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ABSTRACT

The decentralized control of stochastic large-scale systems is con-
sidered. Particular emphasis is given to control strategies which
utilize decentralized information and can be computed in a decen-
tralized manner.

The deterministic constrained optimization problem is generalized to
the stochastic case when each decision variable depends on different
information and the constraint is only required to be satisfied on
the average. For problems with a particular structure, a hierarchical
decomposition is obtained.

For the stochastic control of dynamic systems with different infor-
mation sets, a new kind of optimality is proposed which exploits the
coupled nature of the dynamic system. The subsystems are assumed
to be uncoupled and then certain constraints are required to be
satisfied, either in a "off-line" or "on-line" fashion. For off-
line coordination, a hierarchical approach of solving the problem is
obtained. The lower level problems are all uncoupled. For on-line
coordination, distinction is made between open loop feedback optimal
coordination and closed loop optimal coordination. A hierarchical
decomposition of the problem is possible in each case. The linear-
quadratic-Gaussian problem is solved in detail for both off-line and
on-line coordination. The resulting control strategies are found
to have certain nice properties.
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CHAPTER 1

INTRODUCTION

1. Nature of Large-scale Systems

It is hard to give a precise definition of a large-scale system,

nor do we believe that there is one. A definition based on the number of

components in the system is unsatisfactory since this would include systems

which we would normally not consider large, e.g., a heated rod. Rather,

the largeness of such systems seems to reflect the effort required to

understand and control them. The following features, though not exhaustive,

seem to be characteristic of most large-scale systems.

(a) Large number of equations, usually coupled, describing

the system.

(b) Large number of decision variables to be manipulated.

Usually these decision variables can be collected

into groups to be chosen by different agents according

to their spatial configuration or their function.

(c) The decision variables and state variables are so

distributed that the information available to agents

in charge of the different groups of decision variableŝ

are different. This feature is usually absent in

traditional small-scale control systems but is inevitable

in large-scale systems. This kind of information pattern

is sometimes termed nonclassical [W2].

(df Presence of uncertainty. When uncertainty is absent,

it would be able to exchange the total information

-8-
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available among all the decision agents, thus rendering the

information pattern classical.

(e) More than one preference ordering for the entire system.

Two cases are possible. The same set of preference

orderings may be shared by all the decision agents or

each decision agent may have a different one. The first

case has been studied under the topic of nonscalar

performance criterion, e.g., ref. [H3]. The second case

generally arises in a game.

(f) Difficulty in modelling the system. This can be illustrated

by the effort spent in understanding systems such as a

power system or the economic system.

These last two aspects are very important but they will not be

considered in this thesis. Rather, we shall assume that a model of the

system is known and there is one single preference ordering for the entire

system which is represented by a cost functional (performance index). All

the control agents choose their controls to optimize (minimize) this cost

functional. We feel that the problem of controlling a large-scale system

is complicated enough even without the last two features.

Two constraints which may be neglected in the control of small

scale systems become extremely important when the system is large.

(a) Communication. It may be expensive or even technically

impossible to provide good communication links between all

the control agents.

(b) Computation. The sheer size of some typical large-scale

systems, e.g., economic systems, may make the control
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problem bigger than that can be handled by the fastest

computers available. For the control of dynamic systems, we

need actually to distinguish between two kinds of com-

putation, off-linê  and on-line. Off-line computation is

what can be computed before the system starts running,

e.g., the computation of the optimal strategies. On-line

computation has to be done in real time while the system

is actually running, e.g., transforming the data received

in. real time into decisions (controls) using the optimal

strategies computed=-of f-line. In general, on—line com-

putation presents bigger problems than off-line computation

since it aas to be done in rear time.

Without these constraints, there would be little difference between

the control of large-scale and small-scale systems. The information

available to the control agents can be pooled together and the optimal

control policy- solved for like a small-scale problem. This policy can

then be dispatched to the control agents and implemented. The constraints

on communication and computation make this approach of centralized control

impossible. Some form of decentralization is therefore necessary. This

is the central issue in the control of large-scale systems.

Another advantage of decentralization which is related to communi-

cation is reliability. A design based on centralization cannot function

properly if the communication links between the central agency and the

subsystems fail. On the other hand, decentralized control has the nice

property that a certain degree of autonomy is retained for each subsystem.



-11-

Thus even though no signals are received from the central agency, some

form of optimality is still possible.
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2. Historical Survey

This design and control of large-scale systems has become a very

popular research area in system and control theory. Previously, this

problem was investigated mainly by economists and management scientists

who have to deal with systems much larger than those encountered by

engineers. The design of management information systems and decentraliza-

tion by price mechanisms in organizations can all be regarded as methods

of controlling large-scale systems [A5]. On the other hand, engineers

do have some experience with large-scale systems, e.g., the power system

which is more or less controlled in a hierarchical manner [SI].

Roughly speaking, past efforts on the control of large-scale systems

can be summarized into- four categories. .

(1) Resource allocation processes. These deal with a special

class of static systems called the economy. Given their

initial resource endowments, their production possibilities

and preferences, the economic units or participants of the

economy are to choose their production and exchange

activities such that a pareto-optimal point is reached.

Let

I = {l, ,n}: the set of economic units

X: the commodity space

0 : the identity element of X
A

1X1 = XX2 = X for all i e I

Y1 = ix1 x XX2 for all i e I

Y = Y1 x x Y"
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For any d* e ̂ x̂1, z1 e *X27 the pair (d̂ z
1) = s* e Y1 is

called an economic plan of the ith unit.

d1: exchange activities

z : production activities

. 1 i n.s - (s , ....s ,...., s ): program

The ith component of the economic environment is defined

as the triple

( Vw, So = e1

where

A is a non-empty subset of Y; the set of i-achievable

programs .

w is an element of X; the initial resource endowmento

of the ith unit.

R is a total ordering of the elements of A, i.e., R

is a transitive, reflexive, connected relation defined

on A.

The economic environment is then defined as

- i *• *•• n
6 *** \ 6 f • » • * • f € f ••••-• f 6 /

Given an economic environment, as adjustment process is

a set of rules for exchanging information among the economic

units, regarding their components of the environment, in order

to reach an agreement about the economic program to be imple-

mented. Formally, an adjustment process TT is defined as

TT « (L, f, <J>)
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where

(a) L is the set of messages that the units can use

for exchanging information.

(b) f = (f , f1) is the n "response" functions.

f : L x E •*• L where E is the class of environments.

(c) <f> is the outcome rule which associates with each

equilibrium message an outcome set S of economic

programs..

Informational decentralization requires that the response

function of each unit depends on the environment e only through

its own components. Hurwicz [H4] and Camacho [C6] have

presented different informationally decentralized adjustment

processes whose equilibria are Pareto-optimal for different-

economic environments. It should be.noted that this class

of problems involve static, deterministic systems of a very

special nature. However, the decision making is also decen-

tralized since the economic units do not have to get together

to choose their strategies.

(2) Team decision problems. This class of problems is first

proposed by Harschak [M3]. There is a single objective

function and a number of decision makers each with different

information on the state of the system. Optimal decision

rules transforming the information into action are required.

The scheme is informationally decentralized but the decision

makers have to find their decision rules together.



-15-

The linear-quadratic-Gaussian static case has been con-

sidered by Radner [Rl]. It is found that the optimal decision

rules are linear. Reference [M5] contains most of the original

work done. For the dynamic case, when one decision maker's '

information depends on the action of another decision maker,

the situation is more complicated. We are used to the case

when the decision maker's information includes that of all the

decision makers who act before him. Under those circumstances,

the optimal decision rules are linear and are in fact given by

the "Separation Theorem" [A2, M2, W4]. However, Witsenhausen

showed by a counter-example that the optimal control strategies
!

need not be linear, [W3], contrary to the solution of ordinary

linear-quadratic-Gaussian problems. He also studied when the

Separation Theorem holds for problems with non-classicil

information pattern [W2]. Ho and Chu [H3] gave conditions

on the information structure such that the optimal decision
j

rules are linear. Chong and Athans [C3] showed that the ad-
i

vantage of decentralized information in team decision'problems
:!

may be offset by the additional complicated computation

required to find the optimal strategies. Aoki [Al] studied a

dynamic team when the decision agents involved are allowed to

share information about their past control values.

(3) Hierarchical systems. The decision agents controlling the

system are arranged in a hierarchy of levels. Each agent in

a level communicates with several agents in the level under it
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and with one agent in the level above. The agents at different

levels perform different functions. The agents at the lowest

level actually interact with the system under control while

those above act as information processing centers or make

long term decisions. Although there are a lot of intuitive

advantages of having a hierarchical system [S2] , such as

reliability, adaptibility and ease of computation, very little

is available in the form of a mathematical theory [Ml]. Most

of the work done in the hierarchical decomposition of systems

has been inspired by mathematical programming. One version is

the following. The subsystems in the large system are con-

trolled as isolated units. This would be unsatisfactory since

the subsystems are actually coupled to each other. The

coupling effect is taken care of by a coordinator who sends

out coordinating signals to the lower level controllers. The

coordinating signals are so chosen such that the overall

objective of the system is achieved. The original control

problem is thus divided into two levels. The lower level

problem consists of independent optimization problems dependent

on the coordinating signal. The higher level problem is that

of the coordinator. Much of the work done in the decomposition

of mathematical programming can be found in [L3] and [W5]. It

should also be noted that some of this work is actually

related to resource allocation processes. In general,

hierarchical decomposition methods motivated by mathematical
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programming deal mainly with the computational aspects of the

problem. The presence of uncertainty and the flow of

information between subsystems is seldom treated.

(4) Controllability and stabilizability of decentralized dynamic

systems. Although this work is not primarily concerned with

optimization, it addresses itself to some very fundamental

questions in large-scale systems, namely the controllability

of decentralized systems and their feedback stabilizability.

Preliminary work was done by McFadden [M4] who considered a

system that arises in modelling certain aspects of economic

systems where several national agencies exercise regulatory

control power over different aspects of economic activities.

Aoki [A4] considers the stabilizability of decentralized

linear time-invariant dynamic systems with coordination and/or

communication among control agents. It is found that

controllability of the systems no longer implies stabilizabil-

ity and the control agents must in general communicate with

each other in order to stabilize the system by feedback.



3. Motivation

From the previous section we can see that most of the work done

on large-scale systems treat the two important issues of computation

and" information separately. Work dealing with the computational aspect

of the optimization of large-scale systems is almost exclusively de-

terministic. The flow of information within the system is therefore

unimportant. On the other hand, work on decentralized information

structure seldom considers the importance of computational requirements.

Some of the optimal solutions to dynamic teams are computationally not

feasible. Since in the actual control of large-scale systems, com-

putational considerations are as important as those of information,

decentralized information may not be as efficient as it may appear.

Decentralized information structure almost inevitably gives

rise to more complicated decision rules than centralized information

structure. This may be explained as follows. Since each decision

agent has only partial a posteriori information about the state of the

system, he may want to generate the missing information using the

common a priori information available to him. Mathematically, he is

required to extract whatever information that is available in order

to be optimal.

This motivates us to use a broader interpretation about de-

centralized information. We shall consider two kinds of information:

a priori information and a posteriori information. A priori information

consists of structural information and performance indices. A

posteriori information consists of measurements on the system.



-19-

Thus only a posteriori information may be decentralized, or both

a priori and a posteriori information may be decentralized. If only

a posteriori information is decentralized, then the common a priori

information may induce each decision agent to use very complicated

decision rules. If appropriate decentralization is chosen for both

a priori and a posteriori information, the decision rules for the

decision agents will be simple. There will be a severe loss of

optimality, however, since the individual agents do not know that they

are controlling the same system.

To compensate for the loss in optimality due to the decentra-

lized information structure (both a priori and a posteriori) of the

decision agents, we introduce a higher level coordinator who possesses

all the a priori information. The coordinator may have a posteriori

information about the system but in general this information is less

detailed than that of the decision agents. The duty of the coordinator

is to transmit coordinating parameters to the individual decision

agents such that the system is coordinated in some sense.

We shall thus consider systems with a multilevel information

structure. The higher level coordinator has all the a priori in-

formation and some a posteriori information. The lower level decision

agents have decentralized a priori information as well as decentralized

a posteriori information. They also receive certain coordinating

parameters from the coordinator. A structure with many levels can be

investigated, although in this thesis, only the two-level structure

will be considered.
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4. Structure of this Thesis

This thesis is structured in the following manner.

In Chapter 2 the decomposition for a static stochastic

optimization problem is considered. The problem under consideration

consists of several decision agents each having different and noisy

information on the state of the system. There is also a coordinator

who sees that certain constraints are satisfied with respect to his

own information. Results in mathematical programming are used to

obtain a hierarchical decomposition for this stochastic problem. It

is shown that with the coordinating parameter transmitted from the

coordinator, the lower level problems of the decision agents can be

solved in a decentralized manner.

In. Chapter 3> the concept of decentralized a priori infor-

mation is used to obtain an off-line decomposition for nonlinear

stochastic dynamic systems. The lower level controllers assume that

they are controlling uncoupled dynamic systems with their decentralized

a posteriori information. The coordinator has all the common a priori

information and insures that certain constraints are satisfied. This

is reformulated into a mathematical programming problem. A hier-

archical scheme of finding the optimal strategies is then obtained.

In Chapter 4, the approach suggested in Chapter 3 is used

to find an off-line decomposition for the linear-quadratic-Gaussian

problem. Both the lower level problems and the higher level prob-

lem can be solved explicitly. The optimal local control strategy

for the i controller is found to consist of two parts: a closed
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loop part depending on the difference of his a posteriori local state

estimate and his a priori local state estimate and an open loop part

depending on the coordinating parameters transmitted by the coordinator.

In Chapter 5, the on-line decomposition of stochastic dynamic

systems when the coordinator collects measurements from the lower

level controllers and sends out coordinating parameters periodically

is considered. Both open loop feedback optimal coordination and closed

loop optimal coordination is discussed. For open loop feedback optimal

coordination, the results in Chapters 3 and 4 are used to treat the

nonlinear and linear-quadratic-Gaussian cases. For closed loop opti-

mal coordination a functional equation which has to be solved is

derived. With the help of the solution of a special dynamic team we

arrive at explicit solutions for the linear-quadratic-Gaussian case.

This is compared with the corresponding solution from open loop feed-

back optimal coordination.

In Chapter 6, we review the philosophy of this thesis and

summarize the results obtained. Suggestions for future research are

also given.



-22-

5. Contribution of this Thesis

The main contribution of this Thesis is the simultaneous

treatment of the issues of computation and information in the control

of large-scale systems. The concept of decentralized information is

extended to include decentralized a priori information as well as de-

centralized a posteriori information. Thus decentralized control

schemes, both computational and informational, are obtained. To com-

pensate for the loss in optimality, we introduce an extra coordinator

who has the common a priori information and some a posteriori in-

formation and influences the lower level through coordinating para-

meters. This is a new approach to the control of large-scale systems.

For static systems, stochastic optimization problems which

have both the features of team decision problems and resource allo-

cation problems are considered. Again this approach considers de-

centralized computation and information simultaneously.

For dynamic systems, the distinction between the two types of

periodic coordination is new. Specialization to the linear-quadratic-

Gaussian case gives results which are intuitively attractive.



CHAPTER 2

DECOMPOSITION FOR A STATIC STOCHASTIC OPTIMIZATION PROBLEM

1. Introduction

In this chapter we consider the stochastic optimization problem

of a static system consisting of several subsystems. Each subsystem has

a decision agent which has noisy information on the state of the system.

The overall objective of the system is the sum of individual objectives

of the subsystems. The subsystems are uncoupled except for constraints/

which couple them together. Contrary to the deterministic case/ the

constraints do not have to be satisfied exactly. Rather, the problem

solver only requires the constraints to be satisfied on the average. We

have thus a constrained stochastic optimization problem with several

decision agents each having noisy and different information on the state.

The many decision agent aspect of the problem has been considered under

the heading of team theory fRi]. For a constrained deterministic problem

with the special structure described above, a hierarchical decomposition

has been obtained using mathematical programming [LI]. We shall con-

sider the two aspects of the problem simultaneously and obtain a hier-

archical decomposition. This static problem is not only interesting for

its own sake but is also useful for the decomposition of dynamic systems.

In the next section we present an example to motivate the general

problem that we will study in this chapter. In Section 3 we review some

results in non-linear programming; these can be used to obtain the decom-

position of a static optimization problem when the state of the system

is observed exactly. In Section 4 the stochastic optimization problem

is formulated for the case when the state of the system is not known

-23-
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exactly. In Section 5 the decomposition of the stochastic problem is

investigated. Conditions under which the decomposition is well-posed

are given and related to the information structure of the system. In

Section 6 these results are stated in terms of measurement functions.

The stochastic version of the example is solved in Section 7 and compared

with the deterministic solution.
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2. An Example

Consider a manufacturing company with N divisions, each producing

a set of different commodities using the same resources. The ith division

produces u. units of goods G. from A.u. units of raw material at a cost

of u!R.u. where R. is assumed to be a positive definite matrix.
" 1' X™̂ 1. """I

The market price of G. is 2ir. and the total resources available

are v_.

Given any price vector STT. and production u. , the profit function

of the ith division is

The total profit of the company is the sum of the profits of all the

divisions, i.e.,

N
-f(u,T[) =-l f (u. ,TT.) (2.2.2)

•_! *• "~-' ""*•

The objective of the company is to minimize the total loss (maximize the

total profit) subject to the constraint that the total resources used are

less than the total resources available. The problem is thus

N
Problem 2.1: Minimize

-i'% (2.2.3)
.... u...

N
A.u. - v < 0 (2.2.4)

Remark ; We could have imposed the additional constraint that u^ >^ £

i=l, ..... , N but for simplicity we have assumed implicitly that the u-' s

would turn out to be non-negative when Problem 2.1 is solved.
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In this example the state of the system consists of the price

vector TT., i=l,...., N, the resource vector v_ and possibly the cost

matrices R. and the resource utilization matrices A_. . The decisions

to be chosen are u,. , i=l,...., N. Calling the state as x we have the

following general problem

N
Problem 2.2; Minimize f. (ux)

N
Subject to J g.(u.,x) - g (x) < £ (2.2.5)

-

For our example

f.(u.,x) = u.'R .u- .' - 2u. 'ir. (2.2.6)
• ~

go(x) - v (2.2.8)

There are situations when the state of the system cannot be observed

exactly, but is described probabilistically. Suppose now that T[. is

measured by the ith division manager as

£1 = C^ 2i + <9>i i=l, ---- ,N (2.2.9)

ŷ  is measured by the resource manager as

z0 = C^ v + £ Q (2.2.10)

IT . , £JL , i=l , . . . . N , ̂ and _6 o are random vectors independent of each

other and having the normal distributions (assumed known)

} = n (2.2.11)
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E<!i > " 2. • VaJKOi } =» 6^ i=l, , N (2.2.12)

E{ v } = v ; Var{ v } = V (2.2.13)

£{60 } = 0 ; Var{6o } = GQ (2.2.14)

All the information available are contained in the measurements z^ ,

i-0,...., N. The production of each division has to be based on his

measurement and some other signal based on z_.

The objective of the company is to minimize the expected total loss.

As for the resource constraint (2.2.4) it can no longer be satisfied

exactly since \r is not measured exactly. Instead, we require the total

resources used to be less than the total resources available given the

measurement z , i.e.

\\l M Ui - v | £01 < 0
(i=l

(2.2.15)

The production of each division has to use some information contained

in _z_ because the resource constraint (2.2.15) has to be satisfied. We

thus have the following problem,

f? IProblem 2.1A; Minimize E O u.'R^ u^ - 2u_i'jE- / (2.2.16)

subject to

!

N )
I A-iiii " Y. I *0\ 12 (2.2.17)

Hi = Hi <£.i '£o ) i=lf 'N (2.2.18)

Remark; u • at most can depend on all the information contained in z. ,£Q .

We shall show later that the optimal decision function in some cases can
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be found in a hierarchical manner and operation of the company can be

decentralized.
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3. Decomposition of a Non-Linear Programming Problem

In this section, we present some results in non-linear programming.

These give rise immediately to a decomposition method for deterministic

problems. Later on they will be used to obtain a decomposition for the

stochastic case.

Consider the mathematical programming problem.

Problem 2>J3; Minimize f(u , ---- , u)

Subject to g(u_, ----- , vi ) <^ £ e fP (2.3.1)

u± £ U. i=l,...., N

-where

f(U;L, ---- , Ujj) = f^) + ...... + VV (2.3.2)

~ g0 (2.3.3)

Except for the coupling constraint (2.3.1) , the problem is essentially

uncoupled. The constraint may be interpreted as the common resource avail-

able to all the decision makers. This structure has been exploited to give

a hierarchical decomposition scheme for the solution of the problem using

results in mathematical programming. We state one sufficient condition

which makes this possible.

Theorem 2.3.1 (Saddle-point condition) : Let f be a real-valued function

defined on a subset C of a linear space U. Let g be a mapping from C into

the Euclidean space IT . Suppose there exists a £* e P? , pj* >_ 0_ and a u* e C

such that the Lagrangian L(u,p_) = f (u) + p_'g(u) possesses a saddle-point at

u*,£*, i.e.,
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L(u*,£) £ L(u*,£*) <_ L(u*,£*) (2.3.4)

for all u e C, £ > 0^ then u* solves

minimize f(u)

Subject to g(u) _< £ u e C (2.3.5)

The proof of this theorem is elementary [L2]. Note that there are

no conditions on the convexity or differentiability of f or g. For

equality constraints, the same result holds except that p_ is no longer

required to be non-negative. The following theorem is due to Lasdon [LI].

Theorem 2.3.2: Suppose there exists a saddlepoint for the Lagrangian

corresponding to Problem 2.3, then the following hierarchical scheme can

be used to obtain a solution, provided the minimizing problem is well-

posed.*

t\,
Lower level; Minimize L. (u. ,£) = f. (u.) +p_'g.(u.)

Subject to u. e U.

i=l,...., N (2.3.6)

Nri "V ,
Higher level; Maximize £ L• *^S) ~ P. 9n

i=l 1 °

Subject to £l£ (2.3.7)

^where L.*(p_) is the minimum obtained in equation (2.3.6).

*For some p_, the lower level problem may not have a solution. We thus have
to limit £ to the set D = {£J the lower level problem has a solution }.
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Proof; We need the fact that the constrained saddle-point for L(a,b),

a e A, b e B exists if and only if [yl]

Min Max L(a,b) = Max Min L (a,b) (2.3.8)

a e A b e B b e B a e A

The value of the saddle-point is also equal to either side of equation

(2.3.8). Given any p we note that the minimization part on the right

side of equation (2.3.8) can be split up into N minimization problems

independent of each other. Specifically, we have

!

N N

^ fi(ui} + I fi-'^V £'i=l i=lp - u u

Max Min L(u,£) =

p, > o u p > 0

N
= Max £ Min (f.(u.) + £.'g. (u.)}-£* g

£>£ i=1 Ui (2.3.9)

Equations (2.3.6) and (2.3.7) are obtained by making the appropriate

identifications. Q.E.D.

Theorem 2.3.2 suggests a way of finding the optimal £* and u* simul-

taneously. This requires giving L.*(£) as a function of £. There are

numerical methods [LI] by which the optimal solution is found recursively

by choosing a new p depending on the result of optimizing the dual
N

function £ L. (u., jp ). However, we are more interested in the structure

of the decomposition, i.e., once an optimal £* is found, the lower level

problems are uncoupled. The significance of this is more obvious when we

look at the parametric case given by Problem 2.2. For each x we have a
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mathematical programming problem; x may be regarded as the state of

the system which is known exactly. If we use the result of Theorem 2.3.2, -

the optimal p_* would be a function of x, i.e., p*(x). With this optimal

p_* (x) , the lower level problems would be

Minimize L. (u. ,£*(x) ,x) = f. (u. ,x) + £*"(x)g. (u. ,x)

u. e U. 1=1,...., N (2.3.11)

Thus we can regard the higher level and lower level decision makers

as both making observations on the system. The higher level decision maker

(coordinator) observes the state x, chooses the coordinating parameter p_*(x)

and transmits it to the lower level. The lower level decision makers then

use this, together with f. and g. and x to choose their optimal decisions.

This is displayed in fig. 2.1.

Applying this result to the example given in Problem 2.1 we have the

following decomposition:

Lower level (Division manager):

Minimize u!R.u. - 2u!TT. + p'A.u. (2.3.12)
—i—i—i —i—i *• —i—i

Denote the optimal of (2.3.12) by L.*(p_)

Higher level (Resource manager):

N
Max I Î Mfi) - £'v (2.3.13)

£ L 9.
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COORDINATOR HIGHER LEVEL

jj m N I LOWER LEVEL

x

SYSTEM

Fig. 2.1 Structure of Decomposition (Deterministic)
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From these equations we obtain the following optimal u.*,i=l,.... N

and p_*

(2.3.14)

N N
£* = Arg Max - ̂ (J Â '̂ fi + R' (I A^ "V - v)

£>0 1=1 1=1

N

- (I £*±~ ZA) (2.3.15)

Referring to equation (2.3.12) we see that the loss function of the

ith division manager has been modified by the addition of an extra term

which reflects the cost of resources. p_ is the price of the resources

while A.u. denotes the amount used.

In this deterministic case, the lower level decision makers base

their decisions on jr. while the higher level bases his decision on jr.

and \f. There is some decentralization of information, but the higher

level in fact needs more information than the lower level. In the general

deterministic case, both levels need the same information x, which is

not too satisfactory. This leads us to study the stochastic case when

information can also be decentralized.
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4. Formulation of the Stochastic Problem

We now consider the case when the state x is not known exactly by

the different decision makers. However, there is a probability description

on the state space X given by the triplet (X,B,y). B is a a- algebra on

X, and u is a probability measure.

Let F.,i=l,...., N be sub-O-algebras of B. F. represents the infor-

mation available to the ith decision maker. Since the state x is not

observed exactly, u. will be required to be generated by a function y.

measurable with respect to F.. This is equivalent to the existence of a

measurement function h. on x such that u. depends on the measurement

z. = h.(x) [Hi]. Denote by I\ the set of admissible decision functions y.

measurable with respect to F^ Then y A (ŷ ,...,YN> e 1^ x...x TN A T.

Given any decision function y, f(y(x),x) would be a random variable. As

in the case of team decision problems yis chosen to minimize the expected

payoff E{f(y(x),x)K

For the constraint several alternative formulations are possible.

1. g(Y(x),x)££ a.e. (2.4.1)

As would be expected, it is rather difficult to satisfy this con-

straint.

2. Prob (g(y(x) ,x) _< 0} 21 b (2.4.2)

where b is some given probability.

Particular cases of this problem have been studied under the heading

of chance constrained programming [Cl]. it is the situation where the

constraint is only required to be satisfied with a given probability.
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3. E{g(Y(x),x)|F0} <_ £ a.e. (2.4.3)

where F is some sub-̂ -field of 8. F specifies the degree of exactness

with which the constraint has to be satisfied or in other words the

information of a coordinator who sees that the constraint is satisfied.

Two extreme cases are possible:

a. FQ * {$,X} (2.4.4)

This corresponds to no measurements for the coordinator. Then

E{g(y(x),x)} _< £ (2.4.5)

b. FQ = 8 (2.4.6)

This corresponds to measuring the state almost exactly. Then

g(Y(x),x)££ a.e. (2.4.7)

With the introduction of the constraint, the information available

to the decision makers may not be sufficient to insure that the constraint

is satisfied. In general some extra information has to be communicated

from the coordinator to the decision makers.

We will investigate what this information should be. Let T'. ^ T.

be the new admissible functions. T'. is set of functions measurable with
i

respect to F. fl F . Thus we have formulated the following stochastic

optimization problem.

Problem 2.4; Minimize E{f(Y(x),x)}

Subject to E{g(Y(x) ,x) |F } < 0 a.e.o — ̂

Y= (Yjf— »YN) e rjx—xi
1^
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f(y(x),x) = f_(Y, (x),x) + ...+f T(y (x) ,x)11 N N

g(Y(x),x) = g (Y. (x) ,x) + .. .+g (YM(x) ,x) - g (x) (2.4.8)
11 N N O

Remark; F! is the set of decision functions which use both the information

of the ith decision maker as well as the information of the coordinator.

We shall show later that not all the information of the coordinator is

needed by the ith decision maker to choose his best decision. Under

certain conditions, the information of the coordinator can be compressed

into a signal which will be sufficient for the ith decision maker.
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5. Decomposition of the Stochastic Problem

The special form of the constraint allows us to transform Problem 2.4

into a simpler form for which the results of section 3 are applicable.

Lemma 2.5.1; Let f(Y(x) ,x) be a random function from F'x X into the reals,

where F1 is a set of functions on X measurable with respect to F M F .

F C B and F C 8. F is the set of functions measurable with respect to f.

Let M = {y|E{g(Y(x) ,x) \fQ} <_ £ a.e.}

Suppose Min E{f (y(x;y) ,x) |F } (y) exists a.e. and is equal

Y(*;y) e rflM

to E{f(Y*(x;y),x)|F0}(y), then

Min E{f(y(x),x)} = E{f(Y*(x;x),x)}

Y e I " n M = E{ Min E{f(Y(x;y),x)|F0}(y)}

Y(';y) e ITlM (2.5.1)

Proof; For Y ( * ) e F ' f l M Y( ' ;Y) e r^M

E{f(Y(x;y),x)|F0}(y) = E{f (Y(x) ,x) |FQ}(y) (2.5.2)

For a proof of this see Appendix A.

Thus

Min E{f(Y(x;y),x) |FQ}(y) = E{f (Y*(x;y) ,x) | FQ}(y)

Y( ' ;y) £ r f lM < E{f(Y(x),x)|F0}(y) a.e. for all

Y £ Y ' H M (2.5.3)

Taking the unconditional expectation and minimizing over F ' fl M we have ,
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E{ Min E{f(Y(x;y) ,x) |F0>(y)} £ Kin E{f(y(x),x)} (2.5.4)

Y(*;y)

On the other hand

E{ Min E{f(Y(x;y) ,x) |FQ}(y)} = E{f(Y*(x) ,x)} >_ Min E{f(Y(x) ,x)>

Y(';y) e TflM Y e T'ClM (2.5.5)

From equations (2.5.4) and (2.5.5) we obtain equation (2.5.1). Q.E.D.

Using Lemma 2.5.1, Problem 2.4 can be solved by considering the

following problem.

Problem 2.5; Minimize E{f (Y(x;y) ,x) | F } (y) a.e.

Subject to E{g(Y(x;y) ,x) |F}(y) £ £ a.e. (2.5.6)

If F is such that the conditional probability measure P °(A) is

regular, i.e. it is a probability measure given any y, then Problem 2.5

can be transformed to the following form.

s>>
Problem 2.6; Minimize f(Y«y)

Subject to g(Y;y) £ £

Y(*;Y) e T (2.5.7)

where f(Y;y) = E{f (Y(x;y) ,x) | FQ> (y) - / f (y(xiy) ,x)dP °(x) (2.5.8)

g(Y;y) = E{g(Y(x;y),x)|F0>(y) = / f (Y(x;y) ,x)dPy° (x) (2.5.9)

Remark; The conditional probability measure is regular if it is generated

by an observation function tDH •

Problem 2.6 is a conventional functional minimization problem given

any y. The results in Theorems 2.3.1 and 2.3.2 do not depend on the finite
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dimensionality of u, thus a hierarchical decomposition is obtained if

a saddle-point exists for Problem 2.5. This is summarized in the following

theorem.

Theorem 2.5.2; Suppose there exists a saddle-point (y*(* ;y) ,p*(y) ) for

the Lagrangian associated with Problem 2.5. Then Problem 2.5 can be

solved by the following hierarchical decomposition.

Lower level;

Minimize (Y ŷ. (x;y) ,x) + p_' Mg^yAx-.y) ,x) |F0>(y)

Yi(-;y) e T± i=1> ..... ̂ N (2.5.10)

Higher level;

N ^
Maximize I L̂ Ĉy)̂ ) - E{£' (y)gQ(x) | FQ}(y)

£(y) >̂  0 (2.5.11)

^where L.*(£(y),y) is the minimum obtained in equation (2.5.10).

Proof; By using Theorem 2.3.2 on Problem 2.6, the decomposition is

obtained.

Corresponding to Problem 2.4 we have the following decomposition.

Higher level; Choose £*(y) measurable with respect to F .

Lower level;

Minimize L (y< («»y) £*(y) ,y) = E{f (y. (x;y) ,x) + £*' (y)g. (y. (x;y) ,x) |F }(y)
J L 1 f I X . X I U

Y^-ty) e r± i=l ..... , N (2.5.12)

Note the optimal y.* can be expressed in the form y.*(x,p*(x)) .
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The optimization problem of each lower level decision maker is

described by equation (2.5.12). A conditional expectation has to be

optimized by each. This optimization is not always well-defined with

the information available to the ith decision maker. We give a necessary

and sufficient condition when this is defined.

Theorem 2.5.3; Let G. be the smallest a - algebra of F with respect

to which Elf. (y. (x;y) ,x) + p_' (y)g. (y. (x;y) ,x) |F } is measurable. Then

given p_(y)» L. (Y . (• ;y) ,p_(y) ,y) can be optimized by the ith decision maker

if and only if Ĝ f̂

Proof; For any measurable function £(x), if E{£|F } is measurable with
^̂ ~~"̂  O

respect to G. , G.CF , then E{£|F } = E{£|G.}. (see Appendix A). If

G.CF., then

k{fi(Yi(x;y) ,x) + p_' (y)gi(Yi(x;y) ,x) |FQ}

= E{fi(Yi(x;y),x) + p_' (y)gi(Yi(x;y) ,x)\G±}

= E{E{fi(Yi(x;y),x) + £'(yJĝ Ŷ xjy) ,x) JF^ |G±} (2.5.13)

The inner expectation can be evaluated by the ith agent and minimized with

'V* *
respect to y. (. ;y) e T. , hence minimizing L. (y. (*;y) ,p_(y) ,y) . If G. Cf F. ,

then E{f.(y.(x;y),x) + £' (y)g.(Y.(x;y),x)|G.} cannot be evaluated given

the information contained in F., and thus it cannot be minimized. Q.E.D.

G. represents the minimal sufficient information required by the

ith agent to solve the decomposed decision problem given only p_(y) . If

this information is not available, then the coordinator has to supply

something else besides p_(y). Typically this would be P ^ , the
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conditional probability measure with respect to 6.. Note that although

F G F. satisfies the condition in Theorem 2.5.3, it is not always

necessary for the ith agent to have more information than the coordinator.

This will be illustrated in the next section.
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6. Reformulation in Terms of Measurement Functions

In order to gain more insight, we shall reformulate the problem

in terms of probability densities and measurement functions. The

information requirements for the hierarchical decomposition can

then be seen more easily.

Let x be the state of the system, x includes noises as well.

z. = h.(x) be the measurement of the ith agent; z. e Z.

z = hQ (x) be the measurement of the coordinator (specifying

the constraint); z. e Z

Then F., i=l,...., N is the 0 - field on X generated by h. and Y• is

measurable with respect to F. if Y- = Ti.oh. where n. is Borel-measurable

on Z..

Corresponding to Problem 2.4 we have

Problem 2.7; Minimize k{f(TUz) ,x) }

Subject to E{g(n(z) ,x) |zrt} < 0
0 ~~ ~~

VW}

f (T l (z ) ,x )

g (n (z ) ,x )

- gQ(x) (2.6.1)

Corresponding to Problem 2.5, we have

Problem 2.8; Minimize E{f(n (z) ,x) |z }

Subject to E{g(n(z) ,x) |z } _< £0

with n , f and g given as in equation (2.6.1) (2.6.2)
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Theorem 2.5.2 then becomes

Theorem 2.6.1; Suppose there exists a saddle-point (n*(* ;z ) ,p*(z ) )

for the Lagrangian associated with Problem 2.8, then Problem 2.8 can be

solved by the following hierarchical decomposition.

Lower level;

Minimize

,x) |ZQ}

i=l, ..... , N (2.6.3)

Higher level;
N <\,

Maximize £ L̂  (p(z ) ,ZQ) - E{£« (zQ)g0(x) |ZQ}
i=l

Subject to £(ZQ) >̂ £ (2.6.4)

r\j
L.*(p(zn) ,z ) is the minimum obtained in equation (2.6.3).

Remark; From equation (2.6.3) we conclude that TI.*(Z.;ZQ) = r)-*(z. »£*(ZQ) ) »

i.e., all the relevant information about the constraint is contained in

p_*(z ) if the lower level problem is well defined.

The hierarchical decomposition scheme for Problem 2.7 then consists

of the following.

Higher level; Coordinator makes a measurement zn, computes the coordinating

parameter £*(zo) and sends it to the lower level.

Lower level; ith decision agent makes a measurement z., and uses this

together with p_*(z ) to compute the best decision function T).*(z. ;£*(ZQ)) .

The structure of the decomposition is displayed in Figure 2.2. Note

that the decomposition is in real-time since no iterations are involved.
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Fig. 2.2 Structure of Decomposition (Sfochastic)
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Because of the static nature of the problem, the information flow between the

coordinator and lower level decision makers is only one-way.

An alternative condition for Theorem 2.5.3 is the following.

Oj
Theorem 2.6.2; L. (n. (• ;z ) ,p(z ) ,z ) can be optimized by the ith decision

maker if and only if

Az^zJ ,x) . + £1(z0)gi(ni(z,.;z0),x) \z±} (2.6.5)

Proof; By the nested property of the conditional expectation [L4] ,

= E{E{fi(ni(zi;z()),x) + £'(z0)gi(ni(zi;z0),x)|zi,z0>|z()} (2.6.6)

If the inner conditional expectation is equal to the right side of

equation (2.6.5) , then it can be minimized with respect to r). (*»zn) •

/\,
If equation (2.6.5) does not hold, then L. (rj. (. ;ZQ) ,p(z ) ,z ) depends on

the specific value of ZQ and thus cannot be minimized with respect to the

function n. (*;£<z)) . Q.E.D.

We now give the results relating to the information between z and

z. .

(1) z Cz.. (Coordinator has less information than ith decision agent)

Then condition (2.6.5) is automatically satisfied.

Thus u±* = ni*(zi;£*(z())) (2.6.7)

(2) z cjlz.. (Coordinator has some information not available to ith

decision agent) .
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(a) Condition (2.6.5) is satisfied u±* = T̂ Mẑ

Examples: (i) g. (x) = g. (x.)i 11

zo = ho(Ixi])

(2.6.8)

(2.6.9)

where x. and [x.] are statistically independent.

(ii) f̂ x) = fi(x±) g±(x) = gi (2.6.10)

z. = h . (x . )

Z0 =

Viv"
. 2. .
h« (x.)

0 i

_

ZQ1

2
0 .

(2.6.11

(2.6.12

(b) Condition (2.6.5) is violated.

V "

(2.6.13)

where P(x|z ) is the conditional probability density of x

given z . In this case z. and £*(z ) are no longer a sufficient

statistics for the ith decision maker.

In words, if the coordinator has less information than the ith

decision agent, as in the case when the information of the coordinator is

shared by all decision agents, then the lower level problem is well defined

given £(z ) and the information of the ith decision agent. When this is

not true, then the structure of the system and the information pattern has

to be compatible in a certain sense, e.g. the state of the ith subsystem
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is statistically independent from the rest of the system and the coordin-

ator observes that state but this information is available to the ith

decision agent.

Under other circumstances, the optimization problem for the ith

decision agent may not be well-defined.-without the knowledge of ZQ.
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7. Solution of the Example

Using the results derived in the previous sections, the resource

manager would charge an optimal price £.*(z ) for the resources. Each

division manager would then solve the following problem.

Minimize E(TI ! (z. ;,ẑ )R.r|. (z. ;_£_) ~ 2n! (z. }z)if. + p_*' (z ) A.r). (z. ;z )| z }

(2.7.1)

Since TT. is statistically independent of v_ and 9^, the conditional

expectation is equal to the unconditional 'expection given £.*(zn)« In fact

the optimal r)*(*;z ) is given by

(2.7.2)

The higher level problem is

N
Maximize J Ê 'Cẑ ẑ R̂ ẑ ) - 2ri*'

-E{£' (Z) v]} (2.7.3)

- '£' ) A R ( ^ ) + £' ^ - c (2'7'4)

c. = - E{E{TT! |z.}R.~ E{TT. |Z.» = constant (2.7.5)
1 ~1 ~T. — 1 — 1 -T.
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Thus

N
p*(z ) = Arg Max ~ — p1 (z_) {/
E -° £(«„) > „ 4 £ ^ i-

N N
(I ^R * E^!Z>) ~ I c, (2.7.6)

Comparing with the deterministic case in Section 3 we see that some

kind of certainty equivalence (separation) theorem holds. The lower

level devision managers choose their optimal productions by replacing

the actual prices of their products with the best estimates given their

measurements. However, whereas in the deterministic case the resource

manager needs both TT. , i=l,... , N and TT to arrive at the optimal decision,

resulting in essentially no decentralization in information, now it is

only necessary to have information on v.
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8. Discussion and Perspectives

The decomposition achieved in mathematical programming for a class

of systems with the general structure described in Section 2.3 is really

with respect to computation. To study a possible decentralization in

information we have formulated the stochastic version. It is found that

under certain conditions a hierarchical decomposition for the problem is

possible. The lower level decision makers need only to get certain signals

from the higher level coordinator in addition to their information on the

system. When these conditions are not satisfied/ then in general the

signals are not sufficient.

Radner and Groves [R2,G1] have considered a resource allocation

problem similar to the one mentioned here. However, in their treatment

there exists a resource manager who is in charge of allocating the resources

directly. In our formulation, the resource manager serves only a coordin-

ator. In the deterministic case, these two formulations become the same

since the lack of an information pattern reduces the problem to the case

of a single decision maker.



CHAPTER 3

DECOMPOSITION FOR NONLINEAR STOCHASTIC DYNAMIC SYSTEMS (OFF-LINE)

1. Introduction

In this chapter we consider the stochastic control of N coupled

nonlinear subsystems. Each system has a controller who has noisy

measurements on his subsystem. There is no communication between the

controllers. The overall objective of the system consisting of all

subsystems is the sum of individual objectives of the subsystems.

Because of the dynamic nature of the problem, the difficulties

encountered here are different from those in static systems. Gener-

ally speaking, since the controls have to be applied in real time,

on-line computation requirements for implementation of the optimal

control strategy become important. The class of problems with different

information patterns for the different controllers have been studied

under the topic of dynamic teams [Al, C3, C4, H3]. So far, the results

have not been very satisfactory in several respects. First, the optimal

solution for even a linear-quadratic-Gaussian team is not known yet

although there are indications of what the optimal solution should look

like. Second, although the information structure in team decision

problems is decentralized, often this is accompanied by an increase in

both on-line and off-line computation. To give an example, let us

consider the linear—quadratic-Gaussian problem. If information is

centralized, then the optimal control strategy is given by the "separation"

theorem and consists of the optimal deterministic control law acting on

the estimate generated by the Kalman-Bucy filter [A2, M2, Tl]. The

on-line computation can be replaced by building a finite-dimensional filter.

-52-
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However, if information is decentralized, then the on-line computation

is extremely involved since each controller has to remember all his past

observations or an "infinite-dimensional filter" is required. For a

discussion of this, see Willman [Wl]. As for the off-line computation,

little is known since the optimal solution is not available. However,

the computation involved in finding a suboptimal solution to the

dynamic team problem has been shown to be relatively complicated [C3].

Since the computation and implementation of a control strategy is

as important as the optimality resulting from the strategy itself, we

will formulate in this chapter an optimization problem which is compu-

tionally more feasible as well as informationally efficient. The special

coupled structure of the system and the form of the cost functional will

be exploited. The concept of information structure is extended to include

a priori information as well as a posteriori information. Thus the local

controllers will not only have measurements on their subsystems alone,

but will also be ignorant about the structure of the other subsystems.

The coupled nature of the subsystems is taken care of by a coordinator who

sees that certain constraints are satisfied. In this chapter we study the

case when the coordinator has only a priori information, i.e. he does

not make any measurements. In Chapter 5, we investigate the case when the

coordinator makes on-line measurements.

The dynamic team problem is stated in the next section. A decom-

position for the deterministic problem is then stated. This will be used

to motivate the formulation of the stochastic decomposition problem in

Section 3. In Section 4 we formulate a constrained stochastic optimal
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control problem as a mathematical programming problem. In Section 5,

the problem formulated in Section 3 is decomposed.
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2. Statement of the Problem

We consider a discrete-time system consisting of N subsystems

coupled together.

x.(k+l) = f. (x. (k),v. (k) ,u. (k) ,TL — i T. ~x T.

l..i
rfi

i=l, ---- ,N (3.2.1)

(3.2.2)

where
ni .x.(k) e R is the "state" of the ith subsystem.

v.(k) e R is the action on the ith subsystem due to the

other N-l subsystems.

piu.(k) e R is the control on the ith subsystem.

r.
£.(k) e R is the driving noise on the ith subsystem.

f. is the state transition function.

Let x(k) u(k) (3.2.3)

Vk)

Then v.(k), i=l,...., N can be eliminated from equation (3.2.1) to

obtain a description for the whole system as

x(k+l) = _f (x(k) , u(k) , (3.2.4)
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where the function f_ is defined in an obvious manner.

The description in terms of equations (3.2.1) and (3.2.2) is

preferred here to display the coupled nature of the system. Note that

even though x_(k) can be regarded as the state of the system if the driving

noise is absent, x.(k) is, strictly speaking, not a state for the ith

subsystem since knowledge of x.(k), together with all the control u.(j) ,

j ̂  k is not sufficient to determine the future behavior of the ith

subsystem.

The cost functional for the whole system is a sum of cost functibnals

for the individual subsystems, i.e.,

N
J. (3.2T.5)

T-l
j. =E{K.(X.(T)) + Y L. (x. (k) ,u. (k))} (3.2.6)
1 x -* k=o x -1 "*

It is required to minimize J. The expectation is taken with respect to

all the primitive random variables.

The problem is not yet well -defined because we have not specified

the information pattern of the system.

Let y. (k) =h.(x.(k), 6.(k)) i=l, ,N (3.2.7)

m.
y. (k) £ R is the measurement on the ith subsystem by the

ith controller.

mi
6.(k) e R is the noise corrupting the measurement.
T.

Let Y(k) = {y.(s) 0 < s < k, i=l, , N} (3.2.8)
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U(k) = {u.(s); 0 < s < k, i=l, , N> (3.2.9)
~i — —

k=0,...,T-l

Let (Yi(k),U.(k-1),1.) be the information available to the ith controller

at time k.

Y±(k) CY(k) ; lMk-1) CU(k-l) (3.2.10)

I. is the a priori information of the entire system available to the ith

controller.

Then u.(k) is required to be a measurable function of Y.(k) and U.(k-1)

which can be generated from I., i.e.,

û k) = ̂(Ŷ k), Û k-l); I±) • (3.2.11)

I. is introduced to take into consideration structural information

of the system. The information available to the ith controller thus con-

sists of two kinds: a priori (structual) information of the system and

a posteriori (measurement) information. I. essentially specifies the

complexity of the control strategy. In the system given, if I. =

if.f J.i h.}, then as far as each controller is concerned, he is controlling

an uncoupled system with an unknown input v. (k). His control law Y-k would-—____________________________________ —2. j_x

thus depend only on the parameters of his subsystem. This control

law is thus "simpler", although a "loss" in mathematical optimality results.

In most of the work done thus far, [H3, C4, C3] decentralization refers

mainly to measurements, i.e., a posteriori information. The structure of

the whole system is assumed known to each controller. With this a priori

information, decentralized a posteriori information almost inevitably gives

rise to a more complicated control strategy than centralized a posteriori

information because each controller tries to generate the missing measure-

ments using the common a priori information. The amount of on-line compu-

tation involved always increases, as well as the amount of off-line
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computation. Even when the on-line computation is constrained by choosing

suboptimal control structures, as in Chong and Athans [C3] , the off-line

computation required is still tremendous. In the implementation of con-

trol laws, computation considerations are as important as information

considerations. This leads us to consider decentralized a priori infor-

mation, at a sacrifice in overall optimality.

There is some work in the control literature which is vaguely

related to decentralized a priori information. This is found in Ref. [Ml]

and [PI] and can be essentially illustrated by the following theorem for

deterministic systems.

Theorem 3.2.1; Consider the optimal control problem given by

System: x. (k+1) = f . (x. (k) ,v. (k) ,u. (k) ) i=l, ---- ,N(3.2.12)
-n —i — x "~i ~i

v. (k) =1 g..(x.(k)) x(0) given
-1 13 -3

N
Cost functional: J = ][ J.

i=l r

T-l
J. = K. (x.(T)) + Y L. (x. (k),u. (k)) (3.2.13)
i 1-1 £ =Q i -^L -L

Suppose there exists a constrained saddle-point (3c*,u*,y_*,£*) to the

problem
L(3C*,£*,v*,£) _< L(x*,xi*,v*,£*) £ L(X,JJ,V,£*) (3.2.14)

where x= {x. (k) ; k=l,...., T; i=l,...., N}
— — i

u = {u. (k) , k=0, . . . . , T-l; i=l, . . . . , N}
— —i

v = {v. (k) ; k=0, ---- , T-l; i=l, ---- ,N>
~~ ~i

£= {p.(k); k=0, ---- , T-l; i=l, ---- , N}
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'Z are constrained by equation (3.2.12)

N T-l
Mx,u,v,£) = J + I I »' (k)(v.(k)- 3..(x.(k))) (3.2.15)

i=l k=0 "

Then the optimal control problem can be solved as a two-level problem.

Lower Level; Minimize J. (u. ,v. ,p)— — — — '_ — j_ __2_ _Q_ *.

T-l
J. (u. ,v.,p) = K (x. (T)) + I L. (x. (k) ,u. (k)) + pj (k)v. (k)
1 — X — 1 *• 1 ~1 " _ 1. — TL —1 T. ~T-

k=0

- I .£.) (k)cr i(x±(k)) (3.2.16)

x.(k+l) = f . (x. (k) ,v. (k) ,u. (k) ) (3.2.17)
-1. -^- ~1 — T — X

N ^
Higher Level; Max I J*(p_) (3.2.18)

£ i=lV

where J.*(£) is the minimum obtained in equation (3.2.16).

Proof; The results in Section 2. 3 are used. L (x_ ,u^ v,p_) is split up into

'Vi
uncoupled J.'s by collecting all the terms involving x. ,v. and u. .

i —a. ~~3. — T.

If the optimal p_* is given, then the lower level control problems

are all uncoupled. The optimal control u*. can be found using only

the structure of the ith system (its system dynamics and cost functional)

plus the interconnection functions g..(*), j4"i. The structural information

of the other subsystems are not required. On the other hand, p_* is deter-

mined using all the optimal J .* (p_) ' s . Although algorithms can be

devised making use of the special two- level structure of the optimization

problem, the convergence to the optimal solution is not accomplished in real

time [PI] . Thus the decomposition achieved is really with respect to the
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off-line computation. In the deterministic problem given above, this

corresponds to finding the open-loop control functions in some decentralized

manner. In the next section we shall show that this philosophy can be

extended to the stochastic case.
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3. Formulation of the Stochastic Decomposition Problem

In the deterministic case given above, v. is the action of the

other subsystems on the ith subsystem, a quantity which is needed for

the optimal control of the ith subsystem but is not itself optimized.

However, if the constraint v. (k) = Y a. . (x.(k)) is satisfied
• 3 -3

exactly, optimizing with respect to xa. and v. simultaneously is equivalent

to solving the original optimal control problem with u. as the only

control to be optimized. In the actual implementation of the control,

only u. is used.—i

For each lower level problem, v. can be regarded as an estimate

of the interaction given p_. If the optimal p_* is used, then v. is equal

to the action of the other subsystems exactly.

We now extend this philosophy to the stochastic case. Instead

of solving for the problem described by equations (3.2.1), (3.2.2),

(3.2.5), (3.2.6) and (3.2.11) we shall exploit the coupled nature of

the system. Since x_(k) given the control strategy is a random vector,

it As no longer possible to choose v. (k) such that it equals ) g. .(x.(k))
•^ -13 ^

exactly. Rather v. (k) is only required to be an estimate of the interaction
— T

and this is the job of the coordinator. We thus have the following formu-

lation.

Problem 3.1;

Given x. (k+1) = f. (x. (k) ,v. (k) ,u. (k) ,£.(k)) (3.3.1)
~~X — T. —1 T. —X —1

i=l,...., N
N

J = 7 J." ix
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T-l
J. = ElK.(x. (T)) + I L.(x.(k),u. (k))} ., _,.
a. i-a j^o1^1 -1 (3>3'2)

N
E(V.(k) - 7 g..(x.(k))} = 0 i=l, , N (3.3.3)T. Vi. ID ~^

k=0,....T-l

lK(k) =Ii
k(Y±(k), Û k-1); I) (3.3.4)

(̂k) = 2i
k(I) (3.3.5)

Yi(k) « {̂(s) j 0 _< s <_ k} (3.3.6)

U.(k) = {u.(s); 0 < s < k} (3.3.7)

k h ^
Find j^. and n. , i-1,....., N; k=0,....T-l such that J is minimized. I

consists of the a priori information contained in the model and the cost

functional.

The original stochastic control problem has been modified in the

following manner. The subsystems are all assumed to be uncoupled. The

interaction of the other subsystems is represented by v.(k) which is to

be optimized, v.(k) is chosen, however, so that constraint (3.3.3)

is satisfied; thus it is an unbiased a priori estimate of the interaction

of the other subsystems. The control problem then consists of finding

the optimal control strategies ̂  and the optimal estimates of the inter-

actions such that the cost functional is minimized.

Although this problem is very similar to the deterministic problem

given in Section 2 of this chapter, the results of decomposition in mathe-

matical programming cannot be applied directly since closed loop control



-63-

strategies %. are reqxiired. In the next section, we show how the

stochastic control problem can be reformulated so as to lead to a

constrained optimization problem.



-64-

4. A Constrained Stochastic Optimal Control Problem

Consider the following stochastic control problem.

Problem 3.2;

System: x(k+l) = £(x(k) ,u(k) ,£(k) ) x(k) e * (3.4.1)

Measurement: y(k) = h(xpO ,£(k) ) u(k) e iP (3.4.2)

T-l
Cost fvractional: J = E{K(X_(T)) + £ L(xOO,u(k) )} (3.4.3)

k=0

,8_(k) , k=0,..., T-l and x_(0) are random vectors with known

statistics .

Y(k)C{y_(Q) , ---- , y _ ( k ) ; u ( 0 ) , ---- ,\i(k-l) } (3.4.4)

a(k) is constrained to be an admissible function of Y(k) , i.e.,

u(k) =Yk(Y(k)) (3>4>5)

Y e F

It is required to choose y* e T such that

J(Y*) = Min J(Y) (3.4.6)

Y € T

In the problem stated above, the minimization is only over the

strategy space T. We can transform this to a minimization over random

sequences subject to certain constraints.

Let the underlying probability spaces be (£2,8,y). £(k) , £(k) , 3c(0) are

random vectors over fi.

Let 3c(o)) = (x.(l,u) , ... ,3c(T,w)) be a B-measurable L function over Q into

knT, i.e., x e L2(fi, RnT)

Let 11(0)) = (u(0,W) ,...,u(T-l,a))) e L2(n,RpT).
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Let

S = {x e L2(fi,TnT), u e L2(fi,RpT) )2c(k+l,w) = £U(k,w), u(k,to)) a.e.}

= set of x_,\i which correspond to the given dynamic system (3.4.7)

S = {x_ e L2(fi,RnT), u e L2(Q,RpT) | 3 Y e r such that

ii(k,aj) = Y (Y(k,u)) a.e.}

= {jc e L (fi,Rn ), u e L (fl,R ) | 3 Y e I* such that

k
£(k,w) = Y (h_(3c(0,w), 8_(0,w)), h_(3c(l,o)), £H1,0))),...,

h_(x_(k,0)) , jHk,0))); u_(0,0)) ,... ,u_(k -lfw)) a.e.}

= set of x_,u_ which can be generated from the given information

structure and admissible control strategy. (3.4.8)

Let G : T -»• L2(fi,RnT) x L2(fl,RpT) be defined as

G(Y) = (x(Y), u(Y)) (3.4.9)

Then by the definition of S1 and S ,

Range G = S r» S (3.4.10)

Therefore

Min J(Y) = Min J(x(Y) f H.
Y

Min J(x(Y) , £
G(Y) e S 0 S

Min J(x.,ja) (3.4.11)
(x,u) E S.,̂  0 S2

Note that the minimization is now over random sequence X./H*

dynamics of the system, the constraint on the control strategy and the
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information structure allowed have been incorporated into the constraint

set S fl s .

We next consider the constrained stochastic control problem.

Problem 3.3:

System: x(k+l) = _f(x(k) , u (k) , £(k) ) (3.4.12)

Measurement: y(k) = h(x(k) , £(k) ) (3.4.13)

T-l
Cost Functional: J = E{K(JC(T)) + J L(x(k) , £(k) ) } (3.4.14)

k=0

u(k) - yk(Y(k)) (3.4.15)

E{H(xOO, u(k))} = £ £ Rq k = 0,...T-1 (3.4.16)

It is required to choose Y* £ ̂  such that

J(y*) = Min J(Y)
Y e F

and the constraint (3.4.16) is satisfied. H[ is a vector-valued function.

This constraint is only required to be satisfied on the average.

Problem 3.3 can be transformed into the following unconstrained stochastic

control problem.

Problem 3.4:

System: x(k+l) = £(x(k) , u(k) , £(k) ) (3.4.17)

Measurement: y_(k) = h(x(k) , 9_(k) ) (3.4.18)

T-l
Cost Functional: J(Y»£) = E{K(x(T)) + £ L(x(k) , u(k) )

k=0

+ p_' (k) H (x(k) , u(k) ) } (3.4.19)

vi(k) = Y*(Y(k)) (3.4.20)
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It is required to find y* such that J(Y»£) is minimized.

Theorem 3.4.1; Suppose a saddle point exists for the stochastic control

problem 3.4, i.e. there exist Y*»£* such that

J(Y*,£) £ J(Y*,£*>1 J(Y,£*) (3.4.21)

Then y* is the solution to Problem 3.3.

Proof; The constraint (3.4.16) can be written as

H(x,u) = 0 £ R^ (3.4.22)

where

x e L2(fl,RnT), u e L2(n,RpT) .

Problem 3.3 is then equivalent to

Min J (x_, ji)
x,u e S H s_

H(x,u) - £ (3.4.23)

T-l
J(Yr£> = E{K(X(T)) + I L(x(k) , u(k)) + £' (k)IJ(x(k) , u

k=0

T-l T-l
= E{K(X(T)) + I L(x(k), u(k))} + I £'(k) E{H(x(k), u

k=0 k=0

= J(Y) + £' H(x(Y_), U(Y» (3.4.24)

If J(Yf£) has a saddle point (Y*/£*) , then (G(X*) ,£*) is a saddle point for

the function J(:K,\I) + £'H.(2i»u) .

By Theorem 2.3.1, G(Y*) = (x*,u*) solves
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Min J (x/ v)
(x,u) e S1 0 S2

such that

H(x,u) = £ (3.4.25)

or Y* solves Problem 3.3. Q.E.D.

The following corollary follows immediately.

Corollary 3.4.2; If a saddle point (Y*,£*) exists for Problem 3.4, then

the optimal strategy Y* can be found by

T-l
Max Min E{K(jc(T)) + J L(x(k) , u(k)) + p_' (k)H(x(k) , u(k))} (3.4.26)
£ Y k=0

Proof; We need only the fact that if a saddle point (Y*r£*) exists for the

function L(Y>£> , then

Min Max L(Y,£) = Max Min L(Y,£) = L(Y*»£*) (3.4.2?)
Y £ £ Y

To check for the saddle point, we need to verify the condition directly

or vise condition (3.4.27). The following condition is sometimes more

convenient.

Lemma 3.4.3: Consider the problem

Min f(x)
x

g(x) = £ x e C (3.4.28)

If

(1) Max Min f(x) + £*g(x) A f(x*) + £*'g(x*) exists
£ x e C

(2) g(x*) = £
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then x* minimizes f (x) such that g(x) = 0_,x e C.

Proof;

f(x*) + £'g(x*) = f(x*) = f(x*) + £*'g(x*) (3.4.29)

f(x) + £*' g(x) >_ Min f(x) + £*'g(x) (3.4.30)
x £ C

Min f(xj + £*' g(x) = f(x*(£*)) +£*' g(x*(£*)) (3.4.31)
xec

where x*(£) minimizes f(x) + £*g(x), x e C.

Thus

Max Min f(x) + £*g(x) = Max f(x*(£)) + £*g(x*(£))
£ xec £

= f(x*(£*)) + £*'g(x*(£*)) by definition

= Min f(x) + £*'g(x) (3.4.32)
x e c

Then

f (x*) + £'g(x*) <^ f (x*) + £*'g(x*) _< f (x) + £*'g(x)

for all xec and £ (3.4.33)

(x*,£*) is a saddle point and x* minimizes f(x) such that g(x) = £,x e C. Q.E.D.

Theorem 3.4.1 can then be restated in the following form.

Theorem 3.4.4; Suppose

T-l
Max Min E{K(X(T)) + I L(x(k), u(k)) + p'(k)H(x(k), u(k))}
£ Y k=0 ~~

exists for the system described in Problem 3.4, and further
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E{H(x*(k) , u* (k))} = £ k = 0,...,T-1

where Jc*,,u* are the optimal trajectory and control using Y*- Then Y*

the optimal strategy for Problem 3.3.
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5. Decomposition of the Stochastic Control Problem

We now apply the results of the last section to Problem 3.1 and

transform it to an unconstrained problem.

Theorem 3.5.1; Consider the system

x, (k+1) = f.(x.(k), v.(k), u,(k), ̂(k» i=l,...,N (3.5.1)—i —-i —n —i —a. -*a.

L (Y±(k) , Û k-

N

(3.5.2)

(3.5.3)

(3.5.4)

T-l

k=0
, VL v.(k)

-I p̂ '(k) 3. (
J J

(3.5.5V

If Max Min J exists and
£ 1'H

N
Efv̂ k) -1 £ i=l,...,N; k=0, ,T-1 (3.5.6)

then X*'!l* are tne optimal strategies for Problem 3.1.

Proof; This problem can be cast into the form of Problem 3.3 by identifying

u(k) with {u. (k) , v. (k) ; i=l,...,N>~~ —x — i

nd
k
; i=i, . . . ,N}Yk with

H(x(k), u(k)) =

(3.5.7)

(3.5.8)

v (k) - g (x^ (k) )
13 -3

-1 (3.5.9)
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N T-l N
I E{K. (£. (T) ) +1 L (x^ (k) , u^ (k) ) + £ • (k) (v. (k) - I a,.̂  00 ) }

"̂  ""• D "̂k=0

N T-l
x̂ T)) + L±(x.(k), UjOO) +£i'(k) v̂ k)

i=l k=0

- I EJOO ̂ î W)}
j^ ^a ̂

N
J. (3.5.10)

Theorem 3.4.4 can then be applied in a straight forward manner. Q.E.D.

Note that given any p_, the minimization problem is separated into N

uncoupled stochastic control problems. The ith controller needs only the

structure of his own system as his a priori information. Thus there is

decentralization of a priori as well as a posteriori information.

A two-level hierarchical decomposition for finding the optimal control

strategy is possible.

Lower Level: x. (k+1) = f . (x. (k) , v. (k) , u. (k) , £. (k) )
~i ~T. —n. ~i. ~̂ . ~̂ L

v̂ k) =2i
k(i)

T-l
J±(£) = E^Cx^CT)) + I Li(x±(k)f û (k» + fcj/fk) ̂(k)

k=0

-I P,'(k) a..(x. (k))} (3.5.11)
^ ^ "*

Find ̂  and T^ such that J. (p_) is minimized, i=l,...,N. Let Ji*(£) be the

optimal cost associated with a particular p_.



-73-

N
Higher Level; Maximize J J.*(£) (3.5.12)

X

Remark; The higher level problem is deterministic and static in nature

whereas the lower level problems are stochastic and dynamic, although

uncoupled. The decentralized a priori information allows the off-line

computation to be done in an algorithmic manner. Typically, the higher

level coordinator will choose a p_, the lower level controllers then compute

the optimal cost associated with this p_. The coordinator then chooses

another p_ to increase the optimal cost of the lower level systems. The

decomposition is off-line because it is done before the system starts using

only a priori information. The advantages of this approach are the

following:

(1) The overall stochastic control problem is split up into N

stochastic control problems with lower dimension. Each

of these can be solved more easily.

(2) Although the value of £ may change, the structure of the

lower level problems remains the same, and hence essentially

the stochastic control problems need only to be solved once.
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6. Discussion and Perspectives

We have considered the stochastic control of N coupled systems with

decentralized information structure. By defining a new kind of optimality,

it is found that the optimal control strategies can be found in a decen-

tralized manner. Moreover, given the optimal coordinating parameters, the

control problems of the N subsystems are uncoupled. Thus the control

strategies using decentralized a posteriori information can be computed

with decentralized a priori information. Although this scheme is sub-

optimal with respect to the ordinary stochastic control problem, computation-

ally it is more efficient.

Because of the nonlinear nature of the problem we cannot say much about

the detailed computations involved. However, it is obvious that instead

of one high dimensional stochastic control problem we now have N lower

dimensional stochastic control problems and one extra deterministic

optimization problem to be solved by the coordinator. In the next chapter,

we shall look at the linear-quadratic-Gausian problem in detail and obtain

explicit solutions for these lower and higher level problems.



CHAPTER 4

DECOMPOSITION FOR THE LINEAR-QUADRATIC-GAUSSIAN PROBLEM
(OFF-LINE)

1. Introduction

In this chapter we apply the philosophy of Chapter 3 to the

linear-quadratic-Gaussian problem. As pointed out in the introduction

of Chapter 2, the solution to the linear-quadratic-Gaussian dynamic

team is not known yet. Even if it is found, the on-line computation

involved win make its implementation not feasible since the estimates

involved have to be generated by infinite dimensional filters. The

control strategies obtained in this chapter are easily implementable.

The structure of the control decomposes very nicely into an open

loop part and a closed loop part. This will be used later on to study

the on-line "periodic" coordination of coupled systems (see Chapter 5).

In the next section, we formulate the LQG problem and decompose

it into two levels. The equations needed by the lower level controllers

and the coordinator are given in Section 3. The lower level problem

with a linear term in the cost functional is solved in Section 4.

In Section 5, the higher level problem is solved and found to bear

a very close relationship to the deterministic linear quadratic

problem.

-75-
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2. Statement of the Problem

Consider the linear dynamic system

x. (k+1) = A. .x.(k) + v. (k) + B.u. (k) + ?. (k) i=l,...,N (4.2.1)
— a. — xi-n -T. — T— i —i

) (4.2.2)

The cost functional is quadratic.

N N T-l
J " Ji = Exi

i=l i=l k=0
(4.2.3)

where F., Q. , R. are positive definite matrices.— i •"'a. —a.

The measurements are given by

y. (k) =C.x.(k) +6.(k) i=l,...,N (4.3.4)
"i ~i— i — i

Each controller is allowed only to use his past measurements to find the

controls , i . e . ,

u,(k) =Y.k(Y.(k), U.(k-l)) (4.2.5)
— i •'•x i i

where

(4.2.6)

U. (k) = {u.(0),...,u. (k)} (4.2.7)
1 L̂ —2.

]r

It is required to find optimal control strategies Y. such that J

is minimized.

Ĵ . (k) , k=0,...,T-l are independent Gaussian variables with zero mean

and covariance = . (k) .—a.

9.(k)» k=0,... ,T-1 are independent Gaussian variables with zero mean
— n

and covariance 0. (k) .
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x.(0) is Gaussian with mean x.(0) and covariance £.(0).
—i —i —i

£.(k), 0.(k), x,(0) , i, j, h = 1,...,N are all mutually independent.

The matrices A.., A. ., B., C. , Q. , R. can be time-varying but for
—11 —3-3 —i —i "^i —i

simplicity of notation, the dependence on k has been omitted.

The general solution to this problem, assuming ho communication of the

a posteriori information between the controllers, is not known, although

several particular cases have been considered [Al, C3]. We propose to

solve this problem using the approach suggested in the previous chapter by

defining a new kind of optimality.

Problem 4.1;

x.(k+1) =A..x.(k) + v.(k) +B.u.(k) + £.(k) (4.2.8)—i -ii—i —i —i—i —i

N N T-l
J = I Ji - I E{£/(T)F.x,(T) + I x.'(k)2.x. (k) + E.'(k)R.u.(k)}

i=l i=l ̂  ~a~x k=0 "̂  ~̂ ~̂
(4.2.9)

ECv^k) - I R.±.K. (k)} =0 (4.2.10)

v^tk) = XL
k(Yi(k), ̂(k-1); I) (4.2.11)

v^tk) = ̂(i) (4.2.12)

I consists of the a priori information contained in this model. It is

k krequired to find Y. and n. such that J is minimized.
•*•! —1

Using the results of Section 3.5, we obtain the following two-level

problem.

Lower Level; (Problem 4.2)
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u . (k) = Y . k ( Y . ( k ) , U. (k-1); I)
— i •*•! i i

v^k) =n i
k( i)

T-l
J. = E{X.' (T)F.x. (T) +1 x . ' ( k ) Q . x . (k) + u ' (k )R .u . (k) (4.2.13)i —x —i—i r__ —i ~L— i — —i—i

+ *i, ' ( k ) v . (k) - p,I

(4.2.14)

k k ~It is desired to find Y. , TI . to minimize J. (p) , i=l,...,N.J-i —i i —

Higher Level; (Problem 4.3)

N
Maximize I J.*(p_) (4.2.15)

x

vrtiere J*(£) is the optimal cost in Problem 4.2 for a particular £.
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3. Structure of the Decomposition

In this section we summarize the relevant equations needed by the

lower level controllers and the coordinator.

The' optimal control of the ith controller is given by

u.*(k) = -D.(k+1)(x.(k) - x.(k)) - E.(k+l) p.(k) (4.3.1)
—1 —1 —1 —1 —1 *"1

The gain matrices are given by:

D.(k+l) = T."1(k+l) B.'K.(k+1) A.. (4.3.2)
—a —i —i —i —11

T.(k+l) = R. + B.'K. (k+1) B. (4.3.3)
—i — i — i — i —i

1C. (k) =0. + A.'.K. (k+l)A. . - A. .'K. (k+l)B.T.~1(k+l)B.'K. (k+l)A. .
—1 •*•! —11—1 —0.1 —11 —1 —1—1 —1 —1 —11

KT) = |\ (4.3.4)

(k) B.'(k) (4.3.5)
L̂

S.(k+l) = K. (k+1) - K. (k+1) B.T.~1(k+l) B.'K. (k+1) (4.3.6)
—i —i —i —1—1 —i —i

The estimates x.(k) and x.(k) are generated as follows,
—i —i

,u±(k) }

= A. .x. (k)+v.*(k)+B.u.*(k)+G. (k+1) [y. (k+l)-C. (A. .x. (k)+v. *(k)+B.u. (k)) ]—11—i —i —i—i —i "i —i —ii—i —i —i—i

x.(0) = x.(0) (4.3.7)
—i —i

where

G.(k+1) = Z.(k+llkJC.1[C.Z.(k+l|k)C.• +0.(k+l)]~1 (4.3.8)
—i —i ' —i —i—i ' —i —i
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Z. (k+l|k) = E.(k)+A. . [Z. (k|k-l)-Z.(k|k-l)C.1(C.Z.(k|k-l)C.'+
— — - — — — — — —

. . . . . . . . . . .
— T. —0. -11 — T. —0. —1 — 1—1 —1 T.

E_1(0|-1) = 1̂ (0) (4.3.9)

x. (k-H) = E{X. (k+1)}
— —

^ (4.3.10)

v.*(k) and r. (k) are given by

v.*(0) =-A..x.(0) -K.~I(Ux.(U - ̂ S."1(l).(0) (4.3.11)-1 — 11—̂ . — -1 -̂

v^OO = ̂̂ (̂Ŵ CW + j

- j Si~
1(k+l)£i(k) k̂,...,!-! (4.3.12)

(̂0) = - ̂(0) - i Â 'fî O) - ̂'̂(1)̂ (̂0) (4.3.13)

k=l,...,T-l (4.3.14)

r. (T) = 0 (4.3.15)

The structure of the control mechanism is illustrated in Fig. 4.1.

The gain matrices can all be computed off-line, along with r. (k) and

v.*(k) , which depend on p_(k) . K. (k) is the solution of the Riccati

equation assuming the systems are uncoupled and D. (k) is the optimal gain

matrix for each of the uncoupled deterministic optimal problems.
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COORDINATOR

OFF-LINE
COMPUTER

Vj , £ , . . £ ,

OFF-LINE
ESTIMATOR

U.(k- l )

ON-LINE
ESTIMATOR

TH
Fig. 4.1 Structure of Control for i Controller
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x. (k) is the unconditional mean of x. (k) by the ith controller given only
—i ~~i

his a priori information. It can be computed off-line given r.(k) and p.(k).

x. (k) is the best estimate of x. (k) given the measurements of the ith•̂ i —i

controller and his a priori information. It is generated using \r. *(k) cal-

culated off-line and the on-line measurements u.*(k) and y.(k).

The coordinator finds the optimal p_*(k)'s by solving the following

deterministic two-point boundary value problem

x_ (k+1) = A x(k) - 15 if A.(k+1)

X^ (k) = A'Mk+1) +

x_(0) given

MT) = 2F x(T)

£*(k) = -X.

(4.3.16)

(4.3.17)

k=0,...,T-

(4.3.18)

(4.3.19)

The matrices A^ B^ and 2, are as defined in Section 5. JR and F^ are given

by

R A

R £ ...

£ £2 " " *
F A

F £ 0 ...

Alternatively, p_*(k) can be expressed as follows.

where

£*(k) = -2K(k+l)x(k+l)

(A-B T~1(k+l)B'K(k+l)A)x(k)

(4.3.20)

jc(0) given (4.3.21)
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K(k) = £ 4- A«K(k+l) [r-B^ T"1(k-«-l)B^lK(k-H)]A

K(T) = F (4.3.22)

T(k+l) = R -f B'K(k+l)B (4.3.23)
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4, Solution of the Lower Level Problem

Since each controller knows the structure of his system as defined in

Problem 4.2 we shall not include the a priori information in specifying

the information structure of the controller. Thus u. (k) would depend on

Y, (k) and U. (k-1) while v. (k) is allowed to depend on the a priori informa-1 i ~~i

tion only.

The problem as stated has a nonquadratic cost functional and controls

which depend on different information sets. However, the information of

v. (k) consists of a priori information only and thus is included in that

of u. (k) . This makes things easier than the general dynamic team problem
T.

and the following theorem can be used.

Theorem 4.4.1;

Consider the system

x(k+l) = jf (x(k) , u(k) , v(k) , £(k) ) (4.4.1)

u(k) = £k(Y(k)) (4.4.2)

v(k) - rf(ZW) (4.4.3)

Z(k) C Y(k) (4.4.4)

(̂k) is a white noise process driving the system and Y(k) , Z(k) are

information available to the controller.

Y(k) = {£(0) , . . . ,y_(k) ; 11 (0) , . . . ,£(k-l) ; v(0) , . . . , v(k-l) } (4.4.5)

y_(k) = h(x(k) , £(k) ) (4.4.6)

6(k) is a white noise process.
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T-l
J = E{K(x(T)) + I L(x(k), u(k), v(k))} (4.4.7)

k=0

Then the optimal cost is given by

E{V(Y(0),0)} (4.4.8)

where V(Y(k),k)) satisfies the functional equation

V(Y(k),k) = Min E{L(x(k), u(k) , v(k) ) + V(Y(k+l) ,k+l) | Y(k) } (4.4.9)
u(k)

V(Y(T),T) - E{K(X(T)) |Y(T)} (4.4.10)

Proof;

Define

T-l
V(Y(k),k) = Min E{£ L(jc(t),u(t),v(t)) + K(x(T) ) | Y(k) }

"1"1 t=k

k k+1 T-l

Min {E{L (x (k) ,u(k) , v(k) ) | Y (k) }
u(k)

ak

T-l
Min E{£ L(x(t) ,u(t) ,v(t)) + K(x(T) ) |Y(k) }}
k-H T-l t=k+l
X ' --- 'X (4 4 111k+1 T-l 14.4.11)

Note that the minimization is done with respect to xi(k) , and the control

T— 1 k T— 1strategies Y_ , . . . ,Y_ , n_ , . . . ,T]_ . The first term in the minimization

k+1 T-l
is separated from the rest because it does not depend on Y_ , . . . ,Y_ ,

k+1 T-la » • • • »n
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Using Lemma A. 3 (in Appendix A),

T-l
Min E{£ L(x(t) ,u(t),v(t))+ K(x(T))
k+1 T-l t=k-H

JL ' • • • 'JL
k+1 T-lH i • - ' »n.

T-l
= E{Min E{£ L(x.(t) ,u(t) ,v(t)) + K(x(T) )JY(k+l) }| Y(k)

,. ... k+2 T-l t=k+l
u(k+l) ,%_ , . . . ,]£
k+1 T-ln. t • • • »2.

(4.4.12)

From this and equation (4.4.11) we obtain equation (4.4.9) and further

T-l
V(Y(0) ,0) = Min E{£ L(x(k),u(k),v(k)) + K(x(T) ) | Y(0) }

1 T-l v=0
u(0) , X , . • • , 1 *
0 „! T-l

T^ , Jl , ... , T±

Again by Lemma A. 3

T-l
Min E{£ L(x(k) ,u(k) ,v(k)) + K(x(T) ) }
0 T-l k=0
1 ' — 'X

T-l
E{Min E{£ L(x(k),u(k),v(k))+ K(x(T))

1 T- 1 k=0

0 1 T-ln »n » — »n

= E{V(T(0) ,0)}. (4.4.14)

We can then apply this theorem to solve the lower-level problem. This

will be stated in the following theorem. Since we have a linear system,

with Gaussian driving and observation noises, the information Y(k) can be
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replaced by the sufficient statistics x. (k) . From now on we would deal with

Vi(x±(k) ,k) instead of V (Ŷ k) ̂(k-l) ,k) •

Theorem 4.4.2;

The solution to the lower level problem is given by J

u.*(k) = -D. (k+1) (x. (k) - x. (k)) - E. (k+1) p. (k) (4.4.15)
—1 — 1 —1 —I — T *-l

v.*(0) = -A. .x. (0) - K."1(l)r. (1) - ̂  S.'-'-dJp. (0) (4.4.16)
— — — i — ̂. 2 — i

v*(k) - A..K.~(k) [r.(k) +£.(k-l)] - K."
— 1 TLl-1 ~1 2 *1 — 1

- \ Si"
1(k+l)£i(k) k=l,...,T-l (4.4.17)

where D. (k) , E. (k) , x. (k) , x. (k) , r. (k) , K. (k) and S. (k) are as given in
~~x —a. ~i ~x ~~i — i. ~i

Section 3. Moreover, the optimal cost is given by E{V. (x. (0) ,0)} where

V. (x. (k) ,k) - x.1 (k)K.(k)x. (k) +2r. ' (k)x. (k) + s . (k) (4.4.18)
i —i —a —i —i —a. —a. i

with

s.(k) =s.(k+l) + 2r. '(k+l)v.*(k) + y*1 (k)K. (k+1) v.*(k)
1 1 -^- "Tl "I — 1 —1

' (k)v±*(k) + trg^fkk) + tr̂ fk+l) (̂  (k+1 k) -̂

s.(T) =trF.Z.(T|T) (4.4.19)
i "̂ J-~3.

Z(k|k-l) - (kl

(4.4.20)

£.(k+l|k) = A. .E. (klk)A. . ' + =(k)
*~1 ~T.1~1 ~TL1 ~"

Z (0|-1) = Z.(0) (4.4.21)
—
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Proof ;

The functional equation corresponding to this problem is

V. (ft. (k) ,k) = Min E{X. ' (k)Q.x. (k) -p.'(k)x. (k) + u. ' (k)R.u. (k)
1 "^. ., . — 1 "T.— 1 *1 — 1 — 1 -T.-T. :

+ p. '(k)v. (k) + V. (x. (k+1) ,k+l) |x. (k)} (4.4.22)
*-i —a. x —a. '—i

where v. (k) is to be independent of any a posteriori information.

If we let V. (x. (k) ,k) to be of the form given by equation (4.4.18) , the

right-hand side of (4.4.22) becomes

x. '(k+l)K. (k+l)x.(k+l) + 2r.'(k+l)x.(k+l) + s . (k+l)| x. (k) }
— i —i — i —a. —a a. —a.

- pi'(k)xi(k) + i^' (kjR.î tk) + ̂ '(kjv̂ tk

+ [A..x.(k) + v. (k) + B.u. (k)]'K.(k+l) [A. .x.(k) + v. (k) +B.u. (k)]
— a.1— i —a — i— x —a —11—1 ~a — i— a.

+ trK. (k+l)Z. (k+llk) + 2r.'(k+l) [A..x.(k) + v. (k) + B.u. (k) ] + s.(k+l)
—._ j_ _^ i _^ —11—1 —X -̂ .—1 1

- trK. (k+l)Z. (k+l|k+l) (4.4.23)
—1 -̂ L

where we have used the fact that

E{X. '(k+l)K. (k+l)x.(k+l) |x.(k)} = [A..x.(k) + v. (k) + B.u. (k) ] 'K. (k+1)
—i —i —i '—i —ii—i —i —i—i —i

[A..x.(k) + v. (k) + B.u.(k)] + trK. (k+1) (S. (k+llk)-̂  (k+l|k+D)
—ii—i —i —i—i —i ~~i ' ^1

(4.4.24)
"<?Given v. (k) , minimizing (4.4.23) with respect to u. (k) gives

u.*(k) = -T.~1(k+l)B. ' [K. (k+l)A. .x. (k) + K. (k+1) v. (k) + r. (k+1) ]
—1 ~~1 —O. — TL ~TL1— 1 ~0. —1 ~~i

(4.4.25)

Denote (4.4.23) with u.* substituted in by W. (x. (k) ,k) . To minimize with— i —i -T.

respect to v. (k) we minimize E{W. (x. (k) ,k}. This gives—i —i —i
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p.(k) + 2K.(k+1) IA..X.(k) + B.u.*(k)] + 2K.(k+1)v.*(k) + 2r.(k+1) = 0
*TL —X —XX—X —X—X -X —X —X

(4̂ 4.26)

where

u.*(k) = E{u.*(k)}
T. —X

= - T.~1(k+l)B.t [K. (k+l)A. .x. (k) + K. (k+l)v.(k) + r. (k+1) ]
—x —x —x —xi—x —x —x —x

(4.4.27)

Substituting equation 4.4.27 into equation 4.4.26 we have

[I - K.(k+l)B.T.~1(k+l)B.']K.(k+l)v.*(k)
— —x —x—x —x —x -x

= "t!L " Ki<k+l)jBiTi~
1(k+l)Bi

1] [1C (k+1)A^JTtt) + r^k+l)]- -JP^OO

Since K.(k+1) is invertible (see Appendix B)

(4.4.28)

= K.(k+1) - K.
—"X ~X. —J.—J. J. —JL

, »•„ -!„ ,,-1 (4.4.29)

[I-K. (k+l)B.T.~1(k+l)B.1] = S. (k+1) K."1 (k+1) is then invertible. Thus
-- x — x— x —x —x —x

v.*(k) - -A. .x". (k) - K.^fk+Dr. (k+1) - -̂  S.~1(k+l)p. (k) (4.4.30)
— ~x ~xx-~x -^. —x 2 —x *T.

u.*(k) - - T.(k+l)B.'[K. (k+l)A. .(x.(k) - x. (k))•~ x i —x —a. —xx —x —x

- i (I - K.(k+l)B.T."1(k+l)B.f)"1 £.(k)] (4.4.31)
2 — — x — x— x —x *-x

It can be shown that (see Appendix B)

T.~1(k+l)B.1 (I - K.(k+l)B.T.~1(k+l)B. 1)"1 - R.'V" (4.4.32)
—x — x — —x -x— x -x — x — x

Thus

u*(k) = - T."1(k+l)B.'K.(k+l)A. .(£.(k) - x. (k)) + fe-'V 'p. (k)—x —x —x —x —xx —x —x 2— x —x ̂o.

(4.4.33)
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By substitution into equation 4.4.22 and identifying the terms quadratic

in x.(k) , linear in x. (k) and independent of x. (k) we obtain equations for
~1 —TL ~T.

, Si(k) as well as

r. (k) =--^p.(k) + A. .[I. - K. (k+DB.T.'̂ k+DB. ' ]r. (k+1)
—1 2 T. —11 —1 —1 ~̂.~1 —1 -T.

r̂ T) = £ (4.4.34)

To find the optimal controls u.*(k) and the optimal "estimates" v.*(k),
—i —i

a two-point boundary value problem has to be solved. This involves equations

4.4.30, 4.4.34, and the following equation

Jt. (k+1) = A. .jc. (k) + v.*(k) + B.u.*(k) (4.4.35)
—i —ii—i —i —i—i

x.(0) given

From equation 4.4.33

u>(k) = -i- R.'-V 'p. (k) (4.4.36)
—1 2 —1 T. ̂ 1

Substitution of (4.4.30) and (4.4.36) into (4.4.35) yields

x̂ k+l) = -Ki"
1(k+l) [r̂ tk+l) +j£±(k)] (4.4.37)

From these we obtain equations 4.4.16 and 4.4.17. Substitution of (4.4.16)

into (4.4.34) yields (4.3.13). Substitution of (4.4.17) into (4.4.34) gives

+ ̂  A..'S.(k+1)A..K.~1(k) p.(k-1) (4.4.38)
2 —11 —1 —ll—i *1

Since from the Riccati equation

I. - A . . 'S . (k+ l )A . .K . ' ^Xk) = Q.K.~1(k) (4.4.39)
—i —11 —i —ii—i *x—i
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we obtain equation 4.3.14. Essentially/the two-point boundary value problem

is uncoupled and becomes a single equation in r. (k). r.(k) is uniquely
-TL ~̂ L

defined when 0. is positive definite. This is a sufficient condition for

the positive definiteness of K. (k) , k=0, ,T-1. Q.E.D.

The control u.*(k) which is actually applied by the ith controller

consists of two parts: a closed loop part which depends on the measurements

and an open loop part which does not. The closed loop part can be written

to depend on the difference between the a priori and the a posteriori esti-

mates of the ith controller about the state of the ith subsystem. It looks

like the solution of a tracking problem with x.(k) as the reference state.

In fact, the optimal cost to go V.(x.(k),k) has a form similar to that of

the tracking problem. The open loop part depends only on p_, the coordinating

signals received from the higher level. When the a priori and a posteriori

estimates of the local controllers are the same, as in the case of no

measurements, the closed loop part disappears and only the open loop control

remains. In the next section we will find out what the open loop part

really is.
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5. Solution of the Higher Level Problem

The higher level problem is choosing the optimal p_* to maximize

N
J*(p) = J *(£)

i=l

Prom Section 4,

J.*(p) = x. '(0)K. (0)x. (0) + 2r.'(0)x. (0) + s . (0) (4.5.1)i *• — a. —x —3. —i — a. i

where r. (0) satisfies equation 4.3.13 and s . (0) is given by equation 4.4.19.

Since x. ' (0)K. (0)x. (0) is independent of p_, the higher level problem is

Max I 2̂ ' (0)3̂ (0) + si(0) (4.5.2)

Let

r(k) A £ A .i

K(k) A K̂  (k)

0 K (k) .

Vk)J

-11 -12

-22

B a
£ B2

B.

£ S_ (k) . . . .

S,,(k)

Then equations 4.3.13 and 4.3.14 become

"1
r(0) = - A'£(0) - U - £K"(0))K(0)x(0) (4.5.4)
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2 K d O j r O e ) = - A'£(k) + -a - 2. K O c n j a O e - l ) (4.5.5)

T-l
s . (0) = I (s . (k) - s . (k+D) + s.(T)
1 k=0 x z i

tr

T-l
1 (tr a^. (k| k) + tr K. (k+D^Ck+lJk) - l^ (k+1 1 k+1) ) }
k=0 "̂  "̂  "̂  "̂

T-l
.J {r. '(k) tK." - L (k)A. . t S. (k+l )A. .K.~ 1 (k) - K. "1(k) ]r. (k)

* ~ ~ " —

£.' (k-l)

- r.f (TjK.'̂ Tjr.CT) - £. ' (T-l)K. ̂(T) r. (T)
—i. -TO. —x *i —i —i

The terms involving E.(k|k) and Z.(k+l|k) are independent of £. Thus

the quantity to be maximized is

T-l
2r(0)£(0) +1 -' £1(k)ff1(k)2> K~1(k)£(k) - £' (k-l)K~1(k)2 f£'i(

~" k=l

1 ^ 1 T T 1 ^ . 1
f \ _** i / . **»^J. . ^i . J. ^J

(4.5.7)

Redefining

A_(k) = -

we have
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T-l
Max A_' (1)A £(0) + I - £' (k)K~1(k)2 K"1(k)£(k) + A_- (k)K~1(k)£ K~1(k)r(k)

k=l

- iXj (k) [K~1(k)2 If̂ k) + B. if H'.lMk) - •ji'(T)i~1(T)MT) (4.5.8)

with respect to

such that

- -|[I - QK~1(k)] X(k)
~~**~~ •—

k=l,...,T-l (4.5.9)

Theorem 4.5.1;

The optimal solution X_*(k) to equations 4.5.8 and 4.5.9 corresponds to the

costates of the deterministic linear regulator problem for the entire

system. Minimize

T-l
x'(T)F x(T) + I x1 (k) £x_(k) + u_' (k) R ii(k) (4.5.10)

k=0

subject to ^k+1^ ~ . ^k) + IB a(k)

x(0) = x(0) given (4.5.11)

Proof ;

We form the Lagrangian H(X_,r_,a) given by

T"1 i
H(_X,r_,a) = V(l)Ax(0) +1 -£(k)K~ (k)£ K~1(k)r (k)

k=0

+ V (k)K~1(k)2 K~1(k)£(k) - j i' (k) (K^fkJa K"1(k)+B ifV ] ̂ (k

- a1 (k) [g K"1(k)r(k)- | A'X_(k+l) + -|u - £ ̂(k) )X(k) ]

~ A' (T)£T1(T)A_(T) (4.5.12)
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Using the necessary conditions for optimality we obtain

ff(l) = A x ( 0 ) + jf^DaJf^Drd) - |[K"1(1)£K"1(1) + B R^B ' ] Ml)

= (4.5.13)

' - f k ) + B_ i f l M k ) + - A a(k-l)

K~1(k)] Io(k) =£ k=2,...,T-l (4.5.14)

A a(T-i) -s -(T) MT) = o_ (4.5.15)

-2K~1(k)£ K~1(k)£(k) + K"1(k)£ K~1(k)A_(k) -K~ 1 (k )£a (k ) = £

k=l, ...,T-1 (4.5.16)

= - £ K~1(k)£(k) + j A1 Mk+l) - -|[i_ - 2 K~1(k) ] Mk) = p_

k=l,...,T-l (4.6.17)

From (4.5.13) and (4.5.16), we obtain

0(1) =2Ax(0) -BR'H'Ml) (4.5.18)

From (4.5.14) and (4.5.16), we obtain

a(k) =AOt(k-l) - j B_ Rf^B'Mk) k=2,...,T-l (4.5.19)

Since

S/ (T) = F_~ + B_ R~ B̂ 1 (4.5.20)

equation 4.5,15 becomes

(if1 + B_ R*1^1 )X_(T) = A a(T-l)

X(T) = F[A a(T-l) - B R̂ B'Xd1)] (4.5.21)
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From (4.5.17) and (4.5.16), we obtain

Let

Then we have

A(k) = A'Mk+1)

a(k) A 2 jc(k)

Ax(k) - - B

(4.5.22)

k=0,...,T-l

A'Mk+1) + 2£x(k)

x(0) = x(0)

MT) = 2 F sc(T)

(4.5.23)

(4.5.24)

(4.5.25)

This is the two-point boundary value problem associated with the

optimal control problem (4.5.10) and (4.5.11) [A3]. Q.E.D.

Since Mk) = 2 IC(k)jc(k) where K(k) is the solution of the Riccati

equation for the whole system

"1
K(k) = £ + A1 K(k+l) [!_ - B_ T(k+l)^'K(k+l) ] A

K(T) = F

T(k+l) = R + B_'K(k+l)B_

(4.5.26)

(4.5.27)

the optimal control u.* given the optimal coordinating signal p_*(k) is

u.*(k) = - T.'-'-fk+DB.'K. (k+l)A. .(x.(k)-x. (k) ) - i R."̂ . 'X.*(k+l)
-i ^i —a. —i —11 . —a —i 2 —i —i —i

. .(x. (k)-x. (k) ) - •-[R~B'X*
3. -T. 2 — — —

(4.5.28)

where [a] . corresponds to the ith component of vector â .
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We now show how x.(k) is related to the solution of the deterministic—i

linear regulator problem of the entire system.

Theorem 4.5.2 ;

Given the optimal coordinating parameters, the unconditional estimates

jc(k) of the state of the system by the lower level (given by equation (4.4.35))

are equal to the unconditional estimate of the coordinator, i.e.,

x(k+l) = A x(k) - 4 B_ R*1^1 XMk+1)

(̂0) given (4.5.29)

Proof :

By equation 4.4.30

v^fO) = - A^xVtO) - K/^UJr^l). + •|(Ki~
1(l) + B̂ R/"1!̂ 1)̂ !)

(4.5.30)

By equation 4.5.16

.~1(l)r.(l) + -^ K.~1(1)X*(1) - x. (1) =0 (4.5.31)

Thus

y*(0)

)+ I
3=1

A..x.(0) (4.5.32)

We then have

x(l) =Aj[(0) ~ -J B. R̂ 'X̂ d) (4.5.33)

By induction, we can easily show that
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v.*(k) = I A. .x.(k) (4.5.34)

and hence equation 4.5.29. Q.E.D.

We have thus verified constraint (4.2.10). Moreover, we have shown

that the unconditional mean (a priori estimate) of the ith controller given

the optimal coordinating parameter and the uncoupled subsystem is the same

as the a priori estimate obtained by the coordinator. The optimal control

11. * (k) is given by

U^UO = - Ti"
1(k+l)BiKi(k+l)Aii(xi(k)-£L(k)) - [ T ~

1(k-H)B'K(k-H) A x(k) ]±

(4.5.35)

where

T_(k+l) = R + «K(k+l) (4.5.36)

This optimal control consists of two parts, a closed loop part which

has been discussed before and an open loop part. The open loop part is the

optimal deterministic control for the whole system assuming no measurements

are made. Thus the optimal control u.*(k) has a deterministic component

which takes into account the effect of the coupling and a closed- loop part

which utilizes the local information available. The closed loop part resem-

bles the solution of a tracking problem where the a priori estimate by the

coordinator is the reference state.
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6. Discussion and Perspectives

We have obtained an off-line decomposition of the linear-quadratic-

Gaussian problem. It is found that the optimal control strategy consists

of two parts: a closed-loop part which can be generated by the lower level

controller himself and an open-loop part which depends on the coordinating

parameter p_. The closed-loop part consists of the optimal deterministic

gain for the ith subsystem acting on the difference of two estimates. The

optimal coordinating parameter £ is essentially the cbstate corresponding

to the optimal deterministic control of the entire system using the mean of

ic(0) as its initial state. Then the open loop part is the optimal deter-

ministic control of the whole system. The scheme of control is simpler than

the solution to the optimal dynamic team since it requires less on-line

and off-line computation. Compared with the centralized case, when there

is communication among all the controllers, it is also simpler since a full

dimensional Kalman-Bucy filter has been replaced by N local filters. The

decrease in computation and communication is accompanied by a loss in

mathematical optimality.



CHAPTER 5

DECOMPOSITION OF STOCHASTIC DYNAMIC SYSTEMS (ON-LINE)

1. Introduction

In this chapter we study the on-line decomposition of stochastic

dynamic systems. The off-line decomposition of stochastic dynamic systems

has been considered in the previous two chapters. Based on the a priori

information, the coordinator transmits coordinating parameters to the lower

level controllers. With the optimal choice of these parameters, the system

is coordinated in the sense that the action of the other subsystems on the

ith subsystem and its estimate by the ith controller are equal on the

average. Once the system starts running, the coordinator's duty is finished.

In some situations, the coordinator receives new information while

the system is running. This new information can be used to improve the

performance of the system. Instead of off-line coordination, we thus have

on-line periodic coordination with the coordinator processing the new

information and transmitting new coordinating parameters. Two kinds of

on-line coordination will be considered in this chapter, depending on the

coordinator's assumption about the availability of future information.

When the coordinator assumes that future information will not be available,

open-loop feedback optimal coordination is obtained. When future information

is assumed to be available, then truly closed-loop coordination is obtained.

Roughly speaking, the issue of periodic on-line coordination can

be explained as follows. Each local controller collects all his measurements

(e.g. once a day). On the basis of his own measurements, coordinating

signals, etc., he makes his (daily) decisions. Every-so-often

-100-
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(say once a week) each local controller transmits all his measurements

to the coordinator. The two cases considered correspond to

(a) the coordinator does not know if and when local

measurements will be transmitted, hence he

operates under the pessimistic assumption that

no further measurements will be made (open loop

feedback optimal strategy).

(b) the coordinator knows a priori that he will

receive periodically all measurements, and his

coordinating strategy reflects the knowledge

that in the future he will receive such

measurements (the closed loop case).

In the next section we formulate the on-line coordination problem

when the coordinator makes measurements after the system starts running.

The open loop feedback optimal concept in stochastic control is applied

to coordination in Section 3. In Section 4, the open loop feedback

optimal coordination of the LQG problem is investigated. The solutions

are found to be rather physically intuitive. In Section 5, we study the

truly closed loop mode of coordination. A functional equation which has

to be solved is obtained. This is compared with the open loop feedback

optimal case. In Section 6 a special linear dynamic team problem consisting

of independent subsystems with the only coupling in the terminal cost is

considered. This is used in Section 7 to obtain a decomposition for the

lower level problem between updating tines for the closed loop optimal
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coordination of the linear-quadratic-Gaussian problem. The resulting

control strategies are very similar in form to those obtained from open loop

feedback optimal case. The difference between open loop feedback optimal

coordination and closed loop optimal coordination is discussed.
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2. Formulation of the On-Line Coordination Problem

Let the coordinator collect the measurements of all the lower level

controllers periodically every t units of time. For simplicity, we assume

T = m£, where m is some integer.

Then

Let Y (k) be the information available to the coordinator at time k.

= YQ(k£+l) = ... =

k = 0, ... ,m - 1 (5.2.1)

The control of the ith controller is allowed to depend on Y (k) as well

as Y. (k) and U. (k-1) . We shall show that in certain cases Y (k) can be

replaced by some sufficient statistics. Given his available information
N

Y (k) , the coordinator requires v. (t) to be equal to 7 g. .(x.(t)) on the
0 -i jy«i D "^
average, where t >. k. Thus we have the following formulation.

Problem 5.1;

Given

x. (k+1) = f. (x. (k) , v. (k) , u. (k) , £. (k))
— 1 — X -^1 — 1 —1 •*!

i = 1,.. . ,N (5.2.2)

N
J - I , Ji

1=1

T-l
J. = E{K. (x.(T)) + I L.(x.(k), u. (k))} (5.2.3)
i i —i , _ i — i —ik=0

CK (x̂ (t))
D ̂

(k)} =£ t>.k
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k = 0,...,T - 1

i = 1,...,N (5.2.4)

û k) =xL
k(Yi(k), Û k-1), YQ(k); I) (5.2.5)

v.(k) = n.k(Yn(k); I) (5.2.6)
~i —1 0

where I has the same interpretation as in Section 3.3. Find optimal control

k k
strategies y. and n. , i = 1,...,N; k = 0,...,T - 1 such that J is

minimized.

Comparing with the off-line case discussed in Chapter 3, we see that

the constraint has to be satisfied more exactly. In the previous case, the

constraint is only required to be satisfied with respect to the a priori

information. Now it has to be satisfied with respect to the updated

information of the coordinator. By the nested property of the conditional

expectation, it is easily seen that equation 5.2.4 implies equation 3.3.3

since
N N

E{v±(t) - I .̂.(x.tt))} = E{E{vi(t) - I 2ij(xj(t))|Y0(k)}}

t >_ k (6.2.7)

Whether it is off-line coordination as discussed in Chapter 3 or

on-line coordination treated here, the lower level controls u.(k) are all—i

closed loop, i.e., they depend on the past information available and are

computed based on the assumption that further measurements will be made.

The terms "off-line" and "on-line" refer only to the mode of coordination.

For on-line coordination, there are many possibilities. We shall consider

two here, open-loop feedback optimal coordination and closed loop optimal
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coordination, and discuss their similarities and differences in both the

general, as well as the linear-quadratic-Gaussian case.
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3. Open-Loop Feedback Optimal Periodic Coordination

The philosophy of open-loop feedback optimal controls is essentially

the following [D2, C5, T2]. At each time k in the control interval

1. The statistics of the state of the system jc(k) is

generated (possibly with a nonlinear filter) from the

available observations.

2. Assuming that no measurements will be made in future, the

optimal control sequence u*(k) , \i*(k+l) ,... ,u* (T-l) is

generated based on the currently available data by solving

an open-loop control problem,the cost functional being

the cost to go from time k conditioned on the data

available at time k.

3. The optimal control sequence is applied from time k to

time k' when additional measurements are made. Steps

1, 2 are then repeated to obtain a new sequence of

optimal controls u*(k1),...,u*(T-l).

The name open-loop feedback optimal is used because essentially

an open-loop stochastic control problem is solved at each updating time

and then the optimal controls are applied in a feedback form.

Applying this philosophy to the coordination problem, we have

the following scheme. At each time k = 0, t, 2£,...,T - £,
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1. The statistics of the state of the system jc(k) is

generated (possibly with a nonlinear filter) from

the available data Y (k) by the coordinator.

2. Assuming that no measurements will be made by the

coordinator in future, the coordinator then faces a

problem similar to Problem 3.1 except that the system

starts from time k and the a priori statistics on

x_(0) is replaced by the conditional density of x_(k)

given YQ(k).

3. The coordinating parameters p_* (k) ,... ,p_* (T-l) can be

found. They would define the lower level problems

from which the optimal control strategies ][. , n. ,

t = k,...,T - 1, i = 1,...,N are computed by the

local level. These optimal control strategies are

applied until t = k + L - 1 when a new set of data

Y (k+£) is available to the coordinator. The whole

process is then repeated.
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Using this approach, Problem 5.1 can be solved by the following

hierarchical scheme.

Lower Level;

n£ £ k < n£ + £ n = 0,...,m-l

x̂ k+1) = f̂ x̂ Oc), v-^k), ̂(k), ̂(k)) (5.3.1)

u.(k) = Y.k(n£)(Y.(k), U.(k-l), Y_(n£); I) (5.3.2)
—1 •J-l 1 1 0

(̂k) = rjd
k(ne)(Y0(n£); I) (5.3.3)

T-l
, YQ(n£))= Edĉ CT)) + I L̂ x̂ k), û k)) (5.3.4)

k=n£

. (k) - I '(

Find Y. (n£) and n. (n£) , k > nt, i = 1,... ,N such that J. (p(nt) , Y (n£)) is
••"X ""T. ~̂ i ^̂ " u

minimized.

£(n£) = ̂k;n^^k=n£ (5.3.5)

Let

= Min J.(p(n£), Ŷ (n£)) (5.3.6)

Higher Level;
N

Maximize I J. * (£(n£) , Y (n£) ) (5.3.7)
l °

£(rv£) = ̂(Y0(n£)) (5.3.8)

where 3. is some measurable function of Y (n£) .

Apart from solving the maximization problem, the coordinator is also

responsible for generating the conditional density of x̂ (ni) given Y (n£)

which is necessary for the definition of the lower level problems. In

addition to £*(n£), this probability has also to be transmitted. For the
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Jc k
lower level controllers, although the optimal y. (n£) and TJ. (n£) j IK. >_ r&

lc Ic
are computed,only Y- (n£) and TV. (rv£) with n£ £ k < n£ + £ are used in the

actual control.

We notice that the open-loop problem has to be solved at each up-

dating time by the coordinator and then the stochastic control problem solved

by the lower level controllers. Depending on the nature of the lower and

higher level problems, this open-loop feedback optimal strategy may or may

not be feasible. When the updating interval is very long, then the com-

putations involved may become manageable. Again, analytical results can be

obtained for the linear-quadratic-Gaussian case. This is discussed in the

next section.
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4. Open Loop Feedback Optimal Coordination of the Linear-Quadratic-
Gaussian Problem

In Chapter 4, we obtained the optimal control strategies for the

linear-quadratic-Gaussian case when off-line coordination is assumed. This

will be used to obtain the open loop feedback optimal coordination of the

linear-quadratic-Gaussian problem.

In Section 4.3, equation (4.3.1) gives

u±*(k) - -D̂ k+1) (̂ (kJ-̂ Ck)) - Ei(k-H)£i*(k) (5.4.1)

where x. (k) is the estimate generated by the ith controller using his

a priori information and the coordinating parameters j>*(k) 's. x. (k) is

generated using the measurements in addition. They are given by equations

(4.3.7) and (4.3.10).

Using the open loop feedback optimal philosophy, we have the

following.

At any time k, let nt be the last updating time. Thus

ni <_ k < nt + I (5.4.2)

Then

ui*(k) = -Di(k+l)(xi(k|k)-xi(k|n£)) - Ei(k-H)£1*(k;n£) (5.4.3)

where the gain matrices are the same as those given in Chapter 4.

E{xi(k)| Y,.(k), Û k-1); I±, p_*(n£),

(5.4.4)

(n̂ ln̂ )} (5.4.5)

I. is the decentralized a priori information of the ith controller

about his subsystem. x,(k|n£) is the estimate generated by the ith
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controller based on the coordinating parameters p_*(n£) and x. (n£|n£).

x.(k|k) is the decentralized estimate generated by the ith controller

using the coordinating parameters p_* (n£) , the statistics x.(n£.|n£) and

nt) , and the data Y. (k) , U. (k-1).

The state estimate of the coordinator is generated as follows.

j[(k+l|k+l) = A x(k|k) + B u (k) + G(k-fl) [y_(k+l)-C(A j[(k|k} + B u(k) J

x(o|0) = x(0) (5.4.6)

» ^(k-n|k-H)C'0"1(k-H) (5.4.7)

[C'0"l(k-H)C + ( A £(k|k)A'+ ^(k))"1]"1

^(0|0) =£(0) - HO) C M C Z ^ O J C 1 + ©(O))'^ £(0)

(5.4.8)

The coordinating parameters £*(k;n£) are given by

p_*(k;n£) = - X̂ *(k-H;n£) - - 2 K(k+l) x(k+l|n£) (5.4.9)

where

_- B T~1(k-H)B'K(k-H))A Mk|n£) (5.4.10)

is given by (5.4.6).

the decentralized state estimates x.(k|k) and x.(k|n£) are found as

follows.

A^x^klk) 4- y*(k|n£)+ B̂ û k) + (̂ (k+llod) [y. (k+1)

-C.(A,.x.(k|k) + y*(k|n£) +B.u,(k)] (5.4.11)
—i —ii—i —i —i—1

- s^dveln-e) (5.4.12)

- Zi(k-HJk-H;n£)Ci'C
1(k+l) (5.4.13)
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Z.(k+l|k+l;n£) • [c!6T1(k+l)C. * (A. .E. (k|k;n£)A! .+ E. (k) T1]"1

~~i — i — i — i. — ii — i — ii — x

(5.4.14)

(5.4.15)

. . (5.4.16)
— — i — i 2 *-x

v.*(k|n£) and r^(k|n-t) are given by the following equations.

- A

(5.4.17)

nt < k < n£ + t (5.4.18)

A!.S. (n£+l)A..x. (ninl) (5.4.19)— ii— i —ii— a.

|n£) = - *(k;n£) - A *

n£ < k £ n£ -f -£ (5.4.20)

ri(T|n£) = a (5.4.21)

Essentially at each updating time n£, the coordinator evaluates a

state estimate 3c(n£|n£) and new covariance £_(n£|n£) using his measurements.

From these the optimal coordinating parameters £*(k;n£) are computed.

^) , ̂(nl\n£.) and £*(k;n£), k » n , ---- ,n£+£-l, are transmitted
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to the ith lower level controller.

The ith lower level controller generates the new a priori estimate

x.( k|n£) from the coordinating parameters as well as the estimate £. (k|k)

from his own data. From Theorem 4.5.2 we can see that x.(k|n£) is the same
—3.

as that generated by the coordinator using equation (5.4.10). The optimal

control strategy given by equation (5.4.1) consists of a part depending

on the difference between these two estimates and a part specified by the

coordinator through the coordinating parameters. When these two estimates

are the same, essentially the coordinator takes over the control of the

system. This can happen when the coordinator updates his information as

often as the lower level controllers. In this case from Appendix D,

u±*(k) - - Ei(k-H)£i*(k;k)

-- [T"1(k-H)-BlK(k+l)A jFdc|kH. (5.4.22)

Thus the control strategy approaches that given by a separation theorem

asymptotically.

Remark;

The linear-quadratic-Gaussian problem is really a very special case.

We note that for open loop feedback optimal coordination, the lower level

controllers do not need the whole set of coordinating parameters from time

nt to T-l. in general, this may not be the case. Recall also that for

centralized information structure, there is no difference between the open

loop feedback optimal control and the closed loop optimal control for the

LQG problem. In the.case of coordination, however, there will be a

difference, as can be seen from the next section. The fact that the
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coordinator assumes the availability of future information introduces some

features which are not present in the open loop feedback optimal case.
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5. Closed-Loop Optimal Periodic Coordination

In closed-loop coordination, the coordinator chooses his

coordinating parameters knowing that measurements will be made in the

future. This has both advantages and disadvantages. Instead of having

a different set of coordinating parameters which are changed at each

updating time, only one set of coordinating parameters will be required

but the future ones depend on measurements still not yet available to the

coordinator. Complete decoupling of the lower level problems is not ob-

tained in this case, however. The following theorem uses the closed loop

nature of the coordination to reduce Problem 5.1 to another problem.

Theorem 5.5.1;

If closed-loop periodic coordination is used and the coordinator has

perfect memory, the Problem 5.1 is equivalent to the following problem.

Problem 5.2;

Given

i = 1,...,N (5.5.1)

N
J = I J. (5.5.2)

T-l
J. = E{K. (x.(T)) + I L.(x. (k), u. (k))} (5.5.3)

- i -a ^L

j?,Aj *j o

k + £ > t >_ k k = 0, £,...,T - £

i = 1,...,N (5.5.4)
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u^k) =x L
k (Y ± (k ) , U±(k-l), YQ (k) ; I) (5.5.5)

v^k) "l i
k(Y ( )(k)i I) (5.5.6)'

k kFind optimal ]£. and f|. , i = 1,...,N; k = 0,...,T - 1 such that J is

minimized.

Proof;

We need only to show that constraint (5.2.4) is equivalent to constraint

(5.5.4).

Equation (5.2.4) obviously implies equation (5.5.4).

Suppose

(̂t) -I^SijUjCtnhVk)}^

for all k +£> t ̂  k; k = 0, £,...,T -£.

Then consider

E{V. (t) - J- g. .(x.(t)) |Y (k)}
"̂  j*i 3 "̂

where t >_ k + £.

Since measurements will be made in future and closed loop coordina-

tion is used, there exists an updating time k' such that k1 + £ > t >_ k1

and

E<v±(t) - I 3i.(x.(t))|Y0(k')> = £ (5.5.7)

Thus

Et£i <*> ~ I a-.(x.(t))|Y (k)} = E{E{V. (t) - T g. .(x.(t)) |Y (k')}|Y (k)}=£«̂ ^ *̂ n̂ ^̂ ^ w ^̂ i *̂*i i ™̂ ^ u~ y ^̂
"1 * 1 "1 ̂1 J J

(5.5.8)

The first equality follows from the perfect memory of the coordin-

ator and the nested property of the conditional expectation. Q.E.D.
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In Section 3.4 we considered a constrained stochastic control

problem and used it to obtain an off-line decomposition for coupled

dynamic systems. There the constraint is with respect to the uncondi-

tional mean and hence the decomposition is off-line. To obtain an on-line

decomposition which is closed loop optimal, we have to consider constraints

which are conditioned on on-line measurements. Corresponding to Problem

3.3 we thus have the following problem.

Problem 5.3

System: .f (x(k) , v(k) , _u(k) , £

E{H(x(t) , v(t))U (k)} = 0
_ _ _ _

Measurement: y_(k) - h(x(k), £(

T-l
Cost Functional: J = E{K(X:(T)) + £ L(x(k), u(k)) }

k=0

(5.5.9)

(5.5.10)

(5.5.11)

(5.5.12)

j[(k) i jKk) , k = 0,...,T - 1 and x_(0) are random vectors with known

statistics .

Y(k) =

k — 01 •.. »m — 1

u(k) =

(5.5.13)

(5.5.14)

(5.5.15)

(5.5.16)v(k) = rf(Y0(k))

It is required to find £* and r̂ * such that J is minimized and the

constraint is satisfied.
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Corresponding to Theorem 3.4.1 we have the following.

Theorem 5.5.2;

Let VSP{L(a,b)} denote the value of the saddle-point of L where a is the
a
b

minimizing variable and b is the maximizing variable. If the saddle point

exists in the following functional equation, then the optimal cost for

Problem 5.4 is given by

E{V(YQ(0)P)}

where V(Y (k) ,k) satisfies the functional equation

(5.5.17)

V(Y
k+£-l

VSP
Tr

£ , . . •

L(3c(t), u(t))

; v(k) , . . . ,v(k+£-l)

£' (t)H(x(t) , v(t)) | Y ( k )

k = 0, £,...,T - L

V ( Y ( T ) , T ) = E { K ( X ( T ) ) | Y ( T ) }

(5.5.18)

(5.5.19)

Proof;

Define

V(Y (k) , Min
k T-l

X ' — 'X
v(t) e n (Y

T-l

t=k
L(x(t) ,u(t)HK(x(T))|Y (k)}

,t), t=k,...,k+£-l

2(YQ(t),t),t=k+£,...,T-i

Min
k

X ' • • • »X
v(t) e

L(x(t) , u ( t ) ) | Y (k)}
t=k

t=k,...,k+£-l
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1-1
+ Min E(£ L(x(t),u(t))+K(x(T))|Y (k)}]

k+£ T-l t=k+£
x ' • • • 'X
afc e fi2(YQ(t),t), t=k+£,...,T-l (5.5.20)

Q1(YQ(t),t) = (v|E{H(x(t),v)|Y0(t)} = £} (5.5.21)

fl2(Y0(t),t) = {n.|E{H.(x_(t),T].(Y0(t))|Y0(t)} = 0} (5.5.22)

From Appendix A, the second term on the right hand side of (5.5.20) to be

minimized is E{v(YQ(k+.£) ,k+£) |YQ(k) }. Thus

k+£-l
V(Y (k),k) = Min E{J L(x(t) ,

k k+£-l t=k
1 ' • • • 'JL
v(t) e^CY (t)ft)r t=k,...

-H V(Y0(k+£) ,k+£) YQ(k) } (5.5.23)

Form the Lagrangian for equation (5.5.23) as

L(3t(t),u(t)) + £'(t)E[U(t) ,v(t)) + V(YQ(k+̂ ) ,k+£)|YQ(k)} (5.5.24)
t=k

If a saddle point exists, then V(Y (k) ,k) is given by equation

(5.5.18). By the same argument as in Theorem 4.3.1,

T-l
V(Y (0),0) - Min E{£ L(x(k),u(k)) +K(x(T))}

k . . _ . k=0
]£ , k=0, . . . ,T-1

T̂ k e ̂ 2(Y (k),k), k=0,...,T-l (5.5.25)

It is thus the optimal cost for Problem 5.3. Q.E.D.

By the property of the saddle point, the following corollary is

obvious.
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Corollary 5.5.3;

ĵ
If the optimal Lagrange multipliers £*(k) = B_ (Y (k) ) are known, then

V(Y (k) ,k) = Min E{ L(x(t) ,u(t)) + £*' (t)H(x(t) ,v

v(k) , . . . , v(

+ V(Y0(k+£),k+£)JY0(k)} k = 0, £,..., T - I (5.5.26)

V<YO(T),T) = E{K(X(T» |YQ(T)} (5.5.2?)

Remark;

It is also possible to substitute the VSP operation in Theorem 5.5.2 with

maxmin or minmax.

If we apply the corollary to Problem 5.2, we will find that the

terms involving L(x_(t) ,\a(t) ) and £*' (t)ll(jc(t) ,jv(t) ) are separable into

the subsystems. However, V(Y (k+£) ,k+£) cannot be separated into a sum of

N independent parts. Thus, although we have an optimal stochastic control

problem consisting of N uncoupled subsystems, the cost functional, which

is essentially separable has a terminal term which is not separable. This

makes our problem of finding the optimal controls considerably harder than

the open loop feedback optimal case. The main difference between the two

cases lies in the assumption of future measurements by the coordinator.

When future measurements are assumed to be made, this fact will be made

use of by the lower level controllers as well as by the coordinator.

Although (5.5.26) is not as simple as the lower level problem in

Section 3, it is simpler than the original problem with decentralized a

posteriori information and common a priori information. Moreover, only
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one sequence of p_'s need to be chosen by the coordinator. In the open

loop feedback optimal case, a different sequence of p_'s have to be

chosen at each updating time. This equation is quite nontrivial to

solve. In the next two sections, we shall show how this equation can

be' solved for the linear-quadratic-Gaussian case.
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6. A Special Linear Dynamic Team Problem

In this section we shall consider a special linear dynamic

team. The solution of this team problem will be used in the next

section to obtain the closed loop optimal coordination of the linear-

quadratic-Gaussian problem. Problem 5.4 stated below is the team

decision problem under consideration. We shall relate its solution

to the solutions of Problems 5.5 and 5.6 which are simpler.

Problem 5.4;

x^tk+1) = A^x^oo + v±(k) + B^OO + J^Oc) (5.6.1)

N T-l
J = E{ I I xd'(k)2ixi(k) + ̂'WRî fk) + ̂'(̂ (̂k)

i=l k=0

- eVdOx^k) + x'(T)K(T)x(T)} 6 2)

Hi(k) = Xik<Vk)' Vk-1)) (5.6.3)

y_. (k) depends only on the a priori information.

x_. (0) given i=l,.... ,N.

Find y_. , v_. , i=l,. ,N such that J is minimized.

Remark; This is a special case of a dynamic team. The dynamics of

the subsystems are uncoupled. The cost functional is essentially

uncoupled except for the terminal cost.

Problem 5.5; i=l,....,N

= Aiixi(k) + v±(k) + B^Ck) + ̂(k) (5.6.4)
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T-l
J. = E{ Y x. ' (k)Q.x. (k) + u. ' (k)R.u. (k) + p. ' (k) v. (k)
1 , - "I •=•!—! —1 —1—1 ^-l — 1k=0

- p. '(k)x.(k) + x. ' (T)K. . (T)x. (T) + 2r.' (T)x. (T) }*-i —i —i —11 —i i —i '

(5.6.5)

Hi<k> = Iik<Yi^ • ̂(k-D) (5.6.6)

y_. (k) depends only on the a priori information

x. (0) given

Find Y_. * f Y_- * such that J . is minimized , i=l , . . . . ,N .

£. (T) is a n. dimensional vector.

Remark; Given r. (T) , we have N uncoupled stochastic control problems

with linear terms in the terminal costs.

Problem 5.6 : Same as Problem 5.5.

Find Y. *r v.* and r.*(T) such that J. given r.* is minimized, i=l,...,N-HL — i — i i — i

and

r *(T) = I K^ (T)£*(T) = I K. .(T)E{x*(T)} (5.6.7)." ~ "

where x_* (T) is the resultant optimal trajectory.

Remark; The solution of Problem 5.6 gives the person-by-person optimal

(pbpo) strategy of the team. Given a team with payoff function

J<I1 r . - • ,Ŷ ) the pbpo strategy (Ŷ * , ---- ,Ŷ *) is defined by

(5.6.8)

for all i and Y. .
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Theorem 5.6.1; Xs*' —•*' i=l/*--»N solve Problem 5.4 if and only if

they solve Problem 5.6.

Proof;

Necessity:

Suppose Y-*» Y.-*' i=lf--»N solve Problem 5.4. Then in particular

N T-l
E I I I x.*'(k)2ixi*(k) + ui*'(k)Riui*(k) + £i'(k)vi*(k)

i=l k-0 1

- p.'(k)x.*(k) + x*'(T)K(T)x*(T)}
*-o. —a — — —

T-l
£E { £ 3t. ' (k)£.x. (k) + xa. ' (k)R.ri. (k) -f

k=0 1 1~1 X

-p'(k)x.(k) + 2( T K. . (T)X.*(T) ) 'x. (T)
£- —1 X'ai1""1^ ~~3 / "~1

T-l
+ E { I I x.*'(k)£.x.*(k) + u.*'(k)R.u.*(k)

ĵ i k=0 ~3 "̂̂  ~3 ~°~:3

+ £j'(k)vj*(k) - gj*
l(k)xj*(k)

+ terms independent of x. (T) } ._ ,. _.
—3. ID .ID .y)

Thus, by defining r.*(T) = ̂  K.,(T)x.*(T) and subtracting

terms independent of the i subsystem from each side of equation

(5.6.9) we see that Problem 5.6 is solved.

Sufficiency: Using the results in [H3] we can reduce Problem 5.4 to

a static linear team with a quadratic payoff. Reference [Rl] then

shows that the person-by-person optimal strategy is also the optimal

strategy for the entire team. Q.E.D.
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We shall now solve Problem 5.5.

Theorem 5.6.2; The solution to Problem 5.5 is given by

), k=0,...,T-l

(5.6.10)

y^MO) = -A^JTtO) - K/"1 (1)1̂ (1) - i Si"
1(l)£i(0) (5.6.11)

v *(k) = A|.K.~
1(k)[r.(k) + ip.(k-l)] - K^k+Dr. (k+1)— i — 11 — i —a. 2 "-a. —i —i

- \ Si~
1(k-H)£i(k) k=l,...,T-l (5.6.12)

where D. , E. , x. (k) , x. (k) are the same as those in Theorem 4.4.2 with
—a —i —x —a

^ (T) = K . . (T) and r . (k) is given by

2̂ (0) = -| ̂(0) - \ • ; A
I ( 0 ) - ' ( D A O ) (5.6.13)

fitK1"
1(k)ri(k). -\ ̂(k) - |

r. (T) given (5.6.14)
T.

Moreover, the optimal cost is

Ĵ ' (0)̂(0)̂(0) + 2ri
t (0)̂ (0) + S;L(0) (5.6.15)

where s. (k) is given by equation (4.4.19)

Proof; Since Problem 5.5 and the lower level problem in Chapter 4

(Problem 4.2) differ only in the terminal cost, the functional equation

(4.4.22) can also be used here to find the optimal control strategies.

•The terminal condition, however, has to be modified, with r. (T) ̂  (K

Q.E.D.
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Problem 5.4 can now be solved with the help of Theorem 5.6.1

and Theorem 5.6.2.

Theorem 5.6.3; The control strategies in Theorem 5.6.2 solve

Problem 5.4, with

Proof ; From equation (4.4.37)

X±(T)

If

r_I<T> (T)x.(T)

then Problem 5.6 and Problem 5.4 have the same solution.

Define

K{T) KI;L(T) £

Then equation (5.6.17) and (5.6.18) give

r_(T) = - (K(T) - K(T)) K*1 (T) [£(T) + \ £(T)

or r_(T) = - § ~1
i K(T)K (T)£(T-1)

(5.6.16)

(5.6.17)

(5.6.18)

(5.6.19)

(5.6.20)

Q.E.D.

The special dynamic team given by Problem 5.4 has been con-

sidered in detail. If the r.(T)"s are chosen appropriately as given—i

by equation (5.6.16), then the optimal control strategies can be
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found in a decentralized manner by finding the solution to Problem 5.5,

We may regard the r.(T)'s as the coordinating parameters for de-
—i

composing the terminal cost.
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7. Closer Loop Optimal Coordination of the Linear-Quadratic-
Gaussian Problem

In this section we shall look at the closed loop coordination of

the linear-quadratic-Gaussian case. Using the results of the previous

section, we shall show that although the functional equation (5.5.38) is

not separable into the individual subsystems, we can, by introducing an

extra coordinating parameter, define optimization problems for each of

the lower level controllers . By solving these problems , it is found

that closed loop optimal coordination and open loop feedback optimal

coordination give rise to essentially the same control strategies for

the lower level controllers. However, the gain matrices in the control

strategies are different.

Substituting in the right functions, equation (5.5.18) becomes

the following:

N
V(Y (k) ,k) = Max Min E{ I I x. ' (t)Q.x. (t)

i=l t=k "̂  ~1

k k+£-l
E. (k) ---- £ (k+Jl-DY . • • -Y

v(k) ,...,

+ u.1 (t)R.u. (t) + p.1 (t)v.(t) -p.1 (t)x.(t)
—a. — a. — i i —i i -T.

,k+£) |Y(k)} k = 0, £,..., T-fc (5.7.1)Q

V(VQ(T),T) = E{X'(T)FX(T) |YQ(T)} (5.7.2)
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We shall show that at each updating time k-= 0, £,...., T-J,,

the optimal cost to go as evaluated by the coordinator is given by

V(YQ(k), k) = x'(k|k)K(k)x(k|k) + b(k) (5.7.3)

where x_(k|k) is the estimate of the state of the system by the

coordinator given by equation (5.4.6)

K(k) is the solution to the Riccati equation for the entire

system.

b(k) is a precomputable scalar.

This will be proved by induction. First, we shall need the

following lemma.

Lemma 5.7.1; Let x_(k|k) and £(k|k) be as defined in Section 4.

Then for any positive definite matrix M_, and k > m,

E {x'(k|k)M x(k|k) Yn(m)} = E {x
1 (k)M x(k) Y. (m) } - trMZ(k|k)

^ _ "• U •"—i ^ "^ U """ ̂

(5.7.4)

Proof; -

E {x'(k|k)M i(k|k)|Y0(m)} = E {E{X'(k|k)M j£(k|k)|YQ(k)}|YQ(m)}

(5.7,5)

But

E {̂ '(k|k)M ̂ (k|k) |Y (k)} = E {x_'(k)M x(k) |Y0(k) } - tr M £_(k|k)

(5.7.6)

Since 2̂ (k|k) is independent of measurements

E {x~' (klk)M x"(k|k) Yft(m)} = E {x
1 (k)M x(k) Y.(m)} - tr M Z(k|k)

— ^^ O _ _ — Q — _

(5.7.7)
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Q.E.D.

The following theorem is related to the maximization problem

of the coordinator.

Theorem 5.7.2; Let J* (p_) denote the optimal cost for Problem 5.4.

Then

(1) Max J*(£) = jT1 (0)K(0)̂ (0) + c(0) (5.7.8)

£

where
N

c(0) = I c. (0)

T-l
c±(0) = tr K, (0)̂ (010) + I tr +

k=0

- K.(k))E.(k|k) + tr K.(k+l)S.(k) (5.7.9)-a —i ' —i —a

(2) the optimal p_* (k) is equal to -.X* (k+1) which corresponds

to the costate of the optimal deterministic control

problem for the entire system

(3) u.*(k) = - D.(k+1)(x.(k) -x.(k))—a. —a. —a. —1

- [T_ (k+l)B̂ K(k+l)A x_(k) ] . (5.7.10)

Proof; From Theorems 5.6.2 and 5.6.3, the optimal cost is given by

N _ _ _
J*(P) = I x.'(0)K.(0)x.(0) + 2r.'(0)x.(0) +s.(0)*- . fv. —i —a. —a. —i —i i

- r. ' (T)x". (T)—i —a

N
(0)K(0)x(0) + 2r_' (C

"1(T)[r(T) + i p(T-l)] (5.7.11)
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s.(0) is given by equation (4.5.6), and £(T) is given by (5.6.16).

If we retain the terms involving p_, we have the following constrained

maximization problem, (X(k) is as defined in Chapter 4).

- T ~ 1 1 1
Max A_'(l)Ax(0) + £ - £'(k)K <k)£ K (k)£(k)

k=l

+ A/ (k) K.'1 (k) £ K""1 (k) £(k)

- | A_' (k) [K"1 (k)£ If1 (JO + B R'V ] X_(k)

with respect to

Such that

(T) [if1 (T) -

£.(k) ? k=l , .... ,T-1

; k=l, ----- ,T

(5.7.12)

= A'Mk+1) - (I -

k=l,...,T-l (5.7.13)

Carrying out the maximization using Lagrange multipliers,

we obtain the same equations as in Theorem 4.5.1 except equation

(4.5.15) which now becomes

A d*(T-l) - K~1(T))X*(T) =0 (5.5.14)
^̂

Since

+ B (5.7.15)

we have

A Ot*(T-l) - (B + K~1(T))X*(T) = 0
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or

X_* (T) = K(T) [A a* (T-l) - B_ a"1*1!* (T) ]

(5.7.16)

This, together with X_* (k) , k=l,...,T-l, are the costates correspond-

ing to the optimal deterministic control problem for the entire

system with initial state x_(0) .

It can be verified (as in Section 4.5) that x.(k) given in
—x

equation (5.6.10) is the unconditional (a priori) estimate by the

coordinator. Equation (5.6.10) then becomes

u.*(k) = - D. (k+1) (x. (k) - x. (k)) - [ ( k + D B ' K t k + D A x (k) ] .
—a. —i —i — i — -- -- x

(5.7.17)

J* (p_) is given by equation (5.7.11). Substituting in the

optimal values for p_(0) , we obtain

£(0) = - i A'pJO) - (.£ - 2K~1(0))R(0)x(0)

(K(0) - K(0 ) )x (0 ) (5.7.18)

From Appendix C

N
I ̂ (0) + r_' (TjK̂ tT) [£(T) - | X^ (T) ] = c(0) + x/ (0)K(0)x(0)

- x. ' (0)K(0)̂ (0) (5.7.19)

Therefore

J*(p_*) = Max J*(p)

£

= JT1 (0) [K(0) + 2K(0) - 2K(0) - K(0) - K(0)]j[(0) + c(0)

= x1 (0)K(0)x|(0) + c(0) (5.7.20)
Q.E.D.
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With Lennna 5.7.1 and Theorem 5.7.2, equation 5.7.1 can now

be solved.

Theorem 5.7.3; The solution to equation (5.7.1) is given by

V(YQ(k),k) = i['(k|k)K(k)x(k|k) + b(k)

k = 0 ,£,... ,T-£ (5.7.21)

where x_(k|k) is the estimate of the state of the system by the

coordinator given by equation (5.4.7) .

IC(k) is the solution to the Riccati equation for the

entire system.

b(k) = b(k+£) - tr K (k+£) £(k+£ | k+£) -I- c(k) (5.7.22)

N k+£-l
c(k) = I {tr K^klk+^Z^tkjk) + I trXSk* A^K^t+ljfctvtjA^

i=l t=k

- ^ (t ;k+£) ) ̂  ( t | t) + tr K^ ( t+1 ; k+£) E^ ( t) }

(5.7.23)

Ki(t;k4-£) is given by

K. (k+£;k+£) = K. . (k+£) (5.7.24)

T.(t+l;k+£) = R. + B.'K.(t+l;k+£)B. (5.7.25)—a. —a. —a. —i —a.

b(T) = tr F £ (TJT) (5.7.26)

Proof; To solve for V(Y (T~£),T-£) we use Theorem 5.7.2, using the

statistics generated from Y (T-£) as the a priori information. From

equation (5.7.8) we thus obtain

V(YQ(T-£) ,T-£) = JC'(T-£|T-£)K(T-£)X(T-£|T-£) + b(T-£) (5.7.27)
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Suppose

V(YQ(k+£), k+£) = x'(k+£|k+£)K(k+£):x[(k+£|k+.e) + b(k) (5.7.28)

Then, using Lemma 5.7.1, equation (5.7.1) becomes

V(Y (k) ,k) = Max Min
If V4.P — 1

£(k) , . . . ,£(k+£-l) / , . . . ,X

v(k) , . . . ,

N k+£-l
(t) + ui'(t)Riu1(t)

+ x • (k+£) K (k+£) x (k+£) | Y. (k) }_• «•» _̂

+ b(k) - tr K(k+£)£(k+£k+£) (5.7.29)

From Theorem 5.7.2, with the common a priori statistics generated

by YQ(k), we thus have equations (5.7.21) to (5.7.25). (Q.E.D.)

We have demonstrated that at each updating time k, the lower

level controllers need only to solve a stochastic control problem up

to the next updating time k+£. However, this problem is not uncoupled

into N sub-problems even with the coordinating parameters p_ supplied

by the coordinator. To uncouple the sub-problems, the coordinator

has to send out an extra signal r_. (k+£|k) given by

r.(k+£|k) = I K. . (k+£)x. (k+£|k) (5.7.30)—i ' .*;. — ij — nD^i J

where

x(k+£|k) = E{ x (k+£) | YQ(k)} (5.7.31)

and can be generated from equation (5.4.10).
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Specifically, at the updating time k, the ith controller faces an

uncoupled problem with the following cost functional.

3fi(Y0(k),k) - E{ I ^

- £*' (t;k)x. (t) + x. ' (k-̂ )K. . (k+£)x.
*-i —a. — i — li — i

+ 2 ̂'(k+̂ lkjx̂ k-̂ )! YQ(k)} (5.7.31)

The coordinator generates x_(k|k), £(k|k) , r_(k+£|k) and p_*(t;k),

t « k,.. . ,k+£-l using equations (5.4.6), (5.7.30) and (5.4.9) and his

data Y.(k). Moreover, K. . (k+£) is also required by the ith controller.

These are transmitted to the lower level to define their uncoupled

decision problems specified by equation (5.7.31).

Using the results of Section 6, the optimal controls for the lower

level are found to be the following.

. For k £ t < k + I

u^Mt) - - D1(t+l;k-f£)(xi(t|t) - x̂ tlk)) - Ê t+Dĵ Cttk)

(5.7.32)

where E. (t+1) is the same as that given in Chapter 4.

D. (t+l;k+£) - T.~1(t-H;k+£)B.'K. (t+l|k+£)A. . (5.7.33)
—a — a — x — i —11

where T. (t+l;k+£) and K. (t+l;k+£) are given by equations (5.7.24) and
— i ~~i

(5.7.25).

x1. (tit) and x*. (tlk) have the same interpretation as in Section 4.—1 ' —a '

•̂(t.-k) is given by equation (5.4.9). Comparing with equation (5.4.3)

we see that equation (5.7.2) differs only in the gain matrix D. (t+l;k+l) .
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The part depending only on the coordinating parameters re-

mains the same. When 5.(t|t) - x.(t|k) is zero, then the coordinator

takes over the control completely and it is the same as that given

by a separation theorem (recall the result of Section 4) . Thus as-

ymptotically both open loop feedback optimal coordination and closed

loop optimal coordination give the same results.

Summarizing, closed loop optimal coordination differs from

open loop feedback optimal coordination in two respects.

(1) The lower level problems are easier to solve since the

time interval under consideration is shorter.

(2) The coordinator has to take into consideration the fact

that he will be gathering information in the future. This

results in a more sophisticated task of coordination.

Apart from the usual coordinating parameter p_ which has

to be transmitted and the state estimates, the coordinator

has to give each lower level controller both K..(k+£)

and r.(k+£|k).
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8. Discussion and Perspectives

In this chapter we have studied the on-line coordination of

dynamic systems when the coordinator collects measurements from the

lower level periodically. Two types of on-line coordination have

been considered: open loop feedback optimal and closed loop optimal.

Open loop feedback optimal coordination is conceptually simple and

ignores the availability of future measurements to the coordinator.

Essentially the coordinator and the lower level controllers have to

solve an off-line coordination problem at each updating time. For

the linear-quadratic-Gaussian case simple control strategies are

obtained which have nice physical interpretations. The control

strategy of each local controller has two parts: a part which depends

on the difference between his local estimate and the coordinator's

estimate about the state of his subsystem, and a part which depends

on the information of the coordinator.

Closed loop coordination assumes the availability of future

measurements to the coordinator. In general a functional equation

has to be solved by the coordinator. Even with the optimal coordi-

nating parameters, the lower level problems are not uncoupled between

updating times. In the linear-quadratic-Gaussian case/ these lower

level problems can be decomposed by the introduction of additional

coordinating parameters. The resulting optimal control strategies

are very similar to those obtained in open loop feedback optimal

coordination. In fact, only the gain matrices multiplying the

difference of the state estimates are different.



CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

In this thesis we have investigated ways of controlling a

large-scale system in a decentralized manner. The two important

aspects of computation and information are considered simultaneously.

It is found that for systems with a particular structure, control

strategies which utilize decentralized information can also be ob-

tained by decentralized computation.

In some problems, such a s the static optimization problem

considered in Chapter 2, the systems have this nice structure and

control strategies which are computationally and informationally

decentralized can be obtained right away. In some other problems,

like those coupled dynamic systems that we considered in Chapter 3,

4, and 5, this nice structure is not inherent. However, by con-

sidering another kind of optimality, the problem can be reformulated

to have that structure. It is then possible to identify two levels

of information structure, one belonging to the lower level controllers

and one belonging to the coordinator who sees that certain constraints

are satisfied. The problem can be solved in a two-level scheme.

The lower level problems are decomposed both informationally and com-

putationally when optimal coordinating parameters are transmitted

from the coordinator. The job of the coordinator is to find these

optimal coordinating parameters.

The appeal of this approach lies in the ease with which the

optimal strategies can be found. A high dimensional stochastic

-138-
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control problem is reduced to a number of lower dimensional problems.

Even for nonlinear problems, if the solutions to the lower level

problems are known, the solution for the entire problem can be con-

structed. By specializing to the linear-quadratic-Gaussian case,

we obtain control strategies which are physically intuitive.

We have also allowed the situation when the coordinator makes

measurements on-line. The control strategies obtained in Chapter 5

for open loop feedback optimal coordination and closed loop optimal

coordination provide alternative solutions to dynamic team problems

when some sharing of past information is allowed.

The whole area of research in the decentralized control of

large-scale systems is still wide open. Some areas which arise im-

mediately from this thesis are the following. In the static opti-

mization of stochastic systems, more work should be done to relate

the information available to the different decision agents and their

subsystems such that decomposition is possible. Results for the

existence of a decomposition and computational algorithms to arrive

at the decomposition are also desirable.

In dynamic systems, results are needed in comparing the kind

of optimality defined in this thesis with the usual kind of stochastic

optimality. Optimality seems to be related to how well the constraint

is satisfied. Intuitively, we would expect a system to be more op-

timal when the constraints are satisfied more exactly. It should be

possible to define a degree of coordination based on this constraint

such that optimality is related to the degree of coordination.
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In this thesis, the coordinator has complete a priori infor-

mation about the structure of the entire system. This leads to a

rather complicated decision task for the coordinator. An area for

future research will be the aggregation of a priori information and

its relation to performance.



APPENDIX A

SOME RESULTS IN PROBABILITY THEORY

In this appendix we summarize some definitions and results

in probability theory which have been used in this thesis. The

probability space under consideration is denoted by (X, B, ]i) .

P and F are sub-a- fields of B.

Def. A.I; F fl F is the smallest-a-f ield generated by A (] B ,

where A e F and B e F .

Lemma A.I; For any random variable t, if E{£|F } is measurable

with respect to 6, 6 C FQ, then E{£|FQ} = E{£|G> a.e.

Proof; Given any random variable L and a a-subfield G, the con-

ditional expectation E{£|G} is characterized by two conditions:

(a) It is measurable with respect to G; ,

(b) / EU|G}d n = / I d y
A • A

for every A e G (A.I)

E{£|F } is measurable with respect to G. Moreover,

for every B C FQ (A. 2)

Since G C F , (A. 2) is also true for every B e G

Thus E{£|F } satisfies equation (A.I), and E{£.|FQ} = E{£|G} a.e.

Q.E.D.
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Lemma A.2; Let y t>e a F H F - measurable function from X into U.

Let f be a measurable real-valued function on U x X. Then given

any y e X, there exists a function Y(-»y) measurable with respect to

F such that

E{f(Y(x),x)|FQ}(y) = E{f(Y(x;y),x)|F0}(y) a.e. (A.3)

Proof; We assume two conditions, which, for this thesis, will be

satisfied.

o
(1) There exists a regular conditional probability measure P (A)

(2) F and F are fields generated by functions h and hfi so that

Y being F 0 F - measurable is equivalent to

Y(x) = ri(h(x) , h0(x)) (A.4)

where ri is A x A - measurable on Z x ZQ

h : X •*• Z

V X * Z0

A and An are cf-fields on Z and Z_

Let Y(x;y) = n (h (x ) ,h Q (y ) ) . Then given y, y(.}y)

is F - measurable.

E(f(Y(x),x)|FQ}(v) = /x f(n(h(x),h0(x)),x)d P °(x)

« /Af(n(h(x),h0(x)),x)d P °(x)

+ /x_Af(y(h(x),hQ(x)) ,x)d Py°(x) (A.5)

where

A = {x;h0(x) = hQ(y)} e FQ (A.6)
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Given A £ F , for all B e FQ Csee Ref. {L4])

/n P ° (A)d U(y) = u(AfiB) - / l.(x)d U(x) (A.7)
o y D A

Therefore for all A e F ,

P °(A) = l,(y) for almost all y (A.8)

where 1 is the indicator funtion of A.
/\

From equation (A.6), y e A. Thus

P °(A) =1 for almost all y (A.9)

Equation (A.5) then becomes

E{f(y(x) ,x)|FQ}(y) = /A f(n(h(x),h0(x)),x)d Py° (x)

= /x f(n(h(x),h0(y)),x)d Py° (x)

= E{f(Y(x;y),x)|F0}(y) (A.10)

Q.E.D.

Remark: If F = {x, $} then this result reduces to the usual identity

E{f(y(x),x)|FQ}(y) = E{f(y(y),x)|FQ}(y) (A.11)

For a discussion of substitution in conditional expectation, see [Bl].

Lemma A.3: Let f(u,v,y,z,x) be a function such that x,y,z are

random variables. Suppose it is desired to choose u(y,z) and v(y)

such that E{f(u(y,z),v(y),y,z,x)} is minimized.

Let u°(y,z), v°(y) be the minimum of

Min E{f(u,v(y),y,z,x)|y,z>
u
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Then

Min E{f(u(y,z),v(y),y,z,x)} = E{f(u°(y,z),v°(y),y,z,x)}

= E{Min E{f(u,v(y),y,z,x)|y,z}}
u
v(.) (A.12)

Proof:

E{f(u°(y/z),v°(y),y,z,x)|y,z> <̂  E{f(u(y,z),v(y),y,z,x)|y,z}

for all u(.,.)fV(.)

(A.13)

Thus

E{f (u°(y,z) ,v°(y) ,y,z,x)} =• E{E{£ (u° (y,z) ,v° (y) ,y,z,x) |y,z}}

<_ E{f(u(y,z) ,v(y) ,y,z,x)} for all u(.,.),v(.)

(A.14)

or

E{f (u°(y,z) ,v°(y) ,y,z,x)} <_ Min E{f (u(y,z) ,v(y) ,y,z,x)}

(A.15)

But

Min . E{f (u(y,z) ,v(y) ,y,z,x)> <_ E{f (u° (y,z) ,v° (y) ,y,z,x) }

(A.16)

Hence we obtain equation (A.12)

Q.E.D.



APPENDIX B

INVERTIBILITY OF K. (k) AND VERIFICATION OF EQUATION (4.4.32)
—1

1 . Invertibility of K (k)

where

Ŝ k+1) = K.̂ k+1) - Ki(k+l)B_iT_i~
1(k+l)Bi

1Ki(k+l) (B.2)

If K. (k+1) > 0, then K.tk+l) exists— i — —i

S.(k+l) = [K.'̂ k+l) + B.R.'V 'J'1 (B.3)— i —i —i—i —i

- -

If 2« > 2.' then K. (k) > £

Therefore by induction K. (k) is invertible.

Remark: 2.- > 2. ^s sufficient but not necessary. If A. . > Q_

then K. (k) > 0
— i —

2. Verification of Equation (4.4.32)

. 'K. (k+1) S."1 (k+1)—a. —i —i

T.~1(k+l)B. 'K. (k+1) [K."1(k+l) + B.R.
—i —i —i —i —i—i

T.'̂ k+lHR. + B. 'K. ..—i —a. —i —i —i —i —i

R . B . ' (B.5)
—i —i
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APPENDIX C -

VERIFICATION OF EQUATION (5.7.19)

T-l
1. Y tr Q.E. (klk) + tr K. (k+1) [E. (k+1 Ik) - E. (k+1 | k+1)]

k=0 ~1 -a. -x ' -i '

+ tr K. (T)E. (T|T)— — '

T-l
I tr p^E^klk) + tr K.̂ k+1) [Â Ê  (k | k) Ai;L ' - ̂
k=0

T-l
I tr<2.i + ̂ '̂ (k+DÂ Ê tklk) + tr K̂ (k+l)= (k)
k=0

- tr K. (k+l)E.(k+l|k+1) + tr K.(T)E.(T|T)—a. —i ' —i —a. '

+ tr 2̂ (0)1̂ (010) - tr K^OJE^OJO)

T-l
I tr(2i + ̂'̂ (k+l)̂  -^(kJjE^tklk)
k=0

+ tr Ki(k+l)5i(k) (C.I)

c±(0)

2. From equation 4.5.6,

N T-l
I s.(0) = ̂ '(OA'ftDA x(0) + c(0) + I - £'(k)K~1(k)£K~1(k)r_(k)
i=l k=l

+ A*' (T)K~1(T)r(T) (C.2)
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From jequation (4.4.37)̂

£(k) = - K(k)x(k) + i X*(k) k=l,...,T-l (C.3)

From equation (5.6.16)

r(T) = - | X*(T) - i KCDK'-'-CnX* (T) (C.4)
— ^ •— ^ — — ~ —

Thus ,

N
I s. (0) + r/ODK'-'-Or) [£(T) - i X^

2

= c(0) + x'(0)A'sa)A x(0)

T-l _ _
- I {x'(k)£x(k) + i X:*'(k)£R~

1B'X*(k)}
k=l 4

- | i* ' (T) [B R'-'-B ' + K^CTJlXj*^) (C.5)

But

= K(0) - (C.6)

i X*'(k)B R"1B'X*(k) = (i R~1B'X*(k)) 'R(i R~1B'X*(k))
4 ~~ •"* •"• "*•' ~" ^ "•" — — — ^ — ^

= u*1 (k-l)R u*(k-l) k=l,...T (C.7)

| X_*'(T)K~1(T)X*(T) = (| K"1 )̂̂ *̂ )) 'K(T) (| K"1 (T) X_* (T)

= x'(T)K(T)x(T) (C.8)

where vi* (k) is the optimal control with initial state x_(0) .
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Therefore

N
S;L(0) + £'{T)K~ (T)[r(T) - | X * ( T ) ]

_ _ _ _

= c(0) + x ' (0)K(0)x(0) - I x1 (k)£. x.(k)
k=0

+ u*' (k)R u* (k) + ^' (T)K(T)x(T)

= c(0) + ^'(0)K(0)^(0) - x1 (0)K(0)x(0)

= c(0) + r '(0)[K(0) - K(0)]^(0) (C.9)

Q.E.D.



APPENDIX D

VERIFICATION OF EQUATION (5.6.22)

u.*(k) = - R^Xk.-k) (D.I)

From (5.4.9)

£*(k;k) = - 2 K(k+l)x(k+ljk)

= - 2 K(k+l) [A j[(k|k) + B u*(k)] (D.2)

Therefore

Ru*(k) = B'K(k+l) [A x(k|k) +B_u*(k)] - (D.3)

or

u*(k) = ̂ (k+DB̂ 'Ktk+DA )T(k|k) (D.4)

Q.E.D.
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