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APPLICATION OF PHASE-CHANGE TECHNIQUE TO THIN SECTIONS

WITH HEATING ON BOTH SURFACES

By James L. Hunt, Joan I. Pitts, and Christine B. Richie
Langley Research Center

SUMMARY

A numerical digital computer, program has been developed to calculate the heat-
transfer coefficients for both sides of a one-dimensional finite slab subject to the bound-
ary conditions ascribed to the phase-change coating heat-transfer technique. In a typical
tunnel test situation where a thin wing was exposed to heating on both sides, the data
reduction procedures for a semi-infinite slab gave heat-transfer coefficients as much as
375 percent too high on the side with the lowest heating. The results from the one-
dimensional finite-slab procedure are presented in the form of correction factors to the
solution for a semi-infinite slab in terms of parameters normally used with the phase-
change heat-transfer technique. These correlations are not restricted to slab thickness
or thermophysical properties and are easily used to obtain accurate data on thin model
sections.

INTRODUCTION

------ Existing solutions -(refr 1) for obtaining quantitative heat-transfer data from the-
phase -change coating technique are restricted by the assumption of a one -dimensional
semi-infinite slab. In practice this assumption requires that the depth of heat penetra-
tion into the model be small compared with the wall thickness. The depth of heat pene-
tration has been shown to depend primarily upon the thermal properties of the model :

material and the test time. A simple empirical equation given in reference 1 as

t
a

where I is the thickness of the slab and a the thermal diffusivity, determines the
maximum test time for which the assumption of a semi-infinite slab can be applied with
negligible error. However, models of many configurations tested in hypersonic wind
tunnels have very thin wings and tails so that practical test times exceed the allowable
time given by equation (1). In addition, for many tests, heat enters at both surfaces of
such thin wings. At the present time no solutions are available for determining the



magnitude of the errors incurred when the semi-infinite-slab assumption is violated.
Therefore, a computer program was developed to calculate the heat-transfer coefficients
for both sides of a one-dimensional finite slab subject to the boundary conditions ascribed
to the phase-change coating technique (ref. 1). The results are presented in the form of
correction factors to solutions for a semi-infinite slab in terms of parameters normally
used with the technique. These correction factors are not restricted to slab thickness or
thermophysical properties and can be easily used to obtain accurate data on thin model
sections.

SYMBOLS

A area

c specific heat

h aerodynamic heat-transfer coefficient

hs heat-transfer coefficient to stagnation point of reference sphere

k thermal conductivity
N

I thickness of slab, \ Wj

j=l
M free-stream Mach number

N number of blocks upon which heat balance is performed

N,^ finite-slab heat-transfer parameter (Nussclt number), ^

Q heating rate

q heating rate per unit area

R free-stream Reynolds number

T temperature

— TDC ~ "^iT temperature parameter, —«-
T1 - T- •1 aw A i



t time

tj , thermal-interference diffusion time for thickness of slab

t, ,/2 thermal-interference diffusion time for one-half thickness of slab

At delta time or computing interval

V volume of block

w thickness of block

x,y coordinates

Y chord length

k
a thermal diffusivity, —

j3 heat-transfer parameter for semi-infinite slab, —?-—

e emissivity

angle of attack

density . . . - . - . - - - - - -

Stefan-Boltzmann constant

attime parameter for finite slab, -^

Subscripts:

aw adiabatic or recovery conditions

BG background

c convection surface

i initial conditions



j variable integer (either 1 or 2) which refers to surface of slab at which heat
is entering

m variable integer which refers to block upon which heat balance is being
performed

n variable integer which refers to any other block that affects heat balance
for block m

pc phase change

sis semi-infinite slab

w wall

1 front side of finite slab

2 back side of finite slab

A prime indicates the value in the previous time step.

ANALYTICAL METHOD FOR FINITE SLAB

A computer code (appendix A) which calculates the heat-transfer coefficients for
both sides of a one-dimensional finite slab subject to the boundary condition ascribed to
the phase-change coating was developed in the following manner. The finite slab of
thickness I (fig. 1) with heat exchange at both surfaces is divided into N blocks. The
block thicknesses are graduated inversely with the distribution of the temperature gradi-
ent expected in the slab. These thicknesses are given in appendix A as a percentage of
the total thickness of the slab I for two values of N (20 and 30). These two thickness
distributions are built into the computer code and selected according to the input value
of N. A heat balance is performed on each block. In the heat-stored term, each block
is assumed to be at a uniform temperature throughout its volume. In the heat-conduction
term, a linear temperature variation between centers of blocks is assumed, with heat
passing through an area equal to the touching surfaces.

Convection blocks (surfaces 1 and 2):

^convection qj c,j j c,j( aw,j " Tc,j)



Qradiation = <7ejAc,j[(Tc,j)4 ' (TBG)4J

T - T*
c y m m

i m m At

T - T
= 2k A m n

conducted m,n m,n wm + wn

^convection ~ ̂ radiation ~ ̂ stored " ^conducted ~

The surface temperatures T . are assumed to be equal to the temperature of theirC

respective surface blocks T

Conduction blocks (internal):

>
respective surface blocks T , which are kept extremely thin.

C*« Ill

T - T'
6 V -^stored ^m mm At

T - T
6 = 2k A m n

^conducted m,n m,n w + w

^conducted-in " ^stored " ^conducted-out ~

The^resulting~system~of linear equations~is solved^simultaneously at each^succes-
sive time step with a subroutine (ref . 2) which solves the matrix equation AZ = B
(Z denotes the unknown variables taken as temperatures of blocks here, A denotes a
square'coefficient matrix, and B denotes a vector of constants). The values of specific ~
heat and thermal conductivity are updated at the new temperatures obtained for each
block after each time step. This heat-balance procedure is implicit and is therefore not
bound by a stability criterion. The resulting computer program was checked against
exact solutions of finite-slab problems (ref. 3) to determine the effect of the number of
blocks, the distribution of the thickness of the blocks, and the computational time
interval (At) on the accuracy of the solution for various heating rates, slab thicknesses,
and thermophysical properties. (See appendix A.)

As described thus far, this program calculates the temperature -time profile in each
block for a prescribed heat flux qj_ = hj(Taw i - TC j) and q2 = h2(Taw 2 - TC 2)-
This procedure is now incorporated into an iterative cycle which enables the determina-
tion of the heat-transfer coefficients hj and h2- This iterative cycle includes (1) a
method to approximate the heat-transfer coefficient at the two surfaces to be used as
starting points in the cycle and (2) a method of searching for the actual heat-transfer



coefficients - defined here as that combination which produces surf ace.temperature -
time profiles that include the corresponding input points (Tpc>j, tpc>i) and (TpCj2> tpc,2)

(Tpc 1 not necessarily equal to Tpc 2 and tpc j not necessarily equal to tpc 2)-

The solution to the one-dimensional heat-conduction equation for a semi-infinite
slab with a step input in h is used to obtain the heat-transfer coefficient at both sur-
faces for the starting point in the iterative cycle. The solution is given in appendix B.

The approximation for a semi-infinite slab will always give a higher value for the
heat-transfer coefficient at either surface of the finite slab than that which actually
occurs, provided that heat is entering the slab at both surfaces (no negative heating
rates). This is because the larger effective mass of the semi-infinite slab requires
more heat input to reach a given surface temperature than does the finite slab. When
the heat-transfer coefficient for the semi-infinite slab is imposed on the finite slab, the
resulting surface temperature is higher than that which actually occurs on the surface of
the finite slab (see sketch). As shown in the sketch, the heat-transfer coefficient is

'pc, I

Produced by hsjs |
ii ii .

hsls,2
actual h

Surface I

Surface 2

t=0
t

fpc,2 *pc,l

Example temperature-time profile at both
surfaces of finite slab

higher for surface 1 than for surface 2. The task is to find the combination of hj
and h2 which corresponds to the respective set of surface temperature-time profiles
(labeled "actual" in the sketch) that include the respective input points (TpC j, tpc



A Newton-Raphson procedure (ref. 4) is used to determine the respective amounts
by which both surface heat-transfer coefficients are changed at the beginning of each suc-
cessive iterative cycle in order to reach the actual set of heat-transfer coefficients for
the finite slab in the fewest steps. This procedure is employed at the constant input time
points t = tpc i and t = tpc 2 and proceeds until a combination of heat-transfer coeffi-
cients is found (hi and 112) that produces corresponding surface temperatures within a
given AT of the respective input temperatures Tpc ± and Tpc 2-

RESULTS AND DISCUSSION

Experimental Test Situation

As an example of the magnitude of errors which may occur by violating the semi-
infinite-slab assumption in practical test situations, phase-change data (ref. 5) obtained
in the Langley Mach 8 variable -density hypersonic tunnel (on a 0.005 -scale Sty cast model
of a NASA Lyndon B. Johnson Space Center space shuttle launch configuration at zero
degrees angle of attack) were examined. The wings of the orbiter of this configuration
were very thin (midsection thickness on the order of 0.2 cm). A chordwise profile of the
wing on the orbiter at 69.3 percent semispan is shown in figure 2. The time at which the
phase change (339 K) occurred along the top and bottom surfaces at this span position and

0
the thermal -interference diffusion time t , , /0 = • w / I distribution for the center lined,l/2 a /

-of-the-wing profile are included irrfigufe 27

Data for the front and back surfaces of the wing were obtained from different tests
at essentially the same stream Reynolds number. The stagnation pressure for both tests

"was 360 kN/m2, and the stagnation temperatures were 739 K and 722 K for the front and
back, respectively. Since the value of the aerodynamic heat-transfer coefficient is not a
strong function of the stagnation temperature, data from different tests can be used as
input conditions provided that the initial temperatures are the same. The initial tempera-
ture of the model was 300 K which with the adiabatic wall (assuming an adiabatic-to-total
temperature ratio of 0.925 obtained by using a laminar recovery factor (jNprj and the
Newtonian local condition on a flat plate) and phase -change temperatures give a T of
approximately 0.1 for these tests.

The chordwise heat -transfer -coefficient distributions on the windward profile
obtained by using the phase-change data reduction procedures for both the semi-infinite
and finite slab (heat exchange at both surfaces) are given in figure 3. The distributions
are presented in terms of the nondimensional heat-transfer-coefficient ratio h/hs,
where hs is the theoretical heat-transfer coefficient (ref. 6, eq. (61)) for the stagnation



point of a 0.2-cm-radius sphere (a 0.3-m-radius sphere scaled by the same scale factor
as the model, 0.005).

The data obtained from these two reduction procedures differ significantly in level;
also, the distributions diverge for the back surface. On the front surface, the procedure
for the semi-infinite slab gives heat-transfer coefficients which exceed those obtained
with the procedure for the finite slab by a factor of approximately 1.25 (25 percent). For
these data the time of phase change (tDC) divided by the thermal-interference diffusion

/ 9\
I 0 2(7/2^ itime for one-half the wing thickness ltd 7/9 = ' ' j varies from 6 to 16. On the back

surface the data for the semi-infinite slab exceed the data for the finite slab by factors
of 1.2 to 4.75 (20 to 375 percent). Here tpg/t^ ^ /2 varies from 5 to 25. However, for
the same tpg/t^ 7/2 variation as the front surface (6 to 16) the data for the back surface
of the semi-infinite slab exceed those for the finite slab by factors of 1.23 to 2.56 (23 to
156 percent). This result indicates the influence of the time of phase change at the oppo-
site surface and the thickness of the wing. Comparing the time of phase change and the
thickness of wing distribution in figure 2 with the heat-transfer-coefficient distributions
in figure 3 indicates that the difference between the results for the semi-infinite and
finite slabs is much more sensitive to the differences in times of phase change at the
front and back surfaces for smaller thicknesses.

The example heat-transfer-coefficient distribution on the wing illustrates the neces-
sity of using the numerical finite-slab data reduction procedure with the phase-change
heat-transfer technique on midsections of thin fins and wings. However, calculating the
actual heat-transfer-coefficient distribution along a wing profile or phase-change iso-
therms is time consuming and expensive. Therefore, for practical engineering applica-
tions, a graphical presentation of the results from this numerical digital computer pro-
gram for the finite slab with heat exchange at both surfaces which will not be restricted
to a given slab thickness or set of thermophysical properties is needed.

Presentation of Solutions

Identification of independent parameters.- In order to identify the correlating
parameters and to separate the influence of some of the independent variables from the
influence of one convective surface on another, the simpler case for the finite slab with
heat exchange at only one surface (x = I) is first analyzed. The closed-form solution to
the differential equation for the one-dimensional flow of heat at the convective surface of
this "restricted" finite slab (ref. 2) is



where
T - T-

= Pc *
Taw ~ Ti

r

and TV for j = 1, 2, . . . are the positive roots of

•n tan 77 = NNu

with the initial and boundary conditions of

T(x,0) = ^

dT(0,t) _ 0

dx

dTE.t) .
dx

Equation (2) is plotted in figure 4 in terms of N-^u as a function of i// for con-
stant values of T. The range of the variables given should cover that encountered in any
phase-change heat-transfer data reduction process. . . .

In contrast to the solution for a semi-infinite slab (appendix B, eqs. (B5) and (B7)),
the thermophysical properties in the "restricted" finite-slab solution (eq. (2)) are no
longer coupled as \Jpck, and time appears to the first power in the finite-slab param-
eter if/, whereas the solution for a semi-infinite slab depends on \ft. This is not to say
that the solution for a finite slab depends linearly on t since both solutions must agree
for times less than the thermal-interference diffusion time of the slab. Also, the solu-
tions for a finite slab depend on the thickness of the slab I, whereas I does not appear
in the solution for a semi-infinite slab.

In order to present the solutions for a finite slab in a manner more applicable to
the phase-change heat-transfer technique, consider the independent finite-slab param-
eters Nj^u = Ih/k and i//= atpCA . From equation (1), I is proportional to \jat^;
therefore, Nj^u is proportional to hJt^j~7/\|pck. Comparing this parameter with the
solution for a semi-infinite slab (eq. (2)) suggests a correlation parameter of the
form h/hsis (the heat-transfer coefficient for a surface of a finite slab divided by the



heat-transfer coefficient calculated for the same point from the solution for a semi-
infinite slab). In the parameter \l/=ai^c/l~, a/I2 may be replaced by 0.2/t<j j
(eq. (1)); therefore, i// is directly proportional to tpg/t^ j; thus, the parameters that
define the restricted finite-slab solution are h/hsis, tnc/t([ j, and T.

A plot of the parameter h/hsjs (at surface 1) as a function of tpc/t(j ^ for a
finite slab with no heat exchange at surface 2 (eq. (2)) is given in figure 5 for three fixed
values of T. Since hs^s is a function of T, the correction factor h/hsjs becomes a
rather weak function of T. However, for the same value of the phase-change time
parameter, the correction factor decreases (below 1 — greater departure from the value
for a semi-infinite slab) as T increases. Also, the ratio h/hsis is unity for
tpc i/td i = l . This result substantiates the validity of the constant in equation (1), which
was obtained by empirical means (ref. 1).

Effect of heating at both surfaces.- An example showing the effect of heat input
(Nusselt number) at surface 2 on the ratio of heat-transfer coefficient for a finite slab to
that for a semi-infinite slab at surface 1 is presented in figure 6. These curves were
obtained from the numerical data reduction procedure for a finite slab. In figure 6
h/hgjg for surface 1 is plotted as a function of the time at which the phase change occurs
at surface 1 nondimensionalized by the thermal -interference diffusion time of one-half
the thickness of the slab (t^ 1/2 is used because heat is entering the slab at both sur-

T" - T1

_ •*• o TIT O •*• i
. Figure 6 is presented for Tj = 0.348 and — --̂ = - -= 1 and contains lines

. Taw,l " Ti
for constant values of the Nusselt number (NNU = ^j at surface 2. The influence of heat

transfer at surface 2 on the heat-transfer correction factor h/hg^g at surface 1 is
strong for tpc i/t^i/2 > 4 and increases substantially as this parameter increases.

The effect of changing the front-surface Tj on the front-surface correction
factor for a constant back-surface Nusselt number can be ascertained from figure 7.
Here, the correction factors for a finite slab with a constant heat-transfer coefficient at
the back surface (assuming I and k are the same for all solutions) for three values of
Tj (TI = 0.239, 0.348, and 0.455) are shown, along with the correction factors for a
finite slab with no heat exchange at the back surface for the same three values of Tj.
The finite-slab correction factor solutions for Nj^u 2 > 0 depend on T^ in an inverse
manner to that of the restricted (N^u 2 = 0) solutions. For no heat exchange at the back
surface (Nj^u 2 = 0) and for a given phase-change time, the solutions for a finite slab
move away (clockwise in fig. 7) from those of the semi-infinite slab (h/hg^s = l) as T^
increases. This is because the heat transfer to the front surface increases as T^
increases and the higher the heat load the greater the front-surface temperature, and
thus the heat-transfer coefficient for this inverse method feels the effects of the finite

10



dimension of the slab. For heat exchange at the back surface (fig. 7, NNu 2 = 0.139)
and for a given phase-change time, the solution for a finite slab moves toward (counter-
clockwise) the solution for a semi-infinite slab (h/hs^s = l) as T^ increases.

At first glance there seems to be a contradiction, since the Nj^u 2=0 solutions
are a limit of the solutions with heat exchange at the back surface (NNu 2 = Constant) and
figure 7 indicates that they have an opposite Tj dependence. Actually, the solutions
with the heat exchange at the back surface (NNu 2 = Constant) are moving toward the
solution for a finite slab (for the same T]J with no heat exchange (l%u 2 = °) as Tj_
increases. As Tj increases, the heat-transfer coefficient at the front surface
increases, while for these solutions (Nj^u 2 = Constant) the heat-transfer coefficient at
the back surface remains constant. Therefore, the ratio of the heat transfer at the front
surface to that at the back surface for the same initial driving potential is increasing
with TI which is in the direction of the front- to back-surface heating ratio (°°) for the
finite slab with no heat exchange at the back surface. Thus, as Tj increases, the two"
solutions (NNU 2 = 0 and NNU 2 = Constant) converge.

Solutions for large angles of attack.- In tunnel tests of models at large angles of
attack, the flow on the leeward surface of a wing or horizontal stabilizer is separated,
and the heat-transfer coefficient is less than 20 percent of that on the windward side.
The approximate regions where h2 = hj/5 and h2 = hj are shown as bands in figure 6
because of the wide spacing of the limited number of calculated points. For'the condition
(1*2 = hi/5) and for^ the set of temperature parameters given in figure J3, the heat-transfer
coefficient on the windward side is within 10 percent of the value for a semi-infinite slab
for tpc>i/td^/2 = 9- However, since the h2 = hj/5 band is essentially parallel to the
h2 =-0 (NNU 2 = ^) s°luti°n for the finite slab with no heat exchange at surface 2, the
heat-transfer coefficient ratio on the windward side of the section is within 10 percent of
the Ii2 = 0 solution for tpc j/t^ ^ AJ = 20. The similar slopes of these two lines
(h2 = 0 and h2 = h^S) indicate that much larger values of tpc j/td i/% can be attained
with little increase in the error band.

The question of the influence of T^ on the spread of the error band now arises.
Correction factors for surface 1 of a finite slab are given in figure 8 for constant values
of the Nusselt number at surface 2 as in figure 6 (f ^ = 0.348) but for a fj of 0.174. A
comparison of these two plots shows the downward rotation of the constant Nusselt num-
ber lines as Tj decreases (discussed previously). However, a comparison of the
n2 = nl/5 lines in the two plots indicates that these two lines are essentially independent
of Tj. This, along with the fact that the h2 = 0 lines are a weak function of Tj
(fig. 5), means that the spread in the error band (between the h2 = 0 and h2 = h^/5
solutions for tpc i/t^ ^ /^ ^ 20) is also a weak function of Tj. As an example, for
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tpc lAd 1/2 = ^O the error spread is approximately 10 percent for a Tj of 0.348
(fig. 6) and 15 percent for a Tj of 0.174 (fig. 8). This Tj range covers that which
will occur in most wind-tunnel tests. Also, the magnitude of the initial temperature
potential on the leeward surface compared with that on the windward surface
(Taw 2 " Ti)/(Taw 1 " Ti) wil1 affect tne error band quoted (10 to 15 percent or less)
for tpc i/tjj 7/2 = 20 even though it does not enter into the Njsju 2=0 solutions.
For values of Taw 2 - T^ smaller than that of the windward surface (fig. 9), which is
realistic for practical test situations, the lines of NNu 2 rotate upward toward the
NNU 2 = 0 solution, as a comparison of figures 8 and 9 shows. This comparison also
shows that decreasing the initial temperature potential also rotates the h2 = hj/5 and
h2 = h^ solutions upward. This upward rotation of the h2 = h^/5 line toward the
NNU 2 = 0 solution (independent of Taw 2 - Tjj decreases the error band from approxi-
mately 15 percent (fig. 8) at tpC>i/t(j^/2 = 20 to 10 percent (fig. 9) for a f of 0.174.

Thus, the heat-transfer-coefficient distribution on the windward surface of the mid-
section of wings and fins at large angles of attack can be determined within 15 percent
for tpc ]/t(j 1/2 = 20 by using the distribution of the time of the phase change and thick-
ness of the section in conjunction with the restricted finite-slab solution (fig. 4) for the
appropriate windward surface temperature parameter. This is restrained by the pro-
visions that TI be greater than or equal to 0.174 and the initial temperature potential
for the heating rate of the leeward surface (Taw 2 - TJ) be less than or equal to that of
the windward surface. The rate at which the error band widens as these restraints are
violated has not yet been determined, However, the T^ restraint has been shown to be
extremely weak, and for wind-tunnel tests the initial temperature potential,for the heating
rate of the leeward surface Taw 2 ' Ti is always less than that for the windward sur-
face Taw i - T^ Therefore, there is little practical need for determining the spread of
the error band with an increasing violation of these two restraints.

General solutions for low angles of attack.- At low angles of attack the heat-transfer
coefficients on opposite sides of a wing or fin are of the same order of magnitude. In this
situation, time of phase-change distributions must be obtained on both sides of the section
as given for the example wing profile in figure 2. Results of example calculations of the
heat-transfer parameters for a finite slab for this more general test situation are pre-
sented in figures 10 and 11. These figures are presented for fixed values of the corre-
lating parameter T (TI not necessarily equal to T^) and an initial temperature poten-
tial ratio (Taw 2 - TjV|Taw j - Tj) of 1. This equal initial temperature potential
restraint is generally not violated or at most violated to very little extent on wings or
fins at zero to low angles of attack. These correlations are not restricted to a given slab
thickness or set of thermophysical properties.

12



Figure 10 is presented for Tj = 0.45 and T2 = 0.24. In figure 10(a), h/hsis

for surface 1 is plotted as a function of tpc i/t^ ̂  i^. This figure contains lines for
various constant values of the correlating parameter that specifies the time at which the
phase change occurs at surface 2 (tpc 2/t,j 1/2}- *° figure 10(b), h/hsjs for surface 2 is
plotted as a function of tpc 2/^-A 1/2 f°r various values of tpc ]/t<j ̂  i^. Figure 10(b)
can also be used to determine the heat-transfer coefficient at surface 1 if T^ = 0.24
and f 2 = 0.45. Thus, these two plots (figs. 10(a) and (b)) specify the heat-transfer coef-
ficients at surfaces 1 and 2 for TJ = 0.45 and T^ = 0.24 provided that the ther mo -
physical properties of the slab, the thickness of the slab, and the time at which the phase
change occurs on each surface are known. For example, with T^ = 0.45 and T2 = 0.24,
•suppose a/i2 = 0.2 per second, td 7/2 = 0.25 second, and the phase change on surface 1
occurs in 4 seconds and that on surface 2 occurs in 3 seconds. Thus, tpc \/t& 1/2 f°r

surface 1 is 16 and tpc 2/t(j i AJ for surface 2 is 12. Entering these values into fig-
ure 10(a) gives a heat-transfer-coefficient ratio h/hs^s of 0.765 for surface 1. Again,
tpc 2/t^ 7/2 for surface 2 is 12 and tpc Wt^ , /<^ for surface 1 is 16. Entering these
values into figure 10(b) gives a heat-transfer-coefficient ratio h/hg^s for surface 2
of 0.212. The large differences in the front- and back-surface correction factors
(figs. 10(a) and (b)) are caused by the influence of the T of the opposite surface. Thus,
for a complete solution of all test conditions likely to occur, a set of plots similar to
those of figure 10 is needed for a range of Tj and T2 parameters.

Figure 11 js presented in the same format as figure 10 with T^ = T2 = 0.1. Since
TI and T2 are equal in this figure, the (a) and (b) versions as described for figure 10
are identical; therefore, only one plot for each set of values of T is needed in the cor-
relations where the values of T are equal. For example, consider the y/Y = 0.45
position on the wing profile in figure 2. The temperature parameter T is approxi-
mately 0.1 for both sides, a/Z2 = 0.0863 per second, t-dj/2 ~ 0-579 second, and the
phase change on surface 1 (front) occurred in 4.4 seconds and that on surface 2 (back) in
6.2 seconds. Therefore, tpc j/t^ 1/2 for surface 1 is 7.6 and tpc 2/ttf 1/2 for sur-
face 2 is 10.7. Entering these values into figure 11 gives a coefficient ratio (h/hs^s)

of approximately 0.82. For tpC;i = 4.4 seconds, hsis is calculated from equation (B7)
to be 61 W/m2-K, and hs is given in figure 3 as 776 W/m2-K. This gives an h/hs

of 0.06 for the front surface, which corresponds closely to that plotted in figure 3. Again,
tpc 2/td 1/2 for surface 2 (back) is 10.7 and tpc ^/t^ ̂  AJ is 7.6. Switching the surface
designation subscripts in figure 8 and entering these values give an (h/hgjg),, of
approximately 0.5. For tpc 2 = 6.2 seconds, hsjs = 50 W/m2-K (eq. (2)), and h/hs

.is calculated to be 0.033, which matches that given for the back surface in figure 3 at
y/Y =0.45.
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A compilation of the results from the numerical calculations is presented in fig-
ure 12. The correction factor h/hsis for a finite slab is given for a f i and T2
combination range from 0.05 to 0.45 and for an initial temperature potential ratio
(Taw,2 " Ti)/(Taw,l ~ Ti) of *• Tnis ranSe °f T should cover most test conditions
likely to be encountered in phase-change heat-transfer wind-tunnel tests. Instead of
giving the correction factor at surfaces 1 and 2 for a T combination as in figure 10,
these plots are given in terms of only the correction factor at surface 1. The correction
factor at surface 1 (h/hs^s) becomes larger than 1 (fig. 12) when heat is lost from sur-
face 2. To obtain the correction factor at surface 2, one considers the plot for the
reverse set of T, as previously stated, and treats surface 2 as if it were surface 1 in
both the abscissa and ordinate; also, the lines of constant phase-change time at surface 2
should be treated as if it were surface 1.

In using these plots, one should be aware that errors associated with small mis-
matches in either TpC or tpc increase as the thermal interference diffusion time
decreases and as the difference in the time of phase change at opposite surfaces
increases.

Analysis of Restraints and Variable System

In the previous section the need for determining the exact error incurred in the
finite-slab correction factor correlation for a specific restraint violation was .stated to
be of little value. This assessment was made on the premise that the specified bound-
aries of the restraints are seldom violated in phase-change heat-transfer tests on thin
surfaces. (See table I.) However, the limit within which a restraint must be contained
in order to remain within a given error band is of interest.

TABLE I.- BOUNDARIES OF RESTRAINTS

Type of surface

Thick sections (any 0)

Thin sections (zero to
small 6>)

Thin sections (moderate to
large 9)

Solution

Semi-infinite slab

Finite-slab solution with heat exchange
on both surfaces

Figures 9 to 13
T combination range from 0.05 to 0.45
(Taw,2 - Ti)/(TaW;1 - T^ = 1

Finite-slab solution with heat exchange
at only one surface

Figure 4
T g 0.174 (weak restraint)

(Taw.l - Ti) g (Taw>2 - Ti)
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The heat-transfer-coefficient correction factor correlation for a finite slab
with a phase change on both sides showing the change in the correction factor for a
given change in the initial temperature potential ratio (Taw>2 - Ti)/(Taw,l ~ Ti)

and T is given in figure 13. This figure was initially for Tj = T2 = 0.45 and

(Taw 2 ~ Ti)/(Taw 1 ~ Ti) = 1 (case A). The initial temperature potential ratio was
changed from 1 (case A) to 0.870 (case B) to 0.773 (case C) with the values of f
remaining at 0.45 to illustrate the possible error in relaxing this restraint. For
example, for tpc i/t(j j/2 = 8, the difference between h/hsis for values of

(Taw 2 ~ Ti)/(Taw 1 ~ Ti) of * and O-'7'7^ (using h/hsis for the initial temperature
potential ratio of 1 as the standard) is approximately 37 percent for tpc 2,Ad,£/2 = 2

and 24 percent for tpc 2/^-d 1/2 = ^- This type of percent deviation is shown in figure 14
as a function of initial temperature potential ratio. The percent deviation from the
li/hsis value for an initial temperature potential ratio of 1 decreases linearly to zero as
the initial temperature potential ratio increases to 1 for constant values of the time of
phase-change parameter at surfaces 1 and 2. For a given initial temperature potential
ratio, the percent deviation at surface 1 increases substantially with an increase in the
time-of-phase-change parameter at surface 1 and decreases substantially with an
increase in the time-of-phase-change parameter at surface 2. Thus, figure 14 indicates
that the unit initial temperature potential ratio restraint is rather strict in the sense that
if it is violated by as much as 10 percent in certain time-of-phase-change parameter
regimes /tpc ^7f^ 7/2 < 8, t^ 2/^-d 172^)' ~tfie~errdrs~ which are incur'fed"will be
extremely large. This is modified somewhat by the fact that for wings at high angles of
attack in hypersonic flows the lower limit of the initial temperature potential ratio is in
the vicinity of 0.87. Also, the correlation of the type given in figure 1.3 should be used
for zero to moderate angles of attack, where the initial temperature potential ratio is
near unity. For large angles of attack, the solution for a finite slab with heat exchange
at only one surface (fig. 4) should be used. In this situation, the error was shown to
decrease as the initial temperature ratio decreased from unity.

To assess the strength of the T restraint, the values of T were changed from
0.45 (case C) to 0.59 (case E) while the initial temperature ratio was kept at 0.773. The
effect of these changes on the correction factor is shown in figure 13. There is very
little difference in the lines for Tj = T2 = 0.45, (Taw>2 - Ti)/(Taw>i - TA) = 0.773

(case C) and the lines for fj = f 2 = 0.59, (Taw>2 - Ti)/(Taw>1 - TJ) = 0.773 (case E).
This result confirms the weakness of the T restraint for the correlations at zero to
moderate angles of attack.

To insure that h/hsis is a function only of Tj, T^, (Taw 2 - Ti)/(Taw 1 ~ Ti)>

*pc lAd 1/2' and *pc zAd1/2' calculations were made for Tj = 0.45, T^ =0.45,
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and (Taw 3 - TjV/(Taw j - T^) = 0.773 (case D) as in case C but with different values
of (Tpc,l - T^, (Tpc>2 - T^, (TaW)1 - Ti), and (Taw>2 - Tj). The results (identical
curves for cases C and D in fig. 14) verify that the five variables mentioned completely
specify the one-dimensional finite-slab system. Also, many cases which included differ-
ences in thickness and thermophysical properties were calculated. Each correlated with
the tpc/t,.j , /2 parameter.

CONCLUDING REMARKS

A numerical computer program has been developed to calculate the heat-transfer
coefficients for both sides of a one-dimensional finite slab subject to the boundary con-
ditions ascribed to the phase-change coating heat-transfer technique.

The data reduction procedures for a semi-infinite slab used with the phase-change
coating technique can give large errors in heat-transfer coefficients on thin sections.
In a typical tunnel test situation where a thin wing was exposed to heating on both sides,
the data reduction procedures for a semi-infinite slab gave heat-transfer coefficients as
much as 375 percent too high on the side with the lowest heating. The error at the oppo-
site surface position, where the level of heating was approximately 5 times higher, was
29 percent.

The results from the procedure for a finite slab are presented in the form of cor-
rection factors to the solution for a semi-infinite slab in terms of parameters normally
used with the phase-change heat-transfer technique. These correlations are not
restricted to slab thickness or thermophysical properties and are easily used to obtain
data on thin model sections.

At large angles of attack the heat-transfer-coefficient distribution on the windward
surface of the midsection of a wing or fin (where lateral conduction is small) may be
determined within 15 percent for nominal wind-tunnel test conditions by using the solution
for a finite slab with no heat exchange on the leeward surface. This is restrained by the
provisions that the finite-slab temperature parameter on the windward surface TJ be
greater than or equal to 0.174 and the initial temperature potential for the heating rate
of the leeward surface be less than or equal to that of the windward surface. The Tj
restraint is extremely weak, and the initial temperature potential restraint is practically
never violated.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., May 8, 1973.
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APPENDIX A

COMPUTER PROGRAM FOR FINITE SLAB

The heat-transfer computer program described in the section entitled "Analytical
Method for Finite Slab" calculates the heat-transfer coefficients for both sides of a one-
dimensional finite slab subject to the boundary conditions ascribed to the phase-change
coating technique (ref. 1).

Program Input

FORTRAN IV NAME LIST with the name NAM1 is used to load the input data. The
following list contains the input variables with the dimensions used in the program:

FORTRAN
variable

TIME0

Tjdf (30)

SIGMA

EMS

RH0

NKPTS

TKMTAB (10)

KMTAB (10)

NCPTS

TCPTAB (10)

CPTAB (10)

Symbol

m

Description

initial time, sec

initial temperatures, R

Stefan-Boltzmann constant, Btu/ft2-sec-°R

emissivity .

/ 3
density, Ibm/ft

number of entries in conductivity table (KMTAB)

temperature table for KMTAB, °R

conductivity table, a function of temperature (TKMTAB),
Btu/ft-sec-°R

number of entries in specific-heat table (CPTAB)

temperature table for CPTAB, °R

specific-heat table, a function of temperature (TCPTAB),
Btu/lbm-°R
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APPENDIX A - Continued

FORTRAN
variable

LEN

Symbol Description

PRFREQ

TlFDSf

TNFIN

DELTAT

DELHI

DELH2

TEST

NTTPTS

TTTTAB (10)

TT0TAB (10)

TAW1RAT

TAW2RAT

RN

CPG

PT0T

PT2PT

•pc,l

At

Ahi

Ahr

thickness of slab

number of blocks or divisions in chord length (either 20
or 30)

print frequency

phase-change temperature for surface 1, °R

phase-change temperature for surface 2, °R

delta time or computing interval, sec

value used to increment or decrement h]_, Btu/ft -sec-°R

value used to increment or decrement h^, Btu/ft -sec-°R

closeness test for values of delta temperatures, °R

number of entries in total-temperature table (TT0TAB)

time table for TT0TAB

total-temperature table, a function of time (TTTTAB)

ratio of adiabatic to total temperature at surface 1

ratio of adiabatic to total temperature at surface 2

nose radius of reference sphere, ft

specific heat of test gas, Btu/lbm-°R

stagnation pressure of flow

total pressure ratio across normal shock

18



APPENDIX A - Continued

FORTRAN
variable Symbol Description

P1PT2 ratio of static pressure to total pressure behind normal
shock

STIME1 t^ i time of phase change at surface 1. sec
pu,i

STIME2 tpc 2 time of phase change at surface 2, sec

The only restriction on these inputs imposed by the programing procedure is that
STIME1 must be greater than or equal to STME2. The size of the time step (At) and the
thickness of the slab (I) along with the block thickness distribution dictate the accuracy
of this program for a given thermal diffusivity of the slab. Time step sizes of up to
0.025 second were used with slab thicknesses of up to 0.015 feet to obtain heat-transfer
coefficients accurate to within 1 percent of restricted finite-slab solutions (ref. 3) for a
material with a thermal diffusivity of 5 x 10~^ ft2/sec. The distributions of the thickness
of the blocks through the finite slab (built into the program) are as follows:

If N0.= 20 (used for I < 0.005 ft with a = 5 x 10'6 ft2/sec):

Block number Thickness, w

1,20
2,19
3,18
4,17
5,16
6,15
7,14
8,13
9,12
10,11

0.005*
.OH
.021
.03*
.04*
.05*
,06t • ~ ~ - . - . . - - . - . _
.085*
.101
.101

If N0= 30 (used for I ^ 0.005 ft with a = 5 x 10~6 ft2/sec):

Block number Thickness, w

1,30 0.001*
2,29 .00251
3,28 .005*
4,27 .0075*
5,26 .Oil
6,25 .01251
7,24 . .0151
8,23 .02*
9,22 ' • ' ' .03*
10,21 .04*
11,20 .05*
12,19 .061
13,18 .07*
14,17 .08*
15,16 .0965*
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APPENDIX A - Concluded

Program Output

FORTRAN
name

BETA1

BETA2

TAW1

TAWNQ

TIME

DELTA TIME

H (FRONT)

TAW(FRONT)

H(BACK)

TAW(BACK)

BL0CK N0

TEMPERATURE

Symbol

H1C0MP

H2C0MP

hsis,l

hsis,2

Law,l

T.

t

At

hi

aw, 2

Taw,l

•aw,2

Description

semi-infinite-slab heat-transfer parameter at
surface 1

semi-infinite-slab heat-transfer parameter at
surface 2

semi-infinite-slab heat-transfer coefficient at
surface 1, Btu/ft2-sec-°R

semi-infinite-slab heat-transfer coefficient at
surface 2, Btu/ft2-sec-°R

adiabatic wall temperature at surface 1, °R

adiabatic wall temperature at surface 2, °R

time, sec

delta time, sec

finite-slab heat-transfer coefficient at surface 1,
Btu/ft2-sec-°R

adiabatic wall temperature at surface 1, °R

finite-slab heat-transfer coefficient at surface 2,
Btu/ft2-sec-°R

adiabatic wall temperature at surface 2, °R

block number (refers to block distribution through
slab, fig. 1)

temperature of block, °R
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PROGRAM MAIN(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT)
COMMON TBAR
DIMENSION TO(30),TEMP(30),X(30),TAB 1 (20),TAB2{30),B(30),C(30).
ID(30).TTAWTBI10 ) , TAU'lTAB(10 ) . TAW2TAB(10 ) .TKMTAB(lO).KMTAB(lO).
2TCPTAB(lO).CPTAB(ld).TriOLDl(5).THOLD2(5),
3TMUTAB(33).MUTAB(33),TPRN(11),PRNO(ll).TTTTAB(lO),TTOTAB(10)
EQUIVALENCE(TTTTAB,TTAWTB)
EQUIVALENCE (NTTPTS,NTAWPT)
REAL LEN.KM,KMTAB,KMT«KMAV«KMI,KMN
REAL MUTAB,MUS,MOW
DATA TAB I/.005..01 ,.02,.03,.04«.05..06,.085,4*.10».085..06..05.
1.04,,03,.02..01,,005/
DATA TAB2/.001 ,.0025,.005, .0075, .01,.0125,.015,.02..03..04.«O5.
1.06,.07,.08,2*.0965,.08,.07,.06,.n5..04,.03,.02,.0l5,.0125..01.

- 2.0075, .005,.0025, .00 I/
DATA F,G,DELTX,E1 ,E2/0.0.10...2,2*.!E-6/
DATA TMUTAB/400.i45G.,500..550.,600.,650..700.,750.»800..S50.,

1 90 C. ,950. , 1 000.', 1 050 ,,1100.,1150.,1200.,1250.,1300.,1350.,i400..
2-1450.,:500.,1550.,1600.,1650.,1700.,1750.,l800..1850.,19CO.,1950.«
32000./
DATA MUTAB/9.75E-6.10.74E-6,11.7E-6,12.6E-6,13.46E-6,14.28E-6.
115.05E-6.15.82E-6,16.57E-6.17.29E-6,17.975E-6.18.65E-6.19.30E-6,
219.92E-6.21 . 16E-6.21 .75E-6.22.325E-6,22.88E-6.23.45E-6.23.98E-6,
323.98E-6,24.50E-6,25.025E-6,25.53E-6,26.03E-5,26.53E-6.27.02E-6,
427.05E-6,27.97E-6,28.43E-6, 28.38E-6, 29. 33E-6 , 29 . 78E-6/
DATA TPRN/400.,450.,500.,550.,600.,650.,700.,750.,800..850•,900./
DATA PRNO/.7305,.7215,.7135,.7O6,.7,.694,.69,.686,.6635,.662,.661/

•a-
INTEGER PRFREQ
NAMEL I ST /NAM1 / T I MEO , TO i S I GMA-, EMS , RHO , NKPTS , TKMT AB , KMTAB , NCPTS «

1 J.CPTAB, CP_TA3 »_LEi\L,_NQ, PR_FREQ_,__T1.F1N_,JNF JiM ,_D_ELLAJ ,_DELH 1_ , p_ELH2 , TEST
3 i NTTPTS , TTTT AB , TTOTAB, TAW1 RAT , T A W2R-AT , RN , CPG.PTOT . PT2PT, P 1PT2
4,ST]ME 1 .ST IKE2
NAMELIST/DEBG1/ BETA1.3ETA2,HlCOMP.H2COMP.TAW1,TAWNO
NAMELIST/DEBG2/ HI ,H2,THOLD1 ,THOLD2» TEMP

- -NAX.ELIST /DEBC-3/ THOLD 1 , THOLD2 , PT 1 H 1 ,PT IH2 , PTHH 1 , PT2H2-, DT 1 , D-T2 .
1DET,DELHI,DELH2
EXTERNAL FOFB

i READ < s,NAMI>
IF (EOF,5 )5, 10

5 STOP
10 CONTINUE

WRITE (6,NAMI)
IPFCT=0
DO 11 1=1,NTTPTS
TAW1TAB(I)= TAW1RAT* TTOTAB( i )

'11 TAW2TAB(I)= TAW2RAT* TTOTAB(I)
IF (NO.GT.20) GO TO 20
DO 15 I=1,NO

15 X(I)= LEN * TAB1(I)
GO TO 30

20 DO 25 I=1.NO
25 X(I)~ LEN # TAB2(I)
30 CONTINUE

* COMPUTE HI AND H2 FROM SEMI -INFINITE SLAB APPROXIMATION
-if
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CALL 'FTLUP <ST IMEl , T AW 1 , 1 * NT AWPT » TT A WTB , TAW1 TAB )
CALL F.TLUP(STIME2 i T AWNO , 1 . NTA WPT , TT AWTB . TA W2TAB )
TBAR = ( T1FI N-TC ( 1 ) )/ (TAW1 -TO ( 1 ) >
CALL ITR2 (BETAl ,F ,G, DELTX,F OFB.E1 «E2,50 , I CODE )
TBAR = ( TNFI N-TO (NO ) )/ < TAWNO-TO (NO ) )
CALL ITR2 (6ETA2,F , G , DELTX » FOF6 , E 1 . E2 , 50 • I CODE )
CALL FTLUP (Tl F IN, KM1 .1 » NKPTS , TKMT AB , KMTAS )
CALL FTLUP (TNFI N,!<MN, 1 , NKPTS » TKMTAB . KMTAB )
CALL FTLUP ( T IF IN, CP1 ,1 , NCPTS « TCPT AB » CPTAB )
CALL FTLUP (TNF IN, CPN , 1 , NCPTS .TCPTAB, CPTAB )
HlCOMP-= BETAl * SORT (RHO*CP1 *<M1/STIME1 )
H2COMP= 5ETA2 * SORT (RHO*CPN*KMN/ST I ME2 )
HI =H1COMP
H2 =H2COMP
WR I TE (6«DEBG1 )

40 DO 130 K= 1 ,5
DO 50 J=l ,NO

50 TEMP(J)= TO(J)
TIME= TIMEC

*
* GO HERE TO UPDATE TIME AND RECOMPUTE
#

60 TIME=TIME+ DELTAT
DO 70 J=l ,NO
B ( J)=0.0

C ( J)=0.0
70 D(J)=0.0 '

*

* DIAGONAL ELEMENTS ARE STORED IN B ARRAY
* UPPER DIAGONAL ELEMENTS ARE STORED IN C ARRAY
* THE ARRAYOFLOWER DIAGONAL ELEMENTS ARE EOUIVALENT TO C ARRAY
* CONSTANT PART OF EO. IS STORED I D ARRAY
* SAVE1 CONTAINS HEAT STORED COMPUTATION
* . SAVE.2 CONTAINS CONDUCTION COMPUTATION
*

B ( 1 ) = -HI
CALL FTLUP ( T I ME-, TAW1 ,1 , NTA WP T , TT A WTB , TAW 1 T A3 )
CALL FTLUP (T I ME , TAWNO, 1 ,NTAwPT, TTAwTB « TAW2JAB )
0(1) =-Hl *TAW1 +S I GMA*EMS*TE'MP ( i )*#4
D (NO ) =-H2*TAWNO+S I GMA*EMS*TEMP (NO) **4
.CALL FTLUP (TEMPI 1 ) ,KM, 1 , NKPTS, TKMTAB, KMTAB )
NSTOP=NO-1
DO 80 1 = 1 , NSTOP

CALL FTLUP (TEMP ( I +1 ) ,KMT , 1 , NKPTS, TKMTAB , KMTAB )
KMAV= (KM-t-KMT ) *.5

CALL FTLUP (TEMP ( I ) ,CP, 1 , NCPTS , TCPTAB , CPTAB )
SAVE1 =RHO*CP*X ( I 1/DELTAT
SAVE2 =2.0*KMAV/ ( X ( I )+X ( I +1 ) )
B(I)= B ( I 1-SAVE1 -SAVE2
B(l+l )= -SAVE2
C ( I ) = SAVE2

60 D(I)=D(I) -SAVE1 *TEMP ( I )
CALL FTLUP ( TEMP (NO ) , CP, 1 , NCPTS, TCPTAB, CPTAB )
SAVE1= RHO*CP*X (NO 1/DELTAT
B(NO)= B(NO)-SAVE1 - H2
D(NO)= D (NO ) -SAVE1*TEMP (NO )
CALL TRIDMAT ( C,9 ,C, D,TEMP,NO )
IK ( ABS (TIME-ST IME2 ) .GT. .00001) GO TO 85
THOLD2(K)= TEMP (NO)
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GO TO 60
85 IF (ABS (T1ME-STI ME 1

THOLD1 <K > =TEMP( i )
, GT, .00001) GO TO 60

GO
90 HI

GO
ICO HI

GO
110 HI

H2

GO
120 H2

TO ( 90 , 1 00 , 1 1 0 »
=H1COMP+DELH1
TO 130
=H1 COMP-DELH1
TO 1 30
=H1COMP
=H2COMP+DELH2
TO 130
=H2COMP-DELH2

120. 130 )

130 CONTINUE
*

* THOLD1
* THOLD1
* THOLDi
* THCLD1
* THOLDI

( 1 >AND THOLD2 < 1 )
(2 ) AND THOLD2 (2 )
(3) AND THOLD2(3)
(4 ) AND THOLD2 (4 )
(5)AND THOLD2I5)

CONTA IN
CONTA IN
CONTA I N
CONTA IN
CONTAIN

TEMPERATURES
TEMPERATURES
TEMPERATURES
TEMPERATURES
TEMPERATURES

COMPUTED AS F(H1,H2)
COMPUTED AS F ( H 1 -f DELHI , H2 )
COMPUTED AS F(HI-DELHI,H2)
COMPUTED AS F(HI.H2+DELH2)
COMPUTED AS F(HI,H2-DELH2)

PT1H1= (THOLC1(21-THOLD1(3)>/(2.0*DELH1)
PT1H2= (THOLD1 (4 J-THOLD1 (5) )/(2.0*DELH2)
PT2H1 = (THOLD2 ( ?. ) -THOLD2 ( 3 ) )/ <2.0*DELH1 )
PT2H2= (THOLD2 ( 4 )-THOLD2 (f5 ) ) / (2 . 0*DELH2 )

DTI = T1FIN - THOLD1(!)
DT2 = TNFIN - THOLC2U)

DET = PT1H1* PT2H2 +PT1H2*PT2H1

-DEL-H-1—= -(•D-T-l-*P-T-2-H-2--D-T£*-P-Tl-H2-)/-D£-T-
DELH2 = (DT2*PT1H1 -DT1#PT2H1)/DET

IF (A5S(DTI ) .LE.TEST.AND.ABS(DT2>.LE.TEST) GO TO 150
H1COMP = H1COMP +DELH1
H2COMP = H2COMP +DELH2
HI- = H1COMP
H2 = H2COMP
GO TO 40

150 DO 160 J=l ,NO
160 TEMP(J > =TO(J )

TIME=TIMEO
Hl= H1COMP
H2= H2COMP

170 TIME =TIME +DELTAT
. DO 180 J=1.NO
B(J)=0.0
C(J)=0.0

180 D(J)=0.0
B( 1 )= -HI

. CALL FTLUP (T IME'« TAW1 * 1 . NTA WP T . TT AWTB » TAW 1 TAB )
CALL FTLUP(TI ME *TAWNO* 1«NTAWPT.TTAWTB.TAW2TAB)
D(1)=-H1 *TAW1+SIGMA#EMS* TEMP(1)**4
D(NO) =-H2#TAWNO +SIGMA*EMS#TEMP(NO)**4
CALL FTLUP(TEMP< 1 ) ,KM. 1 iNKPTS1TKMTABfKMTAB)
NSTOP= NO-I
DO 190 1=1,NSTOP
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CALL FTLUP ( TEMP ( 1 + 1 ) .KMT • 1 , NKPTS. TKMTAB.KMTAo )

KMAV=.5 #(i<M + KMT )
KM = KMT

CALL FTLUP ( TEMP (I ) ,CP« 1 » NCPTS , TCPT AB » CPT AB )

SAVE1 = RHO *CP* X(I)/DELTAT

SAVE2 = 2.0* KMAV/ < X ( I >+X < 1+1 > )

B(I) = B ( I )-SAVEl -SAVE2

B( I-f 1 ) = -SAVES
C ( I ) = SAVE2

190 D(I)= D(I)-SAVE1 *TEMP(I)
CALL FTLUP ( TEMP (NO ) « CP. 1 , NCPTS. TCPTAB.CPTAB )
SAVE1 = RHO*CP* X(NO)/DELTAT
B(NO)= B(NO) -SAVE1 -H2
D(NO)= D(NC) -SAVE1 *TEMP < NO )
CALL TR IDMAT (C»S,C,D,TEMP,NO )
IPFCT= IPFCT+l
IF < IPFCT.NE.PRFREQ > GO TO 195

IPFCT=0

WR ITS (6. 1 OCO )T i ME. DEL TAT, HI , H2.TAW1 . TAWNO

lOCO FORMAT ( 1 X///6X6HT 1 ME =F1 0 . 4 , 6X 1 3HDEL TA TIME = F6 . 4//7X9HH ( TOP ) . =

1 El 6.8.5X1 2HH (BOTTOM ) = E 1 6 .8/7X9HTA W ( TOP ) =E 1 6 . 8 . 5X 1 2HTAW (BOTTOM ) =

2E16.8//6XSHBLOCK NO 1 1X1 1 HTEMPERATURE// )

WRITE ( 6.2000 ) ( I , TEMP ( I ) , I = 1 .NO )
2000 FORMAT (9X. I3.6X.E20.8 )

195 IF ( A5S (T IME-ST IME1 ) .GT. .00001) GO TO 170

R=53i35

G=32.2

HOLD= 2.7*PTOT * PT2PT
CALL FTLUPtSTIMEl . TTOT , 1 . NT TPTS . TTTTA3 . T TOT AB )
CALL FTLUP ( TTOT .PRN, 1 , 1 1 .TPRN.PRNO )
SAVE1 =.768*CPG*(PRN**-.6>
CALL FTLUP ( TTOT. MUS. 1 , 33 , TMUT AB , MUT AB )
RHOS= HOLD/TTOT
DUEDX=SQRT (2 .O#R*G *TTOT*<I»G-PIPTS> >/RN
5AVE2=((RHOS #MU5)**.4)* SQRT(DUEDX)

CALL FTLUP'( T IF IN, MUW . 1 . 33 . TMUT AB . MUT AB )

RHOW= HOLD/TIP IN

HRS1 = SAVE1#SAVE2* ( (RHOW*MUW >**.! )
CALL FTLUP(STIME2 . TTOT , 1 , NTTPTS . TTTTAB , TTOT AB )

CALL r TLUP ( TTOT .PSN. 1 . 1 1 , TPRN.PRNO )

SAVE! = .768*CPG*'(PRN**-.6 )
CALL FTLUP ( TTOT .MUS. 1 . 33 , TMUT AB . MUT AB )

RHOS= HOLD/TTOT
DUEDX=SQRT (2.0*R*G *TTOT# ( 1 . 0-P 1 PT2 ) ) /RN

SAVF2=((RHOS *MUS >** .4 ) * SQRT(DUEDX)
<t

CALL FTLUP (TNF IN, MUW, 1 , 33 , TMUT AB , MUTAB )

RHOW= HCLD/TNFIN
HRSN= SAVE1 * SAVE2 * ( ( RHOW*MUW ) **. 1 )

t-

H1RAT = H1/HRS1
H2RAT = H2/HRSN

*
WRITE (6,3000) HI ,HRS1 ,H1RAT ,H2 , HRSN.H2RAT

3000 FORMAT ( 1 X///5X3HH1 =E 14 .6,4X1 5HH 1 (REF. SPHERE )=E14.6.»4X10HH1.(RATIO) =

1E14.6/5X3HH2=E14.6,4X15HH2 (REF. SPHERE )=E14.6,4X10HH2(RATIO)=E14.6)

GO TO 1

END
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FUNCTION FOFSOETAJ
COMMON TBAR
Y = ERF(BETA)
C =1.0 - Y
FOFB=(1.0-EXP(3ETA**2)*C)- T3AR
RETURN
END

SUBROUTINE TRIDMAT(A,B,C,D*T«N)
DIMENSION A( 1 ),b( 1 ) . C< 1 ) « D < 1 >tT ( 1 ),W(30) .SV(30).G(30)

THIS ROUTINE SOLVES A TRIDIAGONAL MATR I X

W(1 )=3 ( 1 )
SV(1 )= C ( 1 ) / B(I )
G< 1 ) = D ( M/wM 1 >
NM1=N-1

DO 100 K=2tN

KM1 = K-l
W(K) = B(K) - A (KM1 >*SV (KM-1 )

IF (K.EQ.N) GO TO 5
4 SV(K )= C(K)/W(K )
5 G(K) = (D(i<)~ A (KM1 ) *G (KM1 ) )/W(K )

100 CONTINUE
T(N)=G(N)

- -- - 00- 20C' K- = -l fNM-1 - - - - -

KK= N-K
T(K<)= G(KO- SV(KK)*T(i<K-H ) .

200 CONTINUE

RETURN

END
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APPENDIX B

SOLUTION FOR SEMI-INFINITE SLAB

In the phase-change data reduction method (ref. 1) for the semi-infinite slab, the
heat-transfer coefficient depends on the time required for the phase change to occur
(tpc), the temperature of the phase change (Tpc), the initial and adiabatic wall tempera-
tures (Tj and Taw), and the thermophysical properties of the model wall (\jpck). The
relationship between the heat -transfer coefficient and the other parameters is deter-
mined from the solution to the equation governing the transient one -dimensional flow of
heat. This equation is

at - ax2

with the following initial and boundary conditions which most nearly describe the actual
tunnel transient test:

T(x,0) = Ti (B2)

T(«°,t) = Ti (B3)

(B4)

It is assumed (ref. 1) that the phase-change coating is at the surface tempera-
ture T(0,t) and the time tpc is required when T(0,t) = Tpc. Other assumptions are
as follows (ref. 1):

1. The depth of heat penetration into the wall is small compared with the wall thick-
ness and surface radius of curvature so that the wall acts like a semi-infinite slab
(eq. (B3)).

2. The model is isothermal before injection into the airstream (eq. (B2)).

3. The surface experiences an instantaneous step in aerodynamic heat -transfer
coefficient at time zero, and this coefficient is invariant with time (eq. (B4)).

4. The thermal diffusivity a of the wall is invariant with temperature.

The solution to equation (Bl) with the specified boundary conditions is (ref. 3)

_ 2
T = 1 - e'3 erfc(/3) (B5)
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APPENDIX B - Concluded

where

T - T-
T-=IB£ 11 (B6)

T - T-
fl'W ' 1

_ j3N/p'ck , -
nsis n==" v '

erfcO) = -p- f e-x dX (B8)

Equation (B5) is plotted in figure 15 in terms of the parameter /3 as a function of T.
The heat-transfer coefficient is then determined from equation (B7).
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(a) T1 = T2=0.45.

Figure 12.- Heat-transfer-coefficient correction factor for finite slab with
phase change on both sides. (Taw 2 - Ti)/(Taw 1 ~ Ti) = 1-

20
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Figure 12.- Continued.
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Figure 12.- Continued.
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Figure 12.- Continued.
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Figure 12.- Continued.
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