a method of searching for the actual heat-transfer



coefficients — defined here as that combination which produces surface temperature-
time profiles that include the corresponding input points (Tpc,l’ tpc,l) and (Tpc,2’ tpc,2)
(Tpc,l not necessarily equal to Tpc,2 and tpc,l not necessarily equal to tpc,z).
The solution to the one-dimensional heat-conduction equation for a semi-infinite
slab with a step input in h 1is used to obtain the heat-transfer coefficient at both sur-
faces for the starting point in the iterative cycle. The solution is given in appendix B.

The approximation for a semi-infinite slab will always give a higher value for the
heat-transfer coefficient at either surface of the finite slab than that which actually
occurs, provided that heat is entering the slab at both surfaces (no negative heating
rates). This is because the larger effective mass of the semi-infinite slab requires
more heat input to reach a given surface temperature than does the finite slab. When
the heat-transfer coefficient for the semi-infinite slab is imposed on the finite slab, the
resulting surface temperature is higher than that which actually occurs on the surface of
the finite slab (see sketch). As shown in the sketch, the heat-transfer coefficient is

—— —— Produced by hgjg |

" (1]
- - hszls,z

' actual h

— }Surfuce |

} Surface 2

1
' '
| ]
! '
! !
! !
1 I
| i

. 'oc,2" tpc,l

Example temperature-time profile at both
surfaces of finite slab

higher for surface 1 than for surface 2. The task is to find the combination of hy
and hg which corresponds to the respective set of surface temperature-time profiles
(labeled "actual" in the sketch) that include the respective input points (Tpé,l’ tpc,l)

and (Tpc’z, tpc’z) .




A Newton-Raphson procedure (ref. 4) is used to determine the respective amounts
by which both surface heat-transfer coefficients are changed at the beginning of each suc-
cessive iterative cycle in order to reach the actual set of heat-transfer coefficients for
the finite slab in the fewest steps. This procedure is employed at the constant input time
points t= tpc,l and t-= tpc,Z and proceeds until a combination of heat-transfer coeffi-

cients is found (h; and hg) that produces corresponding surface temperatures within a
given AT of the respective input temperatures prc 1 and Tpc 9.

RESULTS AND DISCUSSION

Experimental Test Situation

As an example of the magnitude of errors which may occur by violating the semi-
infinite-slab assumption in practical test situations, phase-change data (ref. 5) obtained
in the Langley Mach 8 variable-density hypersonic tunnel (on a 0.005-scale Stycast model
of a NASA Lyndon B. Johnson Space Center space shuttle launch configuration at zero
degrees angle of attack) were examined. The wings of the orbiter of this configuration
were very thin (midsection thickness on the order of 0.2 cm). A chordwise profile of the
wing on the orbiter at 69.3 percent semispan is shown in figure 2. The time at which the
phase change (339 K) occurred along the top and bottom surfaces at this span position and
‘the thermal-interfergnce diffusion time (td,l /2= %%@E) distribution for the center line

- —of -the-wing-profile are-included infigure 2.~ .
Data for the front and back surfaces of the wing were obtained from different tests
at essentially the same stream Reynolds number. The stagnation pressure for both tests.
“was 360 kN/m2, and the stagnation temperatures were 739 K and 722 K for the front and
back, respectively. Since the value of the aerodynamic heat-transfer coefficient is not a
strong function of the stagnation temperature, data from different tests can be used as
input conditions provided that the initial temperatures are the same. The initial tempera-

ture of the model was 300 K which with the adiabatic wall (assuming an adiabatic-to-total
temperature ratio of 0.925 obtained by using a laminar recovery factor (\’NPr) and the

Newtonian local condition on a flat plate) and phase-change temperatures givea T of
approximately 0.1 for these tests.

The chordwise heat-transfer-coefficient distributions on the windward profile
obtained by using the phase-change data reduction procedures for both the semi-infinite
and finite slab (heat exchange at both surfaces) are given in figure 3. The distributions
are presented in terms of the nondimensional heat-transfer-coefficient ratio h /hs,
where hg is the theoretical heat-transfer coefficient (ref. 6, eq. (61)) for the stagnation



point of a 0.2-cm-radius sphere (a 0.3-m-radius sphere scaled by the same.scale factor
as the model, 0.005).

The data obtained from these two reduction procedures differ significantly in level;
also, the distributions diverge for the back surface. On the front surface, the procedure
for the semi-infinite slab gives heat-transfer coefficients which exceed those obtained
with the procedure for the finite slab by a factor of approximately 1.25 (25 percent). For
these data the time of phase change (tpc) divided by the thermal-interference diffusion

2
time for one-half the wing thickness ( ty 1/2° 0 2 l 2 ) varies from 6 to 16. On the back

surface the data for the semi-infinite slab exceed the data for the finite slab by factors

of 1.2 to 4.75 (20 to 375 percent). Here tpc/td 1/2 varies from 5 to 25. However, for
the same tpc/td 1/2 variation as the front surface (6 to 16) the data for the back surface
of the semi-infinite slab exceed those for the finite slab by factors of 1.23 to 2.56 (23 to
156 percent). This result indicates the influence of the time of phase change at the oppo-
site surface and the thickness of the wing. Comparing the time of phase change and the
thickness of wing diétribution in figure 2 with the heat-transfer-coefficient distributions
in figure 3 indicates that the difference between the results for the semi-infinite and
finite slabs is much more sensitive to the differences in times of phase change at the
front and back surfaces for smaller thicknesses.

The example heat-transfer-coefficient distribution on the wing illustrates the neces-
sity of using the numerical finite-slab data reduction procedure with the phase-change
heat-transfer technique on midsections of thin fins and wings. However, Acalculating the
actual heat-transfer-coefficient distribution along a wing profile or phase-change iso-
therms is time consuming and expensive. Therefore, for practical engineering applica-
tions, a graphical presentation of the results from this numerical digital computer pro-
gram for the finite slab with heat exchange at both surfaces which will not be restricted
to a given slab thickness or set of thermophysical properties is needed. ’

Presentation of Solutions

Identification of independent parameters.- In order to identify the correlating
parameters and to separate the influence of some of the independent variables from the
influence of one convective surface on another, the simpler case for the finite slab with
heat exchange at only one surface (x = 1) is first analyzed. The closed-form solution to

the differential equation for the one-dimensional flow of heat at the convective surface of
this "'restricted" finite slab (ref. 2) is

_ s 2N -n. _
To1-) Nu MY ' @)




where

= _ TEC - Ti
Taw - Tj

- th

Nyu = X

_ at C

ZZ
and T for j=1,2,... are the positive roots of

n tan n = Ny

with the initial and boundary conditions of

T(X,O) = Tl

dT(O,t) _
dx

dT@,t) _ hEraw } T(O’t)]
dx k

Equatio'n (2) is plotted in figure 4 in terms of Ny, as a function of ¥ for con-
stant values of T. The range of the variables given should cover that encountered in any
__phase-change heat-transfer data reduction process.

In contrast to the solution for a semi-infinite slab (appendix B, egs. (B5) and (B7)),
the thermophysical properties in the ""restricted'" finite-slab solution (eq. (2)) are no
longer coupled as \ﬁ)_c—k, and time appears to the first poWer in the finite-slab param-
eter Y, whereas the solution for a semi-infinite slab depends on JVt. This is not to say
that the solution for a finite slab depends linearly on t since both solutions must agree
for times less than the thermal-~interference diffusion time of the slab. Also, the solu-
tions for a finite slab depend on the thickness of the slab [, whereas [ does not appear
in the solution for a semi-infinite slab.

In order to present the solutions for a finite slab in a manner more applicable to
the phase-change heat-transfer technique, consider the independent finite-slab param-
eters Ny, =1!h/k and Y= atpe 12, From equation (1), 1 is proportional to \/Ez—ta;;
therefore, Ny, is proportional to h\ltd‘,l / pck. Comparing this parameter with the
solution for a semi-infinite slab (eq. (2)) suggests a correlation parameter of the
form h/hsis (the heat-transfer coefficient for a surface of a finite slab divided by the



heat-transfer coefficient calculated for the same point from the solution for a semi-
infinite slab). In the parameter y = atpe 12 @/12 may be replaced by 0. Z/td 1
(eq. (1)); therefore, Y is directly proportional to tpc/td z; thus, the parameters that

define the restricted finite-slab solution are h/hgjs, tpc/td,;, and T.

A plot of the parameter h/hsis (at surface 1) as a function of tpc/td,l for a
finite slab with no heat exchange at surface 2 (eq. (2)) is given in figure 5 for three fixed
values of T. Since hgjq is a function of T, the correction factor h/hgjs becomes a
rather weak function of T. However, for the same value of the phase-change time
parameter, the correction factor decreases (below 1 — greater departure from the value
for a semi-infinite slab) as T increases. Also, the ratio h/hgis is unity for
tpc,l /td,l = 1. This result substantiates the validity of the constant in equation (1), which
was obtained by empirical means (ref. 1).

Effect of heating at both surfaces.- An example showing the effect of heat input
(Nusselt number) at surface 2 on the ratio of heat-transfer coefficient for a finite slab to
that for a semi-infinite slab at surface 1 is presented in figure 6. These curves were
obtained from the numerical data reduction procedure for a finite slab. In figure 6
h /hsis for surface 1 is plotted as a function of the time at which the phase change occurs
at surface 1 nondimensionalized by the thermal-interference diffusion time of one-half

the thickness of the slab (td,L /2 is used because heat is entering the slab at both sur-
- Ty

Taw 2

faces). Figure 6 is presented for 'T‘l = 0.348 and T—?-—— 1 and contains lines
aw,l ~
for constant values of the Nusselt number (NNu = %h) at surface 2. The influence ofAheat

transfer at surface 2 on the heat-transfer correction factor h/hgjg at surface 1 is
strong for tpc,l /td,l /2> 4 and increases substantially as this parameter increases.

The effect of changing the front-surface 'T‘l on the front-surface correction
factor for a constant back-surface Nusselt number can be ascertained from figure 7.
Here, the correction factors for a finite slab with a constant heat-transfer coefficient at
the back surface (assuming ¢ and k are the same for all solutions) for three values of
Tl ('T‘l = 0.239, 0.348, and 0.455) are shown, along with the correction factors for a
finite slab with no heat exchange at the back surface for the same three values of Tj.
The finite-slab correction factor solutions for NNu,Z >0 depend on 'f‘l in an inverse
manner to that of the restricted (NNu 9 = 0) solutions. For no heat exchange at the back

surface (NNu 9 = 0) and for a given phase-change time, the solutions for a finite slab
move away (clockwise in fig. 7) from those of the semi-infinite slab (h/hs1S = 1) as Tl
increases. This is because the heat transfer to the front surface increases as T1
increases and the higher the heat load the greater the front-surface temperature, and
thus the heat-transfer coefficient for this inverse method feels the effects of the finite

10



dimension of the slab. For heat exchange at the back surface (fig. 7, Nyu2= 0.139) )
and for a given phase-change time, the solution for a finite slab moves toward (counter-
clockwise) the solution for a semi-infinite slab (h/hsis = 1) as ’f‘l increases.

At first glance there seems to be a contradiction, since the NNu 9 = 0 solutions
are a limit of the solutions with heat exchange at the back surface (NNu 9= Constant) and
figure 7 indicates that they have an opposite Tl dependence. Actually, the solutions
with the heat exchange at the back surface (NNu 9 = Constant) are moving toward the
solution for a finite slab (for the same Tl) with no heat exchange (NNu 9 = 0) as Tl
increases. As T1 increases, the heat-transfer coefficient at the front surface
increases, while for these solutions (NNu 9 = Constant) the heat-transfer coefficient at
the back surface remains constant. Therefore, the ratio of the heat transfer at the front
surface to that at the back surface for the same initial driving potential is increasing
with ’fl' which is in the direction of the front- to back-surface heating ratio (<) for the
finite slab with no heat exchange at the back surface. Thus, as 'f‘l increases, the two~
solutions (Nyy,2 = 0 and Nyy g = Constant) converge.

Solutions for large angles of attack.- In tunnel tests of models at large angles of
,attack, the flow on the leeward surface of a wing or horizontal stabilizer is separated,
and the heat-transfer coefficient is less than 20 percent of that on the windward side.

The approxi’mate regions where hg = hy / 5 and hg =h; are shown as bands in figure 6
because of the wide spacing of the limited number of calculated points. For the condition
—(fhgiéf—hflf/ 5) -and for the-set of temperature parameters given in figure 6, the heat-transfer
coefficient on the windward side is within 10 percent of the value for a semi-infinite slab
for tpc,l/td,‘l/2 £9. However, since the hg = h1/5 band is essentially parallel to the

~hg-=-0 (NNu;2‘= 0) solution for the-finite slab with no heat exchange at surface 2, the - -- - .
heat-transfer coefficient ratio on the windward side of the section is within 10 percent of

the hy =0 solution for tpc l/td 1/2 = £20. The similar slopes of these two lines

(h2 =0 and hg=hy / 5) indicate that much larger values of the,1 /td /2 ¢an be attained

with little increase in the error band. :

The questlon of the 1nf1uence of Tl on the spread of the error band now arises.
Correction factors for surface 1 of a finite slab are given in figure 8 for constant values
of the Nusselt number at surface 2 as in figure 6 (Tl = 0.348) but for a T1 of 0.174. A
comparison of these two plots shows the downward rotation of the constant Nusselt num-
ber lines as '-I-‘l decreases (discussed previously). However, a comparison of the
hg = hy/5 lines in the two plots indicates that these two lines are essentially independent
of T;. This, along with the fact that the hy = 0 lines are a weak function of T
(fig. 5), means that the spread in the error band (between the hg=0 and hg=h;/5

solutions for tpc,l /td,l /2 = 20) is also a weak function of ’1‘1. As an example, for

11
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tpc l/td 1/2 = 20 the error spread is approximately 10 percent for a Tl of 0.348 -
(fig. 6) and 15 percent for a Tl of 0.174 (fig. 8). This T1 range covers that which
will occur in most wind-tunnel tests. Also, the magnitude of the initial temperature
potential on the leeward surface compared with that on the windward surface

(Taw,z - Ti) /(Taw 1- ) will affect the error band quoted (10 to 15 percent or less)

for tpc,l /td,l /2 = =20 even though it does not enter into the NNu,Z = 0 solutions.

For values of Tyy 9 - T; smaller than that of the windward surface (fig. 9), which.is
realistic for practical test situations, the lines of NNu o rotate upward toward the
NNu 9 = 0 solution, as a comparison of figures 8 and 9 shows. This comparison also
shows that decreasing the initial temperature potential also rotates the hg =hy/5 and
hg = h; solutions upward. This upward rotation of the hg = hy / 5 line toward the
'NNu 9 = 0 solution (1ndependent of Taw 9 - T ) decreases the error band from approxi-
mately 15 percent (fig. 8) at tpe, l/td 1/2 = 20 to 10 percent (fig. 9) for a T of 0.174.

Thus, the heat-transfer-coefficient distribution on the windward surface of the mid-
section of wings and fins at large angles of attack can be determined within 15 percent
for tpc, 1 /td,l /2 =20 by using the distribution of the time of the phase change and thick-
ness of the section in conjunction with the restricted finite-slab solution (fig. 4) for the
appropriate windward surface temperature parameter. This is restrained by the pro-
visions that ’fl_ be greater than or equal to 0.174 and the initial temperature potential
for the heating rate of the leeward surface (Taw,z - Ti) be less than or equal to that of
the windward surface. The rate at which the error band widens as these restraints are
violated has not yet been determined, However, the 'f‘l restraint has been shown to be
extremely weak, and for wind-tunnel tests the initial temperature potential for the heating
rate of the leeward surface Taw,z - T; is always less than that for the windward sur-
face Taw,l - T;. Therefore, there is little practical need for determining the spread of
the error band with an increasing violation of these two restraints.

General solutions for low angles of attack.- At low angles of attack the heat-transfer
coefficients on opposite sides of a wing or fin are of the same order of magnitude. In this
situation, time of phase-change distributions must be obtained on both sides of the section
as given for the example wing profile in figure 2. Results of example calculations of the -
heat-transfer parameters for a finite slab for this more general test situation are pre-
sented in figures 10 and 11. These figures are presented for fixed values of the corre-
‘lating parameter T ('f‘l not necessarily equal to ’-1-‘2) and an initial temperature poten-

tial ratio (Taw 9 - Tj )/(Taw 1- ) of 1. This equal initial temperature potential
restraint is generally not viclated or at most violated to very little extent on wings or
fins at zero to low angles of attack. These correlations are not restricted to a given slab
thickness or set of thermophysical properties.

12



Figure 10 is presented for T; = 0.45 and Ty = 0.24. In figure 10(a), h/hgjg
for surface 1 is plotted as a function of tpc,]/td,l /2 This figure contains lines for :
various constant values of the correlating parameter that specifies the time at which the
phase change occurs at surface 2 (tpc,z /td 1 /2). In figure 10(b), h/hgjg for surface 2 is
plotted as a function of tye o /td,l /2 for various values of tpc 1/tq /2. Figure 10(b)
can also be used to determine the heat-transfer coefficient at surface 1 if Tl = 0.24
and 'f‘z = 0.45. Thus, these two plots (figs. 10(a) and (b)) specify the heat-transfer coef-
ficients at surfaces 1 and 2 for Ty = 0.45 and Ty = 0.24 provided that the thermo-
physical properties of the slab, the thickness of the slab, and the time at which the phase
change occurs on each surface are known. For example, with T1 = 0.45 and Tz = 0.24,
‘suppose «a /lz 0.2 per second, tq 1/2= 0.25 second, and the phase change on surface 1
occurs in 4 seconds and that on surface 2 occurs in 3 seconds. Thus, tpc,l/td,l /2 for
surface 1 is 16 and tpc,2 /td,lb /2 for surface 2 is 12. Entering these values into fig-
ure 10(a) gives a heat-transfer-coefficient ratio h/hg;q of 0.765 for surface 1. Again,
tpc,2/td,l/2 for surface 2 is 12 and tpc,l/td,l/2 for surface 1 is 16. Entering these
values into figure 10(b) gives a heat-transfer-coefficient ratio h/hsis for surface 2
of 0.212. The large differences in the front- and back-surface correction factors
(figs. 10(a) and (b)) are caused by the influence of the T of the opposite surface. Thus,
for a complete solution of all test conditions likely to occur, a set of plots similar to ‘
those of figure 10 is needed for a range of ’f‘l and ’fz parameters.

Flgure 11 is presented in the same format as figure 10 with T1 = Tz = 0.1. Since

T{ and Tg are equal in this figure, the (a) and (b) versions as ‘described for figure 10
are identical; therefore, only one plot for each set of values of T is needed in the cor-
_relations where the values of T are equal. For example, consider the y/Y 0.45

position on the wing profile in f1gure 2. The temperature parameter T is appi:cﬁu— I
mately 0.1 for both sides, oz/l = 0.0863 per second, td,l/2 = 0.579 second, and the

phase change on surface 1 (front) occurred in 4.4 seconds and that on surface 2 (back) in

6.2 seconds. Therefore, tpc,l/td,l/2 for surface 1 is 7.6 and tpc,2/td,z/2 for sur-
face 2 is 10.7. Entering these values into figure 11 gives a coefficient ratio (h /hsis) 1

of approximately 0.82. For tpc,l = 4.4 seconds, hstis is calculated from equation (B7)
~ to be 61 W/m2-K, and hg is given in figure 3 as 776 W/m2-K. This gives an h/hg

of 0.06 for the front surface, which corresponds closely to that plotted in figure 3. Again,

tpc,z/td,l/z for surface 2 (back) is 10.7 and tpc,l/td,l/z is 7.6. Switching the surface

designation subscripts in figure 8 and entering these values give an (h / hsis)2 of

approximately 0.5. For tp 9 = 6.2 seconds, hgjg = 50 W/m2-K (eq. (2)), and h/hg

is calculated to be 0.033, which matches that given for the back surface in figure 3 at

Y/Y = 0.45.
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A compilation of the results from the numerical calculations is presented in fig-
ure 12. The correction factor h/hgjg for a finite siab is given for a ’f‘l and Ty
combination range from 0.05 to 0.45 and for an initial temperature potential ratio
(Taw,2 - Ti)/(Taw,l - Tj)of 1. This range of T should cover most test conditions
likely to be encountered in phase-change heat-transfer wind-tunnel tests. Instead of
giving the correction factor at surfaces 1 and 2 for a T combination as in figure 10,
these plots are given in terms of only the correction factor at surface 1. The correction
factor at surface 1 (h /hsis) becomes larger than 1 (fig. 12) when heat is lost from sur-
face 2. To obtain the correction factor at surface 2, one considers the plot for the
reverse set of 'f‘, as previously stated, and treats surface 2 as if it were surface 1 in
both the abscissa and ordinate; also, the lines of constant phase-change time at surface 2
should be treated as if it were surface 1.

In using these plots, one should be aware that errors associated with small mis-
matches in either Tpc or tpc increase as the thermal interference diffusion time
decreases and as the difference in the time of phase change at opposite surfaces
increases. ‘

Analysis of Restraints and Variable System

In the previous section the need for determining the exact error incurred in the
finite~slab correction factor correlation for a specific restraint violation was stated to
be of little value. This assessment was made on the premise that the specified bound-
aries of the restraints are seldom violated in phase-change heat-transfer tests on thin
surfaces. (See table I.) However, the limit within which a restraint muét be contained
in order to remain within a given error band is of interest.

TABLE I.- BOUNDARIES OF RESTRAINTS

Type of surface Solution
Thick sections (any 0) Semi-infinite slab
Thin sections (zero to Finite-slab solution with heat exchange
small ) on both surfaces

Figures 9 to 13
T combination range from 0.05 to 0.45

N (Taw,z - Ti)/(TaW,l - Ti)z 1 ‘

Thin sections (moderate to Finite-slab solution with heat exchange
large 6) at only one surface
Figure 4

T = 0.174 (weak restraint)
(Taw,l - Ti) 2 (Taw,z - Ti)
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The heat-transfer-coefficient correction factor correlation for a finite slab
with a phase change on both sides showing the change in the correction factor for a
given change in the initial temperature potential ratio (Taw,z - Ti)/ (Taw,l - Ti)
and T is given in figure 13. This figure was initially for 'fl = 'T‘z = 0.45 and
(Taw 9 - Tj )/(Taw 1- Tl) =1 (case A). The initial temperature potential ratio was
changed from 1 (case A) to 0.870 (case B) to 0.773 (case C) with the values of T
remaining at 0.45 to illustrate the possible error in relaxing this restraint. For
example, for tpc,l/td,z/z = 8, the difference between h/hsis for values of
(Taw,z - Ty) (Taw,l - Ty) of 1 and 0.773 (using h/hgis for the initial temperature
potential ratio of 1 as the standard) is approximately 37 percent for tpc,Z/td,l /2= 2
and 24 percent for tpc,z/td,l /2= 4. This type of percent deviation is shown in figure 14
as a function of initial temperature potential ratio. The percent deviation from the
h/hsis value for an initial temperature potential ratio of 1 decreases linearly to zero as
the initial temperature potential ratio increases to 1 for constant values of the time of
phase-change parameter at surfaces 1 and 2. For a given initial temperature potential
ratio, the percent deviation at surface 1 increases substantially with an increase in the
time-of-phase-change parameter at surface 1 and decreases substantially with an
increase in the time-of-phase-change parameter at surface 2. Thus, figure 14 indicates
that the unit initial temperature potential ratio restraint is rather strict in the sense that
if it is violated by as much as 10 percent in certain time-of-phase-change parameter
regimes (tpe 1/t 1 /2 <8, tpe 2/tq 1 /2 < 4) the errors which are incurred will be —
extremely large. This is modified somewhat by the fact that for wings at high angles of
attack in hypersomc flows the lower limit of the initial temperature potential ratio is in

"the vicinity of 0.87. Also, the correlation of the type given in figure 13 should be used ~

for zero to moderate angles of attack, where the initial temperature potential ratio is
near unity. For large angles of attack, the solution for a finite slab with heat exchange
at only one surface (fig. 4) should be used. In this situation, the error was shown to
decrease as the initial temperature ratio decreased from unity.

To assess the strength of thé T restraint, the values of T were changed from
0.45 (case C) to 0.59 (case E) while the initial temperature ratio was kept at 0.773. The
effect of these changes on the correction factor is shown in figure 13. There is very
little difference in the lines for Tq = Tg = 0.45, (Tay,2 - Ti)/(Taw, 1 - Tj) =0.773
(case C) and the lines for Ty = Ty = 0.59, (Tay,2 - Ti)/(Taw,l - Tj) = 0.773 (case E).
This result confirms the weakness of the T restraint for the correlations at zero to
moderate angles of attack.

To insure that h/hgjg is a function only of Ty, Ty, (Taw 9 - T')/(Taw 1- Ti),
the, l/td 1/20 and too z/td l/2’ calculations were made for Tl = 0.45, Tz =.0.45,
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and (Tay 2 - Ti)/(Taw,l - Tj) = 0.773 (case D) as in case C but with different values

of (Tpe1 - Ti) (Tpe,2 - Ti)» (Taw,1 - Ti) and (Tay g - Tj). The results (identical
curves for cases C and D in fig. 14) verify that the five variables mentioned completely
specify the one-dimensional finite-slab system. Also, many cases which included differ-
ences in thickness and thermophysical properties were calculated. Each correlated with
the tpc/td,l /2 parameter.

CONCLUDING REMARKS

A numerical computer program has been developed to calculate the heat-transfer
coefficients for both sides of a one-dimensional finite slab subject to the boundary con-
ditions ascribed to the phase-change coating heat-transfer technique.

The data reduction procedures for a semi-infinite slab used with the phase-change
coating technique can give large errors in heat-transfer coefficients on thin sections.
In a typical tunnel test situation where a thin wing was exposed to heating on both sides,
the data reduction procedures for a semi-infinite slab gave heat-transfer coefficients as
much as 375 percent too high on the side with the lowest heating. The error at the oppo-
site surface position, where the level of heating was approximately 5 times higher, was
29 percent. '

The results from the procedure for a finite slab are presented in the form of cor-
rection factors to the solution for a semi-infinite slab in terms of parameters normally
used with the phase-change heat-transfer technique. These correlations are not
restricted to slab thickness or thermophysical properties and are easily used to obtain
data on thin model sections.

At large angles of attack the heaf-transfer-coefficient distribution on the windward
surface of the midsection of a wing or fin (where lateral conduction is small) may be
determined within 15 percent for nominal wind-tunnel test conditions by using the solution
for a finite slab with no heat exchange on the leeward surface. This is restrained by the
provisions that the finite-slab temperature parameter on the windward surface '-fl be
greater than or equal to 0.174 and the initial temperature potential for the heating rate '
of the leeward surface be less than or equal to that of the windward surface. The ’f‘l
restraint is extremely weak, and the initial temperature potential restraint is practically
never violated. ' '

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., May 8, 1973.
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APPENDIX A

COMPUTER PROGRAM FOR FINITE SLAB

The heat-tra.hsfer computer program described in the section entitled "Analytical
Method for Finite Slab'" calculates the heat-transfer coefficients for both sides of a one-
dimensional finite slab subject to the boundary conditions ascribed to the phase-change

coating technique (ref. 1).

Program Input

FORTRAN IV NAMELIST with the name NAM1 is used to load the input data. The
following list contains the input variables with the dimensions used in the program:

FORTRAN
variable

TIME@

T4 (30)

TKMTAB (10)

KMTAB (10)

NCPTS
TCPTAB (10)

CPTAB (10)

Symbol

=

(¢

density, Ibm/it3

Description

initial time, sec

initial temperatures, °rR

Stefan-Boltzmann constant, Btu/ft?-sec-

emissivity .

number of entries in conductivity table (KMTAB)

temperature table for KMTAB, °R

conductivity table, a function of temperature (TKMTAB),

Btu/ft-sec-°R
number of entries in specific-heat table (CPTAB)

temperature table for CPTAB, °r

specific-heat table, a function of temperature (TCPTAB),

Btu/Ibm-°R

17



FORTRAN

variable

LEN

Ng

PRFREQ
T1FIN
TNFIN
DELTAT
DELH1
DELH2
TEST

NTTPTS

TTTTAB (10)

TT@TAB (10)

TAWI1RAT
TAW2RAT
RN

CPG

PT@T

PT2PT

18

Symbol

pc,1
Tpe,2

At
Ahy

Ah2

APPENDIX A — Continued
‘ Description
thickness of slab

number of blocks or divisions in chord length (either 20
or 30) '

print frequency
phase-change temperature for surface 1, °rR

phase-change temperature for surface 2, °rR

delta time or computing interval, sec

value used to increment or decrement hj, Btu/ft2-sec-°R
value used to increment or decrement hg, Btu /ftz—sec-oR
closeness test for values of delta temperatures, °R
number of entrieé in total-temperature table (TT@TAB)
time table for TTYTAB

total-temperature table, a function of time (TTTTAB)
ratio of adiabatic to tptal temperature at surface 1

ratio of adiabatic to total temperature at surface 2

nose radius of reference sphere, ft .

specific heat 7of t-est gas, Btu/lbm—ORV

stagnation pressure of flow

total pressure ratio across normal shock



FORTRAN
variable Symbol
" P1PT2
STIME1 tpc,l
STIME2 tpc,2

APPENDIX A — Continued

Description

ratio of static pressure to total pressure behind normal

shock

time of phase change at surface 1, sec

time of phase change at surface 2, sec

The only restriction on these inputs imposed by the programing procedure is that
The size of the time step (At) and the
. thickness of the slab () along with the block thickness distribution dictate the accuracy
of this program for a given thermal diffusivity of the slab. Time step sizes of up to
0.025 second were used with slab thicknesses of up to 0.015 feet to obtain heat-transfer
coefficients accurate to within 1 percent of restricted finite-slab solutions (ref. 3) for a
material with a thermal diffusivity of 5 X 10-6 ft2/sec. The distributions of the thickness
of the blocks through the finite slab- (built into the program) are as follows:

STIME1 must be greater than or equal to STIME2.

I Nf=20 (usedfor 1<0.005ft with a=5x1076 ft2/sec):

Block number

1,20 .
219
3,18

417

5,16

6,15

1,14 Tt

8,13
9,12
10,11

Thickness,

w

0.0057
.01l

.021
.03l
.041
.051

.085¢
101
10

If N@=30 (usedfor I =0.005ft with a =5 x 1076 #t?/sec):

Bloc

k number

1,30
2,29
3,28

4,27 H

5,26
6,25
7.24 .
8,23
9,22
10,21
11,20

1219

13,18
14,17
15,16

- Thickness,

w

0.0017
.0025
.005¢
.00751
011
.0125

0150

.021
.03l
.041
.05
.06l
0Tl
.081
.09651

S 0Bl s e e
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FORTRAN
name

BETAL
BETA2
H1C@MP
H2C@MP

TAW1
TAWNQ.
TIME

DELTA TIME

H(FRONT)

T AW (FRONT)

H(BACK)

TAW(BACK)

BLJCK N§

TEMPERATURE

20

APPENDIX A - Concluded

~ Symbol

sis,1

aw,1

Taw,2

At

sis,2

Pfogram Output

Description

semi-infinite-slab heat-transfer parameter at
surface 1

semi-infinite-slab heat-transfer parameter at
surface 2

semi-infinite-slab heat-transfer coefficient at
surface 1, Btu/ftz-sec—oR

‘semi-infinite-slab heat-transfer coefficient at

surface 2, Btu/ft2-sec-°R
adiabétic wa11> temperature at surface 1, °rR
adiabatic wall temperature at surface 2, °r
time, sec
delta time, sec

finite-slab heat-transfer coefficient at surface 1,
Btu/ft®-sec-CR

adiabatic wall temperature at surface 1, °r

finite-slab heat-transfer coefficient at surface 2,
Btu/ftz—sec-oR

adiabatic wall temperature at surface 2, °R

block number (refers to block distribution through
slab, fig. 1) '

temperature of block, °r



PROGRAM MAIN(INPUT+OUTPUTsTAPES=INPUT+TAPE6=0UTPUT)

COMMON TBAR

DIMENSION TO(30)+TEMP(30)+eX(30)+sTABL (2012 TAB2(30)+B(30)+C(301)
ID(30)s TTAWTB(I10)+TAWITAB(10)s TAW2TAB(10) « TKMTAB(1O0)+KMTAB (10}
2TCPTAB(10)+CPTAS(10)+THOLD1 (5) s THOLD2(5) s
3TMUTAB(33)+MUTAB(33)+ TPRN(11)«PRNO(11)sTTTTAB(10)+TTOTAB(10)

EQUIVALENCE(TTTTABWTTAWTR)

EQUIVALENCE (NTTPTS+NTAWPT)

REAL LENsKMisKMTAB sKMT s KMAV ¢ KM] o KMN

REAL MUTABMUS sMUW

DATA TAB1/e¢0054401 40024003+ 04360540060608514%610100854+4064005
1e044403¢4¢0290019005/

DATA TABZ2/e001 460025440054 e0075¢6019¢0125460154e0200¢030¢¢042+2050
100630074 e0842%e0965+ 6081607436061 605¢0043603102+40150401259e010
2600754 00054400254 47201/

DATA FeGaDELTX eE1 +E2/0e0401 009 e202%41E-6/

DATA TMUTAB/400e¢445C 045006 ¢552e¢96000 146500970009 750018006¢+85000
19CCe195Ce 4100049105004 1100641150¢412000¢125091300011350e+140000
2145004150009 1550¢41600¢41650091 70009173064 18004¢1850e419C0091950e
320C0C./

DATA MUTAB/OeT73E-6410e74FE—6411ea7E-0Cs12e6E-6113e46E-6414¢28E-60
115 e0EE~6115eE2E 611665 7E~6117e29E~60117e6F755-5+18e65E~6419630E-6
219-925—60210165“6022c75E—602203255—6022.885—6023045E—6~230985f6'
323 e98E~6124 0305 -6+125e02CE~6125e653E-6125e03E-5126e53E-6427+02E-6
L2T7 e0BE~E 1275 TE—6428e43E~8128e8BE-6429¢335~5+423e¢78E-5/

DATA TPRN/400614506195000135061500:95506+700¢4 7530048006 ¢65004500e7

DATA PRNO/e73054e7215407135467063 6716694 ¢ 0651068526835 ,¢682016681/

INTEGER PRFREQ
NAMELIST /NAMLI/ TIMEO+sTO+SIGMAIEMS I RHOWNKPTS s TKMTABWKMTAB I NCPTS

BINTTRPTS s TTTTAE s TTOTABs TAWIRAT+TAWZRAT«RNICRGPTOT«PTZRT,PLIPTZ
443STIME 1 «STIMEZ
NAMEL IST/DEBGL/ BETAl +BETAZ sHICOMP s H2COMP » TAWL » TAWNO
NAMELIST/DEBGZ/ H1+H2+ THOLD1 » THOLD2 ¢ TEMP
- - NAMELIST /DEBG3/ THOLD1 +THOLDZ2+PTIHI «PTEH2PT2HL +PT2H2-4DT 1 +DT2e -
IDETsDELLHL +DELH2 '
EXTERMNAL FOFB

I READ(5+NAMI)
IF (EOF+5)5410
SToOP
10 CONTINUE
WRITE (6+NAMIL)
IPFCT=90 ~
DO 11 I=1+NTTPTS
TAWITAB (1 )= TAWIRATH* TTOTAB(I)
11 TAW2TAB(I)= TAWZ2RAT* TTOTAB(I)
[F {NO+CTe20) GO TO 20
DO 5. I=14NO
15 X(1)= LEN ¥ TABI(I)
GO TO 30
2C DO 25 I=1+NO
25 X(l)y= LEN % TAB2(1)
30 CONTINUE

Ul

*
* COMPUTE H1 AND H2 FROM SEMf—INFINITE SLAB APPROXIMATION
+*

_ITCPTABCPTAB 1L ENJNOPRFREQ . TIFINSTNFINGDEL TATDELHLDELHZ4TEST
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3

Yo%

%ok ok % &

¥

o
b3

22

40

CALL
CALL
TBAR
CALL
TBAR
CALL
CALL
CALL
CALL
CALL
H1 COM
H2COM
H1 =H
HZ2 =H
WRITE
0o 1
Do 5

FTLUP(STIME]L +TAWI+ 1 NTAWPTSTTAWTBTAWLITAB)

FTLUP(STIME2 +TAWNO+1 +NTAWPTTTAWTB s TAW2TAB)
=(TIFIN=-TC(1))/(TAWL -TO(1)) '
ITR2(BETAL +F +GsDELTXsFOFB+E1 1E2+504 ICODE)
S(TNFIN=TO(NO) )/ (TAWNO~TO(NO))
ITR2(BETAZ2+F +GaDELTX+FOFBesE1+E2450+« I CODE)
FTLUP(TIFINGKML 41 sNKPTS ¢ TKMTAB+KMTAS)
FTLUP (TNFINs<MN 1 yNKPTS s TRMTAB ¢ KMTAB )
FTLUP(TIFINYCP1+1 +NCPTSsTCPTABCPTAB)
FTLUP (TNFINsCPNy1 +NCPTS+TCPTAB.CPTAB)
P= BETA!l % SQORT (RHO¥CP1#KM1/STIME] )
P= BETAZ2 % SORT (RHO¥CPN#KMN/STIMEZ) .
1COMP
2COoMP

(6+DEBGIL)
30 K=1,5
(0] J=1 +NO

50 TEMRP(J)= TO(J)

TIME=

TIMEC

GO HERE TC UFDATE TIME AND RECOMPUTE

60 TIME=TIME+ DELTAT

Do 7
B(Jy=
ceuy=

0] J=1¢NO
0e0
CeO

70 D(J)=0e0

DIAGONAL ELEMENTS ARE STORED IN B ARRAY
JUPPER DIA

THE ARRAYOFLOWER DIAGONAL ELEMENTS ARE EQUIVALENT TO C ARRAY

GONAL ELEMENTS ARE STORED IN C ARRAY

CONSTANT PART OF EQe IS STORED I D ARRAY
SAVEDl CON

80

B(l)=
CALL
CALL
D(1)=

L (NO)

CALL

NSTOP
DO 8¢
CALL

KMAV=
KM=KM
CALL

SAVEL
SAVEZ
B(l)=
BOl+1
C(ly=
D(1)=
CALL

SAVEL
B (NO)
D (NOC)
CALL

IF A

TAINS HEAT STORED COMPUTATION

.SAVEZ CONTAINS CONDUCTION COMPUTATION

-H1
FTLUP(TIME«TAWL + 1 «NTAWP T TTAWTB+TAWLI TAS)
FTLUP(TIME s TAWNO s 1 s{NTAWPT+sTTAWTBTAW2TAB)
~HMI%#TAWD +SIGMAXEMS*TEMP (1) %*#4
=—H2*TAWNO+S | GMAXEMS ¥ TEMP (NO ) #% 4
FTLUP(TEMP (1 )+KMe 1l yNKPTSsTKMTABKMTAB)
=NO-1
1=1«NSTOP

FTLUP(TEMP (141 ) sKMT 41 ¢+ NKPTS s TKMTAB KMTAB)
(KMEKMT ) %65

T

FTLUP(TEMP (1 )+CPs 1 NCPTS+yTCPTABJWCPTAB)
=RHO*CP*#X (1 )/DELTAT

=20 O¥KMAV/ (X (1) +X(1+1))
B(I)-SAVZ1-5AVER

y= - ~SAVE2

SAVER2 .

C(l) —SAVELI*TEMP (1)
FTLUP(TEMP (NO)+sCPs 1 +NCPTSyTCPTABCPTAB)
= RHO*CP*¥X (ND)/DELTAT

= BINO)-SAVE1 - H2

= DI(NO)=-SAVE1*#TEMP (NO)
TRIiDMAT(_:QE’CQDOTEMP‘!NO) .
BS(TIME-STIMEZ) «GTe «00001) GO TO 85

THOLDZ2 (K)= TEMP (NO)



$od ok ok

3k

3

GO TO &0
1F

THOLDI(K)=TEMP (1)

GO
Hl1
GO
H1
GO
H1
HZz

TO
=H1COMP +DELHI
TO 130

=H]1 COMP-DELHI
To 130
=H1COMP
=HZCOMP+DELHZ
GO TO 130

H2 =H2COMP~-DELH2
CONTINUE

90
1ce

11¢C

12¢C
130

THOLDZ2 (1)
THOLD2 (2)
TAHOLD2 (3)
THOLDZ (4)
THOLDZ2 (5)

THOL D1 (1 )YAND
THOLD1 (2)AND
THOL DI (3)AND
THCLDI1 (4)AND
THOLDI1 (5)AND

(ABS(TIME-STIMEL)

«GTe #00001)

(90+100+4110+¢120130) K

CONTAIN TEMPERATURES
CONTAIN TEMPERATURES
CONTAIN TEMPERATURES
CONTAIN TEMPERATURES
CONTAIN TEMPERATURES

GO TO 60

COMPUTED
COMPUTED
COMPUTED
COMPUTED
COMPUTED

AS
AS
AS
AS
AS

F(H1sH2)

F(H1+DELH1 +H2)
F(H1-DELHI ¢+ H2)
F{HAl +H2+DELHZ2)
F(H1 +HZ2=-DELHZ)

PTiHlI= (THOLC1(2)-THOLDL (3))/(2e0%*DELHI1)
PTIH2= (THOLDI (4)=THOLD1 (5) )/ (2e0%DELH2)
PTzrl= (THOLD2(2)-THOLD2 (3))/ (2 0%DELHL )
PT2H2= (THOLD2(4)-THOLD2(5))/(Z«0¥DELMH2)
DT1 = TIFIN - THOLDI (1)
CT2 = TNFIN = THOLCZ2(1)
DET = PTIH1%* PT2H2 +PTIH2%PT2HI
e - DEEHI— = ADTI*PT2HE-—DT2*PTIH2) /DET oo o oo

DELHZ = (DT2%PTIH] —-DT1#PT2H1)/DET
IF (ABS(DT1) el eTESTeANDeABS(DT2)elLFeTEST) GO TO 150
HICOMP = HICOMP +DELH1
H2COMP = H2COMP +DELH2 B
H1* = H1COMP
H2 = H2COMP
GO TO 40

150 DO 160 J=14NO

160 TEMP (JI=TO(J)
TIME=TIMEO
Hl=z HI1COMP ,
Hz= H2COMP

170 TIME =TIME +DELTAT
DO 180 J=1aNO
B(J)=0e¢0
C(J)=0e0

180 D(J)=0e0
B(1)= =-HI1

CCALL FTLUP(TIMESTAWL 1 sNTAWPTSTTAWTBsTAW1 TAB)

CALL FTLUP(TIMEQTAWNOQl‘NTAWPTaTTAWTBQTAWETAB)

D1

y=—=H1

#TAWL+STGMA*EMSH* TEMP (1 )#%*4

D(NQ) =-HZ2¥TAWNO +SIGMAXZMS*#TEMP (NO) #%*4
CALL FTLURP(TEMP(1)sKMs 1l sNKPTSsTKMTAB+KMTAB)

NST
Do

NO-1
1=14NSTOP

op=
190

23



24

19¢

15C0

20035
195

3000

CALL FTLUP(TEMPR(I+1)+KMT 41 ¢+ NKPTS» TKMTABKMTAB)
KMAV=e3 # (KM +KMT)

KM =KMT

CALL FTLUP(TEMP(I)1+CPe1+NCPTSHTCPTABCPTAB)
SAVE]l = RHO #CP#% X(I)y/DELTAT

SAVEZ = 240% KMAV/Z(X(TY+X(I+1))

B(l) = EB(I)-SAVEI-SAVEZ
B(I+1) = —-SAVEZ

C(ly= SAVEZ

C(I)y= C(l)Y-SAVE]l *TEMP(I])

CALL FTLUP(TEMP(NO)sCP+1 ¢NCPTSsTCPTAB«CPTAB)
SAVELl = RHO¥CP# X (NO)/DELTAT

B(ND)= B(NO) -SAVELl -=-HZ

DINO)= DI(NGC) ~SAVE]l *TEMP (NO)

CALL TRIDMAT(Ce+BeZeDsTEMP«NO)

IPFCT=IPFCT+1

I~ (IPFCT-NE.PQFQEO{ GO TO 195

IPFCT=0

WRITE (6+10CO)TIMEWDELTATeHL oH2+TAWL « TAWNO
FORMATI(IX///76XE6HTIME =F10e4s6X1I2HDELTA TIME = F6e4//7XIHH(TORP) |
1E16e8¢3X12HH(SOTTOM) SE16e8/7X9HTAW(TOP )=E16eB+¢5X12HTAW(BOTTOM)
PE1£e8//76X8HBLOCK NOLIIXIIHTEMPERATURE/Z/)

WRITE (642000 )(1+TZMR(1)41=14NO)
FORMAT(QXQIB!éX'EZOcB)

IF (ABS(TIME=STIMEL) eGTe e¢CO001) GO TO 170
R=53435

G=32e2

HOLD= 2¢7#¥PTOT # PTZ2RPT

CALL FTLURP(STIMEL ¢ TTOT 1 s NTTPTS«TTTTAB«TTOTAB)
CALL FTLUP(TTOT «PRNslsl1lTFPRN«PRNO)

SAVE]l =« 768*¥CPGH# (PRN*%=-e6)

CALL FTLUP(TTOT«MUSs1s 33 » TMUTABMUTAB)

RHOS= HOLOD/TTOT

DUEDX=SQRT (2 «0%R¥G #TTOT# (1 eC-PIPT2))/RN
SAVE2= ( (RHOS #MUS)#%#e4)3% SQRT(DUEDX)

CALL FTLUPI(TIFINGHMUW1s 33 +TMUTAB «MUTAB)
RHOW= HOLD/TILIFIN

HRS1x SAVE1#SAVEZ® ( (RHOW*MUW ) #¥ el )

CAHLL FTLUR(STIMEZ +TTOT 1 «NTTPTSWTTTTAB.TTOTAB)
CALL FTLUP(TTOTsPRNes1e114sTPRN+PRNO)

SAVE] = e76B%CPGH(PRN##-e6) )

CALL FTLUP(TTOT+MUSs1e 33 «TMUTABMUTAB)

RHCS= HOLD/TTOT

DUECX=SQRT(Z«0#R*¥G *TTOT#(1eC-P1PT2))/RN
SAVEZ=( (RHOS *MUS)#%#44)3% SQRT(DUEDX)

CALL FTLUP(TNFINsMUWs1ls 33 sy TMUTAB«MUTAB)
RHOW= HCLD/TNFIN
HRSN= SAVELl # SAVEZ % ((RHOW¥*MUW)¥**e1)

HIRAT
H2RAT

H1/HRS1
H2/HRSN

WRITE (643000) H1l +HRS1 +HIRAT +HZ2 1 HRSNWHZ2RAT
FORMAT (1X///5X3HHI=E14e¢644X15HH] (REF +SPHERE)I=E 14 ¢6+4X10HHL1(RATIO )=
1E14 e6/5X3HHZ2=E14e6¢4X]15HH2 (REF e SPHERE Y)=E14e6+44X10HH2(RATIO)I=E14e6)
GO TO 1
END



FUNCTION FOFB(3ETA)

COMMON TBAR )

Y = ERF(3ETA)

C’—'l.O"Y
FOFB=(1e0~EXP(BETA¥*#2)%C) - T3AR
RETURN

END

SUBROUTINE TRIDMAT (A+B+CeDeTeN)
DIMENSION A(l)vb(l)!C(l)vD(l)OT(I)OW(30)JSV(30)'G(30)

3*
#  THIS ROUTINE SOLVES A TRIDIAGONAL MATRIX
3*

w(i)=8(l)

sSv(1y= C(1)Yy ~ B(1)

G(l)y= D(1)Yy/w(l)

NM1=N-1

DO 100 K=2+N

KMl = K-1

WIK) = B(K) — A(KMI)¥SV(KML)

. IF (KeEQeN) GO T0 5
4 SVI(K)= C(Ky, swiky
5 G(KY = (D(K)= AIKMI)#G(KM1))/WIK)
100 CONTINUE
TIN)Y=G(N)
= = DO 20C KE1eNMI - - - — - - e Ty
KK= N-K
T(KK)= G(KK)- SV(IKK)#*T(KK+1)
200 CONTINUE
RETURN
END
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APPENDIX B
SOLUTION FOR SEMI-INFINITE SLAB

In the phase-change data reduction method (ref. 1) for the semi-infinite slab, the
heat-transfer coefficient depends on the time required for the phase changé to occur
(tpc)’ the temperature of the phase change (Tpc)’ the initial and adiabatic wall tempera-
tures (Ti and Taw)’ and the thermophysical properties of the model wall (\/'p_EE) The
relationship between the heat-transfer coefficient and the other parameters is deter-
mined from the solution to the equation governing the transient one-dimensional flow of
heat. This equation is

9 .
9T _ 8°T

with the following initial and boundary conditions which most nearly describe the actual
tunnel transient test:

T(x,0) = T} | (B2)
T(o,t) = Ty | | (B3)
ago.deved

It is assumed (ref. 1) that the phase-change coating is at the surface tempera-
ture T(O0,t) and the time toc is required when TO,t) =T
as follows (ref. 1):

pe- Other assumptions are

1. The depth of heat penetration into the wall is small compared with the wall thick-
ness and surface radius of curvature so that the wall acts like a semi-infinite slab
(eq. (B3)).

2. The model is isothermal before injection into the airstream (eq. (B2)).

3. The surface experiences an instantaneous step in aerodynamic heat-transfer
coefficient at time zero, and this coefficient is invariant with time (eq. (B4)).

4. The thermal diffusivity « of the wall is invariant with temperature.

The solution to equation (Bl) with the specified boundary conditions is (ref. 3)

— 2
T =1 - eP erfc(p) (B5)

26




APPENDIX B — Concluded

where
7 - %vcv—% | @)
hgis = B\{J_g , (B7)
erfc(g) = % g: e | (B8)

Equation (B5) is plotted in figure 15 in terms of the parameter B as a function of T.
The heat-transfer coefficient is then determined from equation (B7).
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Figure 2.- Chordwise profile of wing on straight-wing orbiter at 69.3 percent
semispan with time of phase-change and thermal diffusion distribution.

Y = 2.042 cm.
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procedures for wing on straight-wing orbiter at 69.3 percent semispan.
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Figure 12.- Heat-transfer- coeff1c1ent correct1on factor for finite slab with

phase change on both sides. (Taw,2 - T1)/(Taw,1 -Ty)=1.
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(h) Ty =0.45; T, = 0.05.
Figure 12.- Continued.
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Figure 13.~ Heat-transfer-coefficient correction factor for finite slab with
phase change on both sides showing variations of restraints.
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