
NASA CR-134458

NAS IS DATA BASE MANAGEMENT SYSTEM - IBM 360 TSS IMPLEMENTATION

IV - PROGRAM DESIGN SPECIFICATIONS""

InN)~vC'7344.5a)

1'ft P-11C $S- 75 B 4: TssG., Inc., C OGR N73-307

- "
... "Cle 9
e ands1A O1 os.)

09B
 G3/ 08 uncla
. 13480

NEOTERICS, INC.

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

- o producoQ by -

NATIONAL TECHNICXL
'INFORMATION -SERVICE

morco
- - SpnngfloiW, VA. 22151.

.US.Dopad.en ofCo

NASA Lewis Research Center

Contract NAS 3-14979

http:nN)~vC'7344.5a

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED ,FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

1
1.Report.No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA CR-134458 I
4. Title and Subtitle NASIS DATA BASE MANAGEMENT SYSTEM - IBM 5. Report Date

September 1973
360 TSS IMPLEMENTATION

PROGRAM-DESIGN SPECIFICATIONS
IV

7. Author(s) 8. Performing Organization Report No.

None
10. Work Unit No.

9. Performing Organization Name and Address

Neoterics, Inc. 11. Contract or Grant No.
2800 Euclid Avenue NAS 3-14979

Cleveland, Ohio 44115
 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report

National Aeronautics and Sparp Administration 14. Sponsoring Agency Code

Washington, D.C. 20546

15. Supplementary Notes
Final Report. Project Manager, Charles M. Goldstein, Computer Services Division, NASA
Lewis Research Center, Cleveland, Ohio

16. Abstract

The NASIS development workbook contains all the required system documentation. The workbook
includes the following eight volumes:

I - Installation Standards (CR-134455)
II - Overviews (CR-134456)

Im - Data Set Specifications (CR-134457)

IV - Program Design Specifications (CR-134458)

V - Retrieval Command System Reference Manual (CR-134459)

VI - NASIS Message File (CR-134460)

VII - Operating Specifications (CR-134461)

VI -Data Base Administrator User's Guide (CR-134462)

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Unclassified - unlimited

19. Security Classif. (of this reportl 20. Security Classif, (of this page) 21. No. of Pages 22. Price*
Unclassified Unclassified 595 $10.75

* For sale by the National Technical Information Service, Springfield, Virginia 22151

http:Report.No

PAGE 2

TABLE OF CONTENTS

TOPIC A - MULTI-TERINAL TASKING

A.1 RMTTSUP - MTT Monitor 4

A.2 RDBMT - Initial Entry Routine 49

A.3 NASISX - Single Terminal Monitor 54

TOPIC B - DATA EASE EXECUTIVE

B.1 	 Data Base Preprocessor * 73

E2 RD PAC -. 88

B.3 RDBTSSIO - Assembler Routines.104

B.4 RDBEXITS - Conversion and Formatting Doutines.117

B.5 RDELIST - List Processor'.121

B.6 RCCLIS - Parent-Children List Processor . . .125

TOPIC C - UTILITIES

C.1 RDEJOIX - JOIN NASIS Users128

C.2 RDBIF - Message File Editor 133

C.3 EDEDEIVE - Cony. and Form. Routine Test Driver142

C.4 RUSERID - Get TSS USERID 147

TOPIC D - MAINTENANCE

D.1 RDBMNRGE - Transaction Merge150

D.2 RDBMNTN - Maintenance Mainline *,. ,.156

D.3 RDBCORR - CORRECT Command167

D.4 3DBCLHN - Mainline Invocation.177

D.5 RDBMAIN - Maintenance Director . . *181

D.6 RDBLOAD - Load/Create......... 186

D.7 RDBINVRT - File Invert *192

D.8 RDEILEBK - Load File Backup199

D.9 RDBEDAC - ADD-CHANGE Commands.203

D.10 RDBEAR - ADDIKE-RENAME Commands... . . .211

D.11 RDBEDCP - CHKPOIT Command216

D.12 EDBEDCS - CREATSUB Command221

D.13 RDBEDDE - END Command......226

D.14 RDBEEDI - DISPLAY Internal Command 232

D.15 RDBEDDL - DEleTE Field Command238

D.16 RDBEEDP - DISPLAY Field Command. . . , . . .243

D.17 RDBEDC - Ccmmon Routines.249

D.18 RDBEETE - FIELDS Command-.266

D.19 RDBEDFI - FIIE Command271

D.20 RDBEDPS - ield Security Routine .. .:.278

D.21 RDBEDID - Load Descriptors Routine284

D.22 RDEEEO - MOVE Command291

D.23 RDBEDPA - PATCH Command. 296

D.24 RDBEEPE - PRINT Command.301

D.25 RDBEDRS - Record Security Routine.... . . .306

D.26 RDBEIRT - RESTORE Command.311

PAGE 3

D.27 RDBEDRV - REVIEW Command-316
D.28 RDBEDSS - SVASTRT Command.323
D.29 EDBEESU - SUPERFLD Command330
D.30 RDBCOMB - Index File Merge335

D.31 SDBELIN - Initialization Routine- .342

TOPIC E TERMINAL SUPPORT

E.1 Terminal Support Preprocessor... .;.. * . .34-7
E.2 RTSUPER - Terminal Support Supervisor.-. . .356
E.3 RDBPLINK - PLI/Assembler Linkage Routine- . . .402
E.4 RTSATTN - Attention Interface.406
E.5 RDBATTX - Attention Prompting Routine. 410

TOPIC F - DATA RETRIEVAL

F.1 RDBINIT - Retrieval Initialization-414
F.2 RDBLDS - FEILDS Command 419
F.3 RDBXPND - EXPAND Command424
F.4 RDBSLCT - SEARCH/SELECT Commands . . * .. 429
F.5 RDEDSPI - DISPLAY Command....441
F.6 RDBPRNT - PRINT Command.-449
F.7 RDEEXSR - EXECUTE Command.459
F.8 RDBSETS - SETS Management Routines465
F.9 RDBGEINR- GENERATE Command 473
F.10 RDBFCRM - FORMAT Command478
F.11 RDBSFMT - Store Formats Routine.... .-. 488
7.12 RDBGFLDS - GEIELDS Command493
F.13 RDEPRIET - Batch Pr.int Monitor497
F.14 RDBlEIT - Batch Print Output Module 500
F.15 RDBL1T - LIMIT Command503

TOPIC G - USAGE STATISTICS

G.1 RDBACCUM - Statistics Accumulator508
G.2 RDBPRNTR - Print Retrieval Statistics Routine.513
G.3 RDBUPDST - Update 1aint. Statistics Routine. .518

G.4 RTIMERS - Clock Routines . # 4525
G.5 RDBPRNTM - Print laint. Statistics Routine:. .528
G.6 RDBSTAT - Retrieval Statistics Director. . . .533

TOPIC H - IMMEDIATE COMMANDS

H.1 RDBEXPI - EXPLAIN Facility •. .*..... . ..538
H.2 RDBSTET Strategy Interface544
1.3 RTSSIRT Strategy Assembler Routine-. . .-. 553
H.4 RDBUSER - User Verb Table......561
H.5 RDBPRO - User Profile Routine..564
H.6 RTSPRO - User Profile Assembler Routines . * .571
H.7 TRSTEST - Testing Facility . . . *578
H.8 HTSTESTX - Testing Facility I/O Interface. . .583

PAGE 4

TOPIC A.1 - MT/T MONITOR

A. MODULE NAME

Multi-Terminal Tasking Monitor

Program-ID - RMTTSUP

Module-ID - MTTSUP

B. ANALYST

Robert I. Rutledge

Neoterics, Inc.

C. MODULE FUNCTION

The MT/T Monitor is the single program which effects

communication among the NASIS application program, the

TSS/360 cperating system and the NASIS user

community. This program is responsible for the

allocation of the NASIS resources to the user

community, the handling of all terminal input/output

for the user community and the processing of those

NASIS functions which require more or less direct

interface with TSS/360. In addition, the Monitor

supports processors for those NASIS user commands which

pertain to the Monitor itself (such as communicating

with other users, listing active users and so on).:-

The MT/T Monitor is written completely in 360/67

machine code via the TSS/360 Assembler. The TSS user

macro library (SYSMAC) and the TSS system programmer

macro library (ASMMAC) are used to obtain the TSS

system facility macros (for terminal communication,

data management and- so on) and some macros in the

Monitor itself are used for convenience in coding.

(These particular macros are described below.)

Although the primary consideration in the coding of the

monitor is execution time, special effort has been made

to make the coding itself as lucid and informative to

the reader as possible. Profuse self-documentation -and

comments make it quite probable that specific questions

left unanswered by this document may be answered by a

quick look at the listing of the Monitor.

Finally, all the facilities of the Monitor have been

incorporated into one program. This is done merely to

get everything in the same place for convenience; it

is felt that. nothing would be really gained by

splitting the Monitor into several programs.

D. DATA REQUIREMBNTS

PAGE 5

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

Not Applicable

2. Narrative

a. Mnitor Macros

The macros incorporated into the Monitor

itself (they are the first things in the

program) are used only for ease of coding and

reading. They are in no way necessary in the

sense that they could be replaced by the

expanded coding with no detremental effect to

the execution of the Monitor.

Each macro included in the Monitor is now

described along with the parameters it

expects and its precise function.

1. EMT

This macro is used to convert an

internal hexadecimal data item into a

corresponding EBCDIC data item (i.e.,

convert internal hex into printable

characters). It is used mostly for

formatting error codes and so on for

the operator. The operands for this

macro are the target field address and

length and the source field address and

length.

2. RTRN

The ETEN macro is used to cause control

to be returned to a point described by a

TSS/360 interrupt push-down area. This

macro merely points a register at- the

-push-down area (the only operand) and

issued the svc which causes control to

be transferred to the MTTRTRV routine to

switch push-down areas. (For a further

discussion of this technique, see the

description of the MTTRTRN routine.)

3. MSG

This macro is the means the Monitor uses

PAGE 6

to send messages to the (NASIS)

operator. The operands for this macro

are the message, message and

(optionally) a return address. This

address is branched to after the message

is sent if it is specified to the macro.

This macro sets-up the messaqe pointer

in register one, the message length in

register zero and the return address (if

any) in register fourteen and calls the

MTTPRMPT routine. (In addition, if

operator response is expected, this

macro negates register zero.) See the

MTTPRFPT routine description for further

information.

4. TIME

This macro is a more useful version of

the (TSS) EBCDTINE macro. It accepts

the same operands as EBCDTIME but also

accepts defaulted operands and

register-notation operands. This macro

sets-up parameter registers and calls

the MTTTIME routine so as to conserve

space in the PSECT. For more

information, see the description of the

TNITIME routine.

5. MOVE

This is the macro which every program

written having to move data around has

in it in some form or another. Ours

puts the operands for the macro (target

field pointer, source field length and

source field pointer) in registers and

calls the MTTMOVE routine, the

description of which later in this

document will give you more

information.

6. TRAN

This macro is analogous to the MOVE

macro except that it translates instead

of moving. The operands for this macro

are the field pointer, the field length

and the address of the translation

table. After setting-up the parameters

this macro calls the MTTTRAN routine to

actually translate the text.

PAGE 7

7. *ElTE

This important macro is used to take

care of all the linkage conventions,

setting-up base registers, terminating

timers and so on each time the

application calls one of the Monitor's

service routines. Basically, it saves

all the calling registers (including the

floating-point registers), the return

address and the program mask in the

push-down area in the task control table

(see the description of the TCTE table

belc), kills the user's time-slice

timer by calling MTTUNTIM and sets-up

all the base registers for the Monitor.

There are no operands for this macro

-which is kind of the mirror image of the

'BETN macro discussed next.

8. RETN

This macro is used to cause return-to

the caller of a Monitor service

routine. it expects the registers and

so on to have been saved by a

corresponding ENTE macro and effects

return by merely flagging the sub-task

as dispatchable and branching to the

queue-scanning routine (MTTFNDQ1). (By

and by the queue-scanner will find this

sub-task waiting for dispatch and issue

a ETR macro pointing to the push-down

area in the user's task control table.)

9. 'RECORD

This macro is used to record an event

and/or data within the Monitor. It uses

a VMHOOK-like mechanism to cause the

System Internal Performance Evaluation

(SITE) processors to record a data area

onto the system's recording tape.

'There are various and sundry operands to

this macro which describe the animal

being recorded. You are referred to the

section on event recording (below) for

details on this and the rest of the data

recording mechanism within the

Monitor.

b. Overview

PAGE 8

The MT/T Monitor, with the exception of the

code to set-up NASIS and to take it back

down, consists of one main routine to scan

the york-to-do queues which the program uses

to keep track of what's going on and a bunch

of subroutines to actually do the indicated

work. Thus, the flow of control through the

Monitor is queue-scanner to subroutine to

handle a requested function to queue-scanner

and so on, When the queue-scanning routine

finds nothing whatsoever to be done, it

enters the (TSS) "WAIT" condition.

As most of the Monitor consists of the

subroutines to perform specific functions for

the Monitor, a quick list of these functions

is in order. First, there are the task

controlling functions: dispatching and

time-slice-ending a sub-task. There are

several routines for performing input/output

en a sub-task terminal. There are quite a

few routines to handle NASIS "user" commands

-which are more easily processed by the

Monitor than by any other part of NASIS. And

there are the normal subroutines which can be

called by anybody for the grunge tasks:

moving text, translating text, sending

messages and so on.

One final section of the Monitor doesn't

quite fit the description above. This is the

asynchronous (SYSIN) attention interrupt

processing routine. This is the program

which gains control when the (MT/T) operator

hits the ATTN key on the operator's terminal.

Thus, this is the routine which actually

communicates with the operator. All it does

is read (Monitor) commands from him and

exeute them.

c. External specifications

1. Module Name - RMTTSUP

2. PSECT Name - MTTSUPP

3. CSECT Name - MTTSUPC

4. Entry Point Names

a. NASIS (To initialize and set-up

for execution the entire NASTS

system.

PAGE 	9

b. 	 MTTWRITE (To write text to a

sub-task terminal.)

C. 	 MTTREAD (To read text from a

sub-task terminal.)

d. 	 MTTIEEAD (To first write text to

and then read text from a sub-task

terminal.)

e. 	 MTTFLUSH (To empty the output text

buffer by writing it to a sub-task

terminal.}

f. 	 MTTXTE (To obtain various

information about a sub-task.)

9. 	 MTTPASS (To prompt a sub-taskuser

for his "security code".)

1i. MTTGETIM (To obtain the elapsed

time 	 statistics for a sub-task.)

1. 	 MTTMUST (To enter "must-complete"

mode for a sub-task.)

j. 	 MTTTSE ITO force a time-slice-end

condition on a sub-task.)

-k. 	 MTTLT (To obtain the current

NASIS limits for printing,

searching and so on.)

1. 	 NTTPGMIN (To process a program

interruption.)

m. 	 14TTSPEAK (To process an operator

asynchronous attention

interruption.)

n. 	 MTTTSED (To process a

time-slice-end timer

interruption.)

0. 	 MTTRTRN (To process a "return" SVC

interruption.)

p. 	 MTTRESET (To process the operator
attention resetting (TSS)
command.)

q. 	 NTTKA (To process the user "KA"

command.)

r. 	 MTTKB (To process the user "KB"
command.)

s. 	 MTTMSG (To process the user "MSG"

command.)

t. 	 MTTHELP (To process the user

"HELP" command.)

u. 	 MTTUSERS {To process the user

"USERS" command.)

V. 	 NTTNUSER (To process the user
"NUSERS" command.)

w. 	 MTTDATIM (To process the user
"fDATETINE" command.)

x. 	 MTTWAIT (To process the user

"WAIT" command.)

y. 	 MTTUTAB (Pointer to the MT/T User

PAGE 	10

Information Table for the executing
stb-task (if any).)

z. 	 MTTTCT (Pointer to the start of
the terminal table.)

aa. MTTTRQ (Pointer to the executing
terminal table entry (if any).)

bb. 	 MTTTCTE (Pointer to the executing

task control table (if any).)

5. 	 External References

a. 	 SYSINDCB (Pointer to the data

control block for SYSIN.)

b. 	 TSATIN (Pointer to the NASIS

attention interrupt handlino

routine.)

d. 	 Datasets

The Monitor requires two datasets which are

used in its initialization phase. One

contains the list of NASISIDs which are

allowed on the system and the other contains

Monitor commands which are to be executed

automatically before NASIS is opened up to

the user community.

1. 	 NASIS.USXRIDS

This dataset is the one containing the

list of allowable DASISIDs. It also

contains information about which NASISID

is allowed to look at which file, but

the Monitor only uses the first four

fields in each record: the NASISID, the

password (if any), the time-slice value

to be initially assigned to the NASISID

and the authority code to be initially

assigned to the NASISID. -(This last

field is not used at the present.)

2. 	 NASIS.COMMANDS(0)

This 	TSS/360 "line" dataset contains any

Monitor commands which the operators

wishes to have automatically executed

each time NASIS is brought up. Examples

of such ccmmands are "limit", "pgmstop",
"news", and so on.

e. 	 CONTROL TABLES

The following section discusses the tables

PAGE 11

which the Monitor uses to drive itself. Only

general descriptions are given here for the

formats of the tables; we would rather you

know 	 what their functions are. Each of these

tables is described by a DSECT in the listing

of the Monitor, so you are referred there for

the formats of these tables.

1. Terminal Table (TRQ) (DSECT "TRQDSECT")

This is the most basic table used by the

Monitor. It is a list and count of the

users attached to NASIS at any

particular time. TSS, through the "Q"

macros (BRITEQ and READQ) return a

terminal identifier entitled the

"relative terminal number"., This is a

number from zero to the current number

of attached users and this is the number

which is used to index the terminal

table to find the entry for a particular

user. All the pointers to information

tables for the user oriqinate in the

terminal table. The things contained in

this table are: the pointer to the task

control table, the pointer to any

message control blocks for this

sub-task, the symbolic device address of

the terminal, the NASISID of the user

attached to this terminal (if any, this

field is filled in during logon), the

flag indicating whether the sub-task is

waiting for dispatch and the "WAIT"

timer for the sub-task, if any.

2. 	 Task Control Table (TCT)

(DSECT "TCTDSECT")

This is the table that contains all the
information about and working storage
for a sub-task. All the (normal)
register saveareas, task-related
temporaries, task indicators, Monitor
saveareas, timing information, I/O
buffer information and so on are in this

table. In addition, all the user

information is here: NASISID, password,

task-id and so on. When the Monitor can

locate this table for a particular user,

it knows all there is to know about

him.

3. Message Control Block (MCB)

PAGE 12

(DSECT "MCDSECT")

This 	 control block is constructed each

time a message is to be sent to a

sub-task. All it contains are the

message text and length and a pointer to

the next message control block on the

chain, if theme is one.

1. 	 Attention Table (ATN)
(DSECT "ATNISECT")

This table is dynamically built each

time a user hits the ATTENTION (or

BREAK) key at his terminal. The table

contains all the information about the

interrupt (which is almost asynchronous)

to pass on to the NASIS attention

processing routine. In addition, it

contains a savearea for that routine to

temporarily save the contents of the

7interrupted DSA. In addition, if the

attention interruption processor wishes

to modify the address to which control

is to be returned after the interrupt is

-processed, it so notifies the Monitor

through this table.

5. 	 PINVQ Return List (DSECT "CBAFNQ")

This is a control block constructed and

maintained by TSS. It is the

information returned to the Monitor

after it executed a READQ or WHITEQ and

contains the terminal number mentioned

earlier plus information about any text

read in and some indicators for line

hang and attention.

6. 	 User Table Entry (DSECT "USRDSECT")-

This thing is really only a descriptor

for the format of a record in the

NASISIDs list dataset,

"NASIS.USERIDS".

7. 	 Parameter list (DSECT "PRLDSECT")

This is the control table passed to the

Monitor whenever the application calls

it to process a terminal I/O request.

It describes the parameter list expected

from and returned to the caller, (This

PAGE 	 13

parameter list is identical to the one

used by TSS/360 GATE except that there

is no ADCON pointing to control

information in the first-word.)

8. 	 Operator Attention Savearea

(DSECT "SAVDSECT")

This table is built by the Monitor each

time the operator bits ATTENTION and

causes entry to the operator attention

interrupt processor (MTTSPEAK). This

table contains all the registers and

VPS as of the interrupt and is kept (in

a chain) because the operator is allowed

to hit ATTENTION again while in this

routine and we wish to be recursive.

Thus, this table contains only the

registers and VPSW as of the interrupt

and a pointer to the next table on the

chain, if any.

9. 	 limit Table (DSECT "LIfMDSECT")

This table is where the Monitor keeps

all its information about NASIS limits.

(The things which may be limited are

total number of users, number of users

of a particular class, number of records

in a set which may be searched on or

printed and so forth.) This table

consists of a header containing the

limiting numbers for those things which

are always limited and entries for each

class of NASISID which has been manually

limited by the operator..

10. 	 Recording Area IDSECT "RCDSECT")

This table is the area in which the

Monitor posts the data which it records

(via the TSS "SIPE" mechanism, see the

section on recording below). This table

is also used to pass the data along to

the recording mechanism in the TSS

Supervisor. It consists of the actual

data to be recorded plus some control

and save areas which the recording

mechanism expects.

11. 	 fata Control Block (DCB)

(DSECT "CHADCB")

PAGE 	 14

This table is used by the Monitor to

interface with the TSS access methods

used in the handling of the various

datasets the Monitor uses (see the

section on datasets above). One DCB is

set-up by the Monitor and serves for all

the datasets it uses. ror more

information on the Data Control Block,

you are referred to the "System Control

Blocks" Program Logic Manual

(GY28-2011).

12. 	 Interrupt Storage Area (ISA)

(DSECT CTAISA)

This control table is really page zero

in virtual memory. The DSECT supplied

by TSS is used to direct the Monitor- to

the correct memory locations

corresponding to the items it wishes to

reference. (For further information on

the Interrupt Storage Area, you are

referred to the "System Control Blocks"

Program 'Logic Manual (GY28-2011).

f. 	 retailed Description

The 	 following section contains a detailed

description of the MT/T Monitor. It is

assumed that the reader has a firm grasp of

360/67 machine language and the principles of

the 2SS/360 Operating System.

1. 	 HTISTART routine

MTTSTART (with the entry point NASIS) is

the routine which the MT/T Interface

Module (CZCTC) calls when the MT/T

operator enters the MTT command at the

operator terminal. On entry, this

routine establishes linkage and sets-up

all the program base registers (R13 for

the PSECT, R8-R12 for the CSECT). It

next initializes some of the more

important program variables--the flags,

user counter, table pointers etc. It

then initializes the- (Monitor's)

recording mechanism and obtains a

two-page pool to build the limit table,

news text area and terminal table in.

The terminal table is aligned on a page

boundary so as to minimize paging later

on. Coincident with building these

PAGE 15

tables, their pointers are posted in the

PSECT. Next, the (operator) -attention

is specified and enabled, as is the

program interrupt routine and the SVC 63

interrupt routine (for the RETURN SVC).

In all cases, the-SIR function-is used

to actually specify the interrupt

routine. At this point, the

NASISID-containing dataset

(lIASIS.USERIDS) is read and the four

'fields mentioned earlier from each

record are posted in an in-core table

(this is done so that the Monitor

doesn't have to waste time reading the

dataset each time a user logs on).

After this dataset is processed, the

command dataset (NASIS.COMMANDS(O)) is

read in and the commands in it are
executed. This is the last function for
this routine, and after it is completed,
it sends a message to the operator (MSG)
to the effect that it is finished and
commences execution of NASIS by exitting
to the MTTYINDQ routine at MTTF4DQ1.

2. MTTIEND Routine

This routine is the inverse of the

MTTSTART routine and is entered by being

the target of the STIMER issued in the

shutdown routine (rTTSHUT). (It may

also be entered by a direct branch to

MTTEVD1 in the case of an immediate

shutdown request.) Upon entry in either

case it first scans through the terminal

table looking for active users and

calling the MTTQUIT routine to log them

-off after sending them messages telling

them that the system is shutting down.

After it has gotten rid of all the users

in this fashion, it returns the storage'

for the userid table and deletes all the

interrupt routines via the TSS DIR

function. After this is done, the

routine sets a timer such that it sits

Idle for fifteen seconds. This is done

so that all the user terminals have time

to finish typing their FREEQ messages

before the Monitor returns control to

the TSS system which will terminate any

I/O going on each terminal is it gets a

chance. After the wait is over, the

routine frees the pool of memory used to

PAGE 16

build the three tables mentioned earlier

and returns to the system through

standard return linkage.

3. M!TFINDQ Routine

This is the routine which scans through

the various queues looking for Mork for

the Monitor to do. It has two entries:

MTTFINDQ for callers who wish control

returned to them at the termination of

the I/O operation for the sub-task and

ITTFNDQ1 for callers who are merely

finished with a task. The only

difference is that at MTTFINDQ, the

registers are saved in the TCT for the

sub-task in question and at MTTFNDQ1

they are not. The first thing either

routine does is to zero out the pointers

for the current TCT and TRQ so as not to

confuse any of the interrupt routines.

It then sets-up the pointers and indices

to the terminal table in registers (for
speed, it may have to scan the terminal
table several times). The first scan
through the terminal table is to look
for sub-tasks with outstanding messages.
If any are found, they are send via
calls to the MTTIRITE rontine at
MTTWBITl. (All internal calls on
MTTWEITE are made to ITTWRIT1.) Before
a message is sent, however, the MCB for
the sub-task is locked out so that we
don't try to send two messages to the
task at the same time (this would
confuse the Q routines which- don't
quite know what to do with a busy
condition from, a terminal). Also, no
messages are sent to terminals with the
"Il/0 active" flag on in the TCT for the
same reason. After the terminal table
has been scanned for messages, it is
scanned for sub-tasks waiting to be
forced. For each that is found, a
message is sent and the MTTQUIT routine
is called to actually disconmect the
terminal. Care is taken so that this
routine doesn't try to force a task more
than once. These two scans are not
particularly functionally important, but
they must be done first because if they
are done after the T/O and execute
scans, the terminals would always appear

PAGE 17

to be busy and both these functions rely

on the terminal being free.

The next scan is done with the aid of

the TSS FINDQ function. This facility

scans through the terminals attached to

NASIS and returns a non-zero return code

if there are any with I/O completion

status. If the Monitor finds one such,

it records the return code (REC) and

then checks for a hung-up phone line (a

flag in the FINDQ list) and performs a

logical disconnect on the terminal

(MTTQUIT) if it finds this to be-the

case. It also manually checks for an

indication of attention in addition to

whatever code it has and calls the
MTTCLEAR routine to "flush out" all
other outstanding attentions from the
terminal (because RTAH has the nasty
habit of telling us that there were 1-3

attentions when there was in fact only

one). After these checks are made (if

it was a line hang, control has gone

somewhere else) the routine locates the

TCT for the terminal with the completion

status by indexing into the terminal

tabls with the relative terminal number

and locating the TCT pointer in the

terminal table entry. It then posts the

terminal in question as the currently

running task, restores the registers

which it must have saved in the TCT

(because everybody calls MTTFINDQ to

await the completion of all I/O

operations) and returns to the original

caller through register 14..

If no terminal completion stati were

found, the final scan through the

terminal table is made. This scan looks

for sub-tasks waiting to be dispatched.

These will have the mork-to-be-done flag

on in the TRQ entry. After one of these

is found, quick checks for terminal busy

(it's receiving a message) and system

down (somebody did a shutdown) are

made. If the terminal is busy, the task

is merely skipped over; if the system is

shutting down, the task is marked as not

waiting for dispatch and the scan is

continued. If the sub-task is found to

be OK to be dispatched, the pointers are

PAGE 18

set to reflect the task now. executing

and that task is returned to by a direct

branch to the dispatching routine

(MTTDISPR).

If absolutely no work is found to be
done, the Monitor relinquishes execution
by telling TSS it must wait for some
event to complete related to the NASIS
task. This is done by merely issuing a

(TSS) WAIT macro. Upon return from the

WAIT control is transferred to the

beginning of the queue-scanner to

determine what event it was which

completed.

4. MTTLISPR routine

This is the routine which transferrs

control to a sub-task using the Saved

registers and vps in the task control

table. All it does is start the user's

time-slice timer by calling the MTTTIMER

routine and then execute an RTRN

pointing to the push-down area in the

TC-.

5. MTTTIMER routine

This routine handles the initiation of
the STIMER which starts a sub-task's
time-slice execution time timer. Upon
entry, it saves a few working registers
in the TCT for the sub-task, picks-up
the value to be used for the time-slice
this time (TCTNTS), adds one to it
(figuring that the coding in the Monitor
plus the SVC processing tine for the
-RETURE will add up to a millisecond) -and
issues the STIMER using timer number
seven. If the STIMER fails, the task is
forced since we can't run without
time-slicing. Return from this routine

is to the caller through register 14.

6. MTTUNTIM routine

The MTTU14TIM routine is called when a
Monitor service routine has been entered
and there is still a time-slice timer
running. It turns off that timer as the

Monitor does not want to be time-sliced

while it is handling a service reguest

PAGE 19

for the applcation. Upon entry, some

registers are saved in the TCT for the

task and a TTIMER (CANCEL option) is

issued to turn off the timer and return

the amount of unused time in it. This

unused time subtracted from the amount

of time the last time slice started with

is added to the user's total CPU time

used (after the same one millisecond

added in MTTTIMEB is subtracted off).

Also, a check is made here for a recent

call on fTTMUST (flag TCTMUST). If this

'has happened, the next-time-slice value

is reset to the user's time slice value

(as it was originally set to an hour by

WETMUST). An error from the TTIMER does

not kill the task, but the operator is

notified of the anamoly. Return is,

again, through register 14 to the

caller.

. MTTTSEND routine

MTTTSEND is the entry point specified as

the exit routine to be called when the

time-slice timer runs out. Thus, it is

the routine which is called to recognize

the fact that a time slice is finished

and cleans-up and updated the timing

statistics and places the

time-slice-ended user back in the

dispatch queue. After it is entered, it

loads all the base registers including

the bases for the terminal table entry

and TCT for the executing task. It then

checks to see if the timer interrupt

occured in the Monitor and if it did it

ignores the interrupt by merely there

was indeed a user executing at the time

of the interrupt by seeing of the TCT

pointer is zero. If it is, a branch is

taken to the code to ignore the

interrupt (below).

At this point, MTTTSEND updates the

user's timing statistics by adding the

value used to initiate the last

time-slice 4TCTNTS) into the accumulated

CPU time for the task (TCTCPUTM).

TCTNTS is also reset to the user's

time-slice value (TCTTIMER).

Now the routine checks to see if the

PAGE 20

interrupt occured while the Monitor was

executing by checking the interrupt VPSW

address against the lower and upper

bounds of the Monitor. If the

interrupt occured within the Monitor, it

is ignored by undoing the linkage and

returning to the Task Monitor by

branching through register 14. If the

interrupt was legitimate, all the

registers and VPSW as of the interrupt

are saved by moving the push-down area

provided by the Task Monitor into the

user's TCT. The routine then places the

task in the dispatch gueue by turning on

that flag in his terminal table entry

(TCTWKSW). It now overlays the

registers and VPSW in the push-down area

with the registers for the Monitor and

address of HTTFNDQ1 and causes control

to return to the queue-scanner by

returning to the Task Monitor. (This

means of transferring control is used

throughout the Monitor because the Task

Monitor will get confused if we don't

return to it after each interrupt so it

can deguene them from its interrupt

chains.)

. NTTTASRI routine

The MTTTASKI routine is the routine

which is branched to directly when the

queue scanner finds an "initial

connection" interrupt as a return from a

PINNDQ operation. It means that a user

has just typed BEGIN KASIS at a

terminal. After some initialization,

this routine checks to see if the

application is shutting down (DOINSW on)

and if this is the case, it pretends the

terminal hung up and calls MTTQUIT to

disconnect it. At this point, the

number of active users (MTTUSXR#3 is

incremented by one.

MTTTiSKI now checks to see if the

terminal is one of the CRTs recognized

by the application--a 2260-or CCI CC-30.

If it is, the size of the area for the

TCT is increased as these devices

require a larger i/o buffer for their

screens. (CC-30s are located by

examining the list of CC-30 Symbolic

PAGE 21

Device Addresses hard-coded into the

Monitor; 2260s are located by checking

the device-type field in the FINDQ

return list.) Now that it knows how

much space it needs, this routine

obtains space for the task control table

via GETMAIN. As in all cases within

this routine, failure to obtain space

for one of the tables results in the

terminal being disconnected via the

ITTQUIT routine. After the table is

gotten, its pointer is posted in the

terminal table entry for this sub-task

and as many fields are filled in in the

TCT as the Monitor can, for example all

the buffer pointers and counters,

terminal type, and so on. The sign-on

time for the user is obtained via the

REETIM macro (this is the number of

micreseconds since March 1, 1900) and

posted in the TCT.

As this point, the limit table is

investigated to see if this user is

allowed on, the criterion being the

number of (total) users allowed on and

the number that are already on. If this

user overflows the limit, he is so

notified and kicked off by calling

MTTQUIT. If he is allowed an (so far)

his NASISID and password are prompted

for and read by calls on the MTTREAD and

MTTUBITE routines (at MTTWRITI and

MTTWEAD1, respectively). After the

user's NASISID is obtained, the limit on

the members of his class (which is the

first two characters of the NASISID) are

checked and be is kicked off as before

if the limit for his class has been

reached. Also, only three tries to

enter a correct NASISID or password are

allowed. After all the information

about the user is gathered in, his

terminal table entry and TCT are filled

in the rest of the way. At this point,

a message is sent to the operator

telling him (her) that somebody is

logging on.

Vow that the user is properly connected,

le is informed of several things. If a

shutdown has been reguested, the user is

informed of the time at which the

PAGE 22

application will terminate. He is also

sent any news that has been typed in

(this is taken from the VEWSLTH and

NEISTEXT fields). Finally, a call to

MTTFIUSH at DTTFISH1 is made to empty

all this information plus his Monitor

logon message to his terminal. Now the

user is given virgin registers and a

VPS1 pointing to the application entry

point (these are posted in his TCT) and

he is placed in the dispatch queue.

This routine exits to the queue scanner

at MTTFNDQ1.

. ?TTQUIT routine

This is the logoff processor for the

application. It also is used to force

users off the system for one of a number

of reasons. There are two entries to

this routine: MTTQUIT for callers who

don't wish to be returned to and

MTQUIT1 for those who do. This routine

first gets itself a safe place to save

registers and then decrements the count

of active users by one (to match -the

early processing of this counter by the

MTTTASKI routine) and flags the user as

being ditched by posting the TCTQUIT

flag in his TCT (if he has a TCT,

remember he could have done something

like hung up his terminal during the

logan process). After cleaning-up the

user, killing off any queue switches,

turning off his time-slice timer, and so

,on, a message indicating the logoff is

sent to the operator.

Now all MCBs and attention tables left

un-released are gotten rid of by

FREEMAINing them. (This is done because

it is quite likely that attention tables

in particular were not released during

the user's session because some

attention processing is of the GOTO form

instead of the RETURN form.) Now the

total elapsed CPU and connect times are

calculated and formatted into a logoff

message for the user. The user's TCT is

now freed (after the terminal number is

saved from it) and his terminal table

entry is 2eroed out. The logoff message

is transmitted to the user's terminal as

PAGE 23

an option on the FREEQ macro which is

used to disconnect his terminal. This

is the last operation this routine has

to perform and when it is finished, it

either returns to the caller through

register 14 or to MTTrNDQI (queue

scanner) depending on which entry gas

originally called.

10. MTTXHITE routine

This is the routine which is used to

-rite text to a sub-task terminal. It

has two entry pointsi MTTUDITE for

calls from the application program (it

assumes standard TSS/360 type I linkage

and performs initialization with the

ElViT macro) and MTTWRITI for calls from

within the Monitor itself (it assumes

register 14 to contain the return

address and all the other base registers

to be already set-up). For external

callers, the parameters to the routine

(text pointer and length) are taken

from the parameter list pointed to by

register 1 and for internal callers they

are moved from registers 0 and 1. This

is all the initialization that MTTWRITE

does.

Checks are now made for one of the

accepted CRTs and if one is found,

control is transferred to one of the two

routines to process these terminals.

They are described below. At this

point, all the registers used throughout

the routine are set-up. They include

registers containig constants, input

string and output buffer pointers and

counters and zeroed-out registers for

character moving. The first thing

checked for is a ': at the end of the

input string signifying that the caller

wishes to inhibit the carriage-return

that is normally added to the end of

each line of output. A flag is turned

on to remember about this later if the

character is found. In addition, the

colon is removed from the text. All

trailing blanks are also stripped from

the end of the text to be output (for

neatness). A ftnal check is made to see

if the task's I/O buffer is completely

PAGE 	 24

filled and if it is, it is emptied out

by calling MTTFLSH1 to send the buffer

to the user's terminal.

If the last operation completed at the

terminal was a read, idles are added to

the front of the text to give the

carriage time to complete returning to

the left margin. Also in this case, a

linefeed is added to the front of text

going to teletypes (as then do not

automatically add a linefeed to their

"new line, sequence). If the last

operation to the terminal was a write

and the terminal is a teletype and the

last-written line was not

carriage-hanged, a linefeed is added to

the front of the text for the same

reason, At this point, the caller's

text is processed.

All 	 processing of the caller's output

text is done character by character. A

character is fetched, examined, possibly

given special treatment and then placed

in the I/O buffer in the sub-task's TCT.

Special treatment is given to the

following text characters:

a. 	 Idle characters are ignored

completely (because they are used

for special applications in the

Monitor,

b. Linefeed characters are followed by
idle characters for some
terminals.

c. 	 Backspace characters cause the

distance across the carriage (for

calculating the number of idles

required after a carriage-return)

to be decremented by two.

d. 	 Carriage-return characters are

followed by enough idles to allow

the carriage to return to the left

margin. Also, the distance across

the paper is zeroed.

e. 	 Tab characters are followed by an

estimated number of idles (we don't

know how far the tab is going to

PAGE 25

move the carriage). The distance

across the paper is also given an

estimated increment.

If at any time during the moving of text

the I/O buffer is filled, it is flushed

to the terminal by a call to the

HTTFLUSH routine at MTTFLSH1.

After all the text has been processed, a

carriage return is added to the end of

the line if the caller did not request

the carriage to be hanged. Idles are

added after this carriage return to

allow the carriage to return to the left

margin. If the TCT I/O buffer has been

exactly filled by this write, it is

flushed out by calling MTTFLSH1. After

all this is done, all the buffer

pointers and counters and distances are

updated in the TCT and flags indicating

whether the line was hanged or not and

that the last operation was a write are

posted in the TCT. The method of return

to the caller is determined by the entry

point called.

The two special routines for writing to

CRTs merely move the text to the TCT I/O

buffer, call the MTTWRQ routine to write

it out, call MTTFINFDQ to wait for the

write to complete and branch to the

common exitting code for MTTWRITE.

11. !TTCHARS subroutine

This subroutine is used to insert

characters into the TCT I/O buffer, It

is used extensively by the MTTWRITE

routine to move idles, linefeeds and so

on. It determines whether there is room

for the characters it has been requested

to post in the buffer and if there is it

merely moves them in. if there is not

room, it flushes the buffer to the

user's terminal by calling MTTFLSH1 and

then moves the characters into the

buffer. Return is to the caller

through register 14.

12. MTTREAD routine

This is the routine which reads text

PAGE 26

from a sub-task terminal. It too has

two entry points, one for the

application to call and one for the

Monitor to call. MTTREAD, the external

entry, does its linkage/base register

initialization via the ENTB macro.

WTTREADI, the Monitor's entry, merely

moves the parameters to the appropriate

registers. The parameters in the case

of a call to NTTREAD are in a standard

TSS parameter list. This routine first

sees whether there is any output text in

the TCT I/O buffer. If there is, it is

written to the terminal and then text is

read from the terminal by a call to the

MTTWRQAR routine. If there is no text

in the buffer, the terminal is merely

read by a call to the MTTRDQ routine.

If there are no error returns from the

'IQ" routine, the MTTFINDQ routine is

called to await completion of the I/O

operation.

After the text has been read from the
terminal -and presented to the MTTREAD
routine by pointers in the FINDQ return
list, it is translated from line code to
EBCDIC with the TRAN macro. If the user
is in "folded" (KB) -mode, the text is
translated once more to "fold" his lower
case input to upper case. If there is a
carriage return on the end of the input
string, it is stripped off., If the line
if input ends with either a "#" or a
"1", the user has cancelled the line and
control returns to the common entry to
read another line from the terminal.
Otherwise, the line is scanned for
backspace characters which are processed
by moving the text to the right of the
backspace character two spaces left
(over the backspace and the character
preceeding it). Under no circumstances
if the line backspaced over the "left
margin". After the backspaces are
processed, a check is made to determine
whether or not the line ends with a "-"
indicating continuation. If it does,
the continuation flag is turned on in
the return codes being built and the

section for processing trailing blanks

is skipped over. If there is no

continuation indicator, all trailing

PAGE 27

blanks at the end of the line are

deleted.

Vow the length of the text input is

checked against the length requested by

-the caller. If the user typed in more

text than the caller allowed for, the

truncation indicator is turned on in

the return code being built and only the

amount of text requested by the caller

is moved. Otherwise all the text the

user typed is moved to the caller's

target area. Now the terminal buffers

and controls are released back to the

system via the CLEARQ facility and the

returns from the CLEARQ are checked for

attention. If an attention is detected

during the CLEARQ, the attention

indicator is posted in the return codes

being built.

At this point, all the flags indicating

what has happened are posted in the TCT,

the length of the user's input text is

posted in the caller's parameter list

and the caller is returned to either by

a branch through register 14 for

internal callers or a RETN macro for

'external callers.

13. MTTIEEAD routine

This routine is mostly a convenience

item for the application. All it does

is internally call MTTWRITE and then

MTTREAD (at MTTWEIT1 and MTTREAD1) to

effect a "GTIAR"-type function. There

is no internal entry to this routine.

After the routine has performed

initialization with the ENTR macro it

moves the parameters from the TSS

parameter list to the registers the

internal entries to MTTWRITE and MTTPEAD

expect and calls each of the routines.

Checks for errors from ?TTWRITE are made

before the call to MTTREAD is made and

if any are found, the call to ?TTREAD is

skipped and the error indicators are

returned to the caller. Return to the

caller from this routine is made via the

RETN macro.

14. MTTEIUSH routine

PAGE 28

This routine is the routine which
-mpties the I/O buffer (in the TCT) to
the user's terminal and resets all the
buffer pointers in the TCT to reflect
the now-empty buffer. It has an entry
for external callers (MTTFLUSH) which
initializes with the EXIR macro, and an
entry for internal callers (NTTFLSHI1)
which merely saves some working

registers.

After initializaion if finished, this

routine checks to see if there is

anything at all in the buffer. If there

isn't, it merely branches to the code to

return to the caller. If there is, the

routine checks to see if the terminal

type is a 1050. If it is, an

end-of-block character is added to the
end of the text in the buffer. (This

routine relies on there being an extra

character in the buffer at the end of

same in case the buffer is filled.) In

the case of an external caller, the

MTTWRQ routine is called to empty the

buffer; in the case of an internal

caller, the 'IQ" routine is one of the

parameters to this routine and that is

the routine which is called. After

return from the 'IQ" routine, the

MTTIINDQ routine is called to await the

completion of the I/O operation. After

this is finished, the caller is returned

to either by branching through register

14 or by a RETN macro.

15. MTTFDQ, MTTWRQ and ITTWRQAR routines

These three routines are the routines

which perform the actual I/0 requests on

user terminals. After performing the

initialization unique to each operation

and issuing the I/O request, they all

user common coding to analyse the

results and return (label QCOfON).

MTTSDQ saves some working registers and

then issues a READQ regnest to the

appropriate relative terminal number

with the operand TRfNSL=N (because we do

our own translating). It then joins the

common finalixation code.

PAGE 29

NTTUQ saves registers and translates

the text to be written to line code by

using the TRAN macro. (In the case of a

2260, no translation is done as of yet.),

It then issues a 1RITEQ request pointing

to the appropriate relative terminal

number, output text and output text

length with the additional operand

TRVSOUT=l4 (since we just translated the

text ourselves). It then joins the

common finalization code.

fTTIRQAR behaves almost the same as
1TTVRQ except that the operands RESP=Y
and TRNSIN=N are added to the WRITEQ
request. It then falls through to the
common finalization code.

After the "Q" operation has been

requested, QCOMMON executes into a

branch table indexing on the return code

from the operation. This table either

adjusts the return code to the Monitor's

internal code set, branches to an error

routine which tells the operator about

the unexpected "Q" return code and then

pretends it was an I/O error, or leaves

a zero (good) return code alone. It

then restores all the working registers

(except the one with the return code)

and returns to the caller through

register 14.

16. MTTATTN routine

MTTATTN is the routine which is branched
to directly by the queue-scanner when
that routine finds a "naked" attention
return code from one of the terminals
after a FINDQ operation. This means
that we have received almost an
asychrounous interrupt from the sub-task
and it requires some special processing.
(It is almost an asychronous interrupt
because we are assured that it can only
be found at the end of a time-slice, so
we really have available the "interrupt"
registers and -vpsw.) Also, the
application has set-up routines -which
are to be called when attention
interrupts (this kind, not the kind
which merely add a bit to the I/O
request return code) occur and the

PAGE 	 30

routine itself requires special

processing.

On entry, NTTATTN locates the TCT for

the terminal which got the interrupt by

indexing into the terminal table on the

relative terminal number in the FINDQ

list. If there is no TCT, the terminal

is hung-up by the issuance of a FREEQ

operation with no operands. After the

TCT is found, it is marked not busy and

the terminal table entry and TCT pointer

are posted as being the currently

executing ones. At this point, the

MTTCLEAR routine is called to "flush

out" any more attention indicators from

the terminal.

Now, the routine has to check a bunch of

special cases. If any of the following

events are happening, the attention will

be ignored:

a. 	 The application is shutting itself

down (MTTEND has been entered),

b. 	 The user is not completely logged

on (TCTONSW is zero),

c. 	 The user is being logged off

(ICTQUIT has been entered for

him),

d. 	 The user is waiting to be forced

(TCTFORC is on).

Also, if this routine can determine that

there is a set of saved registers for

the MTTFINDQ routine, it tcbeats" an&

merely signals to the caller of MTTFINDQ

that it got an attention return code

from whatever I/O operation was going

on. This is done because it is simpler

than calling the application attention

routine and accomplished the same

thing.

If control gets this far, the attention

is deemed valid and the application

attention processing routine has to be

called. MTTATTN first obtains an area

in which it can post all the information

about the interrupt to be sent along to

PAGE 31

the attention routine. If there is no

space for this attention table, the

operator is notified and the attention

is ignored. Otherwise, this new*

attention table is added to the end of

the chain of attention tables for this

sub-task (the chain starts at label

TCTATTN in the TCT). After the table is

linked in, all the interrupt information

(push-down area) is moved from the TCT

to the attemtion table. Now all the

registers necessary for the

application's attention routine are

set-up in the TCT (in the interrupt

-
register/vpsw slots). After this is

finished, the dispatch flag is turned on

in the terminal table entry and the

queue-scanner is exitted to so the task

will be dispatched in turn later. (When

it is dispatched, it will be dispatched

to the application attention routine.)

Upon return from the attention
processing return (it is not necessarily
going to come back to us, remember), the
registers from the attention table are
moved back to the TCT, the attention
table is un-chained from the attention
table chain, the task's dispatch flag
is turned on again and the control is
returned to the queue-scanner at
tlTTfNDQ1. (This will cause the sub-task
to either take up where it was
interrupted or to take up where the
application attention routine wants it
to go, having modified the interrupt
registers and VPSW in the attention
table.)

17. MTTCLEAR routine

MTTCIEAR is a fudge which is necessary

because the TSS supervisor terminal

routine (CEATC) tends to tell us lies

about the number of times a user hits

his attention key. This routine merely

issues FINDQs to the terminal in

question until it quits returning stati,

It indexes into a branch table with each

return code from the FINDQ until either

the status becomes zero or an error

occurs, in which case it calls the

routine in the queue-scanner to hang up

PAGE 	32

the terminal. After a zero status is

found, the caller is returned to by

branching through register 14.

18. 	 MTTGETIM routine

This routine is called by the

application when it wishes to obtain the

elapsed CPU and connect times used by a

sub-task thus far. After initializing

the linkage by an ENTR macro it.issues a

REDTIM macro to obtain the current

system time-stamp and subtracts the

sign-on time from the result. (This is

done in 64-bit fixed-point arithmetic.)

The other result sent back by this

routine is merely the TCTCPUT field

which already contains the sub-task!s

elapsed CPU time. Return is made via

the EET14 macro.

19. 	 MTTXTR routine

This routine is called by the

application to obtain the following

information about a particular

sub-task:

a. 	 The NASISID of the user,

b. 	 The password (if any) for the

user,

c. 	 The taskid of the sub-task,

d. 	 The indicator for ehether the

application is running in MT/T mode

or in standalone mode,

e. 	 The indicator for whether the user

is conversational or

non-conversational.

f. 	 The indicator for whether or not

usage statistics is to be

disabled.

After this routine performs its

initialization with the ENT? macro it

starts looking at the parameter list

sent to it by the caller. It only fills

in the positional output fields as long

as there are available target spots in

the parameter list. The first output is

PAGE 33

the NASISID which is put into a string
dope vector (SDV) pointed to by the
first parameter. The password in put
into the SDV pointed to by the second
parameter. The taskid is a 32-bit fixed
number which is pointed to by the third
parameter. (Note: This output used to
be a character string also.) The next
two parameters, the flags, are always
set "on" (one) and are put into
bit-string dope vectors as pointed to by
the last two parameters. The last flag
(usage statistics disabled) is first
turned off then the internal flag for
this condition is checked and if it is
on, the parameter flag is turned on.

After it is all finished, this routine

returns to the caller by using the RETN

macro.

20. MTTNUST routine

BTTMUST is the routine which the

application can call when it wishes to

perform a function without being

time-sliced. All it does is initialize

with ENTR and then overlay the

next-time-slice value in the TCT

(ICTNTS) with a value of one hour and
turn on the indicator which .says MTTMUST
has been called so that the MTTUNTIM can
make the appropriate corrections the
next time it is called. The caller is
returned to with the RETN macro.

21. MTTPASS routine

This routine is called to prompt the

user for his "security code". This

routine is used instead of in-line code

because it already has the mechanism in

it to prompt for a parameter with

"black-out". (It uses this mechanism to

prompt the user for his password at

logon time.) After this routine is

entered, it performs linkage and

base-register initialization with the

ENTR macro. Calls to MTTWRIT1 and

MTTBEAD1 are used to actually perform

the prompting I/O at the user's terminal

and this routine does not check the

entered string. It merely sends

whatever it gets back to the caller.

PAGE 34

Return is made with a RETN macro.

22. MTTTSE routine

This routine is used by the application

program to force a time-slice-end on a

sub-task (for example, to get out of

"must-complete" mode). All it does is
ENTE, REC and then RETN which has the
effect of taking the user out of
execution mode, setting him up to be

dispatched again later and calling the

queue-scanner to see if there is

anything to be done before

re-dispatching this user.

23. MTTLMT routine

This 'routine is called by the

application to obtain the current limits

on the NASIS resources (prints,

searches, sorts and records)o After

initialiming with the ENTR macro, this

routine irerely moves those four words

from the limit table header (label

LIMENTS in LIMDSECT) to the 16-byte

field pointed to by the caller's

parameter list. Return to the caller is

made via the RETN macro.

211 MITSPEAK routine

NTTSPEAK is the entry point specified in

the interrupt control block which

handles attention interrupts from the

SYSIN terminal (operator's terminal).

When it is called, it conforms to the

linkage lalws and sets-up all the base

registers for the Monitor. In addition,

if there was an executing sub-task, its

time-slice timer is turned off. This

routine then obtains an area to save all

the interrupt registers and VPS in and

chains this area to a chain of similar

saveareas. This is done because the

operator is allowed to hit attention

while a previous attenti6n is being

serviced. After the table is chained in

and the interrupt information moved into

it, the Task Monitor is returned to

briefly so it can degueue the interrupt

from its own chains. At this point, the

operator is permitted to hit attention

PAGE 35

again--before this time, the attention

will be ignored by TSS.

After all its initialization is done,

HTTSPEAK prompts the operator to enter a

incitor command by typing a question

mark at his terminal and unlocking the

keyboard. If the response from the

operator is just a carriage return, he

is leaving "debug" mode and a branch is

made to the code to return to the point

of interruption. If text was typed in,

MTTSCAN is called to parse it into a

command name and operands. Errors from

that routine cause a message to be sent

to the operator and a branch taken to

the exitting code, Otherwise, the

OPEECOM (operator command)- table is

searched for a match with the command

entered by the operator. If a match is
found, the appropriate command
processing routine pointer is picked out
of the table and the routine is called.
If no match was found, a check is made
to see if the Monitor is in "debug"
mode. If it is, the line entered by the
operator is fed to an OBEY macro in case
it is a TSS command. If the Monitor is
not in "debug" mode, an error message is
sent to the operator and the exitting
code is branched to.

After a command has been accepted one

way or another and control returns from

either the command processor or the OBEY

macro, another check is made to see if

the Monitor is in "debug" mode. If it

is, the operator is prompted again (he

will be prompted until he enters a null

line)--if it isn't, the exitting code is

fallen through to.

At exitting time, the attention routine

is deleted and re-specified (CLATT, DIR,

SIR, USATT) so that TSS doesn't lose it.

After this is done, all task interrupts

are disables by turning on a flag in the

ISA and the interrupt information is

moved from the current savearea to the

Monitor's PSECT. The savearea is now

un-chained and returned to the system

(FREEMAIN), any sub-task time-slice

timer is restarted, task interrupts are

PAGE 36

re-enables and the routine returns to

the point of interruption by executing a

RTRf macro pointing to the interrupt

push-down area which it moved into the

'Monitor's PSECT.

25. 1TTPGMIN routine

This is the entry point specified in the

interrupt control block for program

interruptions. On entry, it saves the

interrupt registers and VPSW in the

Monitor's PSECT and causes the Task

Monitor to dequeue the interrupt from

its lists by returning to it and telling

it to return to the Monitor instead of

the point of interruption. If a

'sub-task was executing, his time-slice

timer is turned off. In addition, if a

user was running, his dispatch flag is

zeroed, just in case somebody decides to

dispatch him later.

Now. this routine composes an operator
message containing the program interrupt
VPSX and all the interrupted general
registers. After this message is
composed and formatted, it is sent to
the operator via the MSG macro. After
the message is sent, the PGMSI switch
is interrogated to determine whether to
pause so that the operator can "look
around". If that switch is on, a CLIC
macro is issued, causing control to
return to TSS command language until the
operator enters a "GO" command.

Upon return from the CLIC or if no CLIC
was issued, the routine checks to see if
a user was responsible for the
interrupt. If no user was running, exit
is made directly to MTTFNDQi. If a user
was responsible, be is sent a message
via MTTNEITI telling what happened to
him and then he is forced off with a

call to MTTQUIT.

26. MTTSCAN subroutine

This subroutine is called by sections of

the Monitor that wish to parse a string

containing a Monitor command. It merely

separates the line into elements

PAGE 37

delimited by commas or (strings of)

blanks and posts pointers and counters

for each so-delimited operand into a

table called PARAMS. In addition, it

recognizes the quote-mark convention

used by TSS itself to allow the use of

commas, blanks or quote marks inside of

operands. If it finds an unmatched

quote mark somewhere in the string; it

sets the condition code to non-zero

before returning, otherwise the

condition code is set to zero. Return

in either case is through register 14.

27. MTKA routine

This routine is the routine which the

application calls to process a user "tKA"

command. After initializing the entry

(ENTR) it merely turns on the TCTKA flag

in the user's TCT and returns via the

DETN macro.

28. ?T±KB routine

This routine is the processor for the

user "KB" command and turns the TCTKA

flag off instead of on. The same

linkage is used as for MTTKA.

29. HTTMSG routine

This is the routine which is used to

send a message from one user to another

(where one of the users in question is

allowed to be the MT/T operator). Entry
at MTTMSG is for the application to use
when it finds a user "MSG" command and
entry at MTTMSG1 is used by the Monitor
to process an operator "MSG" command.

At MTTMSG, initialization is
accomplished by the ENTR macro. The
userid of the message recipient is then
verified by a call to the MTTGTUSR
subroutine. A check is then made to see
if there is any text to be sent. If
there is, the MTTHANG subroutine is
called to place the message on the
receiving user's MCB queue or to send
the message immediately to the operator
(whose userid is OPERATOR). Return to
the application is made by the RETN

PAGE 38

macro.

At MTTMSG1, the parameters (from PARAMS)

are picked-up and the userid is checked

by a call to MTTGTUSR. The text length

is also checked and if there is some

text to be sent, it is attached to the

appropriate user's MCB chain by a call

to the MTTHANG subroutine, Return from

this routine is via register 14.

30. MTTHANG subroutine

This is the subroutine which actually

causes a message to get sent to either a

user or the MT/T operator. In the case

of a user, it obtains space for an MCB,

puts the message into it and hangs the

MCB to the end of the chain of MCBs

pointed to by a word in the terminal

table entry (TRQMSGPT) and turns on the

flag in the terminal table entry

indicating that there is at least one

message in that queue.

In the case of a message intended for

the MT/T operator (userid OPERATOR), the

message text is moved to a (Monitor)

message area (after a time-stamp field)

and the whole thing is sent immediately

to the operator via the MSG macro.

Return from either section of this

subroutine is through register 14.

31. ?TTHELP routine

MTTHElP is the entry called by the
applicatin to process a user "HELP"
command. This command is a "MSG" with
the receiving userid assumed to be the
operator. After performing
initialization with the ENTR macro, this
routine locates the text of the message

to be sent and sends it to the operator

by calling the MTTHANG subroutine with a

'userid of OPERATOR. Return to the

application is effected with the RETN

macro.

32. MTTBCST routine

This is the routine which handles the

PAGE 39

(operator) "BCST" command. It is- used
to send a message to all attached users.
Upon entry and after the text of the
message to be sent is verified, the
terminal table is searched for active
users. Tor each, the HTTHADG subroutine
is called to hang an NCB containing the
message text onto the MCB chain for the
user. After they are all finished,
return to the caller is made through
isaved) register 14.

33. !TTUSERS routine

This is the routine which processes
either the user or operator "USERS"

command. Entry to TTUSERS is for the

application to call for the user

command, the operator command causes

entry MTTUSER1 to be called.

After KTTUSERS is called, normal

initialization is accomplished by the

ENTR macro. For users, a header message

is composes stating the time and that

following will be a list of NASISIDs.

This is sent to the user by a call to

MTTMBIT1. Then a column pointer and

character counter are set-up and control

transferrs to the common accumulating

routine.

At entry to MTTUSER1, no header message

is sent (it is assumed the operator

knows what the line of output consists

of). Only the column pointer and

character pointer are initialized. They

are different for the operator since his

message has to start with the time-stamp

field. Control falls through to the

common accumulation code.

Vow MTTUSERS adds a border (fl**") to
the left part of the line if a user
message is being composed. It then
searches the terminal table for active
users, moving the NASISID of each one it
finds into the print line with trailing
blanks stripped off and separating each

NASISID by a blank. Again, if a user

message is being processed, the border

is put on the right-hand end of the

message. In the case of a user,

PAGE 40

FTTWEIT1 is used to send the list; in

the case of the operator, the MSG macro

is used. Return is either through

(saved) register 14 (for the operator)

or via the RETN mechanism (for a user

call).

34. ['TFORCE routine

This routine is the processor for the
(operator) "FORCE" command. Upon entry,
it merely looks for the NASISID which it
was passed in the terminal table (by
calling the MTTGTUSR subroutine) and
turns on the force flag in the user's
TCT (TCTFOEC) if the NASISID can be
located. (The user will actually be
forced the next time the queue-scanner
checks through the terminal table for
users to be forced.) Return to the
caller is through (saved) register 14.

35. !TTNUSXR routine

TTiUSER contains the two routines to

handle the user and operator "NUSERS"

commands. Entry to MTTNUSER is for the

application to call when it finds the

user command. Initialization is
performed with the ENTE macro. Then the
nurber of users is picked-up from
MITUSER#, made decimal and formatted
into a message. The message is sent to
the user via a call to MTTWRITi. Return
is made with the RETN macro,

MTTNUSR1.Is the entry to the MTTNUSER

routine for processing an operator

"NUSERS" command. It takes the number

of users from MTTUSER# and formats it

into the appropriate operator message

which is sent via the MSG macro. Retdrn

from this section is through (saved)

register 14.

36. MITSHUT routine

This routine processes the MT/T operator

SHUTDOWN command. After it is called,

it examines the parameter it was given.

If this operand is defaulted, the value

five is used as a default (number of

minutes). After locating or defaulting

http:MTTNUSR1.Is

PAGE 41

the operand, this routine converts the

EBCDIC for it into binary and converts

the number into milliseconds for use by

the STIER. A REAL timer (number six)

is set for the resultant interval if the

operand had a positive value. If the

value of the operand was zero, the

MTTEND1 routine is branched to directly

to effect an immediate shutdown. After

the timer for a non-zero operand has

been successfully set, the caller is

returned to through register 14.

37. HTTKILL routine

This routine is used to sloppily kill

off an application user. If the user

specified by the operand to the command

can be located 4KTTGTUSR) and if he is

in control (execution), his resuming

VPSW from the attention routine is

overlaid to transfer control to memory

location as soon as the attention

routine transfers control back to the

point of interruption. If the userid is

not found or is not in control, an error

message is sent to the operator with the

MSG facility. Return from this routine

is to the caller through register 14.,

38. TTLIHIT routine

MTTLIfIT is the processor for the
operator LIMIT command which can be used
,to limit certain application facilities
as well as various numbers of users
allowed onto the system at one time.
After it is called, this routine
attempts to find out what manners of
operands it was given. If the first of
two operands is not two characters long,
it is considered to be a keyword (for
one of the facilities) and the table of
-keywords in the Monitor's CSECT is
searched to find a match. (If none are
found, an error message is sent to the
operator.) If one is found, it is
pointed to and control is passed to the

number scanning code.

If the first of two parameters is two

characters, it is a class name (where

class is the first two characters of the

PAGE 42

userid). The portion of the limit table

beyond the header area is searched until

the entered class name is located or the

end is reached. If the end of the table

is reached, the entered class name is

added to the bottom and pointed to for

the number scanner. If the entered

class name is found, it is merely

pointed to and control falls to the

number scanning code.

lfter the appropriate class name is

located, the second parameter is scanned

if it is present. (If it is defaulted,

the number 32767 (infinity, in this

case) is used for the default.) The

number is scanned left to right digit by

digit. Invalid decimal digits cause an

error message to be sent to the operator

and the enterprise to be abandoned.

After the number is scanned, it is

posted in the slot in the header table

(for keywords) or after the class name

(for class names). Return from this

routine is to the caller through

register 14.

39. MTTDEBUG routine

This routine is the processor for the

operator DEBUG command and consists of

two instructions. The first one turns

the debug switch (DEBUGSW) on and the

second one returns to the caller

through register 14.

40. HTTDATIM routine

HTTDATIM is the processor for the user

DATETIME command. It performs its

initialization and entry code with the

EER macro, fills in the message to be

sent to the user with the current date

and time with the TIME macro and then

calls MTTWRIT1 to send this message to

the user. It then returns to its caller

with the RETN macro.

41. MTTWAIT routine

After it is written sometime in the

future, this routine will be the

processor for the user WAIT command.

PAGE 43

42. MTTPGMS routine

This routine processes the operator

PGESTOP command. This command alters

the status of the

program-interrupt-stopping switch. On

entry, this routine turns off that

switch and checks the operand to the

command for a length of two (for "on".).

If the length is not two, the routine

returns to its caller through register

14. If it is two, the character string

ON is checked for. If it is ON, the

switch is turned on; otherwise the

caller is merely returned to.

43. ?4TNEWS routine

This routine processes the operator NEWS

command. After it is called, it checks

the entered operand for the character

string OFF. If it finds it as the first

three bytes of the operand, it causes

the news buffer to be emptied by merely

setting its length to zero. If the

operand is real news text, it is added

to the bottom of the news buffer if

there is enough room in it. If there

isn't, an error message is sent to the

operator and the command is ignored.

After the text is moved to the buffer,

the length of that buffer is updated and

the caller returned to through register

14.

44. MTTEEC routine

This is the routine which allows the

operator to manipulate the recording

level by processing the RECORD command

for him. (See the section on event

recording for a description of what the

recording level actually means.) The

numeric operand to this command is

processed much the same way that the

number for the LIMIT command is

processed except that an error message

is also sent to the operator if the

number is greater than 255. If the

number is valid, it is posted as a

one-byte value in the field TTTRECSW in

the PSECT, Return to the caller is

through register 14.

PAGE 44

45. MTSTATS subroutine

This routine is called to process the

operator STATS command. All it does is

verify that the operand to the command

is either the string "on" or "off" and

set a flag in the PSECT. Return is to

the caller through register 14.

46. MTTGTUSR subroutine

This is the subroutine which is called
whenever somebody wants to see if a
particular userid is currently connected
to the application. After verifying the
length of the operand (between 1 and 8),
the operand is moved to a temporary and
right-padded with blanks. Now the
terminal table is searched top to bottom

for the userid passed to tTTGTUSR (field

TEQUSRID in the terminal- table)i After
(if) the entry containing the userid is

found, the logged-on field in the TCT

for the terminal table entry is

interrogated. If the user is not yet

logged on, the userid is considered

invalid. Valid userids are indicated by

returning the terminal table entry

pointer and a condition code of zero.

Invalid userids are flagged by a

condition code of two if the error

Teturn address (R6) is zero. (In both
the preceeding cases, the caller is
returned to through register 14.) If
there is an error return address (R6

non-zero), the MTTBUSE routine is

,branched to. (It will make use of the

error return address after sending the

operator an error message.)

47. ?TTBUSR subroutine

This subroutine merely sends the

operator an error message about an

invalid userid and then causes control

to be transferred to an error routine by

branching through register six.

48. !TTBfSG routine

'This routine does the same thing as

MTTBUSR except that the error message is

for a missing message.

PAGE 45

,49. MTTFBMPT routine

This routine is used to send a message

to the operator. It is called by the

MSG macro after that macro located the

message pointer and length. This

routine first puts a time-stamp field

into the message and causes it to be

filled in by use of the TIME macro. It

then posts the length of the message in

core and uses GATWR or GTWAR to send it

to the operator depending upon whether

or not response fron the operator is

expected. (If response was expectedi

the receiving field is blanked out

before text is read.)- Return from this

routine is to the caller through

register 14.

50. MTTTIME routine

This is the routine called by the TIME

macro to cause an EBCDTIME to be

performed on some text.- This routine

merely moves the descriptors of the

field and does a register-form EBCDTIME

'on the field. Return is to the caller

through register 14.

51. MTTMOVE subroutine

This subroutine merely moves text from

-here to there and is called by the MOVE

macro. It is coded to be as quick as

possible under the unaligned text case

-on a 360/67. It makes no special

efforts to detect aligned fields so it

can use register moves on them. After

the text specified is moved, the caller

is returned to through register 14.

52. fTTIRAN subroutine

This routine is called by the TRAN macro

and does for translating text the. same

thing that MTTMOVE does for moving text.

Return is again to the caller through

register 14.

53. MTTRTRN routine

This routine is actually the processor

specified for "SVC 6316 instructions

PAGE 46

which are issued to cause transfer of

control from one push-down area to

another. Since this routine is provided

'with a push-down area by the system, it

can merely overlay it with the one to

transfer control to. After doing this,

it just returns through the linkage to

the task monitor to cause the desired

push-down area to receive control.

54. MTTRESET routine

This routine is called from the TSS

command language by the operator when

the attention processing routine is

somehow disconnected (by TSS), After is

has observed type I linkage conventions

to get itself initialized, it merely

re-specifies the attention routine in

the same manner as the MTTSTART defined

it to start with. If it is unable to do

so, MSG is used to send indication to

the operator. In either case, return is

to the caller (TSS) through the exit

linkage.

g. Recording Mechanism Description

The event recording mechanism is incorporated

into the Monitor to allow events and some

data to be recorded onto the (TSS) system

SIPE (System Internal Performance Evaluation)

tape. There are some fields which may be

recorded in addition to the data area which

may be specified. At present, the things

which are recorded are input/output to user

terminals, dispatches, time-slice ends,

WAITs and returns from WAITs. Any event may

be recorded in the Monitor by the insertion

-of a RECORD macro at the event to be

recorded. (RECORD is described below.) Each

event recorded must have a unique "key" so

the 'events can be retrieved from the tape

with identification. Furthermore, each

recorded event (RECORD) must have a recording

level attached to it.. This level is used to

determine whether or not the event is

actually going to be recorded. The level

corresponds to the numeric parameter to the

RECORD operator command. If the event level

at the event teing recorded is higher than

the level set at MTTRECSW by the RECORD

command, the event is not recorded. Thus,

PAGE 47

all the recording levels are higher than zero

so that recording can be disabled by entering

zero as the parameter to the RECORD

command.

1. RECORD macro description

This macro is the only one which is used

by record events. Its format is:

TSVAl=,NTSVAL=,CPUTIM=,REG= ,

DATA=,DATALTrH=

where KEY is the key number to be

assigned to the event (they actually

start at 4000 but for this macro we

start at zero and it remembers what the

base is) and LEVEL is the level to be

used in determining whether or not the

event is to be recorded as discussed

above. TERM# is the relative terminal

mumber (TCTTERM# or FNQPDV) for the user

in question. #USERS is the number of

users attached to the application

(fTfTUSER#). TSVAL is the user's

time-slice value, usually from TCTTIHER,

N!SVAI is the field containing the

number of milliseconds he was

dispatched vith last time or is going to

be dispatched with next time, taken from

'TCINTS and CPUTIM is the amount of CPU

time the user has used so far, taken

from TCTCPJTM. EEG is a register which

may be recorded if you wish; it is

useful for dumping return codes and

suchlike. DATA is the pointer to a data

area which you need recorded

(input/output text, for example) and

DATAITE is the length of that field.

KEY and LEVEL must always be specified

and if DATA is specified, DATAILTH must

also be specified. Any of these field

may be specified in register notation

and any register may be used. Thus,.if

you have the elapsed CPU time sitting in

a register, you could code CPUTIM=(R7)

instead of CPUTIM=TCTCPUTM. In

addition, the DATALTH field may be

either an address of a length field, a

register containing the length or an

absolute (or undefined) expression

containing the length.

http:Thus,.if

PAGE 48

2. Expanded code

The RECORD macro expands code to collect

the fields specified into either

registers (USERID, TERM#, #USERS, TSVAI,

NTSVAAL and CPUTIM) or into an area in

the recording area itself (DATA,

DATALTE, KEY). Since SIPE records the

registers as well as the recording area,

they are used to hold as much of the

recorded data as possible. Future

fields gill have to be put into the

recording area, however, as there are no

more registers available for

data-holding. Code is also expanded to

test the level specified against

?TTRECSW and to check the return code

from SIPE itself to make sure it

intercepts the SVC issued to activate

it. The SVC itself is in the beginning

of the recording area (which is always

pointed to by register 1 during RECORDs)

and is the target of an EXECUTE

instruction (so that SIPE is insured

that the area is in physical core).

.. CODING SPECIFICATIONS

I., Source Language

TSS/360 -Assembler language

2. Suggestions and Techniques

Not Applicable

PAGE 49

TOPIC 	 A.2 - INITIAL ENTRY ROUTINE

A. 	 MODULE NAME

Initial Entry Routine

Program-ID - RDBMTT

Module-ID - DBMTT

B. 	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

The function of this module is to perform allocations

of the external data items used by the system. It also

issues the initial prompt, which is used to determine

which NASIS sub-system the user wishes to invoke, and

then calls the proper module for that sub-system.

D. 	 DATA REQUIREMENTS

1. 	 1/0 Block Diagrams

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-line Terminal Displays

Not Applicable

c. 	 Formatted Print-outs

PAGE 50

Not Applicable

4. Reference Tables

The prcgram makes use of the following tables:

a. USERTAB

b. VERETAB

E. PROCESSING REQUIREMENTS

1. Top level Flowchart

See !igure 2

2. Narrative

a. Initialize

This routine initializes the interrupt (ATTN

and END) processing routines and the Pl/I

error handler. It allocates and initializes

the user data table. The program also

allocates and initializes the verb table

(including user specified commands) which it

uses in the prompt routine.

b. refine

This routine performs all of the file control

block allocations and initializations for the

proper operation of the rest of the NASIS

system.

c. Prompt

This routine sets a temporary END condition

handler which results in a new prompt on an

END condition. It prompts the user for a

command and searches the verb table for a

matching entry. If no match is found a

diagnostic message is written to the user and

the prompt is re-issued.

The verb table entry is analyzed and if an

immediate command has been entered, the

program branches to the routine which

processes that command. Otherwise, the

program optionally establishes a new strategy

and then calls the entry point of the

processer for the command entered. When

control is returned to DBMTT, the user is

PAGE 	 51

prompted for the disposition of the current

strategy and it is either renewed or

erased.

?hen the command entered has been completely

processed, control is passed back to the

prompting routine. The entry of an END

command causes the program to be

terminated.

F. -CODING SPECIfICATInS

1. 	 Source Language

TSS/360 Pt/I

2. 	 Suggestions and Techniques

Not Applicable

TYPE RITER]
C RT ETELMINALN 4

L -- j

F 1BMTT

Figure 1. I/0 Block diagram

ENTRY

INITIALIZI

DEFINE

" PROMPERv

NASIS

t

Top level flowchart
Fjire 2.

1

PAGE 54

TOPIC A.3 - SINGLE TERINAL TASK MONITOR

A. 	 MODULE NAME

Terminal Support - Single Terminal Task Monitor
Program-ID - NASISX
Module-ID - MTTSUPJX
Entry Points - NASISI, ITTWRITE, MTTREAD, MTTWREAD,
MTTGETIM, MTTXTR, ETTMUST, MTTPASS, MTTATTN, MTTPGMIN,
MTTSVCI, HITSVC2, FIXATTN, MTTKA, MTTKB

B, 	 ANALYST

Frank Reed

Robert I. Rutledge

Neoterics, Inc.

C. 	 MODULE FUNCTIONS

1., 	 Organization Chart

See Figure 1

2. 	 Overview

The 	 function of this module is to provide the MTT

monitor services to the non-MTT user of the NASIS

system, allcving NASIS to be invoked in

''standalone'' mode.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 2

2. 	 Input Data Sets

a. 	 Parameter Cards

Not applicable

b. 	 Punched Card Input Files

Not applicable

c. 	 Input Files

LISRIDS

d. 	 On-line Terminal Entries

PAGE 	55

The user enters his NASISrID and his

security-code when prompted.

3. 	 Output Data Sets

Not applicable

4. 	 Reference Tables

a. 	 External Tables

1. 	 fTTUTAB

2. 	 MTTLOAD

b. 	 Internal Tables

Not Applicable

B. PROCESSING REQUIREMENTS

1. 	 Top Level Flowcharts

a. 	 Entry Points

1. 	 NASISi - See Figure 3

2. 	 MTTIfITE - See Figure 4

3. 	 MTTRBAD - See Figure 4

4. 	 TTIEEAD - See Figure 4

5. 	 MTTGETI - See Figure 5

-6. 	 MTTXTR - See Figure 6

7. 	 MTTMUST - See Figure 7

8. 	 MTTFASS - See Figure 8

9. 	 M1TATT - See Figure 9

10. 	 MTTSVC1 - See Figure 10

11. 	 -MTTPGMIN - See Figure 11

12. 	 MTTSVC2 - See Figure 12

13. 	 FIXATT - See Figure 13

14. 	 MTHKA - See Figure 14

15. 	 MTTKB - See Figure 14

PAGE 56

2. Narrative

a. Entry Pcimt NASIS1

This section of code begins -a NASIS

application in standalone mode. The

preliminary functions it performs include

specifying interrupt routines, initializing

timers and checking the user's userid and

security code. After these have been

successfully completed, the location of

DDBMTT is retrieved from the table MTTLOAD

and control is passed to it. On return, the

interrupt routines are deleted and control is

returned to the caller (terminal user).

-b. Entry Points MTTBEAD, MTTWRITE and NTTWREAD

These routines are the ones which do actual

I/O to the user terminal. This is

accomplished by an ENTER to the GATE junction

using a control block.initialized by the

calling program.

A TWAIT is executed for write-only outputs to

insure a coherent interchange should the user

press the attention key before the output is

complete. On return from all I/O functions,

the GATE return code is placed in register 15

and control is passed to the caller.

C. Entry Point MTTGETIM

MTTGETIM returns elapsed connect and CPU time

to its caller. All times are kept via the

REDTI AND XTBTM macros.

d. Entry Point MTTXTE

This routine returns information about the

terminal user to its caller. Specifically,

the userid, security code, taskid, MT/T and

conversational mode flags are returned.

e. Entry Point MTTMUST

This entry point is not required in

standalone mode, hence, it is a no-op.

f. Entry Point MTTPASS

MTTPASS prompts the terminal user for his

password (security code) and returns the

PAGE 57

response to its caller.

g. Entry Points WTTKA and MTTKB.

These routines are used to get the user into

either KA or KB mode. The OBEY macro is

utilized to accomplish this feat.

h. Entry Point FIXATTN

This entry point is called by a terminal user

to re-activate the attention routine whenever

it goes away Iwbich occurs frequently during

debugging). The attention routines are

deleted and re-specified to TSS and control

is returned to the user.

i. Entry Point HTTATTN

This routine gains control of attention

interrupts from the system and passes then

along to the attention routine specified in

the MTTLOAD table. Two savereas are reserved

in the NASISX PSSCT to hold the interrupted

registers and VPSW.

On entry the interrupted registers and VPSW

are moved to one of the saveareas and the

interrupt is dequeued. Then, the processor

is called with register 1 pointing to the

savearea. On return from the processor,

TTSVC1 is invoked to return control to the

point of interrupt.

is fTTSVC1

This routine moves the registers from a

NASISX savearea to the system savearea

pointed to by register 0 (zero). Control is

returned to the system, which loads the moved

registers and VPSW and passes control to the

point where execution was interrupted by the

user.

h. MTTPGEIV

This routine is called by the system whenever

a program interrupt occurs within the

application. The user is notified and the

interrupted registers are displayed at the

terminal. Next, the user is- prompted via the

CIIC macro. If his response is ''GO'',

control is returned to the point of interrupt

PAGE 	 58

by invoking entry point MTTSVC

i. 	 HTTSVC2

This routine moves the registers active at

the time of a program interrupt from a HASISX

savearea to the system savearea pointed to by

register 0 (zero), Control is returned to

the system, which in turn returns control to

the point of interrupt.

.I 	 CODING SPECIFICATIONS

1. 	 Source language

TSS/360 Assembler Language.

2. 	 Suggestions and Techniques

Not Applicable

MON ITOR MITTWRR EAD MATTWRTTE

A

XTTKA MTTKB

ns~m:

TSATIN TSPROMPT TSREAD 4TSWRTEv-Q

%rW -j

-TSGEA

ON"'.

CONDITION7

IMEDIATE

CO ,MANDS

t' ON
CONITION
ATTENTION

"DATA BASE
PROGRAMS

,

Figure'.1. Terminal Support Organization Chart

NASISX .tSRID

USER e 2

TERMINAL

Figure 2. 1/0 Block Diagram

SENTER

INIT

TIMERS

GET USEBID
AnD DEVICE

-TYPE
 FROM

TSS

SPECIFY

INTERRUPT

ROUTINES

PROMPT

FOR

USER'S

NASIS-ID

N F

/MESSAGE/
PINVALID

FAORDR

PASSWORO/D

NINVALIDVALID

MSSAGE/

LGNRDBMTT INTERRUPT RTR

MESSAGEROUTINES

Figure 3. Entry Point N2ASjSI

ENTER)

SAVE
CALLER' S
REGISTERS

CALL
IHESADA
TO GET A
DSA

CALL
GATE
TO DO

1/O

AN

OUTPUT
ONLY

y WAIT FOR
COMPLETION

IHESAFA
TO RETURN
A DSA

Figure 4. Entry Points MTTREAD, MTTWRITE, 1MTTWREAD

GENTER

SAVE
CALLER'S
REGISTERS

CALCULATE

ELAPSED

CONNECT

TIME

CALCULATE
ELAPSED

CPU TIME

RETURi
S

Figure 5. Entry Point NTTGETIM

ENTER

PASS USERID

TO CALLER

PASS

PASSWORD

TO CALLER

PASS
TASKID

TO CALLER

TURN OFF
TT FLAG

SET

CONVERSA-
TIONAL

USER FLAG

r Etr N

Figure 6. Entry Point NTTXTR.

IENTER

RETR N

Figure 7. Entry Point MITMUST

ENTER

SAVE
CALLER S
REGISTERS

PROMPT
FOR USER'S
SECURITY
CODE

PASS
SECURITY
CODE TO
CALLER

Figure 8. Entry Point MTTPASS

b
"

l/ N 2n=rd N=i~.

POINT R2

TO THE
FIRST
SAVE AREA

MOVE THE

INTERRUPTED

REGISTERS

TO SAVE AREA

CALL

INTINQ

TO DEQUEUE

INTERRUPTS

RETURN TO

SYSTEM TO

DEQUEUE

THIS ONE

CALL

TS1MATIN
TO

PROCESS

CALL

MTTSVCI

TO

RETURN

CALL

ABEND

IF IT

GETS HERE

POINT R2
TO THE
SECOND
SAVE AREA

?igure 9. Entry Point MTTATTN

ENTER

MOVE ATTN

REGS TO

SYSTEM

SAVE AREA

i RETURN t

Figure 10. Entry Faint b{TTSVGI

oi,"A -67S
, J

69

ENTER

MOVE INT.

REGISTERS

TO A

SAVE AREA

RETURN TO

SYSTEM TO

DEQUEUE

INTERRUPT

MOVE REGS

TO PROGRAM

INTERRUPT
MESSAGE

AIL
CALL

GATE TO

DISPLAY

MESSAGE

GI

CALL

CLIG

TO RETURN

TO USER

CALL

1TTSVC2

TO RETURN
TO PROGRI

ABENI)

FOR SVG

FAILURE

Figure 2i1. / MTTBGMIN

IT

7o

SENTER

MOVE ELM.

REGS TO

SYSTEM

SAVE AREA

Figure 12. Entry Point MTTSVCZ

ENTER

ACTIVATE

CO
 USER

USER ATTENTION

ROUTINE

RETURN

Figure 13. Entry Point FIXATTN

Lid, ~ T

l{ETRMA NKB

SAVE
CALLER'S
REGISTERS

CHANGE
MODE TO

KA OR KB

RETURN

Figure 14. Entry Point MTTKA and NTTKB

PAGE 73

TOPIC B.1-- EXECUTIVE DEE-PROCESSOR

A. MODULE NAME

Data Base Executive - Preprocessor

Program-ID - DB

Module-ID - DB

B. ANALYST

Garth B. Wyman

Neoterics, Inc.

C. MODULE FUNCTION

Dm analyzes Data Base P-/I language extension (DBPL/I)

statements and generates, in their place, in a source

program, Pl/I- statements for communication with the

Data Base Executive (RDBPAC OR RDRLIST). Diagnostic

comments are generated for errors that can be detected

by DB during preprccessing.

D. DATA REQUIREMENTS

1. 1/0 Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Job control parameters for operation under

TSS are those required for PL/I

precompilation and immediate compilation.

Refer to the appropriate IBM PL/I

Programmer's Guide (Form C28-2049 for TSS).

The PI/I compiler parameters-MACRO, SOURCE2,

and COME (among others) are specified to

indicate that precompiling, precompiler input

listing and compiling are desired.

b. Punched Card Input Files

1. DB Text

The DB Text deck is text for insertion

into the source program as a result of a

% INCLUDE DB; statement in the source

program. This text is composed of the

source statements of the DB preprocessor

function procedure, itself, and any P1/I

PAGE 74

statements to be unconditionally

inserted at the 5 INCLUDE DB; point in

the source program. DB Text is coded as

specified in this report, formatted

according to PL/I source language

standards and catalogued once in a data

set for compile-time use by all programs

using DB.

2. Source Deck

The SOURCE Deck is any PI/I source

program using DB for its DBPL/I

statements. It is prepared according to

the DBPL/I User's Manual (DWB Section V,

Topic B.2) to access a self-describing

data base and formatted according to

PL/I source language standards.

c. Input riles

DB Text is catalogued as a member, named- DB,

of a partitioned direct access data set for

retrieval by the IBM PI/I precompiler. The

data set is accessed via ddname LISRMAC.

d. On-Line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

The object module consists of the relocatable

machine instructions and constants generated

by the PL/I cempiler for the source program.

It is stored as a member of a program library

(Partitioned data set) for subseguent loading

by the TSS system loader.

b. On-Line Terminal Displays

Xot Applicable

c. Formatted Print-outs

1. Precompiler listings

Two precompiler listings are produced:

a source listing before precompilation,

and any precompiler diagnostics (these

diagnostics are any errors in the use of

PAGE 75

preprocessor PL/I, not DBPL/I). The

appropriate IBM Pt/I Programmer's Guide

explains the listing formats.

2. Compiler Listings

The compiler listings include an

intermediate source listing (between

precompiling and compiling)- and any

compiler diagnostics. Any errors in the

use of DBPL/I generate diagnostic PL/I

comments in the intermediate source

listing. Serious DBPL/I errors may

result in compiler diagnostics,

-particularly for undeclared qualified

names when DB has-suppressed automatic

generation of a declare statement. The

appropriate IBM/I Programmer's Guide

explains the listing formats.

d. Punched Card Output Files

Not Applicable

4. Reference Tables

MFCB - Mainline file control block.-

See Section III, Topic B.4, of the DlB.

DBPI/I - Diagnostic comments.

See Section III, Topic B.1, of the DWB.

DBPL/I - DEPAC Interface.

See Section III, Topic B.2, of the DB.-

DBPL/I - DBLIST Interface.

See Section III, Topic B.10.

E. PROCESSING REQUIREMENTS

1. Top level Flowchart

See Figure 2

2. Narrative

a. Top Level

The mainline PL/I source program is required,

according to the DBPL/I User's Manual (DIB

Section V, Topic B.2), to have a-S INCLUDE Df1

statement once in the program before all DB

preprocessor function references. This

statement directs the PL/I precompiler to

take text from member DB of the partitioned

data set accessed via ddname LISENAC and

PAGE 76

incorporate it into the source program. (See

the I/O Block Diagram in Figure 1.).

She DB text includes the following

statements:

ON FINISH GO TO FINISH;

for "automatic" data base file closing.
EBPL/I requires that the Pt/I FINISH
ON-condition be reserved for this purpose.

The DE text declares and activates the DB

preprocessor name by:

DECLARE DB ENTRY(CHARACTER)

PETURNS(CHAEACTER);

The DBE text following the end of the DB
preprocessor function
once as follows:

procedure invokes DB

DB (INITIALIZE)

This statement is a special function

reference to he recognized by DR as the first

reference (directing DB to initialize

itself).

The remainder of this narrative specifies the

DB preprocessor function procedure which is

depicted in the Top Level Flowchart in Figure

2.

DB receives one argument from a preprocessor

function reference: a varying length

character string consisting, in general, of

labels, comments, valid DBPL/I statements

and, possibly, invalid text. DB's objective

is to analyze the argument and generate a

varying length character string, called the

"generated text", consisting of valid PL/I

labels, comments and PL/I statements for

communication with the Data Base Executive.

If the special argument, 'INITIALIZE', is

received, (i.e., the first reference to DB),

the Initialize DB routine is performed and a

comment, such as:

/* DB001 INITIALIZATION COMPLETE. */

is returned for insertion into the source

PAGE 77

program and DB is terminated. Otherwise, the

Argument Initialization routine is

peiformed.

Following the Argument Initialization routine

LB is logically between DBPL/I statements in

its processing of the argument; The Find

Subargument routine is performed there. If

it finds the right parenthesis at the end of

the argument, the generated text is returned

for insertion into the source program, and DB

is terminated. If Find Subargument finds an

inter-statement comment, a statement label,

or a null statement (simply a semicolon),

then the subargument is concatenated to the

right end of the generated text (i.e.,

"passed through" to the intermediate source

text)-, and preprocessor control is

transferred back to the inter-statement

point. Otherwise, the Process Statement

routine is jerformed, and preprocessor

control is transferred back to the

inter-statement point.

b. fiagnostic Comment Generation

wherever this narrative specifies the

generation of: a diagnostic comment, the

following specifications apply. A diagnostic

comment is concatenated to the right end of

the generated text for insertion into the

intermediate source program. If the

diagnostic is for an error, the precompiler

count of diagnostics is incremented. If more

than four errors are detected in one DB

reference further processing of that

reference is stopped to prevent the

possibility of unpaired quotes, parentheses

or comment delimiters looping the

preprocessor. A diagnostic has the following

general format:

/* DBnnn diagnostic-message. */

The "lDlf"l preceding the message number

indicates that the comment was generated by

the DB preprocessor. The three-digit message

number guides the user to a more detailed

explanation of the message, which is

documented in the DWB Section IfI, Topic

B.1.

c. Initialize DB

PAGE 	 78

Precompiler variables for file attributes,

file usages and diagnostic counts are

appropriately initialized. These variables

are 	 subsequently set or incremented as DBPL/I

statements are processed and are examined

when 	 the finish statement is processed. A

precompiler indicator is set to indicate that

the 	 FINISH statement has not yet been

processed.

d. 	 Argument Initialization

The argument is examined to find the left

parenthesis at its beginning. If any other

non-blank character is found, a diagnostic

comment is generated and DB is terminated. A

precompiler variable pointing to the "current

argument character" is initialized to point

to the character following the beginning left

parenthesis. The generated text is

initialized as one blank character.

e. 	 Find Subargument

A subargument, as used in this specification,

is a 	 substring of the argument that is one of

the following classes of syntactic units:

1. 	 The right parenthesis at the end of the

argument,

2. 	 A label, including its colon.

3. 	 An inter-statement PL/I comment.,

4. 	 A Null statement consisting only of a

semicolon.

5. 	 A EBPL/I statement terminated by a

semicolon.

6. 	 A syntax error; i.e., none of the

above.

A class (5) subargument may contain paired

parenthesis (possibly nested) or string

constants enclosed in string quotes. A class

(6) subargument will be terminated by a

semicolon if one is found but will never

include the right parenthesis at the end of

the argument.

The Find Subargument routine is used at the

PAGE 79

inter-statement point in the Top Level

Flowchart. The, argument is examined

beginning at the current argument character

and ignoring leading blanks to find the next

subargument. A precompiler variable pointing

to the beginning character of the

subargument, and another indicating its

length in characters, is set. The current

argument pointer is advanced to point to the

character following the subargument.

f. Process Statement

This routine analyzes a single DBPL/I

statement body (i.e., apart from an!

statement labels), generates suitable PL/I

statements for communication with the data

base executive and returns preprocessor

control to the inter-statement point. The

PL/I statements and comments that are

generated are concatenated to the right end

of the generated text string for subsequent

insertion into the intermediate source

program.

A diagnostic comment containing the

subargument and any intra-statement comments

is generated for documentation and for

reference in case.of other diagnostics. If

the FINISH statement has already been

processed or if the subargument-has' a syntax

error, an appropriate diagnostic comment is

generated, and control is returned to the

inter-statement point.

If the find Keyword routine does not find a

keyword that identifies a DBPL/I statement,

then a diagnostic comment is generated and

control is returned to the inter-statement

point. If the keyword identifies a SET,

FINISH, FREE or ON statement, control is

transferred to the relevant specific

statement routine. The Find File clause

routine is performed if the second clause is

not a FIE clause then a diagnostic comment

is generated, and control is returned to the

inter-statement point. The Find File routine

is performed, and control is transferred to

the relevant specific statement routine.

1. Find Keyword Routine

A clause, as used in this specification,

PAGE 80

is a substring of the subargument-that

is one of the following classes of

syntactic units:

-the semicolon at the end of the

subargument,

-a comma separating DBPL/I

substaterents;

e.g., in a multiple OPEN,

-a keyword with an associated

parenthesized argument,

-a keyword without a parenthesized

argument.

A keyword-with-argument clause may

contain paired parenthesis (possibly

nested), or string constants enclosed in

string quotes,

The Find Keyword routine is used to find

the keyword that will identify a

statement to branch to the specific

statement routines.

-2. Find File Routine

The Find File subroutine extracts the

file name from a given FILE clause. If

the file-name is not a valid PL/I

external name, a diagnostic message is

generated, and the statement abandoned

by control being transferred to the

inter-statement point. Otherwise, the

precompiler's file table is searched to

determine if the file-name has been used

previously in the program. If it has

not, a new entry is appended to the file

table. In either case, a precompiler

variable is set to indicate the current

file, and control is returned to the

point from Mhich Find File was

invcked.

3. Specific Statement Routines

Each specific statement routine examines

the statement from left to right until

the semicolon is found. (The CLOSE and

OPEN statement routines recognize a

PAGE 81

comma as separating substatements and

loop accordingly). The keywords are

verified for correct spelling and order.

The FREE LIST routine for specific lists

recognizes a comma separating

list-pointers and loops accordingly.

Routines that process a statement having

a FIELD clause recognize a comma

separating field-name expressions, find

the corresponding element in the FROM or

INIO clause and loop accordingly. If

any error is detected, a diagnostic

comment is generated, and the statement

abandoned by control being transferred

to the inter-statement point.

Tor those statements having a FILE

clause, the precompilers file table is

posted to record the file usage (for
analysis in the FINISH routine).

Following successful analysis, each
specific statement ro-utine generates

PL/I statements for communication with

the DBPAC or DBLIST executive and then

loops back either to process another

FIELD or FREE LIST element, to process

another OPEN or CLOSE substatement, or

to the inter-statement point. Special

processing for the ON-- and FINISH

statements is specified after the

general specifications for aln other

specific statement routines.

For those statements having an entry in

the DBPL/I - DBPAC Interface table

(Section III, Topic tB.2, of the DWB), an

assignment statement is generated in the

following format:

filename.OPERATION = 'operation'B;

For example, when processing the

following argument:

LOCATE FILE(SAHPF) KEYFBOM(REC#)

The following assignment is generated:

SAMP.OPERATION = '11010000'B-

For statements having a FIELD clause,

the operation assignment need only be

PAGE 82

generated once for the statement, even

if it contains multiple field names.

For an OPEN statement having a TITLE
clause the following assignment is
generated:

filename.ONFILE = title-expression;

If it has no TITLE clause the following

is generated:

filename.ONFILE = 'filename';

For an OPEN statement having an "access"
option and/or a "function" option, a
tit-string value is assigned to
filename.ATTRIBUTES according to the
definition of a Mainline File Control
Block (described in Section III, Topic
B.4 of the DWB); otherwise, the
following assignment is generated for an
OPEN:

filenameTUNCTION = '10'B;

For each field-name in a FIEL clause,

an assignment statement is generated as

follows:

filename.ONFIELD = fieldname;

'Where the field-name may be an

expression, for example, when processing

the following argument:

GET FILE(EXAMP) FIELD('DATEPUB')

INTO(DP) ;

The following assignment is generated:

EXAMP.ONFIEID = 'DATEPUB';

For those statements having an entry in
the DBPL/I - DBPAC Interface table, a
CALL statement is generated in one of
the following formats, depending on
whether the "Argi" and "Arg2" columns of

the table have entries:

CALL entrypoint (arg1);

CALY Pntrvnnint tarot- arn(9i1

PAGE 83

CALL entrypoint (argl, arg2, arg3);-

For example, when processing this

statement:

LOCATE PILE(DAMP?) KEYFROM(REC#);-

This CALL is generated:

CAlI DPACFV (SAMP, EEC#);

For those statements having an entry in

the DBPI/I-DBLIST Interface Table

(Section III, Topic B.10), a CALL

statement is generated according to the

tatle.

The ON statement routine examines the

second clause. If an EHORFILE clause

is found, the Find File subrontine is

performed. The statements shown below

at the Tight are generated for the ON

statement shown at the left.

ON ERROBFIlE(f) GO TO label;

f.ER'RORBROUTINE = label;

f.SYSTEM = '00B;

ON ERRORFILE(f) SYSTEM-

f.SYSTEM= 111B;

ON LISTEEBOR GO TO label;

LISTERR.ERROR.ROUTINE = label;

LISTEBR.SYSTEM =$ORB

-NfLISTEBROR SYSTEM;

LISTERB.SISTEM =11B;

The FINISH statement routine sets a

precompiler indicator to indicate that a

FINISH statement has been processed.

Also, the following statement is

generated:

FINISH: ON FINISH SYSTEM;

Then each entry in the precompiler's

PAGE 84

file table is analyzed. If the file was

used inconsistently in the program, a

diagnostic comment is generated and the

next file analyzed. Otherwise, a

fainline File Control Block (MFCB)

declaration is generated, using the

file-name as the major structure name

and as the initial value of the title.

Any file attributes implied by the usage

of the file are generated into the

initial value of the filename.ACCESS and

filename.FNCTION fields. Statements

are generated to "automatically" CLOSE

the file, just the same as for a CLOSE

statement.

After all files have been analyzed, the

following statement is generated:

RETURH:

in all programs, a declaration of the

entry points to the Data Base Executive

(DBFAC) is generated.

In all cases, a summary diagnostic

comment is generated giving the number

of DB diagnostic error comments in the

program.

F. CODING SPECIFICATIONS

1. Source ianguage

The EB preprocessor function procedure is coded

using the preprocessor PL/I statements permitted

in preprocessor PL/I procedures.

Statements to be INCLUDEd or generated into the

intermediate source program are coded using

PL/I.

2. Suggestions and Techniques

The DB preprocessor function procedure is coded in

a modular manner so that the syntax analysis of

the argument is separate from the generation of

statements. This modularity will allow much of

the DB coding to be usable for any other

extensions to PL/I that may be designed, such as a

Terminal Support Pl/I language extension.

The coding of the specific statement routines are

PAGE 85

"table-driven" where possible to facilitate any

future changes in the generated text for a

particular statement.

SOURCE DECK

S IBM PIllI PRECOMFILER]
PRECOMPILER - LISTINGS

SIBM
PUI COMPILER
COMPILER LISTINGS

OBJECT

MODULE

Figure 1.- IO Block diagram.

DB

DBFR T yINITIALIZE

SARGUMENT

FIND CONCATENATE TO

SUBARGUMENT GENERATED TEXr

F~ue.- o lvl lweat

PAGE 88

TOPIC B.2 - DATA BASE EXECUTIVE EXECUTION PROCESSOR

A.. MODULE NAME

Data Base Executive Execution Processor

Program-ID - RDBPAC
Nodule-ID - DBPAC

Procedure Entry Point (control section name): #FIELD

Other Entry Points - #XBEF,DBPACFR,DBrACFP

DBPACPT,DBPACFV,DBPFLDT

B. ANALYST

Garth B. Wyman

Deoterics, Inc.

C. MODULE FUNCTION

RDBPAC executes all data base input/output for mainline

programs.

mainline PI/I programs are written with DBPL/I

statements for data base input/output. (See the DBPL/I,

User's Guide, Section 8, Topic B.2). These statements

are processed during compilation and CALL statements

are generated (according to the DBPL/I-DBPAC Interface

Specification, Section 3, Topic B.2). The first

parameter passed in a CALL to RDBPAC is a Mainline rile

Control Block (see Secticn 3, Topic B.4).

RDBPAC executes the request indicated by the operation

code in the MFC. For physical input/output operations

it CAlLs appropriate entries in the HDBTSSIO module.

Whenever RDBPAC detects either a logical error or a

physical input/output error it posts an error code in

the NFCB. (See DBPAC Error Codes, Section 3, Topic

B.3).

D, DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

The RDBPAC module does not do any terminal

input/output or print any reports.

2. Input Data Sets

When a mainline program is accessing the

descriptor data set of a data base, "descriptor

descriptor" tables coded in RDBPAC are used

PAGE 	89

instead of an input descriptor data set.

3. 	 Output Data Sets

The descriptor data set is updated as part of OPEN

and CLOSE processing (setting and reseting the

MNTNABLE and ?NTNING switches).

4. 	 Reference Tables

a. 	 DBPL/I - DBPAC Interface (see Section 3,

Topic B.2)

b. 	 DBPAC Error Codes (see Section 3, Topic -B.3)

c. 	 Mainline File Control. Block (see Section 3,

Topic B.4)

d. 	 List Structure (see Section 3, Topic B.5)

e.. 	 Dataplex Descriptor File (see Section 3,

Topic B.7)

f. 	 Inverted Index Format (see Section 3, Topic

D.5)

g. 	 FLDTAB Table (see Section 3, Topic F.10)

B. PROCESSING REQUIREMENTS

1... 	 Top Level Flowchart

See Figure 2

2.. 	 Narrative

a. 	 Receive Control

The entries at the beginning of the module

are described here; entry DBPLDT is described

in paragraph "f" below. All entries receive

a Mainline Tile Control Block (MFCB)-as their

first parameter. RDBPAC treats the FFCB as

a simple parameter; that is, RDBPAC does not

know that the MNCB is a CONTROLLED structure

allocated by the mainline: RDBPAC never

ALLOCATEs or FREEs an HICB.

For the #FIELD and #XREF function entries, an

appropriate operation code is posted in the

MNCB and the second parameter, which is a

file name, is copied into the MFCB. This is

necessary because the function references in

PAGE 90

the mainline have not been expanded by the DB

preprocessor,

The DBPACFR entry handles a user record in

the form of a character string as its second

parameter.

The DBPACFP and DBPACPF entries both handle a

user list pointer as their second parameter.

DBPACPF additionally accepts a user subscript

as its third parameter. A switch indicating

the absence or presence of a user subscript

is set.

The DBPACFY entry handles a user field value

in the form of a varying length character

string as its second parameter. The DBPACFV

entry is also used for all statement calls

that only pass an MFCB without a second

parameter.

b. Common Code

Handling for PL/I errors that may occur in

RDBPAC is initialized so that they will cause

a jump to paragraph Im" below before

returning to the mainline.

If the MTCB is closed and a redundant CLOSE

operation is attempted then control branches

directly to the common return paragraph "Im".

If an OPEN operation or an operation that can

imply opening (most record level operations)

is encountered then control branches to the

open routine - paragraph "d"- If the

operation can not imply opening then an error

is raised: a specific error code is posted in
the NFCE and control jumps to the common
return - paragraph "Im". This is an example
of the general method RDBPAC uses when it
detects an error.

If the MFCB is open the operation code is

checked for validity. Close and open fwhich

is re-open in this case) operations branch to

the close routine-paragraph "c". Record

operations branch to paragraph "e". Get

operations branch to paragraph "h". Put and

Reput operations branch to paragraph "i". An

invalid operation ccde raises an error and

jumps to the common return - paragraph "im".

c. Close Routine

PAGE 91

For each data set in the data base the unlock

subroutine is called and the ASMCLOS is

called.

For a simple close operation control branches

to the common return. For a close erase

operation, ASMERSE is called either for the

descriptor data set or for the "data" data
sets and control branches to the common
return.

d. Open Routine

The TSS userid is obtained by calling ASMID.

For a re-open operation on the same data base

with the same security password, the

following descriptor read-in and File Control

Block (FCB) initialization steps are

bypassed., For an open operation on a

descriptor data set, a pointer to the

hard-coded descriptor descriptor table in

main storage is posted in the MFCB and the

following descriptor read-in step is

bypassed.

To read in the descriptor records, ASMDCB,

AStFNDS, and ISNOPEN are called. Then for

each region (describing one date set) ASMGETK

is called to read the file descriptor record

and ASMGET is called repeatedly to read the

field descriptor records. A descriptor for

the ECLEN field is bypassed except on the

first data set. Rhen the descriptor for the

key field is found, it is stored at the top

of the DESC table, other descriptors are

stored seguentially which is alphabetical by

field name. Superfield descriptors are

reread (by calling ASMGETK) so that their

component fields may be checked (if a

component has failed security checking then

the superfield also fails). Finally ASNCLOS

is called to close the descriptor data set.

Next for each data set a File Control Block

(FCB) is allocated and a skeleton Data

Control Elock is copied into it and ASEFNDS

is called. Tor OUTPUT or UPDATE mode a null

record is composed in the FCB by finding the

primary field descriptors. After the FCBs

are all initialized, then file and field

subscripts (INVEICUR,ASSOCCUR,SUBFLCUR, and

REIFLDSS) are determined.

PAGE 92

If a non-descriptor file is being opened for

output or update then the MNTNABLE or MNTNING

switch in the anchor file descriptor record

is -updated. For output or update, any

subfile data set in the data base is opened

and the highest id-key in use is found by

calling ASMOPEX and ASHGETK. If the

operation was an explicit open then control

branches to the common return. Otherwise it

was an implicit open and control proceeds to

the record routine.

e. Record Routine

The record-level routine is used for WRITE,

LOCATE, READ and UNLOCK operations. The

WRITE operation is handled separately by

calling ASMPUTK and branching to the common

return.

ror LOCATE and BEAD operations, the element

GET cursors are reset for the particular data

set or for the anchor and associate data

sets. The LOCATE SUBFILE operation is

handled separately at this point: control

branches into the Put routine to find the

anchor or associate control field for the

subfile. A subrecord id-key is determined

,from the highest id-key in the control file

or, if it is null, from the highest id key

previously used in the subfile. A current

subrecord is built by copying the null record

built by the open routine, posting the new

id-key and posting the parent key field by

copying the anchor key field. Control

branches into the Put routine again to put

the new element into the control field. To

letter ensure data base integrity, the anchor

cr associate record containing the control

field is immediately written or rewritten

and reread by calling ASMPUTK and ASMGETK.

If the control field is on an associate and

the anchor record was newly located then it

is written and reread too.

An anchor LOCATE operation is handled

separately at this point: control branches to

the Validate key routine (described with and

also-used by the READ KEY operation) and then

an attempt is made to read the new key using

ASOGETK. If the new key is found, the record

is made current (just as if a READ KEY

operation had been reguested) and an error is

PAGE 93

raised. Normally, the new key will not be

found and a current anchor record is built by

coping the null record built by the Open

routine (or, for a descriptor data set, a

hard-coded null file or field descriptor

record is copied) and the new key valve is

posted in it.

Spanned index reads are handled separately at

this point: their fundamental objective is to

make the last record of a spanned region
current. For read INDEX BACKWARDS either
ASMSTLP (if the old suffix was 0) or ASMSTLK
(to read the old region suffixO) are called

and the ASMSTLP is called to position at the

last record of the previous region; For read

INDEX forwards ASHGE is called to read the

-firstrecord of the next region and then

ASMSTLK is called with suffix FF to position

at the last record of the new region. For

read INDEX KEY the validate key routine

(described later) is used and then ASMSTLK is

called with suffix FF to position at the last

record of the new region. Then for all types

of read INDEX, ASMGET is called to read the

last record of the new region.

Normal (un-spanned) reads are processed as

follows, For read BACKWARDS, ASMSETL is

called with the '' option to position to the

previous record. For read forwards, it is

unnecessary to do any file positioning. For

read PER SUBFILF, the parent key value is

taken from the current subrecord for use

without validation. For read by KEY, the

Validate key routine is used. The Validate

key routine (also used for LOCATE KEYFORM)

calls the generic conversion routine, if

specified in the key field descriptor, and

then calls the validation routine, if

specified, using "CALL CALL" service for both

purposes. for read LIST, the appropriate key

value is taken from the list (next forward,

next backward, or by subscript) for use

without validation. Then for all non-locking

direct reads (PER SUEFILE, by KEY, or from

LIST), ASMSTLE is called to position to the

desired record. Now the file is positioned

for all reads (except direct locking) and

ASMGET is called to actually read the desired

record. Then if the record is to be locked

and for direct locking reads, ASMGETK is

called to reread or read the record and lock

PAGE 94

it for exclusive use. Next, for INPUT modes,

any record level security checking is done;

if it fails and it was a sequential read

(forwards or backwards), control loops back

to do another sequential read until a record

that passes security or end-of-file is

encountered. If record security fails for a

direct read, a key-not-found error is raised.

For reading a descriptor data set only, the

region is compared to determine if the read

stayed within the region that was opened and

the key is checked to determine if a file or

a field descriptor was read so that the

pointer to the appropriate hard-coded

descriptor descriptor table can be posted in

the BFCB to govern subsequent field level

operations. If an anchor record was read,

then all subfiles are checked: any having a

current subrecord with a different parent key

to the new anchor key are marked "not

current". If a subfile record was read, then

the anchor and all other subfiles are

checked: any having a current (sub) record

with a different
subrecordts parent
current".

(parent) key
key are

to
marked

the new
"not

EBPFLDT Entry

The DBPFLDT (Post FLDTAB) entry is provided

to build a Field name Table by reference to

RDBPAC's main storage descriptor tables built

by the Open routine. This entry is not

supported by a DBPL/I statement a mainline

program must:

i. 	 execute a DBPL/I OPEN statement or a

record level statement implying

opening.

ii. 	 "CALL DBPFLDT(mfcb): where mfcb is the

file name of the data base that was

opened.

iii. 	 have a "% INCLUDE LISRMAC(YLDTAB);"
statement to copy in the declaration for
FLDTkB. Use of this entry is optional;
RDBPAC makes no use of FLDTAB.

FIDTAB Routine

FLDTAB is allocated or freed and reallocated

with its size adjusted to hold the number of

PAGE 95

field names in the data base. RECLEN and the

key field name are posted. - The anchor

descriptors are searched to find anchor field

names to post for Format 2. The anchor

descriptors are searched again to find

associate field names to post for Format 3.

Each subfile's descriptors are searched in

turn to post subfile field names for Format

4. If any superfields were noticed in the

anchor or associate searches, they are found

again and their components analyzed to

determine whether to post the superfield in

Format 2 fall components from anchor)- or

Format 3 (one or more associate components

but no subfile components) or Format 4 (one

or more subfile components).

h. Get Routine

The Get routine is used for all GET

operations and for the IFIELD and #XREF

functions.

lhen a field name has been passed or posted

in the HTCB, it is found in the DESC table

to determine the data set for the GET3

otherwise, the first data set (the one

specified by the OPEN TITLE cluse) is

implyed.

If that data set does not have a current

record, then for the #XREF function a zero is

returned. If it is the anchor data set and

any subfile has a current record, its parent

key will be used to read (using ASNGETK).

The anchor record whose record security will

be checked: if it fails, a null value will be

returned and control branches to the common

return or, for #FIELD, a zero is returned.

The GET RECORD operations is handled by

coping the record from the FCB to the user's

string and tranching to the common return.

For the GET LIST SET statement (DBI) and GET

INDEX LIST SET statement (flB2) the

cross-reference field descriptor is found and

control branches down to the Get Field

routine.

For the GET KEY SET, GET SUBFILE KEY SET and

GET INDEX KEY statements the appropriate key

descriptor is found and control branches down

PAGE 96

to the Get Field routine,

For the #XREF function the cross-reference

field descriptor is found and control

'branches down to the Get Field routine.

For GET FIELD, #FIELD and GET SUBFILE LIST

SET if the descriptor found previously was a

dummy, then the corresponding real descriptor

must be found in an associate descriptor

table. For GET FIELD and #FIELD of a

superfield, a loop is initialized to take

each component field, starting with the

first, find its read descriptor and record

(using ASMOPEN and ASIGETK for an associate

record if necessary) and perform the Get

Yield routine repeatedly until the superfield

has been composed or its count determined.

Get Field handles a bit field, a fixed length

byte field, a simple variable field, a fixed

length element of a multi-element field or a

variable length element of a multi-element

field.

GET KEY SET operations are handled separately

after the fixed length key has been

extracted. If necessary, a list segment is

allocated and chained and initialized.

For the SUBEFILE option the subfile id-key

field name is found in the subfile descriptor

table. For an index option, if the index is

spanned and the last suffix is greater than

zero, the first record in the region is read

using ASMGETK and control branches back to

the Get Field routine. A list segment is

allocated, with its size governed by the

field's length, and chained and initialized

and posted with the whole multi-element field

value. For a spanned index, if the suffix is

less than the last in the region, then the

next index record is read using ASMGET and

control branches back to the Get Field

routine; this repeats until the whole region

has been copied into list segments and the

data set is positioned at the last record of

the region again.

The IELD function is handled for the null

and real value cases of all five types of

direct fields and for the case of an empty

associate data set or an absent associate

PAGE 97

record. Superfields are handled by

effectively evaluating #FIELD for each

component to determine the net count. The

#XREF function for a spanned index calculates

the number of cross-references on records

preceding the last in the region by assuming

full maximum length records and adds the

number of cross-references on the last

record. The #FIELD and #XREF functions are

thus complete and return their function value

directly (without branching to the common

return).

The GET INTO operations are handled for the

null and real value cases of all five types

of direct fields and for the case of an empty

associate data set or an absent associate

record. Superfields are handled by looping

back to get each component field and

concatenating them together.

i. Put Routine

The field name passed in the HFCB is found in

the DESC table to determine the data set

implicated. If it is an associate data set,

it is opened, if necessary, by calling ASOPEN

and read, if necessary, by calling ASMGETK

and if the record is absent a current

associate record is built by copying the null

record built by the open routine and the

anchor key value is copied into it. If an

anchor key or a subfile id-key is being REPUT

to null, then control branches to the Delete

routine described in paragraph "j" below.

For a fixed length field or element, the new

value is justified right or left depending on

the NUMALIGN switch in the field descriptor.

For a variable length or multi-element field,

the field length and record length (RECLEN.

field) are adjusted as necessary. If the

field is indexed and had a non-null value,

then the Delete XREF subroutine (described

in paragraph "1" below) is called. If the
new value is non-null and the field is
indexed, then the XREF subroutine (described
in paragraph "k" below) is called.

j. Delete Routine

Nulling a subfile id-key indicates that a

subrecord is to be deleted. The subfile

PAGE 98

control field descriptor is found and if it

is on an associate, the associate data set is
cpened, if necessary, by calling ASOPEN and

read, if necessary, by calling ASMGETK. The

control field element is found and excised

and the field length and RECLIEN are

decremented. Then the subfile descriptors,

are searched: for all indexed fields, the

Delete XREF subroutine (described in

paragraph "I" below) is called for each.

element value. Finally the subrecord is

deleted by calling ASMDELR.

mulling an anchor key indicates that an

anchor record and its associated and'

sutordinate records are to be deleted. The'

anchor descriptors are searched for subfile

control fields and for indexed anchor or

associated fields. If a control or indexed

field is found on an associate data set, it

is opened, if necessary, by calling ASNOPEN

and read, if necessary, by calling ASMGETK.

For each control field, the subfile is

opened, if necessary, by calling ASOPEN and'

each element is used to read a subrecord

using ASMGETK. The subfile descriptors are

searched for every subrecord: for all indexed'

fields, the Delete XREF subroutine is called.

Each subrecord is deleted by calling ASMDELR.

Luring the anchor descriptor search, when an

indexed anchor or associate field is found,

the Delete XREF subroutine is called.

k. XREF Subroutine

The XREF subroutine is! called from the Put

routine when a non-null value is PUT or REPUT

to an indexed field. The inverted index data

set is opened, if necessary, by calling

ASMOPEN. Then an index read is attempted

using ASMGETK (with a suffix of zero if it is!

spanned). If the record is not found, then

the null record built by the Open routine is

copi:ed, the cross-reference and the indexed

value are copied in, it is written by calling

AS!PUTK and control returns to the calling

program.

If an index record is found, then its highest

(rightmost) cross-reference value is compared

with the new cross-reference. If the new

reference is lower, then the insertion point

is found by 4 binary search and the new

PAGE 99

reference insertedl otherwise the new

reference is appended. If the index is not

spanned or if the region only needs one

record, the cross-reference field length and

RECLEN are incremented, the index record is

rewritten using ASMPUTK and control returns

to the calling program.

In a spanned index region when the zero

suffix record is full, if its last reference

is less than or equal to the new reference

then it is released by calling ASMEEL;

otherwise the insertion point is found by a

binary search, the new reference is inserted,

the last reference overflows to become the

new reference to be propagated forward, and

the record is rewritten using ASMPUTK. The

suffix is incremented and control loops back

to attempt a read of the next record of the

region. This continues as long as full

records are found, finally a short record is

found to append to or a fresh record- is

created and the process is completed like a

non-spanned case and control returns to the

calling program.

1. Delete XREF Subroutine

The Delete XREF subroutine is called from the

Put routine when an indexed field that had a

non-null value is being BEPUT. It is also

called exhaustively by the Delete routine for

indexed fields. The inverted index data set

is opened, if necessary, by calling ASMOPEN.

If the index is spanned, the last suffix of

the region is determined by calling ASMSTLK

with a suffix of "FF" and ASMGET. Whether or

mot the index is spanned, ASMGETK is calle&

to read the index record (with the highest

suffix if it is spanned). If the index is

not spanned or if the region only has one

record, then the cross reference is found by

a binary search and excised, the.

cross-reference field length and RECLEN are

decremented, the index record is rewritten

using ASMPUTK and control returns to the

calling program. In the exceptional case of

the index record only having the one

cross-reference, it is -deleted using ASMDELB

and control returns to the calling program.

In a spanned index region having more than

one record, the lowest (leftmost)

PAGE 100

cross-reference value is examined before the

binary search. If it is greater than the

cross-reference to be deleted, then the whole,

cross-reference falls off to be rolled

backward in the region. The record is then

rewritten (with the field length and RECLEV

decremented if necessary) using ASMPUTK or

deleted using ASiDELR. Then the previous

record is read using ASMGETK with the next

lower suffix and the lowest cross-reference

examined. This process repeats rolling one

cross-reference backward in the region until

the record is found with a lowest

cross-reference less than or equal to the one

to be deleted. The cross-reference is found

by a binary search and excised, the rolled

cross-reference from the record just

processed is posted at the right end, the

record is rewritten using ASPUTK and control

returns to the calling program. If the cross

reference is not found !on the record, it

belongs on then the record is released usinq

ASMREL and in the simple case control returns

to the calling program. However, if rolling

tack had been started in a spanned region,

one cross-reference is still in limbo, so

control branches into the XREF subroutine

which will roll one cross-reference forward

from that point to reconstruct the region

before returning to the calling-program; this

should be an extremely infrequent

occurrence.

m. Return

The common Return is used by all routines.

The only exception is that when the #FIELD

or XHET functions complete successfully they

return directly.

When an error has been detected, an error

code is posted in the MFCB. The address of

the NFCB is posted in DBEfCBP to assist any

mainline having multiple HFCBs. If the

mainline has a current DBPL/I ON ERRORFILE GO

TO ... action, then RETRNPT is called to post

BFCB.OIRETUBN and EDBPAC is left by branching

to the mainline label in MFCB.EREOR.ROUTINE.

Othermise RDBPAC is left by signalling the

PL/I ERROR condition which, unless the

mainline catches it, will terminate the

mainline program.

PAGE 101

Normally, RDBPAC is left by a simple RETURN

statement and control returns to the mainline

that called.

7. CODING SPECIYICATIONS

1. Source Language

RDBPAC is written in PL/I. The DE preprocessor

and DBPL/I are not used in RDBPAC. Various

Assembler language subroutines are used as

mentioned in the Processing Requirements

Narrative.

2. Suggestions and Techniques

When a desired field descriptor has been found by

subscript in the tables, its address is held in a

pointer variable and based structure references

are used to avoid frequent re-evaluation of the

subscript. Similar techniques are used whenever

possilble.

Binary search techniques are used to maintain the

crcss-reference lists in inverted index records in

ascending sequence.

The facilities available in the RDBTSSIO module

are used to the best possible advantage with the

TSS operating system VISAM access method.

The RDBPAC module is designed and implemented to

be reentrant under multi-programming;' automatic,

controlled and based storage are used

appropriately. One nown exception is that the

main storage descriptor descriptor tables are

static for efficiency; if two or more users

attempt to access the same descriptor data set

region concurrently they may encounter

interference on the multi-element field cursors

(only RSECTYCD, NAHEFLD and SECURITY fields are

affected).

Aw DATA

iDBPAC RDBTSSIO
 BASE

Figure 1. 1/0 Block diagram

#EIELD: #XRF: DEFACER: DEFACE?: DEPACFF: DBPACFY

COM AN D

CODE

CLOSE

ROUTINE

OPEN
ROUTINE

RECORD
ROUTINE

UTFLTAB
ROUTINE

GET
ROUTINE

FDELETE

XREF
XREF
SUBROUTINE] SUBROUTINE

/ RETURN

S Figure 2. Top level flowchart

PAGE 104

TOPIC B.3 - EXECUTIVE ASSEMBLER PROGRAMS

A. 	 MODULE NAME

Executive Assembler Program

Program-ID - RDBTSSIO
Module-ID - RDBTSSIO

B. 	 ANALYST

Phillip D. Pritchard

Neoterics, -Inc.

C. 	 MODULE FUNCTION

This program works in conjunction with the Data Base

Executive Program (RDBDAC) -and provides the assembler

language macros reguired to andle the input, output

and updating of VISAN files, as well as the handling of

error conditions.

These VISAM files are the files of a data base and the

Data Base Executive will call the Executive Assembler

Program when it needs an I/O operation performed.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Piles

All of the files which make up a uat DadS

could conceivably be input, including
descriptor files. The only real restriction
is that the files be VISAM.

d. 	 On-line Terminal Entries

Not Applicable

PAGE 105

3. Output Data Sets

a. Output Files

Same as input files.

. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not Applicable

E. PROCESSING RIQUIREMENTS

1. Top .level Flowchart

See Figure 2

2. Narrative

This program is designed to handle the input and

output functions for the Data Base Executive

(RDBPAC). It deals strictly with VISAM files.

The program is divided into many routines, and

each of these routines has a unique function

(Illustrated in Table 1). The Data Base Executive

(fBlPAC) calls these routines individually to

perform the various functions which are required.

Associated with each of these calls is the

passing of the required parameters.

The abilities of these assembler routines are

comprehensive enough to handle any situation which

might arise in the Data Base Executive. This

includes the abilities to: open files for input,

output, or update; read the file sequentially,

read the file by key, exclusively or

non-exclusively; position the file to the

beginning, the end, the previous record or the

next record; and close the file. For example, if

the Data Base Executive were required to open a

data base in the update mode and process records,

PAGE 106

the sequence of calls would be as follows:

CALL ASMDCB (parameters)

establish the files DCB (&ata

control block).

CAIL ASMFNDS (parameters)

link the DCB with the JFCB (job

file control block).

CALL AS1OPEN (parameters)

open the file.

CALL ASMGETK (parameters)

read a record by key.

CALL ASnTUTK (parameters)

rewrite the record.

CALL ASNCLOS (parameters)

close the file.

The Executive Assembler Routines (RDBTSSIO) is

called from the Data Base Executive (RDBPAC). If

no errors are detected by the assembler routines,

the error switch (one of the parameters) is set

equal to zero upon return-to RDBPAC and the return

is to the specified 'Good' return address (one of

the parameters). If an error is detected by the

assembler routines, the error switch is set with

the proper error code and the return is to the

next sequential instruction in RDBPAC. The error

codes will have the following values when an error

occurs in ASHOPEN, ASMPUTK, ASMGETK, ASMGET,

ASPPUT, ASMSETL, ASMESTL, ASMREL, ASMCLOS, ASMDELI

or ASrSTLK:

a. 04 - keys equal (sequence error)

b. 08 - key not found

c. 12 - -ey out of sequence

d. 15 - keys do not coincide

e. 20 - keys coincide

f, 24 - invalid retrieval address

g. 28 - invalid record length

h. 31 - position past end of data set

i. 36 - rosition before start of data set

J. 40 - exceed maximum number of overflow pages

k. 44 - exceed maximum size of stored data set

The assembler routines will add 100 to all of the

above error codes prior to returning to the Data

Base Executive (BDBPAC). The end of data exit

sets the error switch to 99. The error switch is

PAGE 107

a fixed binary 	 half-word.

The first parameter is always the DCB address (DCB

means Data Control Block). The second parameter

is the record area, except for:

a. 	 The open (ASMOPEN) - in this instance, it is

a one byte function code

I = input

0 = output

U = update

b. 	 The close (ASNCLOS)

ESETI (ASHESTL)

STLK (ASMSTLK)

BEL (ASMREL) - in these instances, it

is a one byte dummy character (no

meaning.)

c. 	 The DEIBREC (ASMDELE) - in this instance, it
is the key.

d. 	 The SETL (ASMSETL) in this instance, it is

a one byte function code -

B = beginning

E = end

V = next

P = previous

The third parameter indicates the routine to which

return is made if there are no errors.

NOTE: The error switch parameter for the

following routines must be preset.

a. 	 ASMGETK - 01 if KY(Read by key)

00 if KX(Read by key exclusive)

b. 	 ASIPUTK - 01 if XT(Write)

00 if KS(Rewrite)

The routines and their functions are as follows:

a. 	 ASFNDS: This routine obtains the location

of the JFCB corresponding to a given data

set name. If the data set name specified is

not in the task definition table (DDEF'ed)

but is in the catalog, the JFCB is created.

If the data set name specified is in the task

definition table (DDEFed), the JFCB is

already in existance. If the data set name

is neither DDled nor cataloged and the key

PAGE 	 108

length is passed as a parameter in the error

switch, the file is DDEFed and the JFCB is

created.

The DDfAHE used is posted from the JFCB to

the DCB, and the owner-ID is posted from the

JTCB to the user's area.

The parameters required for successful

execution of the IINDDS are as follows:

1. 	 The DS name (35 characters)

2. 	 The DCB address
3. 	 The owner's ID

4. The error switch (key length)

b. 	 ASMCAT: This routine does a standard catalog
of the string passed as the first parameter.
The string has the standard CAT macro format.
The parameters are as follows:

1. 	 The catalog parameter

2. 	 The return code

c. 	 ASHPR: This routine tries to do a macro

print on the string that is passed as the

first parameter. It has the format of a

standard PRINT macro parameter. The

parameters are as follows:

1. 	 The PRINT parameter

2. 	 The return code

4. 	 ASMERSE: This routine erases the

direct-access storage for a data set. In

addition, it will remove the entry for a

catalogued data set from the catalog. The

DSNAME passed is padded with blanks to 35

characters. If a stored data set is opened

by many users concurrently, a particular user

cannot erase that data set until every other

sharer actively using that data set issues a

close.

Once a user is the only currently active task

using the data, set, he may erase it

regardless of whether he has closed it or

not.

The parameters required are the DSNAME and

the error switch.

VOTE: Tor both ASNINDS and ASERSE, the

PAGE 	 109

error switch upon return to the Data

Base Executive is equal to zero only if

no error occurred.

e. ~SNOPEN: This routine connects the data set

to the system by completing the DCB

(containing the attributes), indicates the

manner in which the data set is to be

processed and positions the data set for
processing. The address of the SYNAE routine
(SYNADRTN) and the address of the EODAD
routine (EODADRTb) are posted to the DCB.
The address of the save area is also posted
to the DCB.

The parameters are as follows:

1. 	 The DCB address

2. 	 The function code

3. 	 The 'Good' return address

4. 	 The error switch

f, 	 ASHPUTK: This routine moves a selected

record from a user specified area to an

output buffer. The system then includes the

record in the output data set by key. This

operates in one of two modes: Rewrite (KS)

or Write (KT). Write releases any page level

interlocks set for the data set. The

parameters are as follows:

1. 	 The DCB address

2. 	 The record area (address)

3. 	 The 'Good' return address

4. 	 The error switch (preset:

0 means Rewrite (KS),

1 means Write (KT)).

5. 	 The key (address)

g. 	 ASMGETK: This routine obtains a selected

logical records from an input data set and

moves it to a user specified area. There are

two modes, read with interlock (KX) and read

with no interlock (KY), both by key. The

parameters are as follows:

1. 	 The DCB address

2. 	 The record area (address)

3. 	 The 'Good, return address

4. 	 The error switch (Preset: 01 means read

-with interlock (KX), 00 means read with

no interlock (KY)).

5. 	 The key (address)

PAGE 	 110

h. 	 ASqGET: This routine obtains the next

seguential record and moves it from an input

buffer to a user specified area. The

parameters are as follows:

1. 	 The DCB address

2. 	 The record area

3. 	 The 'Good' return address

4. 	 The error switch

i. 	 ASMPUT: This routine has the same parameters

as the ASMGET routine. However, instead of

reading a record, it writes a record.

j. 	 ASMSTIK, ASISETI: These routines position a

data set. The parameters for both routines

are as follows:

1. 	 The DCB address

2. 	 The code : K (by key)

B (beginning)

E (end)

N (next)

P (previous)

NOTE: the VP' actually does two
SETh 'P's in order to allow for
reading the file backward.

3. 	 The 'Good' return address

4. 	 The error switch

5. 	 The key (address, for ASMSTLK only)

k. 	 ASMSTLP: This routine has the same

parameters as the ASMSTLK and ASMSETL

routines. It does one SETh VP'.

1. 	 ASMESTL: This routine releases a page level

interlock imposed by another macro.

Tbe parameters are as follows:

1. 	 The DCB address

2. 	 A dummy character

3. The 'Good' return address

4, The error switch

m. 	 ASDELB: This routine deletes a record from

a VISAh file. The parameters are as

follows:

1. 	 The DCB address

2. 	 The key

3. 	 The 'Good' return address

4. 	 The error switch

PAGE 	 111

n. 	 ASMREL: This routine makes the record

available to other users;

The parameters are the same as in the ASMESTL

routine.

0. 	 ASMC1OS: This routine closes the file

(VISAM).

p. 	 ASMDD: This routine does a general purpose
DDEF after trying to release the 'UNIQUE'
DDNAME it creates. It then passes the DDNAME
to the calling program. The parameters are
as follows:

1. 	 The DDEY parameter string

2. 	 The returned DDAME

3. 	 The return code

The first parameter is the DDEF information,

identical to the parameter string for the

DDEF 	 macro, less the leading 'DDNAME1.

The second parameter like the first is a

varying character string. It is the variable

to -which the DDNAME is returned. The third

parameter is the return code for the DDEF.

q. 	 SYNADRT, EODADRTN: Mhen an end of file or

some error is detected during any of the

routines in this program, these routines set

the proper error code in the error switch and

return control to the Pata Base Executive for

appropriate action.

r. 	 GETRECRD, OTHGET: When a read by key,

non-exclusive, is executed and an error is

detected, they will function as follows:

When the ASMGETK is called to read

non-exclusively and the record is not found

(ERROR XO08') then a SETLK to the not-found

key is performed. This action positions the

data set to: The last record if the key is

beyond the end of the data set, to the next

lowest key if the key is in the central

portion of the data set, and to the first

record if the key is prior to the beginning

of the data set. The SETLK returns to the

SY14AD routine. At this point, the record

indicated is read. An error code of X'108'

is returned to the calling module (RDBPAC),

but in fact, the record indicated is

PAGE 	 112

current.

s. 	 SMDCB: This routine takes the DCB created

in this program and moves it to the user's

specified area. The only parameter is the

user specified area (address).

t. ASMID: This routine determines the user - ID

(TSS - ID) of the task and places it in the

user specified area. The only parameter

rassed is the address of the user specified

area.

u. 	 ASMRELS: This routine is used to release the

JFCB created by the DDEFing of a particular

file. The only parameter passed is the

DDEMAE associated with the DDEF. Any errors

that occur are ignored.

v. 	 CAIL: This routine allows a PL/I program to

call an external routine by specifying its

name at execution time. Any parameters other

than the called routine name, are passed on

to the called routine for interpretation.

The name specified must conform to the name

construction standards of TSS/360.

V. 	 BETRNPT: This routine is used by the Data

Base Executive error routine. It posts the

double word in the MFCB so that the user (of

DBPAC) can return to the next sequential.

instruction in his program after the

occurrence of an error. The first word is

the invocation count; the second word is the

address.

x. 	 AS MODE: This routine is used to determine

if the maintenance task is running in a batch

mode. It returns a 'C' if running

conversationally; or it returns a 'B' if

not.

y. 	 EBUCHEK: This routine is used to validate

the construction of an external name. The

rules used are:

1. 	 the name must begin with an alphabetic

character (including #, $, @),

2. 	 the name must be eight characters or

less,

3. 	 the second and subsequent characters of

the 	 name must be alphanumeric (including

, a, ?).

PAGE 	 113

The parameters passed are the name and the

name length (in the event that the user

wishes to restrict it to less than eight).

If the name is invalid, the length paramter

will be set to one, as an error indicator,

otherwise it will be set-to zero.

2. 	 ASMXTR, ASMPASS, ASMMHUST: These entry points

simply transfer control to the MTT monitor

to maintain linkage conventions.

T. 	 CODING SPECIFICATIONS

1. 	 Source language

Unlike most other modules for the NASIS system,

the 	 Executive assembler program (RDBTSSIO) is

written entirely in Assembly language.

2. Suggestions and Techniques

a. 	 Special attention is paid to the linkage

conventions of the current PL/I compiler.

b, 	 The Data Base Executive, by design, is the

primary user of this program. However, the

program is written so that programs other

than the Data Base Executive can use it.

RDBPAC DBTSSIO DATAPLEX

ROUTINE

ENTRY ASMERSE

EXIT

ROUTINEEXIT NT

ENTRY ASAIOPEN

. ROUTINE FROM VISAM,
• L.Ex, 	 ERROR
ENTR ASMEK ODDqF• 	 DETECTION

IROUTINE
,EXIT7 q 	 °4°

ROUI INEROUTINE

ENTRY ASMPUTK

ENTRY ASMGET
ROUTINEO

ROUTIN
H Y N A DR

DROUNE

ENTRY ASMPUT
ROUTINE 	 GETRECRROUTINEEXIT,

ENTRY -AS,.STLK

ROUTINE J

EXIT77 j

ENTR ASMEL

Ftur I-TpivI flowciii
EXIT

EXIT7 	 7
ETY 	 ASMOCB

ROU'TINE

-EITu 	 e] -1o~~e O' iJ

PARAMETER
NUMBER

1

2

3

4

5

REGISTER
NUMBER

2

3

4

5

6

PARAMETER

DCB ADDRESS

RECORD AREA

FUNCTION
DUMMY

KEY

'GOOD' RETURN

ERROR SWITCH

KEY

TABLE I. - PARAAETERS.

PAGE 	117

TOPIC B.4 - DATA BASE EXECUTIVE CONVERSION AND REFORMATTING

ROUSINES

A. 	 MODULE NAME

Standard Conversion and Reformatting routines for the

Descriptor Editor and the Data

Base Executive.

Program-ID - RDBEXITS

Module-ID - DBEXITS

Entry Points - See Table 1.

B. 	 ANALYST

Garth B. Nyman

Neoterics, Inc.

C. 	 NODULE FUNCTION

This module provides 31 standard general field

conversion and reformatting routines. They are called

by the Data Base Executive field processing routines

(PUT, GET, and EEPUT) if they are specified in the

field descriptor record. The routines are written

according to the DBPAC Exit Routines User's Guide

(Section 8, Topic B.1) and may be used for user's

database fields, if desired.

D, 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

Not Applicable

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicatle

Co. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 Output Tiles

PAGE 118

Not Applicable

b. on-line Terminal Displays

Not Applicable

c. !ormatted Print-cuts

Not Applicable

4. Reference Tables

Not Applicable

E,. PROCESSING EEQUIRPBWNTS

1. Top Level Flowchart

Not Applicable

2. Narrative

The conversion routines (DBCVT_) are for use

during PUT or REPUT field processing. They all

accept a varying length character string argument

and all allow the value to have leading and

trailing blanks. They check the argument value

according to the Notes in Table 1. If the

argument value is invalid, they return with the

BAD parameter left set. Otherwise they copy the

value or convert it to the internal form and

length shown in Table 1, reset the BAD parameter

switch and return.

The reformatting routines (DBFMT) are for use

during GET field processing. They all accept a

varying length character string argument (from the

dataplex). If the argument length is not as shown

under "Internal bytes" in Table 1, then the

routine is being misused and the value "BAk. HEX="

is generated followed by the hexadecimal expansion

of up to eight bytes of the argument. Normally

the internal form of the value is reformatted to

the external form and control is returned. These

routines all produce exact length output (i.e.

without leading or trailing blanks).

F. CODING SPECIFICATICIS

1. Source language

Pl/I with no DBPI/I statements.

PAGE 	 119

2. 	 Suggestions and Techniques

Not Applicable

TABLE I

CONVERSION NOTES
 PURPOSE
 INTERNAL REFORIATTING

ROUTINE
 BYTES ROUTINE

DBCVTS 1 Scientific (long float)
 8' DBFMTS
DBCVTSS 1 Short Scientific (short float)
 4 DBFITSS
DBCVTLN 1 Long Numeric (fulliord binary) 4
 DBFMTLN

DBCVRSD 1
 Scaled Decimal
 5 DBFMTSD
DBCVTSN I
 Short Numeric (halfword binary)
 2 DBFMTSN

DBCVTBN 1 Byte Numeric (quarterword binary) 1 DBFNTBN

DBCVTRL 1,2 RECLEN
 4 DBFMTRL
DBCVTID 1 subfile ID key 3 DBFMTID

DBCVTFT 3 header descriptor FILETYPE
 1 DBFMTFT

DBCVTFV 4 field descriptor Fixed or Varying
 4 DBFMTFV

DBCVTOO 5
 Off 	or On
 3 DBFMTOO

DBCVTRS 6 header descriptor RSECTYCD
 9 DBFMTRS
DBCVTNF 7 super-field descriptor NAMEFLD
 9 DBFMTNF

DBCVTEN 8 External Name
 1-8 (DBFMTSB)

DBCVTSB 	 Strip Blanks
 variable DBFMTSB

DBCVTHX 9 HeXadecimal
 variable DBFNTHX

I. 	 Arethmetic conversion and size checking.

2. 	 Value between 4 and 4000.

3. 	 Valid values are: anchor, 1: associate, 2; subfile, 3;

index, 4.

4. 	 Valid values are: fixed, f, 0; varying, v, 1.
5. 	 Valid values are: off, no, n, false, f, 0; on, yes, y,

true, t, 1.

6. 	 Has the form: nasis-id <=> hexmask.

7. 	 Has the form: <externalielinternalli> component-field-name.

8.
 First non-blank alphabetic; other characters alphanumeric.

9. Valid non-blank characters are: 0, 1, 2, 3, 4, 5
 6, 7, 8,

9,)A, B, C, D, E, F.

PAGE 121

TOPIC B*.5 - DATA BASE EXECUTIVE LIST PROCESSOR

A, 	 MODULE NAME

Data Base Executive List Functions and Statements
Program-ID - RDBI-IST
Module-ID - #LIST
Entry points - DBPAC,DBPACPDBGLKN,DBGIIK,DBGLKI,

DBGLKO,DBSLLL,DBGLKS,DBPLIK,DUPLIST,
UIIST,LIST

B. 	 ANALYST

Garth B. lyman

Neoterics, Inc.

C. 	 MODULE FUNCTION-

RDBLIST performs services on lists (of keys in main

storage) which do not require access to a data base.

(Services requiring access to a data base are done by

module,RDBPAC) The list services are:

1. 	 Getting the number of keys in a list,

2. 	 Getting a key from a list in various ways,

3. 	 Building a new list like or from an old

list,

4. 	 Boolean combination of two lists, and

5. 	 Freeing a list or all lists.

There are two means by which mainline P1/I programs use

the DBLIST services:

1. 	 By function reference. The #IIST, DUPLIST, ULIST

and LIST functions are invoked by reference in a

Pt/I expression.

2.-	 By use of DBPL/I. The other services are all used

by having DBPL/I statements in a PL/I program.

(See the DIPI/I language Extension User's Guide,

Section 8, Topic B.2.) These are processed at

compilation time by the DB preprocessor function

which transforms DBPL/I statements into normal

PL/I CALL statements. (See the DBPL/I - DBLIST

Interface, Section 3, Topic B. 10.) At execution

time the various entries of DBLIST are called for

the various services.

PAGE 122

D. 	 DATA REQUIREMENTS

See the DBPl/I language Extension User's Guide,

Section 8, Topic B,2.

E. 	 PROCESSING REQUIREMENTS

1. 	 Top Level Flowchart

Not Applicable

2. 	 Narrative

The routines all receive their parameter values as

specified in the DBPL/I - DMLIST Interface because

the DE preprocessor function generates a DECLARE

of the entry points and their parameter

attributes.

The routines all recognize if a list pointer

parameter has the NULL value and process

accordingly.

The routines all handle lists having continuation

segments by stepping from segment to segment as

necessary. In this regard DBLIST has three

internal subroutines:

a. 	 GET which gets the next sequential key from a

(segmented) list.

b. 	 PUT which appends a new key to a (segmented)

list possibly allocating and CHAINing a new

segment.

c. 	 CHAIN which connects a nev list segment to

the previous segment.

When the routines detect any logic error, they

post an error code number in

LISTEBR.ERROR.ONCODE. Then if the user has done a

DBPI/I ON LISTERWOR statement, a return is made to

the user's error routine. Otherwise, the PL/I

ERROR conditicn is raised.

#LIST is a function entry that accumulates and

then returns the current count of keys in a

(segmented) list.

LIST is a function entry that compares the keys in

two given (segmented) lists and builds a

(segmented) list to return consisting of the union

(the OR operation) or the intersection (the AND

PAGE 123

operation) or the difference (the MINUS operation)

of the two given lists. For the OR operation, if

one list is well then the other list pointer is

returned immediately. For the MINUS operation, if

either list is null then the first list pointer is

returned immediately without building a copy.

DBPAC is an entry that systematically deallocates

all list segments for a subtask thus freeing all

lists.

DBPACP is an entry that deallocates the segments

of one list and unchains them from the chain for

the subtask. Deallocation is not done if the

tIST.PERMANENT flag has been turned on.

DBGLKN is an entry that gets the key specified by

a subscript from a (segmented) list. If the

subscript is zero or too high, the list is reset

and a null string returned. If the subscript is

any negative value, then the previous key is

returned (except if the list was reset then the

last key is returned or if the first key was

current then the list is reset and a null string

returned).

DBGLKI and DBGlIK are entries that get the next

key from a (segmented) list (except if the list

was reset then the first key is returned or if the

last key -was current then the list is reset and a

null string returned). DBGLKI will call a

conversion routine for the key value (if

specified); DBGLIK always returns the unconverted

interval -key value.

DBGLKC is an entry that resets a (segmented) list

so that the first (or last) key will be
available.

DBSLLL is an entry that allocates the first
segment for a new list and initializes it to be

like an existing list (except that it has no keys

yet).

DBGLKS is an entry that copies the current

internal key from a (segmented) list to the end

of ancther ccmpatible (segmented) list.

DBPLIK is an entry that puts an internal key value

at the end of a (segmented) list.

DUPLIST is a function entry that returns a copy of

a (segmented) list. The copy is "condensed", that

PAGE 124

is, it has full maximum size segments.

ULIST is a function entry that steps through the

keys of a (segmented) list checking for

duplicated internal key values. If none are

found, i.e. the keys are unique, the list pointer

is returned without building a copy. If

duplicated keys were found, a copy of the list

having only a single instance of any keys that

were duplicated is returned. The copy is

"condensed", i.e. it has full maximum size

segments.

. CODING SPECIFICATIONS

-1. Source Language

PL1I.

The LIST and LISTERR declarations are included

from the SOURCER.LISRMAC dataset.

No Assembler routines are used.

2. Suggestions and Techniques

The internal procedures GET, PUT and CHAIN

simplify, standardize and expedite key by key

processing of segmented lists.

PAGE 125

TOPIC B.6 - DATA BASE EXECUTIVE PARENT - CHIlDREN PROCESSOR

A. NODULE NAME

Data Base Executive Parent and Children List Functions.
Program-ID - RCCLIST
Nodule-ID - CCLIST
Entry points - UPLIST,CPLIST

B. ANALYST

Garth B. Wyman

Neoterics, Inc.

C. MODULE FUNCTION

RCCLIST builds a list of children (or parent) keys in

main storage from a list of parent (or children)

keys;

Mainline P1/I programs use the RCCLIST services by

function reference in a PI/I expression.

D. DATA REQUIREMENTS

See the DBPL/I Language Extension User's Guide,

Section 8. Topic B.2.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

Not Applicable

2. Narrative

The routines all receive a IFCB (Mainline File

Control Block) as their first parameter. They

pass it though when they call RDBPAC. RCCLIST's

second parameter, a subfile control field name,

is posted in MNCB.ONFIELD for RDBPAC. The

routines all receive a list pointer parameter. If

it has the NULL value, they return a NULL list

pointer immediately.

Then READ FILE LIST KEY (0); is done to reset the

READ cursor of the input list and the list's key

field name is compared with the anchor key field

name in the core descriptor tables. For CCLIST

they should he equal (the input list should be an

anchor key list); if unequal, the input list

pointer is returned immediately. For CPLIST and

PAGE 126

UPLIST they should differ (the input list should

be a subfile key list); if equal, the input list

pointer is returned immediately.

The #LIST function is invoked on the input list to

obtain the count to govern further processing.

For the CCLIST function READ FILE LIST OLOCK is

done iteratively to process all (parent) records

in the input set. From each one a GET FILE

SUBFILE LIST SET is done using the second

parameter for the subfile name. This returns a

list pointer to a temporary set consisting of the

subfile control field. If it is null, control

loops back 'to the next READ and GET. If it is the

first non-null control field encountered, it is

made the basis for the output list. If it is a

subsequent non-null control field it must be

merged with the previous output. If its first key

is higher than the last key of the previous output

(usually) the temporary set segment is appended or

the last segment. Otherwise (rarely) the OR LIST

function of the RDBLIST module must be invoked to

perform the merge and then the temporary sets must

be freed, Control loops back until all the READ

and GET's have been processed. The output list

pointer is returned.

For the UPLIST and CPLIST functions a switch is

set indicating whether duplicate-keys are to be

dropped after the parent list has been built by

code common to both entry points. One or more

list segments of up to 32767 bytes of keys are

allocated and initialized as necessary to hold as

many parent keys as there are subtecord keys in

the input list. BEAD FILE LIST NOLOCK is done

iternatively to process all subrecords in the

input set. From each one the internal parent key

value is extracted and posted to the output

list.

If the output list has only one key, its pointer

is returned for either UPLIST or CPLIST.

Otherwise the output list must be sorted into

ascending collating sequence. For the CPLIST

function the output list pointer is returned at

this point.

For the UPLIST function a final pass over the

output list is made to detect any duplicate

keys. Each time a duplicate key is found it is

deleted by shifting the remainder of the segment

to the left and decrementing the segment count.

PAGE 127

(This leaves a non-compressed list.) The output

list pointer is returned.

F. CODING SPECIfICATIONS

1. Source Language

PL/I

The LIST and LISTERR declarations are included

from the SOURCE.LISEMAC dataset. Declarations

for MFCB, DESC, DESCJfLD and FCB structures have

been taken from the source for RDBPAC.

Vo assembler routines are used.

2. Suggestions and Techniques

The name conflict between the LIST structure and

the LIST entry to RDBLIST (which may be invoked

from ECCLIST) can be circumvented by using PL/I

preprocessor facilities to rename the LIST

structure LISS during the compilation.

PAGE 128

TOPIC C.1 - UTIlITIES JOIN (RDBJOIN)

'As. 	 MODULE NAM1

Joining new NASIS users

Program-ID - RDBJCIN

Module-entries - EBJOIN, JOIND, PAGERR

B. 	 ANALYST

Edward J. Scheboth, Jr.

Neoterics, Inc.

C. 	 MODULE FUNCTION

This program gives the NASIS DBA the ability to create

and maintain the data set NASIS.USERIDS. This data set

contains the NASISIDS under which users of the NASIS

system are given access to MT/T, the Retrieval system

and the various data bases. The data set NASIS.USEEIDS

is organized under VISAM, and has as a key composed of

eight byte NASISID of each joined user, with a variable

record format containing his password, timeslice, user

authority, and list of permitted files.

This prcgram has as a secondary function the task of

displaying for rdbinit the files available for

retrieval to a specific user.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data sets

a. 	 Parameter cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

The NASISIDS data set. (For complete

detailed specifications of this file see

Section III of the Development Workbook).

d. 	 on-line Terminal Entries

PAGE 129

Valid JOIN commands.

3. Output Data Sets

a. 	 Output Files

See 2.c

b. 	 On-lime Terminal Displays

See -2.d

c. 	 Formatted Print Outs

Not Applicable

d. 	 Punched Card Output Files

Not Applicable

4. 	 Reference Tables

Not applicable

E. 	 PROCESSING REQUIREMENTS

1. 	 Top Level Flowchart

See Figure 2

2. 	 Narrative

The primary entry point of this program (DBJOI)

is responsible for maintenance and display of the

NASIS.USERIDS file.

The 	 rain routine has a prompt validation loop

which calls the subordinate functions such- as

Join, Quit... etc. making the program more modular

and much easier to modifyi

Program termination is thru the common END

convention set up in TS/2. All parameters to the

commands shall be obtained using the new TS/2

facilities.

The secondary entry point of this routine (JOIND)

displays the available files for DBINIT. This is

really a sub function of the main routine's

Display function and paging entry and should be

coded as such to facilitate coding.

F. 	 CODING SPECIFICATIONS

PAGE 130

1. Source language

As much as possible of the RDBJOIN module is coded

in the IBM PL/i programming language. The input

and output coding for accessing the file

NASIS.USERIDS is handled ly a direct call to the

DBPAC assembler routines. All terminal access is

handled by TS/2.

2. Suggestions and Techniques

Refer to Section III of the Development Workbook

for all data set specifications.

TERMINAL
CONTROL

F . / DBINIT

[:BJOIN

F

Figure 1. 1/0 BLOCK DIAGRAM

-17

IPAERR
JOTD

PROMPT
AND
VALIDATE
PAS SWORD

b b

aFOR
FUNCTION

VALIDATE
FUNCTION
OR END

RETURN

JPAE SUB FUNCTIOt

UPDATE

SUB
FUNCTIONS

Figure 2. Top 'LevelFlowchart

PAGE 133

TOPIC C.2 - MESSAGE FILE EDITOR

A. 	 MODULE NAME

Enter new EXPLAIN text into LISRMLF

Program-ID - RDBMLI

Module-ID - DBMLF

B. 	 ANALYST

George F. Oswald

Neoterics, Inc.

C. 	 MODULE FUNCTION

DBMLF will enable a systems programmer to enter NASIS

EXPLAIN text into a library similar and replaceable

with LISRIB(ISRF). A person may copy LISRMLF into

a VISAM file, DDEF it with the DDNAME of LISRMLF,

perform editions to it with DBMLP, and test the new

editions. Upon approval, the editions may replace the

original LISRMLI member of IISRLIB.

The module will perform interactive editions consistent

with TS2 conventions. The edit commands will provide

the user the capatility to ADD, DELETE, REPLACE, and

DISPLAY a message; to PREFIX (set the filter prefixl:

and to END (terminate editions).

D, 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Parameter Cards

Not Applicable

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

The input file will be a VISAM copy of the

current LISRLIB(LISRMLF).

PAGE 134

d. 	 On-Line Terminal Entries

All entries will he either command and

parameters or command only; the form of the

entries is either full words, codes, or

no-entry. A default is made, where possible,

when no-entry is made. Prompting for new

ccmmand or parameters will occur whenever

necessary.

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-Line Terminal Display

All on-line terminal displays for DBMLF

follow the same format. All such displays

are handled by TSPL/I commands.

c. 	 Formatted Print-Outs

Not Applicable

d. 	 Punched Card Output riles

Not Applicable

E. 	 PROCESSING REQUIREMENTS

1. 	 Top level Flowchart

See Figure 2

2. 	 Narrative

a. 	 The purpcse of DBNLF is to provide a system

programmer the capability to ADD, DELETE,

REPLACE, and DISPLAY, NASIS EXPLAIN text.

The program is an interactive command-driven

maintenance routine which creates a library

similar and replaceable with LISELIB

(LISRMLY).

b. 	 Mainline (Prompt and Validation Routine)

This routine is entered externally from

program execution and internally upon command

completion and error detection.

1. 	 Program Execution

PAGE 135

The user will he prompted to enter a

command. The user has the option of

entering either a command plus

parameters or only a command. The

routine will then validate the entire

command string. However, if a parameter

is in error, the user will be notified

and prompted to re-enter the particular

parameter. If a no-entry is detected

for a parameter, the parameter will be

defaulted, or if it is a mandatory

parameter, the user will be prompted for

the required parameter. As each

parameter is accepted or defaulted, an

entry will be made in the command

argument data string. The command

itself will be used to determine which

command processor is to be invoked.

2. Command Completion

Upon completion of a command the user

will be notified of its success full

termination, and prompted for a new

command or parameters. If the new entry

contains a command keyword (ADD, DELETE,

etc.), then execution will continue as

described above tE.2.b.1). If the new

entry is not a command keyword, then the

program will assume the new entry is to

be processed as prescribed by the

previous command.

3. Error Detection

If an error has occurred during

subsequent processing of the command

argument data string, the user will be

notified of the error and the user will

be prompted for a new entry as described

in 2 above.

c. Command Processor Boutines

There are two unique forms of the command

processors: Group 1 contains the commands

that cause file access; they are ADD,

REPLACE, DISPLAY, and DELETE. Group 2

contains program or data control; they are

PREFIX which sets the filter prefix but

causes no access to the file, and END which

causes program termination.

PAGE 136

1. File Access

The file access commands have two forms:

those which write, or rewrite data and

those which read or delete data.

a. irite or Rewrite

These commands require a source key

plus new text information.

1. ADD

The ADD command will specify

with the type parameter the

position into which the new

text is to be placed; example,

within ID, MSG parameter

preempts line numbers C

through 99 in increments of

5, EXP parameter preempts line

numbers 100 through 199 in

increments of 10, and the RESP

parameter preempts line

numbers 400 through 9999999.

The lack of one of the above

qualifying params designates

the type and text of the

command argument data string

designates an -explanation of

a file oriented term or a

global term. This form causes

a default to the next

available line number within

that region.

Vote that when positioning for

adding a record to the file

and a line number is not

specified, a read will be

attempted using the highest

line number possible within

the above-mentioned

specification and thus provide

the line number of the last

record within type or term

within the region.

In combination with the type

param the line number may be

specified; this combination

denotes a line to be inserted

within type or term, and

PAGE 137

within region.

When the new line number has

been established, the source

key will be complete and a

write of the new line will be

initiated. Note: the writing

of a new data line can cause a

duplicate key error condition;

this condition will be handled

by a separate routine.

2. REP

When a request is made for a

line to be replaced, all

params are mandatory. The

routine will first construct

the source key and then

initiate a read. Successful

completion of the read

determines that there is an

existing line to be replaced.

A key-not-found condition

denotes that an invalid line

number was supplied in the

command argument data

string.

Note: The existence of a

key-not-found condition will

cause an entrance into the

error handling routine.

The data line obtained by the

read will be replaced as

denoted in the command

argument data string, and a

rewrite will be initiated.

Note: There are no valid

exceptions for the failure or

the rewrite statement.

b. Read and Delete

These commands do not manipulate

the data file per se, but provide

for deleting or displaying of text

within the delimeters provided by

the command argument data string.

In both commands only the ID param

is mandatory; therefore, it is

PAGE 138

possible for a command to request

the deletion or display of text

from a single line number to an

entire ID.

1. DELETE

Delete will obtain the

delimeters from the command

argument data string and

remove all references to the

text as specified by the

delimeters. vote: There are

no valid exceptions for the

failure of the delete

statement.

2. DISPLAY

Display will obtain the.

delimeters from the command

argument data string and

display all references to the

text as specified by the

delimeters. When expiration

of the delimeters occur and/or

no data is available for

displaying, a message will

return notifying the user of

the condition., ote: The

key-not-found condition will

be used to determine the

expiration of the

delimeters.

c. Control Commands

There are two control commands

provided.

1. PREFIX

The PREFIX command provides

for the setting of the filter

prefix for each line to be

added or replaced.

Note: The prefix code in the

command argument data string

will be ignored by all other

command processor routines.

Once the prefix command is

issued, it will remain in

PAGE 139

affect for all

commands until

prefix command

setting of

prefix.

2. 	 END

ADDs and ESPs

a subsequent

alters the

the filter

An orderly close of all files

will occur and the program

will 	 terminate.

F. CODING SPECIFICATIONS

1. 	 Source language

Not Applicable

2. 	 Suggestions and Techniques

Not Applicable

F USER

DBIF

LISRMLF

Figure 1. I/0 Block Diagram

-NT X-~

ADD CN. RE CONPREPFIXF PROMT12

AL SPPY DDSUPPLY REP SUPPLY' PREFIX
COMRTMND CRITERIA CRITERIA

TRINGTO DATA
STRING

TO DATA
STRING

TO DATA
STRING

CREATE
FORMATTED
DATA STRING

WRITE
NEW
DATA
STRING /REPLACED

READ DATA
STRING
TO BE

CO TO
PROMT

GOTO COM.PROC.

~Y

N DUPLICATE
KEY

Y I AI
KEY

SUP-PLY DIS
CRITERIA
TO DATA
STRING

PROCEDURE

DEL CON

SINVALIDRITE
CORRECTED
DATA
STRING

GO TO
PROMPT

DATA
TO BE

DISPLAYED
SUPPLY DEL
CRITERIA
TO DATASTRING END CON

DISPLAY
REQUESTED

DATA
STRING

DELETETERMIATE
RECORDS EIIN

MORE
DATA
?

Y
MORE

EYS TO BE
ELETED

Y

GO TO
SPROMPT

C ROP

Figure 2. Top Level Flowchart

PAGE 142

TOPIC C.3 - CONVERSION AND IORMATTING ROUTINE TEST DRIVER

A. 	 MODULE NAME

Conversion and Formatting Routine Test Driver

Program-ID - RDBDRIVE

Module-ID. - DBDRIVE

B. 	 ANALYST

James -A.Wesley

Neoterics, Inc.

C. 	 MODULE FUNCTION

RDBDRIVE is a facility to allow the application

programmers to test conversion, validation and

reformatting routines conversationally. The user can

specify the routine names and input data values to

simulate the activities of RDBPAC.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

Not Applicable

d. 	 !On-line Terminal Entries

The user is prompted for all the input data

required.

3. 	 Output Data Sets

a. 	 output Files

Not Applicable

PAGE 143

b.- n-line Terminal Displays

All input data is displayed to the user for

verification in two forms; in the form as

entered, and after any necessary conversion.

The output from each routine is displayed in

hexadecimal, and the output from reformatting

routines is also displayed in its character

form.

C. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not Applicable

E. PROCESSING REQUIR1INTS

1. Top Level Flowchart

See Figure 2

2. Narrative-

The user is prompted to enter the input mode, this

is the node ihicb the character string he enters

at his terminal will be converted into before

inputing it to his selected routine(s). The

possible input modes are:

a = alphanumeric,

f = full word,

h = half word,

F = packed decimal,

I = long floating point,

s = short floating point,

m = hexadecimal.

A null response to this prompt is the only way dut

of the module. Null responses to any other prompt

will eventually filter back to this prompt.

The type of input mode selected determines the

setting of a label subscript which is later used

to branch to the routine necessary to convert the

input data to the selected mode.

PAGE 144

The user is next prompted for the routine names.

They must be entered in one string, separated by

commas, and must not exceed eight characters. A

null response here returns to the prompt for

input mode. Also, the routine names must be

entered in the order; conversion, validation,

reformatting, and any missing routines must be

defaulted; eg:

EBCVrSN,,DBFMTSN

or

,.DBFMTHX

If a validation routine has been specified, the

user is prompted for the validation arguments.

These can be any character string, up to a maximum

of 50 characters; or null.

The user is now prompted for input data. A null

response here returns to the prompt for routine

names. The input data is converted to the mode

selected by the user.

The data is now passed to all the routines

specified, in the order: conversion, validation,

reformatting. The output from one routine is used

as the input to the next routine.

The output from each routine is displayed in

hexadecimal and the output from the reformatting

routine is also displayed in character.

Successful completion returns the user to the

prompt for data. Any error results in a

diagnostic message and the return to the prompt

for data.

F. CODING SPECIFICATInS

1. Source language

This Eodule is coded in the IBM/360 PlI language.

The TSPI/I language Extension is used for all

terminal I/O.

2. Suggestions and Techniques

Not Applicable

TERMINAL

RDBDRIVE

EXIT

ROUTINES

Figure 1. I/O Block Diagram

IT

DBIJRIVE

PROMPT
FOR
MORE

I
PROMPT FOR
INPUT DATA

NULL
EXIT

VALID
?

SET
LABEL
VARIABLES

N

,
V

A

B

C01NVERT

DATA TO
INPUT

MODE

CNVRT RT_1 CONVERSION

DISPLAY

OUTIPUT

PROMPT
FOR
ROUTINE

NI-ILLLA

VLDAON

R T IN E

-- OUTPT "

N

I'RPROIPT

VAALIRTTINN

DALID

FORATINGOUPU

DISPLAY

\ALIDAROFigure 2. Top Level Flowchart

C

PAGE 147

TOPIC C.4 - UTILITIES EUSSRID

A. 	 MODULE NAME

Get the TSS USERID

Program-ID - FUSEBID

Module-ID - USERIL

B. 	 ANALYST

John A. lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

This 	 program is used to obtain the TSS userid and save

its value in the TSS profile as a default for the

symbol USERID. This symbol is then used during

USERJOI to create the transaction and statistics

files.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

Not Applicable

2. 	 Input Data Sets

a. 	 Parametet Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

d. 	 On-lime Terminal Entries

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 on-line erminal Displays

PAGE 148

Not Applicable

c. 	 formatted Print-Outs

,Not Applicable

4. 	 Reference Tables

Not Applicable

E. 	 PROCESSING REQUIRIMEFNTS

1. 	 Top Level flowchart

See Figure 1

2. 	 Narrative

Upon entry, normal TSS linkage requirements are

fulfilled. Next, the program uses the XTECT

macro to obtain the userid of the task being

executed. The trailing asterisks are removed from

the userid and the resultant value is assigned to

the default symbol USERID and posted in the

user's TSS profile by means of the OBEY macro.

The program then returns to its caller.

F. 	 CODING SPECIFICATIONS

1. 	 Source language

Because of its use of TSS system functions, this

module is coded in the ISS/360- assembler

language.

2. 	 Suggestions and Techniques

Not Applicable

EXTRACT

USERID

POST-

DEFAULT

VALUE

EXIT
:

Figure 1. Top level flowchart

PAGE 150

TOPIC D.I - MAINTENANCE TRANSACTION MERGE

A. 	 MODULE NAME

Maintenance - Transaction Merge

Program-ID - REBMERGE

Module-ID - DBMERGE

B. 	 ANALYST

Richard D. Graven

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module is responsible for taking the contents of

the various userids' transaction data bases and merging

all of the transactions affecting a particular data

base into the transaction data base of the data base

owner. The resultant combined set of transactions is

then processed by Maintenance itself.

The input transaction data basees are shared with

read/write access to the data base owner to enable him

to delete each transaction as he copies it over.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

lot Applicable

b. 	 Punched Card Input riles

Not Applicable

c. 	 Input Files

The two possible sources of input for this

program are, (1), the VISAM dataset which

contains the list of TSS userids which have

been joined to the NASIS system, and (2) the

transaction data bases of the NASIS system

users.

d. 	 On-line Terminal Entries

PAGE 151

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

The only output file used by the program is

the transaction data base of the owner of

the data base whose transactions are being

merged.

b. 	 On-line Terminal Displays

Standard prompting messages are directed to

SYSOUT, as are all error messages written by

the program.

c. 	 Formatted Print-outs

Not Applicable

d. 	 Punched 'Card Output Files

Not Applicable

4. 	 Reference Tables

A special table is used by the program to control

the input files to be processed. This table is

built by the program at initial entry from the

special input file containing the names of all TSS

userids which have been joined to the system.

E. 	 PROCESSING REQUIREMENTS

1. 	 Top level Flowchart

See Figure 2

2., Narrative

a. 	 Initialize

The routine opens the dataset containing the

list of SSS userids joined to the system.

This dataset is read sequentially and each

entry is placed in the name table for future

reference. Phen the end-of-file is sensed

for this dataset, it is closed and normal

execution continued.

The final function of this routine is to open

the transaction data base of this userid for

PAGE 152

direct output.

c. Open Input

,his routine uses the data base name and the

next entry in the name table to construct the

name of a transaction data base, which it

then attempts to open for direct update. Any

errors cause a diagnostic to be written and a

bypass of that file. The routine then

constructs the lowest value key possible for

that userid and the specified data base and

attempts to read that record.

d. Copy Record

This routine performs a sequential read of

the input transaction data base. The record

key of the transaction read is examined to

ensure that it applies to the data base

specified. If not, control is passed to the

Close Input routine. Once the transaction

has been validated it is written to the data

base owner's transaction data base and then

deleted from the input data base, Control is

then passed to the beginning of this routine

for the next record. Any DBPAC errors that

are encountered, except end-of-file on the

input data base, cause program termination,

following an appropriate diagnostic

message.

e. Close Input

7his routine closes the input transaction

data base. If the entries in the name list

have not been exhausted, control is passed

tack to the Open Input routine to process the

next user's transactions. Otherwise, control

flows to the next section.

f. End-of-Job

ihis routine closes the owner's transaction

data base. It then returns to the calling

nodule.

F. CODING SPECIFICATIONS

1. Source Language

The Merge program employs the IBM PL/I programming

language. The special extensions of that

PAGE 	 153

language, called DBPL/I and TSPL/I, are utilitzed

for all access to files in the data base and for

all terminal communication, respectively.

2. 	 Suggestions and Techniques

Not Applicable

UISERA OWNERE'

TYEWRITE BATCH
S E [IN SYSOUT

Figure 1. 110 Block diagram

TT , -:.) . \

CONTROL-

ROUTINE

INITIALIZE

OPEN-
INPUT

RECORD

END
NN T OF

REGION

CLOSE-
INPUT

[END-OF-JOB =EXIT

Fiqure 2. Top ~ie~eflowchart

PAGE 156

TOPIC D.2 - MAINTENANCE MAINLINE

-A. MODULE NAME

Maintenance Mainline

Program-ID - RDBN TN

Module-ID - DBNTN

B. ANALYST

Richard D. Graven

leoterics, Inc.

C. MODULE FUNCTION

The Maintenance Mainline program is an independent

module which carries out any actual changes necessary

to correct, update, or expand the files comprising a

data base. The specific changes, which can be

additions, deletions, or replacements, are accepted by

Maintenance in the form of transactions. The

transactions are kept .on a data base named 'TRNSCT' and

are created and maintained by the CORRECT command.

The transactions can be applied to the data base on a

record, field, or element basis. Those transactions

which are successfully applied to the data base are

deleted. Therefore, after the successful completion of

a maintenance run, the only transactions remaining on

the 'TRNSCT' data base are those which need correcting.

The Maintenance Mainline acquires the necessary

statistics while executing and causes the 'STATIC' data

base to be updated (via a call to RDBJPDST). The

Maintenance Mainline is run only in background or batch

mode. The restart capability of the maintenance run is

inherant because of the deleting transactions as they

are applied and because the statistics are updated

after the successful processing of each transaction

record.

The Maintenance Mainline then has external interfaces

with modules -of the usage statistics. The RDBUPDST

module is called after the successful processing of

each transaction in order to update the maintenance

statistics.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

PAGE 157

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input riles

While the Maintenance Mainline is normally

invoked from a terminal and, therefore, has

no punched card input, it is also possible to

initiate the task in the non-conversational

mode. The maintenance is always a batch

task. The Maintenance User's Guide describes

completely the procedure for invokation.

C. Input riles

The maintenance program requires all of the

files which make up a data base as input to

the module.

The files in a data base are the source- of

the old or current data for maintenance, the

transaction data base (TRNSCT) is the source

of the new or replacement data (i.e., the

changes), The complete description of the

transaction queue is found in the dataset

specifications. The transaction data base

fTRNSCT) contains information concerning the

data base, file, record, field and element to

be maintained, as well as the type of

maintenance and the new data.

d. On-Line Terminal Entries

There is basically only one terminal entry to

the maintenance routine and that is the

command entered to initiate the program. The

complete explanation of this procedure is

available in the Maintenance User's Guide.

3. Output Data Sets

a. 'output riles

All -of the files of a data base may be used

as output files for maintenance. As in the

case where the files of a data base are used

for input, the individual data files are

output files only if specific transactions

reguire them.

PAGE 158

b. On-line Terminal Displays

Vat Applicable

C. Formatted Print-outs

at Applicable

d. Punched Card Output Files

Vat Applicable

4.. Reference Tables

Since DBPt/I is used extensively in this module,

the various combinations of DBPAC errors should be

handled properly. These are in an array to

determine program processing after error occurs.

E. PROCESSING REQUIREMENTS

1. Top Level Flolchart

See Figure 2

2. Narrative

a. RDBMNTN(DBtNTN-entry point)

The Maintenance Mainline program is an

maintenance module which carries cut changes

td the files comprising a data base. The

program receives directives to modify a data

base file or files from the maintenance

transaction data base (TRNSCT).

b. Initialization

A table of the fields which are inverted is

created from FLDTAB. The key fields

descriptor is read and upon finding it, the

key field's length is saved.

If any errors are incurred while reading the

descriptor file, the proper message is

emitted and the run terminated. If not, then

the use of the descriptor file is at an end

and it is closed.

It is no time to initialize the transaction

file by opening it, positioning it and making

the first record to be processed available.

PAGE 	159

An error on opening of the transaction data

base could mean that there is no data on the

'TRNSCT' data base, or that the 'TRNSCT'

dataplex is already opened for update or

output. In either case, appropriate error

messages are issued and the run is

terminated.

To position the data base (after opening), we

do a Read by Fey NOLOCK. The key we create

consists of the data base name concatenated

with the owners-ID contatenated with all bits

off. This should represent a low key value.

This yields either a successful read or a

DBPAC error of 108. We expect the error to

occur. Then a sequential read is performed

and we obtain the first transaction to be

processed. Before continuing a get field is

executed on the key and its contents are

checked. If the key does not represent the

proper data lase name, owner-ID combination

an error message is emitted and the run is

terminated.

Otherwise, we are prepared for the final

stage of initialization.

The regular transaction data base (TRNSCT)

routine is set, the data base which is being

updated has its error routine set and it is

opened for direct update or sequential

output.

The initialization process is complete.

c. 	 Updating Statistics

The 	 rules for gathering and keeping the

statistics for maintenance are as follows:

1. 	 Add transactions with a field name egual

to the anchor files (TRANCNEW).

2. 	 Add transactions with a field name of

l*fNO SUB*' will post the new subfile

record count for subfiles (TRSUBNEW).

3. 	 Delete transactions with a fieldname

equal to the anchor key name will post

the delete record count for the anchor

files (TRANCDEL).

4. 	 Delete transactions with a subkey field

PAGE 	160

will post the delete subfile record

count (TESUBDEL).

5. 	 Add transactions with a field name other

than the key field name will post the

update count for the anchor file

(TEA NCUPD).

6. 	 Add transactions with a field name other

than the key field name and a SUBKEY

field will post the update count for the

subfile file (TRSUBUPD-).

7. 	 Change transactions will post the update

count for the anchor file (TRANCUPD).

8. 	 Change transactions with a SUBKEY field

will post the subfile count for the

subfile file (TRSUBUPD).

9. 	 If the filed is inverted then

appropriate index file count will be

posted.

These statistics are accumulated only if the

transaction was successfully used to update

the data basei The statistics data base is

updated after each transaction has been

riocessed. This means that if the system

crashes or otherwise fails during execution

of a given maintenance run, the statistics

will be correct. Since each transaction

(after it has successfully updated the data

base)' is deleted from the TRNSCT data base,

then the restart procedure is automatic.. The

call to the module to update the statistics

is as follows:

C1L 	 EBUPDST(UPDTFLAG,DATAPLEX,

TRANCNER,TRANCDEL,TRANCUPD,

TBSUBNE,TRSUBDELTRSUBUPD,

TRINVNEW,TRINVDEL,TRINVUPD);

If the statistics are updated successfully,

the DBUPBST module returns a 'G' in UPDTFLAG.
If the statistics are NOT updated
successfully, the DBUPDST module returns a
'B' in the UPDTFLAG.

d. 	 Delete the Transaction

If the transaction is successful, it is now

deleted from the TRNSCT data base.

PAGE 161

e. Fead Transaction

The transaction file is a data base which

consists of only an anchor file and no

associated or inverted files. The

transactions are read sequentially. The Data

Ease Executive performs all of the necessary

I/0 operations. After a transaction record

is located by the Data Base Executive, GETS

are executed on all of the desirable fields.

These fields are disseminated to various

work areas. Then, checking is performed

based on the presence and/or absence of data.

The validation of this data is based upon the

following:

See Figure 3

If there is an error detected during this

initial processing, then the transacti6n is

in error.

f. E.O.D. (end-of-data)

The end-of-data is only detected on the

transaction data base. When this condition

is detected, all the files are closed,

appropriate messages are issued and the

processing continues at the reset the

switches, section (g).

g. Reset the Switches

ihis section of code is executed antecedent

to the occurence of an end-of-data

condition. The files of the data base are

manipulated to detect the existence or

non-existence of data and the 'DATA' switches

of the corresponding files are set

accordingly.

h. DFl_RT: Delete field routine.

This routine uses the FIELD function to

reput all the elements in the field to null.

If it is the key field, then the entire

record is deleted.

i. ADD-RTN: Add routine.

This is the add record and add element

routine. If the field name is the key field

then this name is stored to indicate to the

PAGE 162

maintenance routine that a new record is to

be added to the file. If the field is not

the key field, then a test is made to see if

the transaction key is already present. If

not, then the key is compared to the stored

key from the last add transaction with a key

field. If they do not match, an error has

occurred and is flagged; otherwise, a record

is created with the stored key. The new

element is then put to the record. Control

is passed back to section (e) on completion

of this transaction.

NOTE: If subfile key is present in

transaction then subfile record is obtained.

If SUBCTI field is present then new subfile

record is located.

-5 CHGRTN: Change Routine.

If no start or end field, given element is

replaced. Using the key passed in the

transaction record, the appropriate record is

read in from the data base. At that point,

the value of the returned field element is

compared to the 'old' data element in the

transaction. If no match is made, a test is

made as to whether the returned element is

null, thereby signifying the end of the

field. If that is the case, then an error

has occurred and is indicated. If the null

element was not detected, then the next

element is obtained and the process

repeated. If a match does occur, then the

'new' data element from the transaction

record is reput to the record. If the 'new'

data element is null, then the element is

deleted. Continue processing with section

(e). If a start and end field is present

then a field context operation is

performed.

The maintenance program can carry out changes

to portions of large fields without the

entire field on the transaction entry record.

To begin, the record is read into a large

enough area to hold the maximum record using

the key provided in the transaction. The

field in question will then be obtained and

an interactive process is applied wherein the

'old' data valne is compared sequentially

across the field from the starting location

to the ending location. Whenever a match is

PAGE 	 163

found, the 'new' data value is used to

replace the 'old' in the field-and a count is

kept of the number of replacements. When the

end of the search range is reached, the count

is tested. If no matches were made, then

that error is recorded. The processing will

continue with section (e).

F. CODING SPECTIICATICVS

1.. 	 Source,Language

As much as possible of the Maintenance Module is

coded in the IBM programming language PL/I. The

input and output coding for access to files in a

data base is handled through an extension to that

language, known as DBPL/I. Where indicated in the

narrative, it was necessary to use the assembler

language for IBM System/360 in order to interface

with the command processor and the DDE?

instructions. All terminal communication is

handled tlrough the terminal support preprocessor,

TSPL/I.

2. 	 Suggestions and Techniques

a. 	 Much of the verification of correct access to

files in a data base is handled within the

DBPAC routines.

b. 	 Luring implementation, all appropriate

messages are included to increase the

understanding cf the user.

C. 	 While not noted in the narrative, it is

mecessary to test the return codes from

every input and output operation. In those

cases ihere errors occur, messages are

written out and the task terminated unless a

correction can be applied, in which case the

processing chn then continue.

d. 	 Rhenever it becomes necessary to terminate

the maintenance routine at any point, it is

desirable to make every attempt to restore

the data base to a normal condition. In most

cases, this action involves resetting control

switches found in the header records of the

descriptor file. This action makes possible

subsequent processing on the data base which

might correct the original problem and also

allows continued retrieval from all usable

portions of the data base.

DBMNTN

PRNSCT

STATIC

DATA-

BASE

FIGURE 1 I/O BLOCK DIAGRAM

RDBMNTN

.MNITIALTZE

THE
PROGRAM

AELDEL
RTN - F

UPDATE
STATISTICS
IF SUCCESS " CHGRTN

DELETE
TRANS.

ERROR

READ
NEXT
TRANS.

ERROR
HANDLE

E)D
EODyRESET

? /

FPLEX

SWITCHESI

A

~~AND

.

Fig

GETAUI

OUT CLEAN

e 2. TENTRIES

F

AUDITENTR

C ED A

Figure 2. Togle~vel flowchart

:1 REQUIRED PARAMETER

X NOT REQUIRED

ADD DEL CHG

KEY V V V

NASISID ' I V

OFCODE I /

FIELD X V

START AND END X X X

OLDDATA X vX V

NEWDATA Ix X

SUrncEY Vx Ixx
CTLFLD Vx /x x

Figure 3. Parameter table

PAGE 167

TOPIC D.3 -	 MAINTENANCE CORRECT COMMAND

A. MODULE 	 NAME

Maintenance, CORRECT Command

Retrieval, CORRECT Command

Program-ID - RDBCOIR

Module-ID - DBCORR

Entry Point 	 (DBCORR) MAINTENANCE

(DBCORRi) RETRIEVAL

B. ANALYST

Richard D. Graven

Neoterics, Inc.

C. MODULE 	 FUNCTION

The CORRECT command is a routine, called by the

RETRIEVAL system, whose purpose is to allow the

retrieval system user to create certain maintenance

transactions during retrieval. When a user observes an

error during a display, he is able to have any or all

of the fields of a given record displayed and then be

able to specify any deletions, additions, or changes to

those, fields. The transactions created are not

executed, but are placed in a transaction data base

which is examined by the data base owner before the

actual maintenance takes place. The calling sequence

is: CORRECT field,key.

The CORRECT command, when invoked through the

maintenance sub-system, performs on-line creation and

updating of files.

-D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

PAGE 168

Not Applicable

d. On-line Terminal Entries

'The parameters available to the CORRECT

command are "key" and "fieldname". The

Terminal Support system applies default

values to the parameters, if they are

available, when no original values are

entered.

Additional terminal entries are requested of

the user. These responses indicate what

alterations, if any, to the field are

desired. These entries take the form of

sub-commands available to the user while

running under control of CORRECT. The

sub-commands are:

ADD data

CANCEL

CORRECT field,<key>

ELETE element

DISPLAY

END

FIELDS

INSERT field,...

REPLACE elementi,<element>,olddata<,newdata>

VERIFY

3. Output Data Sets

a. Output Tiles

The only output file from the CORRECT command

is the transaction data base. This file is a

VISAH data set containing maintenance

transactions from all sources for all data

lases. The fields of the transaction data

tase and their format are completely

described in the Dataset Specifications.

b. On-line Terminal Displays

The CORRECT command outputs a formatted

display of the specified field on the

terminal. Each field to be processed begins

on a new screen image with appropriate header

information. Each element of multi-element

fields begins on a new line. No attempt is

made to end lines of the display on word

boundaries. In addition to the display of

the field in question, a prompting message

PAGE 169

requesting the action to be taken is issued

in the input area of the screen.

C. Bormatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not Applicable

E. PROGRAM REQUIREMENTS

1. Flowchart

See Figure 2

2. Narrative

a. CORRECT

The CORRECT command is called by the

maintenance sub-system at entry point DBCORR.

The Retrieval subsystem calls CORRECT at the

entry point DBCOER1. Any default parameters

which are applicable are supplied by terminal

support.

b, Real Entry

This routine initializes the routines for

handling the exceptional error and interrupt

conditions. Attention interrupts cause the

user to be prompted for a decision. If he

defaults, execution continues from the point

of interruption. Terminal support prompting

errors cause program termination, unless the

error is for input transaction, in which

case, a warning message is issued to the user

and execution continued. Any other errors

cause program termination, following an

appropriate diagnostic message.

c. Main line

The routine allocates the screen buffers, if

not already done, and obtains the julian date

for time stamping the transactions. The

current retrieval data base is then opened

PAGE 170

for input, unless that data base is the

user's transaction data base, in which case,

it is opened for update.

d. Get Record

If necessary, this routine reads a new record

from the input data base and gets the value

of the key field. Again, if necessary, the

routime reads in the values for all elements

cf the field, maintaining a count of the

number of elements processed. Finally, the

routine copies the input data to a temporary

storage area for the user to process

against.

e. Format Screen

This routine, unless running from a

typewriter with the verify option equal to

no, formats and displays the status of the

data most recently referenced by him. It

first constructs a heading, composed of the

record key, data base name, field name and

element count. It then proceeds to fill the

remainder of the screen with data beginning

at the element indicated by the calling

routine. If the element length is less than

the length of the data portion of the line,

the element is written on a single line

preceeded by the element number. If the

element is too large, the first line is

processed as above, but the remaining data is

split across succeeding lines.

f. Re-prompt

This routine prompts the user for his next

request. It extracts the command keyword,

and if valid, calls the appropriate calling

routine. If any type of error is

encountered, the routine re-prompts for the

correct information.

g. Add Routine

This routine takes the input data and uses it

to create a new element for the field being

processed. If FIELD is key field, then new

record is created. If there is no data

entered, or if the maximum allowable number

of elements has been reached, a diagnostic is

written and processing bypassed. After

PAGE 171

prccessing, that data control is passed to

.FormatScreen to display the updated data.

h. Replace Routine

This routine expects four parameters to be

entered, a starting point, ending point, old

data value and a new data value. The

starting and ending points are expressed in

terms of element numbers. If the element

numbers are invalid, or if no old data value

is entered, a diagnostic is written and

processing bypassed. The data is then

searched, character by character, from the

starting point to the ending point. If any

occurrence of the old data value is found,

it is replaced by the new data value. If no

occurrence of the old data value- was found, a

diagncstic is written. Otherwise, control is

passed to Format Screen to display the

updated data.

i. Cancel Routine

This routine re-initializes the data in the

field tc its initial status when read from

the data base. Control is then passed to

Format Screen,

I. Page Routine

This routine expects one parameter, which it

uses to adjust the current element pointers

to adjust the segment of the data which is

displayed on the screen. The parameter may

be a default for forward paging, a 'B' for

backward paging, a number for a specific

element number. If the data is invalid or

the reguest cannot be honored, a diagnostic

is written and processing bypassed.

Otherwise, control is transferred to Format

Screen to display the data.

k. Verify Routine

lhis routine sets the switch that determines

whether the user, operating from a

typewriter, receives a verification display

of the data following each command. The data

entered should be 'YES' for verification or

'NO, for none. If the data is invalid, a

diagnostic is written and processing

bypassed. Otherwise, control passes to

PAGE 172

Format Screen.

1. fDelete Routine

If the field is to be deleted, it is done and

control passed to Format Screen. If the

record is to be deleted, it is done and

control passed to End Routine. If elements

are to be deleted, the routine will accept a

list of elements or element ranges as input.

Yor each, it analyses the element number to

determine its validity. An invalid element

will cause a diagnostic to be written and

furtber processing bypassed.

M. Insert Routine

This routine allows the user to specify the

fields of sutfile records to be inserted into

the data base. If no field is specified, a

diagnostic is written and processing is

bypassed. If the previous field's data has

been changed, Output Routine is called to

create the necessary transactions, Control

is then passed to the Correct Routine for

further processing.

n. Correct Routine

This routine allows the user to specify the

ley of a new record to be processed, the name

of the next field to be processed, or both.

If the previous field's data has been

changed, Output Routine is called to create

the necessary transactions. The routine

first checks for a signed numeric value in

the key operand, and if found, reads the file

sequentially forward or backward to the

desired record. If sequential processing is

not indicated, the routine extracts the new

key and the new field name, if present, and

transfers control to Get Record for further

processing.

o. Yields Routine -CALL DBFLDS

This routine displays a list of the fiela

names for the data base for the user. It

calls DBULDS to extract the field names. It

also checks each field until it has

identified the key field, whose name it

maintains separately. It then moves the

field names into the output area, fitting as

PAGE 173

many as possible on each line, and displays

them to the user. If more names exist than

may be displayed on the screen at once, the

routine prompts the user for a decision as to

whet-her he wants to see the remaining names

or to continue correcting.

pi Output Routine

This routine analyses the data maintained for

the field being processed, and for each

element whose data has been changed, creates

transactions to represent the change. The

routine calls Write Tranplx to actually write

the transactions. The routine handles three

cases, an added element, deleted element and

a changed element. Upon completion, the

routine returns to its caller.

g. Write Tranplx

This routine performs the actual creation of

transactions, based upon the data supplied to

it. If the user is correcting the

transaction data base itself, the routine

updates the data directly, otherwise it

generates transactions. If any DBPAC errors

are encountered, this routine calls End

Routine; otherwise, it returns to its

caller.

r. End Routine

This routine processes any transactions

remaining to be written. It closes all of

the files, -resets switches, restores the

NASIS status to what it was when the program

was invoked and returns to the calling

program.

F. CODING SPECIFICATIONS

1. Source language

The correct command program employs the IBM PL/I

programming language. The special extensions of

that language, called DBPL/I and TSPL/I, are

utilized for all access to files in the data base

and for all terminal communication,

respectively.

2. Suggestions and Techniques

PAGE 174

Not Applicable

TERMINAL
DISPLAYS-RETRIEVALDDATAPLEX

iRANSACTIO
DATAPLEX

Figure 1. - 110 Block diagram

It(

CORRECT

OBCORRI

MIN

LINEREAOR-

FORMAT-
SCREEN

PROMPT-
USER

ADD-
ROUTINE

F"E
INSERT- FIELDS-

REPLACE- ROUTINE ROUTINE ROUTINE
RTNCANCEL-I 1

RIN

PAGE- CORRECT-
RTN ROUTINE

VERIFY- A
RTN A

REOR END-ROUTINE OUTPUT-
ROUTINE

r 2WRITE-RETURNTRANPLX

Figure 2. - Top level Ilovwchar.

PAGE 177

TOPIC D.4 - MAINLINE MAINTENANCE INVOCATION

A. 	 MODULE NAME

Mainline - Maintenance Invocation

Program-ID - RDBCIMN

Module-ID DBCLMN

B, 	 ANALYST

Richard D. Graven

Neoterics, Inc.

C. 	 MODULE FUNCTION

The maintenance is always run in a batch mode. A data

set must be created. to execute. This program

accomplishes the creation of the required data set.

D. 	 DATA REQUIREMENTS

1. 	 I/0 Block Diagram

See figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

The data base descriptor file (defined

elsewhere).

3. 	 Output Data Sets

a. 	 'Cutput Piles

The output file is a line data set whose name

is CLDBMAIN./PLEX$$/. Where PLEX$$ is the

data tase name. It is a VISAM data set

RKP=4, INECL=132, KEYLEN=7, BECFM=V. It
contains the necessary TSS commands to run

maintenance in batch.

b. 	 On-line Terminal Displays

PAGE 178

Not 	 Applicable

C. 	 Formatted Print-outs

Not 	 Applicable

4. 	 Reference Tables

Not Applicable

E. 	 PROCESSING REQUIREMENTS

1. 	 Top Level Flowchart

See Figure 2

2. 	 Narrative

This module accepts the data base name as a

parameter. The execution of this module proceeds

as follows:

a. 	 write output line data set consisting of:

1. ERASE CLDBNAIN.'MILENAE'

2. 	 IOGON OWNR-ID(TSS-ID)

3. 	 CALL RDBMNTN,'FIL!NAE'
4. 	 LOGOFF

b. 	 Close files and quit.

F. 	 CODING SPECIFICATICNS

1. 	 Source Language

TSS PL/1.

2. 	 Suggestions and Techniques

Not Applicable

RDBMNTN

CLDBIMAIN

Figure 1. I/0 Block Diagram

ENTER
MAINTAIN
COMMAND

GET
FILENAME

CALL
RDBCLNN

WRITE
CLDBMAIN
FILE

EXECUTE
CLDBMAIN

DATASET

Figure 2. Top Level Flowchart

PAGE 181

TOPIC 	 D.5 - MAINTENANCE DIRECTOR

A. 	 MODULE NAME

Program-ID - RDBMAIN

Module-ID - DBMAIN

B. 	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module serves as the initializer and command

director for the maintenance sub-system. It prompts

the user for the file -name and invokes the maintenance

function requested.

D. 	 DATA REQUIREnENTS

1. 	 I/0 Block Diagram

see Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

The module opens the file specified by the

user for update, for those modules which

require it.

d. 	 On-line terminal Entries.

he program initially prompts the user for

the name of the file to be maintained.

Subsequently, the program prompts the user

for his maintenance commands.

3. 	 Output Data Sets

a. 	 Output Files

PAGE 182

Not Applicable

b. 'On-line Terminal Displays.

The program displays various diagnostic

nessages to the user.

c. Formatted Print-outs

Not Applicable

d. Punched Card Output riles

Not Applicable

4. Reference Tables

The following tables are referenced by the

program,

USERTAB

VERETEB

FLDTB

E. PROCESSING RXQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry, the program establishes control of

attention interrupts and initializes terminal

support. It then prompts for the file name., If a

null value is returned, the program is terminated.

Otherwise, the name is validated and the strategy

is posted. If the name is invalid the user is

repromnpted for a valid file name.

The program then allocates and initializes its

verb table, including any user defined commands.

Next, the program prompts the user for a

maintenance command. If the command is not valid

a diagnostic message is issued and the user is

reprompted for the maintenance command. Five

successive invalid commands cause the program to

be terminated.

If the command entered was CORRECT or UPDATE, the

file specified is opened for update and FLDTAB is

initialized. Otherwise, the file name is posted

in the MFCB named PLEX. The entry point

PAGE 	 183

specified for the command is then called to effect

the processing requested. Upon return, the

program prompts for the next maintenance

command.

When an END command is entered, the program closes

the file, releases VERBTAB and returns.

. CODING SPECIFICATIONS

1. 	 Source Language

The module is Mritten using the TSS 360 PL/I

language.

2. 	 Suggestions and techniques

Not Applicable

FRDBM iN

DAAPLEX

Figure 1. 1/0 Block Diagram

DBNAIN

INITIALIZE

FOR
FILE

IPROMPT
SET UP
VERB
TAB LE

PROMPT

FOR
COMMAND

FiMMrN EXIT

PROGRAM

rI

Top Level Flowchart -DBMAiN
Figure 2.

PAGE 186

TOPIC D.6 - MAINTENANCE LOAD/CREATI

A. 	 MODULE NAM

Load/Create

Program-ID - RDBLOAD

Module-ID - DBTOAD

B. 	 ANALYST

Richard D. Graven

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module provides a generalized file loading

capability for NASIS.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

1. 	 The primary input file is the data set

containing the records to be loaded to

the data base. This file may be

indexed, with the keys having the same

format and value as that of the final

data base, or sequential.

2. 	 The only other input file is the

descriptor data set for the data base

being loaded.

-d. 	 On-line Terminal Entries

The parameters required by the program must

be entered with the command, or default

values will be assumed.

PAGE 187

3. 	 Output Data Sets

a. 	 Output Files

1. 	 the primary output file is the data base

which is being loaded.

2. 	 The other output file is the error file,

on which is written exact duplicates of

any input records that cannot be

successfully loaded.

b. 	 On-line Terminal Displays

The only output to the terminal is the

informational and diagnostic messages that

are displayed as the program executes.

c. 	 Formatted Print-outs

Rot Applicable

d. 	 Punched Card Output Files

Not Applicable

4. 	 Reference Tables

The irodule contains a table of error switches

which control the action to be taken for each

possible DBPAC error; abend, skip record, or skip

field.

-E. 	 PROCESSING REQUIREMENTS

1. 	 Top Level Flowchart

See Figure 2

2. 	 Narrative

a. 	 Upon entry the program establishes interrupt

handling routines vhich will terminate if any

PL/I errors occur, terminate if any PROMPT

errors occur, or display statistical data and

prompt the user if an attention interrupt

cccurs.

b. 	 Ibe program next prompts for the input

parameters applying defaults for any

parameters that are not entered.

c. 	 The next step is to open the descriptors for

PAGE 	188

the file specified. The file header switches

are reset in case the system crashed. The

index file headers are read, and if the field

is not set for inversion, the loadable switch

is turned off.

d. 	 The next function performed is the definition

and opening of the input file, the error file

and the data base itself. At this point, the

program checks the user's mode parameter, and

if it is restart passes control to section

(g) before continuing.

e. 	 Finally, the program is ready to process

data. It reads an input record, passes the

record to the user written exit routine for

separation into its component fields. Upon

return from the exit routine, the program

tests the status bits, and if set properly,

begins writing the input data to the data

base, field by field. If any errors are

detected, and appropriate diagnostic is

written to the user and the action indicated

by that error's code in the ERROR CODE table

is taken. The options are to abend the

program, to skip the remainder of the record,

or to skip the field. When the field has

been completely processed, the routine

continues with the next input record, until

the data is exhausted.

f. 	 then all of the data has been processed or

when a terminal error has been detected,

statistical counts are written on the user's

terminal along with a termination message.

21l of the files are closed, and the status

bits of the descriptor header records of each

of the component files of the data base are

posted to indicate whether date exists on the

file or not. The program then terminates.

g. 	 If the user specified a restart, the program

retrieves the last record written to the data

base. It then accesses the next record to be

written from the input data set. Checkpoint

backup is automatically done after every 1000

records are processed. Vhen the operation is

complete, processing continues with section

(e).

F. 	 CODING SPECIFICATIONS

1. 	 Source Language

PAGE 	 189

This module should be written in the TSS/360 P1/I

Language.

2.-	 Suggestions and Techniques

a. 	 Because of the function of this module,

extreme care should be taken to code it as

efficiently yet as indestructibly as

possible.

b. 	 Any place in the program where there is any

remote possibility of an error, there should

le a meaningful diagnostic.

c. 	 The ERROB CODES table vas designed to be used

in' conjunction with a label array. The

digits in the table are to be converted to

index values and an indexed branch taken

based onthe label array.

d. 	 The user-written exit routine is responsible

for assigning field names, field off-sets,

and field lengths.

--

SYSOUTSET

ERROR

DATA

RDBLOAD

INPUTDATAPLEX
DATA
SET

DATAPLEX
DESCRIP-
TORS

DATA
FILES

I

Figure I. II0 Bloc diagran

J,

IN

SET UP
PROGRAM

READ

DESCRIPTORS

INITIALIZE

ROUTIN OUIN

SFIESH

Figure2.N ToERevMINALca
ig PROCESS l

ATh

PAGE 192

TOPIC D.7 FILE INVEETER

A. 	 MODULE NAM!

Maintenance - Tile Inverter
Program-ID - RDBSIVRT
Module-ID - DBSIVRT

B. 	 ANALYST

Richard D. Graven

Neoterics, Inc.

C. 	 NODULE FUNCTION

The purpose of the program is to take data from certain
fields of a data base and to post this data to an
inverted index file.

D. 	 DATA REQUIREMENTS

1. 	 I/0 Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not 	 Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

1. 	 Data base: The primary input to the

Inversion module is the file being

inverted.

2. 	 Data base Descriptors: The file

descriptors are needed to provide

information.

-. 	 Restart file: If the program is invoked

in restart mode, a restart file with

the restart key is needed.

a. 	 On-Line Terminal Entries

All of the terminal entries to-the Inversion

PAGE 	193

program, except one, are in the form of

responses to prompting messages from the

program itself. The exception is the entry

of the initial command with its parameter to

invoke the procedure. The purpose of

terminal entries are to establish field

names, to establish the mode of operation, to

establish number of records to process, and

to establish range of keys to process.

3. 	 Output Data Sets

a. 	 Output Files

1. 	 Sortin File: This file is created by

the first step and is a VSAM file with

the value of the field being inverted

concatenated with the file key. This

file becomes the input for step two, the

solt.

-2. 	 Sortout Pile: This file is the sorted

output from step two, the TSS sort

utility. The file becomes the input to

the third step.

3. 	 Plex File: This file is the output of

step three in the form of an index file

with the internal field value as the

key. This file becomes-the input to

step four, the translation step.

4. 	 Range File: This file is the output of

step three if field is indexed with

internal format, and is the output of

step four if field is indexed with

external format. Range of keys to

invert must have been specified for this

file to be -produced. This file becomes

the input to the index merge program.

5. 	 Database Index File: This is the final

index file. It is the output of step

three if field is indexed with internal

format, and is the output of step four,

if field is indexed with external

format.

b. 	 On-Line Terminal Displays

All on-line terminal displays for the

Inversion program follow the same format.

The TSPL/I facility of the system is utilized

PAGE 194

to request entires at a terminal and display

progress isiformation.

c. Formatted Print-Outs

Not Applicable

d. Punched Card Cutput Files

Pot Applicable

4. Reference Tables

Not Applicable

E. PROCESSING BEQUIRH4XNTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. Parameter Prompting routine

Prompt the user for program parameters.

Initialize program swtiches and tables. Read

appropriate field descriptor for each field

name, saving field length. If applicable,

fill external indexing table, inverted suffix

table, and spanned table. If field is

indexed external, read index file header

descriptor and get external field length.

Read appropriate region descriptor and save

the file key length and key name. Check the

cperating mode and go to appropriate

section.

b. Field stripping routine (step one)

loop through fieldname table and DDEF the

sortin files. DDEF'the restart file, If

restart run, read in restart key and read

this file record. If range run, read first

file key to start at. Head sequentially the

input file, save the internal file key. Loop

through the index file suffixes. Loop

through the field name table. Loop through

the #MIELD for this field. Write out a

sortin file record. If end of file reached,

go to next section. If end range key reached

go to next section. If number of records to

process is reached, write out restart file

PAGE 195

and terminate.

c. Sort step (step two)

EDYF the sortin file, sortout file and invoke

the TSS sort utility.

d. Write VISAM file (step three)

Find the key length of the VISAM output file.

-This will be the maximum length of the fields

being inverted on the same index file. If

field is indexed external, use external

length. If index file is spanned, increase

by one. If external indexing, DDEF the

output file as 'PLEX.', if range keys and no

external indexing, DDEF output file as

'RANGE.' If not a range run, and no external

indexing DDE? output file as final index

fSNAME. Bead input file. If keys are the

sane, concatenate file key onto list of

keys. if list has reached maximum list

length, up the span character and initialize

list to null. If keys are different, write

cut index record. If end of input file

reached, write out last index record and

check to see if external indexing. If

external indexing, proceed to next section.

Display record counts for user and post the

index file descriptor data bit.

e. Translate Keys routine

DDEF the input file and the output VISAM

file. Read input file seguentially. Search

Key for first blank character after first

non-blank character. Use this parsed string

to pass to field formatting routine. Replace

internal value in key with external value.

If end of file reached, post data bit in

index header descriptor record. If more

field names in table, go to sort step.

Terminate the program.

F, CODING SPECIFICATIONS

1. Source language

The Inversion program employs the IBM PL/I

programming language. The special extensions of

that language, called DEPI/I and TSPL/I, are

utilized for all access to files in the data base

and for all terminal communication,

PAGE 196

respectively.

2. Suggestions and Techniques

The module can very easily be broken up into four

separate modules, step one - strips the fields

from file; step two - the TSS sort step; step

three - the internal index file creating step;

step four - the external or translation step.

This could be a major enhancement for core

consideration and storage requirements.

DESCRI RESTART
FILE DATAPLZX FILE

TERMINAL
PARAMETERS

SRT DBSIVRT DSLY

!INTERNAL EXTERNAL

SORTOUT.
FILE

SORTIN. I
FILE

KEYEDKEYED
INDEX INDEX

FILE FILE

FIGURE 1. I/O BLOCK DIAGRAM

USEI{A 'I
INPUT -A

tc

RESTART \Y XTERNAI.k
''G READ INDEX

TJATAPLEX ?

RESTAR Y
0

SR
SORTREADl

INTERNAL
INDEX

RESTART Y UL

TRAUSLMITE

?
f'B WRITE

SORTERN
OC

KEY

WRITE

EXTERNAL

RANGE
KEYS

Y
F

A LSTO
KY

H

READ

RESTART0

READ C
DATAPIJEX
BY KEY

6

Figure 2. Top level flowchart

PAGE 199

TOPIC D.8 - DBLOAD FILES BACKUP

A. 	 MODULE NAME

Maintenance - DBLOAD Files Backup

Program-ID - REBLLEK

Module-ID - DBLDBK

B. 	 ANALYST

Richard t. Graven

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module is a utility called by DBLOAD to backup all

files of a data base being loaded at a checkpoint of

every (1,000) records.

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Pnched Card Input Files

Not Applicable

c. 	 Input Files

The input files are all files of the data
base being loaded (such as anrihnr.
associated, index, subfile).

d. 	 Om-line Terminal Entries

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

The output files are backup generation data

qroup (2 levels) of all files of the data

base being loaded. The DSNAME vill be

CXNERID.'BACKUP'.PLEXII file suffix.

PAGE 200

Example:

SAFETY.BACKUF.COMAT$Y

b. 	 On-line Terminal Displays

Not Applicable

C. 	 Formatted Print-out

Not Applicable

d. 	 Punched Card Output Files

Fot Applicable

4, 	 Reference Tables

Not Applicable

B. 	 PROCESSING REQUIREMENTS

1. 	 Top Level Flowchart

Not Applicable

2. 	 Narrative

This nodule is coded as a sub-procedure to DBLOA-D.

It deals with three parameters:

a. 	 The ownerid of the file.

b. 	 The data base name.

C. 	 The character string of file suffixes.

The ownerid is a 1-8 character string of the file

owner such as: SAFETY

The data base name is a six (6) character string

of the file name padded with '$ such as:

COMAT$.

The string of file suffixes to be backed up looks
like: ' 1,A,B,Y,Z'.

The string of file suffixes is searched and
concatenated to the data base name to construct
the backup file DSNANE. Index file A for the
COMAT file owned by the TSSid SAFETY would be
backed up with a DSNAME of SAFETY.BACKUP.COMAT$A

PAGE 	 201

The PL/I routine SYSOBP is used to CATALOG a level

2 generation data group, DDEF the file, CDS the

file, and RELMASE the DDNAHE.

F. 	 CODING SPECIFICATIONS

1. 	 Source Language

PL/I with o fBPI/I statements.

2. 	 Suggestions and Techniques

Depending on storage available under a given

userid, it might be advantageous to copy the files

to a data cell or private disc pack.

DATAPLEX

DBLOAD 1
 DBLDBK

BACKUP

DATAPLEX.

Figure 1. 1/0 Block diagram

PAGE 203

TOPIC D.9 - DESCRIPTOR EDITOR - ADD - CHANGE COMMANDS

A. 	 MODULE NAME

Program-ID - RDBEEAC

Module-Name - DE IAC

Entry Points

DEEDAC1 - ADD Command

DBEDAC2 - CHANGE Command

B. 	 ANALYST

Barry G. Ha2lett

Neoterics, Inc.

C. 	 MODULE FUNCTION

Those commands allo the user to create and modify

field descriptors.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

Not Applicable

3. 	 Output Data Sets

a. 	 Output files

Not Applicable

b. 	 On-Line Terminal Displays

Not Applicable

C. 	 Formatted Print-Outs

Not Applicable

4. 	 Reference Tables

The following external tables are referenced by

RDBEDZC:

1. 	 FIELD

2. 	 ILD

3. 	 TLE STRING

'AGE 204

4. HDR

5. HDBSTRING

6. X

A description of these tables can be found in the

dataset specifications of the DWB.

E. PROCESSING REQJIRIMNETS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry into BDBEDAC a flag is set to indicate

if the ADD or CHANGE command was entered. The
routine DBEDGF is called to obtain a valid
fieldname. In ADD mode it must be a valid
non-existent and non-reserved fieldname. In
CHANGE mode it must be an existent non reserved
fieldname with the exception of the fields

FREEFORM and COMMENTS and it must not be a

superfield nor a subfile control field. If in

ADD mode a FLE structure is allocated, initialized

and posted ith the fieldname.

The user is prompted for the field type and the

input is validated. If it is invalid, the user is

given a diagnostic and prompted for a new value.

If in.update mode, the user is not allowed to

change the field type if it affects the field

length and the field appears in the fixed part of

the record. The user is also not allowed to make

the key field a bit field.

If there is more data in the parameter list 'TYPE'
the user is prompted for an alignment value. If
it is invalid, the user is given a diagnostic and
prompted for a new value. If no value is entered

a built in default value is assumed and posted in

YFLD.

The field form is prompted for and validated. If

invalid, the user is given a diagnostic and

prompted for a new value. The anchor file key

field and bit field can only be of fixed form. In

Update mode, the user can not change fixed field

to a varying or elemental field, the necessary

values are posted in FLD.

The user is prompted for a field length and the

value is validated against prestored maximum

PAGE 205

values for single and multielement fields. If it

is invalid, tbe user is given a diagnostic and

prompted for a new value. The correct values are

posted in FLD.

If the field is non-elemental, go prompt the user

for a conversion routine, otherwise the user is

prompted for an element length value if necessary.

For several field types the only element length

value is posted in ThD. If the element value is

invalid, the user is given a diagnostic and

prompted for a new value.

The user is prompted for the number of elements

and the input validated. If the value is invalid,

the user is given a diagnostic and prompted for a

new value. A correct value is posted in FLD. The

parameter unique element is prompted for and

processed in the same manner.

The routine IEEDGR is called to obtain and process

the conversion, formatting, validation routine

names and validation argument.

At this point of adding the key field or in update

mode, the rest of the parameters are ignored. in

update mode the changed information is posted to

the descriptor dataset by calling DBEDFL, and then

go save the command string. The use is prompted

if the field is to be indexed. If the answer is

no then go prompt the user for associated file

information, otherwise the user is prompted as to

which index file the field is to appear. If no

defining fieldname is entered, a new index file is

created for this field. Otherwise the field is

placed on the same index as that of the defining

field. In the CHANGE command, if the field was

already indexed on a different file, it must be

deleted from that index file before it is placed

on the new index file.

The user is prompted as to whether the index key

is to be in either internal or external form. If

no value is entered, internal is assumed. If the

value is external then the user is prompted for

and must enter the maximum length of the external

value.

The user is prompted if the index is to be

spanned. If no value is entered, it is assumed

not to be spanned. At this point, the index is

ready to be setup. If it is a new index a header

descriptor is allocated and setup for the index,

PAGE 206

else the new information is posted to the

existing header.

The rcutine EBEDGA is called to determine if the

field is to be placed on an associate file.

The user is prompted if the field is to be on a

subfile. If not go prompt the user for a subfile

value as obtained, the subfile header is updated

accordingly.

The -ser is prompted for the defining base field

name if the field is to be a subfield. If no

value is entered, the field will not be a

subfield. If it is to be a subfield, the user is

prompted for an offset value. If none is entered,

a value of 0 is assumed. In case the defining

base field is either RECLEN or the anchor key

field the user is prompted for the particular

file on which this subfield is to be placed. The

user can specify the actual file name if known or

indicate the type of file on which the subfield is

to be placed. If ASSOCIATE or SUBFILE is

specified the user is prompted for a field

defining -hich associate file or which subfile.

the subfield information is posted in FLD.

At this point all of the parameters have been

entered, processed and the information posted. It

is now determined which file list the field is to

be placed and if not in the proper place already,

threaded onto the end of that file list.

If adding the anchor key field then the fields
F1EKEY, YREEFOR!, and CONMENTS are setup on the
appropriate files and an index file is setup for
FREEFORM.

The command string is saved in the current

strategy and control is returned to the calling

routine.

F. CODING SPECIFICATIOqS

1. Source lanquage

PL/I with TSPI/I statements.

2. Suggestions and Techniques

Not Applibable

Figure 1. 1/O Block diagram

-INITIALIZE

INITIALIZE

-- _ROUTINE

GET AND

PROCESS

FIELDNAME

DBEDGF

GET AND

PROCESS

FIELDTYPE
 GET AND

PROCESS

I ELEMENT

LENGTH5

" GET AND

PROCESS GET AND

IALIGNMENT PROCESS

ELEMENT

I I
GET ND
GET ANDGET AND

PROCESS PROCESS

FIELD~ UNIQUE

FORMAT ELEMENTS
i

GET AND

FIELDGET ROUTINE
LENGTH & ARGUMENT

DBEDGR

<ELEMENTAL -3.

GET AND

PROCESS

VALIDATION

ANY

VALID

9

GE AND

PROCESS

VALIDATION

ARGUMENT

AIN

9

Y

< ?A>T , CFILE

UDT CHANGES

GET ANDPRCS

PROCESS

INDEX

INDEXED
DoJ

w

Figure 2a. Top level flowchart

4, PROCESS

GET AND GET
PROCESS
WHICH
INDEXJ

ANDPAREM ASSOCIATED
DBEDGH
_ _ _ _ _

GET AND
PROCESS
INTERNAL

EXTERNAL

GET AND
PROCESS
SUBFILE

N
EXTERNAL UEFILED

N O

GET AND
PROCESS
EXTERNAL
LENGTH

GET AND
PROCESS
WHICH
SUBFILE

GET AND
PROCESS
SPANNED

$F
'y

SETUP
INDEX

Figure 2b. Top level flowchart

SETUP
SUBFILE

THREAD
FIELD

G

GET AND
PROCESS

SUBFIELD
POST
FIELD

GET AND

PROCESS
OFFSET

GETAN I
SETUP
FILEKEY
FREEFOM
COMMENTSI

FILE

GET AND
PROCESS
DEFINING

FIELD

SAVE
COMMAND
STRING

4 :
EXIT

SETUP
SUBFIELD

H

Figure 2 c. Top level flomrchart

PAGE 211

TOPIC D.10 - DESC1TPTOR EDITOR - ADDLIKE - RENAME COMMANDS

A. 	 MODULE NACIX

Program-ID - RDBEEDA

Nodule-It - DBIDAR

Entry Points:

DBEDRi - DDlIKE Command

DBEDAB2 - RENAME Command

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

The ADDLIKE command creates a new field descriptor

exactly like an existing descriptor with a different

name. The RENAME command changers the name of an

existing descriptor.

D. 	 DATA REQUIREMEINTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Fct Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 'Output Files

Not Applicable

b. 	 On-line Terminal Displays

Not Applicable

PAGE 212

c. Tormatted Print-outs

Not Applicable

4. Reference Tables

The following external tables are referenced by

RDBEDAR:

1. FIELDl

2. FLD

3. FLD STRING

4. HDE

r. SECURITY

7. SUPER

E. SUPER_STR

8. SUPEESTR

9. VALID

10. X

A description of these tables can be found in the

dataset specificaticns of the DWB.

F. PROCESSING REQUIREMENTS

1. Top level flomchart

See figure 2

2. Narrative

The entry poimts are ADDLIKE command - DBEDAR1 and

RENAME command - DBEDAR2. Upon entry into either

command a flag is set indicating which command was

called. After which the two commands share common

code for parameter processing.

Routine DBEDGF is called to obtain a valid new

field name. To be valid the new field name must

be of alphanumeric of at most eight characters

long, must not already exist and must not be a

reserved field name.

Routine DBEDGF is called to obtain a valid

existing fieldname. This field must exist and

must not appear in the reserved fieldname list.

If in the RENAME command, then the name of the

specified existing field is changed to the

specified new field name and the field name change

is posted in the FIELD structure. At this point

the command string is stored in the current

strategy and then control is returned to the

PAGE 213

calling routine.

If in the AEtEIKE command the existing field is

duplicated, the new fieldname posted in the copy.

The new fieldname is posted in the FIELD

structure. The ADDLIKE command string is saved

in the current strategy, after which control is

returned to the calling routine.

F. 	 CODING SPECIfICATIOIS

1. 	 Source Language

PL/I with TSDL/I statements.

2. 	 Suggestions and Techniques

Not Applicable

RDEDAR TABLES

Figure 1. I/0 Block Diagram

SET RENAME SET RENAME GET OLD
FLAG ON FLAG OFF FIELDNAME

DBEDGF

GET NEW RENAME
FIELDNAME

DBEDGF RDDLIKE

DUPLICATE HANGE
FIELD FIELDNAME

POST NEW

NAME POST FIELD

POST FIELD

EXIT

Figure 2. Top Level Flowchart

PAGE 216

TOPIC 	 D.11 - DESCRIPTOR EDITOR - CBKPOINT COMMAND

A. 	 MODULE NAME

Program-ID - RDIECP

Module-ID - DBEDCP

B. 	 ANALYST

Barry G. Hazlett

'Neoterics, Inc.

C. 	 MODULE FUNCTIONS

This command is used to save the descriptor tables as

they exist in memory in a VSAM data set as that they

may be retrieved at a future time by use of the RESTORE

command and then continue to create the descriptors

from that point.

1.. 	 1/0 Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 Output files

The cutput file is a TSS VSAH data set named

DESCRP.CHKPCINT. Refer to the data set

specifications for a description of this data

set.

b. 	 On-line Terminal Displays

Not Applicable

c. 	 Formatted Print-Outs

PAGE 217

Not Applicable

4. Reference Tables

The following external tables are referenced by

RD.BEDCP:

11 1,11LD
2. FLD
3. FIDSTRING

4. HDR

5. HDBSTRING

6. RECSECSTR

7. SECURITY STB

8. SUPERSTR

0. VAIID

10. I

The description of these tables is specifications

in the dataset of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See 'Figure2

2. Narrative

Upon entry into CHKPOINT, any previously existing
checkpoint dataset is erased by use of ASMERSE
routine. The data set record length is
dynamically determined by calculating the length
of that part of the X structure that -must be
saved, the current length of the FIELD structure

and using the larger of the two values.

The data set CHKPOINT.DATASET is created and

initialized by use of the routine ASMDCB to

create the ICB for the data set, routine ASNDD to

data def the dataset routine ASMENDS to

initialize the JFCB, and routine ASMOPEN to open

the checkpoint data set.

The variable part of the X structure is put into

the data set by use of the ASMPUT routine, and

likewise the FIELD structure.

Each of the fields are saved through use of ASMPUT
routine by creating the following character
string: the FIUSTRING concatenated to SUPERSTR
if it is a superfield, concatenated to
SECURITYSTE if there is field security on this

PAGE 	 218

field, concatenated to VALID.ARGUMENT if the field

has a validation argument.

Each of the headers are saved through use of

ASMPUT routine by creating the following

character string: the EDESTRING concatenated to

RECSECSTR if the file has record security.

The 	 checkpoint tataset is closed by use of the

routine ASMCLOS, after which control is returned

to the calling routine.

T. 	 CODING SPECIFICATIGNS

1. 	 Source Language

PI/I with TSP1/I statements.

2. 	 Suggestions and Techniques

Not Applicable

DESCRIPTOR

TABLES

RDBEDCP

DESCR. 1

Figure 1. T/O Block diagram

-4A)v

DBEDCP)

CLEANUP

ASNERSE

CREATE
CHECKPOINT

DATA SET

SAVE
FIELD

STRUCTURE

SAVE X

STRUCTURE

SAVE
FIELDS

SAVE
HEADERS

CLOSE
DATA SET

2 EXIT
F

Figure 2. Top level flowchart

PAGE 221

TOPIC 	 D.12 - DESCRIPTOR EDITOR - CREAT SUB COMMAND

A. 	 MODULE NAME

Program-ID - RDB11CS

Module-ID - DBEDCS

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

This routine is used to define and setup the necessary

field to create a subfile.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b, 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

'Not Applicable

3. 	 Output Data Sets

a. 	 'Output Files

Pot Applicable

b. 	 On-Line Terminal Displays

Not Applicable

c. 	 Formatted Print-Outs

Not Applicable

4. 	 Reference Tables----

PAGE 222

The following external tables are referenced by

RDBEDCS:

1. FIELD

2. FID

3. FLE STRING

4. HDR

5. HDR STRING

6. X

A description of these tables can be found in the

dataset specifications of the DWB.

. PROCESSING REQUIREMENTS

1. Top Level flowchart

See Figure 2

2. Narrative

Upon entry into CRBATSUB, module DBEDGF is called

to obtain a valid subfile control fieldname. To

be valid this field name must not be longer than

six characters long and be a valid alphanumeric

character string. The following field names are

then created. The subfile key field name, the

subfile parent key field name, and the subfile

record security field name. Of the above

mentioned four fieldnames, none must exist and

none must be a reserved field name for the entered

subfile control field name to be valid.

The user is prompted for the maximum number of

subfile records per anchor file record that may

be loaded into the subfile. The number must be

less than or equal to 1325. If the number is

valid, processing continues, else the user is

given a diagnostic and prompted for a new number.

This number then becomes the number of elements on

the subfile control field.

Routine DBEDGA is called to determine if the

subfile control field is to appear on an associate

file.

The subfile control field, the subfile key field,

and the subfile parent key field are now created

and posted with the proper values. The subfile

control field is placed in the varying field list

of either the anchor file or the appropriate

associated file. The subfile key field and the

parent field are placed in the fixed list of the

PAGE 223

appropriate subfile.

The afore mentioned field names are placed in the

reserved field name list. The command string is

saved in the current strategy, after which control

is returned to the calling routine.

T. 	 CODING SPECIFICATIONS

1. 	 Source Language

PL/I with TSPL/I statements.

2. 	 Suggestions and Techniques

Nct Applicable

Figure 1. I/0 Block diagram

3ET FIELD

'TAME TERS

DBEDGF

A IFIELDS

GET NUMBER
OFRECORDS

DIAGNOSTIC
<VALID

GET

ASSOCIATEDA

PARAMETERS

DBEDGA

I
CB

CREATE

FIELDS

THREAD

4

POST

FIELD

RESERVED

4

--5 I --?

PAGE 226

TOPIC D.13 - DESCRIPTCR EDITOR - END COMMANDS

A. 	 MODULE NAME

Program-D - RDBDD

Module-ID - DBDDE

-B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module is the entry point into the Descriptor

Editor. It prompts for and processes Descriptor Editor

commands and calls the appropriate command routine.

The END command is used to terminate Descriptor Editor

processing and return control to the maintainence

director.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input riles

Not Applicable

3. 	 Output Data Sets

a. 	 Cutput Files

Not Applicable

b. 	 On-Line Terminal Displays

Not Applicable

c. 	 Tormatted Print-cuts

PAGE 227

Not Applicable

4.. Reference Tables

The fclloing external tables are referenced by

BDEDrE:

1. FIElD

2. X

3. VERBTAB

A description of these tables is found in the

dataset specifications of the DWB.

B. PROCESSING REQUIREMENTS

1. Top level Flovchart

See Figure 2

2. Narrative

Module DBEDIN is called to set up mode of

operation and all of the tables necessary to the

running of the descriptor editor.

The user is prompted for his next Descriptor

Editor command. If the command is invalid as

determined by a search of the verb table, the user

is given a diagnostic and prompted for a command

string.

If the command is not END, then the appropriate

command is called by use of the CALL routine when

control is returned, the user is prompted for his

next command.

If the command is END then if the user has not

filed his corrections, additions, or changes, he

is prompted informing him such and asked if he

really wants to terminate the Descriptor Editor.

If the anser is no then the user is prompted for

his next Descriptor Editor command, else the

Descriptor Editor run is terminated.

At termination each field storage and each header

storage area is released. The FIELD and X

structures are then released. Control is then

returned to the calling routine.

F. CODING SPECIFICATIONS

1. Source language

PAGE 	 228

PL/I 	 with DBPI/I and TSPL/I statements.

2. 	 Suggestions and Tecbnigues

Not Applicable

RDBEDDE ABLES

TERMIN L

Figure 1. 1/0 Block diagram

INITIALIZE

DBEDiN

A

GET AND

PROCESS

COMMAND

NEED NA

FILE

US ERWNANT

Figure 2. Top level flowchart

PAGE 232

TOPIC D.14 - DESCRIPTCR EDITOR - DISPLAY INTERVAL COMMAND

A., 	 MODULE NAME

Program-ID - RDBEEDI

Module-ID - DB!DDI

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module is a debugging tool used to display the

various external descriptor tables (DESCTAB), by their

internal name, field descriptors by their field name

and header descriptors by their file ids.

DISPLAYI DISTYPE=<I,F,H>,DISsAME=structure-name

where:

DISTYPE is the type of variable to be displayed I for

internal, F for field descriptor and H for file or

header descriptor.

DISNAME is the name of the variable to be displayed.

For internal mode the following structures may be

displayed.

ERRORFIIE

YIELD

FLD

ED1

FECSEC

SECURITY

SUPER

VALID

FID COMMENTS

ILDFREWFCRM

FLDRS

!LD_SUBCNTRL

ILDSUBID

FLDSUB1

HDR ASSOC

HDR INDEX

INIT TLD

INITHDR

INIT 	 RECSEC

INIT 	 SECURITY

INITSUPER

PAGE 233

10_FLD

10_HDD

10_RECSEC

1O SECURITY

riLEX

RESERVEC

XS

For field mode the name of the field to be

displayed is supplied. For header mode the file

suffix id is entered.

D., 	 DATA REQUIREMENTS

1. 	 1/0 Blcck Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 'Output Files

Not Applicable

b. 	 On-Line lerminal Displays

Not Applicable

c. 	 Formatted Print-Outs

Nat Applicable

4. 	 Reference Tables

1. 	 FIELD

2. 	 ILD

3. 	 HDR

PAGE 234

4. IECSEC

5. SECURITY

.6.
 SUPER

27. VALID

8. X

A description of these tables can be found in the

dataset specifications of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2., Narrative

Upon entry into RDBEDDI the user is prompted for

the display type. If the display type value is

not 'I', 'F', or 'H' the user is given a

diagnostic and prompted for a new value.

Depending on the display type the user is prompted

for either an internal structure name, a field

name, or a header id. If the internal structure

name is not contained in the list of names in the

module function section, or the field does not

exist or the file does not exist, the user is

given a diagnostic and prompted for a new display

name value.

When displaying an internal name, a label variable

is used, one label for each structure that may be

displayed. At each of these pieces of code, a

generalized display subroutine is called to

display the desired type of structure passing the

address of the particular structure to be

displayed. This is done for all structures except

for the structures PLEX, ERROErFILE, and XS. A

word about these display procedures later. The

information from the structures PLEX and

ERORFILE is setup and displayed. The display of

the X structure is a service of calls to the

different display procedures, one for each minor

structure of X to be displayed.

When displaying a field descriptor, a call to the

procedure DIS ILD is called to display the proper

FLD structure. If the field is a superfield, has

a validation argument, or has field secirity,

calls are made to the routines DIS SUPER,

DIS VA1LID, and DIS SECURITY to display the proper

structures. This is done to display all of the

PAGE 235

inforuation associated with the field.

When display a header descriptor, a call is made

to DIS HDR to display the proper HDR structure and

if the file has record security, a call is made to

DISRECSEC to display the appropriate record

security information.

After the information has been displayed, control

is returned to the calling routine.

For displaying the actual desired data several

internal procedures are set up, one for each type

of structure. They are DISFIELD, DISFLD,

DIS BRn,DIS_BECSEC, DIS_RESERVED, DISSECURITY,

DIS SUPER, DIS3VALID, and DIS XS. These

procedures build the output information in a work

area in predefined formats. The information is

output to the terminal thru use of the TS PROMPT

facility. The output consists of a title line

followed by the data usually displayed beneath the

title line.

F. CODING SPECIFICATIONS

1. Source Language

PL/I with TSEL/I and DBPI/I statements.

2. Suggestions and Techniques

Not Arplicable

Fgr 1. RDBEDDI agDESCRIPTOR TABLES '

Figure 1. 1/0 Block diagram

DBEDDI -° "

S TYPE

VALID DIGOSIN

INTRNA FIEL HEADER

DIGP I

NGFgIa.
NAM

DISPLAY

T leEL
NAM

DISPLAY

GET HEADER
ID

B

DIAGOSTI

a

DIANOSTC

FD VAI

DAGNOSTI

Figure,2a. Top level flowchart

E F

DISPLAY
 DISPLAY
 DISPLAY

INTERNAL FIELD HEADERSTRUCTURE DESCRIPTORDERIT

Figure 2b. Top level flowchart

TT2

PAGE 238

TOPIC 	 D.15 - DESCRIPTCR EDITOR - DELETE FIELD COMMAND

A, 	 MODULE 14AME

Program-ID - RDBEDDI

Module-ID - DBEDDI

B. 	 ANALYST

Barry -G.Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module is used to delete a previously defined

field descriptor.

D. 	 DATA REQUIPEMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-line Terminal Displays

Not Applicable

c. 	 Formatted Print-Out.

Not Applicable

4. 	 Reference Tables

The following external tables are referenced by

RDBEDDI.

1. 	 FIELD
2. 	 FLD

3. 	 1HDB
4. 	 SUPER

5. 	 x

PAGE 239

A description of these tables is found in the

dataset specificaticns of the DWB.

E. PROCESSING REQUIREMENTS

1. lop level Flowchart

See Figure 2

2. Narrative

Routine DBZDGF is called to obtain a valid

fieldname. Te be valid, the field must exist. If

the field name appears in the reserved list, then

it must be a sutfile control field and there must

be no other fields on this subfile to be valid.

A further check is made to determine if the field

to be deleted is a component of any superfields or

is the defining base field for any subfields. If

so, the user is told of all superfields and all

subfields that make use of this field. The user

is then prompted for a new field name value. If

here then the field can be deleted.

At this point, the internal delete entry point is

defined. If the field name to be deleted does not

exist, control is returned to the calling routine.

Otherwise a pointer is set to the field to be

deleted. At this point delete forms common

code.

If the field appears on an associate or subfile or

is indexed, then the appropriate file descriptor

counts are updated. If the associated file or

index file is depleted of fields, the file

headers are deleted, and the file ids made

available for reassignment.

At this point the field is deleted by the internal

delete field routine. If the deleted field is a

subfile control field, the subfile key field and

the parent key field are also deleted.

The next field in the list to be deleted is now

processed in the afore mentioned manner. After

all of the fields have been processed, the command

string is saved in the current strategy, if it was

the delete command that was called. Control is

then returned to the calling routine.

The internal procedure DELETE FIELD is used to

release the work areas containing the field

PAGE 	 240

information, and to post the deleted field list if

this field exists on the disc storage version of

the descriptor file.

F. CODING SPECIFICATIONS

1. 	 Source language

P1/I with TSPL/I statements.

2. 	 Suggestions and Techniques

Not Applicabl-e

Figure 1. I/0 Block diagram

DBDLD

COMMAN N
MOD>E

DELETE FIELD

CALL

FIELDNAME

DBEDGF

DELETE

rCALL
FLD

ELETE FIELp

POST
FIELD

FIELDFS Al

Figure 2. Top level flowchart

PAGE 243

TOPIC 	 D.16 - DESCRIPTOR EDITOR - DISPLAY FIELD COMMAND

A. 	 MODULE NAME

Program-ID - RDBEDDP

Module-ID - DBEDDP

Entry Points

DBEDDP1 - DISPLAY Cemmand

LB!DDP2 - Paging Entry

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

This routine is used to display the information

defining a field.

D. 	 DATA REQUIRETMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input File

Not Applicable

c. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

-ot Applicable

b. 	 On-Line Terminal Displays

The 	 various pieces of information are

displayed on the screen one item per line

preceded by a descriptive title. Refer to

the 	 dataset specifications for a description

PAGE 244

cf this display format.

c. Formatted Print-Outs

Not Applicable

4. Reference Tables

The fbllowing external tables are referenced by

RDBEDDP:

1. FLD

3. EDE

4. SECURITY

5. SUPER

6. VALID

7. X

A description of these tables is found in the

dataset specifications of the DWB.

B. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

At the command entry point the paging information

structure is allocated and initialized and routine

DBEDGF is called to obtain the fieldname to be

displayed.

At the paging entry point, the paging information

is set to point to the proper page to be displayed

and then join common code with the command entry

point.

At the start of the common code the number of the

next item to be displayed is retrieved from the

paging information and a branch is taken to the

appropriate code to obtain the next piece of field

information. If there is no information for this

item number, the next item is pointed to and

processed as above. After the line of information

is built, it is placed in the screen buffer.

If there is more room in the buffer, the next item

is pointed tc and processed as above. Once the

screen is full and there is more information to be

output in the forward direction, a paging entry

PAGE 245

point is setup and next page information is posted

in the paging information structure. The buffer

is then flashed to the screen after which control

is returned to the calling routine.

F. CODING SPECIFICATIONS

1. Source Language

- L/I with TSPL/I -statements.

-2. Suggestions and Techniques

Not Applicable

F
DESCRIPTOR
DD2

TABLES

SCREEN

<

Figure 1. 1/0 Block Diagram

SINITIALIZE

PSGET

FIELDNAM N

9

NFRATIODATA

GDAT

Figue 2aTopLeve Flochar

yo, ~

DEEDDP2

SETUP

Figure 2b. Top Level Flowchart

PAGE 249

TOPIC D.17 - DESCRIPTOR EDITOR - COMMON ROUTINES MODULE

A. 	 Program-ID -DBEC1

Module-ID - DBEDCZ
Entry Points EBEDDA

DBEDDS

LBEDDX

DBEDEF

EBEDFA

DBEDGA

EBEDGP

DBEDGE

DBEDPG1

DBEDPG2

B. ~NALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module consists of several routines commonly used

by the Descriptor Editor. They are:

1. 	 DBEDDA is used to delete a field from an associate

file.

2. 	 DBEDDS is used to delete a field from a subfile.

3. 	 DEEDDX is used to delete a field from an inverted

index file.

4. 	 DBEDET is used to expand the field structure when

it is full.

5. 	 DBEDFA is used to release the work areas

containing all of the field descriptor and file

descriptor information.

6. 	 DBEDGA is used to get and process the ASSOCED

parameter group.

7. 	 DEEDGI is used to get and process a valid

fieldname.

8. 	 DBEDGE is used to get and process the conversion,

formatting, and validation routine names and

validation argument.

9. 	 DBEDPGI is used for a common paging entry point.

10. 	 DBEDPG2 is used to flush the buffer to the screen

PAGE 	250

and setup to allow paging,

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Rot Applicable

b. 	 Punched Card Input Files

Pot Applicable

c. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-Line Terminal Displays

The displays output to the screen by DBEDPG2

are those setup by the DISPLAY, REVIEW, and

TIELDS commands. Their descriptor can be

found in the Dataset Specifications section

of the mvB.

c. 	 Formatted Print-Outs

Not Applicable

4. 	 Reference Tables

The following external tables are referenced by

RDBEDCMi

1. 	 FIELD

2. 	 FLD

3. 	 EDB

4. 	 HBCSEC

PAGE 251

5. SECURITY

6. SUPER

7. VALID

8. X

A description of these tables can be found in the
Dataset Specifications of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flovchart

See Figure 2

2. Narrative

Upon entry into DBEDDS the appropriate subfile

header table is addressed. The count of records

on this-sulfile is decremented.

If the deleted subfile field exists on disc, then

X.DEIETE is posted so that the appropriate

descriptor will be deleted. The field descriptor

table is then updated after which control is

returned to the calling routine.

Upon entry into DBEDDA the appropriate associate

header table is addressed. The count of records

on this associated file is decremented. If no

fields are left on. the associate file, the

associate file header is released and the

associate file-id made available for

reassignment.

If the deleted associated field exists on disc,

then X.DELETE is posted so that the appropriate

descriptor will he deleted. The field descriptor

table is then updated after which control is

returned to the calling routine.

Upon entry into DBEDDX the appropriate index

header table is addressed. The count of records

on the index file is decremented. If no fields

are left on the index file, the index file header

is released and the index file-id made available

for reassignment.

If the deleted indexed field exists on disc, then

X.DELETE is posted so that the appropriate

descriptor mill be deleted. The field descriptor

PAGE 252

table is then updated after which control is

returned to the calling routine.

Upon entry into DBEDEF, the number of permissable

items in FIELD is raised by 100 and a new larger

FIELD structure is allocated. The information

from the old field structure is moved to the new

structure and then the old structure is

released. Control is then returned to the calling

routine.

Upon entry into DRFDFA, a control loop is set up

to step through all of the existing field

descriptor table. If the field descriptor has a

validation argument, then the VALID pointer is

setup and the VALID area released. If the field

descriptor has field security, the SECURITY

pointer is setup and the SECURITY area released.

If the field descriptor defines a super field, the

SUPER pointer is setup and the SUPER area

released. The FiD area is released. After all

the field descriptor areas have been released, the

FIELD structure is released.

A control loop is setup to step through each

header descriptor table. If the file has record

security, the HECSEC pointer is setup and the

RECSEC area released. The HDR area is then

released.

After all file descriptors have been released if

the RECLEN field has field security, the SECURITY
pointer is setup and the SECURITY area is
released. Control is then returned to the calling
routine.

Upon entry into DBEDGA, the user is prompted

whether or not the field is to be placed on an

associate file. If the response is not an

acceptable boolean value, he is given a diagnostic

or prompted for an acceptable boolean response.

If the response is no and in UPDATE mode, if the

field is already on an associate file, the field

is deleted from the associate file by calling
DBEDDA. Control is then returned to the calling
routine.

If the user wants the field to be associated, he

is prcmpted on which associated file the field is

to be placed. If no field name is entered, a ney

associate file header is created and posted. If a

fieldname was entered, it must exist and be

associated. If the entered name does not meet

PAGE 253

this criteria, the user is given a diagnostic and

reprompted for which associated file. If the

entered field is associated, then this associated

file header record is addressed, and posted.

The field descriptor structure is then updated

after uhich control is returned to the calling

routine.

Upon entry into DBEDGF the user is prompted for a

fieldname. The field name is then verified.

If the name is invalid, the user is given a

diagncstic and reprompted for a correct field

name. The field name validation criteria is set

up by the calling routine. It consists of the

message id to prompt with, whether it is to be a

new field name or if it must already exist and

whether or not it can be a reserved fieldname.

If it is a new fieldname and the caller so

requests, a new ELD structure will be allocated

and the fieldname posted therein.

If the entered name is unacceptable for any of the

prestated reasons, the error flag is turned on.

Control is then returned to the calling routine.

Upon entry into DBEDGB, a control loop is setup to

prompt for each of the 3 routine names:

conversion, fcrmatting, and validation routines

names. If a name is entered, it is verified. For

conversion and formatting routines if no name is

entered and if the field type is not alphanumeric,

a default routine name is supplied. The routine

names are posted in the FLD structure.

If a validation routine was specified, a

validation argument is prompted for. To be valid

it must contain an even number of hexadecimal

characters. If an argument is entered, the value

is saved in a VALID structure, the pointer of

which is posted in the YFD structure. Control is

then returned to the calling routine.

Upon entry into DBEDPG1 the user is prompted for a

paging direction and it is validated. If it is in

error the user is given a diagnostic and

reprompted f c the direction. If in the desired

direction, there is no more information to output,

the user is given a diagnostic and control is

returned to the calling routine. The appropriate

routine is called to setup the next page of

PAGE 254

information to be displayed, after which control

is returned to the calling routine.

Upon entry into DBEDPG2 if there is more

information to output the MORE VATA flag is turned

on. If it is possible to page in either

direction, a paging entry point is setup. The
information is flusbed from the buffer to the
screen after which control is returned to the
calling routine.

DESCIPTO

Figure 1 1/0 Block Diagram

cM4

(DBEDDA)

POINT TO
FILE

POST

HEADER

DESCRIPTOR

POST

DELETE

FIELD

FIELD
DESCRIPTO

CM5

DBEDS S

POINT TO

FILE

POST

)ESCRIPTION I

" POST

DELETE

FIELD

POST
FIELD

DESCRIPTOR

RETURN

o5
DBEDDX
CD4G

POINT TO

FILE

POST
HEADER
DESCRIPTOR

POST
DELETE
FIELD

POST [

FIELD
DESCRIPTOR I

REUR

DBEDEF

RAISE
LIMIT

ALLOCATE

NEW FIELD

MOVE

OLD FIELD

INFORMATION

FREE

OLD FIELD

EXIT

C 2

Figure 2. Top Level Flowchart

POINT TO
FIRST

FIELD

FREE
VALID

"I

SECURITY

FREE

SUPER

FREE

FLD

FIELDS

MOE YPOINT TO

FIRST

HEADER

-4,

FREE

REC SEC

< OE YPOINT T

HEADERS NEXT HAE
IHDR,,

RETURN

2-1

DBEDGA

0M9

A

GET ASSOCIA ED

N SETUP

VALID DIAGNOSTIC

N

SSOCATE RTR

Y
I

NEW FILE

POST

INFORMATION

I
(±t3

1DBEDGF

GET FIELDNAME

N SETUP

VALID DIAGNOSTiC

< LDyM

Gii

DBEDGR)Cl Mil

GETN ROUTINJ
M

POST

ROUTINE
NAME

GET D NSEU
ALL N [POINT TO

< NAMES --- NEXT

NOTI
Ya ---
POIA

ARGUMENT

N SETUP
"
tAT
 DIAGNOST!C

POS

ARETURNT

(OE Ol)CM12

DBEDPG1

GT DIREOTIN

VALID N SETUP

9 tDIAGNOSTIC

POST
DIRECTION

CALL ROUTINE

CALL I

RETUR

CM13

DBEDPG2

N

TO PAGE

POST
PAGINGINFORMATION

FLUSH

RUN

PAGE 266

TOPIC 	 D.18 - DESCRIPTCR EDITOR - FIELDS COMMAND

A. 	 MODULE NAME

Program-ID - RDBEIDD

Module-ID - DBEDFD

Entry Points

DBEDFDI - FIEIDS Command

DEEDFD2 --Paging Entry

B. 	 ANALYST

Barry G. Ha~lett

Neoterics, Inc.

C. 	 MODULE FUNCTION

In CREATE mode the YIELDS command outputs the names of

the fields thus far created. In UPDATE mode the

descriptor descriptor names are displayed.

fl. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

not Applicable

b. 	 'on-Line Terminal Displays

The fieldnames are placed on the screen, the

number of names per line determined by

dividing the screen width by 20.

PAGE 267

C. 	 Formatted Print-Outs

Xot Applicable

4. 	 Reference Tables

The following external tables are referenced by

RDBEDFD:

1... FIELD

2. X

A description of these tables can be found in the

dataset specificaticns of the DWB.

B., PROCESSING BEQUIREMENTS

1. 	 Top level Flowchart

See Figure 2

-2. 	 Narrative

If in CREATE mode, a pointer is set to the FIELD

structure' otherwise in UPDATE mode the pointer

is set to an internal list containing the

descriptor descriptor field names.

At the paging entry the proper page number is set

up in the paging information structure.

At this point, the code becomes common for both

the command and paging entry points. The number

of the next field name to be displayed is obtained

from the paging information structure. Two

control loops are set up, one to build every line

to fill the screen and the other to fill each line

of the-screen.

If there is more information to be displayed, the

paging entry point is set up. The paging

information structure is posted, the buffer is

flush-ed to the screen and control is then

returned to the calling routine.

F. 	 CODING SPECIFICATIONS

1. 	 Source Language

PI/I with TSPL/I statements.

2. 	 Suggestions and Techniques

PAGE 268

Vot Applicable

SDCEIENR

Figure 1. 1/0 Block Diagram

DEEDFD1 DBEDFD2

INITIALIZE SETUP

A

MODE UPDATES

CREATE

UILD SCREE BUILD SCREEN

ROM FIELD FROM i

INTERNAL LIST

POST PAGING

INFORMATIOA

Figure 2. Top Level Flowchart

PAGE 271

TOPIC D. 19 - EESCRIPTOR EDITOR - FILE COMMAND

A. 	 MODULE NAME

Program-ID - RDBEDFI

Module-ID - DBD7fI

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 NODULE FUNCTION

This module is used.to place those additions and/or

changes from the descriptors in core to the descriptor

file.

D, 	 DATA REQUIREMENTS

1. 	 I/0 Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

-. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

The descriptor file is a region TSS VISAM

dataset containing all the information

necessary to completely define the data

base.

b. 	 'on-Line Terminal Displays

Not Applicable

C. 	 Formatted Print-Outs

PAGE 272

Not Applicable

4. Reference 'Tables

The following external tables are referenced by

RDBaD!I:

lo FIELD

2. TLD

3. PLD STRING

4. HDR

5. HDRSTRING

6. RECSEC

7. SECURITY

8. SUPER

9. VALID

10. X

A description of these tables can be found in the

dataset specifications of the DWB.

E. PROCESSING REQUIEMENTS

1.. Top Level Flowchart

See Figure 2

2. Narrative

Upon entering FILE command, if just one descriptor

record is to be updated, the appropriate file

identified is setup, the file opened and the

descriptor record is updated after which control

is returned to the calling routine. Otherwise all

the descriptor information is to be filed to the

descriptor file. The user is prompted for the

parameter DESCOK and the value saved for posting

each header record. If the input value is in

error the user is given a diagnostic and prompted

for a new value.

If the anchor key field needs to be deleted, it is

deleted from the anchor and all associate files.

The delete file list is then processed deleting.

the header, RECLEN key field and when applicable

the parent key field of all files listed.

For outputting descriptor information, the files

are processed in the following order: anchor, all

associate files, then all subfiles., If the file

does not exist on disc the RECLEN field is

written out. If it is a new region and the file

is either the anchor file or an associate file the

PAGE 	273

anchor key field must be written out for a new

subfile the subfile key field and parent key field

are written cut. If these or any other fields

already exist on the file then only the changes if

any, to these fields are written out. Record

security if any is then written out.

As these fields are output the field position

value for each field in maintained an updated.

This value is then placed in the FLDPOSIT position

for 	 each field.

The packed bit fields for the file are then
processed, in the order in which they appear in
the list. They are packed four to a byte and the
field position and field length indicating which
byte and where in the byte respectfully the field
can be found. After all packed bits fields are
processed, the fixed fields for the file are
processed shipping over the key field, parent key
field and record security field where applicable.
Then all varying fields are processed in order.

if it is an anchor or associate file all

descriptors if any are set up and processed,

Then the header record is setup and processed and

the file closed. The next file is processed in

this manner until the anchor file, all associate

files and all subfiles are processed.

The index files are processed next. If it is a

new file the RECLEN field is written out. Each

field to be indexed on this file is located, setup

and writtem cut. The anchor or key field on the

appropiate subtfile key field is setup and written

out. If the index file already exists then only

those changes applicable are written out to the

dataset. Each index file is processed in this
manner until all index files have been
processed.

After all the fields have been processed the
various external structures are marked indicating
that the descriptor data is on the dataset. The

command string is saved in the current strategy

and control is returned to the calling routine.

1% CODING SPECIFICATIONS

1. 	 Source language

PL/I with DBPL/I and TSPL/I statements,

PAGE 	 274

2. 	 Suggestions and Techniques

Nut Applicable

DDESCRIPTO

FILE

Figure 1. 1/0 Block Diagram

E)0-IDEEDFI A

LEAL
KDESCRIPTOR A GET DESCOK

POINT TO
NEXT FILE

SETUP AND
OUTPUT
FIELDS

SETUP
FILE ID

VALID
N

OPEN FILE

-

SETUP AND
'OUTPUT
IHEADER

OPEN
FILE

DELETE
ANCHOR

KEY FIELDS

SEUYN
OUPU
IELDS

OUTPUT
DESCRIPTOR

RECORD

DELETE
FIELDS

~EU N
-OUTPUT
HEADEROMMAND

SAVE

STRING

EXIT

DELETE
REGIONS

FEXILES_ __

POINT TO
NEXT INDEX
FILE

rDIAGNOSTIC

Figure 2. Top Level Flowchart

PAGE 278

TOPIC 	 -f.20 - DESCRIPTOR EDITOR - FIELD SECURITY COMMAND

A* 	 MODULE NAMH

Program-ID - RDBEDFS

Module-ID - DBIDIS

B., 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

This command ls used to define and setup field security

for a field or a group of fields.

D, 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not 	 Applicable

c. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 Output Tiles

Not Applicable

b. 	 On-Line Terminal Displays

Not Applicable

C. 	 Formatted Print-Outs

Not Applicable

4. Reference Tables Preceding page blank

PAGE 279

The following external tables are referenced by

RDBEDS:

1. FIELD

2. FLD

3. SECURITY

4.. X

A description of these tables can be found in the

dataset specifications of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Routine DBEDGF is called to obtain an existing

field name.

If CREATE mode the user may enter up to 18 field

names at one time. If several field names are

entered, they are processed as above.

The user is then prompted for a security code and

an add-delete indicator. If no indicator is

present, add is assumed. If the indicator is

invalid or the security code is not an

alphanumeric character string, the user is given a

diagnostic and prompted for a new security code

value.

The used may enter up to 18 security codes in a

parentbesesed list.

If the field already has field security a pointer

is set to it, 'otherwise a SECURITY work area is

allocated.

If the security code is to be added to the list,

and it is not already there, it is added at the

end of the list. Otherwise it is ignored. If the

security code is to be deleted, a search is made

through the existing codes deleting all

occurrences of the code if any.

Once all of the entered security codes have been

processed a check is made if any security codes

are lift on this field. If none, then the

SECURITY work area is released, else the pointer

to SECURITY is posted in the FLD structure.

PAGE 	 280

If in UPDATE mode, routine DBEDFI is called to

post the security codes to the descriptor file.

The command string' is saved in the current

strategy and control is then returned to the

calling module.

F. 	 CODING SPECIfICATIONS

1. 	 Source language

P1/I 	 with TSPL/I statements.

2., 	 Suggestions and Techniques

Not Applicable

Figure 1. i/0 Block Diagram

DBEDFS

A

GET
FIELDNAME

DBEDGF

SAVE

FIELDNAME

y

B

SECURITYGETCODE

?O DIGOSI

SECURITY

CODET

ORE Yoee lwhr

PAGE 284

TOPIC D.21 - DESCRIPTOR EDITOR - LOAD DESCRIPTORS MODULE

A. 	 MODULE 'NAME

Program-ID - RDBEDD

Module-ID - DBEDLE

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

In create mode the load module loads and sets up all

field and header descriptor information. In update

mode the load module loads the desired descriptor

record, including file descriptors and dummy descriptor

records. .

D. 	 DATA REQUIREMENTS

1. 	 I/0 Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

The descriptor file is a region TSS VISAH

dataset containing all the information

necessary to completely define the data

-base.

3. 	 Output Data Sets

a. 	 'output Files

Net Applicable

b. 	 On-Line Terminal Displays

Not Applicable

PAGE 285

c. Formatted Print-Outs

Not Applicable

4. Reference Tables

The following external tables are referenced by

RDBEDlD:

1. FIELD

2. TLD
3. FLD STRING
4. HDR
5. HDESTRING

6. 'RFCSEC

7. SECURITY

8. SECURITY STR

9. SUPER

10. VALID

11. 1

A description of these tables can be found in the

dataset specifications of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry into DBEDID if all descriptors are to

be loaded, the anchor file is first pointed to,

otherwise the appropriate file identifier is set

up. If call from REVIEW command branch to

retrieve the appropriate header on field

descriptor fields as the file has been opened and

the appropriate descriptor read into core.

In update mode any fields which have been loaded

and still exist in work areas are released. This

is a control so that no more than one field

descriptor can be loaded at any one time. Note:

this is not true for header descriptor.

The next descriptor region is opened starting with

the anchor region and the descriptor header record

read in. The header fields are obtained and all

bit switches converted to an alphabetic character.

A lDE structure is allocated and the header

information saved therein. If the file has record

security, the security codes obtained, placed in a

PAGE 286

1RECSEC structure and hooked up to the HDR

structure.

If in update mode, the desired field descriptor

record is read in, otherwise the next sequential

field descriptor is read in. If not in review

mode, it must be determined if the field is a

dummy descriptor. If it is then a list of file

ids is built eventually containing all of the

descriptor regions on the file once all of the

field descriptors on the anchor file have been

processed. This list is built from non-blank

entries in the ASSOCFIL, INVFILE and SUBEILE

descriptor fields. If the field is a dummy, and

in update mode, the correct file is pointed to and

a branch goes to open the file and read the

desired field descriptor. In create mode, this

record is skipped and the next descriptor record

in the region is read.

If this field descriptor is saved, all of the

field descriptor bit field values are translated

to an alphabetic character.

The field validation argument, if any, is obtained

and saved. If the field is a superfield, the

component values are obtained and saved.

likewise, if the field has security, the security

codes are obtained and saved.

A FLD structure is allocated and the field

information saved therein. The field name and

pointer are posted in the next available slot in

the 7111D structure, and if in create mode, the

FID structure is chained to the end of the proper

file list.

When the anchor region is finished. A list of all

existing descriptor regions is complete. The next

descriptor region in that list is selected and

loaded as described.

In reviev mode once the desired descriptor record

from the desired descriptor region has been

processed, as the correct non dummy field

descriptor has been loaded in update mode, control

is returned to the calling routine.

In create mode a search is made through all -file

lists to locate all subfields. For each

subfield, the defining base field is located and

the base field name and off~et are posted in the

subfield FLD structure.

PAGE 287

The fields within the file lists are ordered by

their field positions within each file list with

all subfields and superfields appearing at the end

of the ordered lists. Control is then returned to

the calling routine.

F. CODING SPECIFICATIONS

1. Source Language

P1/I with DBPL/I statements.

2. Suggestions and Techniques

Not Applicable

FigurePTO1. Blok DDESCRIPTOR TABLES
IPTEBL

Figure 1. 1/0 Block Diagram

DBEDLD

SETUP

FOR

LOADING

CNUPRFIE
REVIE FoHDRh DR
MODE OR ~ B

4, ~

FL

FLD
D

ET TO

NCHOR FILE

Fihure 2a. Top Level FlowchArt

A

IOPEN FILE
PROCESS AND

AND SAVE FIELD
READ }{DR INFORMATION

GET, PROCESS A
AND SAVE EJUST EXIT
HDO FIELDS RONE

READ FIELDDESCRIPTOR IINEI

GET FIELD REGIO0N

SINFORMATION ?/

REVIEW yLIST OF

FILELS

D-D
RE IONS I EGION

SAV FILEREDOL

ORDER FIELDS

FILE LISTS

Figure 2b. Top Level Flowchart

PAGE 291

TOPIC 	 D.22 - DESCEISTCR EDITOR - MOVE COMMAND

A, MODULE NAME

Program-ID - RDBIEMO
Module-ID - DBEDO

B., ANALYST

Barry G. Hazlett
Neoterics, Inc.

C. 	 MODULE FUNCTION

The MOVE command permits the user to reorder fields

within any field list.

D. 	 DATA R!QUIREENTS

1, 	 I/O BLOCK DIAGRAM

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Vot Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-Line Terminal Displays

Not Applicable

c. 	 Formatted Print-Outs

Not Applicable

4. 	 Reference Tables

PAGE 292

The following external tables are referenced by

RDBEDMO:

1. FID

2. BDB

3. X

A descripticn of these tables can be fonna in the

dataset specifications of the DWB.

E. PROCESSING REQUIREMENTS

1. Top level Flowchart

See Yigure 2

2. Narrative

The user is prompted for the new position field

name. If the entered field name does not exist,

the user is given a diagnostic and prompted for a

new fieldname. The new position field name cannot

be, the anchor key field if the anchor file has

record security, the subfile parent key field if

the subfile has record security or the subfile key

field, or the BECLEN field. If any of these

conditions are met, the user is given a diagnostic

and reprompted for a new position fieldname. A

superfield has no field position. If a subfield

is specified, the defining base field is located

and used as the new position fieldname. All other

fields are unacceptable.

The user is prompted for the field to be moved.

To be valid, the field must exist and must not be

a reserved fieldname, must appear in the same

field list as the new position field name and

must not be a superfield or a subfield. If the

field is invalid, the user is given a diagnostic

and reprompted for the field to be moved.

The field to be moved is decoupled from the list

by resetting the appropriate forward and backward

pointers. It is then threaded into its new

position by setting the appropriate forward and

backward pointers.

The command string is saved in the current

strategy and then control is returned to the

calling routine.

F. CODING SPECIFICATICNS

'PAGE 293

1.

2.

Source language

PL/I with TSPI/I statements.

Suggestions and Techniques

Not Applicable

. I I

, 10 f

RDBEDMO DESCRIPTOR

TABLES

Figure 1. 1/0 Block diagram

DBEDMO

AHEA

OLD FTELD

FIELD

2. Top level flowchartFigure

PAGE 296

TOPIC D.23 - DESCRIPTOR EDITOR - PATCH COMAND

A. 	 MODULE NAME

Program-ID - RDBEDPA

Hodule-ID - DBEDPA

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

The Patch command permits the user to patch the value

in any descriptor record in any description region in

the descriptor file. The record to be patched. must be

identified by use of the REVIEW command.

D. 	 DATA REQUIREMNS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 Cutput Files

Not Applicable

b. 	 On-line Terminal Displays

Nct Applicable

c. 	 Formatted Print-Outs

Not Applicable

PAGE 297

4. Reference Tables

The following external tables are referenced by

EDBEDPI:

1. FLD

2. HD

1. RECSEC

4. SECURITY

5. SUPER

6. VALID

7. X

A description of these tables can be found in the

dataset specifications of the -WB.

E. PROCESSING REQUIREMENTS

1. Top level Flowchart

See Figure 2

2. Narrative

The REVIEW command indicates in X that a REVIEW

has been done and it is alright to patch, REVIEW

also indicates whether the field to be patched is

a field or header descriptor. if a REVIEW has mot

been done the user is given a diagnostic and

control is returned to the calling routine.

The user is prompted for his patch in the form

tkeyword=test". The keyword is checked to see if

valid. If not, the patch is ignored, the user

given a diagnostic and reprompted for the patch.

If the name is valid, a branch is taken to the

piece of coded which actually posts the

appropriate field.

In each of the sections of code, one for each

descriptor field name, a resonableness check is

made on the patch text, to assure that the data

will be accepted by the validation routines when

posting the information to the descriptor file.

Refer to the Descriptor Editor Users Guide for the

acceptable range and form of the patch texts.

The user may enter a parenthesesed list of

patches.

After all the patches have been posted in the

descriptor table work areas, they must then be

PAGE 298

posted to the descriptor data set. The routine
DBEDFE3 is called to post the appropriate field
descriptor, or the routine DBEDFI is called to
post the appropriate header descriptor. The
routine called depends on whether the user is
patching a field descriptor or a header
descriptor. Control is then returned to the
calling routine.

F, CODING SPECIFICATIONS

1. Source language

PL/I with SEl/I statements.

2. Suggestions and Techniques

Not Applicable

Figure 1. I/0 Block diagram

G DBEDPA

OR. HEADER l 3

,FIELD OR H EADE R

POINT TO FIEL$i PON TO FIELD

DESCRIPTOR |HEADER

FIELD NAMS | DESCRIPTOR

SDBEDFD3DBb1

-- EQ XT EXIT

rP ATCH BB

FIELD

PAGE 301

TOPIC D.24 - DESCRIPTOR EDITOR - PRINT COMMAND

A. 	 MODULE NAME

Program-ID - RDBEDPE

Module-ID -DBEDP

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

The PRINT command gives the user a formatted printout

of the descriptor information as it exists in core at

the time the print is issued.

V. , 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

The output data from RDBEDPR is placed in the

VSAM data set LIST.DESC(O) from where it is

printed on the high speed printer by TSS.

For the details of the data set refer to the

dataset specifications.

b. 	 'On-Line Terminal Displays

Not Applicable

PAGE 302

c. Formatted Print-Outs

The information stored in LIST.DESC(0) is

printed using column one of each record as a

carriage control.

Reference Tables

The following external tables are referenced by

RDBEDPB:

1. IELD

2. FLD

3.
 HDR

4, RECSEC

5. SECURITY

6. SUPER

7. VALID

8. X

A description of these tables can be found

dataset specifications in the of the DW,.

E, PROCESSING REQUIREENTS

1. Top Level flowchart

See Figure 2

2. Narrative

The generation data group LIST.DESC is created

using the routine ASMCAT. The next generation is

created using the routine ASMDD. A DCB is created

for the output file by the routine ASNDCB, the

JFCB set up by the routine ASMFNDS, and the

dataset opened by the routine ASMOPEN.

The title lines for the data base name are output

by the routine ASNPU. The data base name is

output followed by two trailing title lines.

The title lines for the field descriptors are

output. 1he lines of field information for each

field are built and output.

After the field information is processed, the

title lines for the header descriptor information

are written out. The lines of header information

for each descriptor region are built and written

out.

The IIST.DESC dataset is closed by calling the

PAGE 	 303

routine ASMCLOS and a printer listing of the
information is generated by using the routine
ASMPR after ghich control is returned to the
calling routine.

F. 	 CODING SPECIFICATIONS

1. 	 Source Language

PL/I with TSFL/I statements.

2. 	 suggestions and Technigues

Not Applicable

DESCRIPTOR

TABLES

RDBEDPR

LIST.

DESC

PF.oTER

Figure 1. I/O Block diagram

CREATE
OUTPUT
FILE

LIST.DESC(+l) HEADER

OUTPUT
OPEN FILE

LIST.DESC(O) DESCRIPTORS

OUT DATA-
FLEX NAM4EFL

CLOSE

AND HEADERFILE

OUTPUT
FIELD PRINT

HEADER LIST.DESC(O)

OUTPUT
FIELDS EXITE i

Figure 2. Top level flowchart

PAGE 306

TOPIC 	 D.25 - DESCRIPTOR EDITOR - RECORD SECURITY COMMAND

1A. MODULE NAME

Program-ID - RDBEDERS

odule-ID - DBERDBES

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

This command is used to create and define record

security for any data base file except for indicies.

12, 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

not Applicable

3. 	 Output Data Sets

a. 	 'output riles

Not Applicable

b. 	 On-Line Terminal Displays

Not Applicable

C. 	 Formatted Print-Outs

Not Applicable

4. 	 Reference Tables

PAGE 307

The following external tables are referenced by

RDBEDRS:

1. YIELD

2. YLD

3. FIDSTRIWG

4. MDR

5. BECSEC

6. X

A description of these tables can be found in the

dataset specificaticns of the DWB.

E. PROCESSING BEQUIREHENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Routine DBEDGF is called to obtain a fieldname

used to deline on which file record security is to

be placed. If in update mode and the header

record is not loaded, DBEDLD is called to load the

header. If there is no record security currently

defined for the file in UPDATE mode, the user is

given a diagnostic and control is returned to the

calling routine.

The user is prompted for a record security code.

The add-delete indicator is removed from the code

and validated. if it is invalid, the security

code is rejected, the user is given a diagnostic

and reprompted for the security coded. If no

indicator is entered, "ADD" is assumed.

The security code is removed from the parameter.

If this is not an alphanumeric Character string,

the security parameter is rejected, the user is

given a diagnostic and reprompted for the

security code.

The security mask to be valid must be a two digit

hexadecimal character string. If it is invalid,

the security parameter is rejected, the user is

given a diagnostic and reprompted for the

security parameter.

Once the security parameter is validated, it is

saved in an internal work area. The user may

enter a list of security parameters as a list in

parentheses. Each security parameter is obtained

PAGE 308

from the user and processed as above.

If record security has been previously defined for

the file, a jcinter is set up to the file header

and record security information. Otherwise a

record security field is created and placed in

the appropriate position in the fixed field list

of the file. A record security save area is

allocated and initialized.

A control loop is set up to process each entered

security code. The existing security list if any

is searched for the entered security code. If the

security code exists and the new code is to be

added, the two security masks are logically OR'ed

together and the result posted in record security

structure. If the code is to-be deleted, the two

security mask are logically exclusively OR'ed and

the result placed in the record security

structure. If the security code is not in the

existing list and it is to be added, it is placed

at the end of the existing list. If the code to

be deleted and it does not appear in the list, it

is ignored. Each security code is processed in

this manner.

After all security code have been processed and

the record security list is empty, the area is

released and the record security field deleted

from the file.

If in UPDATE routine DBEDFI is called to post the

record security to the descriptor file. The

command string is saved in the current strategy

and then control is returned to the calling

module.

F. CODING SPECIFICATIGNS

1. Source Language

Pt/I with TSPL/I statements.

-. Suggestions and Techninq.ues

Not Applicable

Figure 1.RDBEDRS DESCRPTOR
NAL TABLES"

Figaure 1. 1/0 Block diagram

DBEDRS

GET
FIELDNAME

PDBEDGF

EADE
LOADED

SECURITY
9* > EXIST

LOAD
HEADER

DBEDLD3SEU

SECURITY
CODES

ET 2 pEXIT

SED> N

N
VALID

SAVE
SECURITY

CODE

Y
MORE

CODES

Figure 2. Top level flowchart

PAGE 311

TOPICS D.26 - DESCRIPTOR EDITOR - RESTORE COMMAND

A. 	 MODULE NAME

Program-ID - RDBEDIT

Module-IE - DBEDRT

B. 	 ANALYST

Barry G. Hamlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

This command is used to restore-the descriptor tables

from a VSAM data set to memory, so that the user may

continue tc create and/or modify the descriptors from

their point of existence at the time the checkpoint was

issued.

D. 	 DATA REQUIREMENTS

1.. 	 I/O Block tiagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

The input file is a TSS VSAM data set named

DESCER.CHKPOINT. Refer to the dataset

specifications for a description of this data

set.

3. 	 Output Data Sets

a. 	 'Output Tiles

Not Applicable

b. 	 On Line lerminal Displays

Not 	 Applicable

PAGE 312

c. Formatted Print-Outs

Not Applicable

4. Reference Tables

The folloving. external tables are referenced by

RDBEDRT:

1. YIELD

2. TLD
3. FLDSTRING

4. EDE

5. HDRSTRING

6. EECSEC STR

7. SECURITY STE

8. SUPIERSTE

S. VALID

10. x

The description of these tables is in the
specifications of the dataset DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry into RDBEDRT a DCB is set up for the

dataset DESCEP.CHKPOINT by calling the routine

ASMDCB. ASfDD is then called to create a JFCB for

the data set and ASMFNDS is called to setup the

JFCB. Any and all existing field descriptors and

file descriptors are released and then the FIELD

structure itself is released.

ASMOPEN is called to open the dataset. That part

of the X structure which was saved is read in over

top of the same part of the existing X strucure.

The FIELD structure is allocated next. Note that

the variable defining the size of FIELD structure

is in that part of X which has just been restored.

The FIELD structure is read in overlaying the just

allocated existing FIELD structure.

A field descriptor is read into a work area. A

FLD structure is allocated on the field

information moved into it. If the FLD has field

security, a validation argument, or is a super

PAGE 313

field, the appropriate structures are allocated,

the informaticn moved into them, and the pointers

in FED setup accordingly. The changed flags in

FiD are setup so that all of the field descriptor

information will be forced out to disc when the

FILE command is issued. Each field descriptor is

processed in this manner.

A file descriptor is read into a work area. An

HDR structure is allocated and the header

information moved into it. If the file has record

security, a RECSEC structure is allocated, the

information moved into it, and the pointer posted

into the HDR structure. The HDR pointer is posted

into the proper slot in X.HEADTAB. Each header

descriptor is processed in this manner.

The dataset DESCRP.CKPOINT is then closed and

control is returned to the calling program.

F. CODING SPECIFICATIONS

1. Source Language

PL/I with TSPI/I statements.

2. Suggestions and Techniques

Not Applicable

DESCRP.

CHKPOINT

DBEDRT

U
TABLES

Figure 2.

DBEDRT

INITIALIZE

OPEN

DESCRP.

CHKPOINT

READ FIELD

READ FIELD

DESCRIPTORS

F-

READ FILE
DESCRIPTORS

CLOSE

DESCOR.

CI-KOINT

EXIT D

Top level flowchart

PAGE 316

TOPIC 	 D.27 - DESCRIPTOR EDITOR - REVIEW COMMAND

A. 	 NODULE NAME

Program-ID - RDBEDRV

Nodule-ID - DBEDRV

Entry Points:

DBEDE1i - Review Command

DBEDRV2 - Paging Entry

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 BODULE FUNCTION

This command is used to present the descriptor

information to the user of any descriptor record in a-ny

descriptor region in the descriptor file. Review

points to the record to be patched by means of the

PATCH command.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

-b. 	 funched Card Input File

Not Applicable

c. 	 Input files

The data base descriptor file is a TSS VISAN,

file maintained by DBPAC, containing the

information defining and detailing the

information contained in the data base.

3. 	 Output Data Sets

a. 	 'Output Files

Not Applicable

PAGE 317

b. On-Line Terminal Displays

The various pieces of information contained

in the descriptor record are displayed on the

screen preceeded by the descriptor descriptor

field name. All fixed fields are displayed

'within a 20 character string. The number of

items per line for fixed field items is

determined by dividing the screen width by

20. 'The varying elements are display one per

line, with continuation lines if necessary.

c. Formatted Print-Outs

ot Applicable

4. References

The following external tables are referenced by

RDBEDRV:

1. Tin
2. -HDR

3. RECSEC

4. SECURITY

5. SUPER

6. VALID

7. X

A description of these tables is-found in the

dataset specifications of the dataset DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

At the command entry point the paging information

structure is allocated and initialized. The user

is prompted for the descriptor file a region id

that he wishes to review from. If the region id

is invalid, the user is given a diagnostic and

prompted for a new region id

The user is prompted for the name of the

descriptor record he wishes to review from the

descriptor region. If the descriptor name is

invalid, the user is given a diagnostic and

prompted for a new descriptor name. If the

descriptor exists the routine DBEDLD is called to

PAGE 318

load the descriptor data. If a loading error

occured, the user is given a diagnostic and

prompted for a new descriptor value.

The paging information structure is setup to point

to the first page of information to be displayed.

At which point the command entry and paging entry

join in common code.

At the paging entry point, the paging information

is set to point to the proper page to be displayed

and then join common code with the command entry

point.

At the start of the common code, the number of the

next item to le displayed is retrieved from the

paging information and a branch is taken to the

approprate code to obtain the next piece of

descriptor information. Seperate pieces of code

exist for each field descriptor and file

descriptor descriptor fields. After the piece of

information is built, it is inserted in the output

line. If there is sufficient room in the output

line for more data, the next item of information

is obtained as above. If the line is full, it is

put into the ITS screen buffer.

If there are more lines of screen available, they

are built and processed as above. This continues

until either the screen buffer is full or all of

the information has been exhausted. If the

screen is full and there is more information to

output in the forward direction, a paging entry

point is setup and the next page of information is

posted in the paging information. The buffer is

then flashed to the screen.

The X structure is posted as the descripter region

and field name of the record REVIEW'ed so that the
user may use the PATCH command if he desires,
after which control is then returned to tho
calling routine.

P. CODING SPECIFICATIONS

1. Source Language

PL/I with TSPI/I and DBPI/I statements.

2. Suggestions and Techniques

Not Applicable

DESCRIP-

TOR FILE

FgRDBEDRV DESCRIPTOR
TER1INALTABLES

Figure 1. /0 Block diagram

DBEEDRVi

C~rD

INITIALIZE
PAGING POINT TO

INFORMATION NEXT ITEM

GET FILE ID HEADER

GETL

?DIAGNOSTIC STPFEDSTPFL
FiELDNAME

IOUTPUT LINE

ELD

oELD3Tfl

EIST NG

DiurAGNOSTIC lvlflwhr

--:PAGE 320V
S

< ROOMDBEDRV2IN LINE

POINT TO POINT TO
PAGE < NEXT LINE

B/

PUT LINED

INTO SCREE}

PAGING

ENTRY

Figure 2b. Top level flowchart

PAGE 323

TOPIC 	 D..28 - DESCRIPTOR EDITOR - SAVE STRATEGY COMMAND

MODULE NAME

Program-ID - RDBEDSS

Module-ID - DBEDSS

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

The command is used to create and save in the strategy

data set, a list of Descriptor Editor commands-which

when executed at any future time will create a set-of

descriptors exactly like those that exist in core at

the time the SAYSTRT command is issued.

D. 	 DATA REQUIREMENTS

1. 	 .1/0 Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c.. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 Output riles

Not Applicable

b. 	 On-Line Terminal Displays

Not Applicable

C. 	 Tormatted Print-outs Preceding pagehbank

PAGE 324

Not Applicable

4. Reference Tables

The following external tables are referenced by

RDBEPSS:

1. XLD

2. HDR

3. BECSEC

4. SECURITY

5. SUPER

6. VMSID

7. X

A description of these tables can be found in the

dataset specifications of the DWB.

-R. PROCESSING REQUIRIEZNTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry into SAVSTRT, the user is prompted for

the strategy name in which the Descriptor Editor

commands are to be saved. If the name is not of

the proper form or a strategy by that name

already exists, the user is given a diagnostic and

prompted for a new strategy name,

Once a valid strategy name is obtained, the

MAINTAIN and EDIT command strings are saved in

the strategy. This initializes the strategy. The

internal subroutine SAVE FlD is called to save

the ADD command to create the anchor file key

field.

A control loop is set up to process each of the 20

possible files in the order of anchor file;

associate file and then sutfiles. With each

existing file each field list is processed in the

order of packed bit fields, fixed fields, and then

varying fields. Each field list is processed from

the start of the list to the end of the list.

The SAVE_FL command is called for each field to

create and save the appropriate command string.

The fields COMMENTS, FREEFORM, the subfile key

field, and the subfile parent key fields are

PAGE 325

skipped as they are created thru the adding of the

anchor key field or the CREATSUB command. The

record security field is skipped if encountered

and processed after all other.fields on the file

have been processed. All the fields on all of the

files are processed in the manner and order.

If the RECLEN field has field security, the

SAVE_FS is called to build and save the FLDSEC

command.

After all of the fields and files have been

processed, the FILE and END commands are saved in

the strategy, after which time control is returned

to the calling routine.

In the SAVE_FD internal procedure, if the field
is a subfile control field the CREATSIB command
string is built else of the field is a superfield
the SUPERFLD command string is built, otherwise
the ADP command string is built. The appropriate
command string is saved thru use of the routine

TSPUTG.

The internal entry SAVE FS is defined at this

point to save the field security if any. This

code is also part of the SAVEfLD procedure. If

the field has field security defined on it, a

FLDSEC command string is built or saved in the

strategy through use of the routine TSPUTG.

Contrcl is then returned to the calling point in

SAVSTFT.

F. CODING SPECIFICATIC14S

1. Source Language

Pi/I 'ith TSPI/I statements.

2. Suggestions and Techniques

Not Applicable

Figure 1. I/O Block diagram

]YBEDSS BC

SA

GET STRATEGY POINT TO MORE
NEXT
' NAME

FILE

N SAVE
DIAGNOSTIC FIELDS

~~SAVE_FLDJ

ESECURITY
RECORDIEN

CC
INITIALZE < RCORAD NEURT

RECSEBCAND SAVEFigur STpel

2a
 ToIee focat
igureCRIT

SAVEFLD

Y SAVECT0

FIE DCREATS UB
COMMWAD

Y SAVESUEFIL

SUPERFLD

~COIMM

SAVESAVD

BUILD
AND
N

SECURITYFLDSEC

COMMAND

EXIT

Top level flowchart
Figure 2b.

PAGE 330

TOPIC D.29 - DESCRIPTOR EDITOR - SUPERFIELD COMMAND

A. 	 MODULE NAME

Program-ID - RDBEDSD

nodule-ID - DBXDSU

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

The SUPERFLD commands allow the user to define a

superfield descriptor.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Eot Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

3. 	 Output Data Sets

a. 	 Output Miles

Not Applicable

b. 	 On-Line Terminal Displays

Not Applicable

c. 	 Formatted Print-Outs

Not Applicable P
4. Reference Tables

PAGE 331

The following external tables are referenced by

RDBEDSU:

1. FIELD
2. HID
3. HID_STRING
4. -BDR
5. SUPER
6. VALID

7. X

A description of these tables can be found in the

dataset specifications of the DWB.

E. PROCESSING REQUIREMTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry into SUPERFID, routine DBEDGF is called

to obtain a new fieldname.

A HID structure is allocated and initialized.

Routine DBEDGE is called to obtain any conversion,

formatting and validation routines and validation

argument.

The user is prompted for a list of field names

which are to be the superfield components. Each

component is processed iT the following manner.

If no internal external indicator is present,

external form is assumed. If an indicator is

present, it is seperated from the field name. If

the indicator is invalid, the user is given a

diagnostic and prompted for a new component value.

To be valid the component fieldname must be the

name of an existing field. In addition, for a

field having more than one component, the

component list is limited to at most one

multielement field and all if any subfile

components must be from the same subfil-e. If the

component fieldname is invalid, the user is given

a diagnostic and prompted for a new component

value.

After all the components are entered, and

processed, they are saved in a SUPER structure and

the pointer stored in the FID structure.

Next it is determined on which descriptor file the

PAGE 332

superfield is to te placed. If all the components

are from -one file, then the superfield descriptor

is placed in the descriptor region. If the

components are all from one associate file and one

subfile and the subfile is defined off of that

associate file, the superfied descriptor is placed

in that associate descriptor region. All other

superfield descriptors are placed in the anchor

descriptor file.

The SUPERFLD command string is saved in the

current strategy and control is then-returned to

the calling routine.

F., CODING SPECIFICATIONS

1., Source language

PI/I with TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

DESCRIPTOR

RDBEDSU TABLES

Figure 1. 1/0 Block diagram

DBEDSU

GET I
TIELDNAME

DBEDGF

GET

ROUTINES

DBEDGR

B

GET
COMPONENT

<VALID -N

ELD

MORE

FIELDS

SETUP

SUPERFIELD

LIST

THREAD IN

DIAGNOSTIC

b

B

Figure 2. Top level flowchart

PAGE 335

TOPIC D.30 - INDEX FILE MEBGE

A. 	 MODULE NAME

Maintenance - File Merger

Program-ld - RDBIVDM

Module-Id - DBIFDM

B. 	 ANALYST

Edward McIntire

Neoterics, In-c.

C. MODULE FUNCTION

The merge module is an independent program vhose

function is to create an updated index file for a data

base. The updating of the index file can be done in

place or to a new index file. This new index file will

be named"t 'INDMRG.' //FILE NAME//:'//FIELD NAME"';

This module will also allow for -the processing of

duplicate records if deemed necessary.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

2he 	 merging utility is most often invoked

from a terminal in conversational mode.

However, it is possible to initiate the task

in the non-conversational mode. In batch

mode, the format of the punched card input is

the same as when terminal input is used to

invoke the routine.

c. 	 Input Files

1. 	 Index File: The primary input to the

combine program is the current index

file that is to be updated, and the

update index file that is to be combined

with the current index. The anchor

PAGE 	 336

descriptor file is needed to provide

field information.

2. 	 Parameter File: If the user wishes to

stop processing he may do so by pressing

attention and responding 'yp to the

prompt message. Thus a parameter file

is created for input to further

restarts. This file consists of the

last key processed on the current index

file. This file is a VSAM file used

only in the combine program.

a. 	 On-Line Terminal -Entries

All of the terminal entries to the merge

prcgram are in the form of responses to

prompting messages from the program itself,

The one exception to this rule is the initial

command with its parameter to invoke the

procedure.

3. 	 Output Data Sets

a. 	 Output Files

The output data set is the index file created

by the combine program. This data set can

take 	 two forms:

1. 	 The current index file updated
inplace.

2. 	 A new file created by the merging of the
current index with the update index.

b. 	 On-Line Terminal Displays

All on-line terminal displays for the combine

program follow the same format. The TSPL/I

facility of the system is utilized to request

entries at the terminal and display progress

information.

c. 	 Form-atted Print-outs

Not Applicable

d. 	 Punched Card Output Files

Not Applicable

4. 	 Reference 'Tables

PAGE 337

Not Applicable

B. 	 PROCESSING REQUIREMENTS

1., 	 Top level Flowchart

See Figure 2

2. 	 Narrative

a. 	 Prompting

Prompt the user for first pass. If it is not

the 	 'first pass, go and read the parameter

file. Prompt the user for the anchor file

name-, for new file creation or merge in

place, for the processing of duplicates or

not, 	 and for the inverted field name. The

user 	 must enter a valid response to all of

the prompts or he will be reprompted. A read

sequentially of the anchor descriptors is

done- until a fixed field with an offset of

four 	 (4) is found. That, in fact, is the key

descriptor and its length is saved. The

index field is also checked for validity, if

it is not a valid index, then a reprompt is

initiated. Following this the index

descriptors are opened and read sequentially

until the index field length is obtained, and

the spanned indicator is checked and it's

value is saved. In all of the above cases if

a critical error is encountered an error

message is displayed and the program is

terminated.

b. 	 -Write Parameter File

If the user deems it necessary to stop
processing during the combine operation, he
can press the attention button and the total
records processed will be displayed. Also, a
message will be displayed asking if he wishes
to quit processing. when the user replys
with a quit processing command the following
occurs:

1. 	 Quit switch is set.

2. 	 Processing is continued until a clean
close can be carried out.

3. 	 Parameter file is opened and -the key of

the last record written is written to

PAGE 338

the parameter file.

4. Parameter file is closed.

5. Program branches to end of job

routines.

c. Read Anchor Descriptors

DBPAC is utilized to read sequentially the

anchor file descriptors and retrieve the

field that is indexed and the anchor key

length.

d. Read Index Descriptors

DBPAC is utilized to read sequentially the

index file descriptors and retrieve the index

key length and the spanned indicator.

e. Read Parameter File

If not the first pass, the parameter file is

read to get the needed key for the restart.

The restart key is used as the key and a get

by key is done on the current index file.

Also a read by key is done on the update file

to find its starting position. From here we

go to normal reads on the input files for

further processing.

f. lrite Index File

The writing of the index file can take two

different forms.

1. Merge Inplace.

If the user decides to merge to the

current index file the new records will

be built in core and tabled there until

a unique record is read. If a record is

longer than the maximum allowable

length, then create a spanned record.

Then rewrite any existing records and

write any new records that may have been

created. When an update record does not

match a current record, the update

record and any with the same key are

written to the current file.

2. Merge to New File.

PAGE.339

The merge to a new file is much the same

as the merge inplace. The differences

are listed below:

a. 	 An out put file is created with the

same attributes as the current

index file.

b. 	 There will be no rewrites to the

new file.

c. 	 All current and update records will

be written to the new file.

g. 	 Attention Interrupts

Attention interrupt handling was discussed in

'BI
section 'EV, sub-section '2', Item

(Write Parameter File).

F. 	 CODING SPECIFICATIONS

1. 	 Source language

The combine program employs the IBM PL/I

Programmimg Language. The special extensions of

that language, called DB l/I and TSPL/I, are

utili2ed for access to file descriptors in the

data base and for all terminal communication,

respectively. Also, the merge program employs

assembler routines to handle all I/O during the

execution of this program, except for the writing

of the parameter file -which is handled exclusively

by Pt/I.

2. 	 Suggestions and Techniques

Not Applicable

CURRENT UPDATE
INDEX INDEX DESC.
FILE FILE

[---- 4,,INPACEFT =ERMIMERG

0I
MERGE TEMIA

-"INHJACE'-- DISPDLAYSG

Li

RENAME HERGE

F FILE'

Figure 1. 1/0 Block Diagram

5'

,ENTERA

'PROMPT

FIRST

PASSFILE

USER
INPUT

INPU

PROMPT
PARAMETERS

USER
INPUT

(

READ READ

ARAMETER UPD

FILE TE INDEX

READ EMASTER

INDEX BY

KEY
MASTER

VREAD<U P N

INDEX

BY KEY

6
MRGE ALL

MATCHING

B

FIRST
PASS

N
AD(; __WRITE

NEW

MERGYREAD
UPD

INDEX
FiuRTE

(WRITE

Top Level Flowchart
Figure 2A.

fA
vt) i- , --,

c H

WRT ALL

READ CLOSE MASTER Y MATCHING

FILES NEW FILE

?/k EOFY F ~END MTHNMASTERS TO/

/NE FILE/

BY KEY MASTERMASTER
READ

READ

P NWRITE

MATRBY

UPD

KEY
TO MASTER

[

EOF

MATCHING
RECORDS

INPLACE

,

WiRITE

.EW FILE h

,,Figure -2-B.-- Top Level Flowchart

PAGE 342

TOPIC D.31 - DESCRIPTOR EDITOR - INITIALI ATION

A. 	 MODULE NAHE

Program-ID - RDBEDIN

Module-ID - DBEDIN'

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module performs all of the initialization

necessary for the running of the Descriptor Editor. It

is called by the Descriptor Editor director.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

- here are no input files for the Descriptor

Editor when in the CREATE mode and the user

is creating a new set of descriptors.

fowever, when in UPDATE mode, or when the

user is continuing the creation of a

previously entered set of descriptors, the

previously created descriptor file is used as

an input file. The description of this file

is found in the dataset specifications of the

Dw-B.

3. 	 Output Data Sets

a. 	 Output riles

Not Applicable

PAGE 343

b. 	 On Line Terminal Displays

Vat Applicable

c. 	 Formatted Print-Cuts

Vat Applicable

4. 	 Reference Tables

The following exteTnal tables are referenced by

RDBEDIN:

1. 	 FIELD

2. 	 FLD

3. 	 EDE

4. 	 RECSEC

5. 	 SECURITY

6. 	 SUPER

7. 	 VAlID

8. 	 X

A description of these tables is found in the

dataset sp4cificaticns of the DWB.

E. 	 PROCESSING REQUIREMENTS

1. 	 Top Level Flowchart

See Figure 2

2. 	 Narrative

The descriptor file indicated is opened for input

to determine if the file exists. If the file

exists and in CREATE mode, routine DBEDID1 is

called to load the descriptors. If in UPDATE mode

and the file does not exist, the user is given a

diagnostic and prompted for a new file name.

The verb table is allocated and initialized to the

proper verb table copy. The routine DENSER is

called to setup any additional user defined,

commands.

If in CREATE mode and no file exists, the user is

PAGE 344

prompted for the anchor key field. The routine

DBEDAC1 is called to process and setup the anchor

key field.

The user is prompted for the descriptor mode. If

the response is valid, flags are set indicating

the mcde, and a pointer is set to the appropriate

verb table copy. If the mode is invalid, the user

is given a diagnostic and prompted for- a new mode

value.

The X structure is allocated and initialized. The

initialization consists of setting the various

pointers in X to NULL. he FIELD structure is

allocated and its pointers set to NULL.

If RESTORE mode is indicated, DBEDRT is -called to

restore the checkpointed descriptor. If no

restore errors occurred, the- go setup the verb

table. If there were restore errors, or CREATE or

UPDATE mode were indicated, the file name is

retrieved from the MFCB.

Control is then returned to the calling routine.-

F. CODING SPECIFICATIONS

1. Source Language

PL/I -ith DBPL/I and TSPL/I statements

2. Suggestions and Technigues

Not Applicable

DESC.

FILE

DESCRIPTOR
TED -NA-L TABLES

Figure 1. 1/0 Block Diagram

CREATE

POINT TO

CREATE

VERBS

'1/

GET AND

PROCESS

ANCHOR KEY

DRUAC

RETURN

Figure 2.

UDBED IN

GET AND

PROCESS

MODE

ALLOCATE

INITIALIZE

UPDATE

POINT TO

UPDATE-

VERBS

A

Top level flowchart

PAGE 347

TOPIC E.I - TFRMINAL SUPPORT - PREPROCESSOR

A. MODULE NAME

Terminal Support Tl/I Preprocessor

Program-ID - TSPLI

Module-ID - TS

B. ANALYST

John A. lo2an

Neoterics, Inc.

C. MODULE FUNCTION

TSPLI analyzes terminal input/output Pl/I language

extension statements and produces statements acceptable

to the PI/I compiler. These statements call the

terminal support module allowing the program to

communicate with the user's SYSIN and SYSOUT or,

pending TSS support, an on-line display station. The

user's SYSIN and SYSOUT are a terminal if the task is

conversaticnal, or data sets, if non-conversational.

Diagnostic messages are generated for errors which can

be detected by TSfl/I during preprocessing.

D. DATA REQUIREMENTS

1.. 1/0 Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

The Job Control cards needed to invoke the

P1/I compiler in TSS are described in the

IBM TSS/Command System User's Guide, Form No.

C28-2001. More detailed information will be

provided in the IBM PL/I Programmer's Guide,

Form No. C28-2049.

b. lunched Card Input Files

1. TSPLI Text

The TSPLI text deck is all text for

insertion into the source program

following a "5% INCLUDE LISRMAC(TS) ;"

statement in the source program. This

PAGE 348

text consists of the source statements
of the TSPLI preprocessor function and
any PL/I statements to be-inserted at
the "% INCLUDE LISRMAC(TS);" statement
in the source program. The TSPLI text
is coded as specified in this report,
formatted according to PL/I source
language standards, and catalogued in a
data set for compile time use by all
programs using TSPLI.

2. Source Deck

She source deck is any PL/I source
program using TSPLI statements to
interface with the user's SYSIN and
SYSOUT or any on-line display station.
The statement formats and their use are
described in the TSPI User's Manual
(Section 8, Topic E.2 of the DWB).

c. Input Files

The TSPLI text -statements are catalogued as a

member of a partitioned direct access data

- set for retrieval by the IBM Pl/I
rrecompiler. This data set is accessed via
ddname LISRMAC.

d. On-line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Tiles

The object module consists of the relocatable

machine instructions and constants generated

by the PL/I compiler for the source program.

It is stored in a partitioned data set. This

data set is the last DATADEFed JOBLIB. If

the user has not DATADEFed any JOBLIs, it is

stored in the user's USERLIB data set. The

module is loaded by TSS when called by the

user.

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

PAGE 349

1. Trecompiler Listings

Two precompiler listings are produced:

(a) A source listing before

precompilation and

(b) Any precompiler diagnostics (i.e.,

errors in the use of preprocessor P1/I,

not 7SPLI error messages).

2. Compiler Listings

The compiler listings produced include

an intermediate source listing (between

precompiling and compiling) and any

compiler diagnostics. Serious TSPLI

TL/I errors may result in compiler

diagnostics also.

d. Punched Card Output Files

Rot Applicable

4. Reference Tables

a, 7C - terminal control block

b.- TSPL/I - diagnostic comments.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. Top Level

The mainline PL/I source program is required

to have a "36 INCLUDE LISRMAC(TS)=" statement

once in the program before all TSPLI

preprocessor function references. This

statement directs the PL/I precompiler to

take text from member TS of the library
accessed via ddname LISRMAC and incorporate
it into the source program. (Refer to the
TSPLI block diagram in Section D.1 of this
write-up).

The TSPLI function receives one argument from

a preprocessor function reference; i.e., a

PAGE 350

variable length character string. It is

TSPLI's function to scan and parse this input

string to determine if it is in the correct

format and then to generate a string called

the "generated text." This string consists

of valid PI/I statements and comments for

communication with the terminal support

nodules.

The processing of TSP1/I is closely analogous

to the processing of DBPL/I described in

Section IV, Topic A of the DWB and is only

summarized here. The TS text declares and

activates the TS preprocessor function.

Argument initialization, finding a

subargument, passing labels and comments

through, and finding the statement keyword to

select the specific statement routine are all

done analogously to the DBPL/I preprocessor

function. Diagnostic comments are generated

for any errors detected. (See Section III,

Topic E.1 of the DWB.) There are no files to

he analyzed.

In all programs a declaration of the entry

point to the terminal support modules is

generated and a declaration of TC - the
lerminal Control block (See Section III,
Topic E.2 of the DUB.)

b. Specific Statement Routines

lach specific statement routine examines the

statement from left to right until the

semicolon clause is found. The keywords are

verified for correct spelling and order, If

any error is detected, a diagnostic comment

is generated and the statement abandoned by

control being transferred to the

inter-statement point. Following successful

analysis, each specific statement routine

generates PL/I statements for communication

with the terminal support modules and loops

tack to the inter-statement point.

The ON PAGE statement routine generates the

following statement:

TC.PAGING_ENTRY=expression:

Where "expression" is taken from the CAIL

clause of the TS ON PAGE statement.

PAGE 351

The ENTRY statement routine generates the

following statements:

TSENTRYRETURN_POINT=TS_ENTRYLABEL n;

GO TO TSENTRYCODING

TS-ENTRYLABEL_n

Where "n" is a numeric value assigned

seguentially to each ENTRY statement as it

is encountered.

The ENAEI statement routine generates the

following statements:

DCL TS ENTRYRETURNPOINT LABEL;

TSENTRY RETURNPOINT=TSENTRYLABEL_1;,

TSENTRYCODING:
ON CONDITION(END)

GO TO TSEXIT CODING;

014 CONDITION (ATTN);

'TC.IFUNCTION='ENTRY':

CAll TSCNTRL(TC);

GO TO TSENTRY RETURNPOINT;

TS EXITCODING;
RETURN;

TSENTRY LABEl 1;

lines 4-6 and 10-11 of the above text are

only generated when the user specifies the

appropriate option on the ENABLE statement.

The TS logic is such that the ENABLE

statement, if it appears, must appear before

the first ENTRY statement, and in fact,

implies an ENTRY statement. Likewise, the

first ENTRY statement implies a default

ENABLE statement, if none are present.

The PROMPT statement routine generates the

following statements:

TC.XUNCTION='PROPT-et ;

TC.PROMrT.MESSAGE KEY=expression;

TC.PROMPT.KEYWORD=value;

CALL TSPBMTe(TC,variable,list);

Ihere "expressicn"' is taken from the MSG

clause of the statement, "value" is taken

from the XEYWORD clause (if present),

"variable" is taken from the INTO clause (if

present) and "list" is taken from the USING

clause (if present). The value of "e" is

generated according to the following table:

PAGE 	 352

1. 	 INTO clause - none

2
-eu=M

2. 	 KEYWORD clause - none

"e"=lC

3. 	 KEYWORD clause - yes

-fe-=D

The READ statement routine generates the

following statements:

C.UNCTION='EEAD';

CAlL TSREAD(TC,variable);

Where "variable" is taken from the INTO

clause of the TS READ statement.

The -WRITE statement routine generates the I

following statements:

TC.FUNCTION='WRITE';

CALL TSWRITE(TC,variable);

Where "variable" is taken from the PEOH

clause of the TS WRITE statement.

The PUT statement routine generates the

following statements:

TC..UNCTION=PUTI;

7C.OUTPUT.POSITION= a';

TC.OUTPUT.DIRECTION=Ib';

CALL 	 TSPUT(TC,variable,value);

Where "variable" is taken from the FROM
clause of the TS PUT statement and "value" is

taken frcm the TAG clause (if present). The

value for "a" will be generated accerding to

the fellcving table:

1. position clause - none

11a11=0

2. 	 position clause -LINE

1a1=0

3. 	 position clause - PAGE

-a1=1

The value for "b" will be generated according

to tie following table:

PAGE 353

1. 	 direction clause - none

-in=0

2. 	 direction clause - FORWARD

"h"1=0

3. 	 direction clause - BACKWARD

The PLUSH statement routine generates the

following statements:

C.FUHCTION='FLUSH;

CALL TSFLUSB(TC);

The FINISH routine sets a precompiler

variable to indicate that a FINISH statement

has been processed and to prevent the

processing cf any further TSPL/I-statements.

A diagnostic comment indicating the number of

TSPL/I errors is generated, If there have

been any errors detected, the following

statement will be generated causing an

IEM05121 PL/I error:

DCL TSDUMMY_VARIABLE IABEL

INIT(TSERRS_nn) ;

Ebere "nn" is the number of TSPL/I errors

detected.

All statements and comments generated will be

aligned as seventy-one byte strings, for ease

of analysis.

/5z

SOURC DECKTS
L TS TEXTTEXTSORElC

IBMPII PRECOMPILERjPRECOMPILER
LISTIlNG

{ IBM PLII
 COMPILER
COMPILER LING

OBJECT

MODULE

Figure 1. 110 Block diagram.

INITIALIZA.

FIND ATE TO

ARGUMENT GENERATE

, TEXT

ENDOFN 1fEN PROCES

ARGUMENTL STATESTATEMN

{ERETURNTE

ENERATED T

Figure 2. Top level flowchart

PAGE 	 356

TOPIC E.2 - TERiINAI SUPPORT SUPERVISOR

A. 	 MODULE NAME

Terminal Support - Terminal Support Supervisor

Program-ID - RTSUPER

Module-ID - TSUPEE

Entry Points - TSATIN, TSCNTRL, TSFLUSH, TSGETKY,

TSPRMTC, TSPRMTD, TSPBMTH, TSPUT, TSREAD, TSMRITE

B. 	 ANALYST

Frank Reed

Neoterics, Inc.

C. 	 MODULE FUNCTIONS

1. 	 Organization Chart

See Figure 1

2. 	 Overview

RTSUPER is the primary vehicle of communications

between the NASIS monitor (MTT or stand-alone)

and the NASIS PL/I data Base programs. Among the

functions R'SUPEE performs are:

a. 	 Issues I/O requests from data base programs.

This includes command, data and message

rrompts and ordinary read and write

requests.

b. 	 Initializes the Terminal Control Block (TC)

for each PL/I program. Supplies information

about the current display area dimensions and

resets all bit switches to zero.

c. 	 Controls asynchronous interrupt processing.

Detects APOFF, END and GO conditions and

issues that asynchronous activities do not

interfere with normal processing.

d. 	 Maintains a push-dovn stack of message key

references to support the EXPLAIN facility.

e. 	 Scans and passes user input strings for

ccmmands and data. Information entered at

the terminal is interpreted and passed to

requesting programs in useful segments. The

!C Block is utilized to enhance interprogram

communication.

PAGE 357

D. 	 DATA REQUIREENTS

1. 	 I/0 Block Diagram

See Figure 2

2. 	 Input Data Sets

a. 	 Parameter Cards

Not applicable

b. 	 Punched Card Input Files

Not applicable

c. 	 Input Files

1. 	 DBAIF

2. 	 IISRMLF

d. On-line Terminal Entries

All responses to command and data prompts by

NASIS programs pass through RTSUPER.

3. 	 Output Data Sets

a. 	 output Files

Not applicable

b. 	 'On-line Terminal Displays

All output from NASIS data base programs

passes through BTSUPER.

C. 	 Formatted Print-Outs

Not applicable

d. 	 Punched Card.Output Files

Not applicable

4. 	 Reference Tables

a. 	 External Tables

1. 	 TSCTL

2. 	 USERTAB

3. 	 TSCBEEN

4. 	 MTTUTAB

PAGE 358

b. 	 Internal Tables

1. 	 EXPIIST

An area in which a push-down list of

message keys is saved.

E, 	 PROCESSING BIQUIREMXNTS

1. 	 Top Level Flowcharts

a, MAINLINE: See Figure 3

b. 	 Entry Pcints:

1. 	 TSATIN - See Figure 4

2. 	 ISCNTRL - See Figure 5

3. 	 TSFLUSH - See Figure 6

4. 	 TSGETKY - See Figure 7

5. 	 TSPENTC - See Figure 8

6. 	 TSPETD - See Figure 8

7. 	 TSPRMTM - See Figure 9

8. 	 TSPUT - See Figure 10

9. 	 TSWRITE - See Figure 11

c. 	 Program Subroutines:

1. 	 GETPR - See Figure 13

2. 	 DELPE - See Figure 14

3. 	 GETSYN and GETDFALT - See Figure 15

4. 	 PULINEND - See Figure 16

5. 	 SDGIVITL and SDGIVITC - See Figure 17

6. 	 SDPASS and SDYSNCHK - See Figure 18

7. 	 RESETBUF - See Figure 19

8. 	 SDSTRIP and STRIP - See Figure 20

9. 	 PEKEYSAV - See Figure 21

PAGE 359

10. INCHECK - See Figure 22

11. SIGNAL and SIGNAIC - See Figure 23

1-2. -SETLDAB - See Figure 24

13. GETLF - See Figure 25

14. MOVE - See Figure 26

15. PROMPT - See Figure 28

16. EXIT - See Figure 29

2.. Narrative

a. MAINLINE

All calls to RTSUPER entry points pass

through the MAINLINE code. The purpose of

this code is to insure that each user has the

correct work areas, to initialize base

registers and to restrict TS usage during

IPOFF and ATTENTION processing.

Xxecuticn proceeds by calling the PI service

routine IHESADA to obtain a Dynamic Storage

Area (DSA). Next, registers are initialized

and useful pointers are saved in unique

locations. The PLI Pseudo Register Vector

(PRV) draws special attention since it is not

maintained in register 12, as is the norm for

other programs.

Using the PRV, MAINLINE determines if a copy

of the TS Psect has been allocated for this

user., If not, the routine GETPR is invoked

to obtain one. On return, data lifted from

MTTUTAB is utilized to compute the user's

logical and physical device dimensions and

this information is saved for future

reference.

The one-byte switch IOSW is checked to find

out which entry point was entered. If entry

xas through TSATIN, control goes directly to

the interrupt processing code. For any other

entry, the contents of the user's TC Block

(passed as a parameter) is moved to the DSA

for easy addressability. If an APOFF has

teen requested by the user only calls to

TSPEMTM and TSCNTEL are allowed to execute

normally, all others being short circuited to

PAGE 360

the routine which signals an END condition.

If not in APOF mode, control is passed to

the routine specified at entry.

b. Entry Points

1. TSATIN

This entry point is called by module

BTSATTN whenever it determines that a

user attentions should be processed. If

the user has previously entered APOFF,

the attention is ignored. If an

immediate command is currently

processing, condition END is signaled

which terminates the command. If this

is the second successive attention and

processing of the first is sufficiently

advanced, condition END is signaled;

otherwise, this interrupt is ignored.

On return, a second copy of the user

psect is allocated, the string input

buffer is initialized to null input and

the PL/I routine RDBA TN is called to

issue the ''-ATTN:'' prompt.

On return from RDBATTN, all user

requests have been staisfied and the

user is ready to continue. After

closing the duplicate DCBs for the

message files, the duplicate user psect

is released. If the user entered END or

APOPY in response to ''-ATTN:'', then

-ointers are set to cause execution to

resume at the PL/I signal routine for

END condition; otherwise, execution

resumes at the point of interrupt.

2. TSCNTRI

Its function is to initialize the TC

Block for use and pass the user's

terminal dimensions. Terminal

dimensions are obtained from the user's

profile by repetitive calls to TSGDEF.

If no defaults are specified, the

necessary information is taken from

MTTUTAB.

Control is returned to the caller

through the EXIT routine.

PAGE 361

3. TSFLUSH

TSFLUSH is the display output routine

for terminal support. It is normally

called after consecutive calls to TSPUT

have caused an output buffer to be

filled. If a buffer has overflowed and

AUTOWRITE is indicated, this routine is

called from TSPUT and a flag is set to

cause the ''MORE:' message to replace

the next prompt.

The name of the paging entry for the

program doing a PUT or FLUSH should

always be in the TC Block as it is saved

by SFLUSU just prior to the write.

Data is output one line at a time for

typewriters and in a block for screens.

The most current display is saved in the

external controlled storage named

TSCREEN.

4. TSCGETKY

This entry point is called with three

parameters: (1) TC Block, (2) message

key or list reference or list reference

pointer in the range -7 < pointer < o ,

(3) varying length data area to hold the
message text read from the file. On
entry, pointers to these parameters are
placed in registers and the type of
request is determined (either key or
pointer).

If it is a pointer, the key is obtained

from EXPLIST (a push-down stack of

keys). If the user wants just the key,

control is returned to the caller.

Otherwise, and if the second parameter

is a key, the message file is searched

for the Key.

If the key is not found, error flags are

set and control returned to the caller.

Else, the text of the message is read

into the user's area and the message key

is reset to point to the next record of

thie file, if any, and control is

returned to the caller.

5. TSPEMTC

PAGE 362

This is the entry point called by any

data base program desiring to request a

command from the user.. On entry, and

internal buffer is checked for the

presence of a previously entered

command. If one is there, it is

returned to the caller as satisfying the

prompt. If the buffer is empty, a

message key passed as a calling

parameter is used to access a message

file to obtain the text of the message

which describes the context of the

prompt to the user. This message is

displayed in the prompt area of the

user's I/O device and the terminal is

opened for input.

The response to this prompt must be a

command. It may be the one requested by

the calling program, in which case it is

passed along. Or, alternatively, it may

be any of the ''immediate'' commands

which cause one of the immediate command

processors to be invoked. After all

activities associated with the immediate

command are completed, the execution

cycle beginning on enty to TSPRMTC is

repeated until a satisfactory response

is returned to the caller or until APOFE

or END processing is initiated.

Consult the Command System User's Guide

for details of command syntax.

6. TSPRMTD

This entry point is called by a data

base program wishing to obtain

user-entered data. On entry, the-save

internal buffer that holds commands is

checked for a parameter string that may

have been entered with a command. If

data is there, it is passed out of the

string (in accordance with the syntactic

unless outlined in the Command System

User's Guide) and returned to the

calling program. If the buffer is empty

or the next item in it is a command, a

message key passed as a calling

parameter is used to access a message

file to obtain the text of the message

which will explain to the user what data

is requested. The message is displayed

PAGE 363

in the prompt area of the user's I/O

device and it is opened for input. .

The response to this prompt may be data

or any of the immediate commands. If it

is data, it is passed as above and

returned to the user, The terminal

Control Block sewer as a- center for

communicating information about the data

betteen TSPMTD and its caller.,

If the response is an immediate command,

this command and its associated

parameters are treated separately from

any user input intended for a data base

program. When processing of the

immediate command is complete, the cycle

beginning on entry to TSPBMTD is

repeated until a satisfactory response

is received or until APOFl or END

processing is initialed.

Consult the Command System User's Guide

for the details of parameter syntax.

7. TSPEfTM

This entry point is called to display a

message from IISBRlF on the user's

terminal. No -reply is- asked for.

Auxiliary subroutine entry points are

called from various locations in 1TSUPE3

to perform prompting tasks.

The message filter MSGLEVEL in the

user's profile determines wether or not

informational (I-level) messages are

displayed. Warning (W-level) messages

are always transmitted.

The message ID filter MSGIDS specifies

insertion of the message key between the

message prefix'and the text. MSGIDS=Y

requests display of message keys.

NSGIDS= implies no keys.

If the last output to the display area

left residual data undisplayed, the

''MORE'' message is substituted for any

command or data prompt message. The key

of every message (except explanations)

is placed in the EXPLIST area for

reference by the EXPLAIN command.

PAGE 364

8. TSPUT

TSPUT may be called one or more times by

data base programs to format data

(passed as a parameter) in a buffer for

output. The data consists of a string

of characters to be displayed on the

user's terminal and an optional tag

field which is appended to the beginning

of the string. Formatting consists of

manipulating the data so that it appears

in a consistent and logical pattern on

the screen.

On entry, TSPUT initializes pointers and

work areas based on whether a restart,

continuation or backwards put is

indicated. After insuring there is

sufficient room in the buffer to insert

new data, a subroutine is called to move

the tag and data string to the output

buffer. This step is repeated until all

data is in the buffer or the tuffer is

filled. An attempt is made to

terminate lines between words and at

punctuation.

On buffer overflow, if the caller does

not want overflowed records inserted,

all pointers are reset and control is

returned to the caller. If partial

records are inserted, control characters

are appended, a TC Block variable is set

to indicate the number of characters

taken and the AUTOWRITE switch is

checked. If it's on control passes to

the FLUSH routine, otherwise control is

returned to the caller.

If all data is inserted with no

overflow, the, trailing position of the

record is padded with blanks (to fill

out a screen line) and control is

returned to the caller.

9. TS14ITE

This routine is called to flush the

contents of the external storage named

TSCBEEN. After locating the area

control is passed to FLUSH, which

outputs the data and returns control to

the caller.

PAGE 365

c, Subroutines

1. GMTPB

This routine calls the PL/I controlled

storage allocation routine ''IHESADD''

to obtain space into which the master

psect may be copied. The caller's

registers are saved in area common to

the copy routine so after the area is

obtained a branch is taken to HOVECOPY

and from there control is returned to

the caller.

2. DELPE

This routine simply deallocates the

external controlled storage allocated by

GETIE. The Pt/I service routine

''T"ESAEF'' is called to perform-this

function.

On return, register 12 is set to point

to the next area in the chain and

control is returned to the caller.

3. GETSYN and GETDFALT

These two subroutines primarily the save

code, the differences being in the

lengths of the parameter list used in

the eventual call to an external program

and the v-core which is posted in

register 15 and points to the program

which is called. GETSYN calls TSGSYN to

obtain a synoym for a term. GETDFALT

calls TSGDEP to obtain a default value

for a parameter. On return from the

respective calls, the length of the

returned data is checked. If nothing

came back, the data pointers are reset

to point to the data used as a calling

parameter.

4. PULINEND

This subroutine is called by TSPUT to

insert the proper end-control characters

on each line of display output as it is

moved into the output buffer. Screen

lines are padded with blanks to fill out

the line. Typewriter lines are

terminated with an interpretive hex

PAGE 366

15.

5. GIVITD and GIVITC

These two subroutines are called by the

prompting routine to pass data to the

user. If the prompt processing is in

skip mode or the call was inadvertently

done before an item-was found, the pass

is not done. Otherwise SDPASS is called

to move the data to the user's area.

On return, the passed data is excised

from the input buffer. If it came from

a parenthesized list, the list flag is

set in the terminal Control Block and

control is returned to the user.

6. SDPASS

SDPASS compares the length of the data

or command passed from the input string

with the receive area. If the item will

fit the area, it's moved, otherwise a

syntax error is noted and error

processing is begun.

7. SDSYNCHK

This routine is called to check for

certain syntax errors. If an error is

detected, control is transferred to

SYNER to initiate an error control

sequence. Otherwise, control is

returned to the point of call.

8. RESETBUF

Preparing a buffer for input and

initializing all flags associated with

'input passing is performed here.

9. SDSTRIP and STRIP

SDSTRIP is called to delete leading and

trailing quotes and leading and trailing

blanks from an item passed as input to a

calling program. If only blanks are to

be deleted, entry is at STRIP.

10. PRKEYSAV

Inserts the key of a prompting message

PAGE 367

into a push-down list of message keys

for reference by the EXPLAIN command.

11. IMCHECK

Whenever the user enters an immediate

command, it is discovered by this

subroutine. Comparing the entered

command against a table of valid

imwediate commands, a ''bit'' leads to

either signalling ''END'' or calling an

external program to initiate processing.

On return, the prompt routine is

informed of the occurrences and the

prompting cycle begins again.

12. SIGNAL and SIGNALC

Entry at SIGNAL causes preparations to

call the PL/I service routine IHEEBRD.

Control then falls through to SIGNALC,

which calls a pre-indicated routine and,

on return, itself returns.

13. SETLDBA

This routine opens and initializes the

DCBs for the prompt message libraries.

Also, it issues a SETL to find a

particular message key-in the file.

Member IISRMLF of DBALIB is searched

first, followed by member LISRML? of

IISRLIB. If the Key is not found in

either DBALIB or LISRLIB, a substitute

message is written which indicates the

message was not found.

14. GEfLP

Its function is to read the text of a

message record pointed' to by a message

key. Each record read is check for the

prescence of a minus sign (-) or plus

sign (4) is its last character.

If there is a minus sign, the next

record is read and appended to the

first. If the last is a plus sign, the

truncation bit in the TC Block is set to

one(1) and control is returned to the

caller.

15. HOVE

PAGE 368

All extended data relocations are

performed by this routine. In addition

it is also used to blank-fill a data

area and copy from one area to

another.

16. PROMPT

On entry, if the user is in RESTART or

RERUN mode the next record of input is

obtained from the strategy dataset named

in the external control block' USERTAf.

Otherwise pointer and constants are set

in the I/C control block and NTT is

called to do an I/D.

On return from ITT, the return code in

register 15 is checked. If there was an

error, attention interrupt or

continuation the I/O is retried.

Otherwise, the data.is moved to a work

area and control is returned to the

caller.

17. EXIT

Returning to any program calling an

PTSUPER entry point is accomplished by

passing through thiscode. The caller's

TC Block is updated by moving cur copy

of it back into the caller's area. The

PRV is restored in register 12 and

control is returned by calling the PL/I

service routine IHESAFA which-releases

our Dynamic Storage Area (DSA) and

restores the callers registers.

-.. CODING SPECIFICATIONS

1. Source language

TSS/360 Assembler Language.

2. Suggestions and Techniques

Not Arplicable

MONITOR M1Ti4TEAD MTTREAD MTTWRITE

MTTKA MTTKB

LRTSATTN

TSATIN TSPR0MET TSREAD TSWRITE

RDBIATTN TSCNTFL TSFLUtSH TSPtIT

TSGETKY

IMIAEI
_N

CONDITION COCMANDS
END

ON DATA BASE

CONDITION PROGRAIs

ATTENTION

" Figure 1. Terminal Support Organization Chart

S
MUSER'

MONITOR

RTSUP R
 DBA LF
 fLS flJLF

DATA BASE

PROGRAMS

Figure 2. I/O Block diagram

ENTER

CALL
IHESADA
TO GET A
DSA

SAVE PRV
IN
MTTUTAB

SAVE TECL
PRV &
ENTRY
REGISTERS

GETPR
TO GET A
WORK AREA

INITIALIZEDYNAMIC[
VARIABLES

T TYPESET DEVICEFROM
MTTUTAB

PSCT OUTPUT AND
PROMPT AREA
SIZES

GET OLD

PSECT
POINTER

RESET

CALLER'S
PARAMETER
REGISTERS

-

SE NR

SWITCHTR
SWH
IS

00 ATENIOO Y ENR
IMNED PRCSIGFOR

N

ENRYN ENR y I MOVE USER'S

FO FO PF TC BLOCK
SCNT SPTO OUR

? DSA

Figure 3. Terminal Support MAINLINE

ENTER

A oFF."Y.

SIGNAL

ATTNC

CALL

GETF SIGNALL
TO GET
NEW PSECT

DTEND

POINTERS

TO SGAELL

GO TO

CCALL

CLOSE THE

MESSAGE
FILES

DELPR
TO DELETE

A PSECT

AL
END?

N

Figure 4. Entry Point TSATIN

513

ENTER

CALL
GETDFALT
FOR
S CRNWTH

FANY? 5. USE 40

CALL

GETDFALT
FOR
SCRNHGT

< ANY? N USE 12

INIT ALL

TC BIT"

TO ZERO

GO TO

EXIT

Figure 5. Entry Point TSCNTRL

TO*)

TOF A LINE

TO PAD •CR SCREEN

1 MOVE COPY WRITE
TO saVE TO
IN TSCREN OUPUT

BUILD A
TRANSLATE

TABLE

Figure 6. Entry Point TSFLUJSH

ENTER

POINT
REGS 'TO

USER S
DATA AREAS

yMOVE

KEY 7

SETLDBA

TO FINDZEO

S MESSAGE

GETMLF

TO READ

MESSAGE

igNREGION KEY
 Pi T'

FROM

E O

I I TY

ER Y
 TO ZERO LNT
RECOR
 TO FLAG RGSE
9.
 AN ERRORTOZR

LEFT?

COMPUTE
 GIVE

NEXT LINE
 CALLER THE

POINTER
 LENGTH OF

FOR CALLER
 THE RECORD

Figure 7.
 Entry Point TSGETKY

NULL DATA' ATTENTION

SWITCH
 TRAP

IN!T ALL

INTERPRETIVE

SWITCHES

EMPTY?

DATA ./PRS N

PROMPDT PASE y

I EXT E SET SKIP
"STOA

COMMMN LIST KE TO FIND

~NEXT DATA

NY

LSFROM

TC BLOCK

OLKEY'S N EW WR

IN STRING??

 [r Y
SET DATA
 SET

ASCAN
 -- NO-KEY
POINTER SWITCH

.'...."Figure
 8. Entry Points TSPRMTC and TSPRMTD

SAVE
STARTING
SCAN "
POINTERS

FB

STRINGSE

FOR

DELI ITERS

FLAGS AND
SWITCHES

N

r

N

NQUOTED

MDLENGTH OF -- PAREN?

COLON

Q N SLASH? N ERRO N RIH

Figure 8A.
 Entry Points TSPRMTC and TSPRMTD

PAGE 377

CLL
IfSDSYNCHK CALL

SDSMCHKC

FO ERROR FOR ERROR
SCHECK CHECK

CALL) - 0S ONL

SDSYNCHK
FOR "ERROR
CHECK

KEKEYWORD
9N

S SIN

B CGOR TOEREGORE

Figure 8B, Entry Points WSPRMTC and TSPRRTfl

511

J T

END OF; B A ISTSTRIG

?

CCOMMAl PUT A IN

THE STRING

yN
SET ALL

LIST FLAGS
IN SsDGIVTC
MODE?

CALL

TO PASS

H

CALL
SSYNCHK
FOR ERROR

CHECK

LIST
A

A H

Y IN A
SUB-LIST PROMT?

NLDSL
T

BLANKS

Y LEADING

? O
B COMMAFOR

CALL
IMCHECK

IlED.
COMND.CHK.

DATAN .EI

NiurIS

NAn F grTO

EItr

P oints TAS

PoiSITSPf

a

an

S T

SHOULDT Y

N

KP

LEDN
 SCAN INPUT
WITHOUT
SLASH PARSING'

RESETBUF

.ITO

iDAT -CALL

PROMPTPRZINGNU

O DTO

CLEAN
UPIIINPUT

SEND
ERROR MSG

CB

Figure 8D. Entry Points TSPRMTC and TSPRNTD

R

ANYTHINSDSTRIPI

SfPASSETORMV BBLANK
SDPASS "

CCALL

T AGIVE
TO CALLER

Figure 8E. EntryPoints TSPMTC and TSFRITD

PROMPTM z

CALL CL
GETDFALT NULL Y GO TO RESETBUF

FOR MSG OK EXIT TO INIT

FILTER BUFFER

MOVE

MSG KEY Y

FROM TC
BLOCK •

OPRGETMSG
TRUNCATION

MESSAGE

KEY

USE USE

MOREPLYATO USESETLDBA

'MORE' MSGTO FIND

KEY
A RECORDCALL

CALLAPPEND

GETMLF PU NET REPLY TO

TO READ IN THSAE INPUT

A RECORD M E STRING

GALLPUMS

GETDFALT KEY IN

FOR EXPLAIN RETURN
LIST
MSGIDS

PREFIXGALL

MESSAGE PROMPT

WITH BLANK TO

OR MINUS DISPLAY

Figure 9. Entry Point TSPRMTM

PAGE 382'

RETR N ICK U

1 t TIMEOLD

SPOINTERS

TO WORK

SAREA

CAL

OINPOIN

.!

J

BLANKETPU

TO BLANKBAKRD

FILL AREA?

PUA CHEKLT

TONMOE TOPOIN
TA

LEFT

IEDTO--:1

FigureAN10 nr o
 N SU

C

CALLLL

PINT ATOMOEN
'FFR

BCAKNRT
BUFFACERTER

FgrAENUTURonOSU

AULLINE

MORE NOTO

CDARCTE

Fi u e 1AYn r o n S U

B

PUT
PARTIALS

PAD
EVERYTHING

LENGTH OF
BACKWTARD
DATA

BFE

PITR

__FROM BACK

T0 FORWARD
BUFFER

H
COMPUT

N PTy
T
PUT .b

y PU
CALPPULINEND

FORIARDSFORCONTROL

CITEALOC
|JFOREN

OCHARECTER

SET

S AVE

MIaD-BUFFER
POINTER

TO HEADER

D TGORTTENIN TC"
BLOCK

CURRENT

WORK
POINTER

SSAVE
NUMBER

- _ _FLUSH

jVRFOW
Y SET THE

APPROPRIATE AU04RT

LINES LEFT
ON SCREEN

FLAGS?

Go To

EXIT

Figure 10B. Entry Point TSPUT

ENTER

POINT TO

TSCREEN.
SAVE AREA

GO TO
FLWRITE
TO FLUSH

TSCREEN

Figure 11. Entry Point WRITE

ENTRY

GET Q-CON
OF AREA
TO BE
ALLOCATED

CALLDD

I SAVE

PUIT ITS
LENGTH IN
REGISTER
ZERO

CALLER' S
REGISTERS

CALL
CALLDD

SET
REGISTER

12 TO PLI
PRV

RETURN
TO CALLER
FROM
MOVE COPY

SET
REGISTER

1 TO PR

OF AREA

CALL
IHESADD

RESTORE
CALLER'S
REGISTERS

C RETIEN

Figure 13. Subroutine GETPR

F ENTRY

SAVE
CALLER 'S

REGISTERS

GET Q-CON

OF AREA
TO BE
DELETED

SET PRV
IN
REGISTER

12

CALL

IHESAFF
TO
DELETE IT

SET

REGISTER
12 TO NEXT
AREA

RESTORE
CALLER'S
REGISTERS

RETURN

Figure 14. Subroutine DELPR

GETSYN GETDFALT

SAVE
CALLER'S
REGISTERS

SET UP
CALLING
PARAMETERS

GETDFLTXTSGDEF
CALT

FOR A
DEFAULT

TSGSYN
FOR A
SYNONYM

ffRESTORE

CALLER'S

REGISTERS

ZEO POINT

RETURNBACK TO
CALLING
PARAMETER

Figure 15. Subroutines GETSYN and GETDFALT

ENTER

|TERMINATION

REMAINDER
OF THE
LINE

Figure 16. Subroutine PULINEND

SOOT V TD q

SKIP
MODE

Y

N

START OF
STRING

Y

N

CALL
SDPASS SGVT

IN C

INFA
TLIST

Y ENDOF y FINDTTHE
PRIMARY

NN
XIST

TURN ON
LIST FLAG
IN TO
BLOCK

COMPUTE
LENGTH To
EXCISE

EXCISE AN
ITEM
FROM THE
STRING

RTR

Figure 17. Subroutines SDGIVITD and SDGIVITC

SDPASS

L O

DAT TOO 'Y

N GSYY-NEK /

NDAT

MOVETO

T URNE

.N m

.

Y

SKIP

i D ,.

OFEND

MOVEG TOKI

LIST
RETURN

C RET R y

RESTART
SCAN

TT
OBLANK

SDPASS and
SDSYNCHK

Subroutines

Figure 18.

.ENTER

PUT SEMI-
COLON IN

FIRST BUFFER

POSITION

SET

BUFFER

LENGTH

TO 1

RESET ALL

FLAGS AND

SWITCHES

Figure 19. Subroutine RESETBUF

SDSTRIFSTRIP

SET SWITCH,

TO CHECK
FOR QUOTES

SET

POINTERS
TO DATA

DELETE

LEAILING
BLANKS

DELETE
TRAILINGBLANKS

Figure 20. Subroutines SDSTRIP and STRIP

ENTER

POINT TO

LIST OF

MSG KEYS

PUSH EACH

ENTRY

DOWN ONE

SLOT

INSERT

- NEW KEY
AT TOP

RTURN

Figure 21. Subroutines PRKEYSAV

ENTER

CALL -
GETSYN

IN

Y

NNR A

N
CN.COLD

IMEEDIAN

N

ENDNITY

Figure~ ~

LOA ADDES

O PG

ETR NAMEbotieIMHC

C SIGNAC
SIGNAL

PREPARE TO
CALL PL/I
ROUTINE
"IHEERRD"

CALLING
REGISTERS

EXTERNAL
PROGRAM

RETURN

Figure 23. Subroutines SIGNAL and SIGNALC

SIN

SENTER

SAVE
REGISTERS

CALL
1MTTGEN

DCBSTO INIT

DCS NOPEN

OPEN DBALIB &
LISRLIB

SETS

RCOD LI

FRE2tN

SiET 2.Sbotn ELB

ENTER

SAVE

CALLER' S
REGISTERS

ISSUE GET

TO OBTAIN

A RECORD

MOVE IT
TO OUR
AREA

y

TUIRN-ON
TRUNCATION
FLAG

RELEASE
FILE
INTERLOCKS

Figure 25. Subroutine GETMLF

NKET

PUT BLANK
IN FIRST

POSITION

ADJUST
POINTERS
FOR MOVE

IN
 MOECOPY
REGIS TER 6

SAVE

CALLER'S -
 MOVE
REGISTERS C

SET

POINTERS

FOR MOVE

MOE N MOVE
THAN 256REMAINDER

MOVE 256][

BYTES RETURN

REDUCE

COUNT BY
256

Fingre.26. Subroutine MOVE,/-MOVE

http:Fingre.26

GET INPU

<RER YFROM
? > STRATEG

.DATASE

IN CONTROL
BLOCK

t CALL

FOR 1/0

Y ANY
ERROR

~N

SRETURN

Figure 28. Subroutine PROMPT

PAGE 402

TOPIC E.3 - PLI/ASSEHBIER LINKAGE MODULE

A.-	 MODULE NAME

Program-ID - RDBPLINK

Module-ID - DBPLINK

B. 	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module completes the linkage between a Pl/I

program and an assembler subroutine. It does so in

such a way that the assembler routine may in turn call

a PL/I subroutine and yet maintain the continuity of

control necessary for proper PL/I linkage and
communication. Another aspect of the linkage method is
that it not only makes the module reentrant, from an
MTP standpoint, but also recursive.

D. 	 DATA REQUIREME14TS

1. 	 I/O Tlock Diagram

Not Applicable

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

d. 	 On-line Terminal Entries

Pot Applicable

3. 	 Output Data Sets

a. 	 Output riles

Not Applicable

COPY TC
BLOCK BACK
TO USER'S
AREA

RE2PLACE

REGISTE 12

POINT
REGISTER
15 To
THESAFA

RETURN

Figure 29. Subroutine EXIT

PAGE 403

b. 	 on-line Terminal Displays

Not Applicable

c. 	 lormatted Print-Outs

Pot Applicable

d. 	 Punched Card Output Files

Not Applicable

4. 	 Reference Tables

Not Applicable

E. 	 PROCESSING REQUIREMENTS

1. 	 Top level Flowchart

See Figure 1

2. 	 Narrative

Upon entry, the program initializes the variables

it needs from the parameter list-passed by the

calling module. This data is used to obtain from

PI/I library routine IHESADA a dynamic storage

area (DSA) large enough to contain the register

save area and a copy of the calling routine's

psect.

Once 	 this has been done, the program copies the

calling programs PSECT to the DSA, chains the DSA

into the pseudo register vector (PRV) and posts

the DSA address in register 13. The program then

initializes all of the base registers required.

Before exiting the program restores the remaining

registers from the calling, programs caller's

savearea. It then chains the DSA into the

savearea chain and returns to the caller.'

F. 	 CODING SPECIFICATIONS

1. 	 Source Language

The mcdule is written using the TSS 360 Assembler

language.

2. 	 Suggestions and Techniques

Extreme care must be taken to ensure the fact that

PAGE 404

this program is completely reentrant and

recursive. All operations should be performed in

registers, or in the DSA obtained from PL/I.

DBBLINK

INITIGIZE

GET DSA

COPY
PSECT

RELOD
eGISTERS

Tigure 1. Top Level Flowchart - DBPLINI

PAGE 406

TOPIC E.4 - ASYNCHRONOUS INTERRUPT PROCESSOR

A. MODULE NAM!

Terminal Support - Attention Interface

Program-ID - RTSATTN

Module-ID - TSATTN

Entry Point - TSHATTN

B. ANALYST

Frank Reed

Neoterics, Inc.

C. MODULE FUNCTIONS

1. Organization Chart

See Figure 1

2.. Overview

RTSATTN is the interface between whatever.monitor

is running (NASIS or NASISX) and the terminal

support supervisor RTSUPER. Its function is to

link the monitor to the RTSUPER attention routine

TSATIN. RTSATTN is only called after are

asynchronous interrupt resulting from the user

depressing the attention key at his terminal.

D., DATA REQUIREMENTS

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Tlowcbart

See Figure 2

2. Narrative

On entry, R SATTN performs TSS standard linkage

except that the address it picks up as its PSECT

register points to a table of r-cons which are fin

order): TSATIN and MTTUTAB. TSATIN is the entry

point to terminal Supports' attention processing

routine MTTUTAB is a table which holds the user's

pseudo-register vector (PRV).

After linking, RTSATTN checks the interrupted

register 13 to determine if it points to a PL/I

PAGE 407

Dynamic Storage Area (DBA). If not, no further

attempt is made to process the attention. That

is, RTSATTN returns to the monitor, effectively

ignoring the interrupt.

Ihen a valid DSA is found, the PRY is checked and

if it is OK the DSA registers are saved in an area

provided by the monitor. RTSATTN next calls

TSATIN using the interrupted DSA as a savearea.

On return frcm TSATIN, the DSA regs are restored,

the caller's registers are restored and control is

returned to the monitor.

F. CODING SPECIFICATIONS

1. Source language

TSS/360 Assembler Language.

2. Suggestions and Techniques

The NASIS assembler macro library RSOURCE must be

used to reference the User Information Table
(RTSUTAB). Also, entry linkage is standard
TSS/360 while calling linkage is standard PL/1.

NONITOR MTWREf MTTREAD MTTWRITE

NTTKA MTTKE

RTS ATTN

IF

RDBATTN TSCNTRL TSFLUSH TSPUT,

TSGETKY

ON
CONDITION

ATTENTION
ONO

CONDITION
END

Chart

DATA BASE
PROGRAM

Figure 1.
 Terminal Support Organization Chart

SENTER

SAVE
REGISTERS

CALL

TSATIN

ATTENTION

ROUTINE

PUT BACK
SAVED REGS

IN OLD DSA

FlochrtTINTT

CALLoRt T

PAGE 410

TOPIC 	 E.5 - A2TENTICN PEOMPTING PROGBAM

A, 	 MODULE NAME

Terminal Support-Attention Prompting Program

Program-ID - RDBATIN

Module-ID - DHATTN

Entry Point - DBAITN

B. 	 ANALYST

Frank Reed

Neoterics, Inc.

C. 	 MODULE FUNCTIONS

1. 	 Organization Chart

See Figure 1

Q. 	 Overview

DBATTN is called by RTSUPER to issue the command

prompt ''-ATTN:'' and check the user's 'response

thereto.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

Not Applicable

2. 	 Input Data Sets

Not 	Applicable

3. 	 Output Data Sets

Not Applicable

4. 	 Reference Tables

a. 	 External tables

LISRMAC(USERTAB)

b. 	 -InternalTables

Not Applicable

E. 	 PROCESSING REQUIREMENTS

PAGE 411

1. 	 Top Level Flowchart

See Figure 2

2. 	 Narrative

On entry, DBATN checks the DISABLED switch in

USERTAB. If attentions have been disabled,

TSPRMTM is called to inform the user at the

terminal and execution returns to the caller. If

attentions are enabled, DBATTN sends a blank

character out to insure that the carriage is in

its home position, then issues a command prompt

vith the message ''-ATTN:'' to allow asynchronous

commands to be entered by the user.

RTSUPER intercepts all ''immediate'' commands

except GO and calls the appropriate routine. If

the user enters GO, null or any non-immediate

command, DBATTN takes the following action:

a. 	 GO or null - returns control to the caller,

thus signifying the end of the prompting

sequence.

b, 	 Non-immediate command - ignores the user's

response and reprompts as above.

If the END condition is raised while executing

this module, execution control is returned to the

caller.

F. 	 CODING SPECIFICATIONS

1. 	 Source Language

TSS/360 Pt/I

2. 	 Suggestions and Techniques

Not Alplicable

MONITOR NTTWREAD MTTREAD "MTTWRITE

MTTKA MTTKB

RTSATTN

TSATIN TSPROMPT TSREAD . TSWRIT-

RfBATNTSGNThL TSYLUSH TSPUT

TSGETKY

ON IMMEDIATE

CONDITION CO1Th1A-NDS RG
S"

END

SCONDITION

ATTENTION

Figure 1. Terminal Support Organization Chart

~CALL

ATTNGTSPRXTM

TS003

TSPMTM

TS999

Figure 2. Top Level Flowchart

PAGE 414.

TOPIC 	 F.1 - RETRIEVAL INITIALIZATION

A. 	 NODULE NAME:

Program-ID - RDBIN1T

Nodule-ID - DBIVIT

B. 	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

This 	 module performs the initialization functions for

the retrieval system and is the command director

(prompting module) for retrieval.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

Not Applicable

d, 	 On-Lime Terminal Entries

The program initially prompts for -the FILE,

NAME and ADDRESS parameters, and later,

prompts for the retrieval commands.

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-Line Terminal Displays

PAGE 415

The program issues various diagpostic

messages, where appropriate.

c. Formatted Print-Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

The program references and optionally initializes

the fclloving tables,

USERTA
FLDTAE

COLFCRM

SEQFOM

SRCHTAB

VERETAE

RETDATA

SETAB

B. PROCESSING REQUIREMENTS

1. TOP LEVEL FiCiCHART

See Figure 2

2. Narrative

It calls DBJOIND to process the file parameter and

prompts for the NAME and ADDRESS parameters. The

parameters are all verified and saved for later

reference.

The program then defines the print data set and

the save data set and initializes the retrieval

data table, RETDATA. The set table, SETAB is then

initialized, the data base is opened for input and

the field table, FIDTAB, is initialized.

The program then initializes its verb table,

including the addition of any user defined

commands. Nov the program prompts the user for a

retrieval command.

If the command entered vas not END or BEGIN, the

program calls the entry point specified for that

command and than branches back to prompt the user

for his xext command. If the user entered END or

PAGE 416

BEGIN, the retrieval session is terminated by
closing the data base, erasing the sets, the
formats and the save data set. The print data set
is printed. All searches are cancelled. If the

user entered BEGIN, the program branches back to

initialize itself for a new retrieval session.

Otherwise, the program is terminated.

F. CODING SPECIfICATIONS

1. Source Language

The module is written using the TSS 360 PL/I
language.

2. Suggestions and Techniques

Not Applicable

SYSIN

RDBINIT

SYSOUT

Figure 1. 1/0 Block diagram

DBITNIT

INITIALIZE

PARAMETERS

INITIALIZE

RETRIEVAL

GET

CONMAND

iTE

E01ND EI

ROUTINE

Figure 2. Top level flowchart

PAGE 419

TOPIC F.2 - RETBIEVAL TIELDS COMMAND

-A. MODULE NAME

Program-ID - RDBFLDS
Module-ID - DBFIDS

B. ANALYST

John A. lo2an
Neoterics, Inc.

C, MODULE FUNCTION

This module displays a formatted listing of the field

names of the file currently being accessed by the

user.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

d. 	 On-Line Terminal Entries

She routine prompts for the parameter

associated with a PAGE command.

3. 	 Output Data Sets

a. 	 'OutputFiles

Not Applicable

b. 	 On-Line Terminal Displays

The program produces a formatted list of

PAGE 420

field name.

c. rormatted Print Outs

Vat Applicable

d. Punched Card Output Files

Nat Applicable

-4. Reference Tables

FLDTAB-The program extracts all of its information

from LDTAB.

E. PROCESSING REQUIRIMENTS

1. Top Level flowchart

See Figure 2

2. Narrative

a. EBFLDS

At this entry point the program initializes

the screen and paging status data. It

extracts the data base name from FLDTAB. The

program then, repetitively, extracts the

field names from FLIDTAB. It flags each field

that has an inverted index. It posts the

field names to the screen. When the list of

,ames has been exhausted, or the screen has

been filled, the screen is displayed to the

user, the paging status data is posted and

the program is terminated.

b. DBFLDSP

At this entry point the program is

re-initialized using the paging status data.

If more data remains, the program branches to

the proper routine to build the next screen

image. otherwise, a diagnostic message is

written to the user and the program is

terminated.

F. CODING SPECIIICATIONS

1.- Source Language

The module is written using the TSS 360 PL/I

language.

PAGE 	 421

2. 	 Suggestions and Techniques

Not Applicable

FRDBFLDS

YSOUT

Figure 1. 1/0 Block Diagram

PAGE 422

INITIALIZE
INITIALIZE

GET A

FIELD

-
Y

OOST

qCREEN

_Z

? ,MSSAGE

SAVE

STATUS

Figure 2. Top Level Flowrchart - DBFLDS

PAGE 423

PAGE 424

TOPIC 	 F.3 - RETRIEVAI EXPAND COMMAND

A. 	 MODULE *NAME

Program-ID - RDBXPND

Module-ID - DBXPND

B. 	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module displays to the retrieval user, a formatted

listing of a cross section of an inverted index

surrounding a specified term.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

The inverted index files of a dataplex are

used as a source of data by the program.

d. 	 On-Line Terminal Entries

The 	 program prompts for the TERM and INDEX

parameters.

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-Line lerminal Displays

PAGE 425

The program produces a formatted listing of

the index records read.

c. Formatted Print Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4.. Reference Tables

The program uses the following tatles as a source

of data and as a means of data control,

USERTAB

FLDTAB

EXPTAB

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. DBSPND

At this entry point the program initializes

itself to perform a ne expansion of an index

file. The program initializes the screen and

the data storage table EXPTAB.

The program then prompts the user for the

TERM and INDEX parameters. The parameters

are validated and the program gets ready to

read the index (or anchor) file specified.

The first read of the file is for

positioning, based upon the term entered by

the user. The program then attempts to read

the previous three records in the file. As

each record is read the term is-posted into

EXPTAB along with the number of cross

references. The relative E-number is

computed and is also posted.

If more space remains on the screen and more

data remains on the file, the program

positions itself and begins reading records,

saving the data in EXPTAB and posting them on

the screen. If an end-of-file is

PAGE 426

encountered, an indication is posted on the

screen. At this point, or when the screen is

filled, it is displayed to the user, the

pagiug status data is posted and the program

terminates.

If any errors are encountered, a diagnostic

message is written to the user and the

program is terminated.

b. DBXPNDP

At this entry point the program

re-initializes itself using the paging status

data. If more data remains to be displayed

the program branches to the appropriate point

to begin reading the index and building the

new screen image. If no more data remains, a

diagnostic message is written to the user and

the program is terminated.

c. EBXPUDE

At this entry point the program initializes

itself to decode an E-number reference. If

the E-number parameter is valid, the data

associated with it is passed back to the

caller. Otherwise, an error indicator is

.passed back to the caller and the program is

terminated.

F. CODING SPECIFICATIONS

1. Source language

The module is written using the TSS 360- PL/I

language.

2. Suggestions and Techniques

The AREA facilities of PL/I should be used to

organize the term data stored in EXPTAB to

optimize file access and data storage.

SYSIN

RDBXPND

INDEX

SY OUT

Figure 1. 1/0 Block Diagram

PAGE 427

DXPNDP DBXPNDEC BPN

INITIALIZE INITIALIZE INITIALIZE

MORE DATA ELI

REA

x/ MESSAGE DATA

PROCESS

RECORD

POST

,SCREEN

SAVE
STATUS

Figure 2. Top Level Flowchart

PAGE 429

TOPIC F.4 - RETRIEVAI, Select Command

I. SELECT

A, MODULE NAME

Retrieval, SELECT Command

Program - ID - RDBSLCT

Module - ID - DBSLCT

Entry Points (DBSICTO,DBSLCT1,DBSLCT2)

B. ANA1XST

0. Kirt Hearne

Neoterics4 Inc.

C. MODULE TUIiCTIION

The SELECT ccmmand format-is:

SELECT expression,fieldreplace,method

The SELECT ccmmand outputs the expression and the

number of citations (record keys) for which the

expression applies. A set number or S-number is

assigned to the expression, and the command string

is entered into the next available line in the

current search strategy.

The expression parameter (keyword=EXPR) is a

boolean combination of terms which define a set.

If all fields referenced are indexed, the

expression is evaluated immediately and a

set-number assigned. If a field in the expression

is not indexed or a previous S-number is

referenced, a search entry is constructed and

saved, and an S-number assigned.

Only a single non-indexed field is allowed in a

single SELECT expression.

The field parameter (keyword=FIELD) is used by

SELECT to resolve any values in the expression

which are not directly related to a fieldname

within the expression.

The replace parameter (keyword=REPLACE) is a

previously defined S-number which is to have its

expression replaced by the current expression.

The method parameter (keyword=METHOD) is used to

force a search on indexed fields. To do this,

"SEARCH" must be entered as the method parameter.

PAGE 	 430

Vote that only a single field may he referenced in

this case.

SELECT will prompt the user if the expression is

missing, or the field parameter is missing and

found to be needed.

T. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

not Applicable

c. 	 Input Files

The descriptor files and the index files

may be referenced by the SELECT command,

The descriptor file is used to obtain

the data set name of the subject term

index file. The index files are used to

obtain a list of accession numbers

associated with a particular subject

term.

d. 	 On-line Terminal Entries

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

The command string, as it is entered, is

saved in the region containing the

current strategy of the VISAM member

DBSTHAT of the VPAM data set USERLIB

This action is accomplished using the

routine PSTRAT.

b. 	 On-line erminal Displays.

'The following is displayed if a set is

PAGE 	431

successfully produced from the

expression:

(1). A unique set number or S-number.

(2.) The number of citations (or keys)

in the set

(3.) The expression, with:

(a.) E-numbers replaced -ith the

corresponding

"fieldname=value".

(b.), Values which return a null are

notated with special symbols,

as: AGE =>>'9999'<<.

(c.), If the resultant set consists

of subfile keys, the

expression will be displayed

with the subfile name, as:

(FlO 	 isubfilename) expression

C. 	 Formatted Print-outs

Not Applicable

d. 	 Punched Card Output Files

Not Applicable

-4. Reference Tables

a. EXPTAB

'I. FLDTAB

C. 	 IFCH

d. 	 PARSED

e. 	 SEIAB

f. 	 SRCHTAB

g. TC

1h. USEETAB

E. 	 PROCESSING REQUIREMENTS

PAGE 432

1. Top Level Flowchart

See Figure 2

2. NARRATIVE

The SELECT command outputs the expression and

the number of citations (record keys)

associated with that expression. A unique

set-number or S-number is assigned.

The input expression is a boolean expression

made up of set-numbers, S-numbers, values,

X-nunbers or range forms of these terms.

The SELECT command is processed in three

phases:

1. Parsing

2. Expression analysis

3. Execution of SELECT "instructions"

SELECT parses the expression in-three passes.

The first pass recognizes and marks as such,

letter strings, digit strings, operators,

special characters and delimiters. Quoted

-strings are recopied to remove any double

quotes.

The second pass recognises primary elements

such as S-numbers, E-numbers, set-numbers,

values, and field names. Field names are

marked as indexed or non-indexed.

The third- pass recognises groupings of

elements such as range forms and associates

each value in the expression with the proper

field- name. If necessary a prompt with the

keyword "FIELD" is done to obtain the field

name. This pass also sets up SELECT execute

phase instructions for the creation of sets

from basic terms such as a set-number.

Also, during the third pass, a non-indexed
field name appears in the expression, the
proper entries are made in SRCHTAB to provide
for the search to be executed later.-

All information found during the first three

passes is entered into PARS_TAB and

PTAB_INFO. The original expression, recopied

quoted strings, and other necessary character

strings are all contained in WAS. Each

PAGE 433

element in PARS TAB contains an index (IDX)

into was to note the position of the item

described.

The next phase of SELECT analyses the

expression algebraically and builds execute

phase instructions to perform the proper

operations. If a search is required

instructions are built to post final entries

in SRCHTAB, before the search, and to

retrieve information from SRCHTAB, after the

search, for final evaluation of the

expression.

luring expression analysis, the ANDing of a

,search term with another set is noted, and

instructions are created to cause the search

to occur only within the set ANDed vith the

search term.

After the second phase all is ready for final

evaluation of the expression by execution of

the previously created instructions. At this

time the input command, with parameters, is

reconstructed and posted in the

CURRENTSTRATEGY data set.

If a search is required, all SELECT tables

and instructions are stored for use at the

time of search execution. An S-number is

assigned and this number, with the

expression, is output to the terminal.

If no search is required, the execution

phases of SELECT is invoked. The

instructions built earlier are now executed.

Sets are created, combined, and a altered as

the expression dictated, until the final

resultant set is obtained. This set is

assigned a unique number and posted into

SETAB through the use of the DBPSET routine

which also sends a line describing the set

(set- number, size, expression) to the

terminal.

When the user enters the EXECUTE command to

invoke the search, the DBEXSE program is

given control. This routine contains all of

the actual search logic, however repetitive

calls to SELECT (DBSLCT2 entry point)- are

made. The execute phase instructions are

used -y SELECT to control the search.

PAGE 434

Turing a search each previously defined

S-number has associated with it an

instruction list. The first instruction in

the list for each S-number is a "branch"

initialized to point to the second

instruction in the list. When SELECT is

first given control, each instruction list is

executed until an S-number or a search term

instruction is encountered. The search

instruction posts proper final information to

SRCHTAB and in both cases execution of the

instruction list is suspended. A new branch

point indicating where to resume execution is

stored in the "branch" instruction at the top

of the list.

When all instruction lists have been executed

as far as possible, control is returned to

DBEXSR for the actual search to take place.

After this SELECT is called again and

instruction execution is restarted. Some

S-numbers and searches may now be evaluated.

.Againeach instruction list is executed until

an undefined S-number or search term is

encountered or an actual set is created and

posted. Again control returns to DBEXSR.

This process continues until all -instruction

lists terminate by posting a set.

The SEARCH is implemented simply as an

additional entry (DBSLCTI) into SELECT. The

command format is the same as that for the
SELECT command, thus a valid SELECT
expression may be used.

DBSLCT1 is the entry point for the SEARCH.
This command first gets and verifies the set
number or S-number on which a linear search
is to be performed. SEARCH then prompts the
user for the rest of the search expression to
be performed to the specified set. Once the
search expression is entered, then SEARCH
passes this information to the search option
partlof the SELECT command. When control is
returned to SEARCH, it then prompts the user
for another search to be performed on the

same set as before. This loop continues

until the user enters a null response to the

search expression prompt, at which time

control is passed to the calling routine.

F. CODING SPECIFICATIONS

PAGE 435

1. Source Language

The SELECT command module is written in the

IBM/360 TSS PL/I programming language. The

DBPL/I language extension is used to handle

all access to the files in the data base 'and

the TSEL/I language extension is- used to

handle all communication with the terminal.

2. Suggestions and Techniques

Not Applicable

PAGE 436

II. SELECT, THE SEARCH OPTION

A. MODULE NAME

Retrieval, SELECT Search Option

Program - ID - RDESLCT.

Nodule - ID - DBSLCT

B.. ANALYST

0. Kirt Hearne

Neoterics, Inc.

C. Module Function

The SELECT search option is a feature of the

SELECT command which guides the user through a

search strategy. The SEARCH command is used to

define a set or pseudo-set to be used as the

search universe.

The user is then prompted for linear search

expressions with the phrase:

SELECT (Set-number S-number) IF:

The reply is of the same format as the SELECT

command itself:

expression,field,replace,method

where the parameters have the same meaning as with

the SELECT Ccmmand.

The set-number or S-number defined by the SEARCH

command is added along with an AND boolean

operator to the left end of the expression entered

in response to the SELECT IF prompt. The.

resultant expression is then sent directly to the

SELECT command processor.

1. Reference Tables

a. EXPTAB

b. PLDTAB

_c. MFCB

d. PARSED

PAGE 437

e. 	 S!TAB

f. 	 SRCHTAB

g. 	 7C

h. 	 USERTAB

D. 	 DATA REQUIREMENTS

I. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input files

Not Applicable

C. 	 Input Files

Not Applicable

d. 	 On-line Terminal Entries

If a terminal is the source of search

parameters as previously defined, the

TSS parameters as previously defined,

the TSS system will apply default

values, if available, to the parameters

when no values are entered.

3. 	 Output Data Sets

a. 	 Output Files

'sing the PSTRAT routine, the command

string, as it is entered and validated,

will be saved in the region

CURRENT-STRATEGY.

E. 	 PROCESSING REQUIREMENTS

1. 	 Top Level Flowchart

See Figure 2

2. 	 Narrative

PAGE 438

The SELECT Search command format is:

SEARCH expression,field,replace,method

which results in a set-number or S-number.

The user is then prompted for a linear

search:

SELECT (Set-number S-Number) IF:

expression

field,replacemethod

The set-number or S-number is added, along

with an AND operator to the expression and

the result is sent to the SELECT command

processor. Thereafter all processing is the

same as for any SELECT expression.

After the expression is processed, the user

is again prompted with the SELECT IF

prompt. This continues until a null- is

entered.

F. CODING SPECIFICATIONS

1. Source Language

The SELECT Search command is written in the

IBM/360 TSS PL/I programming language. The

DBPL/I language extension is used to handle

all access to the files in the data base,

and the TSPL/I language extension is used to

handle all communications with the

terminal.

2. Suggestions and Techniques

Not Applicable

FLDTAS
FLXT SETABSRCHTAB PGAPGA

TERMINAL
KEYBOARD

SEECT" DBSTRAT

DISPLAY
\ DATA-

PLEX

Figur'e L Block diagram.

DICW IflQ

SELECT SAC

DBSLCTO 4,BSLCT2
SXEXSEARCH

PARSE SELECT
EXPRESSION PROCESSOR

' ___

SAVE
SET-NUMBER

ANALYZE OR
EXPRESSION S-NUMBER

ADBUILD
INSTRUCTION B

,LIELECTPROMPT
IF
PROMPT

POST
STRATEGY

ANY <N
INPUT -

S-NUSBERBR
SEARCH - t) YESI 11"ELECTT

SET BUILD

EXECTE-]EXPRESSION

INSTRUCTIONSI

SELECT
PROCESSOR

POST
SET

RETURN

A

OUTPUT RTR
S-NUMBER
TOnTERMINAL

BLT

CALLED FROM

INSTRUCTIO

LIST FOR EACH

S-NUL BER

A

AR AS P0SSIBLE

y
ERO

S
" N ERROR

ALNSTRU FLAG
NSTRUOTION

LISTS
FIN10H D9

Y

SET
~FINISH

>RETURN FLAG

RETURNFigure 2.
 Top Level Flowchart -SELECI

PAGE 441

TOPIC F.5 RETRIEVAL DISPLAY CCMMAND

A. NODULE NAME

Retrieval, DISPLAY Command

Program-ID - RDBDSPL
Module-ID - DBDSPL

Primary Entry Point (DBDSPL)

Secondary Entry Point (DHDSPLP)

B. ANALYSTS

John A. Lo2an

Neoterics, Inc.

C. MODULE FUNCTION

The DISPLAY command is a routine, called by the TSS1

system, whose purpose is to allow the retrieval system

user to have designated data for a given set to be:.

displayed on a terminal. Like the PRINT command, the"

user may specify the format of the output as the

citation number, the citation, the abstract, or the

full text for any item contained in a set which- has

been previously selected. Optionally, the user may

prespecify a format of his own, using the FORMAT,

command, to govern the DISPLAY command. One set-number

is reserved for special purposes in the system.

Set-number 0 is a logical reference to the entire

anchor file. The PAGE command also calls the DISPLAY

command in order to create additional displays,.

logically, before and beyond the current one. The

calling sequence is: DISPLAY set-number, format, item,

type or, alternately, DISPLAY citation#, format.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

PAGE 	 442

The 	 anchor and associated files of a data

base 	 will be input to the DISPLAY command.

d. 	 on-line Terminal Entries

The parameters available to the DISPLAY

command are set or citation number, format,

items, and type. The NASIS system will apply

default values to the parameters, if they

are available, when no original values are

entered.

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-line Terminal Displays

The DISPLAY command will output a

partially-formatted display of the items in a

set or for a specific citation number. The

content of the display depends upon the

format code entered as the second

parameter.

c. 	 Formatted Print-outs

'Pot Applicable

d. 	 Punched Card Output Files

Not Applicable

4. 	 Reference Tables

a. 	 COIFORM

The DISPlAY command refers to a COLTORM table

when a columnar fotmat iS referenced.

b. 	 USZRTAB

This table contains user-oriented and status

information.

c. 	 !LDTAB

The DISPLAY command refers to FLDTAB to

locate the appropiate seguential (SEQFORM) of

columnar (COLFORM) format table and for a

table of data base field names ordered

PAGE 443

according to format numbers 1-4.

d. EETD2TA

This table contains data fields unique to the

retrieval sub-system.

e. PlEX

The DISPLAY command uses a DBPL/I file called

TIEX for all of its retrievals from the data

'base.

f. SEQFORM

The DISPLAY command refers to a SEQFORM table

when a sequential format is referenced.

E. PROCESSING REQUIREMENTS

1. Top level Flowchart

See Figure 2

2. Narrative

a. Display

The DISPLAY command is called by the NASIS

system by the director.

b. Accept Parameters

Since the parameters are not passed to the

DISPLAY command, by the director, they are

retrieved via Terminal Support (TS). The

first parameter is either a "set-number", or

a "citation #41. The second parameter is

"format" code, the third is an "item" number

and the fourth is the "type" code. The last

three parameters are optional. The

"set-number" is a one or two digit number and

is not likely a default value since it will

change for every command. The "citation #"

is a character string, which is not likely to

have a default. If no entry is made and no

default exists, then an error is reported and

control passed back to the calling routine.

The "format" code is a value of 1 to 25

designating a sequential format or F1 to P25

designating a columnar format, or a format

name representing one of the above format

values or a fieldname. If no entry or

PACE 44

default is present, the value "2" is provided
for anchor key sets or "5" for subfile sets.
The "item" parameter designates the member of
the specified set. The entry is a character
string having a numeric value. If no entry
or default is given for this parameter, the
first item in the set is displayed. The
"type" code indicates whether the user wants
subfile information to be displayed
continually following the anchor data, and if
so, vhether the data fields of each subfile
record are to be exhausted sequentially or
the data field values are to be exhausted
across sutfiles before proceeding to the next
field. An invalid entry is reported before
returning control to the calling routine. If
all parameters have valid values, then
execution continues with the next section.

The DISPLAY command is placed as the next

record in the strategy data set by a call to

the save strategy routine. The parameters to

this subroutine are the word DISPLAY and its

parameters in their normal order.

c. First Page Initialization

Depending on the "class" of the first

parameter, certain specific initialization is

necessary. If the parameter is a data base

key (class 1), e.g., a citation number, then

the anchor record is read,and a heading

prepared. If the parameter is a set number

(class 2), the relative key is taken from the
set and used to read the anchor record and-a
heading prepared. Control is transferred to
Section (f) below.

d. Page DISPLAY

The DISPLAY command is entered at this

secondary entry point from the PAGE command.

ihe paging direction and mode are indicated

by the PAGE parameters.

e. Validate Next Page

If the page requested has been seen before,

it need not be regenerated, but may be

retrieved from based storage, where it was

saved, and control can be transferred to

'Section(g) below to display it. When

non-contiguous skip paging is being done, the

PAGE 445

relative key is taken from the set and the

anchor record read.

f. Build Screen Image

This is a common routine for building a

DISPLAY screen image either for an original

LISPLAY command or for a PAGE command.

Tor a sequential format, field names are

taken successively from the SEQFORN down to

the number of field names.

In the most general case, each field consists

of multiple elements and each element value

is so long as to require multiple lines of a

buffer. The first line for the first element

of a field is tagged with the fieldname and a

colon. The first line for an element after

the first of a field is tagged with only the

colon. successive lines after the first for

an element have their tag entirely

suppressed. The degenerate cases of a single

element field and/or an element short enough

to fit on one line of the buffer are handled.

And if the field is null (no data present),

nothing is posted to the buffer at all for

that field name.

Subfile resident fields are displayed similar

to multiple elements; however, the first

element of the field per subfile record has

the field name tag duplicated, and a special

beading is displayed (depending on the "type"

parameter) as each new subfile record is

processed.

If the field names are not all processed

before the bottom line of the buffer is

reached, the routine is left in such a state

that it will resume where it left off if

normal forward paging is attempted. But if

the field names are all used, then the

remaining lines are cleared.

For a columnar format, the optional page

number, title, and header lines are copied

into the buffer. Then field names are taken

successively from the COLFODM, and used to

retrieve the field values which are arranged

across a line of the buffer. If there are

any multiple element fields, futher lines of

the FLDTAB buffer are used for remaining

PAGE 446

elements until the record's desired fields

'ave all been retrieved. If there are any

further records in the set, the next record

is read and the process repeated. When the

buffer is full, the routine is left in such a

state that it will resume where it left off

if normal or skip paging is attempted. But

if the data is exhausted, then the remaining

lines are cleared.

g. Write Screen

Using the full screen mode of output, the

current screen image is displayed on the

terminal.

h. Return

Do a normal return to the calling routine.

3. Submodules Required

a. DB - data base package

b. PSTRAT - save strategy

c. 7S - terminal support package

d. SETS - set information package

F. CODING SPECI!ICATIONS

1. Source language

The DISPLAY command is coded entirely with the IBM

PL/I programming language. The DBPL/I language

extension is used to handle all access to the

files in the data base. The TSPL/I language

extension handles all instances of communication

with the terminal.

2. Suggestions and Techniques

Not Applicable

KEPTAB

ENTRY

USERTAB DATAPLEX

t FLDTAB

DISPLAY -O

TAL
DISPARETDATA SAVEFIL

Figure 1. I/O Block diagram

DISPLAY PAGE DISPLAY

ACCEPT
 VALIDATE
PARANTERS NEXT PAGE

ITION TO

SCREEN
IMuAE

Figure 2. Top level flowchart

PAGE 449

TOPIC F.6 - RETRIEVAl PRINT COHMAND

A. MODULE NAME

Retrieval, PRINT command

Program-ID - RDBPENT

Module-ID - DBPRNT

Entry Point (DBPRNT)

B. ANALYSTS

Garth B. Wyman

Villiam H. Petrarca

Neoterics, Inc.

C. MODULE FUNCTION

The PRINT command is a routine whose purpose is to

allow the retrieval system user to have designated data

for a given set listed on a high-speed printer. Like

the DISPLAY command, the user may specify the format of

the output as the citation number, the citation, the

abstract, or the full text for any item or range of

items contained in a set which has been previously

selected. Optionally, the user may prespecify a format

of his own, using the FORMAT command, to govern the

PRINT command. All of the uses of the PRINT cpmmand

during a single terminal session will be accumulated

and printed out as one continuous output for the user

to pick up at a later time. Three set numbers are

reserved for special purposes in the retrieval system..

Set-number 99 is an array in core used by the KEEP

command to store parameter lists for the DISPLAY and

PRINT commands. Set-number 98 is a data set used by

the SAVE command to store screen images for later

processing by the DISPLAY and PRINT commands.

Set-number 0 is a logical reference to the entire

anchor file. The calling sequence is: PRINT

set-ntmber, format, item(s) or, alternately, PRINT

citation#, format.

D. DATA REqUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

PAGE 450

b. Punched Card Input Files

Not Applicable

c. Input Files

The anchor and associated files of a data

Lase are input to the PRINT command. The

SAVFILE containing display screen images

stored by the SAVE command is also input to

the PRINT command.

d. On-line Terminal Entries

1he parameters available to the PRINT command
are "set-number", or "citation number",
"format", and "items." NASIS will apply
default values to the parameters if they are
available, when no original values are
entered.

3. Output Data Sets

a. Output Files

The output of the PRINT command consists of a

data set containing the line images to be

sent to the high-speed printer at the

conclusion of the current terminal session.

The line images consist of up to 132

characters, preceded by a carriage control

character.

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

When the current strategy is terminated, then

the actual printing process is initiated.

The description of this output is contained

in the Data Set Specifications Section of the

Development Workbook.

d. Punched Card Output Files

Not Applicable

4. Reference Tables

a. COIFORM

PAGE 451

The PRINT command refers to a COFORM table

when a columnar format is referenced.

b. FLDTAB

The PRINT command refers to FORNTAB to locate

the ap~ropiate sequential (SEQZORM) or

columnar (COLFORM) format table and for a

table of data base field names ordered

according to format numbers 1-4.

C. USERTAB

This table contains user-oriented and status

informatiCn.

d. KEPTAB

Tle PRINT command refers to KEPTAB when the

special set 99 is used for a PRINT

specification that was previously stored by

the KEFP command.

el PLEX

The PRIET command uses a DBPL/I file called

PlEX for all of its retrievals from the data

base.

f. PRINTER

The PRINT command uses a PI/I file called

PRINTER to write all of its printer line

images fcr ultimate off-line printing.

g. PRIUSED in RETDATA

The PRINT command tests this switch to

determine whether to write line images for a

lead page identifying the report and then

sets the PRTUSED switch to indicate that

there are line images for off-line

printing.

h. SRCHTAB

This table contains S-number information.

i. SAVFILE

The PRINT command uses a PL/I file called

SMVILE for all of its retrievals from the

special set 98 of screen images previously

PAGE 452

stored by the SAVE command.

j. SEQFOFM

The, PRINT command refers to a SEQFORM table

when a sequential format is referenced.

k. RETDATA

This table contains data fields unique to the

retrieval system.

1. ADDRESS in RETDATA

The PRINT command refers to ADDRESS when

writing line images for the lead page of the

report.

m. NAME in RETDATA

T he PRINT command refers to NAME when writing

line inages for the lead page of the

report.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. Record

The PRINT command is called by the

director.

b. Accept Parameters

Since the parameters are passed to the PRINT

command through Terminal Support, they are

arranged in a keyword or predefined order.

The first parameter is either a "set-number",

as defined by a SELECT or LIMIT command, or a

"citation #" or an "S-number" as defined by a

SELECT-IF command. The second parameter is a

"format" code, and the third is an "item"

number or range of numbers. The latter two

parameters are optional. The set number will

be a one- or two-digit number and will not

likely have a default value since it changes

for every command. The "citation 41" is a

character string which also will not likely

PAGE 453

have a default. If no entry is made and no

default exists, then the error is reported

and control passed back to the calling

routine. The "format" code only applies to a

PRINT of a "citation#" or of set 0 - 91. It

is a value of 1 to 25 designating a

sequential format or 1I to F25 designating a

columnar format or a format name representing

one of the above format numbers. If no entry

or default is present, the value of two is

provided for anchor key sets or four for

subfile sets. The "item" parameter is not

required when the "citation #" is entered as

the first parameter; otherwise, it designates

the member or range of members of the

specified set. The entry is a character

string of one to eleven positions. When a

range of items is entered, the tio values

are separated by a hyphen. If no entry or

default is given for this parameter, all of

the items in the set are printed. An invalid

entry will be reported before control is

returned to the calling routine. If all

parameters have a valid value, then execution

continues with the next section.

The PRINT command is placed as the next

record in the strategy data set by a call to

the save strategy routine. The parameters to

this subroutine are the word PRINT and its

parameters in their normal order.

If the first parameter was an S-number,

processing continues with Section (g)

below.

c. Initialization

The data set for the printer file will have

been defined in a procdef before the PRINT

command is called. The first time the PRINT

command is used, it writes line images for a

leader page identifying the user's name and

mail stop for distribution.

If the first parameter specifies the special

set 98 of saved screen images, processing

continues at Section (f) below. If it

specifies a data base key, e.g., a citation

number, then the anchor record is read and

processing continues at Section (D) below.

If the parameter is a set number, then it is

examined for validation and the first

PAGE 454

relative key specified by the item range

parameter is taken from the set and used to

read the first anchor record. If the

parameter refers to the special set 99 of

kept items, then KEPTAB is examined to find

the first relative item specified by the item

range parameter and the first relative key

specified by the item range in KEPTAB is

taken from the set and used to read the first

anchor record.

d. Process from Data Base

Tor a sequential format, field names are

taken successively from the SEQFORM beginning

-ith the key field name down to the number of

field names.

In the most general case, each field consists

of multiple elements and each element value

is so long as to require multiple lines on

the printer file. The first line for the

first element of a-field is tagged with the

fieldame and a colon. The first line for an

element after the first of a field is tagged

with only the colon. The first subfile field

value per subfile record retains the field

name as a tag; however, subsequent elements

are nevertheless tagged with only a colon.

Successive lines after the first for an

element will be automatically wrapped around

to new lines by the PL/I stream output and

are tagged. If the field is null (no data

present), nothing is written at all- for that

field name. The P1/I stream output will

detect the logical end of page condition so

that page heading lines can be inserted and

then normal outputting resumed.

e. Re-initialization

If a data base key is specified by the user,

this Section is bypassed and control is

returned at Section (g) below.

If there are more keys in the set within the

range specified by the user or in the KEPAB

item, then the new key is taken and used to

read another anchor record and control loops

back to Section (d). When this loop is

completed, control is returned at Section (g)

below unless the user had specified a range

of kept items from set 99. In that case, the

PAGE 455

next kept item is taken from KEPTAB and the

first- relative key specified by the item

range in KEPTAB is taken from the set and

used to read another anchor record and

control loops back to Section (d). Finally,

control is returned at Section (g) below.

For a columnar format, the optional page

number, title, and header lines are put out

at the top of each page of output. Field

names are taken successively from the COLFORM

and used to retrieve the field values which

are arranged across the output line. If

there are any multiple element fields, futher

lines are put out until the record's desired

fields have been retrieved.

f. Process from SAVFILE

One or a contiguous range of saved screen

images are successively retrieved from

SAVFIIE (set 98). For each screen image, a

page heading line is written followed by the

screen image subdivided into lines the same

length as the display screen Midth so that

the appearance is identical.

g. Return

When all processing for the PRINT command has

been completed, control is returned to the

calling routine.

3. Subroutines Required

a. DB - data base package

b. PSTRAT - save strategy

C. TS - terminal support package

d. SETS - set information package

F. CODING SPECIFICATIGNS

1. Source Language

The PRINT command is coded entirely with the IBM,

P1/I programming language. The DBPL/I language

extension is used to handle all access to the

files in the data base, and the TSPL/I extension

handles all instances of communication with the

terminal.

PAGE 456

2. 	 Suggestions and Techniques

a. 	 Normal Pt/I statements are used to write the

Jine images to the print data set.

b. 	 She many external variables required in the

PRINT command are combined into external

data structures, in many cases. This

requires only one name to be an external

symbol.

TERMINAL
ENTRY

PRINTER

FILE

SRETDATA SAVFL

Figure 1. 1/0 Block diagram

ACCEPT
PARA1METERS

INITIALIZA-
TION

PROCESS PROCESS
FROM FROM
DATAPLEX SAVFILE

RE-

NITIALIZA-

TION

Figure 2. Top level flowchart

PAGE 459

TOPIC Y.7 	 - RETRIEVAL EXECUTE COMMAND

A. MODULE NAME

Retrieval, EXECUTE Command

Program-ID RDBXXSR

Hodule-ID - DBEXSR

B, ANALYSTS

Barry G.-Hazlett

William H. Petrarca

Neoterics, Inc.

C. MODULE FUNCTION

Use of the EXECUTE command informs the NASIS system

that user has specified all of his SELECT-IF and/or

PRINT commands for his linear search and is now ready

to have them executed.

The format of the Execute-Search command is as

follows:

EXECUTE

Use of the EXECUTE command informs the NASIS system

that the user has specified all of his search requests

on a set and is now ready to have them-executed. When

an attention interrupt is made, the EXECUTE command

will return the user with its current status; i.e., the

number of processed records and the number of records

to be prccessed. To continue any further in the

execution of the linear search, the user must then

enter:

GO 	 which will resume the search at the

point of execution, or

END 	 which will cancel the search in

progress, returning the user to the

point of his strategy immediately before

the last EXECUTE.

D. DATA 	 REQUIRE1ENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

PAGE 460

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Pot Applicable

c. 	 Input files

The data base anchor file is accessed to

obtain the records for the linear search.

d. 	 On-line Terminal Entries

If a Terminal is the source of EXECUTE

parameters.

3. 	 Output Data Sets

a. 	 Output Tiles

Using 	the PSTRAT routine, the command string,

as it is entered (modified if any by prompt

responses) and validated, is saved in the

region CURREnT-STRATEGY of the VISAM member

DBSTRAT of the VPAM data set USERLIB. For a

complete description of the data set DBSTRAT,

refer to the Specifications for the module

EBGPS (DWB, Section IV, Topic F.8).

b. 	 On-Line Terminal Displays

The following is displayed at the output

interface:

1. 	 new set number,

2. 	 items contained in a new set, and

3. 	 the (combined) expression describing the

new set.

for each set created as the result of the

linear search.

c. 	 Formatted Print-outs

Not Applicable

a. 	 Punched Card Output Files

Not Applicable

4. 	 Reference Tables

PAGE 	 461

a. 	 DlTAB is the descriptor field table

referenced to determine whether a search

field name is an inverted index. The anchor

file key field name is used from rLDTAB.

b. 	 SRCHTAB is the search table referenced to

maintain search testing criteria, pseudo-set

information, and search list pointers.

E. PROCESSING REQUIREMENTS

1. 	 Top Level Flowchart

See Figure 2

2. 	 Narrative

The EXECUTE calling sequence is as follows:

CALL 	 EBEXSR

Search processing will follow, the following

steps:

1. 	 Notify STATISTICS of the search and what

data base.

2. 	 Identify a search set; group tests on

that set.

3. 	 Read in records of the the search set

one at a time.

4. 	 For each record test each field against

its corresponding test criterion as

defined in the IS strategy.

5. 	 Each successful record is added to a

search list associated with the

pertinent test pseudo-set.

6. 	 After all records have been tested, new

sets are made with the lists for

pseudo-sets defined by the SELECT-IF

command.

7. 	 Each pseudo-set defined by a Booolean

SELECT is made into a set via a call to

a special entry point in the SELECT

command.

8. 	 If there is another set to search

continue at step 2.

PAGE 	462

S. 	 All pseudo-sets requiring a "PRINT" are

printed via a call to the PRINT command

(DBPENTS).

At the search termination all unnecessary dynamic

storage will be freed. In addition a special

entry point into the EXECUTE module for the. CANCEL

command will accomplish the same function.

F. 	 CODING SPECIFICATIONS

1. 	 Source language

The EXECUTE command is written in the IBM/360 TSS

PI/I programming -language. The DRPL/I and TSPL/I

language extensions are used for data base file

accessing and terminal communication,

respectively.

2. 	 Suggestions and Techniques

It is suggested that considerable analysis be made

of search universes to determine the final search

universe for the EXECUTE command due to the rather

large data bases that may exist. The success of

reducing a search universe to its minimal size is

reflected to the user in response time.

TERMINAL
COMMANDS

DATA-
PE

FTABLE
(SRCBTAB)

LIT EXSEARCH

i

i TABLE

(FLDTAB)

SET
TABLE.-

L (SETAB)

TERMINAL
DISPLAY

Figure 1. [I10Block diagram

(1 > q

El-

EXSEARCH

IDENTIFY

A SEARCH
SET

GROUP S#'S

ON SEARCH

SET FOUND

ALLOCATE A
LIST FOR EACH
PSEUDO SET IN
GROUP

EVALUATE
SEARCH
REQUESTS

E

E

ALL
PELECT FOR

OLEAN

#1s

UPDATE

AND SETn
TABLES

POST AND
DISPLAY
NEW SETS

E
SACHES

RECORD

WHERE

NEEDED

RETURNF

Figure 2. Top level flowchart

PAGE 465

TOPIC F.8 RETRIEVAL SETS COMMAND

-A. 	 MODULE NAME

SETS 	 Command and Sets Eanagenent

Program-ID - RDSETS

Module-ID - DBSETS

Entry Points - (DBSETS, DBGSET, DBPSET, DBPAGST)

B. 	 ANALYST

James A. Wesley

Neoterics, Inc.

C. 	 MODULE FUNCTION

The primary function of the DBSETS module is to display

to the NASIS Retrieval Sub-system user a list of the

sets or s-numbers he has formed during the current

strategy session. The list is displayed in the form;

set number or s-number (including the sutfile suffix,

if present), the number of items in the set, and the

expression that formed the set.

The entry points DBGSET and DEPSET are called from

application programs to GET SETS and POST SETS,

respectively.

The entry point DBPAGST is called by the- PAGE command

to display the next 'page' of sets in the user's

current strategy.

fl. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Piles

SETAB and STRATEGY.LIBRARY

PAGE 466

d. 	 On-line Terminal Entries

Not Applicable

3. 	 Output Data Sets

a. 	 Output Piles

SETAB and STRATEGY.LIBRARY

b. 	 On-line erminal Displays

The terminal display from this module uill

consist of a list of the set numbers or

s-numbers (including the subfile suffix, if

applicable), the number of items in the set

and the expression that formed the set.

c. 	 Formatted Print-Outs

Not Applicable

d. 	 Punched Card Output Files

Not Applicable

4. 	 Reference Tables

a. 	 SETAB

b. 	 TS

C. 	 DB

d. 	 STRATEGY.LIBRBRY

e. 	 SRCHTAB

E. 	 PROCESSING REQUIREEENTS

1. 	 Top level Flowchart

See Figure 2

2. 	 Narrative

a. 	 DBSETS

Upon entry at the DBSETS entry point, it

allocates and initializes a controlled area

for the current user to keep track of his

paging operations.

PAGE 467

The module looks for any parameters that were

Passed with the command. If there are none,

the module will default to set numbers and

start displaying at the beginning of SETAB.

If a number between 1 and 97 is passed, the

module verifies that as a valid set number

and starts the displaying with that number.

If the parameter is an 'S' the module will

display s-numbers (pseudo-sets). A second

parameter may be included here to indicate

starting at a specific s-number.

This processing continues until the bottom of

SETAB or SRCHTAB is encountered or the TS

supervisor indicates the output screen is

full and automatically writes the screen.

DBSETS saves the set number or s-number, that

would have caused the screen overflow, in the

user control table. This set number or

s-number is then used as the first number to

appear on the next page forward.

'b. HDPAGST

This entry point is called by the TS

supervisor when the user wishes to page in

either a forward or backward direction

through his list of sets.

Upon entry DBFAGST vaidates the command and

(re)constructs a page in the appropriate

direction. Only the letter 'B' will cause a

backwards page operation; anything else

defaults to forward.

c. LBPSET

This entry point is available to the

application programmer who wishes to post'a

new set and its corresponding data to SETAB.

The calling sequence follows:

CALL DBPSET(POINTER,EXPRESSION,SET#);

Where:

POINTER - is a pointer variable passed by the

user. It points to the list to be posted.

EXPRESSION - is a varying length character

PAGE 468

string, maximum 256 bytes. It is passed by

the user as the expression that formed the

set to be posted.

SET# - is a varying character string, maximum

2 bytes long. It is passed by the user as

the one byte subfile suffix character for the

set being posted and is returned by DBPSET as

the 2 byte set number on a successful posting

c a null string to indicate an I/O error or

no more sets available.

This entry point first checks for a slot in

SETAB; if none are available, it sets the set

number variable to null and returns to the

user.

If a set number is available,it verifies the

suffix as being between Q and Z or it assigns

a blank suffix. DBPSET then collects and

posts the data to SETAB and the STRATEGY

LIBRARY. It posts the set number for the

user and returns.

d., DBGSET

This entry point is available to the

application programmer who wishes to get and

verify a given set number. The calling

sequence follows:

CALL DBGSET(SET#,POINTER,#LIST,SUFFIX):

Vhere:

SET# - is a varying length character string,

maximum 3,bytes long. The user passes this

variable as the set number, and optionally

the subfile suffix, to be gotten and

verified. If either the set number or the

suffix is invalid, that is, a non-existent

set number or a wrong suffix, this variable

is returned as null.

POINTER - is a pointer variable. It is

returned by DBGSET as a pointer to the set

(list).

ILIST - is a integer full word. It is

returned by DBGSET as the number of XREFS in

the set.

SUFFIX - is a single character. It is always

PAGE 469

returned as the correct suffix for the set

requested. In the event an invalid suffix is

specified in the set number, the set number

is returned as null and the correct suffix is

returned here.

DBGSET first separates the set number from

the suffix and verifies both. If either is

invalid, set number is returned as null and

the correct suffix, if available, is put in

SUFFIX. If the validation is successful, the

set number, the list pointer, the number of

XREFS and the suffix are returned to the

caller.

F. CODING SPECIFICATIONS

1. Source Language

The EDBSETS command module is written in the

IB/360 TSS fl/I programming language. The DBPI/I

and TSPL/I language extensions are used for data

base access and terminal I/O, respectively.

2. Suggestions and Techniques

Not Applicable

TERMINAL

FSETAB

RDSESSRCHTAB

STRATEGY
~LIBRARY

Figure 1. 1/0 Block Diagram

DBSETS DBPAGST

ALtO GATESEy
USER

TABLE

SET

SETM'S Y"ETSE

S- N MBE

PGN

BCBA

PAA
BA K W R GI NGP OR AR ,

STARTING
SET NUMBERPAGIN

GET
NUMBER,
XREFS,
EXPRESSPIONE

-

SAA

GET

PUT TO
SCREEN

NUNUMBER

Figure 2A. Top Level Flowchart

tL#& VSUFIX

XRF ,A

N SET

N
DBPSET

T O DSUFFIXNS

EXPRESSION

POSVALI

USE

N"ETERO

INDIATO

iuE T GOOD No SUFFIXFlowUhar

PAGE 473

TOPIC 1.9 - GENERIC FEY LISTS

A. 	 MODULE NAME

Program-ID - RDBGENB

Module-ID - DBGENR

B. 	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module expands or contracts lists of generic keys

based upon the user's specifications and the generic

key description table.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input riles

The anchor and index files of a data base may

be used for input by the program.

d. 	 On-Line Terminal Entries

The 	 program prompts the user for the FIELD

(sub-level name) and SET parameters.

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-Line Terminal Displays

PAGE 474

The program writes diagnostic messages to the

user for any errors encountered.

c. Formatted Print Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

The program uses the following tables to obtain

information necessary to perform its function,

FLDTAB

GENERIC

E. PROCESSING EQ1QUIRXMJNTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. 1BGEVR1

At this entry point the program initializes

itself to process data passed by another

program. A switch is set to indicate this

fact, so that parameter prompting and the

posting of SETAB can be bypassed.

b. DBGENR

At this entry point the program initializes

itself to process the user's GENERATE

command. It extracts the current file name

from FLDTAB and calls the generic key routine

to obtain the generic key description table.

The program then prompts for and verifies the

two parameters. If the SET parameter is not

a valid set number, the program uses it as a

key and reads the anchor file to verify it.

If any errors are detected during the above

operations, the program terminates with an

appropriate diagnostic message.

The list described by the second parameter is

analysed to determine the generic sub-level

represented by its keys. This result is

PAGE 475

compared against the sub-level defined by the

first parameter to determine whether this is

a request for parent or children

processing.

Eor parent processing, the list of keys is

analyzed, one at a time, and the unique

parent or rcot records are derived and posted

to a resultant list. This processing is done

by the structural analysis of the keys, based

upon the sub-levels determined above.

For children processing, the generic key

index field name is, extracted from the

generic key description table. The input

list of keys is used to read this index file

ty key. As each record is read, the list of

cross references is ''or'ed'' logically to

the previous list of cross references

creating an aggregate list. When the end of

the input list is reached, the sub-levels are

compared, and if more sub-levels remain to be

processed, the resultant cross reference list

is used as the new input list and the process

is repeated.

At the completion of list processing, for

either parent or children lists, the program

posts the resultant list. If entry was to

DBGENR, this involves a call to DBPSET to

port SETAB. If entry was to DBGENR1 this

involves the posting of the caller's

parameter list. The program then returns to
the caller.

1% CODING SPECIFICATIONS

1. Source Language

This module is written using the TSS 360 PL/I

Language.

2. Suggestions and Techniques

Not Applicable

RDBGENR

SYS OUT
guX BAPL

Figure 1. 1/0 Block Diagram

INITIALIZE INITIALIZE

LEVELS

GET N READ

PRNSINDEX

/ PFILES-

PROCESS
 PROCESS

CHILD KEY XREFS LIST

y ANY

SETABMR

LEEL

Figure 2. Top Level Flowchart - DBGENR, DBGENR!

PAGE 177\

PAGE 478

TOPIC 7.10 - RETRIEVAL FORMAT COlHAND

A. MODULE NAME

Retrieval, FORMAT Command
Program-ID - REBIOEM
Module-ID - DBFORM. Entry points: DEFORM (primary)

and DEFORM (for PAGEing a format DISPLAY).

B. ANALYST

Garth B. Hyman

Neoterics, Inc.

C. MODULE FUNCTION

The DBFORM module is the FORMAT command routine, called

by the RETRIEVEal system, whose purpose is to allow the

retrieval system user to define, revise and/or display

the content and format for subsequent information

retrievals using the DISPLAY or PRINT retrieval

commands. Sequential and columnar formats may be

defined.

Sequential formats extend the series of predefined

formats 1-4 by allowing the user to select a set of

fields to be displayed one under another with no more

than cne record's fields per output page.

Columnar formats are a separate series allowing the

user to select a set of fields to be displayed in

tabular format. Optionally, the user may define screen

or printer output, page numbering, titles, column

headers, column positions, and element tallying,

summing and averaging.

After a current format has been established, the DBFOEM

module functions as a command director processing the

FIELD, FIELDS, NAME, STORE, FORMATS, DISPLAY, PAGE,

TITLE, HEADER, FORMAT and END subcommands of the FORMAT

command.

The user may review the appearance of the ultimate

display (paging through screen-width portions, if

necessary). The user has complete revision and storing

capability.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

PAGE 479

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

C. Input Files

Not Applicable

d. On-line Terminal Entries

A terminal is the most likely source of the

parameters which are passed to the FORMAT

command by the Terminal Support system. The

fundamental parameters are the format number

and the field names. Default values for the

fundamental parameters are unlikely. The

FORMAT command then accepts the FORMAT

subcommands and their parameters.

3. Output Data Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

For sequential formats, the DISPLAY

snbcommand -will display the field names

vertically in the order they will ultimately

be displayed. The PAGE subcommand will

display any field names that do not appear on

the first screen.

Tor columnar formats, the DISPLAY subcommand

will display the title and header values and

field column positions as they will

ultimately be displayed. In the case of

printer formats wider than the display

screen, the left-most portion will be

displayed initially. The PAGE sub-command.

will display subsequent portions. These

displays will show the positioning and length

of the field values for the first data line;

ctherise, they have the same format as the

EISPLAY and PRINT retrieval commands produce

(see Section II, Topic F.4 of the DWB).

PAGE 480

c. Formatted Print-outs

Dot Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

a. COLFORM

When the FORMAT command processes a new

columnar format, it allocates and initializes

a COL FORK structure and posts its base

address in the COL FORMAT array in FLDTAB.

When the FORMAT command processes a TITLE or

HEADER sub-command or any other revision to a

columnar format, it updates the appropriate

Col_ FORM structure. Thus, a COLFORM

structure specifies a columnar format for use

by the DISPLAY and PRINT commands.

b. FlDTAB

The FORMAT command refers to the DATA BASE

and FIELD portions of FIDTAB for descriptor

information previously posted by RDBINIT.

The FORMAT command posts the SEQJFORMAT and

COI FORMAT arrays as it processes new

formats.

C. SEQ_FORM

when the FORMAT command processes a new

sequential format, it allocates and

initializes a SEQJFORM structure and posts

its base address and field name count in the

SEQFORMAT array in FLDTAB. Thus, a SEQFORM

structure specifies a sequential format for

use by the DISPLAY and PRINT commands.

d. USERTAB

The FORMAT command checks the

USERTAB.HETRIEVE switch to verify that it is

being called properly.

B. PROCESSING REQUIREMENTS

1. Top level Flowchart

See Figure 2

PAGE 481

2. Narrative

a. Format

The FORIAT command is recognized by the

retrieval system director module RDBINIT

which calls the DBFORM entry point.

b. Process FfUMBEE parameter

If null or blanks are entered, the FORMAT

command is cancelled. The value is checked

for proper syntax and for range and

duplication of the number; errors are

diagnosed and the user allowed to re-enter.

If the value is a name, the external GETSFMT

routine is called to obtain the stored

format. For anev format, a SEQ_FORM or

COL FORM structure is allocated and

initialized according to given and default

options and the structure's base address

posted in FIDTAB. For a revised columnar

format, any options given will result in the

COL_FORM structure being modified or

re-allocated and initialized accordinglv;

Removal of page numbering may be specified

and/or expansion to printer width or

contraction to screen width. If the width

changes, any titles are re-centered. If the

width changes and the columns are

proportional, they are re-proportioned and

their headers (if any) re-centered. If the

width expands and the columns are explicit,

the rightmost column will have its width

expanded and its headers (if any)

re-centered. If the width contracts and the

columns are explicit, columns to the right of

a screen width are dropped from the format

with their headers (if any) and the remaining

rightmost column vill have its width reduced

and its headers (if any) re-centered.

If a FLDSPEC parameter was entered explicitly

by the user with the FORMAT command, control

passes to (d.) below where the parameter is

processed. Otherwise, processing continues

at (c.).

C, Process subcommand

A command is obtained from the Terminal

Support system. If it is a valid FORMAT

subcommand, it is processed by one of the

PAGE 482

routines {d.) through (k.) below. Otherwise,

it is diagnosed as an invalid subcommand and

the user allowed to re-enter.

d. Process FIELD command

The field names are checked for existence in

the current data base by lookup in the FIELD

portion of FLDTAB. If a field name or

porition is invalid, a diagnostic is issued

and the keyboard unlocked for re-entry of

that field name with any options or default

for that field to be ignored. Normally, for

suetuential formats, the field-name is posted

in SEQFORM, or for columnar formats the

field name, position (proportioned, if not

specified by the user) and options are posted

or updated in COL FORM.

e. Process FIELDS or FORMATS command

These commands are recognized as a

convenience to the user to save him having to

leave FORMAT and later re-enter it.

Processing consists only of a call to the

external entry point DBELDS or DBSTRT2

respectively.

f. Process NAME or STORE command

Am FMTNAME parameter value is obtained from

the Terminal Support system, validated

syntactically by calling the external DBUCHEK

routine, and checked for duplication of the

name of any other current format. For a NAME

command, the value is simply posted in

FIDTAB. For a STORE command, the value is

posted in FLDTAB or it is verified that a

name value was posted there previously and

the external PUTSFMT routine is called to

store the format for availability in later

sessions. If the FETNAME value is invalid or

missing or if PUTSFMT returns an error code,

a diagnostic is issued and the user allowed

to re-enter it.

g. Process TITLE command

If tie current format is not columnar, the

TITLE command is cancelled with a diagnostic

message.

A TTLLINE parameter value is obtained from

PAGE 483

the 'Terminal Support system, if the user

entered it explicitly, or by assuming the

next relative title line number. The value

is checked for syntax, range, duplication,

and space in COLFORM TOP. Any error is

diagnosed and the user allowed to re-enter

the parameter. For a title line deletion,

any loer title and header line images are

shifted up and COL FORM.TOP.#TITLES is

decremented and control branches to (c.).

For a new title line, any lower title and

header line images are shifted down and

intervening lines blanked in

COIFORM.TOP.LINE and COLPFORM.TOP#TITLES is

posted.

A TTLSPEC parameter value is obtained from

the Terminal Support system, if the user

entered it explicitly, or by taking the

FLDTAB.IATA BASE name value and stripping any

trailing dollar sign characters. The value

is posted centered in the particular

CO-_FORK.TOP.LINE.

h. Process HEADIER command

If the current format is not columnar, the

HEADER command is cancelled with a diagnostic

message.

A HDRIZINE parameter value is obtained from
the Terminal Support system, if the user
entered it explicitly, or by assuming the
next relative header line number. The value
is checked for syntax, range, duplication,
and space in COL_-TOEM.TOP. Any error is
diangosed and the user allowed to re-enter
the parameter. For a header line deletion,
any lower header line images are shifted up
and COL FOM.TOP#HEADERS is decremented and
control branches to (c.). For a new header
line, any lover header line images are
shifted down and intervening lines blanked in
COIFORM.TOP.LINE and COLFORM.TOP.#HEADERS
is posted. Thus a current header line is

determined for the following processing.

If no HDESPEC parameter values were entered

explicitly by the user, every column accross

the current header line has its field name

value centered over it and control branches

to (c.).

PAGE 484

Otherwise, HDRSPEC parameter values are

obtained one by one from the Terminal Support

system and processed individually. If only a

literal value is given, it is centered over

the next column to the right. If only a

parenthesized field name is given, it is

centered over the column for the field

name. If both a literal value and a

parenthesized field name are given, the value

is centered over the column for the specified

field name. Any syntax, field name, or past

rightmost column error results in a

diagnostic message allowing the user to

re-enter one value or to default for -that

value to be ignored.

i. Process DISPLAY command

The display simulates the appearance produced

by the retrieval system DISPLAY command if it

was used with the current format.

If a sequential format display overflows the

screen at the bottom or if a columnar format

display overflows the screen at the right

side, "MOFE" is indicated and the Terminal

Support system is requested to call DBFORBP

if the user enters the PAGE immediate

command.

When the module is entered at the DBFORMP

paging entry a DIRECTON parameter value is

obtained from the Terminal Support system, if

the user entered it explicitly, or by

assuming forward paging. If the value starts

with "B" the previous display screen image is

re-composed, otherwise the next display

screen image (down or to the right) is

composed. Screen overflow is rechecked to

reset the "MORE" indication and the Terminal

Support system transmits the screen image to

the user's terminal.

1. FORMAT command

If "FORMAT" is detected as a sub-command,

control simply branches up to (b.) where its

parameters are obtained and it is processed.

(This is more efficient than "END;!ORMAT"

because the DBFOR module stays active.)

k. END command: RETURN

PAGE 485

If the END condition is raised by the user

entering the END immediate command in blocks

(a.) or (b.), control returns to the RDBINIT

module. If it is raised after block (b.)

control branches to block (c.), that is, the

subcommand is aborted and another taken.

3. Submoaules reguired

DBFLDS - FIFLES command

DBSTRT2 - FORMATS command

DBUCHEK - check name routine

GETSFMT - get stored format
PUTSFMT - put stored format
PSTDAT - save strategy
TS - terminal support package

F. CODING SPECIFICATIONS

1. Source language

The FORMAT command is coded in TSS PL/T. The

TSPL/I language extension is used for all

communication with the terminal.

2. Suggestions and Techniques

The PSTRAT external routine shall be called

whenever a valid command or subcommand with valid

parameters is detected.

Subroutine facilities shall be coded to handle the

general case of re-proportioning columns and

re-centering headers. (DUP_COL, REPRO_COL,

E-READ).

__

VFOR14AT

PROCESS
FNUbBER

PARAMETER

PROCESS

SUBCOMMAND

PROCESS

FIELD .-- _

CONLAND

PROCESS
FIELDS /
FORMATS
COMMAND

PROCESS

NAME/
STORE

COMM'D

~PROCESS
COMMAND

HEADER

COEMAND:

RETURN Figure 2.
 Top level flowchart

TENAL _

jNTRIIESI 'I SEQ-FORM

COL-FORM

TERMINAL

DISPLAYSr

Figure 1. 110Block diagram

PAGE 488

TOPIC F. 11- STORED FORMATS

A. 	 MODULE NAME

Program-ID - RDBSFUT

Nodule-ID - DBSFMT

B.-	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

The function of this module is to provide generalized

GET/PUT routines for the processing of stored

formats.

D, 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not 	 Applicable

b. 	 Punched Card Input File

Not Applicable

C. 	 Input riles

Not Applicable

d. 	 on-time terminal Entries

Not Applicable

3. 	 Output Data Sets

a. 	 Output files

Not Applicable

b. 	 On-Line Terminal Displays

The program produces diagnostic messages for

the various errors that may occur.

PAGE 489

c. Formatted Print Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

The following tables are referenced, used in the

construction of new formats and used to output

exiting formats.

FLDTAE

SEQFORM

COLFORM

E. PROCESSING REQUIRBMINTS

1. Top level Flowchart

See Figure 2

2. Narrative

a. GETSYMT

At this entry point the program initializes

itself to read in a previously-stored format.

It verifies the name of the format and checks

to see if the format is already in the format

table. If so, the program returns

immediately with the appropriate

information.

If the fcrmat must be read, the first record

of the format is obtained by calling TSGETRG.

This record is analyzed to determine if the

format is columnar or sequential. The

appropriate format tables are-then searched

for a slot into which the format can be

placed and the format is allocated and

initialized.

The program then obtains the remaining format

records and posts the data obtained into the

appropriate locations within the format

entry. If any errors are encountered, an

appropriate diagnostic message is written to

the user and the partial format is freed.

After an error, or when the format has been

completed, the reguired information is

PAGE 490

updated and the program returns to the

caller.

b. PUTStT

At this entry point the program initializes

itself to write out one of the currently

defined formats. It verifies the name of the

format and checks to see of the format exists

in the format tables. If not, the program

terminates with a diagnostic.

If everything is in order, the program

constructs the first format record (FORMAT),

indicating the format name, type, the

intended -file name and bother descriptive

information and writes it to the data set by

calling TSPUTRG.

The remaining format data is organized into

TITLE, READER and FIELDS records and written

to the data SET in the same fashion as the

FORMAT record. If any errors are

encountered, an appropriate diagnostic

message is written to the user and the

partially stored format is erased.. After-an

error, or when the format has been completely

written out, the required information is

posted and the program returns to the

caller.

F. CODING SPECIFICATIONS

1. Source Language

The module is written using the TSS 360-PL/I

Language.

2. Suggestions and Techniques

Not Applicable

RDBSFMT

SYSO iT

Figure 1. 1/0 Block Dliagram

qq-

PUTSFNT'
GEtSEA

ITNITIALIZE
 INITIALIZE

R[WRITE
FIRST FIRST
RECORD RECORD

ALLOCATEFRA

FORMATD

READ WRITE

NEXT NEXT

RECORD RECORD

EROSyNSSAGE ERRORS

POST EI
DATA

Figure 2. Top Level Flowchart -GETSFINIT, PUTSFIT

PAGE 493

TOPIC F.12 - GENERIC KEY DISPLAY

A. 	 MODULE NAME

Program-ID - RDBGLDS

Module-ID - DBGTLDS

B. 	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module displays a formatted listing of the names

assigned to the sub-levels of the key for a generic key

file.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

d. 	 On-Line Terminal Entries

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-Line 'erminal Displays

The program produces a formatted list- of the

sub-level names.

PAGE 494

c. 	 Formatted Print Outs

Vot Applicable

d. 	 Punched Card Output Files

Not Applicable

4. 	 Reference Tables

The program references the following tables to

obtain the information which it displays,

FLDTAB

GENERIC

E. 	 PROCESSING REQUIREMENTS

1. 	 Top Level Flowchart

See Figure 2

2. 	 Narrative

Upon entry the program initializes the screen and

other data necessary to construct the display. It

extracts the current file name from TLDTAB and

uses it to construct the generic table definition

routine (XXXXXXX, where xxxxxx is the file name).

It calls this routine to obtain the generic key

description. If any errors are indicated, a

diagnostic message is written to the user and the

program is terminated.

The program then extracts each name from the

generic key description table and posts is to the

screem. When the list is exhausted, the screen-is

displayed to the user and the program returns to

the caller.

F. 	 CODING SPECIFICATIONS

1. 	 Source Language

The module is written using the TSS 360 PL/I

language.

2. 	 Suggestions and Techniques

Not Applicable

RDBGFLDS

SYSOUT

Figure 1. 1/0 Block Diagram

DATA-

BASE

NASIS,

USERIDS

DBPRINT

NASIS STRATEGY, DATASET

Fig. 1 I/0 Block Diagram

) ke,

DBGFLDS

INITIALIZE

GET
GENERIC
STRUCTURE

GET A
FIELD

POST T

Figure 2. Top Level Flowchart -DBGFLDS

ENTER

INITIALIZE

VARIABLES

CALL PRbIMW

FOR ADISPLAY
COMMAND

 CINFORMATIO

CALL PROMP9

FOR I

ACCUMULATE

UY CLEAR TATISTICS

COMMND OUNERSFROM

09SSTRATEGY

CALL

A NO PROMPT

.I.DS; N FOR

" TED RANGE

GET NEXT

NASIS

ID'

GET

PRINT

QUEU7

FIG. 2 TOP LEVEL FLOWCHART

GET DATA
OR NEXT
PRINT

CALL
DBPAC TOj

L
OPEN FILE

FILE

I
CALL

DBPAC TO
CREATE Al
,ST OF KEYS

CALL
DBWRIT
TO DO

PRINTING

(0

PAGE 497

TOPIC 	 - BATCH PRINT MONITOR

A, MODULE 14AMI

Program - ID - TDBTEINT
module - IE - DBPMINT

-B. ANALYST

Frank Reed

Neoterics, Inc.

C. 	 MODULE FUNCTION

This program controls the execution of the batch print

system in much the same way that RDBINIT controls the

retrieval system. That is, it initializes file-related

tables and issues command prompts to activate batch

sub-system operaticns.

D. 	 DATA REQUIREMENS

1. 	 I/O Block Diagram

See Figure 1.

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

NASIS.USERIDS

d. 	 On-line Terminal Entries

The user of the batch print system

communicates with the system through a series

of command and data prompts. The commands

and parameters are:

1. 	 END

Terminate the terminal session

2. 	 PRINT NASISID=,BSN=

PAGE 	498

Produce a formatted print-out of data from a file
utilizing information saved in the print queue for
Nasis ID vith Batch Sequence Number (BSN)
specified.

3. 	 HOLD NASISID=,BSN=

Place a print job in "hold" status.

4. 	 RELEASE NASISID=,BSN=

Place a print job in "active" status so that it

can be executed.

5. 	 EXHIBIT NASISID=,BSN=

Display a formatted description of the contents of

the batch print queue at the user's terminal.

6. 	 NUMBER NASISID=

Tally the number of print tasks in the queue.

7. 	 CANCEL NASISID=,BSN=

Remove a print task from the queue.

=
8. 	 KEYS NASISID=,BSN

Display the file name and record keys recorded for

a print task.

9. 	 COPIES 1NASISID=,BSN=,COPIES=

Overide the user specified value for number of

copies of a printed report.

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-line Terminal Displays

Not Applicable

c. 	 Eormatted Print-outs

Not Applicable

d. 	 Puncbed Card Output Files

PAGE 499

Not Applicable

4. 	 Reference Tables

Not Applicable

E. 	 PROCESSING REQUIREMENTS

1. 	 Top Level Flowcharts

See Figure 2.

2. 	 Narrative

DBPRINT gets control from DBMTT, then prompts for

one of the ccmmands outlined in section 2D. If

the 	 command is PRINT, the information relating to

the 	 user's print queue is retrieved from the

strategy data set and used to open the file from

which data is to be printed. After all

initialization is complete, control is passed to

DBVRIT to perform the actual data retrieval and

printing.

All other commands provide various operations on

the user's print gueue as described above, except

END, which returns control to DBMTT.

F. 	 CODING SPECIFICATIONS

1. 	 Source language

PL/I

2. 	 Suggestions and Techniques

Not Applicable

PAGE 500

TOPIC - BATCH PREINT WRITER

-A. NODULE NAME

Program - ID - RDBRIT
Module - IE - DBMRIT

B. 	 ANALYST

Frank Reed

Neoterics, Inc.

C. 	 MODULE FUNCTION

This program retrieves data from a user - specified

data base and prints a listing in either a predefined

sequential format or a user-defined seguential or

columnar format.

D. 	 DATA REQUIREMENTS

1. 	 I/O Blcck Diagram

See Figure 1.

2. 	 Input Data Sets

a. 	 Parameter Cards

Rot Applicable

b. 	 Punched Card Input riles

Not Applicable

C. 	 Input Files

Any NASIS data base.

d. 	 On-line Terminal Entries

None

3. 	 Output Data Sets

a. 	 Output Files

Print file (PRINTER)

b. 	 'On-line Terminal Displays

Not Applicable

PAGE 501

c. Formatted Print Outs

User - defined sequential or columnar

prints.

d. Punched Card Output riles

Not Applicable

4. Reference Tables

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Tlowcharts

See Figure 2.

2. Narrative

DBIIT gets control from DBPRINT, then opens the

PRINTER output file and creates the title page.

Next, a record from the data base being retrieved

from is read and either sequential or columnar

formatting is begun based on a table of field

names specified by the user. For sequential

formats, the field names and associated data are

displayed on successive lines with the field names

to the left cf the data. Columnar formats require

the printing of header and title information

(saved by the PRINT and TORMAT functions) -along

with the field names or other identifier for each

column of data across the top of each page. The

data for each field is presented under the

appropriate column heading until the list of

record keys is exhausted.

When all printing of data is completed, a summary

of information contained therein is displayed.

For sequential prints this is simply a count of

the number cf records displayed. For columnar

prints, this can be, optionally, a tally, sum, and

average of the numerical values of items occurring

in one or more of the columns.

After closing the PRINTER file, control is

returned to DBPMINT with a return code of 'IX for

a print terminated by the operator of '0' for a

print terminated by a data base error. The return

code is unchanged if the print completes

successfully.

PAGE 	 502

F. 	 CODING SPECIFICATIONS

1. 	 Source Language

PL/I

2. 	 Suggestions and Techniques

Not Applicable

DATA-
BASE

DBWRIT

FIGURE 1 1/O BLOCK DIAGRAM

IT

OPEN
PRINT
FILE

INITIALIZE
VARIABLES

I
PRINT
TITLE
PAGE

GET NEXT/
RECORDE

FILE /
FROM

PRIN ICOLUMN /_

SFELD NAME R---ECORD

PRINT NYYES POST

SSUMMARY ERO RETURN
IFRAINCODE

CRETURN)

FIGURE 2 TOP LEVEL FLOWCHART

I

-17 T.

PAGE 503

TOPIC F.15 - LIMIT Command

A. 	 MODULE NAMI

Retrieval LIMIT Command

Program-ID - RDBLtT

Module-ID - DBLMT

B. 	 ANALYST

Barry G. Hazlett

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module limits an existing set of anchor file keys

according to the specified criteria thereby creating a

new set.

D. 	 DATA REQUIBEMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

d. 	 On-Line Terminal Entries

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-Line Terminal Displays

The new set created by the LIMIT command is

displayed on the output screen through use of

PAGE 504

the routine DBPSET. Refer to the dataset

specification section of the DWB for a

writeup ef this display.

C. Formatted Print-Outs

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Floichart

See Figure 2

2. Narrative

Upon entry into DBLMT, of the LIMIT structure has
not been allocated, a module name is derived by
concatenating "L' to the data base name. If the
module does not. exist, the user is given a
diagnostic and control is returned to the calling
routine.

After determining a valid LIMIT structure exists,

the user is prompted for the set to be limited.

To be valid the set must exist and must consist of

anchor file keys. If the set number is invalid,

the user is given a diagnostic and prompted for a

new set number.

After obtaining a valid set number, the user is

prompted for a list of limits to apply against the

set. To be valid the specified fieldname must be

present in the LIMIT table and the values must be

less than 51 characters long and the two values

must be separated by a colon. If the limit is

invalid the user is given a diagnostic and

reprompted for the limit. If the limit is valid,

a flag is set in LIBIT indicating which subfield

to test along with the two values indicating the

value range. If more limits are in the input

streem, they are prompted for and processed as

above.

Once all of the limit criteria have been

established, a control loop is setup to obtain

the keys one by one from the input set. Each

subfield to be tested is extracted from the key

and compared against the acceptable values for

this field. If a key fails any of the specified

tests, it is ignored and the next key from the

list is obtained and processed as above. If the

key is acceptable, it is posted in a new list.

PAGE 	 505

After all the keys in the input list have been

processed, the new set is posted in SETAB and the

results posted to the user screen through use of

the routine DBPSET, after which control is

returned to the calling program.

F.-	 CODING SPECIFICATIONS

1. 	 Source language

IBH/360 PL/I language

2. 	 Suggestions and Technigues

Not Applicable

Temia DBLMT SETA

fI

DBLMTD

SETUP

-LIMIT NEPOST

EITD AGNOS- POET

GET SET# RE UR KEYS
MOR

N SETUP

V MESSAGE

RETURN

GET TEST

TEST

PAGE 508

TOPIC G.1 - ACCUMUIATION

A. 	 MODULE NAME

Statistics Accumulator

Program-ID - RDBACCUM

Module-ID - DBACCUM

B. 	 ANALYST

James A. Wesley

Neoterics, Inc.

C. 	 MODULE FUNCTION

Primarily, this module is used to accumulate the

maintenance statistics on those data bases vhich have

already been loaded.

This program reads an existing data base anchor file

and accumulates the number of records on it. Then, it

posts this record count to the STATIC data base.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

The data base vhich is to have the statistics

accumulated, and the STATIC dataplex.

d. 	 On-line Terminal Entries

Not Applicable

PAGE 509

3. 	 Output Data Sets

a. 	 Output Files

The STATIC Dataplex

b. 	 On-line Terminal Displays

Not Applicable

c. 	 Formatted Print-cuts

Not Applicable

4. 	 Reference Tables

Not Applicable

E. 	 PROCESSING RBQUIREMENTS

1. 	 Top Level Flowchart

See Figure 2

2. 	 Narrative

Error Bessage:

ERROR ON $01 OF $02.

Where:

$01 is the ONFILE,

$02 is the ONCODE.

The 	 program ill accept the data base name as a

parameter and will proceed to count the anchor

files records. When this task is completed, it

will open the STATIC data base for update and post

the record count.

The posting of the STATIC data base assumes that

no record for this data base currently exists.

Therefore, if an error occurs on the LOCATE

Statement for the posting, the job is

terminated. The key's value for the locate

statement is as follows:

A value of '0' concatenated to the data base

name and filled with $'s to 24 characters.

The field 'ANCOUUI' is posted with the number

of anchor records.

PAGE 510

The field 'HAINDATE(1)' is posted with the

jobs run date, i.e., this is assumed to be

the creation date for statistics.

The field 'TOTAL BUN' is posted with a '1'.

The field 'TRANCNEW' is posted with the

number of anchor records.

The following fields are posted to '0':

'TOTALTI', 'ITRANCDEL', 'TBANCUPD',

'TRINVNEli', 'TRINVDEL', and 'TEINVUPL'.

F. CODING SPEICIFCATIONS

1. Source language

The RDBACCUR module is coded in the IBM

programming language Pl/I. The DBPL/I and TSPL/I

language extensions are used for data base access

and terminal I/O, respectively.

2. Suggestions and Technigues

It is important to remember that the executive

error '99' indicates an end of file condition.

Special attention is made for the handling of the

data base executive errors.

DATAPLEX
ANCHOR

FILE

PAAMTE DBACCUM' " AAPE

PAGE 511

DBACCUM ERROR

OPEN ANCHOR

DATAPLEX BY
 ABEND
PARAMETER

NAME

READ A
RECORD E F

COUNT =
COUNT+1 [STATICLp j

LOCATE
THE
RECORD

POST
FIELDS,
CLOSE

END

Figure 2. Top level flowchart

PAGE 513

TOPIC G.2 - BEPORT PRINT

A. 	 MODULE NAME

Print the Retrieval Statistics

Program-ID - BDBPRETR

Module-ID - DfPBNTR

B. 	 ANALYST

Edward J. Scheboth, Jr.

James A. Wesley

Neoterics, Inc.

C. 	 MODULE FUNCTION

The purpose of this program is to present a detailed

listing of the contents of the STATIC data base

pertaining to retrieval statistics.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

The STATIC data base, (for full details on

this data base see Section III of the

Development Workbook).

d. 	 On-line Serminal Entries

Not 	 Applicable

3. 	 Output Data Sets

a. 	 'OutputFiles

fot Applicable

PAGE 514

b. 	 On-line erminal Displays

Not Applicable

c. 	 Formatted Print-outs

The retrieval statistics' report, (for full

details of this report (listing) see Section

III of the Development Workbook).

4. 	 Reference Tables

Not Applicable

E. 	 PROCESSING REQUIREMENTS

1. 	 Flowchart

See Figure 2

2. 	 Narrative

This module performs the following logic in order

to produce the retrieval statistics' report

a. 	 Open the STATIC data base for sequential

input (use DBPL/I).

b. 	 Read the STATIC file sequentially record by

record and while reading, construct from the

current information on the STATIC data base

the required listing.

c. 	 Output the print file required to produce the

retrieval statistics' report.

d. 	 Close all files: Terminate.

Note: 	 It will be necessary for this program to

accumulate various information so that it

can output the summary of retrieval

statistics, representing all of the

statistics on the STATIC data base.

F. 	 CODING SPECIFICATICNS

1. 	 Source language

The RDHPENT module is coded in the IBE

programming language PL/I. The DBPL/I and TSPL/I

language extensions are used for data base access

and terminal I/O, respectively.

PAGE 515

2. Suggestions and Techniques

Refer to Section III of the Development Workbook

for all data set specifications and all data base

executive errors.

STATIC
DATAPLEX

RDBPRNTR

F STATISTICS I

Figure 1. 110 Block diagram

TDPRNTR

INITIALIZE
OPEN STATIC,

REPORT FILE,

SPACE TO

RETRIEVAL

HEADIN S

READ STATIC

LNEWAN y

WRITE_.

Figure 2. Top level flowvchat

PAGE 518

TOPIC 	 G.3 - USAGE STATISTICS UPDATE

A. 	 MODULE NAME

Update Maintenance Statistics

Program-ID - RDBUPDST

Module-ID - DBUPDST

B. 	 ANALYST

Edvard J. Schebotb, Jr.

James A. Wesley

Neoterics, Inc.

C. 	 MODULE FUNCTION

This program updates the statistics data base (STATIC)
with the maintenance statistics from the load/create
program (RDBLOAD) or from the maintenance mainline
(RDBMNTN).

D. 	 DATA REQUIREMENTS

1. 	 I/O Blcck Diagram

See Figure 1

2.-	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

The STAIIC Dataplex

d. 	 On-line Terminal Entries

"NotApplicable

3. 	 Output Data Sets

a. 	 Output Files

The STAUIC Data Base

PAGE 519

b. 	 tn-line Terminal Displays

Not Applicable

c. 	 Formatted Print-outs

Not Applicable

4. 	 Reference "Tables

Not Applicable

E. 	 PROCESSING REQUIREMENTS

1. 	 Top Level Flowchart

See Figure 2

2. 	 Narrative

The parameters are passed via standard PL/I

procedure/procedure linkage key calls from

RDBMNTN and REBLOAD.

The parameters which are passed are as follows:

a. 	 Calling program identifier character 2.

first Character

C = first call.

M = subsequent call.

Second character.

I = called from LOAD.

anything else signifies - called from

elsewhere.

b. 	 File being updated.

c. 	 Number cf new anchor records, character 6.

d. 	 Number of deleted anchor records, character

6.

e. 	 Number of updated anchor records, character

6.

f. 	 Number of new subfield records, character 6.

g. 	 Number of deleted subfile records, character

6.

h. 	 Number of updated subfile records, character

6.

PAGE 520

i. Number of new inverted records, character 6.

j. Number of deleted inverted records, character
6.

k. 	 Number of updated inverted records, character

6.

The load/create module (RDBLOAD) invokes this

module only once, and this is at the end of the

create run. Therefore, this module opens the

STATIC data base for direct (update or output) and

locates the new record. The data is put and the

file closed.

The maintenance mainline (RDBMNTN) is calling the

module continuously while processing (this is to

preclude the possibility of a system crash causing

a loss of statistics). Therefore, upon the first

invocation from the maintenance mainline, the

STATIC data base is opened for direct update. The

proper record is read and written, and control is

returned to the maintenance mainline.

The final call from the maintenance mainline will
have an 'I' posted to the calling program
identifier.

If the updating of the STATIC data base is
successful, a 'C' is posted to the calling
program identifier upon return; whereas, if the
results are not successful, a 'B' is posted.

If the results of the attempted posting are bad,

the calling programs will resolve the disposition

of the non-posted data.

The 	details of the contents of the STATIC data

base can be found in Section III of the

Development Workbook.

The following illustrates the parameters passed

and the associated fields which are updated; they

are in the form "parameter - static field name"?

a. 	 maintenance date - MAINDATE

b. 	 Number of new anchor records - TRANCVEW

c. 	 Number of deleted - TBANCDEL

d. 	 Number of update - TRANCUPD

PAGE 521

e. Number of new subfile records - TRSUBNEW

f. Number of deleted - TESUBDEL

g. Number of updated - TDSUBUPD

h. number of new inverted records - TRINVNEW

i. Number of deleted - TDINVDEL

j. number of update - TRINVOPD

k. Calling program identifier - *-none-*

It is important to remember that there is a one

for one correspondence between all of the

previously mentioned STATIC data base fields. For

Example:

If MAINDATE = '03/16/70' and this is the
actual date of the maintenance run, then if
the IAINDATE value of '03/16/70' is the third
element in the variable length field, then

all updates to the other elemental fields of

the record are made to the third element.

The table which follows will help to

illustrate this more clearly.

EAINDATI 01/16/70 02/16/70 03/16/70 null

TRANCNEN S 3 1
TRANCDEL 18 4 1
TRANCUPD 3 7 1
TUSUBNEW 7 9 1
TRSUBDL 3 12 6
TESUBUPD 1 9 2
TRINVNEW 16 3 1
THINVDE1 4 4 1
TEINVUPE 12 7 1

The fields we are concerned with are: MAINDATE,

TRANCVEB, TRANCDEL, TESUBNEW, TESUBDEL, TnSUBUPD,

TRANCUPD, TRINVN!W, TRINVDEL, TRINVUPD.

These fields are all variable length fields with

multiple fixed length elements. The maximum

number of elements is 13. The first element in

the array is used as an accumulator. Elements

through 13 are used to represent individual

maintenance runs.

This is simple enough--when this module is-called

2

PAGE 522

from RDBMNTN, it simply locates the maindate which

is the same as the parameter and does the posting

into that given element.

The question is what does this module do when it's

called for the first time from the maintenance

program (RDBlI4TN) and the date is not equal to any

of the posted dates and all 13 elements have data

so that there is no additional elemental slot

where the data can be placed.

The solution is as follows: First, the second

elemental slot is 'REPUT' to null. Which causes

the data base executive to automatically slide all

of the other elements (logically). Then, the new

maintenance data mill be 'PUT' as the thirteenth

element.

F. CODING SPECIIICATIONS

1. Source .language

The RDBUPDST module is coded in the IBM

programming language Pt/I. The DBPL/I and TSPL/I

language extensions are used for data base access

and terminal I/O, respectively.

2.. Suggestions and Techniques

Refer to Section III of the Development Workbook

for all data set specifications and all data base

executive errors.

M..ODULE*CALLWITH

,RDBUPDST

DATA PLEX

PAGE 523

RDBUPDST

NN ANALYZE

PARAMETERS
AND

VALIDATE

SUMS

AND

VALIDATE

RECORD AND
POST COUNT,
DATE FIELDS

RED RECORD
AND PS
FIELDS

POST THE--

COUNT

Figure 2. Top level flowichart

i - 0. t"".

PAGE 524

PAGE 525

TOPIC G.4 - CLOCK ROUTINES

A. 	 NODULE I4AME

Clock 	 Routines

Program-ID - RTIMEES
Module-ID - RTIMEBS

B. 	 AVAlYST

Edvard 0. Scbeboth, Or.

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module initializes two TSS clocks, one for CPU

time and the other for CONNECT time. These clocks may

be read at a later time to provide the elapsed time

plus initial values.

D. 	 DATA REQUIREMENTS

1. 	 I/0 Block Diagram

Not Applicable

2, Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

Not Applicable

d. 	 On-line Terminal Entries

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

Rot Applicable

PAGE 526

b. 	 On-line Terminal Displays

not Applicable

C. 	 lormatted Print-outs

Not Applicable

4. 	 Reference Tables

Not 	 Applicable

E. 	 PROCESSING REQUIRE!ANTS

1. 	 Top Level flowchart

See Figure 1

2. 	 Narrative

In the START entry, the initial values are

assigned to the total clock value and an even odd

pair of clocks are started even (0) with task

option ODD(1) with real option and two counters

are set with these values.

In the READ entry, a flag is set to on at entry.

The clocks are read and the initialized totals are

updated. The clocks are stopped and restarted to

prevent expiration, the values are provided to

caller the 0-1 pair of clocks started, the

indicator turned off and return made to caller.

In the STOP entry, the two counters of clock

numbers are deducted by 2 and each pair of active

clocks stopped.

If either clock should expire, the expiration

routing post full values to total and starts a

new clock with value -+2 and returns.

F. 	 CODING SPECIFICATIONS

1. 	 Source language

Assembler

2. 	 Suggestions and Techniques

Not Applicable

START
 STOREAD
P
ETYENTRY ENTRYI
 IS

VALI DATE INDICATE LAs CLC
PARAMETERS 	 READ ON STOPPED

IIIIII I		 STPIO
INITIALIZE 	 READ CLOCKS

CLOCKS
 CLOCKS 	 INTHIS

PAIR

1START ADD

CLOCK
 TOLSTART J 	 TOTAL]G

S

CiD 	 STOP
CLOCKS

 I CONNECT EXPIRE

[j j _ENTRY

CPU EXPIRE I

ENTRYI

S 	 RETURNji
VALUE READ
TO
CALLER

READ 	 --	 TN_
ON 	 '
IUPDATE1 	 II-
	 I7TALS

ON

RESTART
__ 	
UPDATE
TTLCLOCKS
UPDAT

TOTALS I

INDICATE 	 START

START RA O 	 CLOCK

CLOCK

RETURN

RETurN 	 6E

CRETURN

Figure 1. Top level flowchart

PAGE 527

PAGE 528

TOPIC G.5 - STATIC REPORT

A. 	 MODULE NAME

Maintenance Statistics' Report

Program-ID - RDBPBflM

Module-ID - DBPRNTM

B. 	 ANALYST

Edward J. Scbebotb, Jr.

James A. Wesley

Neoterics, Inc.

C, 	 MODULE FUNCTION

This 	 program opens and reads the STATIC data base

(sequential input); analyzing, accumulating and

formatting, (for printing) the maintenance statistics'

information which is currently posted. The end result

is a 	 maintenance statistics' report. It has the added

function of snapshot dump and re-initializing -the

seven variable element fields which are the running

totals of the maintenance statistics.

D, 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Pot Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

The STATIC data base (for detailed and

complete information on this data base refer

to Section III of the Development

Workbook).

d. 	 On-line Terminal Entries

Not Applicable

PAGE 529

3. 	 Output Data Sets

a. 	 Output files

Not Applicable

b. 	 'On-line Terminal Displays

Not Applicable

c. 	 Formatted Print-outs

The maintenance statistics report (for

complete detailed information on this listing

refer to Section III of the Development

Forkbook).

4. 	 Reference Tables

Not Applicable

E. PROCESSING REQUIREMENTS

1. 	 Top Level Flowchart

See Figure 2

2. 	 Narrative

This Lrodule performs the following logic in order

to produce the maintenance statistics' report:

a. 	 Opens the STATIC data base for sequential

input (use DBPL/l).

b. 	 Read the STATIC file sequentially, record by

record, and while reading constructs from

the current information on the STATIC data

base, the required listing.

c. 	 Outputs the print file required to produce

the maintenance statistics' report.

d.. 	 Snapshots the ten variable element fields if

they are full.

e. 	 Close All Fil.s: Terminate.

Note: It is necessary for this program to

accumulate various information so that it

can output the summary of maintenance

statistics.

PAGE 530

. CODING SPECIFICATIONS

1. Source Language

The HDBPRNTM module is coded in the IBM

programming language PL/I. The DBPL/I and TSPL/I

language extensions are used for data base access

and terminal I/C, respectively.

2. Suggestions and Techniques

Refer to Section III of the Development Workbook

for all data set specifications and all data base

executive errors.

STATIC
DATAPLEX

RDB PRNTM

IATIENANCE
STATISTICS

F REPORiT

Figurel 1. 0t Block diagram

DBPRNTM)

OPEN

STATIC,
REPORT

STATIC
DATAPLEX

.
INT

PGE ...

Figure 2. Tp level flowchart

PAGE 531

TOPIC G.6 - RETRIEVAL STATISTICS DIRECTOR

A. 	 MODULE NAME

Retrieval Statistics

Program-ID - RDBSTAT

Module-ID - DBSTAT

B. 	 ANALYST

James A. Wesley

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module is the heart of the retrieval statistics.

It has an entry point for each retrieval module

included in the statistics.

D. 	 DATA REQUIREMENTS

1. 	 IO Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

d. 	 On-line Terminal Entries

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

The Static data base.

b. 	 On-line Terminal Displays

Not Applicable

PAGE 534

c. Formatted Print-outs

Not Applicable

d. PuncHed Card Output Files

Pot Applicable

4. Reference Tables

'FLDTA' is used to convert inverted indices to

data base file names.

E. PROCESSING REQUIREMENTS

-. Top Level Flowchart

See Figure 2

2. Narrative

The INIT entry checks to see if there was a crash

during the last session by the existence of the

ONES record and then write one if there wasn't one

or after REECHKPT deletes it. INIT initializes

statistics that like INIT in the command system

setting up the necessary tables or pointers for

later use.

Each command entry, one each for EXPAND, SELECT,

SEARCE and CORRECT, pushes its information,

command type, NASISID OWNERID and fill, into the

stack and then checks to see if it is time to

update the statistics by checking the command

count and entry count for critical level.

The DBSTATF entry call on termination of a

session, just indicates that this is to be the end

and-provides strategy information and branches to

the PUTSTAT routine.

The DESTATD entry deletes this strategy from the

statistics if it is there.

The PUTSTAT routine always updates the CPU, and

connect time by calling the RTIMERS routines for

their values. It also always pops the command

stack and updates each command count and the

set-date for the specified file. The stack is a

FIFO stack, a one dimensional structured array.

If this is a DBSTATF entry, then the strategy

information 'STRATNME', 'STRATSTR,' and 'STRATLEN'

and usage information 'LASTDATE' are complete

PAGE 	 535

updated. Finally, for the DBSTATF entry to update

the 	 storage allocation is freed and the ones

record deleted from STATIC.

T, 	 CODING SPECIFICATIONS

1. 	 Source language

Pl/I and DBPt/I

2. 	 Suggestions and Techniques

Not Applicable

Figure 1. 110 Block diagram

5-37

r COMMAND --.-- - EXPAND,

INIT NTRY ELECT,

ENT RY,,CORRECT,,

SEARCH

COMMAND A.,TPATE
AND PARAS

L A
OPEN INSTACK
STATIC

I UPDATE - . /
ENTRIESOR y~ A AND-CPU

COAD CONN. TIME UPDATE
1IMIT ON STATIC STRATNME

Ns NJ

ONES N-I

THERE RETURN UPDATE j f

SESSOATE FOR| EACH FILE IN lINI jy COMMAND UPDATE
CLOSE STACK STATTR

CLOSEENR

STATIC

ITUPDATE---
FOR EACH

INDICATE COMMAND
 UPDATE
THIS IS IN STACK LAST DATE

CALLRDBCHKPT.A
 I- AREIS I
E

MORE IN CLOSE
STACKSTATIC

OPEN N RDBCHKPT

STATIC DELSTRAT

FINISH y

INDICATED BFREE
ALLOCATIONS

Is N
INITIALIZE STRAT. NAME
AND ZFILEON N
ALLOCATE yRTR

WRITE
DELETE IT

ONES

RETURN
RETURN

Figure 2. Top level flowichart

TOPIC H. I - EXPLAIN FACILITY

A. 	 14ODULE NAME

Program-ID - RDBEXEL

MODULE-ID - DBEXPL

B.. 	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE TUNCTION

This module allows the user to display the explanation

of a message or term, the origin of a message or the

responses to a prompt, that has appeared on the screen,

or, the text of any of the standard prompting messages

on the message file.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See ligure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

d. 	 On-line Terminal Entries

This module receives its input in the form of

parameters passed with the EXPLAIN or PROMPT

commands.

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

PAGE 539

b. On-line erminal Displays

This module displays the requested

information for the user on the terminal.

c. Formatted Print-Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. -Narrative

a. UBEXPL1

Upon entry, the program niLiaAizes Tne

variables that control execution and the

displaying of data to the user. It also sets

up the mechanism by which paging is to be

accomplished.

Next the program prompts for the OPTION and

MESSAGE parameters required- for the EXPLAIN

function. It verifies that the option

selected is valid, and if so, branches to the

appropriate routine.

For simple explains, i.e., message

explanations, the OPTION is treated as an

index, verified, and the line number set to a

value of 100. If the OPTION is not a valid

index, the request is treated as a term

explanation. The OPTION is then treated as a

qualified term and used to construct the

message key which is used to locate the

term's explanation. For response

explanations the live number is set to a

value of 400.

In each of the above instances, control is

passed to a routine which attempts to read a

PAGE 540

data record. If successful, the record is

written to the screen and the process

repeated, until the data has been exhausted,

or the screen filled. At this time, the

paging controls are set, the screen is

displayed to the user and the program is

terminated. If no data was found, the

routine branches to an error routine which

displays a message to the user and terminates

the program.

If the original request was for a message

origin, the OPTION is treated as an index,

and if valid, the appropriate message key is

obtained, displayed to the user, and the

program is terminated.

b. DBEXPL2

At this entry point, the program initializes

the varriables that control execution and

prompts for the MESSAGE parameter. It then

prompts for the INSERTS parameter list.

Once complete, the program attempts to

display the message indicated with the

specified inserts.

c. DBEXPLP

At this entry point the program

re-initializes the variables that control

execution and the displaying of data to the

user. If tbe paging status data indicates

that more data remains, the program uses this

data to restore the proper program status and

then branches to the routine which posts data

to the screen. If no data remains to be

displayed, the program simply terminates.

T. CODING SPECIFICATIONS

1., Source language

The nodule iE written using the TSS 360 PL/I

language.

2. Suggestions and Techniques.

Not Applicable.

ESYSIN

r-- RDBEYPL

LISRLIBFB 1Bl D

Figure 1. 1/0 Block Diagram

-DBEXPLI

INITIALIZE

FOR
EXPLAIN

PROMP1T

L£NE

POSITION1 TO

TO EXPLAINMESSAGE

i0 LINE RAMETTRRS

POSITION TO

TO EXPLAINRESPuNSE

LOCATEGE

TO BEEXPLAINED ORIGIN

MESSAGE
'' / _IN-~
OYOI

DATA

LINE

YSAVE

FULL STATUS DATA ET

SCREEN

-, 9A Tn n T,,=iv P1 11n w.'h rt - DREXPLI

5V

VBEXPL DBEXPLP

INITIALIZE INITIALIZE
FOR

PROMPT
FOR

PAGING

PROMPT AY
FOR /

PARAMETERS

-~WRITE

THERETE
MESSAGESTTSDA

EXIT

Figure 2B. Top Level Flowchart -DBEXPL2, DBEXPLP

PAGE 544

TOPIC H.2 - STBATECY INTERFACE

A. 	 MODULE NAME

Prcqran-ID - RDBSTFT

Module-I- DBSTPT

B. 	 ANALYST

John 4. Ioan

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module serves as an interface between the strateqy

data set service routines and the rest of the NASIS

system. In additicn, it is the module which performs

the functions specified by the FORMAT? and STRATEGY

commands, i.e., the listinq of format and strateqv

names, the listinq of strateqies and the deletion of

strateqies.

D. 	 DATA REQUIREMENTS

1. 	 1/0 Block riaqran

lee Ficure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not A plicable

b. 	 Punched Card Input Files

Not Applicable

C .	 	Input Files

Not Apnlicable

1. 	 Cn-line Terminal Entries

Fhen servinq as the processor for the FORMAT?

and STRATEGY commands, the proqram reads in

the command and parameters specified by the

user to invoke those commands.

3. 	 Output Data Sets

a. 	 Ctnut Files

PAGE 545

Not Applicable

b. 	 On-line Terminal Displays

When serving as the processor for the FORMAT?

and STRATEGY commands, the program produces

the follcwing formatted screen images,

1. Format names display

2. Strategy names display

3. Strategy display

c. 	 Formatted Print Outs

Not Applicable

d. 	 Punched Card Output Files

Not Applicable

4. 	 Reference Tables

USERTAB-is used to obtain the NASIS-id and to test

the task status as represented by the various bit

switches.

FLDTAB -is used to reference the formats currently

defined for this user.

B. PROCESSING REQUIREMENTS

1. 	 Top level Flowchart

See Figure 2

2. 	 Narrative

a. 	 GSTRAT and GFOEM

At these entry points the program initializes

the -parameter lists necessary to obtain a

line frcm the strategy data set, and calls

TSGRTRG to do it. If an error occurs, and it

is the first error for that region, a

diagnostic message will be written to the

user. Ctherwise, the program simply returns

to the caller.

b. 	 PSTRAT and PFORM

At these entry points the paragram

PAGE 546

initializes the parameter lists necessary to

write a line to the strategy data set,

including the generation of the strategy or

format name. It then calls TSPUTRG to

perform the write. If PSTRAT is called and

the TESTMODE, RERUN or RESTACT flags are set,

the prcgram immediately returns to the

caller. If an error occurs while writing out

the record, a diagnostic message is written

to the user and the TESTMODE switch is turned

cu. The program then returns to the

caller.

c. CSTRAT and CPORM

At these entry points the program initializes

the parameter lists necessary to change the

name of a region. It then calls TSCM6R6 to

accomplish tie change. If any errors are

encountered, a diagnostic message is written

to the user. The program then returns to the

caller.

d. £STRAT and DFORM

At these entry points the program initializes

the parameter lists necessary to delete a

region of the strategy data set. It then

calls TSDER6 to perform the deletion. If

any errors are detected, a diagnostic message

is written to the user. The program then

returns to the caller.

e. DBSTRT1

At this entry point the program initializes

itself to process the strategy command. It

reads in the OPTION and STRATEGY parameters.

The program then branches to the routine used

to process the type of request specified by

the OPTION parameter. If that parameter is

not valid, the program vrites a diagnostic

message and terminates immediately.

If the user reguested a strategy deletion,

the program calls TSDEIRG to delete the

strategy specified. If an error occurs, a

diagnostic message is written to the user.

The program then checks for any additional

names, and processes each in the same way.

When all processing has been completed the

program terminates.

PAGE 547

If the user reguested a listing of the

strategy names, the program initializes the

screen and paqing control data. It then

repetitively calls TSGETSN to retrieve the

Tames of the strategies. As each name is

obtained, it is added to the out-put line and

the line is written to the screen. When the

screen is filled or when the strategies names

are exhausted, the screen is displayed to the

user, the paging status data is posted and

the program is terminated.

If the user requested a listing of a

particular strategy, the program initializes

the screen and paging control data. The

first strategy name specified is selected,

and TSGRTRG is repetitively called to obtain

the lines comprising the strategy. Each line

is posted to the screen. When the screen is

filled or when the last line has been

written, the screen is displayed to the user,

the paging staters data is posted and the

program is terminated. The paging status

data must indicate when a strategy has been

completely listed, so that the next name from

the list can be used.

f. DBSTRT2

At this entry point the program initializes

itself to display the names of the formats

available to the user. It initializes the

screen and the paging status data. The

program then extracts the identifiers for all

of the formats currently specified in the

format tables. It then calls TSGETFN to

retrieve the name of a stored format. It

places the names of the formats on a line and

writes the line out to the screen. The names

are processed alphabetically, and as each

stored format name is processed, a new one is

read in. Stored formats that are also

present in the format tables are only shown

once. When the screen is filled, or when the

list of names is exhausted, the screen is

displayed to the user, the paging status data

is posted and the program is terminated.

g. DBSTRTP

At this entry point the program

re-iftializes itself to the status, saved

before the last termination. If more data

PAGE 548

remains to be displayed, the program -ranches

to the proper routine to produce the next
display screen. If no more data remains, a
diagnostic message is written to the user and
the program is terminated.

r. ,CODING SPECIFICATIONS

1. Source Language

The module is written using the TSS 360 "PL/I
language.

2. Suggestions and Technigues

Not Applicable

Figure 1. I/0 Block Diagram

PAGE 549

OStRA GFO M PSTRA.T F R

INITIALIZE INITIALIZE - INITIA IZE INITIALIZE

DATALINESWITCH DATA LINE."f

II

ANY y FIST y WRTE AT

NAME?

ERRFOR

Figure 2A. Top Level Flowchart

DBSTRT1

DBS TRTP

INITIALIZE

GET
PARAMETERS

[

WRITE

b[ESSAGEMOEDT

LS

RESTORE

STATUS

Figure 2B. Ton T-evel Flnv,2rr

'V

[Al ,

'DSR2LIST LIST
NAMES LINES

GETET

INITIALIZE INITIALIZE INITIALIZE

GET

DISKC NAMEfSNAENOMR

B?

NAME

NAMER

SCREEN

NANAMESAME

0 ME y

ON

SCREEN

ON

F 2N.To SAVE
STATUS

MORE

SAVE

STATUS

Figure 2C.
 Top Level Flowchart

GET A

.LINE

PUT LINE
?ON

SCREEN

RROM

SAVE

STATUS

PAGE 553

TOPIC H.3 - STRATEGY ASSEMBLEE ROUTINES

A. 	 MODULE NAM

Program-ID - RTSSIRT

Module-ID - TSSTRT

B, 	 ANALYST

John A. Lozan

Ieoterics, Inc.

C. 	 MODULE FUNCTION

These routines act as the assembler service routines

for the strategy library. They permit the retrieval,

modification and storing of the saved strategies and

formats.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

lot Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

Strategy data set - is -used for input for

bcth stored strategies and stored formats.

]BALIB-member FORMATS is used for input for

stored formats only.

d. 	 Cm-line Terminal Entries

Nct Applicable

3. 	 Output Data Sets

a. 	 XCutput Files

Strategy Data Set-is used for output for both

PAGE 554

stored strategies and stored formats.

b. On-line Terminal Displays

Pot Applicable

a. Formatted Print Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

USERTAB-is used to obtain the NASIS-ID.

E. PROCESSING REQUIREMENTS

1. Top Level flowchart

See Figure 2

2. Narrative

a. SDELRG

At this entry point the program initializes

itself to delete a strategy or format region.

It opens the strategy data set, if necessary,

and extracts the region name passed by the

caller. The program then proceeds to delete

the region, one line at a time. If any

errors are encountered, the region name is

set to null. The program then returns to the

caller.

b. TSGETRG

At this entry point the program initializes

itself to get a line from a strategy or

format region. It opens the strategy data

set and member FORMATS of DBAIIB(0) if

necessary. It extracts the parameter passed

ty the user, and if a null line number is

passed, sets up to read the first line of the

region. If the high order bit of the line

number is off, it sets up to read the line

following that indicated by the line number.

Otherwise, it positions the pile to the line

number passed.

PAGE 555

The -program then attempts to read the line

requested. If successful, it posts the line

number, posts the data (with trailing blanks

removed) and returns to the caller.

If am error occurs, the program sets the

region name to null before returning.

likewise, if an end-of-region occurs, the

line number is set to null before returning.

If the region cannot be located in the

strategy data set, the program checks the

region name, and if it is a format request,

tries to locate the region in member FORMATS

of DBNITB(O) and then processes the request

as indicated above.

C. TSPUTRG

At this entry point the program initializes

itself to put a line to a strategy or format

region. It opens the strategy data set, if

necessary, and extracts the region, live

number and data parameters passed by the

caller. If the line number is null, it sets

up to add the line at the end of the region.

In any case, it positions the file to the

proper region and live iithin the region.

The program then attempts to write out the

mew line from the data passed by the caller.

If successful the program simply returns to

the caller. If an error occurs, the program

sets the region name to null before

returning.

d. TSCHGBG

At this entry point the program initializes

itself to change the name of a strategy or

format region. It opens the strategy data

set if necessary, and extracts the old and

new region names passed by the caller.

The program firsts attempts to delete any

existing region with the new region name. If

an error occurs,- other than region unknown,

the program terminates and sets the old

region, reads a line, positions itself to the

new region and writes out the live. This

process is repeated until all of the data

lines have been copied. If any errors occur,

the new region is deleted, the old region

name is set to null and the program returns

to the caller. If no errors have occurred,

PAGE 556

the program deletes the old region and

returns to the caller.

e. SGETSN

At this entry point; the programs initializes

itself to get a strategy region name. It

opens the strategy data set, if necessary,

and extracts the strategy name pissed by the

caller. If the name is null, the program

sets up to get the first strategy name.

Otherwise, it sets up to get the strategy

name following that passed by the caller.

The program then attempts to read a line from

the strategy data set. If successful, it

extracts the region name and passes that back

to the caller. If an error occurs, or if an

end-of-file is sensed, the region name is set

to null and the program returns to the

caller.

f. TSGETFN

At this entry point, the program initializes

itself to get a format region name. It opens

the strategy data set and member FORMATS of

DBALIB(0), if necessary, and extracts the

region name passed by the caller. If the

region name is null, the program sets up to

get the first format name. Otherwise, it

sets up to get the format name following that

passed by the caller.

The program then attempts to read a line from

both data sets. If an error occurs, or if

both tiles indicate end-of-file, the region

name is set to null and the program returns

to the caller. Otherwise, the program

compares the region names of the two lines.

It posts the name, lowest in value, in the

region name and returns to the caller.

F. CODING SPECTIFICATION

1. Source Language

The module is written using the TSS 360 Assembler

language

2. Suggestions and techniques

Any output operation to the strategy data set

PAGE 557

results in the temporary closing of the data set,
to ensure data set integrity in the event of a
system crash.

- ---- - -- ~~
RTSSTRT

g STATEGY DBALIBS DATA

Figure 1. I/O Block Diagram

STSDELRG TSGETRG TSPUITRG

INITIALIZE INITIALIZE
 INITIALIZE

DELETE POSITION POSITION

REGION DATA SET DATA SET

GET PUT
LINE LINE

A)

ERROR y POST

ERROR
? INDICATOR

EOF POST
EOF
INDICATOR

EXIT

PAGE 559

TSCHGRG TSGETSN TSPUTFN

INITIALIZE
 INITIALIZE
 INITIALIZE

POSITION POSITION POSITION
OLD DATA DATA

REGION SET SETS

GET
LINE GET LINE
 GET LINES

FigeOD oDUMMY

LISET

Figure 2B. Top Level Flowchart

PAGE 561

TOPIC H.4 - USER VERE TABLE

A. 	 MODULE NAME

Program-ID - RDBUSER

Module-ID - DBUSEE

B. 	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

This 	 routine uses the currently defined verb table to

locate any user defined commands for that table. If
any have been defined, they are appended to the list

already existing in the table.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

Not Applicable

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

Not Applicable

d. 	 On-line Terminal Entries

Not Applicable

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-line Terminal Displays

Not Applicable

PAGE 562

c. 	 Formatted Print Outs.

Not Applicable

d. 	 Punched Card Output Files

4. 	 Reference Tables

VEETAE

F. PIOCESSING EEQUIEEZENTS

1. 	 Top Level Flowchart

See Figure 1

2. 	 Narrative

Upon entry, the program tests for the presence of

a VERBTAE. If none is found, it exits

immediately. Otherwise, the program extracts the

default symbcl from the table and gets the default

value for that symbol.

The program then begins analyzing the data, until

none remains, at -whichtime it returns to the

caller. The data is expected in command-name and

entry point pairs. Each pair is extracted from

the data, analyzed for valid construction and then

posted to the next available slot in the table.

If there are any syntax errors, invalid names, or

if the table is filled, the program will return to

the caller, bypassing the remaining entries.

r. 	 CODING SPECIFICATICES

1. 	 Source language

The module is written using the TSS 360 PI/I

language.

2.. 	 Suggestions and Techniques

Not Applicable

DBUSER

INITIALIZE

DOES

EXTRACT

DEFAULT

VALUE

EXITu 1NEXT
ENTRY

Figure 1. Top Level Flowchart -DBUSER

cc

PAGE 564

TOPIC H.5 - USER PROFILE ROUTINE

A. 	 MODULE NAMI

Program-ID - RDBPEG

Module-ID - DBPRO

B. 	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

This 	 module performs the processing necessary for the

implementation of the PROFILE, SYNONYM, DEFAULT,

SYNONYM and DEFAULT commands.

D. 	 DATA REQUIREMENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

C. 	 Input Files

Not Applicable

d. 	 On-Line Terminal Entries

The program prompts the user for the

parameters required by the various

commands.

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-line Terminal Displays

PAGE 	 565

TIhe display of the user's defaults and

synonyms produce formatted terminal

displays.

c. 	 Formatted Print Outs

Not Applicable

d. 	 Punched Card Output Files

Not Applicable

4. 	 Reference Tables

USERTAB-the program extracts the user's NASIS-id

from the user data table.

E. PROCESSING REQUIREMENTS

1. 	 Top Level Flowchart

See Figure 2

2. 	 Narrative

a. 	 LBPROF

At this entry point the program simply calls

TSPROF to write out a copy of the user's

current profile. If any errors are detected,

an appropriate diagnostic message is written

to the user the program then terminates.

b. 	 DBDEF

At this entry point the program initializes

itself to process defaults. It repetitively

prompts for data and calls TSPDEF to process

the request. If any errors are encountered,

an appropriate diagnostic message is written

to the user. The program then terminates.

c. 	 DBSYN

At this entry point the program initializes

itself to process synonyms. It repetitively

rrompts for data and calls TSPSYN to process

the request. If any errors are detected, an

appropriate diagnostic message is written to

the user. The program then terminates.

d. 	 DBDEFS

PAGE 566

At this entry point the program initializes

itself to display the data values

corresponding to a set of default symbols.

The program also initializes the screen and

paging control data. The program then

attempts to read in the list of symbols. If

no data was entered, the program sets up to

display all of the default values. Otherwise

it saves the list of symbols entered.

The program then repetitively calls TSGDEF

for each entry in the list, to obtain its

default value. The values are formatted and

Posted to the screen. When the screen is

filled, or when the list of names is

exhausted, the program displays the screen to

the user, posts the paging status data and

terminates.

e. EBSYNS

At this entry point the program initializes

itself to display the time values for a set

of synonym terms. The program also

initializes the screen and the paging control

data. The program then attempts to read in

the list of symbols.

If no data vas entered, the program sets up

to display all of the synonym values.

Otherwise, it saves the list of symbols

entered.

The program then repetitively calls TSGSYN

for each entry in the list, to obtain its

time value. The values are formatted and

posted to the screen. When the screen is

filled, or when the list of names is

exhausted, the program displays the screen to

the user, posts the paging status data and

terminates.

f. DEPROPG

At this entry point the program

re-initializes itself using the paging status

data. If data remains, the program branches

to the proper routine to produce the next

screen image. Otherwise, the program writes

a diagnostic message and terminates.

. CODING SPECIFICATIO1NS

PAGE 567

1.

2.

Source language

The program is vritten using
language.

Suggestions and Techniques

Not Applicable

the TSS 360 PL/I

Figure 1. 1/0 Block Diagram

IXEPROF DBDEF DBSYN

WRITE
,OUT INITIALIZE INITIALIZE

PROFILE

GETGET
PARAMETERS PARAMETERS

WIEPOST POST
DEFAULT SYNONYM

DBPROPG

INITIALIZE

Y

Figure 2A. Top Level Flowchart - DBPROF, DBDEF, DBSYN

INITIALIZE INITIALIZE

PAR0TERS P AAMTERS

GET
 GET;

DEFAUT
 SYNONY

VALU
 VALUE

+- -

POST
 POST

SCREN
 SCREEN

MORE ROOM O E R6

STATUS
 STATUS

CEXI---

Figure 2B. Top Level Flowchart -DBDEFS, DBSYNS

PAGE 571

TOPIC 	 H.6 - USER PROFILE ASSEBLER ROUTINES

A. 	 MODULE NAME

Program-ID - XTSPRO

Module-ID - TSPRO

B. 	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

These routines act as the assembler service routines

for the user's profile. They permit the retrieval,

modification and storing of all synonym and default

values.

D. 	 DATA REQUIRENEIS

1. 	 1/0 Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

PROFILE LIBRARY or DBALIB(0) (NASISPRO) or

LISRLIB(0)(NASISPRO) is used to initially

obtain a profile for the user.

d. 	 On-line Terminal Entries

Not Applicable

3. 	 Output Data Sets

a. 	 Output Tiles

PROFILE LIBRARY - the user's profile will be
written out as a member of this library with
the name of his NASIS-id.

PAGE 572

b. 'On-line Terminal Displays

"Not Applicable

c. lormatted Print Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

e. Return Code

A return code will he posted with a value

ihose meaning is dependent upon the entry

point c~lled.

4. Reference 'Tables

USERTAB-the program extracts the user's NASIS-id

from the user data table.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. TSPROF

At this entry point the program initializes

itself to write out the current user's

profile. It first allocates a new list and

moves over all of the synonym entries not

marked for deletion. It next moves over all

of the default entries and re-orders the

default data values. The program then

attempts to locate an old profile for this

user in the profile library. If one is

found, it is deleted. The program then

vrites out the new profile and gives it the

name of the user's NASIS-id. If any errors

are encountered the error code is posted.

The program then returns to the caller.

b. TSGSYN

At this entry point the program initializes

itself to retrieve a synonym value. it first

searches the synonym entries until it locates

PAGE 573

the logical location for the symbol

specified. If the entry is present and has

not been deleted, or if the entry located is

the symbol whose abbreviation was specified,

the synonym value is extracted and passed

tack to the caller. If the entry located

did not correspond to the symbol specified, a

null value is returned to the caller.

C. !SGDEF

At this entry point the program initializes

itself to retrieve a default value. It first

searches the default entries until it locates

the logical location for the symbol

specified. If the entry is present, the data

value offset is located and the data value is

moved into the caller's area. The program

then returns to the caller.

d. 4 SPSYN

At this entry point the program initializes

itself to post a synonym value. It first

checks to see if this is a delete request.

If not, the program builds the new entry. It

then searches the synonym entries until it

locates the logical location for the symbol

specified. If the symbol is to be deleted

and it is not present, the program returns

immediately. Otherwise, it performs the

deletion by copying the entries prior to the

deleted entry and those following the deleted

entry, to a new profile similarly.

Similarly, adds are processed by inserting

the added entry between the two list

segments. Modifications, if allowed, are

performed in place. If a new profile was

created, the old list is deleted. If the

request was not for a deletion, the program

computes the minimum abbreviation length. If

it was a deletion, all synonyms for the entry

deleted are flagged as deleted. The program

then returns to the caller.

e. TSPDEF

At this entry point the program initializes

itself to post a default value. It first

checks to see if this is a delete request.

If not, the program builds the new entry. It

then searches the default entries until it

locates the logical location for the symbol

PAGE 574

specified. If the symbol is to be deleted

and it is not present, the program returns

immediately. Otherwise, it performs the

deletion by copying the entries preceding the

one to be deleted and those following it to a

new profile. Similarly, adds are processed,

by inserting the added entry between the two

list segments and appending the data value at

the end of the profile. Modifications are

performed in place, if possible, if not, the

data value is simply added to the end of the

profile. The program then returns to the

caller.

F. CODING SPECIFICATIONS

1. Source language

The module is written using the TSS 360 Assembler

language.

2. Suggestions and Techniques

The entry searching routine should be coded as a

binary search and the list moving routine should

be coded as efficiently as possible.

I 	 PROFILE
LIBRARY DBALIB LISRLIB

Figure 1. I/0 Block Diagram

576:

TSDEF '

TSGSYN
g TSPROF

INITIALIZE INITIALIZE INITIALIZE

SYNONYM LOCATE LOCATE

LIST ENTRY ENTRY

REORDER
DEFAULTWAITLIST NNWST N

LIST FOUND
?9

WRITE DN POST
OUT SYNONYM LOCATE

PROFILEVALUE DATA

ANY
POST

DEFAULT

VALUE

POST
ERROR
CODE

XIT

Figure 2A. Top Level Flowchart -TSPROF, TSOSYN, TSGDEF

---Ujfx tlu -1- - 11

TSPSYN
 TSPDEF

INITIALIZE IINITIALIZE

AYOY DEFAULT

LOCATE LOCATE
ENTRY ENTRY

dbPY & COPY &
UPDATE UPDATE
PROFILE

N COMPUTE +ADD '
DEEEMINIMUM A EEEDEFAULT

LENGTH VALUE

,DELETED

SYNONYMS

.
Figure-2B Top Level Flowchart - TSPSYN, TSPDEF

PAGE 578

TOPIC 	 H.7 - TESTING FACILITY

A. 	 MODULE NAME

Program-ID - RTSTEST

Module-ID - TSTEST

B. 	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

This module provides a set of debugging services to be

used in the testing and debugging of the TSS

functions.

D. 	 DATA REQUIREMENTS

1. 	 1/0 Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Not Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

d. 	 On-Line Terminal Entries

The program can execute any of the TSS input

functions.

3. 	 Output Data Sets

a. 	 Output Files

Not Applicable

b. 	 'On-Line Terminal Displays

The program can execute any of the TSS output

PAGE 579

functions.

c. Formatted Print Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

The program optionally allocates and initializes

USERTAE.

E PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry, the program initializes the variables

that it uses, including the TC block. The program

then calls TSTESTR to prompt the user for a

debugging request. It verifies that the users

input is one of the valid requests and that the

associated parameters are also valid. If not,

the program calls TSTESTP to issue a diagnostic

message and then re-prompts the user.

If the request was END, the program simply

terminates. If the request was TSS the program

calls TSTESTP to allow the user to enter TSS

command mode. If the request was PAD, the program

moves into the output buffer the number of

characters of prestored text specified by the

user's parameter.

If the request was DO, the program compares the

parameter to the list of valid TS2 functions and

abbreviations and calls the one specified.

It the request was SET, the program passes the

parameters passed into A=B pairs. The A

component is compared to the list of valid data

fields and abbreviations and the appropriate data

field is assigned the value indicated by the B

component.

If the request was EXP, the program displays a

list of the abbreviations recognized and their

PAGE 580

corresponding data field or function names.

If the request was DA, the program passes the

parameters and displays the addresses of those

data fields whose names or abbreviations were

entered.

If the request was DIS, the program passes the

parameters and displays the current values of the

data fields whose names or abbreviations were

entered.

If any of the reguests are improperly specified or

reference unknown data fields, a diagnostic

message is issued to the user. Following this, or

at the completion of the request, the user is

prompted for his next request.

F. CODING SPECIFICATICNS

1. Source Language

The module is written using the TSS 360 PL/I

language.

2. Suggestions and Technigues

Proper use of data field redefinition will

simplify the processing of some of the requests.

A fumction will have to be written to return the

string dope vectors as processable data in

certain instances.

Figure 1. I/0 Block Diagram

ii;AM

TSTEST

- INITIALIZE

.PROMPT
USER

ANALYSE
REQUEST

I

PROCESS

REQUEST

PAGE 583

TOPIC 	 H.8 - TESTING TACILITY 1/0 INTERFACE

A, 	 NODULE AM

Program-ID - ETSTESTX

Nodule-ID - TSTESTX

B. 	 ANALYST

John A. Lozan

Neoterics, Inc.

C. 	 MODULE FUNCTION

This prcqram serves as the input/output interface

between the terminal support test driver and the

terminal.

D. 	 DATA REQUIRENENTS

1. 	 I/O Block Diagram

See Figure 1

2. 	 Input Data Sets

a. 	 Parameter Cards

Eot Applicable

b. 	 Punched Card Input Files

Not Applicable

c. 	 Input Files

Not Applicable

d. 	 On-Line Terminal Entries

At the read entry point the program accepts

input from the terminal.

3. 	 output Data Sets

a. 	 Output Files

Not Applicable

b. 	 On-Line terminal displays

At the write entry point the program displays

PAGE 	 584

the 	 information passed by the caller.

c. 	 Formatted Print Outs

Not Applicable

d. 	 Punched Card Output Files

Not Applicable

4. 	 Reference Tables

Not Arplicable

E. 	 PROCESSING REQUIREMINTS

1. 	 Top Level Flowchart

See Figure

2. 	 Narrative

At each entry point the program initializes itself

to perform these appropriate functions. The

program then completes the entry linkage by

calling the PL/I linkage module IHESADA.

If a read was requested, the program issues a

GTWAR macro to read from the terminal. Any data

that 	 is entered is moved to the caller's parameter

and its dope vector is adjusted to reflect the

length of the data.

If a write was requested, the data contained in

the caller's parameter is moved to the output

area and written to the user by means of a GATNR

macro.

If a pause was requested, the program issues a

CIIC macro to place the task back into TSS

command mode.

When the requested function has been completed and

the parameter posted, if necessary, the program

returns to the caller.

F. 	 CODING SPECIFICATIONS

1. 	 Source Language

The module is written using the TSS 360 Assembler

language.

PAGE 	 585

2. 	 Suggestions and Techniques

Not Applicable

57 ;

SYSIN

RTSTESTX

SYSOUT

Figure 1. 1/0 Block Diagram

I - 41

TSTESTR TSTESTW t
INITIALIZE
 pNTILZ INITIALIZE

'COMPLETE
LINKAGE

-EX)

Figure 2. Top Level Flowchart - TSTESTR, TSTESTW, TSTESTP

