-r,/.-, .

??Lf

NASA CR-134462

N73=-30108
' TA BASE
NQSL-CR-13W$62) N3ASIS Da
HMIAGEHEN‘I SISTEHN: IBH 350 ngg BASE
IHPLEHEHTBTIOH. ngBqﬁsazlng cleveland, Unclas
gﬁgﬁﬁfsng‘_r’t}i i(iléeg‘lz.{)ﬁ ’ csCcL 09B 3708 413484

NAS IS DATA BASE MANAGEMENT SYSTEM - IBM 360 TSS IMPLEMENTATION
VII1 - DATA BASE ADMINISTRATOR USER'S GUIDE

NEQTERICS, INC.

prepared for \

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Reproduzed b .
NATIONAL TECHNICAL
INFORMATION  SERVICE

UUS Department of Commerce
Springfield, VA. 22151

NASA Lewis Research Center
Contract NAS 3-14979



NOTTIUCE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE
BEST COPY FURNISHED US BY THE SPONSORING
AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-
TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-
LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.



TAELE OF CONTENTIS

TOPIC A -~ MULTI-TERMINAL TASKING

A.2

MT/T CEERATORS GUIDE,
I. INTRCGDUCTION . .
II, MONITOR COMMANES
APPENDIX A o v o o o

APPENDIX Be o « o » o

COMMAND SUMMARY.

> ®* & ¥ o @ 9
s ® 2 B 5 & 3
&« ® 8 ® g @ »
* ® u & 8 ¢ @
*® * & = a ¢ 3

PESSAGE SUMMARY,.

TOPIC B - TATAR BASE EXECUTIVE

B.1

DBPAC CONV, AND FCEM, RBOUTINES
I. INTROLCUCTICN. ¢« o o o «
I¥. CALLING SECUENCE. « + o« =
ITY. BESTRICTIONS. ¢ & o« ¢ & »
APPENDYIX B & 4 s » » « &
Diagnostic Messages and Codes,
APPBNDIX B L] $ L ] . L] » L] L] L ] -
Sample Validaticn Routine. . .
DRPLI LANGUAGE EXTENSION . . .
I‘ INTBODUCTIONQ - L ] 4 & »
1. THE PREFROCESSOR. &+ + +
JTIT. DATA EBASE AND FILES o« + &
1v. RECORDS o 4« s o » o & + »
v.- ?IEIDS! a » » L ] [ ] [ ] L] L ] L
Vi. LISTS 4 o 4 o + s s a s
VIY. RULES AND SYNTACTIC DRESCR
» * -
L} L] L]
» - L ]
Funct
»

The CC1IST Function
The CLCSE Statement
The CPLIST Function
The DR Ereprocessor
The DOUFLIST Function,.
The #F¥TELD Punction .
The FINISH Statement, .
The FREF 1IST Statement
The GET FIELD Statement .

a

. ® & ® s w @

The GET INDEY KFY Statement

The GET KEY SET Statenent

The GET LIST INT. KEY INTO State

s % g * a2 @+ @

v ¢ ® 3 % 3 & 5 & & pfde e * & ¢ 5 ¥ & v » = s 3 9 =

..Oj.-....zt..i‘...-.o.!.i

The GET LIST KEY {0) Statement,
The GET LIST KEY INTC Statement
The GET LIST KEY SET Statement,
The GET 1TST SET Statenent.

The GET RECORD Statement,

*

The % INKCLUDE DB Statement.,

The LIST Function , « + &
The #IIST Function., + s
The LCCATE Statement. . .

*

*& 2 o * @

The LOCRTE SUFRFILE Statement,

- L - - - L]

¢ & 4 » # @ & ¢ » 8 H s % & & 3 B F % g " v g B 8 * g b g F 4, & 4 & a & 4 »

. & &« ® 3 w g

* & p & a2 & 3

> % a s ® & s g ® ¢ e * s B s ¥ P s b & g B a2 & g % 3 = s ® 2 5 s &2 a0

* * w B B ¥ &

® ¥ & + 4 B 8 * a8 W B g B B2 B g %t B B &+ 8 % ¢ v & @

t.

a & 8 & & 3 ® 3 * 0w

PAGE 2

¢« & & & 9 & @
# ® 9 & g & 9
-l
]

s ¥ 8 @ ® 8 ® & ® F € w € & B 4 & @ * s ¢ B ¢ ¥ s S 4 T @« & 3 &« s W s 4 » »
® % ® % & & B § * ¥ m 8 & g & 9 F 5 8 8 B B g T 9 B 3 B 2 B ¢ ® 8 & a8 5 g ®
=
(N



The ON Statement, « + & s o« ¢ o o o
The (QTLEYN Statemant. . o o« o s s o o
The PNT FIELD Statement . « ¢ » & o
The PUT 1LIST INT. KEY FRO¥ Statement
The BREAL Statement, +« s o 5 = o« s
The REAL INDEYXY Statement. + « ¢ o« o«
The REAT SUBFILE Statement. « + »+
The RETFUT Statement « + « ¢ o &+ o
The SFT LIST LIKE LIST Statement. .
The ULIST Punction- « & & B 3 B + @
The NTNLOCK Statements o« o s » + s »
The UPLIST Function + « o ¢ ¢ s s »
The BRITE Statement . o« o« » ¢ s e o
The #XREF FUNCtions « o o o o ¢ + &
RPPERDTIY Rsa 2 o & 5 & 2 o s s &« 5 o o »
File level Statenents o o o o o o o
Record Level Statements o s o o ¢ o
Physical BRecord Statements . . . s
Field Level StatementsS. o + « = » o
Data Base List Statements . o+« + + »
Non Data Base list Statements . .
GlOSSAT Ve s = & 4 o # a s & o & = &
TOPIC C - UTILITIRS
C.2 CCNY,., VALIT,, FORM, ROUTINE DRIVER, . .
I. IRTROLUCTION. & « ¢ o s & o s & o »
IY, LINKING RDEDRIVE. o 4 o 4+ s o o o =
III. GPEBATICNSI [ ] * L ] » L ] L » [ ] - L ] * ]
kPPENDIx A. » L ] - L ] ] - » » L ] [ ] » » L L [ ]
Sample Test Driver Session. « +« +
C.3 MESSAGE FILE EDITOR. o« ¢« s 2 o 5 2 3 o @
I| INTBCEUCTIOH. » ] » - [ ] - - [ ] L ] » »
11. REGION CODE o « o s ¢ & & 4 2 3 « =
ITI. FILE ORLERING BY NUMERIC FEY. . +
Iv. UNIQUE CHARBCTFRISTICS OF AN ENTRY.
v. COHHANBS' & E ] & L] L J » » 1 ] L] - L ] L] -
ADD . . L ] [ ] . L ] - [ ] L ] L] * » 2 L ] » L
EELE"‘EI L ] L ] » L] * L] » L] L ] L ] o L ] L ] -
REPIACE o o » o ¢« « # o o 8 s & » &
EISPLAY - L ] L ] [ ] L ] » a - L L ] ] » . E
PREFIX. - - k] * * * a * - L] - - - -
END - - » L ] » » » L ] a L] ) . J L a L] L ]
C. U HDBIJCIN - JOINING NEW OSERS,: o ¢ o s o
1. IRTRODUCTION, 4« & o » o o 2 s o » »
IIQ COHEANESO ] - » a - . = - - . - - -
JOIN. ) L ] » L ] L] » L L ] » - » [ ] » » »
OUIT. » » - L 2 » . - . » L ] » » L ] L ] *
CHANGE. o o o o ¢ o o o o 2 9 + o »
AI:D L] L ] L » [ ] L] L] * [ [ ] - L ]  J L] - *
EELFTE. [ ] » » » a » L ] L ] - . » L] [ ] »
BISPLAY L ] [ ]  J E - - » [ ] [ ] L ] » » - »
III. ExthLESQ . » ] [ ] L ] » [ 3 L} L ] - [ ] L] *

" ® & % 5 * a @ 4 * » * a * g =B g

& B 5 ®w & % € B ®w ® b 5 8 88 B B " & & Pt W 5 & » &

PAGE 3

68
69
71
73
T4
77

B1
84
85
86
87
88
89
92

« % 5 % & ® & & s & 3 % s * 3 & 3

g2

R - - - L [ ] - - [ ] - [ ] - L] - - -

93
93
93
95

.« & = @
L] - . -

s B % % 8 % & W ®u & & &8 4 & 8 8 B & S 8 ¥ 8 4 B 3 %
-
—
o
Lt



TOPIC D = MAINTENANCE

B.

D.2

MAINTENANCE SEUBSYSTEN. . .

RECORD SECURITY Function.
BRFVIEW Function « « « «
APPENDIY Aus o o o o ¢ s o =
Conmand Formats .« « o o o
APPENDIY Beo o & « o o & o o
Create Code Operand Relati
APPENDIX Cuoe o o o o s s & s «
Prodefined Fields ,» + +»
RPPE“DIX D.Q L ] L 2 L ] L ] L » » L [ ]
Cescriptor File Overview,
APPENDIX E.. - -* L] L ] a * L ] L ] »
The Positicn of Fields,
BEDELCAD ~ LOADING NEW FILES.
I. INTRODUCTION. o« & + o &
IT., INVCKIXG DBLCAD + . .+
IJITI. COPERATINRG MODE. « & «
¥¥. DRLOAD EYIT RCUTINES. .
V. CHEECKPOINT BACKUP . . .
VI, T1OADING MULTI-FIIES . ,

I, IRTRODUCTION, o o ¢ o = o &
¥I, THE MARIKTAIN COMMAND, . « o
LESCRIPTOR ELITOR. o o s o s o
I. INTRBODUCTION, o o o s & » &
I1, INVORING THE EDITOR . -« « o
III. DEFINATIGNS L ] [ ] - - [ ] L ] L ] L ]
I¥, CREATE MODE FUNCTION., « «
ADD-CHANGE Function . « . o
AEDLIKE Functions, « ¢« o o «
CHXFCINT Punction « « ¢ + o
CREATE SUBFILE Function . .
LELETE FUnction + « o « ¢ o
DISPLAY Function, « s+ » +

END Functione + +« s o ¢ & »
FIFLLS Function « « o » & »

FIIE Function « « +« o o &
FIELD SECTRITY: + o s s o

MOVE Function « « « ¢ ¢ s o
PRINT Function: ¢« « o s &« &
RENAME Function « « o ¢ o o
RECORD SECURITY Function. .
RESTORE Function. « « « + o

SAVE STRATEGY Function. . &
DEFINE SUPER FIELD Function

IV, UPDATE MODE FUNCTIONS + o+
CHANGE Function . + o« « o &
BISPLAY Function. « « « s

FND Function: + ¢« ¢« o + »
FIFLDS Function « o+ o o » o
FIELD SECURITY Function . .
PATCH Functiom, + « « + « &

Q

N

»

.

- 5§ ® 8 ¥ & & =

® 3 % 8w @ 8 % 8 4 8 & 8 [} * 8 B = B g b s % 8 4 & B gt ®w B a8 4 ® @ T F BN S g o2 gt s o

® 4 % & # 5 W " " 3 4§ B ph® e W s ® o T B e A g sow &S a e a0 &« & 9 8 3 ® 2 & & 4 =w »

- 9 - £ ) - - * L d - - - -» L] - » L - - - - » » - ) - - L - L] - » & L] » - L] » - - - L] - - - » - - - - L] L]

* & % » @& @ # & & a2 ¥ e & & » a4 B g & g B 8 9 ® & & § ® & € 5 ¥ B % 3 € g 4 B A a2 & & 4 B B F e v @

& 4 B a2 % 8 & 8 * & B & ® & & 2 8% 3 8 8 % 8 € g & 5 B &5 8 ¢ W & & 8 s B g 4 ¢ B a + s @& e 2 s 2

PAGE 4

. 109
. 109
. 109
. 110
. 110
« 110
C 111
L1117
111
.119
. 120
. 120
. 121
.121
. 121
. 122
122
. 122
. 123
.128
. 125
.125
. 125
<125
. 126
<127
. 127
. 138
. 131
<131
. 131
.132
. 135
.136
.138
.138
L 142
142
L1604
‘1““
. 147
.87
. 150
. 150
. 151
. 151
. 151
. 154
. 154
. 157
<157

& ¢ & & ® 9 € € ¥ & ¢ a ¢ g &8 g & g B § W g € g B & " 4 4 & & 4 T & ¥ B & ¢ # = B2 g & e B + & B & + @



B.S

D7

PILE IBRVERSICYN - INDEYING,.
I. TRTERQDUCTION. « + »
II. BCDE CF OPERATIOXN
11T, INVORING DBSIVRT.
1v. EXAMPLES: o o + &
INDEY MERGE - COMBINE.
T. INTRODUCTION, .
TI. HMHODE OF OPERATION
JIT, INVOKING DRINIM ,
1v. EXAMPLES. + » «
Ve PROGRANM NOTES . .
CORRECT COMMAND,: « + =«
CORRECT Command . .
CORRECT ADD Subcommand.
CORRECT CANCEY Subcommand .
CORRECT CORRECT Subcommand,
CORRECT DEIETE Subcommand .
CORRECT DISPLAY Subcommand,.
CORRECT END Subcommand, + .
CORRECT FIELDS Subcommand .
CORRECT INSERT Subcommand ,
CORRECT REPLACE Subcommand.
CORBECT VERIFY Subconmnpand .
RDE#NTN - MAINTENANCE - UPDATE .
I. INTRODUCTION. = = o « s = o
IT. THNVORING MAINTENANRCE. . & o« + o
III, MAINTENANCEF OPERATING PROCEDURES
1v, MODE CF OPEBATION o o o » 2 o &

* % w8 * & ® & = @ ® 5 &

L]
-
.
2
*
-
*
E ]
L 4
L]
L]

» % 5 ¥ & B & # 8 »
*® 3 4 » % 5 & a2 4 g & & @

a % » & » & 4 B B o s &

&« ® & g ¥ ¢ & 4 ¢ 5 B g ® g F p & 4 F 5 B a2 & a =
¥ & @ g B g ® & & g & & b 3 * o O F w 3 B 5 & & %

& w * & ® & & b & & g @ g *¢ F B &g W & ® g & @ b 5 ¢ @ ¥

TOPIC E- TERMINAL SUPFCRT

E. 1

TS¥LI LANGUAGE EXTENTION .

1. INTRODUGCTICN. ,» o &

YI. STATENMENTS. + + » « =
ENABLE Statement, . .
ENTRY Statepent ., . .
ON PAGE CALL Statement,
FROX¥ET ¥5G Statement, .
PROMET ASG KEYWORD State
READ INTO Statement .,
RRITE FROM Statement, .
PUT FRCF Statement. . .

* % & 2 =

. 8 & @ * 2 &

ant.

FLUSH Statement . «» »
FPINISH Statement. . .

* 8 ® s % e 5 % & & 8 @
% & & Me s % o ¢ s u
* 4 & & * 2 & § & s ¢ 3
& 92 ® & 9 § ¢ 8 ® & 9 & &

TOPIC F - RETRIEVAL SUEBSYSTEM

F.1 LIHIT - ] L] L . E ] - * [ ] L] & - .. » * L] »

TOPIC G -~ USAGE STATISTICS

G.1

USAGE STATISTICS E ] - » » - L] . L ] - » »
I. INTRCDUCTION: « o s o ¢« o o s & =

# & * 8 8 2 & B 4 T 8 B T B " g et e P e

* » L] L L] » L] [ ] [ ] L] - » -

& g & » & € & W $ T & © g S ¥ * 5 S $ B g ¥ & * §g © 3 =

« B ®* 8 ® & % s @ ¢ " @ @

PAGE 5

» 163
» 163
« 163
. 164
« 165
+ 167
- 167
» 167
« 167
.168
« 168
169
. 169
177
« 172
. 173
. 174
+175
176
177
. 178
« 179
. 180
».181
«181
. 181
« 181
« 181

* @ & ¥ ¥ & & P a4 W & & a * 8 ¢ 3 F W P ¢ ® & B0

L] .183
+ o183
« 184
» '181"
+ +185
» 185
+ o185
« +186
« o« 187
.« «187
. » 187
« »188
« +188

+ 189

+ 190
.« 2190

*



PAGE 6

IT. STATISTICS CHECKPOINT 4 » o o o « o o » o190
ITI. RETRIEVAL STATISTICS REPORT o+ o« « o+ » o o191
IV, MAINTENANCE STATISTICS REPORT + « &« « » o191



PAGE 7

TOPIC A.2 - HMT/T OPERATCE'S GUIDE

T. INTRODOUCTICHN

The single program that ccntrols NASIS when the HMT/T
version of that svyster is running is called the MNT/T
Monitor. The monitor is the only part of NASIS with which
the MT/T Operator communicates.

Preparatory +to initiating NASIS, you must "log on" the TSS
task (USERID)} from which the MT/T version of NASIS is to be
driven.

After logon enter NASISMTT to bring up operational KNASIS on
NEWNASIS to bring up the experimental system, At this point
TSS loads all the programs that comprise NASIS into menory,
During initiation the mMwT monitor reads in the
NASIS, COMMANDS {0) CATASET containing the LIMIT, NEWS, and
PGRSTOF moniter conmands {discussed later)., After
initiation the monitor sends the following message to the
operations terminal:z "KASIS COMMENCING™, At this point NTT
will allow users to logan,

To communicate with the monitor simply depress the ATTENTION
key. The poniter will prompt vyou with a tine-stamped
question mark, for exanmrle:

10:25 ?

and unlock the keyboard. Note that while your keykoard is
gnlocked, ©N2SIS is stopped. Waste no time in entering
commands and never, never leave your terminal sitting with
its keyboard unlocked,

I1I. MORITOR COMEANDS

The monitor comrands are comprised of a command name and, in
some cases, additional cperands, The monitor, when reading
conpands, reccgnizes three fgpecial® characters--two
delimiters: [separators hetueen compand names and/or
operands) comma and tlank, and a character which may enclose
an operand tc dencte that that operand has “special®
characters within it: the quote mark. The delimiters
tehave sliqhtly differently--a string of contigunous blanks
is interpeted as one delimiter, but two contiguous commas
are interpeted as twe delimiters, and so forth, If vou have
to put blanks, commas cr quotes within an operand, you must
surround that cperand with aquote marks, In addition, if
there are enclosed quctes, they mnust be paired inside the
operand, Fcr example

tdon*'t let this confuse you, 1it*''s not really that



PAGE 8

difficult?
is a valid quoted string containing embedded commas, bhlanks
and guote marks,

fnder certain circumstances pressing the ATTENTION key will
vield an exclamation-mark instead of the Monitor prompting
pessage. When hitting ATTENTION does not get vyou the
Monitor's guestion~-mark prompt, enter the (TS5) command
YRESET", After vou see the M"DSOMEWHERE" message, try
hitting ATTENTICN again., This time it will work. :

MSG NASISILC,TEXT sufficient Abbreviation

{SsA.): M
This compand sends the message specified by the TEXT operand
to the user who is on WASIS under the userid svecified by
the operand NASISID, FRemember to surround the message text
with guote marks if it <contains compas, gquote marks, or
intedded spaces. Exarrle:

M NEO1,YBERF*'S R MESSAGE.,?!

BCST TEXT S.A,> B
This command sends the message specified by the TEXT operand
+o all the users logged on to NASIS, Example:

BC YDATACELIL IS DCRN NSIC notAVRILABLE.?

FORCE KASISID S.A.> F
This command is used tc terminate a NASIS user, The user
(identified by NASISID) is sent the message
nxxx TASK DELETED BY FORCE *#%%n and then logged off,
Exanple:

F NEO1

KILY ¥WASISID Ss2.r K

This command is used wken FORCE fails, The KILL conmand may
be reentered several times, The wuser (if the KII1L works)
will receive a program interrupt five at location zero, so
you may ignore the message about that event, Exasple:

KI HEO1

SHUTDORN TINE S.A.2 8
This command terminates NASIS, The TINE operand specifies
how long to wait befcre actually ternminating the system
t{default is five minutes), If the time specified 1is zero
minutes NASIS is terminated inmmediately. This zero-time
shutdown should be used only when absolutely necessary
kecause it doesn't give warning to the users, Normally,
both you and the users get a message stating the time-of-day
when the syster will shut itself down. Should vou change
your nrind atout the shutdown enter another shutdown to
cverride the rrevious cne, (Cnly the last SHUTDOYE command
entered has any effect,) Exanmple:

s 30 {To terminate KASIS in a half-hour)



PAGE 9

LYRIT TERM, & S.h.2 L

This command allows you to limit the number of users of
various sorts allowed on NASIS and to limit some of the
resources cf NASIS itself. The TERM operand is either a
nclass™" of NASISIDs (defined as the first two characters of
the NASISID) or one c¢f the Y¥eywords ™USERS", VPRINTS™,
NSEARCHES"™, WSCRTS" or "RECCRDS", The keyword "USERS® is
used to limit the total numter of users allowed on NASIS and
is the default value assumed if TERM is omitted. Keyword
WSEARCHESY limits the size of a set a NASIS user may search
on, MPRINTS" limits the size of a set he wmay print and so
on. If the TEFM operand consists of exactly two characters
it is assumed tc be a class name and +the number of NASISIDs
of that class allowed cn NASIS will be lipited, TIf the TERM
operand consists of any other number of characters than two,
it is assumed to be a keyword c¢r a part of a keyword, If
the # operand is defaulted, the value 32767 is used. If the
# operand is entered, TERN must te also entered, even if vou
use fust a comma to defawult it. Exanmples:

LIMIT ,20 {(Limit total number of users to 27)
L 5,50 {Limit search set size to 50)

LI ¥E,2 (Limit UYNE" NASISIDS to 2)

JSEES S.k.: U

This command 1lists all the KASISICs of the users currently
using NASIS,. Cnly those users conpletely logged on are
listed, if there are vsers in the process of getting on,
they will not show up on the list from a USERS,

NUSERS S«3.7 N cy/:B/: W/
This command tells vou how many users are currently using
NASIS. Onlike 0OSERS, this command also +tallies the users
wvho are in the process of locgging on,

CEBUG S.A.: D

This command places tte Monitor into debugging wmcde and
returns to you with ancther yromrpting messaqge., Only in this
rode can vou enter TSS ccmmands through the Monitor,
Furthermore, 1in this mode the MNMonitor vwill continue
prompting vyou wuntil yomw respond with a nunll line (only a
carriage-return)., This command should be used only when
absolutely necessary as it ties up NASIS for as long as the
operator terminal is bheing read from.

RE®S "OFF"|TEXT S.A.: NE
This command is used to control the sending and composition
of the "news" which is sent to each user as he logs on to
NASIS, Entering "OFF" as the operand terminates the sending
of all news and deletes all the text from the news buffer.
Entering anything but "OFF" causes whatever you enter to be
added as the last line to whatever is already in the news
tuffer. IYIf you enter no operands at all to NEWS, it will
add a carriage-return to the end of the news buffer,



PAGE 12

xampless
NEWS OFF {kills the sending of news)
PGHSTOE TOXN")W"OFFY S.A, P

This command tells tke Monitor whether or not to stop
vhenever it encounters a program interrupt ({serious error).,
If the operand entered is "OFF", the Monitor will continue
processing withcut rausing after a program interrupt. If
"ON" is entered, the Monitor will ©pause at vyour operator
terminal in 755 command mode after a program interrupt.
This is normally used so that cne of the systems pecple can
try to solve a problem. To continue NASIS execution after
the pause, enter the (ISS) command "GOY,

RECCRD LEVEL S.A. R

The RECORD command is vsed to set +the data recording level
in the monitor. This level is used to determine which
events, if any, the Monitor will attept to record on the
SIPE tape, NCTE: Merelv turning on the Monitor's
recording mechanism does not ensure that the units will bhe
recorded - SIPF itself must have been initiated by the TSS
operator,

IN 5 STATS "ON/"OFF" S.A, ST

¥hen this command with operand OFF is emrcountered, the
Monitor tures c¢n an indicator telling NASTS not to take
usage statistics, If CN is entered as the operand, that
indicator 1is turned off, NOTE: 7This command may only be
entered via the "NASIS.COMMANDS(0)" dataset,



PAGE

APPENDIX A. - COHFAND SUEMARY

COMMAND OPERRNES

{TS5 commands)
NASISHTT

KEWNASIS

GO

RESET

(NASIS commands)

MSG HASIESID,TEXT
BCST TEXT

FORCE NASISIL

KILL NASISID

SHUTDOWN TIME

LIMIT TERM, #
USERS

NUSERS

DEBUG

NEWS "OFFO| TEXT

PGMSTOP WONW|VCFEY
RECCRD LEVEL

STAYS MON® /MOFFY

FUNCTION

Bring up normal NASTS,
fring ar experimental NASIS,
Fesume after interrupt pause,

Reset operator attention routine,

Send message to specified user.
Send message to all users,

Get rid of a nser,

Really get rid of a user.
Terminate NASIS,

Limit NASIS users or resources,
list current NASIS users.

Ccunt current NASIS users.,
Enter "debugging" mode,

Turn off or add to news tesxt,
Set interrupt stoyp mode.

Set recording level,

Set usage statistics mode.

11



PAGE 12

APPENDIX B, - MESEAGE SUMEARY

The following secticn ccntains a list of all the messaqes in
the Monitor. There are error messages, inforeational
messages and response ressages vhose formats and meanings
vou should be familiar with,

CLQ RC=XX
This is the error message the Monitor issues when it
receives an invalid return ccde from the ({TSS) CLEARQ
function {the actual hexadecimal error code received is XX),
This indicates a minor failure within TSS itself but the
Monitor will attempt to continue execution.

FDOQ DVTI=%X SDA=NRENR
This is the error message the Monitor issunes when it
encounters (fror the 155 FINDO function) a terminal type it
doesn*t know atout. The Symbolic Device Address of this
unknown terminal is displayed in NNNN and the device type
displayed in XX, The Monitor will attempt to disconnect the
terninal and forget abcut it,

PGH SIR RC=XX

In attempting to initialize the routine which gets control
upon the cccurance of a program interrupt {see the PGMSTOP
command description), the Momitor ran into trouble in the
T8S SIR functicn. The error code which that function
returned is displayed in XX, The Monitor will continue
execution but w%will nct get control when a program interrupt
OCCHUTLS.

WRQ/RDQ RC=XX
This error message is printed whenever the actual attempt to
write or read cne of the user terminals was disallowed by
TSS, The failure code is displaved in XX and the Monitor
will attempt +o continue execution, pretending that this
internal failure was an I/0 error.

TS STIMER RC=XX

In attempting to set the (TSS) timer by which a wuser is
time~sliced, apr error was encountered in the STIMER
function., Since nuser's can't be run successfully without
time-slicing, the user involved will be logged off by the
Monitor. The error code found by the MNonitor is disvlaved
in ¥¥ and after 1logging off the wuser, the Monitor will
continue execution,

TS TTIMER EC=XX
This message is issued when the ¥onitor is unable to CANCEL
the time-slicing timer for a user. The error return from
the TTIMER function is displayed in ¥¥X and the Monitor
pretty much just ignores this error. It is not deemed to be



PAGE 13

erious

BAD PHONELINE STA=KNNN

This message is issued to you when the Monitor detects solid
I/0 errors on one of the user's telephone lines. (Osually
this is caused by a user <Just hanging up the phone instead
of logging off normally or bv excessive "line ncise™ on an
FTS line,) After this messaqge is issued, the user involved
(if there is one) will be automatically logged off aund the
Monitor will ccntinue execution, The Symbolic Device
address of the telephone line causing the error is displayed
in NNNN,

LOGON TXD=XXXX SLCA=NKEEN OYID=YYYYYVYYY

This messaqe is sent t¢ vou every time a user 1lcgs on to
¥ASIS. His "Taskid" (which is just a number equal to the
namber of times sometody has tried to log on during the
session) is displayed in X¥X¥¥, the Symbolic Device Address
of the user's terminal is displayed in NNNN and the NASISID
of the user 1is displayed 1in YYYYYYYY, This is only an
informational messaqe.

LOGOFF UID=YYYYYYYY

This message is sent +to you each time a user logs off of
NASIS. The NASISID of +the user leaving us is displayed in
YYYHIYYYY. (Scretimes a NASISID of ¥®22?????27?" will be
displaved if the Monitor is unable to determine what the
NASISID of the user is, for example if he tried to enter a
NASISID three times and did not come up with one that was
valid.) This is only an inforrmational message.

% OSERS=NHNN
This is the response message to the NUSERS command., NNN
merely contains the number of users currently attached to
NASIS,

SDN STIMER RC=XX

This message is displaved when the Honitor was unaltle to get
a timer started for a timed SHUTDOWN, The error code
returned by the STIMEE function is displayed in XX. The
Ponitor will continue execution but the SHUTDORN command was:
cancelled. It is suggested that you BCST warning to all the
user's and then use "SRBOTDOWN 0" to shut NASIS down when the
time cones,

SHUTDOWN AT HH:¥M
This message is the respcnse to a successful SHUTDOWN
conmand and tells vou at what time- of-day the system will
actually terminate. This is only an informational
message,.

SDN TTIMER RC=XZX .
This error message is displaved when the Monitor is unable



PAGE 14

+to CANCEL the timer which was set for a previous SHUTDOWN
command. The errcr ccde returned by the TTIMER functior is
displayed in XX and the Monitor will ccntinue execution but
igncre the SHUTLCOWN command which caused the error,

RTRN SIR R({=XX
This error messaqge is displayed when the Moniter is unable
to initialize ¢the routine it uses to transfer control from
one user to ancther., The errcr code from +the SIR function
is displayed in XY and shortly after it sends this error
message the Monitor will cause NASIS to terminate
processing.

PGN INT VPEW=XXXF¥RYXITIXYYXXY UID=YYYVYYYYY

XXXYXXIXX TEXYXXXXYX XYREXAAN . .

KYX¥YXXY YXYXXXREY FXXXXYXX,..
This is the nmessage displayed when the Monitor detects the
cccurance of a program interrupt. The only thing which will
concern you in this message is the YYYYYYYY which is the
NASISID (if any) of the user causing the failure,
(n?2772277??%" will bYe displayed if there was no NASIS user
invelyed,) After this nmessaqge aprears at your terminal,
the user will ke npotified that the system has failed and
.then logged off. See the PGMSTOP command descripticn for a
further discussicn of what the HMonitor will do after it
prints this message, {For those who pay be interested, the
animal before the UID field is the Virtual Program Status
¥ord as of the time of the interrupt and the two lines of
X¥XXYXXXXs are the wusers general registers <zero through
fifteen,)

MSG FROM YYYYYYYY-AARABBEBCCCCDDILDEEEE...
This is the message the Mcnitcr prevares for youm when one of
the user?s wants to send youw a message (with either the user
MSG or HELP command). The NASISID of the user sending you
the messaqe is displayed in YYYYYYYY and the message itself
is displayed in AAAAEFEE...

BAD LIMIT COMMBAND
This error mescage is displayed when you enter one or more
invalid operands to a LIMIT command., You are referred to
the discussicn of that command for the correct operand
formats,

MISSING *

This error wmessage is displayed when vyvou don't follow the
rules set forth in the first section of this Orerator's
Guide for the entering of auote marks, What it really
peans is that vou have forgotten to a.} pair enclosed quote
marks or b.,) fcrgotten to surround an operand containing
quote marks with goote marks, You can, of course, re-read
the first part cf this Guide,



PAGE 15

TOO NUCH FEWS
This error message is displayed vwhen the total number of
characters in the news text exceeds u4(96, A1l you can
really do is either quit making news or delete all the news
text and start over, The WNEWS command which raised this
error conditicn is ignored. {(See the description of the
NEWS command.)

{The last three error messages will be followed by a 7-digit
#line npamber" if the error was caused tv a line in the
"NASIS.,INITIAL.COMMANLSY dataset, You are advised that the
command in aquestion is not executed and that <you should
investigate the dataset for errors.}

BAD COM DS LINT NENNNNH
This error messaqge is produced vwhen a 1line in the
"NASIS,INITIAL, COMMANLS" dataset is discovered to have no
text (line is tco short)., The line number of the bad line
in that dataset is displayed in NNNNNNN and the Monitor will
ignore this line and trv to read another.

NASIS TERMINATING

This is the informational w®message which 1is sent to you by
the Monitor when it is beginpning to terminate NASIS as the
result of a SHUPDCWN command or a serious error,
Approximately fifteen seconds after this message is printed,
the Monitor will relinquish ccntrel 1leaving vou in  TSS
comrand mode once again, {This 15-second pause is so that
all the users' terminals have time to fimish typing whatever
they are tvging,)

NO MEMORY-TCTE
This error messagde is displayed when the Monitor was unable
to oktain memory in which to ccnstruct a task centrol table
for a user who vas atteppting to log on to NASIS. The user
will not be logged on and probably quite a few other things
will start going wrong after you see this messaqge,

NO MEMORY-UTEHL
The Monitor was unatle to obtain nmemory for the user table
while it was initializing itself and is about to give up the
effort since it will need rore memeory for other things., The
Monitor will fperform an automatic SHUTDORW,

QUIT LOGIC ERR
This error message 1is printed when the PMoniter®s LOGOFF
routine is called but can £ind no user to log off, This is
a programming spaz about which somebody should be notified.
“he Monitor will iqnore this error after discovering it,

NO MEMORY-NERS
The Monitor was unahle to ortain memory for the news~text
btuffer, The action for this error is the same as the action



PAGE 16

for the failure to obtain memory for the user tahle. The
Monitor gives ur and dies,

RO NASIS.OBSERILS
The Monitor was unable to locate the dataset containing the
list of permissible NASISILS to allow onto the system. The
Monitor will terminate NASIS shortly after this message is
sent. You should go pound on the Data Base Administrator as
this message imglies screbody has lost the user 1list.

B2D USERID
This message is sent when you svecify an invalid WASISID to
a NMSG, PFORCE cr KI11 command. The Monitor continues
execution after 4ignoring the <command vwhich caused the
error,

ND M56G
This error message is sent to you after vou have entered a
M5G or BCST ccmmand and not specified any message to be
sent, The Monitor continues execution after ignoring the
conmand which caused the error,

WASIS COMMENRCING
This informational message is sent to vyou after the Monitor
has initialized NASIS and is beginning to allow user's
access to NASIS. It is at this point that ©NASIS is
concidered "ap and running"®,

NO MEMORY-TICT
This error message is issued if the Monitor is umable to
obtain memory fcr the list of connected +terminals which it
must maintain, The Monitor recoqinzes this as a serious
error and causes NASIS to terminate after it encounters
it.

NO MEMCRY-=ATN

This error message is sent when the Monitor discovers that
it can't allocate the necessary memorvy for an attention
interrupt table for a user. This error probably means that
bad things are ahout to happen (because memory is getting
short) but it igncres the error anyvays, It also ignores
the (user?'s) attention which caused the discovery of the
€rIor.



PAGE 17

TOPIC B, 1 - CONVERSION, VALIDATION, AND FORMATTING

ROUTINES

INTRODUCTICN

The design of the NASIS system provides for three types
of user-written 1cutines to perform special processing
unique ¢to a particular field, A Tuser"™ is a mainline
programmer for the specific data base; such as the data
base adwiristrator. These routines are c¢lassified as
conversion, validation and formatting.

The DBPL/I statements used in the NASIS system provide
for updating and retrieving from a data base. The data
is always assumed to te character strings, The ability
to specify Ccnversion, Validation and formatting
routines is provided, allow for massaging field data
and still meet the DBPL/I character string
requirement,

The Convercsion rouotine 1is uased to alter character
string ingput to anv desired form. The Validation
roatine is used either to verify the results of a
Conversion routine or to verify the character string
input.

The Formatting rcutine is used to alter the internal
stored data back tc a character string.

A. CONVERSION Routine

The CCEVERSICN routine 1is called by the data base
executive, DBFAC, to convert the data passed by
the user in a [IBPL/I statement from an EBCDIC
character string to some other type of
representation for storage on a file, The
CONVERSION routine is invoked Dy all DBPL/I
statements that place data, by field name, onto
the data base.

B, VALIDATION Routine

The VALIDATION routine is call of theed
inmediately after the call COXVERSION routine.
The function of this routine is to verify data
infput for storage on the data base, via the rules
specified bty the user of this field., A VALIDATION
routine may be present regardless of the opresence
of a CONVERSION routine, To assist in this
evaluation, the NASIS system provides for a
validation argument,



L

C.

PAGE 18

FORNATTING Routine

The TFORMATTING routine is called +to change the
data read from the data base into the desirable
output form, The FORMATTING routine is invoked by
all DEPL/I statements that retrieve data, by field
name, from the data base., The formatting routine
specified for a field will be called whenever the
data in that field is retrieved,

A ccllecticn of Wotandard® conversion and
formatting rcutines is provided in the RDBEXITS
module (Section IV, Topic B.4).

CALLING SEQUENCE

In general, these routines are called dynamically, by
name,

They must reside in DBALIB and bhe capable of

accepting a PL/I fcrmatted parameter list.

A.

CONVYERSION Routine

The fcrmat of the CALI statement used bty DBPAC to
invoke the CCNVERSION routine is as follows:

CALL rtnname (input-data, output-area,
error-hit):

wheres

"ri¢nnare” identifies the particular routine
to te called, as specified in the field
descriptor, It is the routine's
rrccedure name or an entry point.

"input-data® is a varying length character
string, maximum length eaqual to 4000,
intc which C[EBPAC has placed the dinvut
data value,

"cutput-area" 1is a varving length character
string, raxirum length egual to 4000,
initialized to null, into which the exit
routine places the converted data
value,

vorror-kit" is a tit switch, initialized to
one (1), whick is set to zerc {0) if
there were no errors uncovered in the
conversion, or one {1} if errors vere
detected. The burden of setting the
switch to Zero {0y is with the
CCRVERSIGN routine,



PAGE 19

B, VALIDATION Routine

The fcrmat of the CALL statement used by LBPAC to
invoke the VALIDATION routine is as follows:

CALL rtnname {input-data, output-area,
error-btit, arqument):

wheres

“rtnname® identifies the particular routine
to ke called, as specified in the field
descriptor. It is the rcutine’s
rrocedyre nawe or an entry point.

vinput-data" 1is a wvarying length character
string, maximum length equal to 4000,
into which DFEPAC places the input data
value after conversion,

Ycutrut-area" is a varying length character
string, maximum length egqual to 4000,
initialized to null, into which the exit
routine places the validated data
value,

“error-tit" is a kit switch, dinjitialized to
one (1), whichk is set to zerc {0) if
there were no errors encountered in the
validation, ¢r one (1Y if errors were
detected, The VALIDATION TRoutine is
responsitle for setting this switch,

"argument" is a varying-lenqth character
string, maximum length equal to 50, into
which LCBPAC places the validation
argument, as read from the appropriate
field of the descriptor for this data
field,

Cs FORMATTING Routine

The format of the CALL statement used by DBPAC to
invoke the FCEFMATTING routine is as follows:

CALL rtonname {input—-data, output-area):

wheres

"rtnname® identifies the particular routine
to be called, as specified in the field

descriptors, It is the routinet*s
rrocedure name or an entry point.



ITI,

PAGE 20

#input-data® is a varying length character
string, maximum length equal to 4009,
into which DBPAC places the data value
read from the data base.

"output-area®™ is a varying length character
string, mraximum length equal to 4000,
initialized to null, into which the exit
routine rlaces the formatted data

value,

RESTRICTIORS

The routines must bheed the following restrictiocns:

a,

B.

C.

The rcutine can not make any calls to DBPAC (i.e.,
it shculd not contain any DBPL/I statements).

The routine is the 1lcwest level module; i,e., it
does not call any other routines.

The rcutine is written in PL/T,



PAGE 21

APPENDIX A.

Diagnostic Messages and Codes FProduced By the Conversion,
validation, and Formatting Rountines.

A,

B.

031

g3z

053

054

Piagnostic Messaces
CALL ERRCR: MODULIE #**a%%%x%% CANNOT BE LOADED,

This error message 1is generated if the module named
cannot te loaded when called by DBPAC, Ignoring the
sitvation and allcwing the system +to run may cause
unpredictatle results.

The most probable reascons for this error are:

L failure c¢n the part of the user to have the job
library containing this prcgram properly DDEFed,

24 inconsistency between the name of the routine as
specified in the descriptor file and the name
actually used when writing the prograwm,

DBPAC Errcr Coder Associated ®With the Conversion,
Validation, and Formatting Routines :

EEY FIELL FAILETL CCNVERSICN,.

The data value passed +to the CCKVERSIO¥ routine, for
the kevy field of the data tase, was found to he in the
wrong foremat.

RKEY FIELL FAILED VALIDATION.

The data value passed to the VALIDATICN routine, for
the key field of the data base, was found to be
jnvalid.

DATA FIELL FAILED CCNVEPRSIORN.

The data value passed to the CCNVERSION routine, for a
data field, was found to be in the wrong format.

DATA FIELD FAILEL VALIDATION,

The data value passed +to the VALIDATIOW routine, for a
data field, was fcund to te invalid,



PAGE 22

APPENDIX E.
Sample Validatiocn Routine

A sample VALIDATION routine is shown below, The function of
the routine is t¢ compare the input data value to each of
the four byte entries carried in the validation arguments.
If a match is fcund, the routine substitutes a numeric code
for the input data value, resets the errcr bit to accept the
field and returns to DBPAC. If no match is found, the
routine returns to DEPAC with the error hit set to reiject
the fielad,

/¥ THIS IS 2 VAIYDATICN RCOTINE FOF THE OPERATICHN COLES: */

/* THE PARAMETEES PASSEL ARE: ®/
/¥ A= THE INPUT STRING WHICH IS TO BE VALIDATED, */
/¥ B= THE VALUE TC BE RETURNED AFTEF VALIDATICN, */
/¥ C= THE PBIT SWITCH. *(' MEANS PASSED VALIDATION, */
,¥ *1¢ MEANS FAYILECD VALIDATION, */
/% D= THE VALIDATION ARGUMENTS, */
/¥ D IS CCMPOSED OF THE FOLLOWING CHARACTER STRING: %/
/* *ADLEADDRCKGEFIDCDELFDELF? */

CHECKOP: PROCEILURE (A,E,C,D):
DECLARE (A,R,D) CHARACTER(*) VARYING, /*PARAMETERS, */
C BIT{1}: JE*PARAMETERS, */
ON ERROR GO TO OUT_DIRTY;
DOT = 1 10 21 BY 43
I? A = STNESTRIL,I, W
THEN GO TIC OUT_CLEAN;
END:
QUT_DIRTY: /% IF IT DOES NOT MEATCH KEYWORDS IN ARGUHMENT. */
C = "14E:
RETURN;
OUT_CLEAN: /* THE VALIDATICN CF CP_CCDE WAS SOUCCESSFUL, */
C = YOYE;
B = A;
RETURN:
END CHECKCP;



PAGE 23

TOPIC B,2 - DBPI1/I LANGUAGE EXTENSION USER'S GUIDE

I.

I1. .

INTRODUCTICYN

This manual is for PL/I Programmers writing a mainline
proaeran that accesses a NASIS data base. The data base
organizaticn Yeing used is fully specified in the
WHASIS Overview",

All data base access is done by a combination of:

1. an extension of the FL/I 1langquage, called
TEPL/I, for data tase access,

2. a compilation-time socurce program processor,
re, and

3. execution-time routines DBPAC and DBLIST,

This ganual 4is the specification of the DBRPL/I
langunage extension and is the reference manual to the
DR preprocessor, Tetailed specification of the
internals cf the [B preprocessor are given in Section
IV, Topic B.1 of the DWB, and the details on the
execution~time routines are givern in the BEPAC Design
Specifications (Section IV, Topic B.2 of +the DWB),
Neither of these two sections are needed for writing,
compiling and executing mainline programs; they may be
needed for debugging,

Chapter IT of this manuval discusses the usage of the
LB preprocessor. Chapters ITYI through VI are composed
of discussicns and examples of the different features
of DBPL/I and their interrelaticnships, Chapter VII,
"Ruyles and Syntactic Descriptions®, provides a detailed
reference to specific information dn alphabhetical
crder, Arpendix 2 is a gquick reference to DBPL/I
syntax.

THE PREPROCESSOR
B. Overview

DEPL/I langnage statements have to be processed
at compilation-time, The processing consists of
syntax analysis and the generation of PL/Y
statements CBRILing DBPAC to accomplish what the
DBPL/I statements signify. This processing is
done by the pregrocessor staqe of the PL/I
compiler under control of a preprocessor procedure
named DB, A programmer using DBPL/Y does not have
to write the LB preprocesscr or be concerned with
the PL/I statements that are generated by it: hat
he is reguired to urite certain statements in his



B.

PAGE 24

source program so that the DB preprocessor s
properly invoked ty the PL/I compiler for his
program. He must also refrain from using certain
identifiers which are reserved words for the DB
preprccesscr's exclusive use.

Usage
The statements required to properly invoke the DB
preprccesscr are illustrated in an example program

in Fiqure 1.

Y. FIG_1: PRCCEDURE CPTIONS (MAIN);

2. % INCLULCE ITISEMAC(DB):

3. CECLARE REPORT# CHARACTER (13) VABYING:

4.

5. LB ({ CN ERRORFPILF(STAR) GO TO NOQTE; )}))

6.

7T LB {{

8. READ FILE{STAR) KEY('67N26508*');

9, GET PILE(STAR) FIELD{’REPTNO') INTO{REPORT#};
10. })

11,  PUT DATA (PEBCRT#):

12.  RETURN;

13,

14, NOTF: PUT DATA (STAR,ONCODE):
15, DCNE: DB (( FINISH; 1))

6.  END FIG_1;

% INCLUDE{(DE);

One ®INCILUDE DB statenent nmust e wvwritten
immediately following the external PROCEDURE
staterent cf the compilation. Any PROCEDURE
statement attributes could have been used in line
1« The % INCLULE DB statement must precede all
other statements such as line 3,

DB{{OF ERRCREFILE{(STAR) GO TO NOTE3))

Anvy LFPL/I statement, such as this ON statement,
must he vwritten as a subarqueent in a DB
preprccessor function reference, As many TIB
statements may he used as required. Any PIL/I
staterents reguired may be used at lines 3, 4, 6,
and 11-14, 1Lines 7-10 illustrate that mcre +than
one DRPI/I statement may be written 1in one IB
statement. Bowever, no nop-DBPL/T statements
would be rermitted within a DB function
reference,

DB{(FINISH3))



IIX.

Ce

DATA

A.

PAGE 25

Cne T[PPL/T FINISH statement pust be written
folleowing all otherx D/ statements in the
coppilation. It will usually be written Just
preceding the END statement of the external
procedure because it generates a RETURN statement.
If the statement in line 14 is executed, then the
procedure will te terminated by control passing
sequentially to the RETURN statement generated for
line 15, The 1label in 1line 15 is nct required,
bat it would he valid as shown ({e.g., line 12
could te; GO TO DONE3).

The LF pretrocessor function generates diagnostic
cocmments f{see Section III, Topic B.,1 of the
DWRY ., ¥hen reviewing a compilaticn, the
pregranmner chould first find the summary
diagnostic message (DBO67) to know how many error
diagncstice for which to search,

Reserved ¥erds

The FINISH O¥-condition is reserved for use by the
DR preprocessor. The following identifiers are
reserved for the uses specified in this manual or
for the DB preprocessor's use:

CCLIST

CPLIST

[

DBEFCBP and all other identifiers beginmning
‘lDBi

TOPLIET

ERRORFILE

#FIELD

CRPL/T file~names

FINISH

LIST

%¥1IST

LISTERER

ULIST

UPLIST

{¥XREF

The PL/I HIGH and NOLL built-in function mames mavy
be used as such in the program, but the names must
not he otherwise declared,

BASE ANXND FILES

Overview

. The TIBPL/I language provides statements that

anable data +to te transmitted between internal



B.

PAGE 26

main storage and external storage devices
oraganized as cne or more data bases,

Lata Sets

Each "data set" is a named, labelled collection of
related data, subdivided into keyed data set
records.,

The cne m"descriptor data set"™ for a data Dbase
stores data describing the information data set(s)
and their interrelaticnships, It is a ccllection
cf cne or mors descriptor regiomns,

Each T"descriptor region" is a <collection of
descrirtor records for an information data set.
The first record in a descriptor region is a data
set descripter reccrd., Subsequent records in a
descriptor region are field descriptor records,

Files

DBFL/I requires a file name to he used for a file.
What data =et(s) a file name represents is deduced
from the file title, Characteristics of a file
may be described with kewywords, called file
attritutes, specified for the file name, deduced
contextually, or assumed by default,

A "file name" is an identifier specified in the
PILE clause of DPPL/I statements, A file namre may
not exceed the seven-character lenqgth 1limitation
for external names, The user pust €xecute a PL/I
ALLOCATE =statement for the NMFCE before executing
anv LBPL/T statements. For example, t¢o use a
DBPL/Y file-name "plex™ the following statement
must te executed:

ALLOCATE PLEX;:

0f course the allccation must be done in a progranm
in which PLEX will be automatically declared
because of its use in a DBPL/I statement. If the
module where the ALLOCATE is to be done does not
otherwise need DBPL/I statements, the following
are recommended as a minimum:

% INCLOUDE LISRMAC({DB} ;

AILOCATE FLEX;

TB{(CY ERRORFILE{PLEX) SYSTEM;})}
CB{{FINISH3}Y)

A ©vfile title® can te specified for a DBPL/I file



PAGE 27

either through the f£ile name or through the
character string value of the expression in the
TITLE option of a DBPL/I OPEN statement. If a
file is OPENed implicitly, or if no TITLE option
is specified in the OPEN statement that causes
explicit orpening of the file, the file title is
assumed to be the same as the file name,

A file title, not beginning with a pound sign (%),
consists of a six-character left-aligned dataplex
identification and a one-character suffix. Which
data set{s) the file name represents will te
deduced from the file title suffix value as
folloss:

tlank= the identified data base cr anchor
data set (for physical record
orerations: GET RECORD or ¥RITE).

numeric: the particular associated data

set,
i Ast t the particular subfile data set,
A=-P: the particular index data set,

A pound siqn (#), vprefixed to a file title,
specifies that a file name represents the
descriptor region rather than the information data
set itself, {(This combination may be specified
only in the TITLRE option of a DEPL/I OPEN
statement because it resunlts in an eight-character
title,Y If the eighth character of a descriptor
region title is blank, the file represents only
the anchor descrirtor regien, This facility
allows mainline frograms to create, maintain or
retrieve frcm descriptor regions for their own
purgoses,

File M"attributes" for a file name may kte
sgecified exrlicitly in a DBPL/I OPEN statement or
assumed by default, LCifferent attritutes may hbe
applied in different openings of the same file in
a prcgram; at any particular time, the attribhutes
applied by the most recent opening aprly to the
file nane.

Pile laevel Statements

DEPL/I provides the OPENW, CLOSE and ON ERRORFILE
statements £for file level operatiors, A}l are
optiocnal; a simple mainline may not need any of
them. There is no statement for declarirng a



PAGE 28

DBPL/I file; the DE preprocessor generates the
necessary Mainline File Control Block (MFCB)
automatically.

The OPEN and CLOSE statements may be used for any
of the purvoses indicated in their descrirtions in
Chapter VII cf this ranual.

The ON ERRCEFILE statement is used to establish a
user's error routine in the mainline to shich the
DRPAC executicn routines will return when an error
condition (e.qg., key nct found) cccurs on a file,
Several OF statements for a file may be executed
in a program either before or after the file is
opened.

An Yerror routine™ wmust begin with a statement
label {the =same latel identifiler specified in an
ON statement)., PL/I (or DEPL/T) statements may be
written following the label ¢to handle the error,
These statements mnay reference certain fields im
the MFCB for assistance im determining the errer
identity and resuming normal execution, MPCE
fields are vreferenced using a qualified name
ccnsisting c¢f the file name and an MFCE field
name. The MFCE fields that may be referenced in a
file exception rcutine are as follows:

file-nam¢.ONCODE is a binary integer whose
value specifies the excaeptional
condition. The meanings of the various
CNCODE values are in Section ITI, Topic
B.3 of the DWB.

file-name.,ONFILE is the current file title,

file-nama.,ONFIELD is the current field name
{whan applicatble),

file-~name.,ONFETURN is a lahbel variatle set by
PBPAC.

An error rcutine may be terminated in any manner;
for certain cf the less serious ONCODEs, a GO TO
file-rame.CNRETURN; statepent wmay be used which
transfers control to the statement following the
one that raised the exceptional condition,

For a more generalized exception routine for one
or ncre files, the relevant MFCB fields wmay be
referenced using a gqualified name consisting of
the reserved keyword ERRORFILE and an MFCB field
name; €.9., ESROBFILE,ONCODE,



PRGE 29

I¥v. RECORDS

A,

Ooverview

The data itenms in a data set are arranged in data
set 1ecords. In this manual, a "physical record®
means a single data set record havimg an internal
self-defining, variable~lenath format, a
fixed-lenath internal ey, and the other data
itens.

The simple term, "record®, in this panunal means
either a 1logical record or a vphysical record,
depending cn content.

The "Vcurrent record of a file® is the single
record having the ¥ey value established by the
rost tecent record level operation on the data
base component file. It is accessible only by
DBPL/I statements; the mainline has no means of
addressing it., In a spanned index, the Tcurrent
record® is actuallvy a "region” of one or more
physical records made +to behave 1like one logical
reccrd.

Becord level Statements

DBEPL/I vprovides the LOCATE, READ, and ONIOCK
staterents fcor record level operations, The
record level statements cause a record {possibly
more than ¢ne physical record) to be transmitted
between +the data set{s) and the current record of
a file, The transmission wmay be immediate {READ
or UNLOCK after update) and/or subseguent (LOCATE
or READ for update). IOCATE and REAL cause
avtomatic file opening, if necessary.

The IOCATE staterent is used to create a new
current reccrd having a new key for subsegquent
transmission to the file (no YRITE statement is
needed), The LOCATE SOBFILE statement is used to
create a nev current subrecord,

The READ statement 1is used to retrieve a record
from a £file and establish it as the current record
of the file, If the record is updated, it is
subsequently retransmitted to the file (no REWRITE
statenent is needed). The READ SUBFILE statement
is used to retrieve a subrecord and REAL INDEX to
retrieve an index record,

The UNLOCK statempent releases a locked current
record so that other tasks can read 1it, If the



C.

PAGE 30

reccrd was updated, it is retransmitted to ‘the
file. The UNLOCK SUEBFILE statement releases a
locked current sukrecord,

Physical Record Statements

DBPL/I provides the GET RECORD and WRITE
gtatements for n©physical records. These are
special purpose statements intended for use in a
utility mrainline for backing ap, restcring or
reorganizing cne particular data set at a time.
They may be used only by the owner of the data
base.

The GF¥T RECCKD moves the current physical record
without change to the user's receiving field (for
backur turgoses).

The WEITE statement transmits a physical record
from the mainline without change to a data set
(for restoring or reorganizing purposes), WRITE
causes automatic file opening, if necessary.

v. FIELDS

A,

Qverview

The data items in a record are arranged in fields
and, optionally, field elements,

A "field” is a data item having a field name, an
internal field descriptor and one or more values
per record. Since scme fields may have multiple
values per rtecord, an individual data item |is
called a field element, This section of the
manual relates primarily to anchor, associated and
subrecord fields, although the GET TINDEX FKEY
staterent may be wused for index key fields,
Facilities for sutfile control fields and for the
list-cf-keys field in index records are discussed
in Chapter VI of this manual,

2 9"field name" is an eight-character string value
identifying a field, B3 mainline written in terms
of a known particular data base may use a
character-string cconstant in string quotes, A
nore generalized mainline may use an
eight-character string variabhle and assign a value
to it from input data or from a descriptor record
before using it as a field name, The names of the
fields in field descriptor records are given 1in
the Descrirptor File Specification.



B.

PAGE 31

An "internal field descriptor" is either a field
descriptor record in a descriptor region (for data
tase fields) or an 1internal descriptor ({(for
descriptor fields ), The descriptor record for an
anchor field may limit GET access of a FIELD to
those users the file owner has authorized. (POT
and REPUT may bte used only ty the file cwner).

A "field element value”™ is alwavs a varying length
character string value in the mainline.
{Internally, it mayv be fixed- or variable-length
and character or coded form.) There may be sonre
transformaticn hetween the internal value and the
mainline valupe. If the field descriptor names an
input wvalidation and/or conversion routine or an
output forratting routine, the relevant routines
will ‘te invoked automatically when the field is
accessed.

The internal value of a field element is =null
until a value is PUT into it. A GET FIELD
staterent retrieves a value even if it is null; a
null value vyields a null mainline string value
(unless a formatting routine translates a null
internal valune +to something non=-null such as 'KRO
DATE YET"). To handle such a case, the nost
general way to retrieve field valuwes is as
fcllowe:

IO I=1 T0 MAY(H4FIFLD{mfch,fldname),
TE({{GET FILF(mfch)FIELD{fldname) INTO (var);}))
IF LENGTH (var)=_
THEN GO TO FIFLD_EXHAUSTED;
/*Nse field element valve in var.*/
END;
FIELD_EXHAUSTED:

D¢ not attempt GET FIELD more than #FIFLD times or
something like 'O DATA YET* will be retrieved
after values actually present, The mainline may
deterrine if the field element is null by testing
if the lenqgth of the wainline string is zero. &
REPUT statement replaces an element with a new
value which mav ke a null value.

Field lLeavel Statements and Functions

DBPL/T provides the POT FIFID, GET FIELD and REPUT
statements for the creation, retrieval, and
maintenance cf field elements on anchor and
subfile records, #FIELD 1is a PL/I function
provided for ottaining the numbers of elements in
a field., The field level statements cause Oone oOr



PAGE 32

more field elements to he transmitted individually
between the current record of a file and a
mainline rprogram. A record level statement nust
have teen executed to establish a current record
of the file before a field level statement may be
axecuted,

The PUT FIELD statement 1is used to create a new
field element in the current record of the file.
It is suksequently transmitted to the file
automatically (no WRITE or REWRITE statement is
needed).

The GET FIFIL statement is used to tretrieve a
field element from the current record of the
fiJ.EO

The REPUT statement is used to replace an existing
primary field element in the current record of the
file. It is subsequently retransmitted to the
file automatically {no REWRITE statement is
needed},

The 4#FIFLC functicn calculates the nunmber of
eleperts in a field. It may be used to govern
GFTting of elements or merely to determine if a
field has any elements or not.

For a field that may not have pultiple elements,
the field 1level statements transeit the single
field element value,

The following discussion applies to fields that
may have myultiple elements, PUTting an element
appends it to the right end of the field. GETting
of a FIELD element rroceeds from 1left to right
and, vhen the end of ¢the field is passed, null
values are generated, REPOTting an element
replaces the "current element of the field" which
is the element most recently obtained Ry a GET
FIELD from the current record of the file. There
is no facility for referring to an element by its
position (subscript) in the field, I1f it is
necessary to (re)GET an element that 1is to the
left of the current element, the record may he
{re) READ, resetting all of the internal corrent
elenent ccunters to the first element of the
fields, If it 1is necessary to maintain field
elemerts in scme corder depending on their mainline
values (rather than the order im which they are
entered), the following technigue may he used {for
ascending seguence):



VI,

C.

LISTS

a,

PAGE 33

IECLARF {(OLD,NE¥) CHARACTER (maxlen) VARYIXG;
NEW = exrression;
TE {{ READ FILE {name) {positioning);
NEXT_FLENMERT:
GET FILY {name) FIELD {fieldpame} INTIO (OLD);
)
J¥ LENGTE {CLD} /¥ IF OLD IS NON~NULL */
THE®R DTC:
IF LD > NWEW /% GREATER THAN*/
THEN DO: /*INSERT ELEMENT */
LB {{REPUT FILE{name)
FIELD {fieldname) FRON (NEWY: ));
XF® = CLD: /% FPOR PROPAGATICR =/
END;
G0 TC NEXT_FLEWMENT:
FND:
IB ({ PUT FILE (name) FIELD (fieldname) FROM
{NE¥W); ¥)3

Index Field Hetrieval

DBPL/I vprovides a special GET INDEX KEY statement
and the #XREF function for retrieval from indey
records, {Such records may not be explicitly
created or raintained by mainline programs), A
READ INDEY statement must have been executed to
establish a current record of an index tefore a
GET INDEX KEY or #IREF may be executed.

The GET INDEX FEY statement is used to retrieve
the index key field value from the current record
of the index,

The #XBREF fancticn calculates the number of cross
references {anchecr or subfile kXey elements) in the
current record (region) of the index,

The GET FIELD statement and #PIELD will not work
on index record fields., BAn index record RECLEN
field cannot te retrieved (it doesn't mean much in
a syanned index), The GET INDEX KEY statement is
provided for the index key field, #XREF is
provided (instead of #FIELDY for the cross
reference field element count. The GET INDEX LIST
SET statement {see secticn VI.B below) retrieves
the whole cross reference list (instead of an
element at a time),

Overview



PAGE 34

A *"list" of Xeys is a collection of ascending
internal key elements in pain storage, identified
by a2 mainline 1list pointer, (The keys are
accessible orly by DBFL/Y statements).

A M"list rpointer® is a FL/I pointer variable
declared in the mainline, set Ly a DBPL/I GET SET
statement or 1IST function reference, and used to
identify a 1list. A list pointer having the PL/I
NOLL gpointer value identifies a null ({(empty)
list.

There are several wvayvs to form 1lists (see Figure
1

1, Fead anchor records seguentially and pick
kevys,

2. Read sutrecords sequentially from a sulkfile
and pick keys,

3. Copy an index record cross reference 1list,

4, Copy a subfile control field,

5. Rerge thke surfile control fields from a
ceries of ancher records specified in a
list,

Ba Merge the parent keys from a series of
subrecords specified in a list,

7. Get keys seguentially from a 1list and pick
interesting omnes,

8, Erop the duplicate keys from a list,

9. Get internal Xeys sequentially from a 1list
and generate internal keys for an osutput
list,

10. Logically conrbine (ANDP, OR, or ARD ©NOT)
compatitle lists,

The number of keys in a list may be found, Key
elemerts (in external or internal form) may be
taken from a list. A list may be used to control
REATing of anchcr records. The mainline nay
teguest and get centrol of any errors in the auase
of l1ists,

Method 1: forming a list of anchor keys;



PAGE 35

ptr=KRULL; .
-=>DB{{READ FI1E{(plex) file-positioningj))
f TB{(GET FILE{plex) KEY SET{ptr)3:))

-

the GET KEY SET may or may not te executed
depending c¢n the result of GET FIELD statements,
etc.

Method 2: forming a list of subrecord keys:

ptr=NOLL;
-=>DB{{READ FILE(plex) SUEBFILE(scfn)
| file-positionings))
1 DB({GET FILE(plex) SUBFILE(scfn)
! KEY SET {ptr)3:))

- -

It is analogous to nmethed 1,
Method 3:

TB({REAL FILE (plex) INDEX(ifn)
file-positionings))
CB{{(GET FILE{plex) INDEX{ifn)

LIST SET (ptri:))

It may be used on any index,.
Method 4=

CB{{RFAD FILE(plex) file-positioning:})
TBE{(GET FILF (plex) SUBFILE {scfn) LIST
EET (ptr) 3))

It ccpies the rnulti-element control field as a
list of those subreccrds in a subfile that are
dependent ¢n a rarticular anchor record, i.e. a
"chain™ of related detail records. ¥ote that a
contrel field is essentially a stored copy of the
result of a vhole~-sutfile search for a particular
parent key value,

Method 5:

ptr2=CCLIST (plex,scfn,ptrt);
It is like method 4 repeated for all the keys in a
Index 1ist with the results all ORed together: It
produces a Ccrplete Children List,

Method 63



PAGE 36

ptr2=CPLIST (plex,ptr1);
cr
ptr2=UPLIST {plex,ptrl);

It reads all the subrecords in a list getting the
parent key field from each one and merqging the
parent keys into +the output 1list. The Unique
Parent List function drops duplicate parent kevss
Complete Parent List does not,

Method 7:

ptr2=KULL;
~=>DB{{CET LIST{ptr1) KEY <{n)> INTO {var):})
| DB({GET LIST(ptr1) XEY SET(ptr2)3))

- -

Where the G¥T KFY SET may or may not be executed
depending cn the “var" value, Method 7
essentially handles a special case of method 1
when the "file-pcsitioning®” would be governed by a
given list and only the key field wculd be gotten
to determine selection: for such a case, method 7
is far more efficient btecause no record level data
base I/C is needed,

Method B:
ptr2 = OLIST{ntr?l);
It efficiently produces a new list cf unique keys
(no duplicates) without any record level data bhase
I1/0.
Metheod 9:
DR{(SET 1IST{ptr2) SIZE(dim)

LIKE LIST (ptr1ys:))
-==>DB{{GET LIST(ptr1) INTERNAL KEY

1 INTO{var);))
{==>DB{(PUT LIST(ptr2) INTERNAL KEY
i FRCHM (expr):))

oy op n -

It is a very special purpose variation of methcd
7. It works with unconverted external key values.
If the inner loop is used, it 1is vpossible to
generate pnpore than one kev for each GET KEY,
Since the output list may receive a gmultiple or a
fraction of the numbher of keys in the inpat list,
a size dimension must te supplied in the SET LIST
LIKE 1IST statement estimating the minimum number



B.

PAGE 37

of output keys.

Method 10:

l'l
ptr3=LIST{(ptr1,*'5",ptr2);

T

The LIST function forms a nev list in main storage
frcm two compatible lists in main storage, The
two arqument lists remain accessible for further
combination or other use. The LIST function is
used in retrieving for compound gqueries. Given
two lists, A and B, the LIST operations provided
are illustrated in Figure 2, "Venn Diagram.®

%hen more than two lists have to be combined, the
mainline may use one of the following techniques
(where R is the resultant intersection list):

T1 = LIST (A, '&', B)
T2 = LIST (T1, *&', C
)
D

i

LB {{ FREE 1IST (T1)
£ = LIST (12, '&+,
LB {( FREE LIST (T2)

)3

}: /7%IF DESTRED HRERE*x/

}s

Y); /*IF DESIREL HERE%/
A seccnd possible technique is:

LIST (A, '&', B):
LIST (R, 'E€°, C);

¥
F
R LIST {R, ‘€', D};

o oH

A third possitle techniaque is:

F = LIST ( LIST {(a, *'&*, BY, *&', LIST (C,
'8y DY}

The last tvo technigues do not retain intermediate
lists,

List Statements and Functions

#LIST is a FEL/Y function provided for ottaining
the numter of keys in a list. For example, if 1
is a rpointer identifying a 1list and S5 is a
varying-length character string, the following
DO-grcur would he valid:

I I = 1 TG #LIST (L);
DB {{ GET LIST (L) KEY INTO (S}s: }):
PUT SKIP IIST (I, S)g;
ENT;



PAGE 38

If it is merely desired to determine if a list has
any elements cr not, the followinag technique is
more efficient than a #LIST function reference:

IF L ~= NULL THEN /* LIST HAS HORE THAN ONE
ELEFYENT */;

The GIT LIST KFY statement moves a 1list element
key from a list to the user's receiving string.
Any conversicn from internal to external form is
done automatically, The GET LIST INTERNAL KEY
statement never ccnverts the list element key
value,

The READ statement with the LIST file positioning
ottion is used to read the anchor or subfile
record with the next element of a list as its key.
It is more efficient than GET LIST EKEY; RERD by
KEY because the internal form of the key element
is available for use without conversion,

There are twc independent ‘“current elements of a
list": the one most recently obtained Py a GET
LIST XEY statement and the one most recently used
by any READ statement under control of the LIST.
3 key may te referred +to sequentially forwards or
backwards or by its position ({subscript) in a
list, The GET or READ current element counter may
be reset by a GET LIST ¥KEY(0) or a READ LIST
KEY (0) statement respectively.

The SET LIST, IIFE 1IST, and PUT LIST INTEEWAL KEY
statements are for allocating and posting lists
for sgecial tpurposes,

An explicit FREE I1IST statement frees the storage
and NULLs the pointers for the lists specified. A
general FREE LIST statement frees all current
lists tut does not NULL any pointers.

The ON LISTERROR statement is used to establish a
user's list exception routine in the mainline to
which the list processing routines return when an
excerticnal list condition occurs (€.,
attempting to comhine incompatible listsy, Use of
the statement is cptional and several OK LISTERROR
statements may bte executed in a program,

4 "list exception routige” pust begin with a
staterent label (the same label identifier
specified in an ON statement). PL/T (or DBPI/I)
staterents may be written €following the 1label to
handle the e¥certional condition, These



Vir.

PAGE 39

staterents ray reference a binary integer field
named IISTERF.ONCCDE (declared automatically by
the DF preprocessor) for assistance in determining
the excepticral condition,

A list exception routine may be terminated in any
nanner: no provision is made for returning to the
functicn reference that raised the exceptional
condition.

RULES AND SYNTACTIC DESCRIPTIONS

The syntax notaticn used in this manual is a subtset of
that used in the TSS PL/I Reference Manuval (Form
C28-2045~0) and sgpecified in Section A thereof,

1.

2.

3.

6.

& notation variable is shown in lovwer case
letters, hyphens and, possibly, a digit, All such
variabtles shown are defined in this manual either
syntactically or semantically.

A nctation constant denotes the literal occurrence
of the characters shown, It consists either of
all cavital letters or of a special character such
as a cclen, rercent sign, parenthesis, conma or
semicolon.

Braces, [} , denote that a choice is to be made.

Corner brackets, <> , denote options, BMaything
enclosed in trackets wmay agpear one time or may
nct arpear at all,

The vertical stroke, | , indicates that a choice
is to be made,

An ellipsis, .+s , denotes that the contents of
the rreceding brackets may optionally occcur more
than once in succession.



PAGE 490

The CCLIST Function?

Complete Children LIST builds a list of subrecord keys frem
a given parent key 1list, €for a particular subfile, and
returns a pointer value identifying the new 1list to the
point of invocation. The new list is the complete 1list of
dependent subrecords {(children) formed by nerqging the parent
record?'s subfile ccntrol field lists. Any previously
current trTecord and sultrecords that were updated will be
transmitted to the data base., The record identified by the
last (highest) key in the given list will remain as the
current {(but not locked) record; any current subrecords or
index records «ill remain current. The READ cursor of the
given list will be reset,

Eeference?
CCLIST {file-name, ctlfield, parent-list-pointer)

A CCLIST function reference is used as or in an expression;
it is not to be a sokargument in a DB preprocessor function
reference, The user may not declare any attributes for the
CCLIST function; the fcllowing statement will be generated
autcratically:

DECLAREY CCIIST BENIRY {,CHAR(8),FTR) BRETURNS (PTR):
ArguRentsz

file-name: specifies the data base file from which parent
records are t¢ be transmitted. It may not be an QUTPOT
file. If +the £ile is not open, it will be opened
automatically. The 'file-name' must be used in at least one
DRPL/I statement elsewkers in the progran.

ctlfield: is ar exfression that specifies the name of the
subfile control field, The value of the expression is
converted to a character string, if necessary, the first
eight characters of which identify the control field.

parent-list-pointer: must be a pointer expression that
identifies a list 1in main storage ©of parent keys from the
data base accessed by *file-name?. It must have been set
vhen the CCLIST function is invoked.

Result:

The value returned by the CCLIST function 1is a pointer
identifying the new ccrplete c¢hildren list, The new list
will be in crder of ascending internal subrecord ey values
without durplicated values. If none of the parent records
have any dependent subrecords in the subfile, a NULYI pointer
value will be returned.



PAGE 41

*The CLOSE Statenent!

The CLOSE statement closes a file by disassociating a file
pame from the self-describing data set with which it was
asscciated ty an OPEN. It may also specify that the file be
erased,

General Format:

CLOSE FILE (file-name) <FRASE> <, ,FILE(file-nanme)
<ERASE>D4sss3

Syntax Rules:

1. The CIQOSE statement wmust be a subargument in a DB
preprecessor function reference,

2. Several files can be closed by one CLOSE
staterent,

General Rules:
1. A closed file can be reopened.

2. Closing an unopened file, or an already closed
file, has no effect unless ERASE is specified.

3. If a file is not <closed by a CLOSE statement, it
is avutomatically closed at the completion of the
program in which it was opened.

4, If the current reccord and/or subrecords wvere
LOCATEd or updated, closing will cause them to be
transritted to the data base, unlocked {if
locked), and disestablished as the current
record (s) of the file.

5. The FRASE specification causes the file +to be
erased and uncatalogued. If the £ile is a
descriptor file, the descriptor region is erased.
If the file is an anchor file, the whole data base
but nct its descrirtors is erased, If the file is
an associated file, a subfile or an index file, it
is erased independently. ERASE is only valid for
an UPLATE file,



PAGE 042

*The CPLIST Function!

Complete Parent LIST kuilds a complete list of parent record
keys from a given subrecord {childrem) key list and raturns
a rpointer value identifying the new list to the point of
invocation., The new list has the sare namber of parent keys
as the nunmber of subrecord ID keys in the given 1list,
Parent keys will be repeated if rore than one of the given
subrecord kevs are dependent on a particular parent
record. The sutrecord identified by the last (highest) key
in the given list will remain as thke current {(but not
locked) subrecord of that subfile: any current or index
records or subrecords cf other subfiles will remain current,
The READ cursor of the given list will be reset.

Reference:
CPLIST {(file-name, child-list-pointer)

A CPLIST function reference is used as or in ap exypression;
it is not to be a suvbargqument in a DB preprocessor function
reference, The user may not declare any attributes for the
CPLIST function: the £fcllowinag statement will he genaerated
automatically:

DECLARE CPLIST ENTRY{,PTRY RETURNS (PTR):
Argurments:

file-name:specifies the data tase file from which subrecords
are to be transmitted, Tt may not be arn CUTPUT file, If
the file is not open, it will be opened automatically. The
file-name must e used 3in at least one DBPL/I statement
elsevhere in the frogram.

child-list-pointer: wmust be a pointer expression that
identifies a 1list in main storage of subreccrd keys from the
data hase accessed by file-name, It must have been set when
the CPLIST function is invoked.,

Result:

The value returned by the CPLIST function is a pointer
identifying the new complete parent list., The new list will
te in order of ascending internal parent key values and ray
have repeated values, It the given subrecord list is null,
a NULL pointer value will Ye returned.



PAGE 43

*The [B Preprocessor Functiont

DB analyzes a DBPL/I data tase access statement during
compilation and generates, in its place, suitatle PL/I
statements for conmunication with DBPAC, piagnostic
comments may also te generated.

Reference:
<label:>. » » DB {{<<label: ... subargument > ...))

1. One % IKCIULE (DB) preprocessor statement must
have teen executed ty the PL/T compiler before any
DB preprocesscr function reference is made in a
compilation,

2. Several DB preprocessor function references may tre
made in a ccmgpilation,

3. L DB rreprccessor function reference may be nmade
only tetveen FL/I statements,

b, ¥hen a single DBPL/I statement is to be used as
the THEN-onit or ELSE-unit of a PL/I IF statement,
the unit rmust be a PL/Y DO-END group enclosing the
DB preprocesscr function reference.

5. One or mnore latel prefixes way precede a DB
Freprccessor function reference, They will
jdentify the first executable statement generated
for the first sutarqument.

6. One FINISH statement must be executed by the PL/I
compiler as the last subargument of the last LB
preprocessor function reference after all other DB
Fregrccesscr function references in a
compilation,

Argumnent:

1. The argument of a DE preprocessor function
reference is a character string delirited by
dcuble enclosing parentheses, Several
subarguments can appear in the argument. Each
must he a data base access statement having its
own termivmating semicolon. Blanks and comments
may Y& vused freelv, as in PL/I, but no PL/I
statements are¢ permitted,

2. One or more label prefixes may precede a
subarqument. They will identify the first
executaltle statenment generated for the



PAGE 44

subargumnent,



PAGE 45

*The DUPLIST Function!

DUPLIST builds, in dynamically allocated main storage, a
comgressed ccpy of a list of keys and returns a pointer
value identifying the new list to the point of invocation.

Reference:
DUPLIST (list-pointer)

A DUPLIST function reference is used as or in an expression;
it is not to te a suktargqument in a DB preprocessor function
reference. The user may not declare any attributes for the
LOPLIST function; the following statement will be qenerated
antopatically:

CECLARE DUFLIST ENTRY{FCINTER) PRETURNS (POINTER);

Atgunent:

list-pointer: must te a pointer expression that identifies a
list of keys ir main storage. It must have been set when
the DOUPLIST function is invoked.

Result:

The value returned by the DUPLIST fuanction 1is a pointer
identifving the conpressed list copy. A compressed list has
none or more list seqments of maximum size followed by the
last or only list seogment allocated to exact length for the
remaining kevs and all segments are exactly filled; thus, it
occupies the least possible main storage.



PAGE 46

tThe #FIFLD Function?

#FIFLD calculates the numter cf elements in a field in the
current record c¢r subrecord of a file and returns it to the
point of invocation,

Reference:?
$FIELD (file-pame, field-nanme)

A #FIELD functicn reference is uszed as or in an exgression;
it is not to be a subargument in a DB preprocessor function
reference., The user may not declare any attributes for the
#FIELD function; the following statement will be generated
automatically:

DECLARE #FIFLD ERTRY {,CHARACTER (8)) RETURNS (FIXED
BIN{31);

Argumentss:

file-name: identifies a data base file. It may not ke an
QUTFUT file. A current record or subrecord of the file or
a subfile nust have been estahlished by a DRPL/I READ
statement when the #FIELD function 1is executed, Several
#FIELD functicn references may he executed on a carrent
{subyrecord of a file,

field-name: is an exrression that specifies the mname of the
data base field to be examined., The value of the expression
is converted to a character string, if necessary, the first
eight characters of which identify the field. Any field may
be examined,

Result:

The wvalue returned by the #FIELLC function is a binary
integer of maximum precision giving the number of elements
in the field in the current (sub)record of the file. If the
field has a null value, a zero value will be returned.



PAGE 47

*The FINISH Statement?

The FINISH statepent causes the TP preprocessor to complete
its analysis of all data kase access statements and its
gencration of suitable PL/I statements. A RETURN Statement
vill be generated which will terninate execution of the
procedure, Diagnostic ccmments may also be generated,

General Format:
FINTSH:

Syntax Rule:

One PINISH statement must be used after all other data
base access statements in a compilation, It must be
the 1last subargument in a DB prepreocessor function
reference.,



PAGE 48

fThe FREE LIST Statement?

The FREE

1IST statement frees wmain storage previously

dynamically~allccated for one or more 1ists of
{cross-reference) keys.,

General Format:

PREE LIST <(list-rcinter¢,list-pointerd> ..,.)>;

Syntax Rules:

1,

2,

The FEEE LIST statement must be a subarqgument in a
DE preprocessor functicn reference,

Several lists may be explicitly freed by one FREE
LIST statement.

General Rules:

1.

2.

If a list-rcintey is explicitly specified, it nust
be a vointer expression that identifies a list of
keys in main storaqe. It must have been set when
the FREE 1IST statement is executed,.

A If the value of the list-rointer is HULL, no
action will be taken for that 1list pointer.

b, If the value of the list-pointer is not NULL,
the dynamic main storage for the list of keys
identified by it will be freed and the
list~pcinter w%ill be given a HRUOLL pointer
valune,

If ne 1list-pointer is explicitly specified in the
FREE 1IST statement, all dynamic list storage will
be freed, The user's list pocinters are not given
NDLL values: it iz the unser's responsibility not
to use them for list identification until they are
reset. If no dynamic 1list storage has bheen
previously allocated, this ortion of the FREF
LIST =tatement will have no effect,



PAGE 49

'*The GET FIFLD Statement!

The GET FIELD staterment moves a data element value from the
current record or subrecord of a file to the user's
receiving field; it may cause the value to be converted from
an internal forr to a display form.

General Format:

GET FILE (file-name) FIELE (field-name ¢, field-name> ... )
IKTC {variable ¢, variable 2 ... )3

Syntax Rules:

1. The GET FIEFIT statement must be subargument in a
DE prevrocesscr functicn reference,

2, several data element values canr be moved by one
GET FIELD statement. In this case, a
corresnonding variatle must be specified for each
field name,

General fules:

1. The data element value will be taken from the data
base file specified in the FILF clause. It may
not ke an CUTPUT file,

2. A current record or subrecord of the file or a
subfile must have been established by a READ
statement when the GET statement is executed,
Several GFT FIEID statements may be executed on a
current (suk)record of the file,

3. The field-name is an exrression that specifies the
name of the data base field from which the data
element valve is to te obtained., The value of the
expression is converted to a character string, if
necessary, the first eight characters of which
jdentify the field, If the user who executes the
GFT FTIFLD statement is not the owner of the file,
the field-name may not specify a field that the
ouner has not authorized the user to GET.

a. Tf the field is not subdivided into elenments,
the data element valwe (possibly nuolly will
te taken from the field in the current record
cf the file.

b. If the field is a multiple-element field, the
data element value will )be taken from the
nezt element of the field, in left to riaht
crder, follcwing the element taken by the



PAGE 50

rrevions GET of the FIELD of the current
record of the file, TIf there has been no
previous GET of the FIELD since the record
was REAL, the leftmost element is taken
unless the field is null, in which case, a
nall element value will be generated. If a
previous GET of a FIELD since the record was
READ tock the last (rightmost) element, a
null value will be generated,

The variable in the INTO clause specifies the
user's receiving field, It must he the identifier
of a varying lengthk character string variable
declared by the user. The internal <form of the
data element value will be taken as a varying
length character string (of =zero lenqth, if the
value 4is null), converted to display form and
assiqred to the variable, If the length of the
displavy form of the value exceeds the
user-declared maximum length of the variable, the
valune will be truncated and an error condition
raised.



PAGE 51

"The GET INILFX KFY Statement®

The GET INDEX KEY statement moves the key value from the
current record ¢f an index to the user's receiving field; it
may cause the value to te converted from an internal form to
a display form.

General Format:
GET FILE {file~-name) INDFX (indfield)} REY INTO (variable);
Syntax Ruole:

The GET INDEX KEY statement must be a subargurent in a
DB rreprccessor function reference,

General BRules:

1. The FILE clause specifies the data base file from
which an index key value is to be taken. It may
not bte an CQUTPODT file.

2. The INDEY clause specifies the index file from
which the current index key value is to be taken,
The indfield expression value is converted to a
character string, if necessary, the first eioht
characters of which identify the indexed field,

3. A current record of the index must have been
established by a FEAD INDEX statement when the
GET INDEX REY statement i=s executed.

u, The variable in the INTO clause svecifies the
user's receiving field, It must be the identifier
of a varying 1length character string variable
declared hy the user, The internal form of the
index key value will bhe taken as a varving lenqgth
character string, converted to display form and
assigned to the variable. If the 1length of the
display form of the value exceeds the
user-declared maxiwmum length of the wvariable, the
value will be truncated and an error condition
raised.



PAGE 52

*The GET KEY SET Statement!®

The GET KEY SET statement moves the internal key value froe
a current reccrd or subrecord of 2 file to a list of keys in
dynamically allocated main stcrage and sets a pointer
identifying the list or extends an existent list.

General Formats

GET FILE {(file-name) <SUBFILE (ctlfield)> KEY SET
{list-pointer) ;

Syntax Rule:

The GET KEY SET statement must be a subarqument in a LB
preprocessor function reference,

General Rules:

1. The FILF clawse specifies the data bhase file from
which a key value is to be taken, It wmay not be
an QUIPUT file,

2a, If no SUBFILE clause is present, the internal key
value will be taken frorp the current root
recaord.

b. A SUEFILE clause specifies that the internal key
value from a current subrecord is to be taken.
The ctlfield expression value is converted to a
character string, if necessary, the first eight
characters of which identify the control field.

3. A current ({sub)record must have been established
by a READ or READ SUEFILE statement when the GET
KEY SFT statement is executed.

4, The list-rointer in the SET clause specifies the
user's fpointer identifying the 1list of keys in
main storage., It must be the identifier of a
pointer variatle declared ty the user,

ba, If ¢the wuser agcsigns the NULL value to his
list-pointer before executing the GET KEY SET
statement, main storage will be dynamically
allccated automatically for a new list, the kev
value will te moved there from the current
(sub)record, and the list-pointer value will be
set to identify the list in wmain storage. The
list remains allocated in main storage until the
user executes a FREF LIST statement.



h,

PAGE 53

Otherwvise, the list-gointer should identify a list
of keys in main storage to which another
compatible key valve is to be avpended. It must
have been set (by the user assianing NULL and
executing a GET KEY SET statement as described
above) when this GET KEY SET statement is
executed, The Xey value will be nmoved from the
current {suk)record, The list-pointer will bhe
anchanged.



PAGE 54

*The GET LIST INTERNAL KEY INTO Statement?

The GET LIST INTERNAL FKEY INTO statement increments the
internal GET cursor ¢f a 1list of keys in main storage
jdentified by a list pointer and nmoves the indicated key
value in internal form to the user's receiving field,

General Format:
GET LIST (list pointer) INTERNAL KEY INTO (variable);
Syntax Rule:

The GET LIST INTERNAL KEY INTO statement must be a
subarqurent in a IR preprocessor function reference,

General FRules:

1. The list-rointer must ke a pointer expression that
identifies a list of keys in main storage from
which the next key value is to he taken. It must
have teen set when the GET LIST INTERNAL KEY INTO
statement is executed. In the exceptiocnal case of
a list gpointer having a NULL pointer wvalme, a null
string value will be generated,

2. The dinternal GET cursor of the 1list will be
incremented to indicate that the next element of
the 1list, in order of ascending internal key
valueg, is current and will be taken, {If the
internal GET cursor was reset, the element having
the lcwest interral key value is current and will
he taken. If the internmal GET cursor was on the
last element (highest internal key value), the
cursor will te reset and a null strirg value will
he generated.)

3. The wvariabkle in the INTO <clause specifies the
user?s receiving field., It must be the identifier
of a wvarving 1length character string variable
declared ty the user., The internal form of the
key wvalue will be taken as a varyinag length
character string {cf zero lenath on end cf list)
and assianed withont formatting to the variatle,
If the length of the internal form of the value
exceeds the wuser-declared maximum length of the
variatle, the value will be truncated and an error
coendition raiced,



PAGE 55

"The GET LIST EKFY(0) Statement!

The GET LIST KEY(0) statement resets the internal GET cursor
of a list of keys in maip storage. ‘

General Format:
GET LIST (list-rointer} KEY{0):
Syntax Rule:

The GET LIST KEY(0) statement must be a suvbargument in
a DB preprccessor functicn reference,

General Rules:

1. The list-pointer must be a pointer expression that
identifies a list of ¥eys in main storagqe whose
GET cursor is to be reset, The list-pointer must
have bheen set when the GET LIST KEY (0} statement
is executed, In +the exceptional case of a
list-fointer having a NOLL pointer value, no
action will occur and no error condition will te
raised,

2. The internal GET cursor of the list will bhe reset
(as it was when the list was built),



PAGE 56

*The GET LIST KEY INTC Statement?®

The GET LIST FEKEY IKT0 statement increments or sets the
internal GET curscr of a 1list of keys in main storage
jdentified by a list pcinter and moves the indicated Xey
value to the user's receiving field; it may cause the value
to be converted from internal to display form.

General Format:
GET LIST (list-pointer) KEY <[rel-key)> INTO {(variakle);
Syntax Bule:

Phe GET LIST KFY INTO statement must be a subargument
in a DB rreprocesscr function reference,

General Rules:

1. The list-pointer must te a pointer expression that
identifies a list of keys in main storage from
which the key valuve is to be taken, It must have
been set when the GET LIST KEY INTO statement is
executed, In the exceptional case of a list
pointer having a NULL pointer value, a null string
value will te generated.

2a. If nc rel-key is specified, the internal GET
cursor of the list will be incremented to indicate
that the next element of the 1list, in arder of
ascending internal key values, is current and will
be taken. {If the internal GET cursor was reset,
the element having the lowest internal key value
is current and will be taken, If the internal GET
cursor was c¢n the last element the cursor will te
reset and a null string value will be generated.}

b, If a rel-key excression is specified, its valiue
will bte converted, if necessary, to a fixed binary
integer of raximum grecision, N

If rel-key has a negative value, such as -1, the

internal GET cursor of the 1list will he

decremented to indicate that the previcus element
of the 1list, in order of internal key values, is
current and will ke taken., {(If the internal GET
cursor was reset, the element having the hiaghest
internal kevy value is current and will be taken.

If the internal GET cursor was on the first

element, the cursor will bhe reset and a null

string value will be generated.)

I1f rel~key has a positive value, the internal GET



3.

PAGE 57

cursor of the list will be set to indicate that
rel-key the relative element of the 1list is
current and will be taken., (If rel-key is zero or
greater than the numter of keys in the list, the
cursor will be reset and a null string value will
be generated.)

The variable in the INTO clause specifies the
usert's receiving field. It must be the identifier
of a varying length character strimg variable
declared by the user. The internal form of the
key value w%ill bYe taken as a varving length
character string converted +to display form and
assigned to the variatle. If the 1length of the
display  form of the value exceeds the
user-declared maximum length of the variable, the
valoe w%ill he truncated and an error condition
raised,



PAGE 58

‘The GET LIST KEY SET Statement®

The GET LIST KEY SET statement moves the current internal
key value from a list cf keys identified by a list pointer
to a new list in dynamically allocated main storage and sets
a vypointer identifving the new list or extends an existent
list,

General Format:
GET LIST (list-pcinter) KEY SET (new-list-pointer);
Syntax Rule:

The GET LIST RFY SET statement must be a subargument in
a DB preprccessor functicn reference.

General Rules:

1. The list-pointer must bhe a pointer exrression that
identifies a list of keys in main storage having a
non-zero GET cursor indicating a current key.

2. The internal key value will be taken from the
current element of the 1list indicated by the
internal GET cursor. The GET cursor will tLe
unchanqged,

3. The new-licst-pointer in the SET clause specifies
the wuser's pcinter identifying the new 1list of
keys in main storage, It must be the identifier
of a pcinter variable declared by the user.

3a. If the user assigns the ©NULL valume to his
new~list-pointer Ltefore executing the GET LIST KEY
SET statement, main storage will be dvnamically
allocated autcpatically for a new 1list, the key
value will ke noved there, and the
nev-list-pointer value will be set to identify the
new list in main storage, The nev list remains
allocated in main storage wuntil the user executes
a FREE 1IST statement.

3h., Otherwise, the new-list-pointer should identify a
list of keys in rain storage to vwhich another
compatible key value is to be appended. It must
have been set when this GET LIST XEY SET
staterent it executed. The key value will te
noved and the nev-list-pointer will be
unchanqed,



PAGE 59

tThe GET LIST SET Statement®

The GET
current
in +the
storage

General

LIST SET statezent moves a list of keys from the
record cf an index or from a subfile control field
current root tecord to dynamically allocated main
and sets a pointer identifying it.

Format:

GET FILE(filename) <INLCEX(indfield)>LIST SET {list-gpointer)

CSUEFILE{ctlfield)>

Syntax Rule:

The

GET LIST SET statement must be a subargument in a

LB preprocessor functicn reference.

General Rules:

1.

2a,

2b,

2c.

The FILE clause specifies the data base file from
which the list of keys is tc be taken, It may not
be an QUTEDT file.

1f an INDEX «clause is specified, a current index
reccrd must have been estabtlished by a READ INDEYXY
staterent when the GET INDEX LIST SET statement is
executed. The INDFX clause specifies the index
file from which the list of (cross-reference) kevs
is to te taken., The indfield exrression value is
cenverted to a character string, if necessary, the
first eight characters of which identify the
indexed field,

If a SUBRFYLF clause is specified, a current root
record must have bheen established by a READ
statement when the GET LIST SET statement is
executed, The ctlfield expression value is
converted to a character string, if necessary, the
first eiqht characters of which identify the
contrel field from which the list of keys
{children) is to be taken, If the auser who
execntes the GET SUBFILE LIST SET statement is not
the owvner of +the file, +the ctlfield mavy not
specify a ccntrol field that the owner has not
authorized the user tc GET,

If neither an INDEX nor a SUBFILE clause is
specified, the FILE must be an INPUT file opened
with a TITLE for independent access to a
particular inverted index file and a current
record must have been established by a READ
statement when the GET LIST SET statement is
executed, Tte list of {(crcss-reference) keys will



3.

PAGE 60

ke taken,

The list-pcinter in the SET clause specifies the
user's pointer to be set to identify the list of
xeys in main storage. It must be the identifier

of a pointer variable declared by the user.

A T¢ the list of keys field of the current
record is null, +the list-pointer ¥ill be
given a KOLL pointer value, (This occurs for
the SUBFILE case when the control field 1is
null indicating no subordinate {children)
subrecords.)

b, Ctherwise, wmain storage will be dynarmically
allocated avutomatically for the list, the
1ist of keys will be moved there from the
current record, and the list-pointer value
will be set to identify the list in main
storage. The 1list remains allocated in main
storage until the user executes a FREE LIST
ctatement.



PAGE 61

*The GET RECORD Statement?®

The GET RECORD statement moves a physical record in internal
form from the current rtecord of a file to the user's
receiving field.

General Format:
GET FILE (file-name) RECORD INTO (variable):

Syntax Rule:

The GET RECORD statement must be a subargument in a DB
preprocesscer function reference,

General Rules:

1. The physical record will be taken from the current
recerd of the file specified in the FILE clause,
It must be an UPLATE or INPUT file owned by the
user who executes the GET BRECORD statement.

2. A current record of the file must have teen
established ky a READ statement when the GET
statement is executed, Several GET statements may
be executed cn a current record of the file,

3. The variable in +the 3INTO clause specifies the
user's receiving field. It must be the identifier
of a structure or fixed-length character string
variable declared by the user. The internal
self-defining physical record will be moved into
the variable without any conversion. WNo receiving
field length checking will be dome., (A GET FIELD
'RECLEN' statement may be used for this purpose.)



PAGE 62

*The % IRCLUDE IISRMAC (DB) Freprocessor Statement!

The % INCLUDE LISRMAC (TB) preprocessor statement causes the
text of the LB preprocessor function to be taken from the
system source library during compilation, incorporated in
the source progran and activated,

General Fornat:
% YNCLUDE 1ISREAC {(DB):
Syntax Rule:

Only one % INCLULCEF LB tpreprocessor statement way be
used@ in the source text for a compilaticn. It must
jmpediately follow the beainning PROCEDURE statement,
hefore any other statements, if the conmpilation
contains DF preprccessor function references for data
tase access statements,



PAGE 63

‘The LIST Function?

LIST derives a nev 1list of (cross-reference) keyvs from two
given lists of keys and returns a pointer value identifying
the new list to the gcint of invocation. The new list may
be the union or iotersection of the given 1lists or the
sublist of the first given list excluding the second.

Reference:
LIST (list-pointer-1, operator, list-pointer-~2)

A LIST function reference is used as or in an exyression; it
is not to be a subargument in a DB preprocessor function
reference, The user may not declare any attributes for the
LIST function: the following statement will Le generated
agtomatically:

DECLARE LIST ENTRY (POINTER, CHARACTER{1), POINTER)
RETURKS (PCINTER) ;

Arguments:?

Fachk of the twc list~rointer arguments must be a pointer
expression that identifies a 1list of keys in main storage.
Fach sust have been set when the LIST function is invoked.
The lists of ¥eys identified must be compatible thaving the
same internal key element lenath, etc.).

The operator argument is an expression that specifies the
list operation to derive the newv 1list, The value of the
operator will he converted, if pecessary, to a one-character
string, The valve must be:

logical COR, *,', specifying the union,
logical ANL, '6', specifying the intersectionp, or

minus sign, '-*, specifvying the sublist cf the first
1ist excluding the second list,

Result:

The value returned by the LIST function is a pointer
identifying the new list, The new list will be in order of
ascending internal kev values without duplicated key values
funless there are durlicates in one of the arqument lists).
If the new list is null, the value returned may be assiqned
to one of the argursent list pointers; howvever, the arqument
list would then ke lost to the mainline {unless the user had
assigned its pcinter value to arother pointer previously)
and could not be explicitly freed (but FREE LIST; would free
it ard all other liste),



PAGE 64

*The #LIST Function®

#1LIST calculates the number of {cross-reference} keys in a
list of kevs identified by a list pointer and returns it to
the point of inveccaticn.

Raference:
#LIST (list-pointer)

A #LIST functicn reference is used as or in an exrression;
it is not to be a subargument in a DE preprocessor function
reference., The user may not declare any attributes for the
#LIST function: the fcllowing statement will ke generated
automatically:

DECLARE #LIST FENTRY (PCINTER) RETURES ({(PIXED
BINARY{(31)):

Atgument:

The list-pointer arqument pust be a pointer expression that
identifies a 1list of keys in main storage, It mnust have
been set wher the #LIST function is invoked,

Result:

The value returned bty the #IIST function is a binary integer
of maximum precision giving the numter of keys in the list
identified by the list-pointer argunent, 1t the
list-pointer has a NULL pointer value, a zero value will be
returned.



PAGE 65

YThe LOCATE Statament?

The locate statement, which aprlies +to OUTPOT or DIRECT
gPDATE files, causes formation of a mnew current record
having a key field and having all other fields null; it may
also cause transmissicn of the previcusly current record to
the data base.

General Format:
LOCATE FILE (file-name) KEYFROM (expression);
Syntax Rule:

The LOCATE statezent must be a subarqument in DB
preprocesscr function reference,

General Fules:

1. The FILE clause specifies the data base file to
which the record is to ) subsequently
transmitted, It must be owned by the user who
executes the I1OCATE statepent, It mav not be an
INPUT or SFEQUENTIAL UPDATE file,

2. It the £file is not ovpen, it is opened
automatically.

3. The value of the expression in the KEYFROM clause
is converted to a varying length character string,
if necessary, validated and/or converted to an
internal form.

a. If the file has the SEQUENTIAL aQuTPOT
attributes, the internal key is checked for
ascending seqnence and subseguently used as
the kXey of the record when it 1Is transmitted
to the data bhase.

b, If the file has the DIRECT attribute, a READ
REY is attempted using the internal key, If
the kxey is fcund, a duplicate key error
condition is raised and the LOCATE statement
has the e¢ffect of the READ KEY statement. If
the key is not found, it is subsequently used
as the key of the record when it is
transmitted to the data base,

4. After execution of the LOCATE statement,
subrecords may be LOCATEd and values may be POT
into fields (cther than the key) of the record for
subsequent transmissicn to the data base, which
will c¢ccur immediately before the next LOCATE,



PAGE 66

READ, CLOSE or automatic c¢lose operation on the
file,



PAGE 67

fThe LOCATE SUBFILE Statement?

The LOCATE SUBFILE statement causes formation of a new
current subrecord having a ¥ey field and a parent keyfield
and having all cther fields null; it also causes the new key
to be automatically entered in the parent record control
field: it may also cause transmission of the previously
current subrecord of the subfile,

General Format:
LOCATE FILE (file-name) SUEFILE {ctifield);
Syntax Rule:

The LOCATE SUBFILE =tatement must be a subargument in a
DB preprccessor functicn reference,

General Rules:

1. The FILE clause specifies the data tase file to
which the subrecord is to be subsequently
transmitted. It must be owned by the user who
executes the LOCATE SUBFILE statement, It may
not be an INEUT file,

2, A current record of the file must have been
established when +the LOCATE SUBFILE statement is
eyecuted, Several LCCATE SUBRFILE statepments for
one or more sutfiles may be sxecuted cn a current
reccord of the file,

3. The ctlfield 1is an expression that specifies the
name of the subfile control field. The value of
the expressicn is converted to a character string,
if necessary, the first eight characters of which
jdentify the control field,

4, After execution of the LOCATE SUBFILE statement,
values may te PUT intc fields of the subrecord for
subseguent transpission to the data tase, which
will occur immediatelvy bhefore the next LOCATE
SUBFIIE or READ SUBFILE on this subfile or before
the next CLOSE or automatic close on the file,



PAGE 68

*"The ON Statement?

The ON statement specifies what action is to be taken when
an interrufpticn results from the occurrence of the specified
error condition.

General Forpat:

ON

<ERRORFILE{file-name}> <SYSTEX > 3
<LISTEFROR > <GB0 TO label>

Syntax Rules

The

OF statement must be a sobarqument in a DB

preprocesscr function reference,

General Hules:

L

2.

The ON statement determines how an error occurring
for the specified condition is to te handled.
Whether the error is bandled in the standard DB
fashicn or by a user-supplied method is determined
by the action specification in the ON statement,
as follows:

A If the action specification is SYSTEM, the
standard B action is taken. For most
cenditicns, the systen simply posts the
CNCODE field and raises the ERROR condition.
(Note that the standard DB action is always
taken if an dinterruption occors and no ON
staterent for the condition is in effect.)

b, 1f the action specificatien is GO0 ToO, the
vser has suapplied his own error-hbandling
acticn at label, <Control is not transferred
to latel wher the ON statement is executed;
ccntrcl is transferred only when an error
results from the occurrence of the specified
conditicn,

The action specification established by executing
an ON statement remains in effect unless it is
over-ridden by the execution of another oy
statement specifying an action for the sanme
ccndition,



PAGE 69

*"Phe QOPEN Statement?

The OPEN

staterent orens a file by associating a file nanme

with a DATA BASE, It may also specify attributes for the

file.

General Forgat:

OPEN FILE {(file-name) <TITLE {expression)> <access>
<fanction>

<,FILE{file~-name) <TITLE(expression)> <access>
<functiond ...

where "access" is:
DIBRECT | SEQUENTIAL

and "fanction™ is:
INPUT | QUTPUT | UPDATE

Syntax Rules:

1.

2,

General

1.

2.

3.

5.

The OFEN statement must be a subargument in a TB
preprccesscr functicn reference,

Several files can be opened by cne OPEN
staterent,

Ruless:

If a file is not opened hy an OPEN statement, it
is acvtomatically cpened when a READ or LOCATE
statement for the file is first executed,

Opening an already opened file by an OPEN
statement causes it to be closed and reopened,

If the TITLE cption is specified, the value of the
expression is converted to a character string the
first eigbt characters of which identify the data
base to be associated with the file. If the TITLE
option 1is o»nct specified, the €file-name is taken
tc identify the data base,

If no access attriktute is specified, DIRFCT is the
defauvlt unless a WRITE statement on the file is
used in the same compilation, thus implying the
SEQUENTIAL attritute.

If a function attribute is specified, it
determines the direction of data transmission
permitted for the file, If no function attribute
is specified, it 4is imvlied from the usage of
other data Lase statements cn the same file in the



corpilaticn {e.g., REPUT inmplies
other data bacse statements on the
in the compilaticn, the default
cnly user perritted to access and
file is the owner of that file.

PAGE 70

UPDATE) . If no
same file appear

is INPUT., The
QUTPUT or UPLATE



PAGE 71

*The PUT FIELL Statementt

The PUT FIELL statement moves a data element value to the
carrent record or sugkrecord of a file for subsequent
transmission to the data base; it may cause the value to be
validated and/cr cecnverted to an internal form and it may
also cause a cross-reference to be automatically entered in
an index file,

General Format:

PUT FILE (file-name) FIELD {field-name<d,field-naned> ...)
FRCM (expressiocn<, expression> ...)s

Syntax Rules:

Te The PUT FIELD staterent must be a subargument in a

DB preprocessor function reference. *The READ
Staterent?

2. Several data element values can be moved by one
POT FIFLD statement, In this case, a

corresponding expression must be specified for
each field-nare,

General PRules:

1. The FILE clause specifies the data base file to
vhich the data element value is to be subsequently
transmitted. It pust be an OUTPUT or UPDATE file
owned hy the user who executes the PUT statement.
It may nect be an associated file or an index
file,

2. A current exclusive record or subrecord {depending
on the field-name) of the file or subfile must
have been established when the PUT statement is
executed, Several PUT statements may be executed
on a current exclusive {subYrecord of the file.

3. The field-name is an expression that specifies the
name o©of the data tase €field into which the data
elepent value 1is to be moved. The value of the
expression is converted to a character string the
first eight characters of which identify the
field. The €field-name may not specify the key
field ¢f +the record or any other read only field,
The PUT statement noves a value to a field element
that had no previocos value,

a, If the field is not subdivided into elements,
it must have had a null value hefore the POT
statement is executed to give it a value.



4.

5.

6.

PAGE 72

b. If the field is a pultiple-eclement field, a
new element will he added at the right end of
the field,

The expression ip the FROM clause svecifies the
data valune to te given to the field element. The
value of the expression is converted to a varying
length character sitring, if necessary, validated
and/or converted to amr internal form and moved
into the current record of the file. (If the data
base field elewment is variable-lenqth, otber
fields are automatically shifted to nmake roonm.)
The varying length character string value after
any conversion to an interpal form must bhave a
length greater than zero; i.e.,, a null string is
an invalid data value for a PUT statement,

Tf the data base field has an inverted index file,
a cross-reference of the internal data element
value to tte key of the (sub)record sill be
automatically entered in the inverted  index
file,

The (sub)record with the new data element value
will be transmitted to the data base when an
UNLOCK statement for the (sub)file 1is executed or
iprediately tefore the next LOCATE or REAL on the
{sub) file or immediately before the next CLOSE or
autcmatic close operation on the file,



PAGE 73

*The PUT LIST INTERNAL KEY FROM Statement®

The PUT LIST INTERNAL KEY FROM statement moves an internal
key value to extend a list of keys in main storage.

General Format:

PUT LIST (list-pointer) INTERNAL KEY FROM (expression
<,expression>...);

syntax Rules:

Te The PUT LIST INTEHNAL REY FROM statement nust te a
subarqument in a DB preprocessor functicn

reference,

2. Several internal key values can be moved by one
PUT LIST INTERNAL REY FROY statement,

General Rules:

1. The list-pcinter in the LIST clause specifies the
user's pointer identifying the list of keys in
main storage to which the internal key value is to
be moved, It must have been set when the PUT LIST
INTERNAL KEY FROM statement is executed. 1In the
case ©of a 1list rpointer having a WNULL ©gpointer
value, a list error condition will be raised.

2, The expression in the FROM clause specifies the
internal key value to be moved to the list., The
value of the exrression is converted to a varying
length character string which must be the sane
lenath as the list element size, If the length is
different or zero {(null) an error conditien will
be raised.



PAGE 74

*The READ Statement?

The READ statement causes a parent record or a subrecord to
be transmitted from the data base and established as the
current record of the file (or as the <current subrecord of
a subfile); it may also cavse transmission of the previously
current rtecord {or subtrecord of a subfile} to the data
tase.,

#¥hen READing according to a LIST of subrecord ID keys.
General Format:

READ FILE {file-nanme) <file-positioning> <NOLOCKD>;
vhere file-positioning may be:

BACKWARDS | KEY{expression) |
LIST{list-pointer) <FKEY {(rel-key)> |
PER SUBFILE (ctlfield)

Syntax Rule:

The READ statement must be a subargument in a LB
preprocesscr fonction reference,

general Rules:

1. The FILE clause specifies the data base file from
which the record is to te transmitted, It may not
be an CUTPUT file.

2, If the file 1is not open, it will be opened
autcmatically unless BRCEWARDS or PER SUEPILE is
specified,

Ja, J¥f nc file positioning cption 1is specified, the
next sequential record , following the one
previcusly read, will be transmitted. If the file
is newly opened, the reccrd having the 1lowest
internal key value will be transmitted.

b. If the BACKWARDS file-positioning option is
specified, the previous sequential record, in the
arder of internal key wvalues, preceding the one
previously read will be transmitted. If the file
is newly opened, a file positioning error
condition will be raised,

Ce If the FKEY file-pecsitioning option is specified,
the valune of the expression will be converted to a
varying length character string, validated and/or
converted to an internal £form and used to



d,

PAGE 75

deterrine which record will bLe transmitted. If
the key cannot te found, a %ey error condition
will ke raised, but the record having the next
lower interral key value will be transmitted,

If the LIST file-positioning option is specified,
the file may not be an index file, The
list-rointer must te a pointer exrression that
jidentifies a list of anchor or subrecord keys in
main storage to control the READing., It must have
been set when the READ statement is executed.
The Xevys in the file list didentified omust bhe
coppatible with the internal anchor kevs of the
file, or witt the subrecord keys of one of its
subfiles. In the 1latter case the list determines
vhich subfile will te accessed for a subrecord to
be made current, In the case of a list-pointer
having a NULL pointer value, a key error condition
will he raised and no record will e
transmitted,

If +he 1IST clause 1is not followed Ly a EBY
clause, the internal READ cursor of the list will
te incremented +to indicate that the next element
of the list, in crder of ascending internal key
values, will te used to determine vhich
{sub) record %ill be transmitted. (If the internal
REAL cursor was reset, the element having the
lowest internal ey value will be used. If the
internal PFAL cursor was on the last element, the
cursor will be rtTeset, a key error condition will
be raised, and no {sub)record will be
transnpitted,)

If the LIST clause is followed by a KEY clause,
the wvalue of the rel-%ey expression will be
ccnverted to a fixed binary integer of maxipum
precision.

If rel-kev has a value of zero, the internal READ
cursor of the list will be reset, No {sul)record
will te transritted apnd no error condition will be
raised.

If rel-key has a negative value, such as -1, the
internal READ cursor of the list vill be
decremented te indicate that the previous element
of the list, in order of internal key values, will
he used tco determine which {(sub)record will be
transeitted, {If the internal READ cutrsor was
reset, the element having the highest internal key
value will te used. If the internal READ cursor
was on the first element the cursor will te reset,



2

4.

PAGE 76

a Xey error condition will bte raised, and no
{sub)record %ill te transmitted.)

If rel-key has a positive value the internal READ
cursor of the list will be set to indicate that
the element in the rel-key position of the 1list
will te used to determine which (sub)record will
be transmitted, {If rel-key is oreater than the
nunter of keys in the 1list, the cursor will be
reset, a key error condition will be raised, and
no {(sub)record will be tramsmitted.)

If the PER SOBFILE file-positioning option is
specified, the parent record of a current
subreccrd will be transmitted. The value of the
ctlfield exrression will be converted to a
character string the first eight characters of
which identify the subfile control field. A
corrent suhrecord of the subfile must have teen
established by a READ SUBFILE statement when the
READ PER SCBFILE statement is executed. The
internal parent key field value on the suhrecord
will te used to determine which record will be
transmitted.

No KEY¥TO c¢ption 1is provided. A GET FIELD
statement, following a READ statement, may te
used for this purpose.

Any READ statement referring +to an UPDATE file
#ill cause the record to be locked for exclusive
use unless the NOLOCK option 1is specified. A
locked reccrd cannot bhe READ by any other task
until it is vnlocked. Any attempt to READ a
reccrd locked by another task results in a wait.
Subseqguent unlocking is accomplished by the
locking task through the execution of an UNLOCK,
READ, 1OCATE, CLOSE or implicit close operation on
the file.



PAGE 77

*The READ INDEX Statement?

The READ INDEXY statement causes an index record to be
transmitted from the data bhase and established as the
current recerd c¢f the index.

General Format:

REAL FILE (file-name) INDEX (indfield) <index-positioning>;

where index-positioning may be:

BACKWARDS | KEY¥{exrression)

Syntax BRule:

The READ INDEY statement must be a subargument in a DB
preprocessor function reference,

General Rules:

1.

2.

ba.

The FILFE clause specifies the data bhase file fronm
which an index record is ¢to be transmitted, Tt
may nct be an QUTFUT file.

If the €file is nct open, it will be opened
automatically unless BACKWAKDS is specified.

The INDEX clause specifies the index file from
which the index record is to be transmitted, The
indfield expression value is converted to a
character stripa, if necessary, the first eight
characters of which identify the indexed field,
If the user who executes the FEAD INDEX statement
is not the owner of the file, the indfield may not
specify a fileld that the owner has not authorized
the user to GET.

If nc index-rcsitioning option is specified, the
file wust be an IKRPUT f£ile, The next sequential
index record, following the one previously read,
will be transmitted. If the index file has not
been previously read, the record having the lowest
indexed field value will be transmitted,

If +the BACEKWARDS inrdex-positioning option is
specified, the file must be an INPUT file. The
previcus sequential index record preceding the
one previously read will ke transmitted. If the
index file has not been previously read, a file
positioning error condition will be raised.



Ca

d.

5.

PAGE 78

If the KEY index-positioning option is specified,
the file may be an INPUT or UPDATE file. The
value of the expression will be converted to a
varying length character string, 1if necessary,
validated andsor converted to an internal index
key form and used to determine which index record
#ill te +transmitted. 1If the key cannot ke found,
a key error will be raised, but the index record
having the next lower internal index key value
will te transmitted.

No FFYTQO option is provided. A GET INDEX KEY
statement, following a FEAT INDEX statement, nay
he used for this purrose,

A REAT INDEY statement never locks an index record
for exclusive use,



PAGE 79

*The READ SUBFIIE Statement?®

The READ

SUBFILE statement causes a subrecord to bDe

transmitted from the data base and established as the
current sabrecord of the subfile,

General ¥formats:

READ FILE {file-name)} SURFILE{ctlfield)<sutfile-positioning>

<NCLOCK>;

where subfile-pcsiticning may bhe:

BACKWARDS | KEY{expressicn)

Syntax Rule:

The RBAD SUEFILE statement must be a subarqument in a
DB preprocessor functicn reference,

General Bules:

1.

2.

3.

4.b

The FILE clause specifies the data base file fron
which a subrecord w%ill be transmitted., It may not
be an OUTPUT file,

If the file is not open, it will he opened
automatically unless BACKWARDS is specified,

The SORFILE <clanse specifies the =subfile fronm
which the subrecord is to be transmitted, The
ctlfield exrression value is converted to a
character string, if necessary, the tirst eight
characters of which identify the subfile control
field, If the user who executes the READ SURFILE
statement ie not the owner of the file, the
ctlfield may not specify a subfile that the owner
has nct avthorized the user to READ,

If no subfile-positioning option is specified, the
file must be an INPUT file, The next sequential
subrecerd following the one previously read, will
be +transmitted. If the subfile has not been
previcusly read, the subrecord having the lowest
subrecord ID ey value will be transmitted.

If the BACK¥ARDS subfile-positioning option is
specified, the file must be an INPUT file., The
previcus seguential subrecord, preceding the one
previcusly read will be transmitted.

If the KEY sutfile-positioning gption is
specified, the file may be an INPUT or OPDATE



G.d

u.f

5.

PAGE B0

file, The value of the expression will Dbe
converted to a varying length character string,
if necessary, converted from nureric character to
bimary (24, 7) dinternal subrecord key form and
used to determine which subrecord will be
transritted. If the subrecord key cannot bYe
found, a key error condition will be raised, baut
the =subrecord having the next lower internal
subrecord key value will be transmitted,

No LIST subfile-positioning option is provided for
the READ SUBFIIE statement; the reqular KEAD with
1LIST file-positioning may be used for this purpose
because the list determines if and which subfile
is to be accessed,

No subfile-pcsitioning option is provided for
reading the region of sobrecords dependent on the
current rcot record; GET SUBFILE LIST SET followved
by READ LIST statements (with forvards or
backwards positicning) are very flexible fer this
purgese,

No KEYTO ortion 1is provided. A GET FIELD
statement, following a READ statement, may be
used fcr this purpose.

A REAT SUBFIIF statement referring to an UPDATE
file will caunse the snbrecord to be locked for
exclusive use gunless the NOLOCK option is
specified. A 1locked suvbrecord cannot he READ by
any other task until it is unlocked. Any attempt
to REAL a subrecord locked by another task resuplts
in a wait, Subseguent unlocking is accomplished
by the locking task through the execution cof an
UELOCK SUBFII1E, READ SUBFILE, or LOCATE SUBFILE
operation on the sutfile or a CLOSE cr implicit
clcse cperation on the file.



PAGE 81

*The REPUT Statement!

The REPUT statement replaces a data element in the current
record or sutrecord of an UPDATE file for subsequent
retransmission to the data base; it may cause the value to
be validated and/or converted to an internal form and it may
also cause a cress-reference to he auntomatically deleted and
another entered in an index file., The REPUT statement nmay
bte used to delete a shole record or subrecord and all
cross-references to it in index files,

General Format:

REPUT FILE(file-name) FIELD(field-name<, field-name> ...)
FROM fexpressicn<, exgpression> ...)3;

Syntax¥ Rules:

1. The REPUT statement must be a subargument in a DB
preprccesscr function reference,

2. Several data element values can be replaced by one
REPUT statement. In this case, a corresponding
expression must be specified for each

field-name,
General Rules:

1. The FILE clause specifies the data base file to
which the data element valuye is to be subsequently
retraunsmitted. It must be an UPDATE file owned by
the user whe e£xecutes the REPUT statenment. It may
not be an asscciated file or an index file,

2, A current exclusive record of the file must have
been established when +the REPUT statement is

executed, Several REPUT statements may be
executed on a current exclusive record of the
filE- /"

3. The field-name is an expression that specifies the
nane of the data tase field whose data element
value is to be 1replaced, The value of the
expression is converted to a character string the
first eiqght characters of which identify/ the
field,

a, If the field is the key field of an anchor rgcord,
the expressicon in the FROM clause maust have a null
value (zero 1length) and the whole root record and
all of its derendent subrecords in all satfiles of
the FILE will te deleted.



Ce

4.

S5a.

b.

Ca

PAGE 82

If the field is the key field of a subreccrd, both
the =subrecord and its vparent rtecord oust te
current, The expression in the PROM clause nmust
have a null valve (zero 1length) and the whole
subrecord will be deleted.

Otherwvise ttke field-name may not specify a
read-cnly field,

If the field is not subdivided into elements, its
value will e replaced, If the field is a
multiple-elenent field, the element taken by the
last GET of the FIELD since the current
{sub) record cf the file was READ will have its
value replaced. If no element was fpimd fpr tie
GET FIEID or if no GET of the FIELD of the
current {sulbyrecord of the file was executed, an
errcr condition is raised.

The expression in the PROM clause specifies the
new data value t0 be given to the field element,
The wvalue cf the expression is converted to a
varying length character string, validated arnd/or
converted to an internal form ard moved into the
current {(sut)record of the file. (If the data
base field element is variable-length and the new
value’s lengtt is different f£from the o01d, cther
field elements are automatically shifted as
necessarv.)

If the data base field is the key field of the
anchcr record and the expression in the FRCH
clause has a null valwe, all cress~references to
the kev of the parenmt record and its dependent
subrecords will ke automatically deleted from all
index files fcr the file specified in the FILE
clause,

If the data tase field is the ID kev field of a
subrecord and the expression in the FROM <clause
has a null value, =all crecss-references to the ID
key of the subrecord will be auntomatically deleted
from all index files for the subfile,

If the data base field has an index file, the
cross reference of the o0ld internal data element
value will te automatically deleted, and a
cross-teference of the new internal data element
value to the key of the record will be
avtomatically entered in the index file,

The {sab)record with the new data element value
%ill %te retransmitted +to the data base when an



PAGE 83

UNLOCK statement for the (sub)file is executed or
irmediately Lefore the next LOCATE or REAL on the
{sut) file or immediately before the next CLOSE or
autcmatic close operation on the file,



PAGE 84

*The SET LIST ITIKE LIST Statement!?

The SET LIST 1IKE LIST statement dynamically allocates main
storage for a ney list to later contain an estimated numher
of keys, copies the key field name and conversicn routine
name etc,, fror an existing 1list, and sets a pointer
identifving the new list,

General Format:

SET LIST {(new-list-pointer) SIZF (dimension) LTIKF LIST
{list-pointer):

Syntax Rule:

The SET LIST LIKE LIST statement must he a suvbargupent
in a DR preprocesscr function reference,

General Rules:

1. The list-pcinter in the LIKE LIST clause must be a
pointer exprecssion that identifies a list of kevys
in main stcrage to be referenced for prefix
inforration such as key element length etc, In
the exceptional case of a 1list pointer having a
NULL gpointer value, a NULL pointer value will be
returned,

2. The SIZE <c¢lause specifies an estimate of the
numher of keys that will subseguently be put into
the new list. For example, it could be the #LIST
count of the existing list or .a multiple of it.
The dimension expression value will be converted,
if necessary, to a fixed bipary integer of paxinum
precision and used to govern the allocation of the
first segrent of the new list,

3. The new=-list-pointer in the SET LIST clause
specifies the user's pointer identifying the new
list of keys in wmain storage. It nmust ke the
identifier of a pointer variable declared by the
user., Regardless of its former value, it will be
set to identify +the new list of keys in main
storage. The new list remains allocated in mpain
storage until the user executes a FREE LIST
staterent,



PAGE 85

'*The ULIST Function'

ULIST builds a copy cf a list of kevs onitting durlicated
key values and rTeturns a pointer valwue identifying the new
l1ist to the point of invocation, If The given list has only
unique ey values, UIIST returns the given 1list poinmter
without copying the list.

Refernece:
OLIST (list-rointer)

A ULIST functicn reference is used as or in an expression;
it is not to be a sutargument in a DB preprocessor function
reference, The user may not declare any attributes for the
ULIST function; the fcllowing statement will be generated
autcmatically:

DECLARE ULIST ENTEY(PCINTER) RETURNS{PCOINTER);
Arguments

The list-pointer argument must be a pointer expression that
identifies a list of keys in main storage. It must have
been set when the ULIST functicn is invoked.

Result:

The value returned by the ULIST function is a pointer
jdentifying the new 1list baving only unique key valves,
However, if the argument list is found to not have any
duplicated key values, its list vointer is simply returned
(this always haprens when the argument list is null or has
only one key).



PAGE B6

*The UNLOCK Statement?®

The UNLOCK statement makes a locked current record or
subrecord available to other tasks for READ operations; it
may cause transecissicn ¢f the current record or subrecord to
the data base,

General Fornrats:

UNLOCK FILE (file-name) <SUEFILE{ctlfield)>;s

Syntax Rule:

The UNLOCK statement must bte a subargument in a DB
preprocesscr function reference,

General Rules:

1.

2.

3a.

3b.

i,

S.

The FILE clause specifies the data base file whose
current record is to be unlocked, The £ile must
have the UPDATEF attribute.

A recerd can be unlocked only by the task which
locked it,

If no SUBFILE clause is present, the current root
record will be unlocked,

A SUBFILE clause, if present, specifies that the
current subrecord of a subkfile is to be unlocked,
The ctlfield expression value is converted to a
character string the first eight characters of
wvhich identify the control field.

If the locked current (sub)record has been updated
by a PUT or REPUT FIELD statenment, +he UNLOCK
staterent %ill cause it to he retransmitted to the
data hase, It continves to be the current
(suh) record of the file, but POUT and REPUT
stataments are invalid until another current
(sub) record is established.

Unlocking a (sut)record that was READ with the
NOLOCK option or that has already bheen UNLOCKed
has nc effect,



PAGE 87

1The UPLIST Function?

Unigue Parent LIST builds a list of the unigue parent (root)
record kevs from a given sub-record ({(children) key list and
returns a pointer valne identifying the new 1list to the
point of invocation. The new list has the same nunher of
parent keys as +the nurter of subrecord keys in the given
list, Parent keys will nct be repeated, evem if more than
one of the given sutrecord keys are dependent on a
particular parent record. 1A previously current and updated
subrecord of the sutfile referenced by the givem list will
ke transmitted to the data base, The subrecord identified
by the last key in the given list will remain as the current
subrecord of that suk-file; any current root or index
records or subrecords of other sutfiles will remain current,
The READ cursor of the given list will be reset,

keference:
UPLIST {file-name, child-list-pointer);

An UPLIST function reference is used as cr in an exrression;
it is not tc be a sutarqument in a DB preprocessor function
reference. The user may not declare any attributes for the
OPLIST function: the following statement will te generated
antomatically:

DECLARE OPLIST ENTRY(,PTR) RETURNS (PTR);
Argqueents:

The file-name arqument specifies the data base file from
which sutrecords are to he transmitted. It may not be an
ouTePUOT file, If ¢the file is not open, it will Le opened
automatically, The file-pame must be used in at least one
DBPL/I statement elsewhere in the program.

The child~list-pointer arqueent must be a pointer expression
that identifies a list in main storage of subreccrd keys
from the data base accessed by file-name, It must have bheen
set when the UPLIST functiom is invoked,

Result:

The value Teturned bty the UPLIST function 1is a pointer
identifying the new unigue parent list, The nevw list will
be in order of ascending internal parent key values without
duplicated values. If the given subrecord list is null, a
¥ULL pointer valne will te returned.



PAGE 88

"The WRITE Statement?

The WRITE statement causes a physical record (presumably,
from a backup file) to te transmitted to a SEQUENTIAL OUTPUT
file,

General Foraat:
%RITE FILF {file-napme) FPBOM (variable);
Syntax Rule:

The ¥RITE statement must be a subargument ina DB
rreprocesscr function reference.

General Rules:

1. The PILE clause specifies the file to which the
record dis tc be transmitted. It npust be a
SEQUENTIAL CUTPOT file owned by the user who
executes the RRITE =tatement,

2. If the file is not open, it is opened
automatically with the SEQUENTIAL QUTPUT
attritotes,

3. The variabkle in the ¥FROM clause, declared and
filled by the vser, contains the record to be
wvritten. It must have the self-defining format of
an internal variable-length record. 1Its key field
valve ({(without validation or conversion) must be
higher, 1in order of ascending internal values,
than that c¢f the record transmitted by the
previcus WRITE statement for the file, {The
record does not hecome the current record of the
file for purposes of POT statements,)



PAGE B9

*The #YREF Functiont

$XREF calculates the number of cross reference keys in the
current record of an index and returns it to the ©pcint of
invccation,

Reference:
$XREF {File-name, indfield)

A #YREF function reference is used as or in an exgression;
it is not t¢ be a subargument in a DB preprocessor function
reference., The user may not declare any attributes for the
#XREF function; the fcllowing statement will be generated
antomatically:

DECLARE #XREF FNTEY{,CHAR(8)) RETORNS (FIXED BIN{(31)):
Arquments:

The file-name identifies a data base file, It may not be an
ouUTPUT file.

The indfield specifies the index file, A current index
racord must have been estaklished by a READ INLEX statement
vhen the #XREF function is invoked, The indfield exrressicen
value is converted to a character string, if necessary, the
first elight characters of which identify the  indexed
fie:ldo

Result:

The value returned by the #XREF function is a binaryvy integer
of maximum precisicn giving the namber of cross-references

in a current index record. If an index record is not
current, a zero value will be returned,



A LIST OF
FILEPLEX
RECORD KEYS

| FILEPLEX

<>

—~

SUBFILE

T

3.1

INDEX

3.2

INDEX

—

A LIST OF
SUBFILE
RECORD KEYS

FIGURE 1. FORMATION OF LISTS

o~

7



NEXEE:

= A '&" B

7

% fA 1ot B

FIGURE 2. VENN DIAGRAMS



PAGE 92

APPENDIY A.

FILEY LEVEL STATEMENTS

ON ERRORFILE {(mfcb) {§ SYSTEM T
|_GC TC label_1{ 3

OPEN FILE (mfcb) <TITIE ('mfch')> | CIRECT 1 o IwenT T
| _SEQUENTIAL_{ { OUTPUT |;
{_UBDATE_{

CLOSE FPILE {mfckt) <ERASED;

RECORL LEVEL STATEMENTS

LOCATE FILE (mfcbh) 1 KEYFROM (expr) |
{_SUPFILE (scfn)_1{ ;

READ FILE (wfchy | fcrwards i <WOLOCK>:
| BACKKARDS |
| KEY (expr) |
I LIST (ptr) <EEY(n)> |
{_PER SOUEFILE (scfn) _|
READ FILE (wmfcbhb) SUEFILE (sctn) | forvards  { <NOLOC¥>;
| EACERWARDS |

1_KEY {exvnr)_1

REAT FILE (mfch) INLEX (ifn){| forwards |
{ BACKWARDS | 3
I_KEY {expr)_|

UNLOCK FILE {mfch) <SUEFILE (scfn)>:



PAGE 93

PHYSICAL RECCED STATEMENTS

GET FILE (mfchb) RECORD INTC (var):

¥RITE FILE {mfct) FPROY (var};

FIELD LEVEL STATEMENTS

POT FILE(mfcb) FIFLD({fn<,£fn2>) FROM (expr<,exprl>);
GET FILE(mfch) FIELD{fn<,fn2>) INTO (var<,var2>);

GET FILE (nfch) INDEX{(ifn) KEY INTO (var);

REPUT FILE(mfchy FIELD (fn<,fn2>) FRCHM {(expr<,exprid>);
fullword = #FIEID (mfct, £n);

fullword = #YREF (mfct,ifn):

DATABASE LIST STATEMENTS

GET FILE (mfchk) | SOBFILF (scfn) { LIST SET {ptr):
| INDEX (ifn) |
{_anchor is index _|{

GET FILE {nfch) <SUBFIIE {scfn)> KEY SET (ptr):

Ptr = CCLIST (mfch, scfn, ptr1);
Pttt = CPLIST (mfch, ptrty:
Ptr = UPLIST (mfch, ptrl);

RON-EATABASE LIST STATEMENTS



PAGE 94

CN LISTERROR | SYSTEM |
{_GO TO label_| ;

GET LIST (otr) KEV (0);

GET LIST (ptr) KEY <{n)> INTO ({var):

GET LIST (ptr1) FEY SET (ptr2)s

Ptr = ULIST {ptri);
Ptr = DUPLIST {(ptr1):
Ptr = LIST {(ptri,op,ptri);

SET LIST {ptr2) SIZE (dim} LIXE LIST (ptr1):;
GET LIST {ptr1) INTERNAI KEY INTO (var);

PUT LIST {ptr2) INTERNAI KEY FHCM {expr);
Fullword = #LIST {ptr);

FREE LIST (ptr <,ptr2>);

FREF LIST;



dim

eXDpr

op
ptr

scfn

var

PAGE 95

GILCSSAFY

an exrression resulting in a numerical
dimensicn value

an exrression resulting in a value
an exrression resulting in a field nane

an expression resulting in anr indexed f£field
name

gainline FILF control block name

an exrression resulting in a numerical
sutscript value

list operator: '{' or ‘&' or *-'
pcinter to a list of keys in main stroage

an expressicn resulting in a sukfile control
field nare

variabtle data area name



PAGE 96

TOPIC C.2 - CONVERSICYN, VALIIDATICN, AND FORMATTING
RCUTINE TEST CRIVER REFERENCE MANUAL

1. INTRCDUCTICN
The RDBDRIVE ¢regram is a facility to allow

programmner to test ccnversion, validation
formatting routines conversationally, The user

specify the rcutine names and the input data values.

This eliminates the need for a test data base,
provides an efficient nethod for testing
routines,

II, LINKING EDFDRIVE

RDBDRIVE is a standard part of NASIS, Because its use
is limited to the programmer, it is not a part of the

standard user profile.

To use RIBDRIVE it must be entered into vyour
profile. To do so, the fellowing commands must
gexecuted:

SYRCHNYM DRIVER=+*CCOHNAND

DEFAULT MTITVERBS="DRIVEF=LBLEIVE"
PECFILE

APOFF

DRIVER now Ytecomes a valid NASIS ccmmand, and
invoke the test driver,

III. OPERATIONS

A, Input Mode

fpon initiating RCBLRIVE the user is prcmpted to
select an infut @wode, This is the format to
wvhich bisg terrinal input (which, by the nature of
the terminal must be alphanumeric) is +translated
before it is sent +to the first routine in the

string of routine names.
The availalble coptions are:

alpbanureric,

full word,

half word,

long floating point,
nacked decimal,

short floating peoint,
hexadecimal,

WM TY ek
[ | I VI I T



B.

PAGE 97

A null response or an "END"™ response to the prompt
for irput mcde will result in program termination,
Any other resrpomse is invalid, a diagnestic is
issved and the user is reprompted for the input
mode, A

Routine Names

The user is next prompted to enter the routine
names he wishes to test, The rcutine names nust
be ented in the order; conversion, validation,
formatting. Any routine may be defaulted to
null, positicnally; i.e., only the following
conmbinations are valid:

conversion rovtine nane,
validaticn routine nane,
reformatting routine name.

=
Wounow

4 null respcnse returns the user to the prompt for
inpuot mode.

The <c¢nly validation check made on the routine
nanes is to insure that none of the names exceed
eight characters. If any do exceed eight
characters, the entire string is rejected and the
user is rerrcmpted for the names,

If the user has specified a validation routine, he
is now rrompted of any validation arguments. This
may te anvy character string, up to a maximum of
fifty bytes,

Input data

After the input mode has been selected and the
routine names specified, the user is prompted to
enter his routine input data. The input data is
subject to the restrictions of the specified input
node, as follows:

1. Alphanureric



PAGE 98

2. 256 character maximum string.
2 Full word

A nuperics and sign only,

k. fractions truncated,

Ce 2,147,483,647 maximum,

d, -2,147,483,648 pinimum.
3. Half worxd

a. nurerics and sign only,

t. fractions truncated,

Co 32,767 maximun,

d,. -32,768 pinipum,
4. Iong flcating peint

A. puperics and sign only,
k. fractions truncated.

S5, tacked decimal

a. numerics and sign only,
k. decimal point ignored,
Ce 15 dicits maximum,

6. chort fleating pcint

Ae numerics and sign only,
t. fracticns only.

7. Hexadeciral
a. nuperics and A-F only,
k. even number of characters only,
Ce 256 character maximum string.

Anv input errors %ill result in an appropriate
diagnostic. The bad string will he reiected and
the user will te reprompted for input data,

A null resroncse will return the user to the prompt
for rcutine names.

One special response exists, That is WUOLL, This
response will result in a null value being
converted to the specified input mode., This step
is necessary, since anv null response to the
prompt for input data will cause the user to te
reprompted for routine names,

The inrut data is displaved to the user, first as



D.

E.

PAGE 99

he entered it, fcr verification. And next, in its
new form, as it will 9o to the first routine
specified,

The input data is passed to the first routine name
specified, for processing, The output from this
routine then hecomes input for the next routine in
line.

Cutput

The cutput £from each routine is 1lakeled and
displayed +to the user in hexadecimal. The output
from a formatting routine is also displaved in the
character forrat.

Any errors during processing will result in a
dianostic nessaqge., The user will then te
repronpted for invot data.

Termiraticn

As previocusly noted, null responses to the program
prompts will filter the user back to the prompt
for input mode, and a null response or "END" will
cause program termination. No more than three
null respomnses will ever be needed to termipate
the progran,

Another metheocd of termination is merely a */END?
response tc¢c anvy rprompt.



PAGE 190

APPENDIX A,

SAMPIE Test Driver Session

begin nasis

ENTER NASIS COMMAND: driver

SELECT INPUT FODE: £

ENTER ROUTINE NAMES: dbhcvtsn,,dbfmtsn
ENTER DATA VAIUDE: +12345

CATA VALUE = #12345
ROUTINE INEUT VAIUE = 12345
AFTER CCNVERSION, HEX = 3039

AFTER REFORMATTING, HEX = F1F2F3FU4FS
AFTER REFORMATTING, CHAR = 12345

ENTER DATR VALUE: {null response)
ENTER ROUTINE NAMES: (null resposa)
SELECT INPUT MODE: X

ENTER RQOUTINE NAMES: sedtEntsn
ENTER DATA VAIDE: 3039

LATR VALUE = 3039

RCUTINE INPUT VAIUE = {umprintable)
AFTER REFORMATTING,HEX = FI1F2FIFUFS
AFTER REFORNAITING, CHAR = 12345

ENTEF DATR VALUE: /END
ENTER NASIS CCMMAND:



PAGE 101

TOPIC C,3 - MESSAGE FILE ECITOR USER'S GUIDE-

1.

I1.

INTRODUCTICH

The EDIT ccmmand provides a user with the capability of
creating, updating, and removing entries within a copy
of LISEMLF.

RDBMLF is a standard part of NASIS, however, because
its use is limited to the application programmer, it is
not a part of the standard user profile.

To use RDBMLF it npust Le entered dinto your user
profile, Tc dc =0 the following comnmands must te
executed:

SYNONYM EDIT=#*COMMAND
DEFAULT MTIVERES='ELIT=DBMLF?
PHOFILE

APOFF

In order to familiarize a nser with the pcdule, a
descrigticr of the file characteristics is necessary,

REGYION CODE

The file is btroken down intc twoc areas: one ccntaining
teres feoer EXPLAIRation and the other for module
messages.

A, TERMS

There are t¥oc types of terms each compprising their
own regiomnal code characteristics.

T. CICBAL terms

2 glotal terw is one which has a constant
definiticn, throunghout the NASIS system. The
region c¢cde is derived from a period and the
first seven or less characters of the ternm
teing defined, The term 1is 1left Hustified
and hlanks filled,
EXAMPLE: ternm region

FORMAT « FORMAT

STRATEGY .LSTRATEG

2. File terwm



I1I.

PAGF 102

R file term is one which has a set definition
for a particular file within the NASIS. The
region code is derived from the file name (6
characters maximum), a period (.), and the
first character of the term being defined,
The file name is left -Hunstified and blank
filled.

EXANMPLE: file-nanme ternm region
ASEDY AOTHOR ASREI .3
B, Module messages

Facbh rcdule message contains a uaique region code,
¥ithin that region there are three areas used for
defining the  message. They are the message,
explanation of the messsaqge, and the responses to
the message, The regqion code is derived from the
message code itself, It is left dustified and
blank filled to 8 characters.,

EYAMPIE: message~-id region
DBMLIFO1 DBHEIFO
FILE ORDERING BY NUMERIC KEY

The nameric key vrovides file seguencing of each entry
within a given reqion. The region code provides for a
partially alphatetically ordered file, The pareric
key maintains sequencing of all entries which develop a
duplicate region code (terms only).

R. TERMS

Terms are in numeric sequential order within a
region using a seven digit key and a constant
increrent of 19,

B, Module messages

Ressages alsc maintain a seven digit key and a
constant dincrement of 10, However, a treakdown
of +tke numeric key provides partitioning of the
region code into the message content, exrplanation
and response. Numerically the key is governed as
follous:

a. ressaqe key range 00=-90
expvlanation key range 16C~390
response key range 400-9999990



Iv.

v.

PAGE 103

UNIQUE CHARACTERISTICS OF AN ENTIRY

A.

B.

Ternm indicaticn

Because of duplication of regional codes every
term is suffixed by a colon{:).

EXAMPLE: Tern Region Code Key Record Content
FCEMAT LFORMAT XXXXXX0 FORMAT:"text®
Conticvaticn Convention

The continuation convention for EXPLAIN is of two
tyres; physical and logical, They are represented
by a wrinus (=) and a plus (+), respectively.
These are ccntrol characters only, and are not
disglayed to the NASIS user.

1, PHYSICAL

A physical contipuaticn implies a continued
line %ill Le displayed concatenated with the
rrevious 1line, The contextual pethod of
ccntrcling physical continuation is under
program control. A minus (=) at the end of a
text line indicates physical continuation.

2, 10GICAL

B logical continvaticn implies that a new
line will be displaved on the output device.
2@ plus (+) at the end of a text lipe
indicates logical continuation, The
contextual methcd of indicating logical
continuation is by a double slash (//) at the
end of each looical line,

COMMAYD DEFINITION

There

are six user commands available for manipulation

of the LISEMLF file.

R.

E.

ADD:

The ALD ccmmand will c¢reate a new entry in the
messaqge file cr concatenate new text lines to an
existing entry in the nmessage file,

DELETE?

The LCFLETE ccmmand allows the removal of one or
more text lines cr an entire entry in the nessage



C.

D.

E,

F.

PAGE 104

file. An atsolute match is made on the entry
before deleticn is allowed.

REPLACE:

The REPLACE command allows +the replacement of a
single entry in the message file with one or more
new text lines., 2An absolute match is made on the
entry btefore replacement is allowed.

DISPLAY:

The DISPLAY command allows cne or more text lines
or an entire entry to be displayed on the output
device,

PREFIX:

The PREFIY ccmpand allows the modificaticn of the
filter code <of <each nressage or all succeeding
BesSaqges.

END:=

The END compwand causes termination of the EDIT
command processor, In addition the use of /EBHND
on ATTH: will cause termination of the current
parameter prompt and a command prompt will  be
returped tc the terminal.

COMMANRL SYNTRAX

ADD (id),TYPE,TEXT

CELETE id, TYPE {,n1{,n2))
LISPLAY (id), TYPE (,n1{,n2))
REPLACFE id, TYPE, N1, TEXT
PREFIX filter code

ENT none

Rhere:

~id

is 1 to 8 characters in lenqth depending on
the follewing censtraints:

a. If the “type" vparanmeter contains one of
the keywords (MSG, EXP, RSP) then id may
te up to 8 characters in length.

k. If the tyge parameter is defaulted to a
term i.e., keyvword not specified, +then
the id may be up to 6 characters in
length,



type

text

nt

n2

PAGE 105

C. The id contains the keyword GLOBAL., (The
region is developed from the first seven
{or less) characters of the term
supplied in the type parameter.

NOTE: The user is allowed to default the id
rarareter when wusing the ADD or DISPLAY
commands. The default value is the id
specified by a previous command,

is eitter MsG, EXP, RSP, or a term, such
thats

¥SG implies message text,

EXP irrlies explanation text,

RESP imylies response text, or

term is the string to be EXPLAINed.

is a string of characters that is to comprise
the text 1line(s). Separate but ralated
rhysical text entities may ke separated by a
double slash (//): this accomplishes logical
continuation,

is a starting 1line number at which the text
is to te¢ DELFTEd, REPLACEd, or DISPLAYed.
The default values apply only to the DELETE
and DISEIAY commands., The assumed values are
as follows:

0000000 for Type of MSG,
00001G0 for type of EXP,
C00040¢ for tvype of RESP,

The default value for terms is deternined by
finding the specified term within a region,

is an ending (inclusive) line number to be
deleted or displaved, If omitted, only n1l
will be involved.

£ilter code

is a two character filtering prefix, set at
any time by the PREFIX command; this prefix
will ©preceed each line (as per EXPLAIN
requirements.,)



PAGE 106

TOPIC C.4 - REBJOIW - JCINING NEW USERS

I.

I1.

IRTRODUCTICN

The JOIN comnmand gives the HASIS Data Base
Administrator the ability to control the access of
retrieval users to the varicus files of the system. In
addition, it alsc allows the DBEA to specify passvords,
time slice values and authority codes which influence
use of the system, The information is maintained in
data set NASIS.USERIDS,

COMBANDS:
JOTIN

The JOIN command establishes a new NASIS~ID which can
be used to access the system, This is accomplished bv
creating a new record in the data set and inserting the
values for the various data fields,

Copmand: JCIN
Operands: NASISID=id,BPRSSWCED=code,TS=value,
AUTH=authority,FILES=file list
¥hete:

id
identifies the new NASIS~ID to he created,.

Srecified ast a 1-8 character alphanumeric value
beginning with a letter,

, code

identifies the rassword or indentification code to
be used for this NASIS-ID.

Srecified as: a 1-8 character alphanumeric
valne,

Default: PNo password will be assigned,

value
indicates the maagnitude of the time slice in Mill{i
Seconds o be assigned to this HASIS-ID under MTT
mcde cf oreration.

Specified as: a 1-5 digit numeric walue,
anthority

indicates the authority level to be assiqgped to
this NASIS-IT under MTT mode of operation,



PAGE 107

Specified as: a one character code, 'U' for user
or *DY for DEA,

Default: 1'0' will be assigned.

file list
identifies the files to be made available to this
NASIS-1IL.

Specified as: a list of fally gualified file
napes, i.e. TEA-ID,FILE-ID,

LUIT:

The QUIT ccommand removes a NASIS-ID frop the 1list of
Valid ids.

Command: QUIT
Drerand: NASISID=id

CHANGE?

The CHANGE conmand 1is used to alter the values of one
or more of the data fields (other than the file 1list)
associated with a particular NASIS-ID,

Command: CHANGE
Operands: " NASISID=id,PASSHORD=code,IS=value,
AUTH=authority

ABD:

The ADD ccmmand is used to specify new files which are
to be added tc the list of files to which a given
NASIS-IT is permitted access.,

Command: ADD
Operands: NASISIC=id,FILES=file list

DELETE:

The DELETE command 1is used to remove files from the
list of files t¢ which a particular NASIS-ID is
pernitted access.



11T,

PAGE 108

Command: DELETE
Operandss: NASISID=id,PILES=file list

DISPLAY:

The DISPIAY command is used to list the files available
to a particular NASIS-ID, along with +the other data
values present in his identification record,.

Command: DISFELAY
Operand: NASISIC=id

EXAMPLE

USER: 4cin jchn,ace,99999,,

SYSTEM: JOHN JOINED TO NASIS WITH PASSWORD=ACE,
TIMESLICF=99999 MILLESECONDS, AND AUTHORITY=,

USEER? add -ohn, {safetv.asrdi,safety,.erts)

SYSTEM: Adds the two files to the list of files
availakle to JOHN,

USER: display dchn

SYSTEM: Display the current information maintanined
fcr JCHN.

USER® change john,auth=d

SYSTE#: Arplies the appropriate change,



PAGE 109

TOPIC D, 1 -~ MAINTENANCE SUBSYSTERM

I.

i1,

INTBODUCTICY

The maintenance ccemands provide for file definition,
creation, maintenance, and statistical reporting. The
Descripter Editcr grovides the data base administrator
with an interactive means of defining the data fields
comprising a data tase, File creation function is
accomplished by CELOAL, a generaliwzed loading progranm,
which supports several input data formats. File
raintenance can te performed either on~line, by an
interactive data editting capability, or off-line by
the generation of maintenance transactions which can be
grouped, validated and applied under the direction of
the data tase advinistrator. Concurrently the system
maintains statistical dinformaticn on the maintenance
activity of each file,

THE MAINTAIN COMMAKD

To initiate the Maintenance Subksystem, the user must
enter the YAINTAIN comnmand, e.qg.:=

-ENTER NASIS CCKMAND: maintain
The user may now enter any of the Maintenance Commands,

such asy CCMBINE, CORKRECT, EEBIT, IWYERT, LOAD, PRINT,
or TUPDATE,



BAGE 110

TOPIC D.,2 -~ DESCRIPTOR ELITOR

I,

II.

INTRODULTICN

The Descriptor Editor is an editing program used for
creating and updating the field descriptors of a WASIS
Data Base.

INVOKING THE EDITOF

The Descriptor Editor is invoked by entering the EDIT
cognmand and specifying the appropriate rode of
operation,

EDIT MCDE=<CREATE|UGPLATFIRESTCRE>
¥here:

MOLE
Is Specified as:

CREATE: assumeés that no data files exist and that
the user is either creating or continuing +to
create field descriptors.

UPDATE: assumes that data files do exist and that
the user wishes to modify the description of
cne or mcre of the fields. The UPLATE mode
allows tte vser t¢ make changes that do not
affect the physical format of the record,

RESTOEEF? reads in previously, check-pointed
descrirtors and continues processing in the
CREATE mode,

For all modes the first letter of the owmode type is a
sufficient abbreviation, If the entered mode value is
invalid, the editcr will re-prompt the user for a
correct value., If the user defaylts the rrompt for the
node, the Editcr will terminate and control w»ill te
returned to the Maintenance director.

EXAMPLES:

1. The user wants to create a new data Dase
whose name is PEQPLE.

SYSTEM: ENTER NASIS COMMAND:

USER: MATINTATR
SYSTEM: ENTER FILE NAME:
USER: EECPLE

SYSTEM: ENTER:



11T,

Iv.

PAGE 11

USER: EDIT
SYSTEM: ENTER MODE:
USER: CREATF

2. The user wants to modify the descrirtors for
an existing data base whose name is PGMS.

SYSTEF: ENTER NASIS CCHNMAWND:

USER: MAINTAIN PGUS
SYSTEM: ENTER:
USER: EDIT UPDATE

3. The user has a checkpointed set of
descriptors for the data base GRMES which he
wishes tc¢ continue defining,

SYSTEF: ENTER NASIS COMMAND:

USER: MAINTAIN GAMES

SYSTEM: ENTESR:

USER: EDIT RESTORE
DEFINITIONS

1.

2.

3.

The following definitions are used throughout this
secticn:

Boolean Values -~ Used where ever a yes or no type
of response 1is required. The following are
acceptable values for a 'yes' type of response:;

YES' Y' TBUE' T’ CN' 1!

The following are acceptable valunes fcr a ‘no!
tyre cf respcnse:

NO' N' FAISE' E' CFF' 00

Pieldname - Is a character string of 1-8
characters lcng of the follewing form: the first
character must be alphabetic, and the other
characters, if any, must ke alphanumeric,

Routine WName = Is a character string of 1-8
characters 1lcng with the following form: the
first character must be alphabetic, and the rest
of the characters, if any, must be alphanumeric.

THE CREATE MODE CCFMANDS

A,

The AT and CHANGE COMMANDS allow the aser to
create a new field descriptor or modify existing
field descrirctors,



PAGE 112

ADD{JCHANGE) FLDNAME=field-nanme,

TYPF= (FILDTYFE=field~-type
< ALIGN=CRIGHT{LEFT>>) ,

FCEM=(PLDFORM=field~-format,
FLDLEN=field-lenath,
FIL.ENLEN=element-length,
ELEMLIM=element-numnher
< UNIQUE=CYIND>>),

ROUTINES= {CONV=conversion-routine,
FORMAT=formatting-routine,
VALID=validation-routine,
VALIDARG=validation-argument),

INDEXED= {(INDE¥X=<XY{ N>,

IFLDNAME=field~name
<yEXTINT=CINTERNAL|EXTERNAL>,
EXTLEN=external-length,
SPANNED=<Y{|N>>),
ASSCCED={ASSCC=<Y| N>,
AFLDNAME=field-nanme},

SUBFILED={SUBFILE=<Y{N>,
SFLDNAME=field=-nanre),

SUBFIELD={SUBFLD=<Y{N>,BASEFLD=field-name,
OFFSET=o0f{set
<, <FI1lE=<*filename| ANCHORD>>
or <PILE=<ASSOCIATED|SUBFILE>,

FLLCRANE2=field-named>>)

Where:

FICRAPNME
jdentifies the field tc be added.

Srecified as: a valid fieldnane,
PLDTYEE (FIEID TYPE)
identifies the physical format of the
field,
Specificd as:
A - alphanumeric character string
B - bit string
BN - 8 bit unsigned binary nunmber
BP - packed it string. These fields
will ke placed immediately after
the key field as cne cecntigquous bit
string,

EXY - hexadecimal



PAGE 113

I¥ - large numberic {32 tit signed
binary numkery.

§ =~ scientific (14 digit decimal number
within the range of 10*%-75 1
10%%+75),

SD - scaled dJdecimal (nimne digit numbers
within the range 10*%-9 z
10%%+9),

SN - short numeric ({16 bit signed binary
numbery.

55 =- short scientific {six digit
decimal number within the absoclate
range of 10*%%-75 1 10%*%+75),

ALIGN {ALTGNMENT)
identifies right or left alignment of the
field.

Specified as: *RIGHT' or *'RY for right
alignment and ‘'LEFT' or *L? for left
alignment,

FLDFORM - {FIELD FORMAT)
identifies the logical format of the field,

Specified ass F-FIYED, V-VARIABLE, FE-FIYED
ELEMENT, VE~VARIABLE ELEMENT,

FLDLEX ({FIELID IENGTH)
indicates the length of fixed fields or the
raximur length for other types of fields,

Specified as: a rositive nunmber,

(1) For +the file key field, the mayimunm
field length is 256,

{2} For all other fields:

{ay If FLDFORM=F, then the maximum
field length is 3996 wminus the key
field length;

{t}y For all other valwes of FLDFORW,
the mpavimum lenqth is 3994 nwninus
the key field length,

ELEMLEN (EIEFMENT IENGTH)
indicates the gaximum length of fixed and



BAGE 114

variatle elenments,

Specified as: a positive number with the
range of 1-256 if FLDFORM is FE: the range is
1-255 if FLDFCRM is VE,

ELEMLIH
indicates the paxinmum number of elements

allowed in the field,
Specified ast a positive nunmber.

{1y If FLDFORM=FE, then the pmaximum nunmber
cf elements is equal to the field
length.

{2) If FLDFORM=VE, then the paximum number
of elements is the field length divided
ky two,

UBIQUE
indicates whether or aot all element values
within a multi-element £ield are to be
tnique.

Specified as: a boolean value,
Tefault: W

CONY (CONVERSIQOW ROUTINE NAME)
identifies the name of the routine used to
convert the input data as it is ©placed into
the data base.

¢pecified as: a routine nanme,

FCRMAT {(FORMMAITING ROUTINE NANE)
identifies the routine used to format the
data for output from the data base.

Svecified as: a routine nane,

VALTID (VALIDATICN BRCUTINE XNANE)
identifies the name cf the routine used to
validate the input data.

Specified as: a rcutine nanme,

VALIDARG (VALIDATICN BOUTINE ARGUMENT)
indicates the arqument required by the
validaticn routine to wvalidate the input
values,



PAGE 115

Specified as: a hexadecimal character string
cf 1-100 characters.

INDEX
indicates whether the field 1is to be
indexed,

Specified as: a toolean value,
Tefault: W

IFLTNAME
jdentifies another field previously defined
with which this field is to be indexed.

Srecified as: a valid fieldname of a
previously entered indexed field.

Lefault: thke Editor assumes that this field
is the first entered field of a new index
file,

EXTINT
indicates whether the key of the index file
is tc¢ ke 1in internal or external form, If
the kxevy values are to be in external forn,
then the field values must be formatted
tefore teing placed on the index file,

Specified as: INTERNAL or I for internal
form or EXTEENAL or E for external fornm.

[efault: inpternal form, i.e., the value used
cn the irdex file is the same as that stored
in the anchor file,

EXTLEN (EXTEREFAL IENGTE)
indicates the pravimum lenath possible for an
formatted valve of the external field.

cpecified as: a positive numeric valuve in
the range 1-2Z%E,

KECTE: if the EXTINT entered value is
external, then EXTLE¥ must be specified,

SPANNETL
indicates that this index is +to consist of
spanned records.

Specified as: a boolean value,

Tefault: N



PAGE 116

NOTE: this implies that the wmaximum length
for index keys can be no larger tham 255 to
allov for a one byte spanned counter,

ASSOC (ASSOCIATED)
indicates vhether +the £field is tc be
associated,

Specified as: a toolean value,
Tefault: ¥

AFLDNAME
identifies another field previously defined
with vhich this field is to be associated.

Specified as: a valid previously entered
field name.

Tefanlt: +he Fditor assumes that this field
is the Ffirst entered field of a new
associated file,

SUBFILE
indicates whether the field is to appear on a
sytfile,

Specified as: a boolean value.
Default: N

SFLINAME
jdentifies ancther <field previously defined
vhich identifies the subfile on which the
field is t¢ te placed, The field named nmay
te the subfile control field,

¢pecified as: a valid previously defined
fieldnane,

SUBFLD
Indicates vhether this field is to te defined
cn either a part or the whele of another
field.

BASEFLD
identifies the field on which this new field
igs to te defined,.

Specified as: a valid vpreviously defined
fieldname,

OFFSET



PAGE 117

indicates the bit or character position of
the defined field on which this subfield is
tc start.

Specified as: a positive numeric value
tetween =zero and the lenght of the defined
field minus one.

NOTE: the offset value must be specified if
the subfield is specified.

FILE

identifies the descriptor regioen on which

resides the field that is the defining base

for this subfield.

Srecified as:

{1} The character **' concatenated to the
descriptor file region nane,

{2) The anchor file which may be entered as
either of the followinag: ANCHOR or
AN,

{3} An associated file which may be entered
as either of the following: ASSOCIATED
or AS.,

{4y A subfile which may be entered as either
of the following: SUBFILE cor S,

[efault: will ke assumed toc be the anchor

file,

NOTE: this vrarameter only needs to ke

entered if the defined fieldname is not

unigue within the data hase, such as

RECLEN.

FLDNAME2

identifies a field which is uysed to deternine
vhich associated file or which =suhbfile is
bFeing referenced.,

Specified as: a valid fieldname,

NOTE: There is a user default variable
"EDPROMET? which when set equal to 7Y®" will
cause ¢the user to bte oprompted for every
rossible aprlicable parameter while the user
is either ACDing a new field or CHANGing an
existing field. In the normal mode there are



PAGE 118

parameters such as field alignment ("ALIGN™)
which are mnot prompted for if the auser does
nct enter them in the command strean.

NCTE: Any parameter to +the CHANGE €function
which is defanlted will imply that the
existing value for that descriptor field will
te left unaltered.

NOTE? There is a user default variable
WEDPRCMETY which when set equel to "Y" will
cause the user tc be cprompted for every
rcssible aprlicable parameter while the user
is ACD'ing or CHANGE'*ing a field. In the
ncrnal mode, there are parameters such as
field alignment, "ALIGN", which ars not
rrcmpted for if the user does not enter them
in the ccmmand stream,

EXAMPLES:

T

2,

¥hen first creating a new set of descriptors,
the user 1is first prompted for the anchor
file key field.

SEYSTEN: ENTER FREY:

USER: ALL ACCESSKNO

SYSTEM: ENTEF FIELDTYPE:

USER: A

SYSTEN: ENTER FIEID FCHMAT:

USER: F

SYSTEM: ENTER FIELD LENGTH:

USER: 8

SYSTEM: ENTER ROUTINES:

USER: {return - vants standard defaults)

SYSTEM: ENTER: {prompt for next editing
request)

NOTE: TIf the user declines to enter the key
field information, the Ffditor is terminated
and control is returned to the Maintenance
director.

The user wishes to add +the field USERNAME
vhich is to te a varying element field, each
elepment is toc te 12 characters long and allow
for 50 elements per record, USERNAME is to
te placed on the associated file along with
USERTYPE. It is also to he inverted,

SYSTEM: ENTER:
CSER: ADD
SYSTEM: ENTER FIEILD NAME:



3.

USER:
SYSTEN:
CSER:
SYSTEM:
UDSER:
SYSTEM:
OSER:
SYSTENM:
USER:
SYSTEN:
NSER:
SYSTEN:
OSER:

SYSTEM:
USER:
SYSTE#M:

USER:
SYSTEM:

USER:
SYSTER:

USER:
SYSTEM:
USER:
SYSTEM:
CSERz:
SYSTEM:

PAGE 119

USERNAME

ENTER
3
ENTER
VE
ENTER
5¢¢
ERTER
12
ENTER
50
ENTER

(CONV=

FIELD TYPE:

FIELD FORNAT:

FIFLD LENGTH:
ELEMENT LENGTH:
YOMBER CF ELEMENTS:

BCUTINES:
ONCVT, FORMAT=UNFHT,

VALID=UNVAL,)
1S FIFLD TO BE INDEXED?

YES

ON WHICH INDEX FILE IS FIELD TO BE
PLACED?

{return)

IS FIELD T0 BE ON AN ASSCCIATED

FILE?
Y

ON WHICH ASSCCIATED FILE IS FIELD TO
EE PLACED?

USERTYPE

IS FIELD TO BE PLACED ON A SUBFILE?

O
ENTER

DEFINING BASE FIELD NAME:

{return)

ENTER:

The user wishes to change the field length on
field SOCSECWO
rake the index on which it appears a spanned

index.

SYSTEM:
USER:

ENTER:

from 8 to 9 and wishes ¢to

CHANGE SOCSECNO, o (4N vrlrreeYVrrer

The ACLLIKE LCescripgtor Function

This

functicn
descriptor with

allows the user to create a
all the same specifications as a

previcusly defined field.

ADDLIKE FLDNAMFE1=new~fieldnane,
FLDRAME2=0other~fieldnanme

Where:

FLLCNAME
identifies the new descriptor to be added.



PAGE 120

Specified as: a valid fieldname.

PLDNAREZ
identifies a previously defined field of
shich the new field is to be an exact
duplicate except for the field name,

Specified as:y a valid field name.
EXAMPLE:

1s The user wishes to add field MINKEYWI to have
exactly the same specifications as the field
MAJKEYWE,

SYSTEM: ENTER:
USER: ADCLLIKE MINKEYWD,MAJKEYWD

The CRECKFCINT Command

Checkpoint allows the user to save the descriptors
currently defined in a separate TS5 VAWM file.

CHEPCINT ({none}

CHKPOINT should be used when it is deenmed
necessary to save the descriptors as rapidly
as vpossihble, The user may continue to
frocess at a future time VIA the Restore
Command,

The CREATESUR Command
The ccmmand allows the nser to create a sutfile.,

CRFATSUE FLINAME=control-field-nanme,
MAYRECS=f-records,
ASSOC=<Y{ N>,
AFLLNARE=field-name

¥here:

FLONANE
jdentifies the field to bDe %known as the
sutfile ccortrol field.

Specified as: a valid field name,

MAYRECS
indicates the paxicum number of subfile
records that can occur per anchor file
record.



E.

PAGE 121

Specified as: a binary number in the range
cf 1:132¢,

AsSs0oC
indicates whether the field is to be
associated.
cpecified as: a toolean valne,
Iefault: ¥

AFLLNAME
identifies another field, previously defined,
with which this field is to be asscociated,

Specified as: a valid previously entered
fieldnanme,

EXAMPYE:

The neser wants to create a subfile for "PETSY
which is to te associated with CHILD,

SYSTEM: ENTER:
USER® CREATSUE PETS,20,Y,CHILD

The DEILETE Ccmmand
This command allows ¢the wuser to delete a
previcusly created field descriptor other than
the key field.

CELETE FIDNANE=fieldnane

dhere:

FILDWAME
identifies the field to be deleted,

cpecified as: previously described field
ramne,

THE DISPLAY CCHMMARD
This command allcws the user to disglay the
specificaticns entered for a previously created
descriptor,

DISPLAY FLDNAME=fieldname

Where:

FLLNANE



G.

H.

PAGE 122

identifies the field descrirtor to bke
displayed.

Specified as: a valid fieldnane.
The ENL command

This coamrand terminates a descriptor editor
session,

ERT {ncne)

After the FENI ccnmand has finished, control will
te returned tc the HMaintenance director, If the
user has not FILE'Qd since making additions,
deletions, or modifications, he will be dqueried as
to whether te wishes to FILE the descriptors. 1If
the user wishes to terminate, then the descriptor
editor will indeed terminate the current session;
othervise, the wuser will be prompted for his next
descriptor editor command,

The FIFLDS Ccmmand

This command allows the user to display the nanmes
of all the field decscrirtors thus far defined.

FIELDS {none)
The FILE Carmand
This function allcws the wuser to indicate that he
wants the Adescriptors to be written from virtual
memcry to disk storage.
FITE DESCCE=<YIN>
Where:
DESCOK
indicates whether or not the descriptors are
complete, If a NO value is indicated no data
can be lcaded into this file,
Specified as: a toolean value,
Tefault: N
The FIDSEC {(Field Security) Conmand

This command permits +the data base owner +to
restrict access to a field or a group of fields.



K.

PAGE 123

FLDSEC FLTNAWE= (field-name),
SECURITY={<<ALD|LCELETE>.>
security~-code<,s+.>)

Where:

FLIONAME
is a list of one or more existing fieldnames
to which the data base owner %ishes to
restrict access,

Specified as: a list of valid fieldnames,

SECORITY

is a list of security codes appended by an
add-delete code separated from the security
code by a mperiod, The add-delete code is
specified as A or ADD for adding a secority
code and D or DELETE for deleting a security
code, If no add-delete code is entered, it
is assumed the user is adding the securitv
code, The security code is specified as an
alrhanumeric character string of 1 to 8
characters, & nraximum of 18 security codes
ray be specified for any field.

EXAMPIE:

The data base owner wishes to restrict the
fields PCCCUNT and VALUE to the persons with
the security codes BQB, HARRY, and JOH¥ and
to delete TOM from the security list.

SYSTEM: ENTER:
USER: FIDSEC {ACCOUNT,VALUE), (ADD.BOB,
A,HARRY, A, JOHN,D. TOM)
The MCVE Compmand

This command allows the user to reposition fields
within the defined data lavout,

MOVE FLLEAMEt=new-location~-fieldname,
FPLLCNAME2=fieldnane

Where:

FLENAEE1
identifies which +field or the new 1location
after which the field specified bv FLDHAME2
is to te positicned.

specified as: a valid fieldname.



L.

M.

PAGE 124

FLDNAFE2
identifies the field to be moved.

stecified as: a valid fieldnane.

NOTE: A redefined field, i.e., subfield,
cannot ke moved as its position is determined
by +the rosition of the base field. 1€ a
subfield is specified as the new position
fieldname, +the MCVE command will locate and
use the kase field name as the new position
field name,

NOTE: 13 surerfield cannot be used as a new
rosition fieldname, nor can it be moved, as
a superfield consisting only of other fields
bas nc field pesition,

EXAMPLE:

The uyser has entered the three fixed fields
in the fellewing: AREACODE, 10CALNUM,
FXCHNG The user wishes to chanae the order to
AREACODE, EXCHNG, LOCALNUNM,

SYSTE#: ERTER:
OSER: HOVE AREACODE,EXCHNG

Botice this could also be accomplished by the
following:

SYSTEM: ENTER:
USER: MCVE EXCHNG,IOCRLNUNM

The PFRINT Command

This ccmmand generates a primter listing of all
the field descrirtors and file descriptors as they
exist in core at the time the PRINT was issued.

FRINT {none)
The RENAME Ccmmand
This compand pernits the guser to change the nanme
of a field w%ithout altering any of dits other
specifications or its 1location in the data

record,

RENAME FLDNAME i=new-fieldnanme,
FIDNAME2=0ld-fieldname

Where?



N.

PAGE 125

FLLNAKE?

jdentifies the new field nane,

Specified as: a valid fieldnane.

FLLNAMEZ2

identifies the existing field nanme

Specified ass a valid fieldnanme.

EXAMPLE: The user wishes to change the name of the

field CIDNAME to the name NEWNAME,

SYSTEM: ENTER:
D5SER: RENAME NEWNAME,OLDNANE

The RECSEC {Becord Security) Command

This

command rermits the user to control access to

a qroop or groups c¢f records within the data

base,

FECSEC LFLLCNAMF=field-nane,
SECURITY= (K<<ADD|DELETE>.>
security-codesnask<,...>)

Rhere:

DFLDNAME

is the existing fieldname to which the file
record security is to apply.

Specified as: a valid fieldnanme,

SECURITY

is a 1list of up to 18 security cocdes and
security wmasks determining who is to be
permitted access to the secured records on
the file, It is specified as an add-delete
code fellowed by a period, followed by the
csecurity code, followed by a colon, followed
ty the security mask, The add-delete code is
srecified as ALD or A for adding a security
code, or DELETFE or D for deleting a security
code, The security code 1is an alphanumeric
character string c¢f 1-8 characters, The mask
is two diait hexadecimal code,

The security code is used to compare against
the value in the reccrd security field of a
record to determine whether or not a user has
access tc that record,



P.

0.

PAGE 126

The RESTORE Command

This command permits the user to restore to
virtual memory the descriptors which had been
previously saved by the use of the CHKPOINT
conmand,

FESTORE {none)
The SAYSTRT (Save Strategy) Command

This command allows saving of descriptor editor
compands in the strateqy data set for future
recreation of descrigtors as they existed in
virtual memory when the SAVSTRAT command was
issued,

SAVSTET STRTNAME=strategqv-hame

Where:

STRINAME
is the strateqy name in the strategy data set
in which the descriptor editor conrmands are

to be saved.,

Srecifieqd as: a 1-16 character long
alphanureric character string.

The Superfld (Define Superfield) Command

This command allows the user to create a new field

descriptor which is defined as consisting of Data

from several fields,

SUPERFLD FLDNAME=fieldname,
RCUTINES=FCRVMAT=formatting-routine,

FIDLIST=(<<INTERNAL{EXTERNWNALD.>
field-name<, .4 )

Yhere:

FIDNAME
identifies the name of the new superfield.

Specified as: a valid field name.

FORMAT
identifies the routine used to format the
data for output from the data bhase,.

Specified as: a routine nanme,



PAGE 127

FLELIST

is a list of the previously defined
fieldnames from which this suvperfield is to
ke conposed, The order of the fieldnames
used to define the superfield is the crder in
which they were entered, The wuser may
specify whether the intermal or external form
cf the field is to bhe passed to the
superfield formatting rountine,

Specified as: a list of np to 16 character
strings of the form: The output fornat
concatenated to a period concatenated to the
fieldname to be included in the superfield.
The format type internal may be specified
as:

INTERNAL or I

The format type external may be specified
as:

EXTERNAL or E

Lefault: If <the output format is omitted,
thep it wili be assumed to bhe the external
format tyve.

NCTE: The superfield components must stay within
the fcllowing restrictions:

1. I+ mwmay contain at pnost one multi-element
field,

24 It may contain components <from one but not
more than one subfile,

I¥. THE GPDATE MODE CCHMANDS
A. The CHANGE CCHEMNAND

This command allowus the user to modify a
previously defined field.

CHANGE FLLNAME=fieldname,

TYPE=(FLDTYPE=field-type
<,ALIGN=<RIGHT|LEFT>>),

FOR#=(FLDFORM=field~-format,
FLD1LE®=field-length,
ELEMLEN=eclement~length,
ELEf#LIN=element-nunher
<,UNIQUE=<XY{N>>),

ROUTINE= (CCEV=Cconversion-rontine,



Where:

FLUNAME

PAGE 128

FOREAT=formatting=~routine,
VALID=validation~-routine,
VALIDARG=validation-arqument)

identifies the field to be modified.

Specified as: a valid fieldnane,

FLTLTYFPE

identifies the physical fornat of the
field, .

Srecified as:

A

BR

BP

BX

LN

SD
SN

SSs

ALIGWN

fer an alphanumeric character string, of
which each character mayv consist of any
valid EBCDIC character,

for a bit string,

for an 8 Ltit vnsigned binary number
which has a value in the range {-255,

for a packed bit string the same as B,
except that these fields will he placed
inrediately after the key field as one
continuous bit string.

for a string of hexadecimal nambers,

for numeric or a 32 bit signed binary
nuster,

for scientific or 14 diqgit decimal
nunbher within the range of 10**-75 =
10**4‘750 .

for scaled decimal nine digit nunber
within the Ttange of 10%%2-9 : 10%%:+9,

for npumeric or 16 bit signed binarv
numker.

for short scientific or a six digit
deciral numker within the range of
10%%=75 1 10¥*+75,

identifies either right or left aliqament of
the field.



PAGE 129

cspecified as: RIGHT or R for right alignment
and LEFT or L for left alignrment,

FPLDFORM '
jdentifies the lcgical format of the €ield,

Sgecified as: F for FIXED,V for VARIABLE,FE,
for FIXED ELEMENT,VE, for VARIAELE ELEMENT,

FLDLEN
indicates the length of Ffixed fields or the
maximum length for other types of fields,

Specified as: a positive inteaqer.

(1Y ¥For the anchor file key field, the
maximum field length is 256.

{2) For all other fields:

{ay TIf FLDFORM=F, then the maximunm
field 1lenqgth is 3996 ninus the key
field lenath; othervise,

(b} For all other values of FLDFOR#,
the mpaximum length is 3994 wminus
the ¥ey field length. This allows
for a tvo byte field 1length
indicator.

ELEMLEN
indicates the length of fixed elements or the
raximur lenagth for variakle elements.

Specified as: a positive nuameric value with
the range of 1~-25€ if FLDFORM is FE, else the
range is 1-255 if FLDFCRM is VE. This allows
cne btyte for an element length indicator,

ELEMLIY
indicates the nmaximum number of elements
alloved in the field,

Specified as: a positive integer,

{1y 1If FLDFCRM=FE, then the naximum number
of elements 1is equal to the field
length,

{2y 1If FLDFCRM=VE, then the maximur number
cf elements dis the field length divided
by two.



PAGE 130

UNIQUE
indicates shether or not all element values
within a pulti-element are to be unique,

Srecified as: a boolean value,

CONvY
identifies the name of the routine used to
convert the input data as it is placed into
the data tase.
Specified as: a routine name,

FORMAT
identifies +the rcutine used to format the
data for cutput from the data base.
Specified as: a rovntine nanme,

VALID
jdentifies the name of the routine used to
validate the input data, :
Specified as: a routine nane,

VALIDARG

indicates the argument required by the
validaticn routine +to validate the input
values.

Srecified as: a hexadecimal character string
cf 1-100 characters.

NOTE: In the UOPDATE mode, values to the CHANGE
function will not be accepted which cause changes
tc be made to cther field descriptor records, such
as changing the field 1length if the €ield format
is fixed as this changes the base length of the
data records,

NOTE: Any parameter to the CHANGE function which
is defaulted, will imply that the existing value
for that descriptor field will he left
unaltered.

Note: There is a user dafault veriable ®"ECPROMPT™
vhich when set equal to "Y" yill cause the user to
be prompted fer every possibtrle applicable
parameter while the user is CHANGE'ing an existing
field, In the normal mode there are parameters
such as field alignment ("ALIGN"™) which are not
pronpted for if the wuser deoes not enter them in
the command stream.



D.

E,

PAGE 131

EXAMPLE:

The user wishes to change the specifications
for the field PEOPLE to RIGHT alignment,
change the element length from 20 to 30 and
the element lipit from 5 to 10,

SYSTEM: ENTER:
USER: CHANGE PFOPLE, (,RIGHTY, {(,,30,10),,

The DISPLAY CCMMAND

This command allows the user to display the
specificaticns entered for a previously created
descrirtor.

LTISPIAY FIDNAME=fieldnane
Kheres

FLORAME
identifies the field descriptor to te
displaved.

Sprecified as: a valid fieldname,
The END CCMMAKRD

The ENT command is terminates a descriptor editor
sessicn

FAD {none)

After the END command bthas finished, control will
be returned tc the Maintenance Director,

The PIELDS Ccmmand: displays all of the descriptor
fieldnames in the descriptcr file record, and all
of the descriptor fieldnames in a field
descriptor.

FIELDS (none)

FLDSEC (Field Security) Command: permits the file
owner to restrict access tc a field.

FLDSFC FLLCNAME=field~-nanme,
SECURITY= {<<ADD|DELETE>.>
securitv-code<,...>}

FLDNAPME
is an existing field name to which the owner
wishes tc restrict access.



PAGE 132

cpecified as: a valid fieldnanme,

SECORITY

is a 1list of security codes appended by an
add-delete code separated from the security
code Lty a period, The add-delete code is
specified as A or ADD for adding a security
code and D or DELETE for deleting a security
code, If no add-delete code is entered, it
is assumed the user is adding the security
code. The security code is specified as an
alphanumeric character string of 1 to 8
characters, A maximum of 18 security codes
ray he specified for any field.

The PATCH Command

This command ics used to change the value of almost
any descriptor field on ary descripter record in
any descrirptor region. To use the PATCH conmand,
the user must dc a REVIERW of the desired
descrigtor record. This not only displays the
contents of this descriptor but also positions to
the reccrd that is to Le patched,

PATCH (keyword=text<,...>)
Where:

keyvord
identifies the descrigptor field that is to be
ratched,

text
is the value with which the descriptor field
specified in 'keyword' is to be patched,

The wuser nay specify any number of patches in a
parenthesized list.

The following is a 1list of file descriptor or
header descriptor field names that may be patched
and their values.

HEALCFR FIFILNAME FIELD VALUES
" FILETYPE ANCHOR or 1, ASSOCIATE or 2,
SUEFILE or 3, INDEX or 4.

positive integer <= 4000.
positive integer <= 4090,
boolean valae.

toolean value,

boolean value,

{2) TLCESCRCT
(3) PBSELNGTH
(4) TESCOK
(5) SEBANNEL
(6) TATA

e O [ 3 3w



PAGE 133

{7y KETINAERLE A boolean value,
{B) HMNTNING A boolean value,
{9y ICADABLE 3 hoolean value.
{10y REMATINS A hexadecimal character string
in the range of 0C00000Q to
FFFFFFFF,
{11y BECSECFP A positive integer <= 261,
{12) RSECTICD The ferm of the patch text iss
{n) security-code:mask
Where:
n
is the index of the security code to be
ratched, The index must be entered or the
patch will te rejected,
Specified as: a positive integer <= 18,
NCTE: The next security code value may be
added to the 1list by specifying the next
larger index value,
Refer to the RECSEC comnand writeup for a
dicscussion of the security parameter,
EXAMPIE:
The user wishes to patch the anchor header
descriptor so that BSELNGTH=31, DATA=NO, and
the second value of record security to
BQB:60.
SYSTEM: ENTER
USER: REVIEW ' v _*HEADER
SYSTEM: (displavs the ancheor header
information,)
SYSTEM: ENTER:
USER: PATCH {(BSELNGTH=31,DATA=N,
RSECTYCD=(2) BOB:60)
SYSTEM: ENTER
The following is a 1list of field descriptor

fieldnares that may be patched along with their
values.

FIELD DESCRIPTOR

m

FIELDPNAMES FIELL VRLUES

- A

ASSOCFIL a one character string in the
range *'C*' to '9v,



(2)

(3)

(4)
(5)
{6)
(7
(8)
(%)
(10)
(11)
(12}
(13)
(1)
(13)

(16)
(N

{18)

(19)

SUEVPILE

INYFILE

READCHLY
SUBCNTRL
VARFLL

EITFLED

NOMALIGH
VARELT

UNIQUELT
INDEXEXT
GENERCRT
VYALIDRTHN
REFORMAT

SPARE

FLDPOSIT

FLDLEN

DPIDLEN

ELTLIW

PAGE 134

a one character string in the

range 'Q' to 'Z°,

a one character string in the
range 'A' to 'P*,

a boolean value.

a boolean value,

VABYING or V,FIXED or F.

a boolean valae,

RIGHT or ER,LEFT or L,
VARYING or V,FIXED or F,

a toolean value,

EXTERNAL or E,INTERNAL or I.
a routine name,

a routine name.

a routine nane,

a hexadecimpal character
string in the ranaga of
cooo00ccog900009 to
FFFFFFFFFFFFFFFF,

a positive integer <= 4000,

a positive integer. If the
field is a single element and
indexed then the maximum value
is 256, Otherwise the maximum
value is 40CQ.

a positive integer. If the
field is a single element and
indexed then the maxzimum value
is 256, Otherwise the maximum
value is 4000,

a positive integer. If the
elepents are fixed length, the
pmaximun value is 4009,
Otherwise the rmaximum value is
2C00.



{20

(21
(22)
(23)

(24)

(25) SECURITY

CELTLIR

ELTLEN
DELTLEN

VALIDARG

RAMEFLL

BPAGE 135

a positive integer. If the
elements are fixed 1length,
the maxipum valuwe is 4G0O0.
Otherwise the maximum value is
2000,

a positive integer <= 256,
a positive integer <= 256,

a hexadecimal character string
of length 1 to 100
characters,

The patch text is of the
form:

{n) <<INTERNAL|EXTERNAL>,>fieldname

Where:

n
is the index of the
superfield componeant +to
be patched,

Specified as: a positive
integer <= 16.

NOTE: The index must bhe
entered or the patch will
be re-djected.

Refer to the SUPERFID
command writeup for the
superfield coprponents
description,

The patch is in the forms:

{n) security-code

dhere:

n
is the index of the
security code to be
vatched,

Specified as: a positive
integer <= 18,

NOTE: The index nmust he



Ga

PAGE 136

entered or the patch will
be redected,.

security-code
is an alphanameric
character string of
length 1 to g
characters,

EXAMPLIE:

The user wishes to patch the field PHONENUM
cn asscciate file 1 to have a formatting
routine of FHONFMT on the third component of
this superfield to te in external form and
have the field name of LOCALNUMNM,

SYSTEM: ENTER:

USER: REVIEW 1,PHONENDM

SYSTEM: (displays the field information.)

SYSTFM: ENTER:

USER: PATCH {REFORMAT=FHONFNT,
NAMEPLD={3) E.LOCALNUN)

SYSTFE: ENRTER:

The RECSEC (RECORD SECURITY) COMMAND

This command permits the cwner to control access
to a2 group or groups of records,

RECSEC LFLDNAME=field-name,
SECURITY=(<<ADDIDELETE>.>
security-code<,.q44?>)

Where:

DFLDNARE
is an existing fieldname which is used to
define which file record security is to

agrly.
Specified as: a valid fieldnanme.

SECUORITY
is a 1list of up to 18 security codes and
security masks determining who is to be
rermitted access to the file. It is
specified as an add-delete code, followed by
a periocd, followed by the security code,
followed by a colon, followed by the security
rask, The add-delete code is specified as
ATL or A for adding a security code, or
CELETE or I for deleting a security code.



PAGFE 137

The security code is an alphanumeric
character string of 1-8 characters. The mask
is a two diacit hexadecimal code.

The security ccde is used to ccmpare against
the value in the record security field of a
record tc determine whether or not a user has
access tc¢c that record,

NOTE: 1In the UPDATE mode the record security nust
already exist for the file to be atle to use
RECSEC, In the UPDATE mode, RECSEC is used to
update the existing list of record security codes
and masks,

The REVIEW CCEMAND

This command is used to review the contents of any
descriptor record on any descriptor file. This
includes dumny records, €ile descriptor records
and those records such as RECLEN which are not
unigque to the entire data base,

REVIEW FILE=file-name,
FIDNAME=<#*HEADER|field-named>

Where:

FILE
identifies the descriptor region ccntaining
the fieldname to be reviewed,

Specified as: the full descriptor region
name or the character suffix of the
descrirptor region.

FOTE: A null value is taken to indicate the
anchor region.

FIDNAME
identifies the field which is to be
reviewed,

Specified as: a valid fieldname or either of
the follcwing character strinas: #*HEADER or
* yhich will imply a review of +the file
descriptor for the descriptor region named
above,



PAGE

APEERDIX A,
a, Descriptor Fditor command format,
1. Edit Lescrirptcr.
EDIT MCDE = <CREATEJUPLATE\RESTORE>
B. Create Mode comrmand formats,

1. ALL FIINAME=field-name,
TYPE=(FLITYPE=fiecld-type
< ALIGN=<RIGHT{LEFT>,

FORN=({FLLFORM=Ffiecld-format,
FILLEN=field-length,
FELEMLEN=element=-lenath,
ELEMLIM=elenent-nunher
<, UNIQUE=<Y |N>D>),

EQUTINES= {CCNV=conversion-routine,
FORMAT=fcrmatting-routine,
VYALID=validation-routine,
VALITARG=validation~argument),

INDEXED= (INDEX=<CY|N>,

IFLDNAME=field-name
<,EXTINT=<INTEPNALIEXTERNAL>,
EXTLEN=external-lenqath,
SPANNED=<YIN>>),
ASSQOCED={ASSCC=<Y| K>,
AFIL.LNAME=field-name),

SURFILED= (SUBFILE=<Y{ N>,
SFLDNAME=field-nanme),
SUBPIELD={SUBFID=<Y{N>,BASEFLD=FIFLILNANE,

OFFSET=0ffset

< ,SFILE=<*filename] ANCHOR>>

or <FILE=<ASSOCIATED{SUBFILE>,
FIDNAMEZ=field-nane>>)

2, ADDLIKE FILIDEAME=new fieldnanme,
FIDNAME2=other-fieldnane

3. CHANGE FLENAME=field-nanme,
TYPE=(FLDTYPE=field-type
<,ALIGN=RIGHT|LEFT>>),
FOR¥={FLDFCRM=fjeld~-format,
FLODLEN=field-length,
ELENLEN=elemant-length,
ELEMLTIM=¢element-number
<,URTCUE=<Y{ NDD),
ROUTINES=(CONV=conversion~routine,
FORMAT=formatting-routine,
VALID=validation-rogtine,
VALIDARG=validation-araument),
INDEXEL={IRDEX=<Y|IN>,

138



PAGE 139

IFLIRANME=fiecld-name
<,EXTINT=<INTERNAL|EXTERNAL>,
EXTLEN=external-length,
. SPARNED=<Y| N>,
ASSOCEL= (ASSOC=<Y}N>,
AFLDNAME=field-nanme),
SUBFILED= {SUBFILE=<Y| N>,
SFLDPNAME=field-name),
SUBFIEID={BASFFID=field-nane,
SURFIELD={SOBFLD=<7IN>,BASEFLD=FIELDNAME
CFFSET=0ffset
<,<FILE=<*filename|ANCHOR>>
or <FILE=<ASSOCIATED|SUBF¥ILE>,
FLDRAMEZ=field-name>>)

b, CHXKECINT {none)

5. CREATSUOER FILNA¥E=control-field-name,
MAXRECS=#-records,
ASSCC=<YI N>,
AFLNAME=ficld~-nanme

6, DELETE FLINAME=field-name
7 DISPLAY FLLNAME=field-nanme
8, END (none)

9, FIELLDS {none)

10. FILE LFESCOR=<Y¥jin>

11. FLIDSEC FLONAME={field-name<,...>),
SECURITY= {(<<ALD{DELETE>,>
security-code<d,...>)

12, WHOVE FLDNAME1=new-location-field-nanme,
FLDNAMEZ2=field~name

13. PRINT {ncne)

14, RECSEC DFIDNAME=field-nanme,



C.

PAGE 140

SECURITY= (<<ATD{DELETE>.>
security-code:mnask<,«s.>)

15. RENAME FLLCNAME1=new-field-nane,
FLLNAMEZ2=cld~ficeldname

16, RESTORE (none)

17. SAVSTRT STRTNAME=strateogy-nanme

18, SUPERFLL FLINAME=field-nanme,

ROUTINES= {CONV=conversion-routine,
FORMAT=formatting-routine,
ValID=validation-routine,
VALYDARG=validation-argument),

FLDIIST={<<ITNTERNAL|EXTERNAL>,>

field-name<, ... >)

UPDATE MODE Command Formats.

1. CHANGEF FLLNAME=field-name,

TYPE=(FLDIYEE=field-type
<L ALTIGN=<RIGHT{LEFT>>},

FORE= {FLDFCRM=field-format,
FLDLEN=field~-length,
ELEMLEN=element-length,
ELEMIIM=elenent-number,
<, UNIQUE=<YIn>>),

ROUTINES= (CCNV=conversion-routine,
FORMAT=formatting-routine,
valIb=validation~-routine,
VALIDARG=validation-argument)

2. DISPLAY FLLNAME=field-nanme

3. END (none)

u, PIELDS {noned

5. FLDSEC FLLNAME=field-nane,
SECTURITY= (<<ATD|TDELETE>.>
security-ceoded,.,..>)



6. PATCH (field-name=value <,...>)

7. RECSEC DFLDNAME=field-nanme,
SECORITY=(<<ACD|DELETE>.>
securitv-code:nask<,.se?

8. REVIEY FIYE=file-name,
FLDNAME=<*HEALER]FIELD-name>

PAGE 141



PAGE 142

APPENDIX B.
CREATE MCODE
OFERANE RELATIONSHIPS

Fhen creating descrigptors there are certain implied
relationships between the various operand combications that
may be specified. In those cases, the Descriptor Editor
assumes the irplied value and over-rides any value specified
by the user, When modifving descriptors the Descriptor
Editcr norrally interrrets a default response to indicate no
change to a particunlar operand,

The following table indicates the default values and the
maximum values for several rarameters of the ALD command.



TABLE 1

CREATE MODE

OPERAND DEFAULT AND MAXIMUM VALUES

DEFAULT MAXIMUM MAXTMUM MAXIMUM

FLDTYPE FLDFMT ALIGNMENT FLDLEN ELEMLEN ELEMLIM

A F L 3996-Xey Length NA. NA

A v L 3994~Key Length NA NA

A FE L 3994-Key Length 256 (FLDLEN)

A VE L 3994~Key Length 255 (FLDLEN/2)

B F L 1 : NA NA

BN F R 1 NA NA

BY FE R 3994-Key Length 1 (FLDLEN)

BP F L 1 "NA NA

ux F L 2(3996-Key Length) NA NA

HX v L 2(3994~Key Length) NA NA

HX FE L 2(3994-Key Length) 256 (FLDLEN) -

BX VE L 2(3994-Key Length) 255 (FLDLEN/2)

LN F R 4 NA NA

LN FE R 3994-Key Length 4 (FLDLEN/4)

S F R 8 NA NA

S FE R 3994-Key Length 8 (FLDLEN/8)

5D ¥ R 5 NA " NA

8D FE R 3994-Key Length 5 (FLDLEN/5)

SN ¥ R 2 NA NA

SN FE R 3994-Key Length 2 {FLDLEN/2)

58 F R 4 NA NA

5SS FE R 3994~Key Length 4 (FLDLEN/4)

(1) DPefault conversion and formatting routine names are

inserted by the editor unless specified by th

e user,

The routine names have the format DBXXXYY, where;

"XXX" is either CVT for conversion routine or
for a formatting routine, and

MT

"YY" ig "SP" for field type "A" and is the field

type itself for all other field types.



PAGE 144

APPERDIX C.
PREEEFINET FIELDS

In nmost cases when the user defines or creates a nhew
fieldname there is only one field descriptcr created. There
are, hosever, some exceptions to this which are enumerated
below,

When the anchor file key field is completely defined by the
user, the follcwing fields are automatically defined and
added to the list of field descrirtors,

1. The FILEXEY field is a field defined over the anchor
file key field. This field has all of the
characteristics of the anchor file key field except for
the field name arnd that it is a readonly field, that is
a redefined field,

2. The fields FREEFOEM and COMMENTS are defined for the
retrieval svstem COMMERTIS is a varying length field
designed to hold anvy coumment the user may wish to place
there, TFREEFORM w%ill allow the user to specify his own
particular keywords for the file he is referencing and
he is able to hase strategies on these user eatered
keyvords,

The RECLEN is a predefine field which will appear in each
descriptor regicn of the data base, This field defines the
record length field which arrears on each variable lenqth
record in a file.

¥hen the user specifies record security for any file, for
the first time, a field is <created describing the record
security code that aprears in each data record of that file,
This field is rlaced immediately after the anchor key for
the anchor and associated files, and immediately after the
parent key field on sutfiles,

The record security fieldname 1is created in the following
.manner for the different file types:

1. ANCHOR file -~ the fieldname is RECSEC.

2. ASSOCIATEL file - the fieldname is RECSEC concatenated
to the suffix of the associated file, i.e. 1 to 9.

3, SURFILE - the fieldname is the =uhbfile control
fieldname concatenated to RS.

¥hen the user creates a subfile by the CPREATSUB command the
following fields are defined:



PAGE 145

1., The subfile ccntrcl field itself which resides either
on the anchkor file or an associated file.

2, The suhfile key field which is the subfile control
field name concatenated to ID,

3. The subfile parent key field which is a copy of the
parent ancher kev field, This fieldname is created by
taking the subfile control fieldname concatenated with
PK.

4, Allowance is made for subfile record security by
creating the fieldname of subfile control field nanme
concatenated t¢ RS,

The field characteristics of each of the predefined fields
are included in Table 2,

211 of the afcrementicned fieldnames are included in a
reserved list. These fields cannot be altered by the user
except in the following manner:

To modify FILEKEY, the anchor file key field must bhe
modified, The predefined fieldnames for record
security cannot te modified in any way and can only be
created through use of the RECSEC command. The RECLEN
field descriptor cannot be nmodified. The subfile
control field and subfile key field cannot bhe modified
once created., The sutfile parent key field will only
te changed to reflect changes in the anchor file Xey
field., The fieldname for subfile record security can
only be created through use of the RECSEC command.

Table 3 contains the names ¢f the reserved fieldnames,
As subfiles are created, the sutbfile contrel fieldname,
the subfile key fieldname, the subfile parent kev field
name, and the sutfile record security fieldname are
placed in the reserved fieldname table, which then
hecome treserved field nares subject to the above listed
restrictions.



TABLE 2

PREDEFINED FIELD CHARACTERISTICS

/4

record(l) subfile(l) subfile(l) subfile(l)

FLDNAME  COMMENTS FILEKEY FREEFORM RECLEN security control id parent
ASSQCFIL 1 (none) 1 {none) {none) (5) {(none) (none)
SUBFILE (none) (none) (none) {none) {none) (none) {none) {none)
INVFILE (none) {none) A (nione) {none) {none) {none) {none)
READONLY NO Y NO YES RO YES NO YES
SUBCNTRL NG i NO NO NO YES NO NO
VARFLD VARYING F VARYING FIXED FIXED VARYING FIXED FIXED
BITFLD NO N ) NO NO NO NO NO NO
NUMALIGN LEFT (2) LEFT RIGHT LEFT RIGHT. RIGHT (2)
VARELT {none) (none) FIXED (none) {(none) FIXED (none) (none)
UNIQUELT NO (none) NO {none) {none) YES (none) (none)
INDEXEXT {none) (none) INTERNAL {none) {none) (none) (none) {none)
GENERCRT DBCVTSE (2) DBCVTSB DBRCVTRL DBCVTHX DBCVTID DBCVTID (2)
VALIDRTN  (none) {2) {none) {none) (none) (none) - (none) {2)
REFORMAT DBFMTSB (2) DBFMTSB DBFMTRL DBFMTHX DBEFMTID DEFMTID (2}
FLDPOSTIT 2 4 1 0 %) (4) 4 7
FLDLEN 3988 (2) 3988 4 1 {6) 3 (2)
ELTLIM 0 0 100 0 0 {6) 0 0
ELTLEN 0 0 40 0 0 3 0 0
VALIDARG (none) (2) {(none) (none) {none) (none) {none) (2)
MAMEFLD {nong) (none) (none) (none) {none),.. (none) {none) (none)
SECURITY (none)(3) (none)(a) (none)(B) (none)(s} (none)(a) (none)(3) (none)<3) (none)(B)

(1} Refer to the text for the derivation of the actual fieldname.

(2) The actual value is taken from the anchor key field.

(3) There is no field security on these flelds unless specified by the

' user through use of the FLDSEC command.
(4) The value will be determined at "FILE" time.
(5) The value will depend on the "ASSOC" and "AFLDNAME" parameter values
to the CREATSUB command.
(6) The actual value will depend on the input value to "MAXRECS" parameter

to the CREATSUB command.



PAGE 147

BPPENLIX D.
DESCEIPTCR FILE OVERVIEW

Each descriptor file is a virtuval indexed sequential (VISAM)
region Data Set where the key is developed by concatenating
an eight character field name to a seven character file
name, The name of ¢tte descriptor file ir constructed by
appending a V#" to the six-character data base name (padded
with "¥" if necessarv).

The first record of each set of descriptors is called a
header record and has a field name of blanks, This record
is used by the svster to reflect the current status and
level of activity of that file, as vwell as controlling
access to it, and is composed of fields described in Table
4. The remaining records are the field descriptors,
themselves, and are ccoposed of the fields described in
Table 5.



/4]

TABLE 3

PREDEFINED RESERVED FIELDNAMES

COMMENTS
. FILEKEY
FREEWORD
RECLEN
. RECSEC
RECSEC1
. RECSEC2
RECSEC3
. RECSEC4
RECSECS
. RECSEC6
RECSEG7
. RECSECS
. RECSEC9

-

-y
OO P W N

[t
=

=
£
L



. FILE DESCRIPTOR FIELD SPECIFICATION

TABLE 4

FIELD FIELD FIELD FIELD ELEMENT ELEMENT
FIELD NAME TYFE FORMAT LOCATION LENGTH LENGTH COUNT
RECLEN LN F 0 4 0 0
KEY A F 4 15 0 0
FLENAME A F 4 7 0 0
DATAPLEX A F P4 6 c 0
SUFFIX A F 10 1 o 0
FLDNAME A F 11 8 o 0
FILETYPE A F 19 1 0 0
DESCRCT SN F 20 2 0 0
BSELNGTH SN F 22 2 0 0
DESCOK B F 24 0¢1) 0 0
SPANNED B F 24 2(1) 0 0
DATA B F 24 4(1) 0 0
MNTNABLE B F 24 6(1) 0 a
MNINING B F 25 0(1) 0 0
LOADABLE B F 25 4(1) 0 0
REMAINS HX F 26 & 0 0
RECSECF?Y SN F . 30 2 0 _0'
RSECTYCD A FE 1(2) 164 9 18
(1) TFor bit switches the length field is used to indicate ‘

(2)

the bit location within the byte.

For variable length fields the location field is used

as a variable field index.

B3




TABLE 5

FIELD DESCRIPTOR FIELD SPECIFICATION

FIELD FIELD FIELD FIELD ELEMENT ELEMENT
FIELD NAME TYPE FORMAT LOCATION  LENGTH LENGTH COUNT
RECLEN LN F 0 A 0 0
KEY A F 4 15 0 0
FLENAME A F 4 7 0 0
DATAPLEX A F 4 6 0 0
SUFFIX A F 10 1 0 0
FLDNAME A F 11 8 0 0
ASSOCFIL A F 19 1 0 0
SUBFILE A F 20 1 0 0
INVFILE A F 21 1 0 0
READONLY B F 22 0(1) 0 0
SUBCNTRL B F 22 2(1) 0 0
VARFLD B F 22 4(1) 0 0
BITFLD B F 22 6(1) 0 0
NUMALIGN B F 23 0(1) 0 0
VARELT B F 23 2(1) 0 0
UNIQUELT B F 23 4(1) 0 0
INDEXEXT B F 23 6(1) 0 0
GENERCRT A F 24 8 0 0
VALIDRTN A F 32 8 0 0
REFORMAT A ¥ 40° 8 0 0
SPARE HX F 48 8 0 0
NAMECNT SN F 56 2 0 0
FLDPOSIT SN F 58 2 0 0
FLDLEN SN F 60 2 0 0
DFLDLEN SN F 62 2 0 0
ELTLIM SN F 64 2 0 0
DELTLIM SN F 66 2 0 0
ELTLEN SN F 68 2 0 )
DELTLEN SN F 70 2 0 0
VALIDARG A v 1(2) 52 0 0
NAMEFLD A FE 2(2) 146 8 18
SECURITY A FE 3(2) 146 9 16

(1) For bit switches the length field is used to indicate
the bit location within the byte.

(2) For variable length fields the location field is used
as a variable field index.



PAGE 150

APPENEIYX E.
THE FCOSITICY OF FIFLDS WITHIN A RECORY
Fields are positioned in +the data record in the crder in
which they are created as to the following algorithim. On
the anchor and associated files the order is:
1.  RECLEN,
2, anchor file Xey field,
3. record security field,
i, all packed tit fields,
5. all fixed length fields,
6. all varying length and elemental fields,
On subfiles the crder bty position is:
tf.  RECLEN |
2. sutfile key field,
3. sutfile parent key field,
4, record security field,
S. all racked bit fields,
6, all fixed length fields,
T all varying length and elemental fields,
The Descriptor Fditor maintains three lists of fields for
each descriptor regicn, one list for each of the folloiwing
field groups:
1. packed bit fields,

2, fixed length fields including ordinary or unpacked
hit fields,

3. varyirg length and elemental fields,
The order within each field group is determined by the order

in which the user creates fields within each group. This
ordering nmay be chanoged through use of the MOVE command.



PAGE 151

TOPIC D.3 - BDBICAD -~ LCADING NEW FILES

I.

I11.

INTROZUCT ICH

The DBLOAD program is used for either initially loadina
data onto a newly defined file, or for updating an
existing file. In either case, the descriptors for
the file must have bheen completely specified before any
loading of data is attempted., The program is general
in that each input record is passed to a specifically
written sut-routine which identifies each of the fields
that comprise the record, and passes this information
back to DBIOAD fcr processing,

This manual descrites the mcde of operation for DBLOAD,
and the parameters mnecessary to invoke it. The
trocedures tc follow for writing a DBLOAL exit routine
are in this manual.

INVOKING DEYLOAD

DBLOAD is invcked by entering the LOAD command to the
maintenance sub~-system. The format of the ccaomand is
as follows:

Command: ICAT

Operand: ICALMOLE=rode,
ICALEXIT=exitnanme,
KEYFMT=formatting,
I10ACANC=anchor,
LOALASSC=associate,
ICALSUB=sunb,
INVERTED=index,
IOALINET=input,
GENERKEY=generate,
ERRFILE=error,
LCALERRS=1limit

Bhere:

node
identifies the node of operation for the
proqaram,

Specified as: a one character code, *'L' for load
mode, 'U* for update mode, and *'R' for restart
mode,

exitnane
identifies tke name ¢f the user exit routine which
is tc¢ be called to describe the composition of
each input record.



PAGFE 152

Specified as: a 1-7 character name of the user
exit rcutine entry point,

Cefault: the exit name 1is constructed by
prefizxing the file name with an *X'.

formatting
identifies the name cf +the key field fcrmatting

routire.

Specified as: a 1-8 character name whose first
character must be alphabetic and whose remaining
characters must be alphanumeric,

anchor
indicates whether the anchor file is to bhe
loaded,

Specified ast a one character code, 'Y* for yes,
and *X* for no.

Default: +the anchor file will not be loaded.

associate
identifes the associate files to be loaded,

Specified as: a nrultiple element parenthesized
list ¢f associated file suffixes (1,2,..,.9)

sub
identifies the sutfiles to ke loaded,
Specified as: a rnmultiple element parenthesized
list cf syhfile suffixes (R,S,ses )

index
jdentifies the fields to be indexed with this
lo0ad,
Specified as: a multiple element parenthesized
list of 1-8 character field names
(FIFLL1,PIELL2,.4.)

input

identifies the fully qualified name <o¢f the input
dataset from which TBLCAD is to ottain its data.

Specified as: a 1-35 character fully qualified
dataset name,

Default: the inrut dataset name is constructed by
appendinag the dqualifier !',INPUT' +to the file
name,



BAGE 153

generate
indicates whether or not large numeric keys are to
be generated for the output data bhase.

Specified as: a one character code, 'Y' to
indicate that larage bpumeric keys are to be
generated, and *N' to indicate not +to generate
keys,

Default: XKeys will not be generated,

error
identifies the fully gualified name of the error
dataset to which invalid ipput records are to be
dumped.

specified as: a 1-35 character fully gqualified
dataset nanme.

Default: the error datasaet name is constructed by
appending the gualifier ',ERRORB' ¢to the file
name.

limit
identifies the numker of non-critical data errors
that are allcwed hefore terminating the program.

Specified as: a 1-4 digit nunber,
Cefault: a limit of 100 errors is established,
Bxamples:

1. The user wants to load a file with the anchor,
associated files 1 and 2, subfiles Y and Z. The
key has a formatting routine entry point name of
DBFETLN, WNo fields are to be indexed. User exit
routine is JIEXIT and input file DSNAME is
INPUT.FILE.

5YSTER: ENTEE:
USER : load
SYSTEN: ENTER MOQLDE:

USER : 1

SYSTEM: ENTER EYIT RQUTINE NAME:

ODSER + =xexit

SYSTENM: ENTER KFY FORMATTING ROUTINE NAME:
USER : dbfrtln

SYSTEWM: MANCHCR FILE TO BE LOADED (Y, N)Y?:
USER 3 Y

SYSTEHM: FNTER ASSOCIATED FILES TO LOAD:
OSER = {(1.,2)

SYSTEM: ENTER SUEFILES TC LOAD:



I1X.

Iv.

NOTE:

2.

PAGE 134

USER  *  (Y,2)

SYSTEM: EXNTEE FIELD BAMES TC INVERT:
JSEE @

SYSTEMz ENTEF INEDT DSNAHE:

USER : input.file

SYSTEM: GENEFATE LARGE NUMERIC KEYS (M,Y¥)2:
USER
SYSTEM: ENTEE AILOWARLE DATABASE ERERORS:
ODSER =

L3 ]

User defaults fields to index to no fields,
generate large numeric keys to no, error dataset
name toc FILENAME.ERROR, and data base allowable
errcrs at 100,

The user wishes +to restart the example above.
First, the checkpoint tackup copies should be
catalcgued as the current data base files to
insure data tase integrity.

The user could use the terminal support default
and profile features so all the parameters will
not have to Lte entered for each restart., The user
can also enter the parameters as a string and not
he prompted for them:

SYSTEN:
USER : load L,xexit,dbfmtln,y,{1,2),
{(v.2) ssinput,file

OPERATING MODE

a.

B.

C,

Load Fode

DELOAL opens the input dataset for input and the
file fer output and hegins processing.

Update Node

DBLCAL ovens the input f£ile for input and the
cutput file for direct output and begins
processing.

Restart Mode

DBELOATI opens the file for update and reads the
last tecord on the anchor file. It uses the key
of this record to rposition itself in the dinput
dataset, It then reads the next sequential input
record. It is now ready to begin processing,

DBLOAD EXIT BOUTINES



R,

PAGE 155

ITntroduction

DBLOAL passes each input data record to a user
written exit routine for analvsis before actually
writing anv data to the file. This routine has
the functicn cf identifyinag each data field in the
input record with a field name, indicating its
starting 1leccaticn in +the inout record, and
specifving the 1length of the data. If the data
field is c¢n a subfile, the exit routine has to
identify the sutfile control field name before
any subfile fields can be put. Initial entrv into
the exit routine allocates the field name table
and sets exit routine switches,

Further, the routine can specify that the field
should have leading and/or trailing blanks
stripred off by DBICAD, that the field be skipped,
that the record te skivped, that the lcad be
terminated, or that subseguent calls to the exit
routine be skipvped. The latter is wused to
minimize overhead when each record to re processed
has the sare phvsical characteristics, The
routine must indicate when a new key is to be
located to the output file. This is used in the
case cf multiple inrut records for an output file
kevy.

When the update mode 1is used, the exit routine
pust indicate if this is a record to bte deleted, a
record to Le replaced, or a record with fields to
be rerlaced.

Exit Routine Farameters

The calling sequence used by DBLOAD to transfer
contrecl to the exit rootine is:

CALL exitname (input_data, user_ptr,
hypass_switches)

Where:

exitmane
is the entry peint name of the routine to te
called,

input_data
is a varving length character string (maximan
gize - 4C00 hytes) that contains the entire
input data record, including the four-hvte
record length,



c.

PAGE 156

user_ptr
ic an external pointer that opoints to the
user allocated structure containing the field
rames, the field lengths, the field offsets,
and the sutbfile field suffixes.

bypass_switches
is a string of sixteen bit switches +to te
fosted ty the exit routine to further define
the <=tatus of the record for TELOAL. The
crder and meanings of the various bits are:

RYPASS_CALL ~ bypass subsequent calls

BVPASS_RECOFD - bypass this record

FCRWARL_SCAN - delete leading blanks on
fields

EACKWARL_SCAN - delete trailing blanks on
fields

TERMINATE_PGM =~ terminate the progranm

LCELETE_RECORD - delete this record

FEPLACE_FECORD - replace this reccrd

UPDATE_RECOFD =~ replace fields within record

NEW_KEY - locate this new key

BITS 10-16 - unused hy DRBLOAL

Exit Reutine User Structure

{APPEKNDIY A) illustrates how to declare and use
the user tased structure, First, set the refer
dimensicn equal to the maximum number of fields
and elements (one field and a multi-element field
with 10 elements would be 11y plus number of
suhfile control fields that may be assigned. Then
allocate the tased structuore, Next assign the
¥ev_name, the Y¥ey_rtr to the location of the key
within the input record, and assign the key field
lenatkh, Each entry into the exit routine will
then require the field names to be assigned, the
field pcinters =set to field locations within the
record, the field sizes assigned, and the subfile
suffiyes ascsigned if field is a subfile control
field,

HOTES:

1. The Key of the input record <can ke anywhere
in the record,

2. The input data record@ includes the recors
length field,

3. large numeric %eys can }e generated for the
cutput dataset if desired.



\E

vI.

PAGE 157

4, The nunter of e€lements in the user structure
is comruted bv accumulating the total number
cf fields and/or elements in the input
record,

5. Anvy field whose 1length is =zero or whose
tointer is null, 1is Ybvpassed, TIf subfile
suffix is not blank, A new subfile record is
located.

b, Sample DRLOAD EXIT Routine

APPENDIX A illustrates the above narrative, The
file has a key, one anchor file field, and two
subfile fields with two elements each. The fields
are all in field locations, After initial
allocation, (first entry into exit <routine}, the
enly freocessing required is to scan a record tyope
field for +tte code *'X' used to indicate bypass of
this record. Note +that all trailing blanks will
be stripped off and that every input record has a
new key and will have an output record located for
it. The sukfile ccntrol field *RIDY has a null
rointer and a field size of <zero. The sub_suffix
byte for this field gets assigned a *2°' to
indicate this is a subfile control field,

CHECKPOINT BACKUP

Because restart is very difficult after a TSS systenm
crash, checkpoint backup of all the files is needed to
insure data integrity between all the associated,
index, sukfiles, and anchor file +that <could exist
during a load. When the user restarts a load after a
system crash, he should make the last generation of the
files current. This can easily be done by cataloging
*BACKUP,? file (~1) as the current file, DBLCAD will
call a sub-routine every 1,000 records to checkpoint
the files, If the user can insure the data integrity
after a crash {through VIWHIZ wutility or some other
means) using backur copies w%ill not be necessarvy.

LOADING MULTI-FILEE

For the post efficient use of DBLOAD, only one file
should re lcaded cn any given TSS userid at a time
{such as the anchor file ¢ty itself, or one associate
file bv itself), o0Other files for the same data tase
could then bhe lcaded on other TSS userids at the same
time, Alsc, data inteqrity can be qreater insured if a
system crash occurs, bhecause only one file exists on
any given TSS userid, and file keys do not have to
match (such as last anchor file key and associated file



PAGE 158

kev).

Subfiles should never be 1loaded independently of the
anchor file, however, DBPAC must generate the subfile
keys and fost the subfile control field for each
subfile record.

Whenever rcssible N0 field should be indexed while file
is being 1lcaded. The DEPAC inversion process is
extremely involved and degrades the lcad process. It
is extremely faster to load an entire file and then
index the desired fields with the inversion command
INVERT, This cormand uses specialized technigues and
the TSS sort utility to tuild the index files,



s - r LN o ) R et el

L, . S

e panitn P& s
- e Wi

_ AGRLCIAp & YSYXI7: TS0T SXTT oY I NG SO0 AR NAN S00 Tue £T)% nAaz2TnNe d
DOCO2NA & FOMNSANY s MOC®E0 A0 CADRNCAT IO, LTy T ARN, auTo * f
L Creennn g AGITHND 1 DT MK D AYaN ’ i
QRONNON SR CETTRT o MACA ) TWT S QEQCATIY SENTRD W f
ﬂ__(l‘j_."}(_‘“-?f\,g‘w JEOCYCTIOM 3 MAQR AEQACDAME CADETY THINIMAT AN CVeTIuw {HMAGT §) w7
aCrCeng f THTC TE * QAMDIFE EYFTT QNNTING £OR DD CAT COpR NRZ . T w/
ACONTNN 22 Suryc Mt TA [ICE THE HCTR STREMF™NITT TN ACRTON TS0 MAMEG, EToyn */
BCLOa0G /v CURETTE, AMP £TE( N SITEC, [T ALSD CUOWS pew TRO[IGE THE EXTT * !
L A0CQToN A ST QUITOHSS TR ACCOMOLTSW YARTMAIC ACTTENS T THT | AN, */
QCAIN0N ¥ XTT 1 DRCCERU0C INDYT_PAT A IISSR_DT0, pyoacS QuITrisc)
eeerren /* NECLARE QNTETIA EONATIONS 1H1GSC Ay EXTT */
0001200 Sep I L ANRR ) AT TTN G
CCCYrng £ TMECLATE BEYTT O™ TNT DI aanTine 7
georenn Dy T””HT_?ﬂ*” CHARLL000Y YAD: S ITMPNT RECCORD */
nociTon By S Te BT DetaTon . f% HeEIC DNTMTED =/
neCTenn Arp TYOACSS SRTTOAHES rUAT Y. /N PRROST AN Gl ouTg =/
) ppaITAn I MECEADS SDELTAL SRTTHUECG TAD DDENTAM ADTI ONS =/
NnC1onR Ty ] fRECTM_ SWTITOHES qp_.;'tnfq»;__pf‘.«), /% CREC BRAQRAM QUT Truaeeg #e
SIS ERR 2 BYPASS_CALl eTT(]), JETHID TUTURE CALLS 70 =17 %/
ano2nnn ? BYDASE 2ECNON RPTTE]), [ SKTD TUTC pECNDD ¥
QCcC2170 2 ornowAen SAM 371701, Fi QTRTO CCC | TANING RLAMKES %/
Qgezren 2 RACKLART S AN BRTTIT), fr STOTER S TRATL TN A5 AMWY S % f
TTgnazron 2 TEAMINATE DOV RYT1), fEOATRET OTHE 1 NAN *
“ACLCPL0D ? NELETE _"mONRR RPTT(L ), f# AELETE THIS REfFA2N =
QGcz=on 2 SEDYpLE _BEraRn FTT(1), /7% REBLECE THIS Pafnan */
QoCIERD P HOPATE P=(PEn RITI1), [ ANR TUTC fpraon *
Lrco70o 7 ONTu_vSy oTT (1), FEIACATE SHIG NTy <oy Y
arro2nn P OTOTAIAL BTy RITHT) 7 UNAEETNER 7
aACePoNG ey e pYT ) STATIS O TMTITry vy fP 0N 0T CRTITrY *
gLcnoen mrEooES RITIIY OSTATIO OTATTETRTAG e f¥ NTE OATT ST OH s/
AR ON Ny oRE TIMT CHAGT 1Y CONMTRALLEN JY OME TTND S TToW Loy
aooEann ASCHASF PSR €TCA TS TN RE AL NCATEN Oy S¥TT Y
{1(7{:?'7::".{'\ ST AR Y TUE Iy ) T e . . N
TN A A 1. S57 £TEC0 OTMNTHOINN AC APRC LAY OO0 I3 yTINpt 4 A FTC|™C e
QCCTTRL /4 AND FOMTRAL STIIAT fMD T]TMENTE T Ar nugT | %/
frerend 7= TR e AN BT RN RURETE] ey
copnTRe 2w T, ACCTAM CTEI N RATMTEIE TN NTCORTT TA TMDIS DneAarn ' *
TR EsAnn e T UL TFEcinh Fiaro qrieq, 7
Il o akals SO Y neEn aT0r oA ST NSe e nTny A R A A AN ek < E ¥ pla st B Eoie » f
T grer et JOrTT ETgEn niAfe), FE RTUERETAN NE AR AYS =7
ngeernn 2 VEY_NAMT ruer (o), AR N =/
ANt 2N T Yoy DTR onTo v T Yy T eToR ]
AT T ALY PowTy _ST¥S fTYEM DM, I o woy CrTE 7
—*‘ﬁ-—h—f—r:—,_‘,r_;ﬁj“ - 7 [ oWE[NI & CE-EL 9rtry JETTLEEC OATMRNCION EAD ADS Awe A7

Gone TR0 FISED_STenr aryy, - oy



ETEL N MAUS

[b0

neesany 2 CHAD (Y, A CTTL N OMAMT s/
CroaTon 2 OTEL _BPYe 6Tn, £ e CT=p D ROfpTon 2/
AN ann 2 C[C‘_H—C‘I’TC TTwTe L‘:T?\l{l:'}, S ETEZ Y ST 7E B = f
noe/s2nn 2 OCUR_SUEETY FHUA (] ) /¥ €IIRCD T T CpmElyY-€YN QT QIn. M/

/e

FTLE SQESTY 18 Tl

[

=/

iaZ ol Ha¥y' AR "‘-'rn,'_n.-.‘:r_'cp ETYEN 2T 15 [P DECED DITUTAITAN T At A Qgpe/
TUCCCEEER NEFLAR= EXTT PONTIMT PATAToRE /
nrren~nn DS P TOY] DT AITED . FHODATNTES CAD RAS TR DOOODN o/
cnnrann Al Sy BTe CLCINTED s J OINTOG Cen ST Truct g i f
QCCrrn /- NEFLARE RECT2D NYTEL Ay w7
— =
gnosann Nrp 1 BEOARTR Th AACSEN (DTN, * LTSRN NYEDLAY 7
capsTon 2 PETY fHARILY, fa opEeARn | SMATH e f
preoenn 2 PETLY CHAR 12, S TTLLER =/
D0CEA0N R ERNy fuserey, foTCHCLCVES [MAED %
cee=non 2 DTVDE rHEP (1Y, FE O OZTAASR TYRD_TE YY1 TUTh oy
Arcrion 7 SYT2 THIC 2LCSNIN *
anas20n ?oEMONAaED cHAR {20, /% EMCOLCYEC MAME_GTOTD Moo %/
- oacceten 7 TFEaT ihn B ANV S 77
Aarrenen 3 oTMnAnT CUAB (DY, fr TNELEYTE AGS >/
AL reEAn ZovInranoy FHAD L INY fY W TOMAMT _CTRTD NEC S
NCCrern D OKTToNAMED rFUADEIDY, 7 TRATL TN R AMEK T *
nresTen 7 HTITDANE ] CUADT2Y fi v IToANT.CTOIO NEC 2y
necsan 2 WINACED sy (o) Jv TEATIING opanwke */




duruodliic 3J¥ ldza Sl t122

.
-

f= twita s ¥ddei Wy Lol o/ Do SUT UG D e s | JueilJl |
A WRGULGY o VINL g o cadlla i/ fH5UThwUa o bigon oo LT3

/% SaAnViE SwliiVal gleidS wf PNUSh Y Ja U avriaddu vorilol
P axtd UwIUv3T cluwey 1Ly =/ 1330S I L svidus vor L1CU

£ sisdalleyn o 1Xs Hdvd Liarm %4 thow=a v soduAl vy 1990

S v = g X iasiis wiia
L Tl RN . O =11 SR R B

ver1TUO
021140

el J2z il B liodity

e d

:llel:':JXl:J_‘lH.:-.uh;)
s wa=(= JXiZaiis sis

coitlad
yuCGTiou

L Jna 4 Ly oo bizatly

Py = b7 )R tanits cily

Peav=ie b Riagiio wlis

i o a={c 1Az oily

GXL0i206

0CLU100

Xloalid shlsaily viglssy g e a= {1} Aigalis wis _Gusunrdy
te={GladLa s Widia VIR NI

il=ledoeis Cluia udw 3100

0=i(v)adit: uiloin Gudolad

e={njoeds GlLis SlewIGO

01=(5bs61s wlara cUioluy

t0={€)Aéls uluia guediod

ies{cinlla wiaia NIV LS

S Lzald witsla widiosy =/ ‘Ol liadis wilts Udewddl
Sz uVui ateudv=toldld Liula 00,0330

S{dundniClAlowis={)cma wiliz JU7u200

S Ged Linls TTugcbivd i v d i {Yianu Uisiua Guwodal
' ({Touyul Aaraudv=loloaa wigla JusdJ0

S{lamvanula) oUUvE (7 ) ded o bald UULodlo

/% B o dula JUdowio T i JudoldlU

Sosydou JISid wud oo

susvE{cdlass ulnta

]
]
Y Thtw={clazo wizis
i
Jouuws=(ljeca wisia

cRiLlLy
Yduadal

taauiliaa={olzavy Saao
tf.ﬂ-ﬁ\'i‘Jbl Htj(:’.):'ﬁ?r& S lzla

ML Uuudnd gl

Udcoeldid
UoowedWO

SiuiAi =G dnvl ulotas
PandbulAar={9)dadd Lials

CJG‘_.::)LJO
QU%all0

S zniivblar = {7 davie Qs Uuseu Ul
FE anl GeoJdaa dits 2 f ;IUihtztii;v‘\l\'{"]?L-i:—Jlj _EO‘:JJJG
PiLuvonwsa=(dlanvy wiaaa JGeuiol
£ SSnVie UlZld mdissy e . taspvniowae =0T Jandn ultEls LhewlJU
/% SL15 Az A iNdL3nV = LY=L 1> A Yel3Jd30
S gz iUg AZA Zay oug t{ Utons i sudV¥=dra As X Culis 000
e maiviN Ana NJ LoV my TaUbiom L e T 3nviy AT vidiwmdJU
S Jlacs ivi WIU Ua wUlodV oy ‘uosda dauEAdu Cotoddl
i aotle cltae s Yooil dadou b Iy wyf cLllawsy manil aavau by Yoe o Ud o
=k Shivoba iz ONY *adisia W/ ) SUSLI50
 Jedlnde *suizla sl asowlla w4 ’ QG=-_J23 7

3

wined Xviw Wi hvoldnzwic o zb

wf

tdEanasL wlu

v U0u

1

ucdiing sall zwoe o NG

Ulhpead AdzH) Jiiv Lo

w S
W

YaWidla omivu gz vJdo by
PUNUUSY Addnd dAJdu

GULLdJd

Udes Ul

u= LESFT

{ovid alNuliuilVJuliv =4

e B N W L L
]

s SliaLs azdil o Sx owf N e Vul o udi
S coelvl ud Sorual e 2oy w S samualey 35V0Aol ouaVE aad M ulLL200

— - - - - - i 4~
B Sadivlbd UdUdasg Loy snf st Vaivu shant buaav=lasxy JULrudbl

Y
S



-

CCIZ2000

owr
¥

[qrraTo

nh=rED e

an1itlon MG FTY 2N e S IOCATE TUTS gprnen * f
GO175%7 PTAPT Y (VIICER STRUATIC S A LNCATED T8 =y 1o SOTTIME )

or13nn =3 SN INETE Fd DITHICON T DRI OAND f
ARy 40N FHTIY GErANNg 7= [HME(V PLFABM TYyDo =7
Ge12500 TS »2TYDCZtY Y THEM AYPASC pEenaThH f¥ TT pErMASR TyRo TS PYT THEME )
R TTf = 7%  PVOACS THIC SEFOSN, /
Qolz7op TLeE F FTHEPLY §5 wf
onisann AYDPASSG PRrrAar=(ECs 73 AFAFZSg 17 w7
oa120n s S o - J¥ AETItRN TA RELOAN %/
0612000 EXY J THATYS AL FNLKS 7

L
P




PAGE 163

TOPIC D.4 - FILE INVERSION - INDEXING

I.

II.

INTRODUCTIICN

The NASIS inversicn program (DBSIVRT) is a maintenance
program for data base file creatiom,. The purpose of
the pregrar is to take data from certain fields of a
data base and to post this data to an index file, This
cperation can be done automatically by DBPAC during a
normal file loading cperation, but it is very time
consuping and could therefore jeopardize the
successful completion cf the 1lcad. Further, by
separating this fuoction, the capability of creating
indices after a file has beer lcaded and used is added
to the repertoire c¢f the MNASIS system, Finally, this
separation also permits the use of specialized
technigues suitable specifically to this function to
reduce the amount of +time reguired for the entire
process of loading and index creation.

This manual describes the mode of operation, invoking
DRSIVRT, gives examples of use, and gives additional
proqram notes,

MODE OF OPERATIOCR

The inversion module can create up to ten index files
simultaneovslyvy. Further, these files can each contain
data from 1up to five separate but related fields, The
podule can process a specific number of input records,
a range of input records, or the entire file, The
module can be interrupted by the attention key at any
time and ©program can then be terminated. Restart
capability is rrovided at the field reading, sort,
index file creation, and +the index file translation
sters.

Step one reads a data base record, strips off the field
being inverted, ccncatenates the field with the current
anchor key, and record srites the concatenanted string
on a YSAM data set.

The sort ster, invokes the TSS sort utility and outputs
sorted VSAM file.

Step three reads the sorted variable VSAM data set and
creates a VISAM file, If the field is not indexed with
external fcrmat, this file becomes the data btase index
file,

Step four reads the VISAM file created by step three,
translates the keys using a field formatting routine,



11T,

PAGE 164

and creates a translated index file,
INVOEKEING TESIVRT

DBSIVRT is invoked throuwah the maintenance sub-systen
by entering the ccmmand YINVERT'. The format of the
command is:

Cemmand: INVERT
Operand: FIFID=field,

MOLE=mode,
RECCRDS=records,
RANGE=range
Bhere:
field

identifies the field(s) to be indexed.

Specified as: a 1-8 character name as entered in
the file descriptors, Multiple fields must be
entered as multiple element list, Fields being
inverted to same inpdex file must be kept
together,

Example: {A1,A2,13,B1,8B2,C) First three fields
go on same imdex file, fields B1, B2 gc on sanme
index file, field C goes on index file by
itself,

mode
identifies the program mode of operatiom.

Specified as: a cne character code,
P « initial rass, step one

- restart at step one

~ restart at step two (sort step)
- restart at step three

- restart at translation step

=8 W

Pefault: the initial rpass ('P') is assumed,
racords

identifies the nunber of data bhase records to

Process,

Srecified ast 1-6 numeric characters,

Default: 999,999 records {(or entire data hase},

range
identifies a range of file keys to process.,



PAGF 165

Specified as: a multirle element list of two file
keys, first key being the one to start at, second
key being the one tc end at,

Example:s (REYOQS5,KEY1() Keys 5-10 will be
inverted,

rtefault: Fntire file is assunmed.

Iv. EXAMPLES

A,

B.

Va

User wants to index AUTHORS field in one pass,
OUser wishes tc be prompted for the parameters,

USER + dinvert

SYSTEM 2 EXKTER FIFELIDS TC INDEX

(FIELT) (FYELL,FIELD,.. )2

USER + authors

SYSTEM = ENTER MODE {MCDE)Y (F,R,5,3,T):

USER s £

SYSTEE = ENTER RECORDS TO PROCESS (RECORDS):

USER H

SYSTEN : ENTER RANGE OF KEYS TO PROCESS (RANGE)Y
(XXX,XX¥):

USER :

NOTE: User defaults records to process to entire
file.,

User wants tc¢ invert 'MAJUCRD' and T'HMINHORD' on
one index file, and *APUTHORS' on another index
file.

YOSER?Y T INVERT (MAJRORL MINWORD,AUTHORS)

NOTE: User defaults program mode to initial rass,
records to process to entire file, and range
cf keys to entire file,

PROGRAM NCTES

h. Input dataset to sort step has a DSKANE of
SCRTIN.FILENAME.FIELD, 'FILENAMEY is the six
character data base name. ?'FIELD' is the 1-8B
character field name,

B. Cutpot from sort step has a DSHAME of
SORTOUT.FILEKAME. FIELD.

C. Input file to translaticn step has a DSWAME
cf PLEX.FILENAME.FIELD,

D. If ranae of keys specified, €final output



E.

F.

G,

PAGE 166

index file has DSNAME of
FANGE, FILENAME.FIELD. This dataset is used
as inrut to the index merge progran,

211 SORTIN and SORTOUT and PLEX datasets
should te erased after final index file is
syccessfully created,

Invert as many fields as possible for any
given file. This is most efficient for step
¢ne of ryrogram since data bhase records only
have to he accessed one time for spultiple
fields.

Invert all associated fields separate as one
tass. This is very efficient because only
the asscciated file is accessed,



PAGE 167

TOPIC D,5 - Comtine - Index Merging

I.

II.

1171,

INTFODUCTICHN

The index merqe rgrogram {DPINDM) is a special progran
for the mergina of index files, The user is given the
option to process duplicate list elements or not, and
to attention ard quit processing cleanly with a
restart capability,

This manual describtes the mode of operation for DBINDH,
the parameters used to invoke LBINDM, gives examples of
its use, and gives additional grcgram notes,

MODE OF OPERATION

The merger mrodule can create a new index file, or it
can merge in place to the current index file, The
module can be interrupted Lty the attention key at any
time and the program can be terminated, A rTestart
capability is provided at any time during processing.

INVCEING DEINDM

DRINDM is invoked through the maintenance sub-system by
entering the command *'COMBINE. The format of the
comrand is:

COMMARL: COFEINE

OPERANL: MODE = FIRSTPASS
MODE 1 = NEWFILE
FIELD = FIELLNAME
MODE 2 = LCUPFLICATES

Where:
Mode Ydentifies the program mode of operation,
Specified as: a one character code,
*tF¥' - FIRSTPASS
'R' - RESTARI
DEFAGIT: NCAE.

Mode 1
Identifies the tarqet merqe file,

Specified as: a one character code,
111 - New file
g - Inplace

Field



Iv.

PAGE 168

Identifies the master index file.

specified as: 1-8 character name as entered in
the file descriptors.,

Mode 2
ITndicates if dJduplicate 1list elements will be
rrocessed or mnot.
Specified as: a one character code,
*1* - Process lDuplicates
t0* - No Duplicates Processed.
EXAMPLES
A, A user vants to nerqge index
SABTILLY.APPCLLO,. APOLLOA, ¥ith

RANGE.APOLIO.KEYRCRPS and create a new file with
duplicates teing prccessed., Processing dutlicates
will entail the posting of all matching index list
elements as well as all other elements.

USER : COMBINE

SYSTEFr: ENTER MCDE(FIRSTPASS,RESTART) F/R:
USER : £

SYSTEM: ENTER MCDE (1=NEWFILE,O0=INPLACE):
USER = 1

SYSTEM®: ENTEF INVERTED PIELD NAME:

USER : keywcrds

SYSTEM: ENTER MODE {1=PROCESS DUPS,0=NODUPS):
USER 12 1

NOTE: User is required to respond to every
prompt., NCNE may ke skipped,

PROGRAN NCTES:

-

B.

If +the user wishes to merge in place, he should
first make a copy of the current index file (for
secutrity reasons).

The input cr update index file to te merqed is
named RANGE.FILENAME,FIELUNAME. Check this before
prccessing is beqgun,

When merging to a newfile the new file being
created is called INDMRG,.FILENAME.FIELDNAME.

After the newfile 1is created and checked, it
should replace the current index file, and the
current index file should be erased.



PAGE 169

TOPIC D.6 - CORRECT CCHMMAND

CORRECT in the maintenance sub-system updates a file
on-line., The CCRRECT conmmand allows the owner +to exanmnine
the data contained in anv of his files, After examining the
data, the owner may then nmake additions, deletions or
modificaticons tco it, Y¥ew files mnav be created by the
maintenance COREFECT command,

CORRECT COMMAND
L. The CCRRECT Ccmmand
The format for the CCRRECT command is as followus:
Command: CORRECT
Cperand: <FIELD=named
<,KEEY=key>
<, VERI¥Y¥=mode>
¥here:
name
jidentifies the field of +the record which the

user wishes to examine.

Srecified as: a 1-8 character data valae,

kevy
identifies the record within the file which
the user wishes to access.
Specified as: a 1-255 character data value,
node

identifies the mode of operation for this
session.,

Specified as: 'YESY, if the user desires an
automatic display of the updated data,
following each CORRECT snb-command, or 'HOY,
if he does not,

B. Sub-Commands

The CORRECT Command recognizes the following
sub-ccnnands:

1. ALL

‘e CANCEL

3. COFFECT
4, DELETE



PAGE 170

Se DISPLAY
€. END

7 FIELDS

e. INSERT

2. REPLACE
10, VERIFY

The sub-comnrpands give the owner extensive
capabilities for reviewing and correcting the data
contained in a data base, The sub-commands allow
the user to access the records of a file, either
randorly or sequentially, and to then examine the
data contained in any or all of the fields of the
selected record.

NOTE: All data values entered as operands of
CORRECT sut-commands must not contain any
ambedded ccmras. Further, any leading blanks
entered with an operand, are stripped off before
syntax analysis. To overcome these restrictioas,
the user is rerritted to enter operands as gquoted
strings. In +this mode, all data within the
beginning and ending quote is processed.
{Enbedded gquotes must be represented as paired
quotes, and are converted,)



PAGE 171

CORRECT ADL Subcommand

The ADL subt-command allows the user to add a new record
to the file, or new data to an existing record. The
new key value dis entered with its key £field nanme,
Multiple -element fields can be entered as a
parenthesized list. Data can be added to a null field
or nevw elements can te added to a field. The format
for the cormand is as follows:

Command: ACD
Operands FIFID=data,FIELD=(data,data,data},
FIFLI=data .+
Where:

FIELD
is the 1-8 character field nane.

data
is the data value to te added,.

Specified as a 1-255 character data value,



PAGE 172

CORRECT CANCEIL Sutcommand

The CANCEL sub-cormand allows the uvser to nullifyv any
correcticns entered since the last CORRECT or INSERT
sub~-connand. The format for the comnmand is as
followss:

Conmand: CANCFL
Operand: {(none)



PAGE 173

CORRECT CORBECT Sutccmmand

The CORFECT sub-command allows the user to sgecify a
new reccrd andsor field which he wishes to exanine,
withont returning to NASIS command mode. It provides
the additional caparility of accessing anchor records
sequentially (fcrvard or backward) from a aiven point.
The format for the ccommand is as follows:

Command: CCRRECT
Operand: new~field, new-key

Where:

nev-field
is the name of the next field in the reccrd to be
exarined,
Specified as: a 1-8 character data value,

Tefaunlt: the same field nawve is used,

new-key
is the key of the next record to be accessed.

Specified as: a 1-255 character data value, or, a
signed integer value for sequential processinag,

Default: the same record is used,



PAGE 174

CORRECT DELETE Sukcommand

The DELETE sub-command allows the user to delete from
the record, an element, a range of elements, a field or
the entire record itself. The format for the command

iz as follcows: ’

Command: DELETE
Orerand: element-list

¥Yhere:

element~list
is the 1list of elements and/or element ranges to

be deleted,

Specified as: 1) RECORD toc delete the entire
record: 2} En to delete an element (n is an
integer identifving the element): 3) (Eni1,En2) to
delete a range of elements (n1 and n2 are integers
jidentifving the teqginning and ending elements of
the range).

Default: the entire field is deleted.



PAGE 175

CORRECT DISPLAY Sukcommand

The DISFLAY sub~ccmmand allows the user to display the
entire field in sections, to facilitate the situation
vhere all of the data cannot be shown on the screen at
once., The user mavy ‘page' sequentially (forward or
backward) through +the data, or he may specify the
element number at which he wishes the display to begin,
The coemmand format is as follows:

Ccemand: DISELAY
operand: data

Where:

data
identifies the type of display which +the user
desires, sequential forward, seguential tkackward
or positiocnal.

Specified as: 1) B for sequential backward; 2) En
to display frcm element n.

Default+: display sequentially forward.



PAGE 176

CORRECT ENT Subcommand

The END sub-comrand allows the user to terminate
CORRECT precessing and return to NRSIS command mode.
The format of the command is as follows:

Command: END
Operand: (none)



PAGE 177

CORRECT FIELLS Sutcompand

The FIELDS sub-cormand allows the user to request a
formatted display c¢f all of the field names associated
with this data rase, The format of the command is as
follows:

Commands FIEILS
Operand: {none)



PAGE 178

COREECT INSERT Sukcommand

The INSERT sub-ccrmand allows the user to specify new
subfile fields for adding a new subfile record, The
command format is as follows:

Command: INSERT
Operands: FIEITL=data,FIELD=data,...

Where:

FIELD
is the sutfile field name to be added.

data
is the data value of the field to be added.

Specified as: a 1-255 character data value,



BAGE 179

CORRECT INSERT Sukcommand

The BEELACF sut-ccmmand allcws the user to change data,
contained in a field, by value. The format of the
command is as follcwus:

Command: REPIRECF
Orerand: start, end, old-data, new-data

Where:

start

end

identifies the element number at which scanning
for the o0ld data string is to bhegin.

Stecified ast En vwhere n identifies the element
desired.

Default: the current element namber is used,

identifies the element at which scanning for the
old data string is to end.

Specified as: En where n identifies the elenment
desired.

Cefault: the last element is used,

old-data

jdentifies the existing data value,

Svecified as: a 1-255 character data value,

new~data

identifies the replacement data value,
Specified as: a 1-255 character data value.

Cefault: a nuall value is used,



PAGE 180

CORRECT VEFIFY Sulcommand

The VERIFY sub-ccrmand allows the user to change the
mode of operation for a typewriter terminal. The
format of the compand is as follows:

Copmand: VERIFY
Operand: mode

Fhere:

node
jdentifies the sutsequent mode of operation.

specified as: 'YES' if the auser desires an
automatic display of the updated data, following
each CORRECT sub-command, or *N¥0* if he doesn't,



PAGE 181

TOPIC D.7 - RDBMNTN - MPINTENANCE - UPDATE

I.

II.

I1Y,

Iv.

INTRODUCTICH

The wmaintenance gprogram (DBMNTN) is an independent
module to te used for maintaining NASIS data bases.
Maintenance consists of additions to, deleticns fron,
or modificaticns cf the data contrained on a data bhase,
Transactions are used to descrite changes to data hase
records and are stored in the TRNSCT Data Base, The
transactions can reference a particular record, field
or element in describing the desired change.

Lata hase maintenance is executed non-conversationally,
although it is invoked <from a conversational terminal.
Tt must be run under the TSS userid of the owner of the
data tase being maintained. The program is restartable
in that, each transaction processed successfully, is
deleted frem the transaction data base.

This mranual describes the operating procedures, +the
mode of o¢peraticn, and the tyoes of transactions
supported.

INVORKING NAINTENANCE

NASTS maintenance is invoked ty entering the command
UPDATFE to the maintenance sub-system,

MAINTENANRCF OPERATING PROCEDURES

The data base cwner may use the CCRRECT command to
peruse the transactions and to delete any which he
deems tc te wunneccessary or invalid (See CORRECT
compand User's Guide).

Once the transactions are determined to be acceptatle,
he is readvy to initiate maintenance. Restart is
gimilar, but should require no transaction editing,

MOLCE OF OPERATICN

Maintenance initiation is a two-step procedure, The
first step is the invccation of the program DBCLMN,
DECLMN creates a line data set, which %#ill be used by
the TSS command systen as the input data set for the
tackground maintenance task, The SYSIN data set will
be naned CLDBMAIN,data tase and will contain the CALL
necessary tc execute the maintenance program itself.

The second nrart of the process 1is the actunal execution
of maintenrance itself, This phase is always performed



in the ncor-ccnversational
set created by L[ECLMN,
base is opened fcr update,
for update and precessing
handled separately and if
transaction is deleted.

PAGE 182

pode by executing the data
furing this phase, the data
the transactions are opened
begins. Each transaction is
successfully processed, the



PAGE 183

TOPIC E.1 - TSPI/I LANGUAGE EXTENSION

I.

INTRODOCTICR

The terminal support prerrocessor for NASIS (TS) allows
the PL/I cerograrmer to include in his vprogranm,
statements, in ncrmal P1/I syntax, which refer to and
use the various terminal suprort functions. To epable
the vse of the TS rreprocessor in a particular prograsn,
it is only necessary to insert the following
statement:

% INCIUDE IISEMACA{TS);

This statement rust appear before any actual use of the
preprocesscr itself,

The preprocessor functicns available are listed in the
appendix along with the terminal control block ({IC)
containing the various switches and control fields that
are used tvy terrinal suprort. The functicns rrovided
rerform a set of geperalized operations on the terminal
device, These operaticns can he altered and refined by
the setting of approrriate switches in the TC Plock
before invoking the particular TS5 function, This
alteraticn is mcst useful for the PUT and PROEPT
operations.

Tn addjition to the functions 1listed, terminal support
has defined ¢two interrupt conditions, ATTN and END, to
facilitate programeer cecntrel of the terminal device,
The ATTN conditicn 1is raised each time the user
depresses the attenticn key on his terminal., Rhen this
cccurs, terminal support calls the last defined PL/I ON
block for ATTN's via the signal mechanise, If the ON
blcck returns, termipal support will prompt the user
for a command with the fcllcewing message:

-ATTN:

The user mav resgond to this wmessage with any of the
“inmediate” commands:

SYNONYN
SYNONYHNS
DFEFAULT
DEFAUDITS
PROFILE
EXPLAIN
FROMPET
STRATEGY
XA



11,

PAGE 184

KB
BACE
END
AFOFF
50

A default resvonse is interpreted as a G0. If during
the executicn c¢f one of these conmands, the user
depresses the attention kev, that command will be
terminated and the user will ke reprompted.

The user may define an ON ATTN bhlock in his progranm,
but he must adhere to the following restrictions:

1. Fe may only issue output TS functions,

2. If he wants to surpress the system prompt, he
rust branch cut of his ON block (by so doing,
he cannot return to the point of
interrugtion).

If the user wishes to disable attentions completely, he
must set the T*LISABLEC' kit in the system data table
USERTAB. (This action should only be taken in the most
critical situaticonsg).

In the above description, if the user had responded
with an ENI command, terminal support would have raised
the END c¢onditicon via the =ignal mechanisn. The
purpose of this condition is to vprovide a standard
method of terminating a program or aprlication and vet
allowing it to perform any Yclean~up" actions that are
necessarv, As with ATTN, anv output TS messages will
be allowed.

The terminal support functions assume that the device
has a screen, and that this screen is divided into an
upper outpfut avrea and a lower prompting area. The
logical dimensions of the screen are defined by the
physical dimensicns cr the default values for the
synbols SCRNHGT and SCRN¥TH., The current dimensiors of
the screen can be found in the TC Dblock during the
execution of the program,

STATEMENTS
A. BVABLE <ATTE | END | *ALL>;

This statement causes the default coding for the
END and/or BATTN conditions to be generated into
the rfroaranm, The default code for ATTN is to
simply return to the point of interruption. The
default code for END is to branch +to a routine



C.

D.

PAGE 185

that will terminate the program via a RETURN.

This statement, if ©present, must appear cply once
in the ©program and hefore any ENTRY statements.
This statement also implies an ENTRY statenment.

FNTERY;

This statement nmust be executed hefore anv other
TS statements, devring a particular invocation of
the progran. It establishes the default ON
blocks generated by EVABLE and calls terminal
support to initialize the TC block, Because of
its functicn, an ENTRY statement should appear at
each entry ¢rcint o¢f a program, or at a common
point in the rrocessing for all entrv points.

An FNTRY need not follew an ENABLE, as the ENABLE
staterent includes and implies ENTRY.

ON PAGE CAIl{(entrv);

This statement establishes the name of the routine
which is to process paging of the screen for the
current function. When a function has filled the
screen with data and terminates with more data to
he displaved, a PAGE command will result in a call
to the entry point specified by the most recent O¥N
PAGE statement,

The Tentry" parameter must he, or will be,
converted to a character string of eight or fewer
characters in length.

PROKPT HSG{kev) <USING (inserts)> <INTC{buffer)>;

This statement has two functions, the ocutputting
of a nmessage (vhere the INTO clause is onmitted)
and prompting for a conmand, The nessage
specified will be 1located in DBALIRB{0) (IISRNL¥)
or LISRITIB{(0} {LISRMLP) and displaved to the user.
Any inserts specified will be placed in the
proper positions within the text before it is
displavyed. I1f the message cannot be found,
termipal support will automaticalily issue a
diagncstic containing the message key, If a
command promrpt dis indicated, the text will he
preceded by a dash (=) and a string of {": =)
will te¢ apvended to it bhefore it is displaved,
A11 inserts will be stripped of 1leading and
trailing tlanks, Unspecified inserts will be
replaced by Paxxn,



PAGE 186

The "key" parameter must be, or will *e converted
to a character string of eight or fewver characters
in length, The "inserts"™ parameter must ke a list
of tuwenty cr fewer <charvacter strings. The
shuffer" parareter must be a character string into
which the command entered is to be placed, It
should be eight characters in length, or
greater,

If the ccmmand entered by the user, after synonym
search, will not fit in the string specified by
the user, TC.PROMPT.TRUNCATION will be turned on
by terminal sugpcrt. Further, this, or any other
type of error (svntax, etc.), will cause
TC.,PRCMPT,ERFCR to be turned on,

PROFPT MSG {key)<USIRG{inserts)> KEYWORD (id)
INTO{tuffer);

Thics =cstatement is used to request parameters
andsor data from the user or from the profile,

The "key" parameter must be, or will be converted
tc a character string of eight or fewer characters
in length., The "incerts" parameter must te a list
of +twenty or fewer character strings, The Pid"
parameter must be, or will be converted to, a
character string of eight or fewer characters 1in
length, The “Yhuffer™ parameter pust be a
character string into which the data 1is to be
placed. The rmaximup size data element returned by
terminal suprort is 255 characters.

If the TC.PRCMPT.BYPASS bit is turned on by the
user vprior tc this statement, terminal support
will examine +the reraining parameters in its
buffer and the profile for the data value, but
will not prompet the user, Otherwise, if no value
is fourd in the buffer or in the profile, the user
will te vromrted for the data value., If the "id"®
paraneter is null and the data is specified in
kevyword format, +terminal support will post the
keyword into TIC. PROMPT.REYWCORD for the aser, If
the rrogram detects an invalid data value and
wishes to reprompt the user for it, the
TC, PROMPT, ERRCR }it stould he turned on prior to
the PROMPT. If any errors are encountered by
terminal support, the TC.PROMPT.ERROR bit will bhe
turned on. 1If the data entered will not £it into
the string srecified, the TC,PROMPT.TRUNCATION bit
will ke tarned on. If the value returned was
ottained fronm the user's profile, the
TC .PRCMPT.DEFAULT bit will be turned on,



F.

H.

PAGE 187

Likewise, if the value returned was a quoted
string, the guotes will be removed and the
TC.PRCMPT,STRING bit will bhe +turned on. If the
value returned is an element of a parenthesized
list, only the element will be returned, and the
TC. PRCMPT,MORE_DATA bit will be turned on.
Subsecuent grrompts will Tresult in succeeding
elements being returned, until the end of the list
is reached.

READ INTO {tuffer):

This statement causes the current contents of the
screen to hte returned to the user,

The "ruffer" rarameter must be a character string
into which tte data is to be placed.

WRITE PROM (buffer):

This statement causes the screen to be =wmritten
from the area specified, without any editing,

The "tuffer® rarameter must be a character string
which contains the data to be written.

PUT <LINE | PAGE> FROM(tuffer) <TAG(value)>
CFORWARD|EACKWARDD>;

This statement causes a new record +to be placed
into the screen tuffer.

The "tuffer™ parameter must be a character strina
whick contains the data to be written, The
"yvalue™ parameter must he a character string which
iz to te used to identify this output record, Aif
LINE 4is specified, the record 1is sequentially
added to the screen buffer. If PAGE is svpecified,
the screen tuffer is reset and this record beconmes
the first record of the new screen, The FORWARD
and BACRK¥YARD o¢options are used +to control the
directicon of the seguential filling of the screen
buffer, from the top down, or from the bottom

ap.

If the userts data exceeds the width of the
screen, the second and subtsequent lines begin at
the fpositicn indicated by TC,0UTPUT,INCENT. 1If
the wuser*s data causes the screen +to cverflow,
the anount of data written 3is dindicated by
TC.O0UTPUT,WRITTEN, If the user wishes only
complete records +to be written to the screen, he
should have TC.OUTPUT,PUT_PARTIAL turned off, If



I.

Jd.

PAGF 188

the user wishes the screen to be automatically
written when the buffer is filled, bhe should turn
on tke TC.CUTPUOT,AUTO_WRITE bit. If the user
wishes +to have his lines split between words ({(for
text processing) be should turp on the
TC.0UTPUT, WORD_BREAK bit, If the user  has
displayed a secament of the current record on the
previcus page and he wants the remaining segment
tagged and/or indented, he wmust turm on the
TC,OUTPUT,CONTINUATION bit, If the last PUT
caused the buffer to be f£illed, the
TC,OUTPUT,OVERFLOW will be turmned on,

F1USH;

This staterment is used to force the contents of
the screen tuffer to bte written, even though it is
not filled. If the user wants to indicate that
more data remains to be displayed via the paging
mechanisno, he should turn on the
TC.OUTPUT.MORE_DATA tit ©tefore his last outpuot
ogeration.

FPINISH;

This statement canses the rreprocessor to generate
the rnecessary code to enable execution tinme
communication with terminal support, It must be
the last TS statement in the prodgran.



PAGE 189

TOPIC F.1 - LIMIT TABLE USER'S GUIDE

The LIMIT table is used by the LIMIT command to determine
the names of the ancher key subfields and where they are
located within the anchor key. The limit table for a given
data base must te defired by the DBEA if the LIMIT command is
to apply to this data tase, These anchor key subfields may
or ray not te defined in the data base descriptor file. Tbhe
LIMIT table is entirely 1independant of the descriptor
file.

The LIMIT structure is defined in the data set
spaecificaticns ¢f the IW¥B, This table 1is initialized by
defining the following EL/I procedure vwhose name is defined
as "“L" concatenated to data tase name; i.e. "LERIS", The
nodule name is fcrmed ty concatenating "R"™ to the procedure
name; i.e."RLERTS", This module is to reside in DBALIB.

1 XXX¥XXX= /¥ PROCEDIRE NAME. */
PROCEDURES

DCL I PBIN FIXEL: /¥ NEEDED FOR PLI PBOBLEM, */

% INCLUDE LISRMAC (LINMIT); /% GET LINMIT TARLE. x/

IF -ALLCCATION (LIMIT) THEN
ALLOCATE {(LIMIT)

LIMIT.KEY_ST E={nnn); /*HHERE (nnn)IS THE LENGTH *x/

/%¥0F THE EXTERNALLY *y

/¥FORMATTED KEY. x/

LIMIT,#_ENTRIES= (nnn);/*WHERE (nnn) IS THE NUMBER OF¥*/

/*SUBFIELLS DEFINED ON THE */

/¥ANCHOR KEY AND HENCE THE */

/*NUMBER OF ENTRIES IN THIS */

/*TAELE. */

/*NOTE:THERE MUST BE A GROUP OF THE FOLLOWING THREE*/

/*LINES CF CODE FOR EACH ANCHOR KEY SUBFIELD */
LIMIT,FIELT,NAME (i) = FIELDNAME;

/*THE ANCHOR KEY SUBFIELD ®/

/¥NUAME * /

LIMIT, FIELD,STARI {i)=(nnn); /*WHERE (nnn) IS THE */

/*IS5 THE STARTING CHARACTER */
/*POSITION IN THE EXTERNALLY */
/*FORMATTED KEY OF THE ABOVE */
/EANCHCR KEY SUBFIELD NAME, */
LIMIT, FIFLT.LHGTH{i)=(nnn); /*WHERE {(mnn} IS THE */
/*LENGTH IN CHARACTERS OF THE */
/#ABOVE ANCHOR KXEY SUBFIELD x/

/*NANE., */
/ENOTE:THE ABOVE LERINED SUBFIELD MUST BE WHOLLY */
/*CONTAINEL WITHIN THE ANCHOR KEY FIELD, */

END;



PAGE 190

TOFIC G.1 - USAGE STATISTICS

I,

I1.

INTBODUCTICN

Usage Statistics is, essentially, a separate sub-systenm
of NASIS, whose function is to collect and retain
statistics, conceiving the use and status of the
systenm. The statistics maintained are divided into
retrieval statistics, use of the system, and
maintenance statistics, status of the data, The
retrieval statistics include counts of the number of
times +that varicus commands have been invoked, the
nunmber of retrieval sessicns, the dates and time used
for those sessions, as well as the aggregate tipe spent
retrieving data. The maintenance statistics include
counts of the numkers of record additions, deletions
and uvrdates, for the anchor file, subrecord files and
for all inverted index files,

The maintenance ¢f +these statistics 1is ap automatic
function and will not be discussed here. What will be
covered by this document 1is the production and use of
the reports available through Usaqge Statistics, Tt
should be noted that the retrieval statistics are
available to any NASIS user, while the maintenance
statistics are available to the owner of the dataplex
only,

STATISTICS CHECKPCINT

The statistics gathered for retrieval are maintained on
a per session tasis, with a capacity for thirteen
sessions hefore re-initialization is necesSsarv.
Bacause of this, a check is made each time a new
session is bequn, and if re-initjalization is
necessary, a checkpoint listing of the retrieval
statistics is vroduced, so that the data on file will
not he lost,

The checkrcint rerort is a formatted list of the data
on file for a particular NASISID, before
reinitialization. Tt will <contain a line entry for
each of the sessicns on record, displaving the command
counts, the lines, the date, the file name, and other
pertinent information. The DBA should examine this
report to analyze the usage that KASISID is making of
the system and of the individual dJdataplexes. If he
deems that some action is necessary, 2.9., a user is
logged cntc the system for excessive periods of time,
tut not executing many commands, he should do whatever
he feels 1is regquired. In any event, the report should
be retained for future reference and analysis, and



I111.

Iv.

PAGE 191

should protakly ke f£iled by NASISID.
A sample checkpeint report is included in Figure 1,
RETRIEVAL ETATISTICS EEPORT

By submitting JOB CCCRPRNTR, the status of the entire
retrieval satistics file can be presented, This report
displays the activity of the various NASISILS, the
various data tases and the various retrieval
commands.

The retrieval report is formatted by NASISID, with a
line entry for each terminal session. These entries
present the various ccemand counts, the lines, the file
names, and other pertinert information. In addition, a
sumpary is made, at the end, of the aggregate times and
sessions for all users.

A sample retrieval report is included in Figure 2,
MAINTENANCE STATISTICS BEPCRT

By submitting JOE CCCRPRTE, +the status of the entire
raintenance statistics file can he presented, This
report sheould he used by the ©DBA to validate the
maintenance recerds of each data base. Tn addition, it
should re used tc assess the maintenance activity of
the various dataplexes. ¥ith this information, the DBA
will be 1in a hetter position to know the exact status
of his dataplexes, when to backup the system, when to
reorganize his files, and manv other questions that
must be answered in order to maintain proper control
over the system and its data.

The maintenance report is fcrmatted bv dataplex name,
with a line entrv for each maintenance run. These
entires present the counts of the number of additions,
deletions and updates made to the anchor and associated
files, the subrecord files and the inverted index
files. In addition, a summary is made, for each file
showing the acgreqgate and the averaqge number of
additions, deletions and updates to the dataplex.

2 samnple maintenance report is included in Fiqure 3.



MAINTENANCE STATISTICS FOR SYSTEMS MANAGER *%*

DATAPLEX TOTAL ANCHOR
NAME TRNS RECORDS

ASRD1$ 3,132

NUMBER TRANS MAINTENANCE

FILEPLEX

01/11/73

SUBPLEX

PAGE

XPLEX

1

ADDS DELETES UPDATES ADDS DELETES UPDATES ADDS DELETES UPDATES

RUNS  RUN DATES
1 12/19/72 3,132
FILEPLEX ADDS DELETES
TOTAL 3,132

AVERAGE 3,132

UPDATES

FOR ALL RUNS

PER RUN

b/



RETRIEVAL STATISTICS 01/03/73

NASISID CONN-TIME CPU-TIME 4  SIRAT STORED OWNER  FILE  FIELD  ACTUAL TOTAL NUMBER OF;.
HR:MM:SC HR:MM:SC:MS SES LENGTH # 1D NAME ~ NAME EXP SEL SRCH CORR
NEO1 0:53:30  0:00:48:790 5 0 0 ot

SAOWNER ASRD1SA AUTHOR
SAOWNER ASRD1$B KEYWORDS 1
SAOWNER DB2TDBA EMPAGE

SAOWNER DBZTDBB TOTALCAR
SAOWNER DB2TDBC KIDAGE

SAOWNER DB2TDBD PET

SAQOWNER DB2TDBE SVCDATE

W w
CO0OOOo OO
cCCoQOO OO0
CO0O0O0 O

Zh/



LISR ID CONN-TIME
HR:MIN: SC

1

NECL 119:40

SNAPSHOT (CHECKPOINT)OF RETRIEVAL STATISTICS RECORDS BEFORE REINITTALIZATION

CPU-TIME

#

12/18/72
STRAT OWNER-ID FIELD FILE
NAME NAME

HR:MN:SC:MS SES LENGTH

0:00:12:399

2

SAQWNER

KEYWORDS ASRDISB

* PAGE 1

SESSION # # # #
DATE  EXPANDS SELECTS SEARCHS CORRECTS

721215
721215 1
721215
721215
721215
721215
721215
721215
721215
721215
721215
721215

721215 1

bl



PAGE 195

BATCH PRINT MONITOR USER'S GUIDE

I.

11,

INTRODUCTICHN
The Batch Print Mecniter is a completely independent set
of prograsms which allcws cne terminal to selectively
execute retrieval print tasks which have been gueued bty
NASIS users, Execution cf a vprint task implies
identifying the srecific print queue (by NASIS ID) and
specifving the task to be run, Alternatively, the
terminal user may invoke sSequential processing of all
NASIS IDs and all cutstanding print tasks.
Printed listings are produced off~-line and consist of
information retrieved from a ¥ASIS data base accordinag
to a forrmat stored by the NASIS user.
PATCH PRINT COMMANDS The Batch Print momitor rums under
the MTT Monitor, just as KASIS does, and is invoked by
dialing a TSS/360 telerhone nunter and entering:

BEGIN PRINTS

This will invoke the system and allow one of the
following:

A, PRINT - nasis-id, bsn
where:

"nasis~id"® didentifies which print queuve (by
NASIS-IL} is to be processed.

Sgecified as:
1. Any valid NASIS-IL,
2. ¥3L]1 - process all NASIS-IDs.

"hsn" specifies the print task out of
gueye which is to be processed,

Specified as:
1. Any integer in the range 1-199,

2. #3111 - process all outstanding batch
seguence nunbhers,

B, END =~ Terminates oprint menitor execution and
loagoff the task.

C. HOLD - mnasis-id,bsn., Requests the nmonitor to



D.

E.

F.

PAGE 196

place the rfrrint task specified by "tsn™ and
"nasis-id" {see PRINT command) in hold status and
skip vprocessing ontil a RELEASE command 1is
issued,

RELEASE =~ nasis-id, bsn, Inverse of the HOLD
comnrand,

NUMBER - nasis-id, Requests a ccunt of
outstanding print tasks for the indicated
"pnasis=-id" (See FRINT command).

CANCEFY - nasis-id, bsn, Causes a print task to
ke removed frcm the print queue.



