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DIGITAL DATA DETECTION AND SYNCHRONIZATION

I. INTRODUCTION

A. Telemetry Communication Links

The basic function of a communication link, such as

that illustrated in functional block form in Figure 1, is

to provide the distant destination or user with 
the infor-

mation content of a data source in a form, and subject to

a fidelity criterion, that satisfies the user. In telem-

etry the information originates in a variety of physical

forms, such as mechanical movement, a temperature change,

the occurrence of an event, a stored television image,

etc. The data source usually originates the message in a

nonelectrical form so that a strain gauge or temperature

sensor or other form of transducer is required to produce

an electrical waveform whose instantaneous values are a

calibrated representation of the original source. This

electrical waveform is known as an analog baseband waveform.

In a typical digital space communication link the in-

formation to be transmitted is obtained from several con-

tinuous time varying data sources. The analog data wave-

forms are sampled periodically and each sample is converted

into a sequence of binary bits called 'a binary data word

[1, Chapter 1i]. After a predetermined number of data words

has been encoded, a data word or string of words with a

known code is inserted into the data stream. The known

code is called a word sync or frame sync (synchronization,
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synchronizing) pattern, and is inserted so that the in-

coming sequence of binary waveforms can be divided into

the proper words when the data is processed at the receiv-

er. Each block of data plus the known code is referred to

as a data frame. The stream of binary bits that results

from this process is called the analog baseband binary data.

The baseband binary data is used to modulate a radio

frequency carrier and is transmitted to a receiver through

a channel which may perturb the signal through the. addition

of noise, fading, multipath effects of intersymbol inter-

ference due to dispersion. At the receiver the incoming

radio frequency signal is demodulated or converted back to

the baseband sequence. The received baseband sequence,

corrupted by amplitude and phase perturbations due to the

transmission channel, is what the data detector must use

to construct an estimate of the original source output.

B. Telemetry Receiver Performance

Two alternative methods are available for recording

the received signals: recording either the receiver inter-

mediate frequency (IF) section output or the detector out-

put. The latter is the most common method, for reasons of

economy and convenience. Some information is irretriev-

ably lost by this method, but in most cases this is not a

serious problem.

In occasional special cases, such as the false-lock



4

problem, when the receiver is locked on a strong spectral

component in a sideband, rather than the carrier frequency,

it could be beneficial to have both of the above signals

recorded. Some insight. into the false-lock problem and

other receiver anomalies which produce unusual analog data

output waveforms has been provided by the baseband receiver

simulation (BBRS) computer program dealt with at length in

an earlier report (2].

Two receiver effects are of primary importance in

synchronization studies: IF filtering and carrier track-

ing effects. IF filtering results inevitably in some

information loss, but it is necessary in order to remove

adjacent channel interference, and it has been done on

the existing-data. Carrier tracking is done with the

phase-locked loop in the receiver IF and converter stages.

It produces a low-frequency additive noise on the detector

output, and it also produces acquisition, loss-of lock,

and cycle slipping effects. The factors affecting carrier

tracking performance are additive noise, carrier phase

shifts due to doppler shift, antenna tracking effects,

small amounts of multipath propagation, and loop filter

characteristics. Approximate analyses have been performed

by other investigators for acquisition of an offset fre-

quency signal, a situation typical of satellite acquisition.

Stiffler [1, p. 140) quotes

2 2 2
T r 1 + 4r (Af)TAf B secs.

BL



as the approximate lock-up time with a frequency offset

2 1
and a second order loop. For the commonly used =2

227t 2
277 (Af)
3

64BL

If this gives an unacceptably long lock-up time, either

a larger loop bandwidth may be used or the starting

frequency may be dithered until lock-up occurs. Dithering

is effective if [1, p. 1421

4 42
AF > 2 B1 + 42

Typical initial doppler shifts are less than 6Khz., and

loop bandwidths are noticeably smaller than this value.

Bit sync acquisition is not possible until carrier sync

is acquired, and this establishes an estimate of the

minimum signal-to-noise ratio in which bit synchronizer

performance is of interest. Typically the carrier track-

ing loop will continue to track satisfactorily at baseband

signal to noise ratios below the bit synchronizer perfor-

mance threshold.

For split-phase data, low frequency noise added to

the analog output does not significantly affect synchroni-

zation, since the data itself contains no low-frequency

components. Interest in carrier tracking performance is

therefore restricted to acquisition, loss-of-lock, and



cycle slipping problems. Loss-of-lock occurs when the

RMS phase error becomes excessive. Its threshold is

higher than the cycle slipping threshold, and it is

followed by a reacquisition phase.

Cycle slipping occurs at a rate determined by the

bandwidth and the signal-to-noise ratio of the loop.

The rate is exponentially small at high signal-to-noise

ratios. The effect of a cycle slip is shown in the

following two figures.

Tr

REVERSED BUT
SYNCHRONIZABLE DATA

NORMAL DATA _--- NORMAL DATA

DATA GOES TO ZERO TWICE

Fig. 2. Effect of Cycle Slipping on
Phase Detector Outputs

The effects can be described as follows:

1. Analog signal amplitude drops to zero.
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2. Analog signal output reverses, each bit is in error

but signal is synchronizable.

3. Analog signal output drops to zero.

4. Conditions return to normal. In general, loss of

lock in the synchronizer will not occur during this

sequence if its loop equivalent bandwidth is equal

to or less that of the carrier tracking loop.

II. BIT DETECTION

A. Classical Results

In a practical system the recorded signal is affected

both by the transmitter bandlimiting filter and by receiv-

er IF filtering. For analyses, however, the assumption of

a square signal waveform plus additive white Gaussian

noise allows the use of many classical results and permits

the description and evaluation of the practical system in

terms of the ideal model.

It is well known that if the epoch and duration of

each symbol are known at the receiver the problem of

detection of human signals in additive Gaussian noise has

its solution in the matched filter or correlator receiver

[see, for example, 3, Chapter 4]. The probability of bit

error given perfect synchronization is

P(e) = Q(W2E/N O),

T

where E = s 2 (t)dt, the signal energy, N is the one-

0
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sided PSD and Q(X) is defined by

Q(X) - e-t 2 dt .

x

This is the minimum error probability for any given system.

With a synchronization error cT the probability of

error becomes

P(e,E) [= 2E(1 - fe(s) + (1 - fO

T

where (1 - f e()) = f s(t)[s(t - ET) + s(t + T - ET)Idt

0

T

for c > 0, and (1 - f (s)) = s(t)[s(t - ET)
0

- s(t + T - ET)]dt

The value of P(e,E) given by this relationship is based

on equiprobable and independent adjacent bits. The prob-

ability of error for a given synchronization error

distribution P (E) is

Ps (e) = P(e,)P (E) d .
-

This expression can be used to evaluate the effect of

synchronizer performance on error probability. A useful

normalized version of timing error is given by
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Var (E)
A = -2E/N 0

It can be shown for square split-phase signals, that the

signal power degradation is approximated by (1 + 16A)-1

in power. The factor A can be related to synchronizer

loop bandwidth X bit period X synchronizer performance

factor. For example, for a common type of early-late gate

6B
A is given by - where BR is the bit rate, BL is the

tracking loop bandwidth and A is the window width in

fractions of a bit. This approximation is good for high

signal-to-noise ratio and weaker for low SNR.

B. Decision-Directed Detector for Overlapping Symbols

When a binary data stream is received over a prac-

tical communication system errors in bit detection may be

caused by intersymbol interference. This channel-induced

distortion is due to the fact that, because the system is

narrow band, each symbol may overlap with symbols in the

preceding and following intervals. The amount of dis-

tortion depends on the symbol sequence, symbol duration,

and the channel bandwidth.

Various methods for correcting the bit decision in

the presence of intersymbol interference have been con-

sidered. Aaron and Tufts [4] suggested a method based on

the use of tapped delay lines to match the channel. They
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account for the intersymbol interference by finding the

optimum tap positions and gain coefficients for the given

channel. Helstrom [5] suggested a different method. He

suggested a system that uses the last three 
bits received

for making a decision. He considers all eight possible

bit configurations by looking at three at a time, and then

he uses the known channel characteristics to outline the

design of seven different filters. A decision system is

then used to choose the filter with the largest output 
as

the received PCM signal. Both Aaron's and Helstrom's

methods have a serious disadvantage in the fact that the

design procedure of these matched filters is very compli-

cated for any specified channel. Three suggested systems

for making a decision in the presence of intersymbol

interference and Gaussian noise are presented by

Thumim [6] which have the advantage that the parameters

can be easily changed to adjust the changes in the channel.

As part of the research under this grant, Wang [7)

has developed the model for a new decision-directed detec-

tor for overlapping symbols. Analytical results and com-

puter simulation results are presented as curves of prob-

ability of error versus signal-to-noise ratio.

Basically, two steps are involved in his approach.

First, the symbol most likely received is determined as a

primary decision. Then, this decision is used to direct

the detection process to obtain a better estimate of the



symbol which will yield less probability of error. For

overlapping signals, the DD technique can be roughly

summarized in Figure 4.1. The post-bit detector consists

of an ordinary matched filter and a sampler. The input

signals.are processed serially, one after the other, and

the output is the primary detected value, ap. The

function of the block "SHAPE" is to maintain a constant

level until the next sampling instant. The output is then

used to subtract the overlapping tail resulting from the

next bit. With the subtraction of the overlapping head

from the preceding bit, a present-bit detector is followed

to find the final decision. The overlapping head and tail

are illustrated in Figure 4.2.

Since both detectors in Figure 4.1 perform the same

function, they can be placed in the front as a detector.

The modified structure, for the DD detector is shown in

Figure 4.3. Here the decision devices are replaced by two

hard limiters. The constants K2 and K3 will be introduced

in the following section.

1, Mathematical Derivation

The binary communication system under consideration

consists of two symbols, S (t) and -S (t), defined in

Figure 4.2. The received signal is

m
y(t) = ak S (t - k) + n(t) (4.1)

k=1
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POST-BIT .

DETECTORp

SHAPE

y(t) 1 UNIT + - + PRESENT-BIT
+ :+

DEIAY DETECTOR

1 UNIT

DELAY HAPE

Fig. 4.1 Decision-directed detector for overlapping signals

S (t) overlapping head

S (t) / S (t-1)

p 4

Fig. 4. 2 Received signal and the overlapping symrrbol
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SGN a p
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M.F. and

SAMPLER DELAY +SGN -
SAMPLER

DELAY

Fig. 4.3 Modified decision-directed detector



The matched filter has an impulse response

h(t) = S (1 - t)P

Thus the output of the matched filter is

z(t) = y(t) * h(t)

m
S ak S p(t - k) * S (1- t) + n(t) * S (1 - t)

k= k
(4.2)

At the sampling instant t = i,

z(i) = C ak S (i - k) * S (1 - i) + n(i) * S (1 - i)

k=l p
(4.3)

Due to the overlapping situation, z(i) can be further

written as

z(i) = K2 ai_1 + K1 a i + K3 ai+1 + K4 n(t) (4.4)

where K2 and K3 are the areas when dealing with overlap of

the ith bit with the (i-l)th bit and with the (i+l)th bit,

respectively. K1 is the area when the ith bit convolves

with itself. K is the noise coefficient to be defined

later. These constants are functions of 0, and are requir-

ed in the simulation program. The calculation of Kl, K2'

and K3 proceeds as follows.
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k+l+a

K2 = Sp(t - k)Sp(t - k + 1) dt

k-ca

1+a

f (1/2 + t/2a)(1/2 - t/2a) dt = a/3. (4.5)

-a

l+a

K = S 2 (t) dt = a/3 + (1 - 2a) + a/3

-a

= 1 - 2a/3, and (4.6)

K3 = K2 = a/3. (4.7)

To find K4 , we consider the root mean square of the

correlator output when the signal is correlated with noise.

That is

1+a

E Sp (t)n(t) dt

-a

l+a

S Sp(tl)Sp (t 2 ) E nt)n(tl)n(t 2 ) dt1 dt 2

l+a

= 2 (t) dt = B(l - 2a/3) (4.8)

-a

Where B is taken as the reciprocal of the input signal-to-

noise ratio in the simulation program. The noise coeffi-

cient K4 is then K4
= / -4/3S
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2. Simulation Program

In general, the desired output is a graph of PE versus

SNR.with the overlapping parameter a as a parameter. In

order to examine how rtuch improvement can be achieved by

the DD technique, two error probabilities are tabulated in

parallel. That is, for each bit, a primary decision by

non-decision-directed measurement is made. At the end of

m'bits, the probability of error of the primary decision

is computed. Then the final decision on each bit using

the DD measurement is found.

In the simulation program 500 bits are generated at

random and used as input to the DD detector. The proba-

bility of error is approximated by the ratio of the total

number of erroneous bits to the total number of input bits.

The resultant error counts for several values of a are

shown on succeeding pages.
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.20
LI Fig. 4.5(a) Results of the DD detector

simulation program for o(=0.1
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.20 Fig.4.5(b) Results of the DD detector
simulation program for
/ =0.2

.15 P : Probability of error of the primary detection

LP2 : Probability of error of the final detection
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.20

Fig.4.5(d) Results of the DD detector
simulation program for o =0.4

.15 P Probability of error of the primary detection

P2 : Probability of error of the final detection
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3. Analytical Results

In this section, calculation of PE for the DD detector

is considered. The block diagram of a DD detector is

redrawn in Figure 4.6.

a

y(t) M.F. m DEL

K

ai-1 DEL

Fig. 4.6. Block diagram of the DD detector

The output of the matched filter and sampler is

m. = 2 al + K a. + K3 a+ + K4 n. (4.9)
1 2 i-i 1 1 3 i+l 4 1

where K = 1 - (2/3)a

K2 3 = (1/3)a, and

K4 = /1 - (2/3)cc

Because of the overlapping situation, three symbols

are involved in determining the probability of bit error
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of the primary detection. Let A = (ai_1 , ai, ai+l); the

eight possible combinations of the sequence 
are tabulated

in Table 4.3. The PE of the primary detection is

= {m. < 0 a. = 1 P{a. 11

+ P{mi > 0 -1 (410)
+ P{m > 0I a. =-1} P{a. = -} (4.10)

Table 4.3 Eight possible sequences and mean

values for finding the primary PE

ai-l a i ai+1  E(m i ) = i var(m ) =

Al1 1 1 1 1

A2 -1 1 1 1 - (2/3)c

A3  1 1 -1 1 - (2/3)ca a = /B(1 - (2/3)a)

A4  -1 1 -1 1 - (4/3)a

B = 1/SNR

A5  1 -1 1 -1 + (4/3)c

A6  -1 -1 1 -1 + (2/3)

A7  1 -1 -1 -1 + (2/3)a

A 8  -1 -1 -1i -1

When we consider a. = 1, there are four possible
1

sequences, (Al, A2 , A 3 , A 4), involved in finding the term

P{m < 0 a. = 1}. Thus,
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4 ( - 2

P m. < 0 a. = 1 = (1/4) E (1/W) exp 2 dx,

j=1 _ 2

where i - E{mi}. Treating the case for a. = -1 in the

same manner, we have

4 0 (x - )

= (1/2) (1/4) (1i//~) exp - 2 dx
j=1 -m 2

S(x - )2

+ (1/4) Z (-1/2 ) exp 2 dx

j=5 0 2

4 8

= (1/8) (- /0) + N p( /a). (4.11)
j=1 j=5

a

where (a) = I (1//~T)-exp(-x2 /2) dx (4.12)

Substituting mean values, (4.11) can he simplified as follows.

= (1/4){ (-l/a) + 2 (-(1 - 2a/3)/a) + 9(-(L - 3a/4)/a)}

(4.13)

The probability of the final detection is found as

follows. Since the final decision a. depends on the previous1

final decision a.i- and on the primary decision on (i+l)th

bit, ai+l' we have

ai = mi - K3 ai+1 - K 2 ai-1 (4.14)

where m i = K2 ai- 1 + K1 ai + K3 ai+1 + K4 n
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Hence, the probability of error is described by a 
recursive

relation. Let us define

P {Pa < 0 ai+l ai- } P{a} P{ai+l} P(ai-

(4.15)

Rewriting (4.14) by substituting mi in the equation, we

have

i = K2 (ai- i-1) + Kl a + K3 (ai+1 - ai+1) 
+ K4 n

(4.16)

If the primary decision on the symbol ai is correct, the

final output of the detector will be just a constant, Kl,

times ai. It can be seen from the simulated results that

at high SNR the probability of error for the final detec-

tion decreases faster than that of the primary detection.

The probability of error for the final detection, Pi'

is

P. = P{ai < 0 a =1,ai+l=a i + l a i -
1 =a i - l } (1/2)(1 - P)(1 - Pi-1 )

+ P{ < 0 a =1,ai+1 =ai+ 1 ,ai/ai -1} (1/2)(1 - P) Pi-
+Pai 'ai+l= a i+ l ' i-lai-i

+ P{a^ < 0 a =l,ai+ lai+lai 1=ai (1/2) P (1 - Pil )

+ P{ai < 0 ai=1,ai+lai+l' 1 =a .l}(1/2) P P
+ 1 I ~ l + +1,^i-i ;1 i-1

+ four terms for a. = -1. (4.17)
1
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Table 4.4 Possible sequences and mean values
for finding the final PE

ai E[ai ] A
1

1 ai-l-ai-1, ai+=ai+1 1 K1

ilil , ai+=ai+l 2 2 i- 1

1 ai-. ai- ai+=ai+ 2 = 2 K+ 2 aiK 1 + Ka

1 ai-l=ai-i ' ai+1 ai+1 1 3 = K1 + 2 K 3 ai+ 1

1 ai-i ai_1, ai+1 ai+1  n 4 = 2 K2 ai- 1 + K1 + 2 K3 ai+1

1  a l=a., ai+=aa i+ n5 =-K

-1 ai-aai_ , ai+ 1 =ai+l 6 = 2 K2 ai- 1 - K1

-i ail=ai- 11 ai+1 a i+l 7 = -K + 2 K a

-1 ai-a1 i-l' ai+l/ai+l n8 = 2 K2 ai-1 - K1 + 2 K 3 ai+ 1

Setting 1 - P = Q, P P, 1 - P = Q, we have

0 0

P i (QQ/2) 1(n~,) dx + (P6/2) N(-2,') d
1~ N(n 1 a) dx

0 0

+ (Q/2) f N(n 3,o) dx + (PP/2) f N(n4,a) dx

-00 -00

CO 00

+ (Q/2) f N(n 5 a) dx + (P6/2) f N(n 61 a) dx

0 0

+ (Q /2) { N(ri7 a) dx + (PQ/2) N(fl,8 c) dx.

0 0
(4.18)
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" PE Fig. 4.7 (a) Comparison between analytical
results and simulation results

.20

F ALFA= 0.3

K 15
k Probability of Error, Analytical

Results

- ---- Probability of Error, Simulation
Results

P : Probability of error of the primary detection

.10

P2 : Probability of error of the final detection

F\

.00 I
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PE Fig. 4.7(b) Comparison between analytical
results and simulation results

.20

\

\\ ALFA = 0.4

.15
Probability of Error, Analytical
Results

----- Probability of Error, Simulation
Results

P1 : Probability of error of the primary detection

P : Piobability of error of the final detection

.05

.oo I I I I I

SNR
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Table 4.5 Program for evaluating the primary P and the final PE

REAL K1,K2,K3,P(10) Q (10)
99 READ(1,100,END=999) SNR,ALFA
100 FORMAT (2F5. 2)

C
K1 = . -2.*ALFA/3.
K2 = ALFA/3.
K3 = K2
SIGMA = SQRT((l.-2.*ALFA/3.)/SNR)
A = -1./SIGMA
B = -KI/SIGMA
C = -(. -4.*ALFA/3.)/SIGMA

C COMPUTE THE PRIMARY PROBABILITY OR ERROR
P1 = 0. 25*(PHI(A) + 2.*PHI(B) + PHI(C))
WRITE(3,101) SNR,ALFA,P1

101 FORMAT(/5X'SNR='F5.2,5X,'ALFA='F5.2,5X,'PRIMAY P(E) IS',
1 F16.7)

C.
Q1 = 1.-PI
P(1) = 0.0
Q(1) = 1.-P(l)
C1 = PHI(-KI/SIGMA)
C2 = PHI(-(KI-2. *k2)/SIGMA) + PHI(-(KI+2. *K2)/SIGMA)
C3 = PHI(-(KL-K3)/SIGMA) + PHI(-(Kl+K3)/SIGMA)
C4 = PHI(-(Kl-2. *K2-2. *K3)/SIGMA) + PHI(-(KI+2. *K2+2. *K3)

2 /SIGMA) + PHI(-(Kl-2. *K2+2. *K3)/SIGMA)+ PHI(-(KI+2. *K2
3 -2.*K3)/SIGMA)

C COMPUTE THE FINAL PROBABILITY OF ERROR
DO 2 I=2,10
P(I) = QI*Q(I-1)*C1 + QI*P(I-1)*0.5*C2 + PI*Q(I-1)*0.5*C3 +

4 Ql*P(I-1)*0. 25*C4
Q () = 1. -P(I)
WRITE(3,102) I,P(I)

102 FORMAT (/15X, 'P(', I2,')=',F16.7)
2 CONTINUE

GO TO 99
999 STOP

END

(continue on the next page)
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(Table 4.5 continued)

FUNCTION PHI(X)
AX = ABS (X)
T = 1.0/(1.0+0.2316419*AX)
D = 0.3989423*EXP(-X*X/2. 0)
P = l.O-D*T*((((1. 330274*T-1. 821256)*T+l. 781478)*T-

1 0.3565638)*T+0.3193815)
PHI = P
IF(X) 1,2,2

1 PGI = 1. O-P
2 RETURN

END
/DATA
/END
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where the notation N(ni,o) indicates the density function

of a Gaussian distribution having a mean value nri and a

variance a2 . Now we can substitute the values for nli

i = 1, 2, ... , 8, and write Pi as the function of the

-function defined by (4.12). Note that 4(-x) = 1 - Q(x).

(4.18) can be further simplified by using this identity.

Therefore,

P = [ Q ]  (-K /0) + (PQ/2) [ (-(K1-2K2)/) + (-(KI+2K2)/)]

+ (QP/2) [E(-(K1 - K3)/o) + +(-(K1 
+ K3 )/a)]

+ (PP/2) [p(-(K1 - 2 K2 - 2K 3 )/a) + q(-(K1 + 2 2 + 2 K3 )/o)

+ #(-(K 1 - 2 K 2 + 2K 3 )/a) + c(-(K1 + 2 - 2 K 3 )/ao)

(4.19)

The analytical results of the primary PE and the final

PE can be evaluated by a computer program 
shown in Table 4.5.

The results are plotted with the simulation data found in

the last section to see how closely they are related. It is

seen from Figure 4.7 that when a = 0.3 and 0.4, the analyt-

ical results and the simulation results are in good agree-

ment.

III. BIT SYNCHRONIZATION

A. Synchronizers for Non-Overlapping Symbols

Wintz and Luecke [81 derived the optimum synchronizer,

in the maximum likelihood sense, for binary non-overlapping

symbols in Gaussian noise. The starting point is the



30

derivation of the relationship for p(Y6l), where Y is the

observation y(t) for te(o,nT). The maximum likelihood

synchronizer is a device for computing this probability.

as a function of 6 and then choosing the value of 6 which

maximizes the expression. The probability p(YI6) is com-

puted by first finding p(YIO,a) where a is the bit

sequence ao, al, a2 . .. aN-. Then p(Yl6,a) is given by

p(Y16) = Ep(Yl6,a) p(a)

All a

The p(a) used is the A priori probability of any given bit

sequence, assuming all 2 N are equally likely. This gives

rise to the expression

N-l HL~ - T s dt]
p(Yl6) a COSH y(t + jT + 6)s(t) d

or In p(YI6) = C + E log COSH y(t + jT + 6)s(t) d
j=0 0

The synchronizer then maximizes this likelihood function.

The function log cosh(x) is an interesting one: for small

2

Ixl it is approximately -, while for large IxI it is

approximately Ixi - In2. The expression

T

E log COSH Nf F y(t + jT + 6)s(t) dt = .

T-6

y= (t + jT)s(t - 6) dt

-6
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may be obtained from a correlator with an integrate-and

dump.

y(t+jT) XT- log csh ACCUMU-
d t  NO LATOR

s(t- ) I

The maximum likelihood synchronizer is mechanized by a

bank of these units followed by a unit which selects the

e. which produces the maximum output.
1

E log cosh

C .nARG. >O

82 clock

greatly simplified. If we write

T-6

L(8) l= og COSH I y(t + jT)s(t - e) dt
0-8

At this point it is convenient to introduce an inner

product notation
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T

i y(t + jT)s(t) dt - y,s>

0

then s(t - 0) - s(t) - 0 s (t)

and L() = log COSH N [<y,< - O(j,s> ]
0

the optimum estimate 8 is found by

N 0 = <Yja tanh[ !(<Yjs) - 8js'>)].
o

Expanding tanh(X + es) = tanh X + OE sech 2 X,

0= <yj,s'>tanh(NoYj 's>) - Ny >2seh 2  1jS>

which yields

<yj, s > ')tanh (Nky , s )

S-1(Yj 'S'>2sech2 N s)

The denominator converges to a constant times the number

of bits, and the resulting configuration is

MAFILTER X tanh (N ) Avg.

MATCHED DERIV-
ATIVE FILTER
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This configuration has some interesting properties. For

high SNR, tanh ( ) is a hard limiter, and the combination
0

of the matched filter and nonlinearity is a bit detector.

At low SNR, the detector is more like a difference of

squares configuration. It should be noted that this

linearized synchronizer does not work for square signals,

because s(t) is not differentiable. The bank-of-filters

synchronizer works but is impractical. The option usually

chosen is the early-late gate synchronizer described, in

various forms by Simon.[9], Stiffler [10], and others. A

discrepancy also exists here between the well-known Wintz

& Luecke results and the usual practical situation where

the transmitted signal is a square signal passed through

a filter. The result is an overlapping signal, not the

non-overlapping version. A second difficulty stems from

using the a priori probability for P(a). Another approach

is to use P(ad) where ad is the detected bit sequence.

This gives rise to a hard limiter rather than a hyperbolic

tangent, or an absolute value rather than a log cosh. It

has been shown by Simon [9], that the absolute value

early-late gate is better than the squared loop. This

approach can also be used with the overlapping signal

case, and the resulting configuration is much simpler.

B. ML Synchronizer for Binary Overlapping Symbols

Wang [111 has developed the maximum likelihood
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synchronizer for generalized binary overlapping symbols.

The synchronizer structure consists of matched filters,

a transition detector and an accumulator. The form of

the synchronizer does n'ot lend itself to simple imple-

mentation. The results, however, are new, and provide

some insight into the solution of problems with more

practical waveforms than have been treated in the

literature.

For the purpose of computer simulation the idealized

overlapping NRZ waveform shown in Figure 5.1 was used.

The analytical expression for the overlapping signal,

S (t), is also a function of a, where a is defined as the
p

overlapping parameter and is in the range from -0.5 to

+0.5. The received signal waveforms are indicated by

Figure 5.2(a) for the noiseless case, and by Figure 5.2(b)

for the noisy case. The dotted line in the figure shows

the individual overlapping symbol and the solid line is

the actual received waveform.

The received signal is perturbed by an additive

noise, n(t), which is assumed to be a sample function from

a Gaussian random process with zero mean and known vari-

ance. The input to the synchronizer is of the following

form,

y(t) = S(t;6,A) + n(t), 0 < t < m (5.2)
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s (t) -s (t)

1. 1t t

(a)

-1

S (t)

0 t t
- + 1 0

(b)
-1

Fig. 5.1(a) Binary NRZ symbols
(b) Binary overlapping symbols

S(t-6,A), A =  ( 1, -1, 1, 1, -1, ... )

2/ \

0 /+ 3+ \ 4+6

(a)
y (t)

(b)

Fig. 5.2(a) Received signal without noise
(b) Received signal with noise



36

where A = (a1 , a2' ... , am),

a. = +1 or -1 with equal probability, and3

6 = epoch to be estimated which is assumed

uniformly distributed between -1/2 and

+1/2.

1. Derivation of Optimum Synchronizer

In order to find the maximum likelihood (ML) solution,

the conditional probability function P(Ye6) is required.

Owing to the presence of the random variable A, the follow-

ing expression is considered.

P(Y18) = P(YI ,A)P(A) dA (5.3)

A

We now find the conditional probability density

function by using sampling approach, first taking N samples

in each interval, and then letting the samples become dense,

thus obtaining an integral form for P(YI6,A). For each

sample i, Y(i) = S(i;8,A) + n(i), i=l,2,...,mN, where n(i)

is Gaussian distributed with zero mean and variance B N.

The conditional joint pdf, P(YIe,A) for mN samples is writ-

ten as: 0

mN 2
P(Y I,A) = R (1/2 B N) exp{-(1/2B N)[Y(i) - S(i;e,A)]2 }

i=0
(5.4)

When N becomes very large, (5.4) can be written as an

integral as follows,
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m -
P(Y|e,A) = K1 exp (1/2Bo) [y(t) - S(t;I,A)2 d

0 (5.5)

where K1 is a constant. Because of the overlapping situation,

the set of random variables {ai}, j=l,2,...,m, are correlated

with each other. Thus P(YIO,A) cannot be expressed as the

product of the conditional pdf of individual symbols, 
name-

ly, P(YIe,a), j-1,2,...,m. In order to proceed, we group

the signal sequences as follows,

m-1
S(t;e,A) = E [ajS (t-j;e) + aj+IS (t-j+l;0)] (5.6)

j=1 +l p

and integrate each interval from (j-1/2) to (j+1/2), so

that (5.5) can be further simplified as follows:

m-1 F j+1/2

P(Yle,A) = K1 H exp (1/2Bo )  [y(t) - a S (t-j;6)

j=l j-1/2 P

- a j+lS(t-j-1;e)] 2 d] (5.7)

There are six terms to be considered if we expand out

the above expression. However, three of them, involving

the integration of squared terms, are actually constants.

Hence their product can be combined with K 1 to form

another constant K2 . Since K2 is not a function of 6,

it will not enter into the maximizing process. We simply

ignore this quantity for awhile. Note that if 8 is also
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assumed to be stationary, we can write S(t;0) = S(t-e),

for -1/2 < 6 < 1/2. Therefore, (5.7) is reduced to

m-i
P(YI6,A) = H exp{ajBj(6) + aj+IC (6) - a aj+lD) (5.8)

j=1

j+1/2

where Bj (6) = (1/B o) y(t)S (t-0-j) dt (5.9)

j-1/2

j+1/2

C.(6) = (1/B ) f y(t)S (t-6-j-1) dt (5.10)

j-1/2

j+1/2

D = (1/B 0 ) f Sp(t-6-j)S (t-6-j-1) dt (5.11)

j-1/2

D can be calculated immediately to be a/3 and is not a

function of 6. The calculation of B. (6) and C. (6) proceeds

as follows. When there is no transition in the interval

(j-1/2, j+1/2),

B. (6) = ((a. + a j+ )/2B 0 )(1/2) (5.12)

C.(6) = B (6). (5.13)

When there is a transition in the interval (j-1/2, j+1/2),

the situation is described by Figure 3.3 for the case

a. = 1, and aj+ = -1. After integration, the values for

B.(6) and C.(6) can be found as follows.
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-6,

y (t)

-0.5 -ck o-S- 

--

t

s (t-e)

P t (C)

S (t-6-1) 
(C)

Fig.3.3 On finding Bj(E) and C (6) when > 0

y (t)
( 

o. t (a)
-o. 5 - -

Sp(t+6)

- 0-- (b)

Sp (t+6-1)t(c)

Fig.3.4 On finding B.(E) and C.(6) when 6 <0
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1/2

B . i) = ((a. - a + l )/2B )  y(t)S(t-0) dt

-1/2

= t. (1/2 -(2a/3) - (2 /2a) + (63/122))., for > 0

(5.14)

C. () = t.* (-1/2 - (2a/3) + (0 2/2)- (03/12a2)), for 8 > 0

(5.15)

where t. = (a - aj+l )/2B . For the case < 0, it can be
J j+l 0

found that the values for B. (6) and C. () are the same as
3 J

those.indicated by (5.14) and (5.15) but with a different

sign. Figure 5.4 shows the case for finding Bj (0) and

Cj (8) when 8< 0. In summary, Bj.() and C.(6) can be

tabulated in Table 5.1:

Table 5.1 B.(8) and C.(6) for various e's

without
transition with transition

transition

6 > 0 B.(e) (a. + a j)/4B ((a - aj+ )/2B ) x

Cj () (a. + aj+l)/4B o  ((a - aj+)/2B o ) )(-x)

0 < 0 B j() (aj + aj+l)/4Bo  ((a - aj+l)/2B ) y

C.(e) (aj + a j+)/4B o  ((a. - aj+l)/2B )(-y)

2 3 2
where x = 1/2 - (2a/3) - e /2a + 0 /12a ,

Y = 1/2 - (2a/3) 02/2 - 03 /12a 2
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The next problem is to maximize f P(YIO,A)P(A) dA
t6 obtain the optimum estimate. Owing to the overlapping

situation, the exponential term in (5.8) consists of both

the symbol aj and the following symbol aj+l. The averag-

ing process is therefore of a recursive nature. Further,

the random variable a. is equally likely to be +1 or -i

so that four different cases should included. For con-

venience, let

Q(,a ,aj+) = exp(ajBj (8) + aj+lC j () - ajaj+ D), (5.16)

and let

Q(6,aj=l,aj+ 1=l) be represented by simply Q(1,1). If

we use the subscripts 0 and 1 to represent the symbol -1

and +1, respectively, the probability of (j+l)th stage can

be written as a function of the jth stage as follows:

P (j+l) = P(Yl6,j+1,1) = P(YIe,j,-l)Q(-1, 1) + P(YIe,j,l)Q(1,1)

(5.17a)

P0 (j+l) = P(Yl ,j+l,-l) = P(YIO,j,-1)O(-1,-1)

+ P(Yl6,j,l)Q(1,-l) (5.17b)

Or, if we write the above expressions in matrix form,

Po(j+1) Q(-,-l) Q(1,-1) P (

= ,(5.13).

P1 (j+l) Q(-1,1 ) Q(1,1) P l(j)
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The next step is to compute the average of P0 (j+l)

and Pl(j+l) using the following equation:

P3 (j+l) -1 P1(j+1)

1 1 Q(-1,-1) Q(1,-) 1/2 1/2 P2 ( j )

(1/2) (5.19)

1 1 Q(-1,1) Q(1,1) 1/2 1/2 P3(j

To write (5.19) in a matrix form, we have

P(j+l) = Hj.()P(j) (5.20)

where H. (0) is a two by two matrix having the following

elements,

-C. C.
h 1(e) = e 3 cosh(D+B.) + e 3 cosh(B j-D)

-C. C.

h 1 2 () = -e sinh(D+B) + e sinh(D-B.)

C. -C. (5.21)

h (e) = e 3 cosh(D+B.) - e 3 cosh(D-Bj)

C +C.

h 2 2 (0) = -e 3 sinh(D+B) - e sinh(D-Bj)

The associated synchronizer structure is shown in the next

section.

2. The Synchronizer Structure

The ML synchronizer structure consists of matched

filter, a transistion detector, a weighting function and

a feedback circuit. To obtain the maximum value of the
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B.
S fdt J

SL : select largest

DEL DEL : one unit delay

TD : transition e- etector

WF : weighting function

Fig. 5.5 ML Synchronizer for Binary Overlapping Signals
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density function for a given received y(t), y(t) is first

correlated with the overlapping symbol S (t) and S (t-l)

separately in the time interval (1/2, 3/2). The transi-

tion detector is a device which examines a and aj+ 1 in

the presence of noise, and records an output tj according

to the following rules:

If a = aj+ ,  tj = (aj + aj+1)/ 2 .

If aj aj+ I ' tj = (aj - aj+l)/2.

The output of the matched filters and the transition

detector are then passed to a weighting function which

computes the four Q-functions. Then the conditional

probability density function for each stage is calculated

and stored. The feedback circuitry is used here to

generate the conditional probability density function

recursively. At the end of the mth symbol, the output

statistics in each stage are compared, and the largest

statistic is announced as the estimate of the correct

synchronization position. The maximum likelihood syn-

chronizer consists of a bank of devices followed by a

maximum value selector. In a manner similar to that

employed without overlapping symbols, a single line syn-

chronizer can be developed for continuous S(E). The

correlator output can be recognized as a transition

detector. The exponential form of the nonlinearities can
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again be recognized as a result of using the a 
priori

probability P(a) in the derivation. If P(ad), the prob-

ability after detection, is used, the result is a

detector used to control a matched derivative filter.

This results in a much simpler structure and is in fairly

close correspondence with many existing units.

3. Monte Carlo Simulation Program and Results

In order to find the exact value of the conditional

probability density function P(YtI), we again examine (5.7):

i+1/2

P(YIe,A) = I K1 exp [-(1/2B) [y(t) - aS p (t-i-e)
i=l i-/2

i-1/2

- ai+S pS (t-i--6) 2 dt]

m-1
i= K1 exp{K 5 + aiBi(6) + ai+1C i() - a ai+1D}.

i=l

(5.23)

where K1 = 1/2/-  (5.24)

K5 can be written as the sum of there terms:

K5 = K2 + K3() + KA4() (5.25)

i+1/2

where K =-(1/2Bo) y (t) dt

i-1/2

- (3 - 4a)/6Bo, if there is a transition

(5.26)
- (1/2Bo), if there is no transition
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i+1/2

K3 () = -(1/2B )  I S (t-6-i) dt

i-1/2

1/2

= -(1/2B 0 ) f S2 (t-) dt

1/2

= -(1/2B ) [- a/3 + 1/2 + 8] (5.27)

1/2

K4 (6) = -(1/2B 0 ) f S2 (t-6-1) dt

1/2

= -(1/2Bo) [- a/3 + 1/2 - 8] (5.28)

At first glance, K3 (6) and K 4 () are functions of 8 so

that they ought to be included in Section 3.B. However,

their sum indicates that K5 is not a function of 8. That is

K5 = K2 + K3(8) + K 4()

- ((1 - 2a)/B o) , if there is a transition

(5.29)

-((3 - )/3Bo) , if there is no transition

The input bit stream for the simulation program is generated

by a uniform random number generator. The description of

this subroutine is given in Aoppendix A. The signal-to-noise
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o 0.4
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Fig. 5.7a Results of the ML Synchronization Program
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Fig. 5.7b Results of the ML Synchronization Program
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ratio (SNR) in the program is the power ratio indicated by

numbers. 0 in the simulation program is the true value.

For 40 bits as the input data to the ML synchronizer, the

probability density function versus different 0 are plotted

in Figure 5.7, using SNR as a parameter. The graphs appear

to be nearly Gaussianly distributed with center around

6 = 0. At high SNR, the curve tends to peak up at the

origin and to flatten out rapidly as the SNR decreases.

C.. Analysis for Bandlimited Overlapping Signals

The received signal in satellite telemetry has some

overlap between bits that may be caused by the transmitter

filter, the channel or by the receiver filter. In most

cases the most severe bandlimiting is due to the receiver

IF section, but even here the symbols are usually contained

within two bit periods.

Suppose we receive the signal

y(t) = an s(t-6-nT) + n(t)

pass it through an ideal low-pass filter of bandwidth B,

and let the output be given by y*(t), where

y*(t) = bn(t) + nL(t).
Coo
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The conditional pdf of y* (t), given sync error 6 and

signal sequence A, is given as

P(y*(Y) l,A)

N N 2
K1 exp{-(1/2Bo) [y*(n) - L akS (n-k-0)] 2

n=l k=l

(6.4)

We now use the fact that the overlapping signals with

synchronization error 6, can be approximated by the follow-

ing linear relationship:

S(t - 6) = S(t) - 6 S'(t) (6.5)

The associated waveforms are shown in Figure 6.1. For

small 8, the difference between the two curves is small

enough to be neglected. Using this approximation in the

conditional probability density function,

P(y* (t) 16,A)

N N
= K1 exp{-(1/2B) [(y* (n) - akS(n - k))

n=l k=l

+ 6 akS (n-k)]2 } (6.6)
k=l

To find the optimum estimate of 8, we set
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S (t)

0 1 2 3

S(t)-8 S'(t)

S1 

1 2 3t
0 1+

2+8

Fig. 6.1 Linear approximation of the overlapping signal
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lIn P(y*(t) e,A)

e = 8

Thus,

N N N
[y* (n) - akS ( n - k ) + L akSp ( n - k ) ] .

n=l k=l k=l

N

Z akSp(n - k) = 0. (6.7)
k = eML

Solving for 6, we find the following result:

N N
N [y* (n) - akSp ( n - k ) ] [ akS ( n - k ) ]

ML = - k=l k=l (6.8)
n= aka jS' (n-k)S' (n-j)

k=l j=l

N N N
= K [y* (n) - akS (n - k) ] [ akSp (n - k)] (6.9)

n=l k=l k=l

The above derivation leads to a synchronizer which is

roughly sketched in Figure 6.2.

The received signal is first passed through a detector

to form the original overlapping signal and then the

derivative of the signal. Meanwhile, it is bandlimited by

passing through a low-pass filter with bandwidth 2B. After

forming the signal, we subtract the two waveforms, and the
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difference is further multiplied by the derivative of the

original signal, d(t). The final block is an accumulator.

The operation of the synchronizer is shown in Figure 6.3(a)

and 6.3(b). With the input signal having different delays,

the estimated values of 6's are shown as functions of 0's.

S (t d(t)
FORM FORM

DET SIGNAL DERIV.

t=i+ r,
y(t) ML

X AVG ML

y* (t)

Fig. 6.2. Block diagram of the
suboptimum synchronizer

Furthermore, the detector portion is replaced by the

DD detector investigated in Chapter VI. The overall block

diagram is given in Figure 6.4. In order to simulate this

system, we need to have the theoretical expression of the

bandlimited signal by Fourier analysis and the bandlimited

noise by autocorrelation analysis. This will be considered

in the next section.

1. Bandlimiting and Sampling of the Overlapping Signals

To find the output of the filter, we shall first find

the Fourier transform of the overlapping symbol. It is
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d (t)
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z (t)

0 1 2 \ 3

Y* (t,E)

1 2 3

z (t, E)

O- t

0 12 3

Fig. 6.3(a) Output waveforms of the suboptimum synchronizer
for 6& 0
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z (t) = (y*(t)-S(t))*d(t)

0 3

A y* (t, 8)

tt

t

y* (t, E)
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Fig. 6.3(b) Output waveforms of the suboptimum synchronizer for
8 0
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that if the symbol is differentiated with respect to time

twice, a sequence of impulses can be obtained. The trans-

form of the impulses is readily found. Let the symbol be

centered at origin and be called f(t). It is evident

from Figure 6.5(c) that

dt (1/2) [6 (t+1/2+a) - 6(t+1/2-a) - 6(t-1/2+a)

dt
+ 6(t-1/2-a)] (6.10)

Using the Fourier time shift theorem, we have

(jw)2F(w) (1/2) [exp[jw(1/2+a)] - exp[jw(1/2-a)]

- exp[-jw(1/2-a)] + exp[jw(1/2+a)]]

Thus,

F(w) = (1/aw2 )[cos(/2-a)w - cos(1/2+a)w] (6.11)

The time shift theorem is used again to obtain S (w), the

Fourier transform of the overlapping symbol, S (t).

S (w) = (1/w2)[cos(1/2-a)w - cos(1/2+a)w] exp(-jw(1/2))

S (w) = (1/aw2 ) 2 sin(w/2) sin(aw) • exp(-jw/2)
p

= Sa(w/2) Sa(aw) . exp(-jw/2), (6.12)

where Sa(x) = sin x/x.

Let the output of the filter be

N
y*(t) = b n (t) + nl(t).

n=l
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f(t) -- F(w)

t (a)

-. 5-c0 -. 5+( .5-c .5+0(

df (t)

dt jw F(w)

0 (b)

d 2 f(t) (jw 2 F(w)

dt
A 1/20

Fig. 6. 5 Fourier transform of a trapezoidal function f(t)
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Then the Fourier transform of the nth bit is

B (f) L

0, elsewhere

(6.13)

The time response bn(t) is

B

bn(t) =i Bn(f) - exp(j2Tft) df (6.14)

-B

B

= anSa(rf) Sa(2Taf) * exp(-juf(l+2n-2t)) df

-B

Substituting 7f = x, we have

1TB

bn (t) = an(2/) I Sa(x) Sa(2rx) cos(1+2n-2t)x dx (6.15)

0

The response of the sample due to an infinite bit train can

be expressed as

y* (t) = E bn (t) + nl(t)
n=-co

7rB

= ao(2/) I Sa(x) Sa(2ax) cos(1-2t)x dx

0

1TB

+ an(2/) Sa(x) Sa(2ax) cos(1+2n-25)x dx

n=- 0Snl(t )  (6.16)

+ n(t) (6.16)
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Fig. 6.8 Results of the suboptimum synchronizer simulation
program
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The first term is the desired signal and is peaked at t = 1/2,

for B < 1. The second term is the intersymbol interference

due to bandlimiting the signals. Thus, sampled at t = 1/2,

the response can be simplified to give

n= -o

7rB

where S(B,0) = (2/r) j Sa(x) Sa(2ax) dx

0

TB

S(B,n) = (2/) F Sa(x) Sa(2ax) cos(2nx) dx
0

The filter noise has the variance

2 N 0 I 2S= -- H(t) df = NOB

-B

2. Simulation Results

A program was written to evaluate the performance of

the synchronizer developed above. One sample run of the

program is presented here, using 10 random bits as the

input data stream, with SNR of 5 and an overlap a = .25.

D. Synchronizer for Overlapping Split-Phase Signals

1. Bandlimiting and Sampling

Using the same technique as in Section B, the Fourier
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g (t) ~ (w)

.t (a)
-. 5 0

-1

dg/dt - jw G(w)

- 0. -t (b)
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A 1/20 A 1/2 o

t (c)

-1/2c0 -1/2c(

Fig. 6.9 Fourier transform of a overlapping split-phase symbo
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transform of the overlapping split phase (S4) symbol g(t)

as shown in Figure 6.9 is written as

dt = (l/2a)[6(t+l/2+a) - 6(t+1/2-a) + 6(t-1/2+)
dt

- 6(t-1/2-a) + (l/a) [- 6(t+a) + 6(t-a)] (6.20)

Thus, using the transform pairs, we have

(jw)2G(w) = (l/2a)[exp(jw(l/2+a)) - exp(+jw(1/ 2 -a))

+ exp(-jw(l/2-a)) - exp(-jw(1/2+a))]

+ (l/a) [- exp(jwa) + exp(-jwca)]

= (j/cc)[sin(l/2+)w - sin(l/2-a)w] - (2j/a).

sin (aw).

= (2j/)[cos(w/2) sin(aw) - sin(aw)]. (6.21)

Thus, G(w) = 2j[sin(aw)/aw2 ] [1 - cos(w/2)] (6.22)

Then the Fourier transform of the overlapping S symbol,

S (t), is

S (w) = G(w) exp(-jw/2) (6.23)

Let w = 27f a 2x,

S (f) = (j/x)(sin(2ax)/2ax) (1 - cos x) exp(-jx)

= j Sa(2ax)[(l - cos x)/x] exp(-jx) (6.24)

If the outout of the LPF is

y(t) = bn(t) + n (t)
n=- n
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Fig. 6. Output waveform of the split-phase suboptimum synchronizer

ig. 6.11 Output waveform of the split-phase suboptimum synchronizer
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The Fourier transform of b (t) can be written as

B (f) = a j Sa(2ax)[(1 - cos x)/x] exp(-jx(l+2n)). (6.25)

Thus,

B

bn(t) Bn(f) exp(j2ft) df

-B

IrB

= a I Sa(2ax)[(l - cos x)/x] exp(-jx(l+2n-2t) dx
n  Tr

-TB

rB

= an (2/) Sa(2x)[(l - cos x)/x] sin(1+2n-2t)x dx

0

The signal portion is found as follows,

irB

y* (t) = (2/T) Sa(2ax) [(1 - cos x)/x] sin(l-2t)x dx

0 (6.27)

IV. TRACKING LOOP ANALYSIS

A. Optimal Linear Estimation

In work previously reported [2], the form of an optimum

synchronizer employing a Kalman tracking filter was present-

ed. In this model the bit detector forms an estimate of the

timing error based on a comparison operation involving one

split-phase data bit. 'This output, derived from the bit

detector threshold logic, is used as in input to the track-

ing rate portion of the conditioner. The timing estimator
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is relatively slow, and works on an average of the

threshold logic outputs over a period which is long with

respect to the bit rate, but short with respect to

tracking rate phenomena. When the central limit theorem

is invoked, these averages can be considered as continuous

signals with a Gaussian amplitude distribution.

BIT DETECTOR TRACKING
AND

THRESHOLDTHRESHOLDG I C  FILTER
LOGIC

OPTIMAL ESTIMATE OF 8

The observed signal-plus-noise vector is thus trans-

formed,. through the MAP estimator output, into a new domain

such that a state vector X is linearly related to the out-

put. That is, the MAP estimator output can be expressed

in the form

Z (t) = H(t)X(t) + V(t),

where V(t) is zero mean, white, and Gaussian "measurement

noise". With this interpretation of the threshold logic

outputs a minimum variance estimate of the true bit transi-

tion may be obtained using the powerful Kalman filterina

algorithm and making full use of known process dynamics.
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1. Time Base Error

One of the more important factors which is required

for this analysis is an analysis of the time-base error

in the incoming recorded signal. The primary causes of

this error seem to be satellite tape recorder flutter,

the doppler effect, and propagation delays in the

atmosphere. The most difficult cause to cope with is

probably on-board tape recorder flutter, and it is neces-

sary to model this flutter in order to optimize the

tracking rate portion of the synchronizer.

Chao [12] and Moore [13] discussed measurement and

causes of time-base error. Both authors give power

spectra for typical instrumentation recorders. Time-base

error seems to appear in two forms: a random variety,

due primarily to tape disturbances, and a periodic

variety, due to worn or imperfectly manufactured parts.

In addition, the speed control servo, and in particular,

some of its specific measurement methods, enters into the

design of the tracking loop.

Worn part periodic TBE poses a difficult problem in

loop optimization. Adaptive loops are generally distinct-

ly better than fixed-parameter loops in compensating for

periodic time-base error. High signal-to-noise ratio

data is of particular benefit in measuring actual record-

er performance, and the most effective technique is

probably to use a wideband tracking loop and record the
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loop output. Periodic components can then be detected by

frequency analysis of this output. The Kalman filter for

the tracking loop can be obtained once the power spectral

density of the time-base error is known. This filter is

valid for any situation where a state variable model is

available and where the bit synch detector is known to be

linear. This includes some, but not all acquisition

problems.

As an example, a state variable model will be con-

structed for the flutter spectrum in Figure 9 of Chao

[12]. The method of modeling a worn part will be illustrat-

ed by modeling the peak at 4 hz (which is the worst of the

TEE components shown if left uncompensated) as a pair of

damped sinusoidal states. The TBE will be modeled as two

separate components, one resulting from the 4 hz lohe,

the other from the remainder of the spectrum. The lobe

(worn part) has the spectral density

- (.0004%)s2
42 2

(- + s + 100)(4 s + 100)25 25

and the rest of the spectrum has the psd

2 4
-1 (.01%) s

s2 (s2 + 120s + 3600) (s2 - 120s + 3600)

Each function can be modeled by a white noise driving a

filter with a transfer function which is the spectral
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Fig. 7.1 Chao's Flutter Spectrum
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factorization of the psd. A Kalman filter is then con-

s2 + 120s + 3600

structed for this TBE model. If the worn part does or

comparing the RMS TBE with no worn part for filters

Bit Sync
Output

n2 4 x 10-6s

.16s 2 + s + 100

structed for this TEE model. If the worn part does or

does not exist with probability 0.5, a measure of the

effectiveness of an adaptive scheme would be obtained by

comparing the RMS TEE with no worn part for filters

designed with and without the worn part. More refined

loops must be defined with more complete data than that

shown.

2. Acquisition

Acquisition presents several distinct problems in

the tracking loop. Stiffler (1, p138ff) develops an

approximation for acquisition time for a loop with a

sinusoidal nonlinearity and an initial frequency offset.

The derivation is very useful in characterizing acquisition

behavior of bit synchronizers. The relationship states

that for a second-order loop, the acquisition time is
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proportional to the square of the frequency offset and the

mean square of the nonlinearity. For sinusoidal non-

linearities the mean square is one half, while for typical

early-late gates it is one forty-eighth. This indicates

that the bit detector, as well as the loop bandwidth may

need to be changed during the acquisition phase.

It may be. seen from the above discussion that the

initial frequency offset is critical to the acquisition

time. This offset is 'almost entirely a function of the

speed control method used in the recorder. Specifically,

if this initial frequency is accurately known, acquisition

is very much simplified. Peavey [14] quotes acquisition

times of one to three thousand bits for low signal-to-noise

rqtios. For these acquisition times, the initial frequen-

cy'offset also can be contributed by the low-frequency

(less than ten hertz) TBE.

Acquisition of a signal of unknown frequency and

phase can be viewed as a two-dimensional search process.

The synchronizer effectively looks for the element in the

search area which appears to contain the signal. Acqui-

sition can be said to occur when the probability that the

signal is in a certain element of search area and no other

approaches one. There is a tradeoff between equipment

multiplicity, search area, and signal-to-noise ratio.

It appears possible to hypothesize a situation where

acquisition might not be possible with any synchronizer,
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even though tracking might be possible after acquisition

has occurred. The fundamental quantity for acquisition

is

p (ylx),

where x is the tracking state vector. If _ = (8,f) where

8 and f are the phase and bit rate,. respectively we have

the common situation in acquisition. For acquisition

to be possible p(ylx) has to approach one for the correct

element of volume in the search space.

Under conditions where the bit rate is well known, it

is possible to perform bit synchronization at signal-to-

noise ratios well below threshold by using a correlation

with the frame sync pattern. For the commonly used 27 bit

pattern, a useful phase data point can be obtained at noise

levels twenty-seven times the usual clean sync level. The

tracking loop is optimized as a sampled-data filter. The

method is not likely to be successful if major TBE components

exist at frequencies higher than the frame rate, and it is

relatively useless for data extraction unless the noise

levels fluctuate greatly.

B. Non-linear Estimation Methods

The general nonlinear filtering problem formulated for

the time continuous case by Kushner and formulated for

the time discrete case by Stratonovich applies to various
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types of communication problems. In this chapter, the

nonlinear filtering technique is used to solve the bit

synchronization and detection problems when dealing

with overlapping signals. The message and observation

models in this study are described by the following pair

of stochastic differential equations.

dx = f(x) dt + dw (7.1)

dy = h(x) dt + dv (7.2)

where x represents the state and dy is the observation.

w and v are independent Wiener processes.

The general nonlinear filtering problem is the

determination of P{x(t) dy(t), 0 < t < T}, which is the

probability density function of x(t) conditioned upon the

observations dy on the interval (0,T).

Similar results are available for the case where the

observation is called y and the model is

y = h(x) + n(t) (7.3)

where n(t) represents the white noise. Thus the equivalent

problem for the observation equation (7.3) is the deter-

mination of P{x(t)ly(t), 0 < t < T). This approach is used

by Stratonovich.

The time continuous case is analyzed by solving the

following filtering equation for the conditional probability

density function P:
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T
dP = L+ {P} dt + P{dy - Eh(x) dt} V {h(x) - Eh(x)} (7.4)

where P = P{x(t)Idy(t), 0 < t < T},

E h(x) = - h(x) P{x(t) Idy, 0 < t < T) dx(t) (7.5)

and L , Kolmogorov's diffusion operator, is defined as

m m m ,L { }  =- f { } + (1/2) T T k. j (7.6)i i x x.
i= 1 i=1 j=1

The filter equation for the discrete case is similar

and can be found from the results of Stratonovich,

m
dP. = a..P. dt + P.{dy - E h(x) dt)V -{h(s ) - E h(x)}

j=l 13 3 v i

(7.7)

where Pi = P{x(t) = si(t)dy(t), 0 < t < T}, (7.8)

m
E h(x) = S h(s (t)) * P. (7.9)

i=l 1

and the corresponding L+ can be described by a matrix whose

elements are the transition probabilities:

a.. = lim Pr{x(t+At)=s (t+At) Ix(t)=s i (t)}/At (7.10)
13 At + 0

a .. - lim 1 - Pr{x(t+At)-s i (t+At) x(t)=s i (t)}/At
At 0(7.11)

(7.11)
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1. An Example

Suppose we have received a sequence of binary NRZ

signals with synchronization error 0 and noisy observa-

tions. Find the filtering equation for the probability

ddnsity function and the nonlinear bit synchronizer

structure.

For the noiseless case, the observed symbol in the

interval

[(n-l) + 8, n+8], n=l,2,...,N

is s n (t) ='an (7.11)

A typical received signal waveform is indicated in

Figure 7.1(a). To formulate the filtering equation, let

us first define the following,

i, for n < t < n + 0

sn = i,j = -1,1. (7.12)

j, for n + 8 < t< n + 1

and the probabilities,

Pn (t,6)

= Pr{sn(t)=i, for (n-1) < t < (n-1+0);

sn (t)=j, for (n-1+6) < t < n). (7.13)

where ij = -1,1 n=l,2,...,N.
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Let y = sn(t) + dv/dt (7.14)

be the observation on the interval (n-l,n) and E(dv 2

B dt where B is the equivalent spectral density of a
o o

white noise.

Using the result of Kushner [15], the probability

pn (t,6) must satisfy the following filtering equation:ij

(t,) = L {Pn (t,6)}+ P (t,6)(y - m6 (t)) (sn - m6 (t))/B

(7.15)

where

L i P (t,a) = - Z(x fi (Xt,)
Si= i

+ (1/2) Pn (t,6) (7.16)
=1 j=l i j

1 1
and m -(t) =sn (t,) Pi (t,6) dt (7.17)

i=-1 j=-1

If 6 is assumed to be constant at least for several bit

periods, the term L+ P j(t,O) is zero and the equation

reduces to

P. (t,) = P (t,) m(t))(s - m (t))/Bo (7.18)

If the symbols are independent and equally probable,

the following relations can be found.
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p n-i n-1
P ,-n (n,6) = P ,n (n,6) (1/2) P -1 (n,O) + (1/2) P l
1,-i 1,1 '

(7.19)

Pn (n,) n,e) (1/2) P n- (n,) + (1/2) P n (n,6),1 -1,-i '

(7.20)

p n (n+l) = Pn (n+1,8) (7.21)
ij 8 j)

where the summation is over all possible values of 6.

Although both bits an and a n+l could be estimated in

each interval, it is clear that only part of the second bit

has been observed and thus a better estimation can be made

in the next interval. Hence the optimum estimate of the

first bit in the interval n < t < n+l is determined by

checking whether or not the following inequality holds.

n n+) + n (n+l) < Pn (n+l) + Pn (n+l) (7.22)
1,-1 1,1 1,1  -1,-1

We decide an = 1 was sent if the above inequality does hold;

if not, we decide an = -1. The nonlinear bit synchronizer

is shown in Figure 7.2. It is obtained by solving the

filtering equation, (7.18), and by using the relation

described by (7.22). Thus it represents a combined syn-

chronizing and estimation scheme which is optimum in the

sense that it makes bit by bit decisions conditioned upon

all observations up to that time. This technique can be
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implemented with analog computers since the only 
nonlinear

elements required are multipliers.

C. Nonlinear Bit Synchronizer for Overlapping Signals

For the overlapping signal case as shown in Fiqure 7.1(b),

the message and observation models are modified in order to

set up a filtering equation. Let the observed symbol in

the interval

[(n-1) - a + 6, n + c + 6], n=1,2,...,N

be s (t) = a S (t). (7.23)
n p

where S (t) is the overlapping symbol defined in Chapter III.

Using the same approach as Eq. (5.6), we again consider

the following set of intervals,

[n - (1/2), n + (1/2], n=l,2,...,N.

and define the following functions:

aS (t-6-n) for (n - .5) < t < (n++a)
np

Sn (t,e) (7.24)
ij (t

" S (t-l-6-n) for (n+6-a)< t < (n + .5)
n+1 p

where i an, j an+l n=1,2,...,N.

The related waveform for a = 1 and an+ 1  -1 is indicated

by Figure 7.3 in the interval (n - 1/2), (n + 1/2). We also
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need to define the following probabilities:

Sn

t

n-.5 
.

n+(

Fig. 7.3. Sn and the signal waveform inij
the interval (n - .5, n + .5)

sn(t)=a S (t-6-n), for (n - .5) < t < (n+8+a
n. p

P.. (t,O) =Pr

n(t)=a S (t-6-n-l), for (n+6-a) < t < (n + .5)
n+1 p

(7.25)

where an ++ i, an+ 1 ++ j, i,j = i,-l.

Then the observation model on the interval (n - .5,

n + .5) can be written as follows

y(t) = Sn (t,e) + dv/dt, (7.26)
ij

where E(dv 2 ) = B dt.

Substituting (7.24) into (7.26), we have

y(t) = {anS (t-0-n) + a n+iS (t-6-n-l)} + dv/dt
np n+1 p
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The filtering equation can be found as follows.

n L+ n n n
(t, ) L (t, ) + j (t,6) (y - m0  (t)) (Sij (t, )

- m (t))/Bo (7.27)

where

1 1m6 (t) = Sj (t,e) P (t,6) dt (7.2 )
i=-l i=-

The bit synchronizer structure by solving (7.27) is

shown in Figure 7.4. The received signal is passed through

a transition detector to form the function S (t,6). Theij
rest of the structure is similar to the synchronizer

developed in Section B of this chapter.

V. MISCELLANEOUS TOPICS

A. False Lock Detection

The split-phase waveform used in many telemetry systems

has the advantage that it has zero average value, indepen-

dent of data bit sequence, and very little low frequency

content. Also, the split-phase waveform has a transition

in the middle of every bit, which fact can be used to

assist in detection and synchronization.

With many types of synchronizers, however, it is

possible to be in sync one-half bit out of phase on split-

phase signals. In order to detect or synchronize split-

phase data, it is usual to invert the sign of the integrator
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at mid-bit to obtain the full plus one or minus one energy.

A matched filter for false lock can be constructed by using

an integrate and dump over the full bit. Since missed

transitions occur with probability for equiprobable and

independent adjacent bits, the false-lock condition quickly

becomes evident by the existence of missed transitions:

The output is zero if there is a transition and plus or

minus one if integrated over a missing transition.

If yi is the output of the missed transition detector

for each bit, the likelihood ratio

p(yH1) T 2Tyip(yJH 1 ) 1 + (1-pl)exp 0 cosh N2T

where pl is the probability of an end-of bit transition.

For real data it is at least one half, since such data can

contain many zeros. The actual detector is implemented

by using a threshold on the posteriori probability of H1.

p(H 1ly) p(yIHl ) p(H l )

P(H 0 ly) p (y H0 ) p(H 0 )

P(H1 y) p(yIHl ) P(H1 )
or In = in + Inp(H 0 y )  p(yHO) 1 - p(H )

The complete false lock detector is implemented by computing

A = log pl + (-Pl)exp T cosh 2Ty--
0 0

+ log p(H1 )



This statistic is quite sensitive to pl . However, if a

conservative value of pl is used the detector can be

successfully used. The configuration is

FALSE

y(t) kT + T yi THRESH- LOCK
dt .L. OLD IND.

rkT

The detector is ordinarily used with an up-down counter

and limiter. This provides for a reasonably quick

decision, but it may not detect false lock with data with

pl appreciably greater than 1/2.

B. Bit Synchronizer Evaluation Techniques

It has been suggested that some useful and easily

applied performance measure, or alternatively, a simple

performance test, be applied to bit synchronizer-detectors.

Peavey [14] has given results of testing on actual

synchronizers with typical time-base error patterns. The

performance was marked by mixed behavior with respect to

various criteria. For example, one would perform better

at low signal-to-noise rations, another at high, one would

show better cycle slipping performance, one would be more

resistant to worn part TBE, and so on. Under such con-

ditions, testing becomes a very time consuming task, and

soecification and selection a most emotional matter. The

problem can be narrowed down considerably by considering

the following inputs to the selection of a metric:
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1. The mix of available data
2. Optimum synchronizer performance
3. Data recovery capability

The significant data characteristics for the satellite

telemetry applications of this study are:

1. Data rate
2. Additive noise PSD
3. Pulse shape before IF filtering
4. IF filter characteristic
5. Frame length
6. Tape recorder TBE spectrum
7. Receiver carrier tracking loop bandwidth

and cycle slipping probability

The first four characteristics relate to bit-rate phenomena

and the last three to tracking rate.

Synchronizer performance may be characterized by the

following measures:

1. Probability of bit error with additive noise and
typical recorder time-base error

2. Cycle slipping probability with additive noise and
typical recorder time-base error

3. Acquisition time with additive noise and typical
recorder time-base error

4. Probability of bad data acknowledgement under
various circumstances

In general, additive noise varies over quite a wide

range in typical satellite applications. In contrast,

recorder performance is not affected by orbital parameters,

and thus once a suitable recorder model is obtained, it or

two or three subclasses or recorder model, to account for

various states of repair, are sufficient. The measures of

synchronizer performance stated above are then primarily
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cu;rves of performance criteria versus signal-to-noise ratio

with recorder model as a parameter. This suggests a per-

formance index based on two or three recorder models.

Measures of data recovery capability are determined

to a considerable extent by operational considerations.

The range of signal-to-noise ratios encountered can usually

be predicted from knowledge of the orbital parameters and

the communication system data. In addition, user criteria

are of interest. For example, many users do not care about

occasional bad points, but they do require a knowledge of

which data are invalid. Cycle slips in general cause a

loss of either one or two frames of data, and thus a cycle

slip should be weighted as heavily as a frame of bit errors.

As a result, the following measure of bit synchronizer

merit is tentatively suggested:

R
max

M p(EIR) + F p(cycle slip R)W(R)dR,
RfPopt (EIR)

Rmin

Where Rmin and R are the minimum and maximum signal-to-mmn max

noise rations to be expected in useful operation, R is the

signal-to-noise ratio, F is the frame length, and W(R) is

the operational requirement weighting function. If wide

variations of recorder performance are to be expected in

practice then a weighted average of M taken at several

signal-to-noise ratios should be used.
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An additional important consideration is that of

recorded signal bandwidth. This criterion should depend

on the mix of recorded signal bandwidths to be expected

in practice. The test should be based on a signal with

a fairly realistic but reasonably easily generated TBE

pattern. One possibility is a flat flutter spectrum

passed through a representative speed control filter with

a representative worn part component at a worst case

frequency.
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Conclusion

The primary accomplishments of this study have been

in the analysis and simulation of receivers and bit

synchronizers. It has been discovered that tracking

rate effects play a rather fundamental role in both

receiver and synchronizer performance, but that data

relating to recorder time-base-error (TBE), for the

proper characterization of this pehnomenon, is in rather

short supply.

It is possible to obtain operationally useful

tape-recorder TBE data from high signal-to-noise ratio

(SNR) tapes using synchronizers with relatively wide-

band tracking loops. Low SNR tapes examined in the

same .way would not be synchronizable. One of the aims

of any future study in this area should be the develop-

ment of effective methods for testing and evaluating

existing synchronizers. For this type of testing a

realistic TBE model is a necessity. Experimental data,

taken from existing tapes for which statistical data

such as that recorded at GSFC tape quality or tape

evaluation laboratories is available, should be examin-

ed in an effort to correctly define satellite on-board

tape recorder data characteristics. The techniques

developed in this report can then be applied to the

optimization of bit synchronizer models. It is possible



that considerable improvement can be made in synchronizer

performance with such models.

Additional topics of interest are receiver false

lock, cycle slipping, and other unusual phenomena, which

have been described to some extent in this and earlier

reports and simulated during the study.
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