THE DEVELOPMENT OF A STOCHASTIC MODEL OF THE ATMOSPHERE BETWEEN 30 AND 90 KM TO BE USED IN DETERMINING THE EFFECT OF ATMOSPHERIC VARIABILITY ON SPACE SHUTTLE ENTRY PARAMETERS

by

Janet W. Campbell

Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Statistics

APPROVED: R. G. Krutchkoff, Chairman

A. D. Sullivan

R. H. Myers

W. B. Olstad, NASA

March 1973

Blacksburg, Virginia
NOTICE

This document has been reproduced from the best copy furnished us by the sponsoring agency. Although it is recognized that certain portions are illegible, it is being released in the interest of making available as much information as possible.
A stochastic model of the atmosphere between 30 and 90 km was developed for use in Monte Carlo Space Shuttle entry studies. The model is actually a family of models, one for each latitude-season category as defined in the 1966 U. S. Standard Atmosphere Supplements. Each latitude-season model generates a pseudo-random temperature profile whose mean is the appropriate temperature profile from the Standard Atmosphere Supplements. The standard deviation of temperature at each altitude for a given latitude-season model is estimated from sounding-rocket data. Departures from the mean temperature at each altitude are produced by assuming a linear regression of temperature on the solar heating rate of ozone. A profile of random ozone concentrations is first generated using an auxiliary stochastic ozone model, also developed as a part of this study, and then solar heating rates are computed for the random ozone concentrations.

Pressure and density profiles are calculated from each temperature profile by solving simultaneously the hydrostatic equation and the
equation of state. Isopynic layers, regions where atmospheric density is almost constant, are created at 24 and 90 km altitudes by using these two altitudes as boundary points in integrating the hydrostatic equation.

A computer tape of 442 sounding-rocket measurements of the atmosphere above 35 km was used to estimate parameters in the temperature distribution, and to compare the data's statistical characteristics with those of the model. The rocket soundings were sorted according to latitude-season categories and adjustments were made to assure independence of profiles. Because the resultant sample sizes were small, confidence intervals associated with the sample statistics were so wide that comparisons of these statistics with model statistics were inconclusive.

The model was used in Monte Carlo simulations of Shuttle entries to study the effect of atmospheric variability on the Shuttle entry parameters: maximum dynamic pressure, maximum stagnation-point heating rate, maximum g-load, final down-range distance, and final cross-range distance. A sample of 1000 entries was generated for each of the four seasons in the 30° latitude band, and the resultant parameter distributions were analyzed to determine parameter values. In general, autumn and winter parameter distributions showed more dispersion than spring and summer distributions, because the autumn and winter atmosphere models were more variable than the spring and summer models. Pearson distributions were fitted to the empirical distributions, and design values obtained in this manner were compared with the traditional "three-sigma" design values.
ACKNOWLEDGMENTS

For their approval and support of her graduate program, the author wishes to thank the management staff of the National Aeronautics and Space Administration's Langley Research Center, and, in particular, the Graduate Studies Committee, the Training Office, and her supervisors in the Space Systems Division.

Individuals who deserve specific acknowledgments are:

- Dr. Richard G. Krutchkoff, the author's major advisor, for his assistance with the stochastic modeling and simulation techniques,
- Mr. Paul F. Holloway, NASA - Langley, for suggesting the topic and for his assistance with the Shuttle trajectory portion,
- Dr. Walter B. Olstad, NASA - Langley, for his review of the dissertation, particularly the material relating to atmospheric physics,
- Dr. O. E. Smith and his associates at NASA's Marshall Space Flight Center for their advice concerning atmospheric modeling,
- Dr. James M. Russell, NASA - Langley, for suggesting the use of Green's ozone formula,
- Dr. Robert E. Boughner, NASA - Langley, for his assistance with the radiative heating model, and
- Dr. James F. Campbell, the author's husband, for believing in Women's Liberation.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Title Page</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgments</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iii</td>
</tr>
</tbody>
</table>

Chapter

I. Introduction .. 1

II. Atmospheric Models and Modeling Techniques 7

 A general description of the atmosphere 7

 Physical laws relating atmospheric temperature, pressure and density 12

 Deterministic empirical models 13

 Deterministic theoretical models 16

 Stochastic models ... 19

III. The Atmospheric Temperature Model 25

 The source of temperature variation 25

 Radiative heating rates .. 30

 Model linking temperatures to solar heating rates 33

IV. The Ozone Model .. 39

 The ozone model below 50 km 40

 The ozone model above 50 km 48

V. Comparison of the Model with Data 59

 The MRN data tape .. 59

 Comparison of model temperatures with data 61

 Comparison of model densities and pressures with data 74
TABLE OF CONTENTS (continued)

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conclusions</td>
<td>83</td>
</tr>
<tr>
<td>VI. The Effect of Atmospheric Variability on Five Important</td>
<td>85</td>
</tr>
<tr>
<td>Space Shuttle Entry Parameters: An Application of the Model</td>
<td></td>
</tr>
<tr>
<td>A two-dimensional random density model</td>
<td>86</td>
</tr>
<tr>
<td>Procedure</td>
<td>90</td>
</tr>
<tr>
<td>Results and discussion</td>
<td>92</td>
</tr>
<tr>
<td>Conclusions</td>
<td>104</td>
</tr>
<tr>
<td>VII. Summary and Conclusions</td>
<td>106</td>
</tr>
<tr>
<td>Summary</td>
<td>106</td>
</tr>
<tr>
<td>Concluding observations</td>
<td>110</td>
</tr>
<tr>
<td>References</td>
<td>113</td>
</tr>
<tr>
<td>Appendix A. Equations for Calculating Atmospheric Properties</td>
<td>117</td>
</tr>
<tr>
<td>Governing equations</td>
<td>117</td>
</tr>
<tr>
<td>Solving for ρ and P given a temperature-altitude profile</td>
<td>118</td>
</tr>
<tr>
<td>Solving for z and ρ given a temperature-pressure profile</td>
<td>120</td>
</tr>
<tr>
<td>Appendix B. Equations for Calculating Solar Heating Rates</td>
<td>122</td>
</tr>
<tr>
<td>Ozone absorption coefficients</td>
<td>123</td>
</tr>
<tr>
<td>Solar heating rates</td>
<td>125</td>
</tr>
<tr>
<td>Calculating optical thicknesses</td>
<td>127</td>
</tr>
<tr>
<td>Appendix C. Estimating the Parameters in Green's Formula</td>
<td></td>
</tr>
<tr>
<td>Using Ozonagrams</td>
<td>130</td>
</tr>
<tr>
<td>Criteria for a good fit</td>
<td>131</td>
</tr>
<tr>
<td>Calculating the shaping parameter A</td>
<td>131</td>
</tr>
<tr>
<td>Calculating $P_0^$ and $P^$</td>
<td>132</td>
</tr>
<tr>
<td>Appendix D. Equations for Fitting Pearson Distributions to Data</td>
<td>135</td>
</tr>
<tr>
<td>The Pearson Type I distribution</td>
<td>139</td>
</tr>
<tr>
<td>The Pearson Type II distribution</td>
<td>140</td>
</tr>
<tr>
<td>The Pearson Type III distribution</td>
<td>141</td>
</tr>
<tr>
<td>The Pearson Type IV distribution</td>
<td>141</td>
</tr>
<tr>
<td>The Pearson Type V distribution</td>
<td>142</td>
</tr>
<tr>
<td>The Pearson Type VI distribution</td>
<td>143</td>
</tr>
<tr>
<td>The Pearson Type VII distribution</td>
<td>144</td>
</tr>
<tr>
<td>The Normal distribution</td>
<td>144</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

In evaluating the performance of various aerospace entry vehicle designs, a major tool has been the use of entry trajectory computer programs. The majority of these programs use the U. S. Standard Atmosphere, [1], to furnish atmospheric temperatures, densities, and pressures as a function of altitude. These tables, published in 1962 by the Committee on Extension to the Standard Atmosphere (COESA) representing 29 U. S. scientific and engineering organizations, were developed as a means of standardizing aircraft and spacecraft engineering calculations. The basis of the tables is an annual mean temperature profile located at 45° N. latitude. Thus, the atmospheric properties furnished by the U. S. Standard Atmosphere are reasonably close to conditions during the spring and fall months at 45° N. latitude but are not representative of winter and summer properties nor those at different latitudes. In 1966, COESA published the U. S. Standard Atmosphere Supplements, [2], which contains seasonal atmospheric tables for 30°, 45°, 60°, and 75° N. latitudes and a set of annual mean profiles for 15° N. latitude.

Although these standard atmospheric tables are valuable for calculating nominal trajectories and for providing a basis of comparison for engineering calculations made by different individuals, they are inadequate for determining the impact of extreme atmospheres on a vehicle's performance. In designing a spacecraft it is necessary to establish a performance envelope within which all flight parameters are expected
to lie with high probability regardless of environmental extremes. Once this envelope is determined, one can establish a set of design criteria stating the extreme loads or stresses which an entry vehicle must be able to withstand.

In past design studies on atmospheric entry vehicles, a common method for obtaining a performance envelope (e.g., [3] and [4]), was to calculate trajectories using both maximum and minimum atmospheric density profiles as shown in Figure 1.1. Generally these are profiles in which atmospheric density is three standard deviations above or below its mean at all altitudes simultaneously. This method has two major disadvantages. One is that since density profiles such as these never occur in any real atmosphere, a design parameter based on this method might be overly conservative and, thereby, require unnecessary expense. A second disadvantage, more critical than the first, is that these extreme density profiles do not produce extremes in all entry parameters. For example, with some spacecraft a more severe total heat load is produced when atmospheric density is extremely low during the initial phase of entry and suddenly becomes extremely high at lower altitudes [5]. The reason for this severity is that the initial low density causes less deceleration than is normal, and thus the spacecraft encounters an extremely dense atmosphere while traveling at an unusually high velocity.

To account for the fact that extremes in the various entry parameters are produced by different atmospheric situations, an alternate deterministic approach, [6], has been to determine analytically for each performance parameter the atmospheric profile which produces an extreme in
Figure 1.1 - "Extreme" atmospheres used in entry vehicle design studies.
that parameter, and then design the vehicle to withstand that extreme. As with any deterministic approach, however, this has the disadvantage that any specific atmospheric profile has a zero probability of occurrence, and thus the design may be overly conservative. Furthermore, the degree of conservatism cannot be ascertained since no knowledge is provided as to the probability of encountering atmospheric profiles similar to the design atmosphere.

The disadvantages associated with deterministic methods are strong justification for using statistical methods in establishing design criteria. A Monte Carlo entry study based on realistic random atmospheres can be used to estimate the statistical distribution of any entry parameter. Then a parameter's design value can be selected for any desired risk or exceedance probability. The optimum design criterion is one in which the risk associated with its design value is a compromise between safety and cost. That is, its risk should be low enough to provide a high measure of safety but not so low as to make the design impossible or unnecessarily expensive.

The next major space transportation system of the future, the Space Shuttle, is currently in the design stage. One major innovation in this new system is that the Shuttle will be capable of returning from orbit and landing much like today's conventional aircraft. Thus, the Shuttle can be reused, and the waste of disposing with spacecraft will be eliminated. With the advent of this reusable spacecraft, however, it has become much more important to have a good estimate of the probability of exceeding any design value. For example, when a spacecraft
was used only once it was not so critical to distinguish between a failure probability of .005 and one of .001. With the Shuttle having an expected lifetime of 100 missions, however, the difference between single-flight failure probabilities of .005 and .001 makes the difference between a 40 percent and a 10 percent chance of at least one failure during the lifetime of the Shuttle. This, therefore, is further justification for using the best available statistical techniques in design studies to acquire as much confidence as possible in reliability estimates.

In order to do Monte Carlo simulations of Shuttle entries, it was necessary to develop a stochastic atmosphere model capable of rapidly generating realistic atmospheric profiles. The author has accomplished this for the altitude region between 30 and 90 km, the region of greatest impact on Shuttle entry design considerations. This model uses a combination of empirical and theoretical techniques to derive a pseudo-random altitude profile of atmospheric temperature. The mean temperature at each altitude is defined empirically, and variations about the mean are explained, in part, by theoretical considerations. An auxiliary stochastic model of atmospheric ozone concentrations, also developed as a part of this study, is used to produce variations in solar heating rates, which are then linked to temperature variations via a linear regression model. Since the three thermodynamic properties of the atmosphere, temperature, density, and pressure, are related by two physical equations, it is possible to calculate any two quantities given an altitude profile of the third. Therefore, this model is fundamentally a stochastic model of atmospheric temperature, and pressure and
density profiles are obtained by using the pseudo-random temperature profiles provided by the model to solve two deterministic equations.

A review of atmospheric modeling techniques and current models is presented in Chapter II. Chapter III describes the development of the temperature model, and Chapter IV presents the auxiliary stochastic ozone model mentioned above. Chapter V presents the statistical characteristics of all three atmospheric profiles generated by the model (i.e., temperature, density, and pressure), and compares these with data obtained from Meteorological Rocket Network soundings. Chapter VI describes a Monte Carlo Shuttle entry study based on the present model. The model was used to furnish one pseudo-random density profile at the beginning of each entry simulation. In order to be realistic, since the Shuttle follows a long shallow entry path, it was necessary to add a horizontal variation to atmospheric density. This is also discussed in Chapter VI. Chapter VII begins with a summary of what has been accomplished, points out directions for improvement and future work, and states several conclusions regarding the overall approach.
II. ATMOSPHERIC MODELS AND MODELING TECHNIQUES
SURVEY OF LITERATURE

A general description of the atmosphere

For the purposes of entry studies it will be assumed that the atmosphere extends to an altitude of 90 km (~300,000 ft). Aside from the fact that only .0001 percent of the atmosphere lies outside this radius, 90 km is a convenient upper limit for the atmosphere because at that altitude the relative proportions of the various constituents begin to vary, making it more complicated to relate temperature, density, and pressure. Below 90 km the molecular weight of air is essentially constant (28.964 kg), reflecting a constancy in the relative proportions of its principal constituents (see Table 2.1). As the molecular weight of air begins to vary above 90 km, this quantity becomes a fourth variable in the equation of state. Furthermore, the hydrostatic equation relating pressure and density begins to fail, and, therefore, the mathematical relationships between temperature, density and pressure used below 90 km become invalid above that altitude.

Figure 2.1 shows a general schematic diagram of the atmosphere and its various layers. The temperature profile shown here is that which forms the basis of the U. S. Standard Atmosphere, [1]. It is a piecewise linear approximation to a mean temperature profile obtained by averaging over temperatures from all seasons and latitudes. The various layers of the atmosphere indicated in Figure 2.1 are distinguished according to whether the rate of change of temperature with height is
Table 2.1 - Composition of Dry Air
Below 90 km

<table>
<thead>
<tr>
<th>Constituent gas and formula</th>
<th>Content, percent by volume</th>
<th>Content variable relative to its normal</th>
<th>Molecular weight*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen (N₂)</td>
<td>78.084</td>
<td>-</td>
<td>28.0134</td>
</tr>
<tr>
<td>Oxygen (O₂)</td>
<td>20.9476</td>
<td>-</td>
<td>31.9988</td>
</tr>
<tr>
<td>Argon (Ar)</td>
<td>0.934</td>
<td>-</td>
<td>39.948</td>
</tr>
<tr>
<td>Carbon dioxide (CO₂)</td>
<td>0.314</td>
<td>†</td>
<td>44.00995</td>
</tr>
<tr>
<td>Neon (Ne)</td>
<td>0.001818</td>
<td>-</td>
<td>20.183</td>
</tr>
<tr>
<td>Helium (He)</td>
<td>0.000524</td>
<td>-</td>
<td>4.0026</td>
</tr>
<tr>
<td>Krypton (Kr)</td>
<td>0.000114</td>
<td>-</td>
<td>83.80</td>
</tr>
<tr>
<td>Xenon (Xe)</td>
<td>0.0000087</td>
<td>-</td>
<td>131.30</td>
</tr>
<tr>
<td>Hydrogen (H₂)</td>
<td>0.00005</td>
<td>?</td>
<td>2.01594</td>
</tr>
<tr>
<td>Methane (CH₄)</td>
<td>0.0002</td>
<td>†</td>
<td>16.04303</td>
</tr>
<tr>
<td>Nitrous oxide (N₂O)</td>
<td>0.0005</td>
<td>-</td>
<td>44.0128</td>
</tr>
<tr>
<td>Ozone (O₃)</td>
<td>0 to .00002</td>
<td>†</td>
<td>47.9982</td>
</tr>
<tr>
<td>Sulfur dioxide (SO₂)</td>
<td>0 to 0.0001</td>
<td>†</td>
<td>64.0628</td>
</tr>
<tr>
<td>Nitrogen dioxide (NO₂)</td>
<td>0 to 0.000002</td>
<td>†</td>
<td>46.0055</td>
</tr>
<tr>
<td>Ammonia (NH₃)</td>
<td>0 to trace</td>
<td>†</td>
<td>17.03061</td>
</tr>
<tr>
<td>Carbon monoxide (CO)</td>
<td>0 to trace</td>
<td>†</td>
<td>28.01055</td>
</tr>
<tr>
<td>Iodine (I₂)</td>
<td>0 to 0.000001</td>
<td>†</td>
<td>253.8088</td>
</tr>
</tbody>
</table>

*On basis of carbon-12 isotope scale for which C¹² = 12.

†The content of the gases marked with a dagger may undergo significant variations from time to time or from place to place relative to the normal indicated for those gases.
Figure 2.1 - Atmospheric layers based on 1962 U. S. Standard Atmosphere.
negative or positive.

The troposphere is the region beginning at the earth's surface in which temperatures decrease as altitude increases. This region contains approximately 99.8 percent of the atmosphere's precipitable water and, accordingly, contains the weather systems which affect surface conditions. The stratosphere is the region of increasing temperatures between \(-10\) km (the tropopause) and \(~50\) km (the stratopause), and the mesosphere, extending to \(~90\) km (the mesopause), is a second region of decreasing temperatures. The lowest temperatures in the atmosphere occur at the mesopause. Up to an altitude of about 65 km, summer temperatures exceed winter temperatures. However, between 65 and 110 km summer temperatures are lower than winter temperatures with an annual difference of as much as \(60^\circ\) K occurring at the mesopause.

The isothermal tropopause, stratopause and mesopause regions depicted on Figure 2.1 do not represent the shape of real temperature profiles. They result from the averaging of temperature profiles in which the tropopause, stratopause and mesopause occur at distinct variable altitudes.

The thermosphere begins at the mesopause and extends upward to an undefined height. Here temperatures increase exponentially with altitude until they reach an asymptotic value, known as the exospheric temperature, which ranges between 600 and 2000\(^\circ\) K depending on the amount of solar activity.

This partitioning of the atmosphere into a troposphere, stratosphere, mesosphere, and thermosphere is based on the temperature structure.
Another classification dividing the atmosphere into an ionosphere and a neutrosphere, above and below 80 km, respectively, is based on the fact that above ~80 km the air is highly ionized by high-frequency solar radiation. Another dual system divides the atmosphere at 90 km according to whether the molecular weight of air is constant (homosphere) or variable (heterosphere). In this study, the temperature-based system will be used.

The shape of the temperature profile can be explained in terms of the various heating and cooling mechanisms which exist at different altitudes. The temperature "bulge" in the stratosphere and mesosphere results from the absorption of solar radiation by ozone, a gas which is formed by photochemical processes in that region of the atmosphere. Although ozone is a minor constituent, in terms of its relative concentration, it plays a vital role in controlling the nature of our atmosphere. It absorbs virtually all of the sun's extremely high frequency radiation, wavelengths less than ~3000 Å, and thereby shields the earth's surface from potentially harmful ultraviolet radiation, X-rays, and gamma rays.

Mechanisms which create the tropospheric temperature structure are more complicated than those in the stratosphere and mesosphere. Approximately 50 percent of all solar radiation reaches the earth's surface, and 90 percent of this incident radiation is absorbed. Heat from the surface is then transferred to the air adjacent to the surface, and water at the surface evaporates. As this moist heated air rises, it cools, becomes saturated, and eventually its moisture condenses, thus releasing heat into the atmosphere. These vertically moving air masses, together
with horizontal winds and radiative processes, govern the temperatures in the troposphere.

This combination of conductive, convective, and radiative processes, plus the heat exchanges resulting from evaporation and condensation, make the troposphere an extremely difficult region to model. Fortunately, however, the region of most importance for Shuttle entry considerations is the region between 30 and 90 km, the upper stratosphere and mesosphere, where maximum heating rates, g-loads, and dynamic pressures occur. The present discussion of modeling techniques and current models will be limited to those which pertain, at least partially, to this region.

Physical laws relating atmospheric temperature, pressure, and density

There are two well-established laws relating the thermodynamic properties of temperature, \(T \), pressure, \(P \), and density, \(\rho \). The equation of state of an ideal gas (Perfect Gas Law) is given by

\[
\rho = \frac{MP}{KT}
\]

(2.1)

where \(K \) is the universal gas constant and \(M \) is the molecular weight of air. The hydrostatic equation, relating the rate of change in atmospheric pressure to density, is expressed as

\[
dP = -g\rho \, dz
\]

(2.2)

where \(z \) is altitude and \(g \) is the acceleration due to gravity, a deterministic quantity which depends on the distance from its point of application to the center of the earth. The hydrostatic equation
expresses the fact that the difference in pressure between two altitudes is equal to the weight of air in a vertical column of unit cross-sectional area contained between those altitudes. This relationship assumes that the atmosphere is static relative to the earth, an assumption which may be made below ~90 km.

Appendix A gives the simultaneous solution of (2.1) and (2.2) which is used to derive the pressure and density profiles corresponding to a given temperature profile. It also contains an equation used in this study for calculating \(g \) as a function of latitude and altitude.

Most atmospheric models either assume or derive one atmospheric profile (e.g., temperature, density, or pressure) and then calculate the remaining two using the equation of state, (2.1), and the hydrostatic equation, (2.2). The models vary according to which profile is the one used as a basis and according to whether that profile is empirically constructed from experimental data or is derived from a set of theoretical laws. The two latter classifications, empirical versus theoretical, will be discussed separately.

Deterministic empirical models

Probably the best known empirical atmosphere models are the 1962 U. S. Standard Atmosphere, [1], and the 1966 U. S. Standard Atmosphere Supplements, [2]. These are temperature-based models which assume piecewise linear temperature profiles approximating the means of experimental data. These assumed temperature profiles are then used to tabulate values of pressure, density, speed of sound, coefficient of viscosity,
thermal conductivity and other gas properties for altitudes at one-
kilometer intervals between 0 and 120 km. These tables are used for
general engineering purposes. For more specialized applications such
as trajectory analyses of launches from Cape Kennedy, Vandenburg, Wallops
Island, etc., reference atmospheres for these and other sites have been
tabulated, (e.g., [7], [8], and [9]).

Empirical models are sometimes called "statistical" models when, in
addition to including means of the various properties, they also include
standard deviations and other sample statistics. An example of such a
"statistical" model is reference [10] where Theon, et al., present a
summary of statistics based on 208 temperature soundings made between
1960 and 1968.

Many so-called "models" are actually data summaries such as
reference [11]. This is an example of the monthly data reports on
Meteorological Rocket Network soundings at selected sites around the
world. Besides giving the individual profiles measured during the
month, they also list, for each site, the means and standard deviations
of all the accumulated data taken during that month since 1961. The
various Meteorological Rocket Network sites are shown in Figure 2.2.

As the quantity of data increases each year, global atmosphere
models are being developed which account not only for seasonal and
latitudinal variations, but also for longitudinal or time-of-day vari-
atations. The model presented by Weidner, Chambers and Lou, [12] is a
preliminary one resulting from a study initiated in 1968 to develop a
global model of the atmosphere above 25 km for NASA design criteria
Figure 2.2 - Location of Meteorological Rocket Network launch sites.
purposes. This can be used with another global model developed by Spiegler and Fowler, [13], for the first 25 km. Another model developed specifically to provide a three-dimensional atmosphere for long horizontal Shuttle trajectories is that of Bowman [14].

Deterministic theoretical models

The models described above were classified as "empirical" because they rely largely on experimental data to provide values of temperature, density and pressure as a function of height. In some cases, [11], they are simple tabulations of data, whereas in other cases, [14], polynomials or other such curves have been fitted to the data to give mathematical representations of the atmospheric profiles. Such empirical models are valuable as engineering tools in that they provide the best estimate of atmospheric conditions. Theoretical models, on the other hand, such as those of Goody, [15], Harris and Priester, [16], and Kuhn, [17], attempt to explain observed properties using physical laws and hypotheses. Although good representations of the atmosphere are achieved, these models never completely reproduce the atmosphere's structure, many characteristics of which are not yet fully understood. Such models are important to the physicist as they enable him to explain observed phenomena, but as engineering tools, theoretical models are, in general, computationally too cumbersome, and the properties they predict are not as accurate as those of empirical models. Only those theoretical techniques and models which influenced this development will be discussed here. For an excellent general history of atmospheric temperature
modeling techniques, the reader is referred to Kuhn, [17].

Probably the most common approach to describing the atmosphere theoretically has been to calculate a temperature profile using the assumption that the atmosphere is in radiative equilibrium (e.g., Manabe and Møller, [18], and Manabe and Strickler, [19]). Although equilibrium temperature profiles of this type approximate observed temperature profiles, (see Figure 2.3), they cannot agree perfectly because the atmosphere is not actually in radiative equilibrium. In reality, there are regions which act as heat sources and sinks thus accounting for known global circulation patterns. The atmosphere is, however, close to radiative equilibrium, particularly in the stratosphere [15], and thus radiative processes explain, to a great extent, the temperature structure.

Instead of calculating equilibrium temperatures, an alternate approach was that used by Kuhn, [17]. He assumed a mean temperature profile and then calculated the corresponding infrared heating and cooling rates in the upper stratosphere and mesosphere. His infrared heating and cooling rates added to the solar heating rates of Murgatroyd and Goody, [20], give a net heat balance for the atmosphere which agrees well with known circulation patterns.

One major characteristic of any modeling technique based on radiation theory is its computational difficulty. The radiative transfer equation is a multiple integral equation requiring a numerical solution. Seemingly minor simplifying assumptions can often have disastrous effects on the predicted temperature profile or heating and cooling rates, [17].
Figure 2.3 - Comparison of radiative equilibrium temperature profiles with 1962 Standard temperature profile.
Thus, radiative transfer calculations, in general, are not suitable for use in a stochastic model required to generate large numbers of temperature profiles rapidly. However, energy transfer calculations involving only solar radiation are much simpler, and these have been incorporated into the present stochastic model.

Stochastic models

Historically one of the first statistical treatments of atmospheric properties was made by Dines, [21], in 1919. Using the equation of state of an ideal gas, (2.1), and the assumption that in the atmosphere departures from the mean temperature, density and pressure are small in comparison with these means, Dines derived the approximate relations

\[C_{\rho} = C_{\rho}(P\rho) - C_{\rho}r(\rho T) \]
\[C_T = C_{\rho}(P\rho) - C_{\rho}r(\rho T) \]
\[C_P = C_{\rho}(P\rho) + C_{\rho}r(PT) \]

where \(C_{\rho} \), \(C_T \), and \(C_P \) are the coefficients of variation of \(\rho \), \(T \), and \(P \), respectively, and \(r(\cdot \cdot) \) denotes a correlation coefficient between the two indicated quantities.

In 1954, Buell, [22], used these relationships in conjunction with the hydrostatic equation to derive an expression for the vertical gradient of \(\sigma(P) \), the standard deviation of pressure. His expression is given by

\[\frac{d\sigma(P)}{dz} = -g \sigma(\rho) r(\rho P) \]

(2.4)
where $\sigma(\rho)$ is the standard deviation of density. According to this relationship, $\sigma(P)$ should be maximum or minimum at altitudes where $r(P\rho) = 0$.

Dine's work has recently been applied by Smith, et al., [23], to a modern problem relating to aerospace vehicle design criteria. Smith and his associates solved equations (2.3) for the correlation coefficients $r(\rho T), r(P\rho), \text{ and } r(PT)$, using experimental measurements of $C_\rho, C_T, \text{ and } C_p$ at different altitudes. Their results are shown in Figure 2.4. They propose that these correlation coefficients be used to determine the appropriate combination of $P, \rho, \text{ and } T$ when one of these properties is taken to be extreme. For example, $r(PT)$ can be used to determine the appropriate value of temperature to accompany an extreme pressure. This approach is valuable in design problems where atmospheric properties are needed at a fixed altitude, e.g., along horizontal flight paths. In such cases, vertical atmospheric profiles are not known, and hence the hydrostatic equation is not applicable.

A number of authors have fitted polynomials to various atmospheric profiles and, by estimating the statistical distributions of the coefficients in their polynomials, they are able to generate random profiles. One example of this is the work of Essenwanger, [24], in which he approximates temperature and wind profiles below 25 km using Fourier series and density profiles below 25 km using Tchebycheff polynomials. He uses only one random coefficient in each approximation and assumes a Weibull distribution for that coefficient.

Another example of this approach is the recent work of Engler and
Figure 2.4 - Coefficients of correlation between atmospheric properties as calculated by Smith et al., [23].
Goldschmidt, [25]. Using a set of 67 experimentally measured pressure profiles, they fitted polynomials of order \(k = 2, \ldots, 6 \) to profiles of \(\log(P) \) and found that for most profiles a third-order fit was adequate. They then determined that the four coefficients, \(\beta_0, \beta_1, \beta_2 \) and \(\beta_3 \), used in their third-order polynomials were highly correlated, and so they expressed \(\beta_0, \beta_1 \) and \(\beta_2 \) as linear functions of \(\beta_3 \). The distribution of \(\beta_3 \) was estimated to be normal. Using their third-order polynomial for \(\log(P) \), Engler and Goldschmidt were able to express the pressure at altitude \(z \) as

\[
P = P_1(\beta_3, z) P_2(z)
\]

(2.5)

where they call the factor \(P_2(z) \) the steady-state pressure, since it is independent of \(\beta_3 \), and they called \(P_1(\beta_3, z) \) the perturbation factor.

As Engler and Goldschmidt point out, one limitation of their model is that the 67 profiles used as their data base were for different seasons and locations. They speculate that if the data were for a single season and location, the correlations between the coefficients \(\beta_0, \beta_1, \beta_2, \) and \(\beta_3 \) would increase. However, this author believes that just the opposite would be true. That is, high correlations among the \(\beta_i \)'s reflect a systematic variation in the shape of the \(\log(P) \) profiles which may be due to season and latitude effects. If that is the case, then in a single season and latitude the variation in \(\log(P) \) would be smaller and more irregular (i.e., less systematic). Hence, the \(\beta_i \)'s would be less correlated. Nevertheless, the necessity of using as many
as four random variables instead of one would not be a serious disadvantage, and this model appears to be quite attractive for Monte Carlo simulations.

Justus and Woodrum, [26], have estimated the statistical distribution of "irregular" variations in atmospheric properties. They assumed that an atmospheric parameter such as density or pressure can be expressed as

$$F(z) = F_0(z) + f(z)$$ \hspace{1cm} (2.6)

where the term $F_0(z)$ is made up of diurnally repeating components and steady-state components persisting over a period of several days. That is, two values of $F_0(z)$ measured 24 hours apart would be identical. The component $f(z)$ is called the irregular variation, and measurements of this were obtained by differencing profiles made at the same time of day on consecutive days. Knowing the distribution of $f(z)$, a random $F(z)$ profile could then be generated for any fixed $F_0(z)$. However, the variation in $f(z)$ is not sufficient to account for all the variation in $F(z)$ even within the same season and location. One would also need a model to provide the temporal and spatial variation in $F_0(z)$.

A final stochastic model of interest is a multiple regression model for atmospheric density between 30 and 110 km developed by Morgenstern and Orner, [27]. A stepwise regression procedure was used in selecting the optimum set of independent variables which significantly affect density. It has been shown by Jacchia, [28], that a number of variables have a strong influence on atmospheric density above 200 km. Using the
variables in Jacchia's model as a starting point, Morgenstern and Orner determined a set of 14 independent variables which have a significant correlation with density in the 30 - 110 km region. These are various measurements of solar flux, latitude, annual and semi-annual cycles. They divided the atmosphere into three quasi-homogeneous regions and used a different subset of these 14 parameters in their regression equation for each region. Their low altitude density model (30 - 50 km) required five independent variables; their middle region model (50 - 65 km) required six, and their high region model (65 - 110 km) required two parameters. They claim that their model accounts for 50 percent of the variability in density data between 30 and 75 km.

This model is not complete enough, as given, for generating pseudo-random density profiles. It is of interest, however, because, unlike the stochastic models discussed above, it is an effort to account for atmospheric variation by identifying the major causes of that variation. This was the approach taken in the development of the present stochastic temperature model.
III. THE ATMOSPHERIC TEMPERATURE MODEL

The single most dominant feature of the altitude region between 30 and 90 km is the temperature "bulge" caused by the absorption of solar energy by ozone. Thus, the temperature profile appears to be a logical starting point in attempting to model this region. It is for this reason, primarily, that the author has chosen to use temperature as the basis of the present atmosphere model. Another reason is that it is difficult to perturb a standard pressure or density profile and still have the associated temperature profile retain its characteristic shape as shown in Figure 2.1.

The source of temperature variation

To begin modeling variations in atmospheric temperature in the 30 - 90 km region, the first step is to identify the underlying processes which cause that variation and determine which ones are random. Any variable which can readily be ascertained without error at the time of the spacecraft's entry will be considered nonrandom. Variables which can only be estimated statistically at the time of entry will be considered random.

Among the nonrandom causes of temperature variation, a major one is nearness to the sun as determined by season and latitude. The present model accounts for this source of variation by requiring that season and latitude be fixed before estimating the various model parameters. That is, the model furnishes pseudo-random temperature profiles
characteristic of a specified season and latitude range.

Another nonrandom source of variation is time of day. The temperature model is based on rates of absorption of solar radiation; therefore, it is only representative of profiles during daylight hours. At the present time there is insufficient data to estimate model parameters for specific times of day. However, the standard deviation of atmospheric temperature at each altitude level is specified by the user of the model, and thus the model includes all observed variability in daylight temperatures for a given season and latitude band.

There are two major sources of temperature variation which are considered random. One is the creation and destruction of constituents which absorb and/or emit radiation, and the other is the random movement of air masses. Since the atmosphere is not in radiative equilibrium there are regions which act as heat sources (have a positive radiative heating rate) and other regions which act as heat sinks (have a negative radiative heating rate). Figure 3.1 shows the heating and cooling rates, in degrees per day, in the 30 - 100 km region as calculated by Kuhn, [17]. These gradients set up global circulation patterns which maintain an overall balance in the atmosphere's heat budget. Superimposed on these steady-state circulation patterns are winds or small-scale random air movements. A great amount of attention has been focused on random wind modeling, (e.g., [29], [30], [31], and [32]). The present temperature model does not include the effects of winds explicitly, although there is a random error term which might be considered as resulting from winds. It may be possible to include winds more directly by combining the present
Figure 3.1 - Radiative heating and cooling rates in degrees Kelvin per day, as calculated by Kuhn, [17].
model with the random wind model described in [29].

The radiative heating rate at any point is a function of the radiant energy being absorbed and emitted at that point. These absorptions and emissions depend largely on the amounts of various radiatively active gases present. Electromagnetic radiation in the atmosphere has two major sources as illustrated in Figure 3.2. Radiation from the sun, with almost all wavelengths less than 4 μ, lies primarily in the optical spectral region, whereas radiation from the earth and its atmosphere, with most wavelengths greater than 4 μ, lies in the infrared spectral region. The two types of radiation are generally treated separately.

Solar energy is absorbed primarily by oxygen in the thermosphere, ozone in the stratosphere and mesosphere, and water vapor in the troposphere. Terrestrial radiation (including that from the atmosphere) is absorbed by water vapor, carbon dioxide, and ozone. Of these four radiatively active gases only water vapor and ozone have concentrations which vary significantly from day to day, and of these ozone is the major influence in the upper stratosphere and mesosphere. Thus, it was decided to model the variations in ozone and use these to produce variations in temperature between 30 and 90 km.

One advantage in linking atmospheric temperatures to radiative processes is that radiation, particularly solar radiation, is the only obvious means by which temperatures in two widely separated altitude regions can be correlated. For example, suppose the ozone in a high altitude region absorbs more solar energy than is normal. This means that less radiation reaches the ozone below that altitude and, as a
Figure 3.2 - Spectral distribution of solar and terrestrial (infrared) radiation.
consequence, less is absorbed. Since temperatures vary according to the amount of energy absorbed, then an increase in temperature (high absorption) at a high altitude would tend to be associated with a decrease in temperatures (low absorption) at some lower altitude, and vice versa.

The difficulty in modeling temperature profiles, or any other atmospheric profile, lies in modeling these interlayer correlations. Since pressures and densities are obtained by integrating over the temperature profile, it is important to generate temperature profiles with realistic shapes, i.e., temperature profiles whose deviations from the mean in one region are realistic relative to those in other regions. Otherwise, it is possible, for example, to construct a temperature model having a correct temperature distribution at each individual altitude which, at the same time, produces a very unrealistic distribution for the integrated temperature profile (i.e., temperature integrated over altitude). Since pressure and density depend on this integral, their distributions would be adversely affected.

Radiative heating rates

A basic premise underlying the development of the present model is that there is a strong positive linear correlation between the temperature at altitude \(z \), \(T(z) \), and the radiative heating rate at that altitude, \(\dot{T}(z) \). The heating rate, in degrees per unit time, is given by

\[
\dot{T}(z) = -\frac{1}{\rho c_p} \frac{dF}{dz}
\]

(3.1)
where \(\rho \) is atmospheric density, \(c_p \) is the specific heat at constant pressure (a constant), and \(F \) is the energy flux (the amount of energy per unit time passing through a unit area perpendicular to the \(z \) direction).

The change in \(F \) across a layer of incremental depth \(dz \) is

\[
dF = \text{rate of emission} - \text{rate of absorption} \quad (3.2)
\]

The total flux \(F \) can be separated into two disjoint spectral terms, the flux of optical or solar radiation \(S \) and that of infrared radiation \(R \). Thus, one can write \(F = S + R \) or \(dF = dS + dR \).

Since the optical energy is basically solar radiation and the atmosphere, for most practical purposes, does not emit energy at those wavelengths, one can write

\[
dS = - \text{rate of absorption of solar energy} \quad (3.3)
\]

The solar energy absorbed by a layer depends on the quantity of any absorbing gases in that layer (e.g., oxygen, ozone, water vapor) and on the amount of direct and reflected solar radiation which is incident on that layer. This latter dependency means that \(dS \) at altitude \(z \) depends not only on the quantity of an absorbing gas at altitude \(z \), but also on the amounts of that gas at other altitudes, particularly at altitudes above \(z \). Thus, in the 30 - 90 km region, variations in \(dS \) can be determined largely by modeling variations in the ozone profile.

The change in infrared (IR) flux is given by
\(dR = \text{rate of IR emission} - \text{rate of IR absorption} \quad (3.4) \)

The infrared emission rate depends on both the temperature and pressure of the emitting gas as well as on its relative concentration. The absorption rate depends not only on these properties for the absorbing gas, but also on these properties for the surrounding gases. Thus, \(dR \) at one altitude is a function of the temperature profile, the pressure profile, and the appropriate constituent density profiles.

For a given ozone profile, a calculation of \(dS \) is reasonably straight-forward. One reason for this is that absorption coefficients needed in the calculation are well-behaved functions of wavelength in the visible and ultraviolet spectral regions and are virtually independent of atmospheric temperatures and pressures. An average absorption coefficient can be assumed to apply over a fairly wide wavelength band without sacrificing much accuracy in the resulting calculations. In the infrared region of the spectrum, on the other hand, calculations are very difficult. Thousands of overlapping absorption lines, each with its own absorption coefficient, are contained in any small spectral band. As it is impossible to treat each line separately, a number of band models representing various levels of approximation are used, (e.g., [33], [34], and [35]). Besides being mathematically formidable, these models involve parameters which are dependent on pressure and temperature. As a consequence, calculations involving the infrared radiative flux in the atmosphere are highly complex, time consuming, and poorly suited for the present purposes.
Fortunately, it is possible to concentrate on correlating temperatures to the solar heating rate

\[
T_s(z) = -\frac{1}{\rho c_p} \frac{dS}{dz}
\]

and ignore the effect of the infrared processes on the variation of temperature. Theoretically, such an omission is justifiable provided that either \(dR \) is insignificant relative to \(dS \), or \(dR \) is closely correlated to \(dS \) so that the partial correlation of \(T \) on \(dR \), given \(dS \), is small. The former justification is not valid, in general, since the atmosphere is close to radiative equilibrium so that \(dR = -dS \).

However, according to Kuhn's calculations, an increase in ozone produces a decrease in \(dR \) above 40 km and an increase in \(dR \) between 30 and 40 km. Calculations made in the present investigation indicate that the same is true of \(dS \). That is, when ozone is increased, \(dS \) decreases above 40 km and increases between 30 and 40 km. Thus, it appears that changes in \(dS \) and \(dR \) resulting from ozone variations are positively correlated in the regions between 30 and 90 km.

Calculations of \(T_s \) in the present study are based on a three-step non-gray radiative model of the atmosphere used by F. Y. Su, [36]. Details of these calculations are presented in Appendix B.

Model linking temperatures to solar heating rates

The decision to relate variations in atmospheric temperature to variations in the solar heating rate of ozone required first the development of a stochastic model for ozone. Details of this development are described in the next chapter. By using this model to
generate pseudo-random ozone profiles, it is possible to vary the heating rates \(T_s(z) \), and thus effect changes in the temperature profile \(T(z) \).

To relate \(T(z) \) and \(T_s(z) \), a linear regression model is assumed. That is, it is assumed that the temperature at altitude \(z \) is given by a linear function of the general form

\[
T(z) = \beta_0(z) + \beta_1(z) T_s(z) + \epsilon(z) \tag{3.6}
\]

where \(\beta_0(z) \) and \(\beta_1(z) \) are regression coefficients and \(\epsilon(z) \) is a random component representing unmodeled variation (error).

Equation (3.6) can be written in a more definitive form as

\[
T(z) = \mu_T(z) + \lambda \sigma_T(z) \frac{[T_s(z) - \mu_s(z)]}{\sigma_s(z)} + \epsilon(z) \tag{3.7}
\]

where \(\mu_T(z) \) and \(\sigma_T(z) \) are the mean and standard deviation of \(T(z) \), respectively; \(\mu_s(z) \) and \(\sigma_s(z) \) are the mean and standard deviation of \(T_s(z) \); \(\lambda \) is the coefficient of correlation between \(T(z) \) and \(T_s(z) \), and \(\epsilon(z) \) is a normal random number with zero mean and variance given by

\[
\sigma^2_\epsilon(z) = (1 - \lambda^2)\sigma^2_T(z) \tag{3.8}
\]

There are no data available which provide simultaneous measurements of \(T(z) \) and \(T_s(z) \), or of \(T(z) \) and ozone, in the 30 - 90 km region. Thus, it is not possible to use the usual least-squares methods for
estimating the regression coefficients. Instead, $\mu_T(z)$ and $\sigma_T(z)$ were estimated from sounding-rocket temperature data. A large volume of data is available, [37], on ozone concentrations in the troposphere and stratosphere. These data were utilized to develop a random ozone model which was then programmed to generate a large sample of $T_s(z)$ profiles from which $\mu_s(z)$ and $\sigma_s(z)$ could be estimated.

The choice of $X = .9$ in the present model was based on two considerations. First, a qualitative comparison was made between real measured profiles and model-generated profiles using a range of λ values between 0 and 1. As seen in Figure 3.3, the choice of λ determines the amount of small scale random scatter in modeled temperature profiles. A value of $\lambda = 1$ eliminates $\epsilon(z)$ in equation (3.7) and, therefore, results in smooth temperature profiles influenced only by changes in T_s. A value of $\lambda = 0$, on the other hand, eliminates the dependence of T on T_s and accounts for all temperature variation with $\epsilon(z)$, thus producing a "white noise" type of variation. That is, with $\lambda = 0$, temperatures at any two altitudes would be uncorrelated regardless of how close the altitudes are. This comparison of model with data indicated that a choice of λ between .7 and .9 gave the model an amount of small-scale random fluctuation resembling that in the data.

A second consideration in the choice of λ was based on the need for a sufficiently high correlation between temperatures at adjacent altitudes. In the present model pseudo-random temperatures are generated at one-kilometer intervals; thus, "adjacent" altitudes are one kilometer apart. It follows from equation (3.7) that the correlation between
Figure 3.3 - Model-generated temperature profiles using different values of \(\lambda \).
temperatures at any two altitudes cannot exceed λ^2. In the data, temperatures at adjacent altitudes generally had very high correlations. Thus, to maximize these correlations in the model within the constraint
\[.7 \leq \lambda \leq .9 \], the value $\lambda = .9$ was selected. Figure 3.4 shows a comparison of two measured profiles with two pseudo-random temperature profiles using $\lambda = .9$. Statistical characteristics of the model are compared with those of experimental data in Chapter V.

Before proceeding to a description of the ozone model, one further word of explanation is in order. It will be noticed in the next chapter that the ozone model gives ozone concentrations as a function of atmospheric pressure, P. Quite often atmospheric pressure instead of altitude is used as a vertical scale. This is possible because P is a strictly monotonic (decreasing) function of altitude. In the present model, it was found to be more convenient to use P or, more exactly, $\log(P)$ as the independent variable instead of altitude z. This is because the ozone model is based on $\log(P)$. Thus, all the quantities dependent on z in equation (3.7) were transformed so as to be functions of $\log(P)$ so that the model gives a temperature-$\log(P)$ profile. Using the equation of state and the hydrostatic equation, it is possible to solve for z and ρ as functions of the T-$\log(P)$ profile. Details are explained in Appendix A.
Figure 3.4 - Comparison of experimentally measured temperature profiles with model-generated temperature profiles.
IV. THE OZONE MODEL

Atmospheric ozone has been the subject of much scientific scrutiny since its existence was first hypothesized by Schobein in 1840, (see historical discussion in [38]). Ozone is formed by photochemical processes at altitudes where molecular oxygen O_2 and atomic oxygen O exist simultaneously. Atomic oxygen is formed in the upper atmosphere by the dissociation of O_2 when the latter is exposed to high-frequency solar radiation. Collisions between O_2 and O produce ozone, O_3. Ozone is subsequently destroyed when either O_3 and O collide, forming two O_2 molecules, or when O_3 is dissociated into O and O_2 by solar radiation.

In the mesosphere and upper stratosphere, the rates by which ozone is produced and destroyed through these processes balance one another so that it should be possible to predict concentrations using photochemical equilibrium theory. Unfortunately, however, very few measurements of ozone have been made in this region, and consequently the necessary reaction rates have not been clearly established.

Beginning at the stratopause and extending downward, photochemical equilibrium gradually disappears, and hence theoretical prediction methods become less applicable for modeling these ozone concentrations. In this region the best predictions of ozone appear to be empirical ones based on measured profiles.

In the present statistical model of ozone, it has been assumed that ozone profiles can be described by empirical expressions requiring
only a small set of parameters to define any specific profile. It is further assumed that the statistical distributions of these parameters can be estimated from data. Pseudo-random ozone profiles can then be generated by randomly sampling parameters from their respective distributions.

The ozone model below 50 km

In 1963 a network of observation stations was established by the Air Force Cambridge Research Laboratories (AFCRL) to systematically measure the vertical distribution of ozone in the troposphere and stratosphere. Figure 4.1 shows the stations making up this "ozonesonde" network.

Figure 4.2 is a typical "ozonagram" published by the AFCRL in a four-volume series entitled "Ozonesonde Measurements over North America", [37]. The partial pressure of ozone, P_{O_3}, is plotted on the left as a function of total atmospheric pressure P. P_{O_3} reaches a maximum between approximately 20 and 25 km. Above that point the P_{O_3} profile decreases smoothly as it approaches a photochemical equilibrium profile. Below its maximum the P_{O_3} profile is characterized by large irregular fluctuations in the lower stratosphere and by a constancy or sometimes a slight increase in the troposphere. The curve on the right in Figure 4.2 is a simultaneous reading of atmospheric temperature. Unfortunately these curves usually end somewhere between 30 and 35 km, and, thus cannot be used for estimating the regression coefficients in equation (3.6) where the region of interest is $30 \leq z \leq 90$ km.
<table>
<thead>
<tr>
<th>Station</th>
<th>Lat. (Deg.N)</th>
<th>Long. (Deg.W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albrook Field, Canal Zone</td>
<td>9.0</td>
<td>79.6</td>
</tr>
<tr>
<td>Colorado State University, Fort Collins</td>
<td>40.6</td>
<td>105.1</td>
</tr>
<tr>
<td>Eielson AFB, Fairbanks, Alaska</td>
<td>64.8</td>
<td>147.9</td>
</tr>
<tr>
<td>Florida State University, Tallahassee</td>
<td>30.4</td>
<td>84.3</td>
</tr>
<tr>
<td>Fort Churchill, Manitoba, Canada</td>
<td>58.8</td>
<td>94.1</td>
</tr>
<tr>
<td>Goose Bay, Labrador</td>
<td>53.3</td>
<td>60.4</td>
</tr>
<tr>
<td>L. G. Hanscom Field, Bedford, Mass.</td>
<td>42.5</td>
<td>71.3</td>
</tr>
<tr>
<td>Thule AFB, Greenland</td>
<td>76.5</td>
<td>68.8</td>
</tr>
<tr>
<td>University of New Mexico, Albuquerque</td>
<td>35.0</td>
<td>106.6</td>
</tr>
<tr>
<td>University of Washington, Seattle</td>
<td>47.4</td>
<td>122.3</td>
</tr>
<tr>
<td>University of Wisconsin, Madison</td>
<td>43.1</td>
<td>89.4</td>
</tr>
</tbody>
</table>

Figure 4.1 - Location of Ozonesonde Network stations.
Figure 4.2 - Typical 'Ozonagram' published by the Ozonesonde Network, [37].
Although ozone concentrations below 25 km do have some effect on solar heating rates above that altitude, because of reflected solar radiation passing upwards through the atmosphere, emphasis in the present investigation is placed on modeling the ozone profile above 25 km. For this reason it was not considered necessary to include the large irregular variations below the maximum P_O^3 level.

An excellent empirical formula was used by Green, [39], for approximating P_O^3 profiles such as the one in Figure 4.2. The formula, expressing P_O^3 as a function of P, is given by

$$P_O^3 = 4 \frac{P^* e^x}{(1+e^x)^2} \quad (4.1)$$

where

$$x = A \log \left(\frac{P}{P^*} \right) \quad (4.2)$$

P_O^3 is the maximum partial pressure of ozone; P^* is the total atmospheric pressure at the altitude where P_O^3 is maximum, and A is a shaping parameter. Equation 4.1 will hereafter be referred to as Green's formula. Examples of how well Green's formula fits ozonagram data are shown in Figure 4.3. In each case the parameters P_O^* and P^* were selected so as to match the data above the ozone maximum as closely as possible. The four ozonagram shapes are typical of their respective stations. In general, both P_O^* and P^* increase with latitude.

By integrating over the ozone profile, it is possible to derive an approximate expression for total ozone, T_O^3, as a function of P_O^*.
--- Green's formula

----- Experimental measurements

Figure 4.3 - Examples of Green's formula fitted to Ozonagram data.
and the shaping parameter A. Setting this expression equal to the measured total ozone indicated on each ozonagram, one can solve for A in terms of $P_{O_3}^*$ and T_{O_3}. Details as to how $P_{O_3}^*$, P^*, and A are calculated for each ozonagram are contained in Appendix C.

The statistical distributions of $P_{O_3}^*$ and P^* were estimated from the ozonesonde network data in volumes 2 and 3 of reference [37]. Each ozone network station was assigned to one of five latitude bands, and within each latitude band (except the 15° band), the ozonagrams were divided into four seasonal groups. These season-latitude definitions conform to those established by the Meteorological Rocket Network and are shown in Table 4.1. This classification results in 17 latitude-season categories, and the parameter distributions for each must be estimated. This is a tedious job, and, to date, has only been accomplished for the ozonagrams in the 30° latitude band, the band in which the Shuttle landing site (Cape Kennedy) is located. If the need arises it can be completed for all 17 categories, and the data in volumes 1 and 4, [37], can also be included.

The parameters $P_{O_3}^*$ and P^* have been estimated for each ozonagram using the procedure outlined in Appendix C. Samples of these parameters and the T_{O_3} values read directly from the ozonagrams have been tabulated for the four season categories in the 30° latitude band, and their means, standard deviations and correlations have been estimated. These statistics are listed in Table 4.2.

Since most of the variation in total ozone results from large irregular fluctuations in the lower stratosphere, variations which are
Table 4.1 - Season - Latitude Definitions

Meteorological Rocket Network Latitude Band Definitions

<table>
<thead>
<tr>
<th>Band</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>15°</td>
<td>0.00° - 22.50°</td>
</tr>
<tr>
<td>30°</td>
<td>22.51° - 37.50°</td>
</tr>
<tr>
<td>45°</td>
<td>37.51° - 52.50°</td>
</tr>
<tr>
<td>60°</td>
<td>52.51° - 67.50°</td>
</tr>
<tr>
<td>75°</td>
<td>67.51° - 90.00°</td>
</tr>
</tbody>
</table>

Meteorological Rocket Network Season Definitions: Northern Latitudes

<table>
<thead>
<tr>
<th>Season</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>April - May</td>
</tr>
<tr>
<td>Summer</td>
<td>June - August</td>
</tr>
<tr>
<td>Autumn</td>
<td>September - October</td>
</tr>
<tr>
<td>Winter</td>
<td>November - March</td>
</tr>
</tbody>
</table>

Meteorological Rocket Network Season Definitions: Southern Latitudes

<table>
<thead>
<tr>
<th>Season</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>October - November</td>
</tr>
<tr>
<td>Summer</td>
<td>December - February</td>
</tr>
<tr>
<td>Autumn</td>
<td>March - April</td>
</tr>
<tr>
<td>Winter</td>
<td>May - September</td>
</tr>
</tbody>
</table>
Table 4.2 Ozone Statistics in 30° Latitude Band

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Correlations</th>
<th>Parameter</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLORIDA - SPRING (sample size = 19)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO<sub>3</sub></td>
<td>0.0167</td>
<td>0.001951</td>
<td>1.00</td>
<td>0.51</td>
<td>-0.04</td>
<td>0.53</td>
<td>PO<sub>3</sub></td>
</tr>
<tr>
<td>P*</td>
<td>3286</td>
<td>276.4</td>
<td>0.51</td>
<td>1.00</td>
<td>0.12</td>
<td>0.33</td>
<td>P*</td>
</tr>
<tr>
<td>TO<sub>3</sub></td>
<td>0.315</td>
<td>0.0177</td>
<td>-0.04</td>
<td>0.12</td>
<td>1.00</td>
<td>-0.45</td>
<td>TO<sub>3</sub></td>
</tr>
<tr>
<td>log(PO<sub>3</sub>)</td>
<td>-4.101</td>
<td>0.1175</td>
<td>0.53</td>
<td>1.00</td>
<td>0.55</td>
<td>1.00</td>
<td>log(PO<sub>3</sub>)</td>
</tr>
<tr>
<td>log(P*)</td>
<td>8.106</td>
<td>0.3115</td>
<td>0.53</td>
<td>0.55</td>
<td>1.00</td>
<td></td>
<td>log(P*)</td>
</tr>
<tr>
<td>FLORIDA - AUTUMN (sample size = 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PO<sub>3</sub></td>
<td>0.0136</td>
<td>0.001119</td>
<td>1.00</td>
<td>0.13</td>
<td>-0.51</td>
<td>0.04</td>
<td>PO<sub>3</sub></td>
</tr>
<tr>
<td>P*</td>
<td>3258</td>
<td>184.3</td>
<td>0.13</td>
<td>1.00</td>
<td>-0.51</td>
<td>0.19</td>
<td>P*</td>
</tr>
<tr>
<td>TO<sub>3</sub></td>
<td>0.383</td>
<td>0.0194</td>
<td>-0.51</td>
<td>-0.45</td>
<td>1.00</td>
<td></td>
<td>TO<sub>3</sub></td>
</tr>
<tr>
<td>log(PO<sub>3</sub>)</td>
<td>-4.306</td>
<td>0.1121</td>
<td>0.19</td>
<td>1.00</td>
<td>0.20</td>
<td></td>
<td>log(PO<sub>3</sub>)</td>
</tr>
<tr>
<td>log(P*)</td>
<td>8.088</td>
<td>0.0510</td>
<td>0.14</td>
<td>0.20</td>
<td>1.00</td>
<td></td>
<td>log(P*)</td>
</tr>
</tbody>
</table>

Units for PO₃ and P* are N/m²; units for TO₃ are atm·cm.
not accounted for by Green's formula, it was decided to use a fixed value for \(T_0 \) in our model. Accordingly, \(T_0 \) was set equal to its latitude-season average and was not allowed to vary.

The empirical cumulative frequencies of both \(P_{O_3}^* \) and \(P^* \) were compared with normal and log-normal cumulative distribution functions. This was done by plotting both the parameter and its natural logarithm on normal probability paper, obtaining a least-squares fit, and then comparing the sums of squared errors (errors being defined as differences between empirical cumulative frequencies and the normal cumulative distribution function). Neither the normal nor the log-normal distribution emerged as a clear choice, although the log-normal fit appeared to be slightly better in most cases for both \(P_{O_3}^* \) and \(P^* \). Furthermore, the log-normal distributions for both \(P_{O_3}^* \) and \(P^* \) produced smaller, more realistic, variances for \(P_{O_3} \) at each altitude than did normal distributions for either or both parameters. Thus, log-normal distributions for \(P_{O_3}^* \) and \(P^* \) were used. In most cases there was insufficient data to warrant fitting a Pearson distribution or attempting a more sophisticated estimate of the parameter distribution.

The ozone model above 50 km

Six hundred pseudo-random ozone profiles were generated by sampling from the \(P^* \) and \(P_{O_3}^* \) distributions as described above. Solar heating rate profiles \(T_s(z) \) corresponding to each ozone profile were calculated, and the mean and standard deviation of \(T_s \) were estimated at each altitude. It was found that the profiles of heating rate averages agreed
quite well with deterministic T_s profiles predicted by Su, [36], and Manabe and Strickler, [19]. Comparisons are shown in Figure 4.4.

On the other hand, Green's formula and the above parameter distributions produced unrealistically large variations in T_s at altitudes above approximately 50 km. At these altitudes, the heating rate is almost directly proportional to P_{O_3}, and although the latter is quite small in magnitude, the variations in $P_{O_3}^*$ and P^* caused P_{O_3} to vary by several orders of magnitude. For example, using Green's formula at an altitude of 75 km, the parameter variations result in a range of $P_{O_3}/P_{O_3}^*$ ratios between 10^{-2} and 10^{-5}. This is sufficient to produce a three-order-of-magnitude variation in heating rates at that altitude resulting in heating rates as high as 30° per day, a physically unrealistic value.

In reality, ozone in the mesosphere (above 50 km) is in photochemical equilibrium, for most practical purposes, and its concentrations are not as variable as those in the stratosphere. In fact, it is unrealistic to allow variations in $P_{O_3}^*$ and P^* to cause appreciable changes in P_{O_3} above 50 km. For this reason, it was decided to modify the ozone model in the mesosphere so as to reduce the variation in P_{O_3} in that region.

In Green's formula, (4.1), the term e^x approaches 0 as altitude increases such that $e^x << 1$ above 50 km. Hence,

$$P_{O_3} \approx 4P_{O_3}^* e^x$$ (4.3)
Figure 4.4 - Comparison of model-generated mean T_s profiles with deterministic predictions of T_s.
Substituting from equations (4.1) and (4.2), this becomes

\[P_0 \exp \left[A \log \left(\frac{P}{P^*} \right) + B \right] \]

(4.4)

where \(A \) is the shaping parameter given in Appendix C as

\[A = A_o \frac{P_0^*/T_0}{3} \]

(4.5)

(for constants \(A_o \) and \(T_0 \)), and

\[B = \log \left(4P_0^* \right) \]

(4.6)

The ozone model above 50 km was modified as follows: The partial pressure of ozone above 50 km is given by

\[P_0 = \exp \left[A \log \left(\frac{P}{P^*} \right) + B \right] \]

(4.7)

where now \(P^* \) is assumed to be constant and serves strictly as a non-dimensionalizing factor. Furthermore, it is now assumed that

\[A \sim N \left(\mu_A, \sigma_A^2 \right) \]

(4.8)

and

\[B \sim N \left(\mu_B, \sigma_B^2 \right) \]

(4.9)

Thus, \(P_0 \) has a log-normal distribution with mean

\[E(P_0) = \exp \left[\mu_A \log \left(\frac{P}{P^*} \right) + \frac{\sigma_A^2}{2} \log^2 \left(\frac{P}{P^*} \right) + \mu_B + \frac{\sigma_B^2}{2} \right] \]

(4.10)
and variance

\[\text{Var}(P_0^3) = E(P_0^3)^2 \left\{ \exp \left[\sigma_A^2 \log^2 \left(\frac{P}{P^*} \right) + \sigma_B^2 \right] - 1 \right\} \quad (4.11) \]

The quantity \(\log(P^*) \), which is a normal random number below 50 km, is set equal to its expected value above 50 km.

To maintain continuity with Green's formula below 50 km, the means of A and B are, respectively,

\[\mu_A = A_0 \frac{E(P_0^*/T_0)}{T_0} \quad (4.12) \]

and

\[\mu_B = \log(4) + E [\log (P_0^*)] \quad (4.13) \]

Since \(P/P^* \) approaches 0 as altitude increases, \(\log(P/P^*) \to -\infty \), and, therefore, the coefficient of variation of \(P_0^3 \),

\[\text{CV}(P_0^3) = \left\{ \exp \left[\sigma_A^2 \log^2 \left(\frac{P}{P^*} \right) + \sigma_B^2 \right] - 1 \right\}^{1/2} \times 100\% \quad (4.14) \]

increases monotonically with altitude. The rate by which this coefficient of variation increases is controlled by the selection of \(\sigma_A^2 \) and \(\sigma_B^2 \). Accordingly, \(\sigma_A^2 \) and \(\sigma_B^2 \) were selected so as to satisfy two boundary conditions placed on \(\text{CV}(P_0^3) \). At the 50 km boundary the coefficient of variation was set equal to the coefficient of variation produced by Green's formula, a value which varied between 48% and 83% depending on the season-latitude model. At the upper boundary, \(z = 90 \) km, \(P_0^3 \) was assumed to have a coefficient of variation of 100%. These two boundary
conditions resulted in a pair of simultaneous equations which were
solved to give σ_A^2 and σ_B^2.

The four mean P_{O_3} profiles produced by this model for the 30°
latitude band are shown in Figure 4.5. The dashed lines are loci of
maxima and minima occurring in a pseudo-random sample of size 600. Figure
4.6 compares histograms of P_{O_3} values produced by the model at the
pressure height of 1000 N/m2 with corresponding histograms from the data
in reference [37]. Four mean heating-rate profiles corresponding to the
P_{O_3} means in Figure 4.5 are shown in Figure 4.7, again with loci of
maxima and minima. Table 4.3 lists the mean and coefficient of variation
of heating rate as a function of altitude for these four seasons.

It should be remembered that this ozone model was developed as a
tool for modeling temperature variations in the stratosphere and meso-
sphere. For a large enough λ in equation (3.7), the shape of the
temperature distribution at any altitude will essentially be that of the
heating-rate distribution at that altitude. However, the actual magni-
tudes of the mean and standard deviation of heating rate will not affect
the mean or standard deviation of temperature, since the two latter
quantities are built into the model. Thus, further fine-tuning of the o-
zone model to reduce its variance was not considered necessary. The
only type of modification which could significantly improve the model
for its present purposes would be a change affecting the shape of the
heating-rate distribution; this could only be accomplished by changing
the distribution of P_{O_3}. For example, if the distribution of P^* is
estimated to be something other than log-normal, then the P_{O_3}
Figure 4.5 - Mean and extreme PO$_3$ profiles based on sample of 600 model-generated PO$_3$ profiles.
Figure 4.6 - Comparison of model and data histograms of P_{O_3} at a pressure height of 1000 N/m2.
Figure 4.7 - Mean and extreme \dot{T}_s profiles based on sample of 600 model-generated \dot{T}_s profiles.
<table>
<thead>
<tr>
<th>Altitude, km</th>
<th>Spring Mean CV, %</th>
<th>Summer Mean CV, %</th>
<th>Autumn Mean CV, %</th>
<th>Winter Mean CV, %</th>
<th>Spring Mean CV, %</th>
<th>Summer Mean CV, %</th>
<th>Autumn Mean CV, %</th>
<th>Winter Mean CV, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>48.859</td>
<td>0.000</td>
<td>39.850</td>
<td>0.000</td>
<td>48.359</td>
<td>0.000</td>
<td>59.430</td>
<td>0.000</td>
</tr>
<tr>
<td>1</td>
<td>46.556</td>
<td>0.000</td>
<td>38.515</td>
<td>0.000</td>
<td>46.300</td>
<td>0.000</td>
<td>55.959</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>45.059</td>
<td>0.000</td>
<td>37.126</td>
<td>0.000</td>
<td>44.308</td>
<td>0.000</td>
<td>53.431</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>43.533</td>
<td>0.000</td>
<td>36.789</td>
<td>0.000</td>
<td>42.356</td>
<td>0.000</td>
<td>50.881</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>42.028</td>
<td>0.000</td>
<td>36.368</td>
<td>0.000</td>
<td>40.236</td>
<td>0.000</td>
<td>48.280</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>40.519</td>
<td>0.000</td>
<td>35.962</td>
<td>0.000</td>
<td>38.079</td>
<td>0.000</td>
<td>45.632</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>39.017</td>
<td>0.000</td>
<td>35.562</td>
<td>0.000</td>
<td>36.062</td>
<td>0.000</td>
<td>43.070</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>37.510</td>
<td>0.000</td>
<td>35.127</td>
<td>0.000</td>
<td>33.713</td>
<td>0.000</td>
<td>40.559</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>36.068</td>
<td>0.000</td>
<td>34.713</td>
<td>0.000</td>
<td>32.373</td>
<td>0.000</td>
<td>37.999</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>34.610</td>
<td>0.000</td>
<td>34.318</td>
<td>0.000</td>
<td>31.052</td>
<td>0.000</td>
<td>35.428</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>33.159</td>
<td>0.000</td>
<td>33.973</td>
<td>0.000</td>
<td>30.785</td>
<td>0.000</td>
<td>33.895</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>31.716</td>
<td>0.000</td>
<td>33.657</td>
<td>0.000</td>
<td>29.870</td>
<td>0.000</td>
<td>32.443</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>30.294</td>
<td>0.000</td>
<td>33.294</td>
<td>0.000</td>
<td>28.877</td>
<td>0.000</td>
<td>30.957</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>28.914</td>
<td>0.000</td>
<td>32.887</td>
<td>0.000</td>
<td>27.952</td>
<td>0.000</td>
<td>29.503</td>
<td>0.000</td>
</tr>
<tr>
<td>14</td>
<td>27.565</td>
<td>0.000</td>
<td>32.472</td>
<td>0.000</td>
<td>26.974</td>
<td>0.000</td>
<td>27.997</td>
<td>0.000</td>
</tr>
<tr>
<td>15</td>
<td>26.248</td>
<td>0.000</td>
<td>32.047</td>
<td>0.000</td>
<td>25.980</td>
<td>0.000</td>
<td>26.406</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>24.280</td>
<td>0.000</td>
<td>31.206</td>
<td>0.000</td>
<td>23.840</td>
<td>0.000</td>
<td>24.721</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>22.307</td>
<td>0.000</td>
<td>30.287</td>
<td>0.000</td>
<td>21.931</td>
<td>0.000</td>
<td>23.065</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>20.367</td>
<td>0.000</td>
<td>29.307</td>
<td>0.000</td>
<td>19.931</td>
<td>0.000</td>
<td>21.220</td>
<td>0.000</td>
</tr>
<tr>
<td>5</td>
<td>18.474</td>
<td>0.000</td>
<td>28.366</td>
<td>0.000</td>
<td>17.972</td>
<td>0.000</td>
<td>19.502</td>
<td>0.000</td>
</tr>
<tr>
<td>6</td>
<td>16.641</td>
<td>0.000</td>
<td>27.414</td>
<td>0.000</td>
<td>16.392</td>
<td>0.000</td>
<td>17.765</td>
<td>0.000</td>
</tr>
<tr>
<td>7</td>
<td>14.864</td>
<td>0.000</td>
<td>26.512</td>
<td>0.000</td>
<td>14.575</td>
<td>0.000</td>
<td>16.093</td>
<td>0.000</td>
</tr>
<tr>
<td>8</td>
<td>13.121</td>
<td>0.000</td>
<td>25.656</td>
<td>0.000</td>
<td>12.898</td>
<td>0.000</td>
<td>14.470</td>
<td>0.000</td>
</tr>
<tr>
<td>9</td>
<td>11.417</td>
<td>0.000</td>
<td>24.839</td>
<td>0.000</td>
<td>11.223</td>
<td>0.000</td>
<td>12.888</td>
<td>0.000</td>
</tr>
<tr>
<td>10</td>
<td>9.767</td>
<td>0.000</td>
<td>24.167</td>
<td>0.000</td>
<td>9.515</td>
<td>0.000</td>
<td>11.331</td>
<td>0.000</td>
</tr>
<tr>
<td>11</td>
<td>8.154</td>
<td>0.000</td>
<td>23.538</td>
<td>0.000</td>
<td>7.912</td>
<td>0.000</td>
<td>9.798</td>
<td>0.000</td>
</tr>
<tr>
<td>12</td>
<td>6.590</td>
<td>0.000</td>
<td>22.935</td>
<td>0.000</td>
<td>6.388</td>
<td>0.000</td>
<td>8.352</td>
<td>0.000</td>
</tr>
<tr>
<td>13</td>
<td>5.084</td>
<td>0.000</td>
<td>22.350</td>
<td>0.000</td>
<td>4.906</td>
<td>0.000</td>
<td>6.996</td>
<td>0.000</td>
</tr>
<tr>
<td>14</td>
<td>3.617</td>
<td>0.000</td>
<td>21.786</td>
<td>0.000</td>
<td>3.452</td>
<td>0.000</td>
<td>5.682</td>
<td>0.000</td>
</tr>
<tr>
<td>15</td>
<td>2.182</td>
<td>0.000</td>
<td>21.245</td>
<td>0.000</td>
<td>2.041</td>
<td>0.000</td>
<td>4.399</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Table 4.3: Means and Coefficients of Variation γ^2 at discrete altitudes.
distribution, and, consequently, the temperature distribution, would be changed. This approach could be a fruitful area for additional investigation when more data are available.
V. COMPARISON OF THE MODEL WITH DATA

The MRN data tape

In order to estimate the various statistical parameters of the temperature distribution at each altitude as required in the temperature model, a computer tape containing experimentally measured temperature profiles was obtained from the Aero-Astrodynamics Laboratory at the NASA Marshall Space Flight Center. The tape consists of 442 sounding-rocket measurements of atmospheric temperature, pressure and density made at altitudes above 35 km by 25 Meteorological Rocket Network stations in different parts of the world. Of the 25 stations, seven are in the 30° latitude band, but only five of these had temperature profiles. (A number of stations reported only density or pressure profiles.) These five stations and their longitudes are listed in Table 5.1. The columns under the heading "number of useable profiles" give the total number of independent daylight profiles at each site in the season indicated. In order to have even the small numbers listed here, "daylight" was defined as being between 5 a.m. and 7 p.m. If, for example, the winter daylight hours were redefined to be between 7 a.m. and 5 p.m., six of the 20 winter measurements would have been disqualified.

In several instances two or more firings from a single station were made on the same day, sometimes only minutes apart. Since measurements cannot be considered independent in such circumstances, all temperature profiles made on the same day, at the same site, were first averaged to give a single profile which was then counted as a part of the sample of

59
<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holloman AFB, New Mexico</td>
<td>32.85° N</td>
<td>106.10° N</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Eglin AFB, F, Florida</td>
<td>30.38° N</td>
<td>86.70° W</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Point Mugu, California</td>
<td>34.12° N</td>
<td>119.12° W</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Woomera, Australia</td>
<td>31.11° S</td>
<td>136.97° E</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Carnarvon, Australia</td>
<td>24.82° S</td>
<td>113.87° E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td>9</td>
<td>5</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>
independent profiles.

Each profile consisted of a set of measurements made at one-kilometer intervals, but the range of altitudes covered varied from one profile to the next. Consequently, the number of observations at each altitude level varied as shown in Table 5.2.

In addition to their use in estimating statistical parameters of the temperature distribution, the MRN data were used for comparison with model-generated temperatures, pressures and densities in an effort to evaluate the model. For each of the four seasons in the 30° latitude band, a sample of 500 pseudo-random atmospheres was generated (i.e., 500 consistent sets of temperature, density and pressure profiles). The means and standard deviations of each property were computed at one-kilometer altitude intervals between 0 and 90 km. In addition, histograms of temperatures were constructed at various altitudes, and interlayer correlations among temperatures were computed. These model characteristics were then compared with corresponding characteristics of the MRN data.

Comparison of model temperatures with data

In order to compare trajectories computed using the present model with those based on the 1966 Standard Atmosphere Supplements, [2], it was decided to use temperatures prescribed by the latter as mean temperatures in the model. That is, the mean temperature at altitude \(z \), for a particular season and latitude band, is defined as.
Table 5.2 - Number of MRN measurements at each altitude, $36 < z < 90$

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>37</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>38</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>39</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>41</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>42</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>43</td>
<td>8</td>
<td>2</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>44</td>
<td>8</td>
<td>2</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>45</td>
<td>8</td>
<td>3</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>46</td>
<td>8</td>
<td>3</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>47</td>
<td>8</td>
<td>4</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>48</td>
<td>9</td>
<td>4</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>49</td>
<td>9</td>
<td>4</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>50</td>
<td>9</td>
<td>4</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>51</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>52</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>53</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>54</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>55</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>56</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>57</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>58</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>59</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>60</td>
<td>9</td>
<td>5</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>61</td>
<td>9</td>
<td>5</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>62</td>
<td>9</td>
<td>5</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>63</td>
<td>9</td>
<td>5</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>9</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>65</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>15</td>
</tr>
<tr>
<td>66</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>14</td>
</tr>
<tr>
<td>67</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>68</td>
<td>7</td>
<td>2</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>69</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>70</td>
<td>5</td>
<td>0</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>71</td>
<td>5</td>
<td>0</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>72</td>
<td>4</td>
<td>0</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>73</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>74</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>75</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>76</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>77</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>78</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>79</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>80</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>81</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>82</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>83</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>84</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>85</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>86</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>87</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>88</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>89</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>90</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>
\[\mu_T(z) = T_{66}(z; \text{season, latitude}) \]

where \(T_{66}(z; \text{season, latitude}) \) is the temperature at altitude \(z \) given by the 1966 Standard Atmosphere Supplements, [2], for the season and latitude indicated. For the 30°, 60°, and 75° latitude bands, reference [2] provides only summer and winter models. In these cases, the spring/fall temperature profile is defined as the average of summer and winter profiles.

Figure 5.1 compares model temperature means (solid curve) with the means of temperatures in the MRN data sample (circles). Ninety-five percent confidence intervals are drawn for each data point. The dashed curve on each plot is the temperature profile from the 1962 Standard Atmosphere, [1], drawn here as a fixed reference to aid in comparing the four seasonal means. Seasonal variations are not as pronounced in the 30° latitude band as they are in more northern latitudes.

The standard deviation of temperature at each altitude was estimated from the MRN data. As one might suspect from Figure 5.2, the amount of variation in the data estimates of \(\sigma_T(z) \) (circles) over the altitude range is within the amount expected for such small samples if one were sampling from populations with the same standard deviation. In other words, there is no significant difference between the standard deviations of temperatures at different altitudes in the MRN data. Therefore, it was assumed that, for a particular season-latitude model, the standard deviation of temperature is the same at all altitudes. Its value was
Figure 5.1 - Comparison of mean temperature profiles from model with mean temperatures in HRN data.
Figure 5.2 - Comparison of model standard deviations of temperature with MRN data standard deviations of temperature.
estimated by \(s_p \), the usual pooled estimate of a standard deviation, given by

\[
\hat{s}_p = \left[\frac{\sum (n_i - 1) s_i^2}{\sum (n_i - 1)} \right]^{1/2}
\]

(5.2)

where \(n_i \) is the number of data points at altitude \(z_i \) (see Table 5.2); \(s_i \) is the standard deviation of sample temperatures at altitude \(z_i \) based on the MRN data, and the summation is only over \(i \)'s where \(n_i \neq 0 \).

The four values of \(s_p \) used in the 30° latitude model (dashed lines on Figure 5.2) are \(s_p(\text{spring}) = 7.45^\circ \) K, \(s_p(\text{summer}) = 6.82^\circ \) K, \(s_p(\text{autumn}) = 10.41^\circ \) K, and \(s_p(\text{winter}) = 10.89^\circ \) K.

Figures 5.3 - 5.6 show histograms of model-generated temperatures at 10-km altitude intervals between 40 and 90 km. Each histogram represents a sample of 500 temperatures, and within each histogram class or subdivision, the circles represent data points lying in that interval.

Perhaps the most important feature of the current temperature model - that which distinguishes it from any other model - is its inter-layer correlation structure (i.e., the correlations between temperatures at different altitudes). This correlation structure is linked directly to the behavior of the heating-rate profile \(T_s(z) \) as affected by the ozone variation. Letting \(r_T(z_1, z_2) \) be the coefficient of correlation between \(T(z_1) \) and \(T(z_2) \), then in the present model

\[
r_T(z_1, z_2) = \lambda^2 r_s(z_1, z_2)
\]

(5.3)
Figure 5.3 - Distribution of spring temperatures in model and data at discrete altitude levels between 40 and 90 km.
Figure 5.4 - Distribution of summer temperatures in model and data at discrete altitude levels between 40 and 90 km.
Figure 5.5 - Distribution of autumn temperatures in model and data at discrete altitude levels between 40 and 90 km.
Figure 5.6 - Distribution of winter temperatures in model and data at discrete altitude levels between 40 and 90 km.
where $r_s(z_1, z_2)$ is the correlation between heating rates $T_s(z_1)$ and $T_s(z_2)$, and λ is the correlation between $T(z)$ and $T_s(z)$, (see equation (3.7)). As atmospheric ozone varies according to its distribution, the T_s profile follows a distinct pattern. The segment of the T_s curve above its maximum at ~50 km altitude, (see Figure 4.7), shifts to the right and left in such a manner that it produces either a simultaneous increase or a simultaneous decrease in all T_s values above 50 km. Thus, if z_1 and z_2 are both greater than 50 km, $r_s(z_1, z_2)$ is approximately equal to +1, and hence $r_T(z_1, z_2)$ is approximately equal to λ^2.

The solid curves in Figure 5.7 are plots based on the winter model, of $r_T(z_1, z_2)$ versus z_2 for nine values of z_1 between 35 and 90 km. The winter model was chosen for comparison purposes because there are more MRN data for this season; plots of $r_T(z_1, z_2)$ for the other three seasons are quite similar. In the plots for $z_1 = 60, 70, \text{and } 80 \text{ km, note that } r_T(z_1, z_2), 50 < z_2 < 90, \text{ is approximately equal to } \lambda^2 = 0.81.$

Below the stratopause, ~50 km, the behavior of T_s is more irregular. In the upper stratosphere (40 - 50 km), T_s values are virtually uncorrelated to those above 50 km but have a strong negative correlation with heating rates in the lower stratosphere (20 - 30 km). This structure is reflected in the temperature correlations for $z_1 = 40$ and 45 km in Figure 5.7.

The data symbols (circles) in Figure 5.7 are estimates of $r_T(z_1, z_2)$ based on the MRN data. The solid circles are those whose 95 percent
Figure 5.7 - Comparison of model and data interlayer temperature correlations.
confidence intervals do not cover the model value of \(r_T(z_1, z_2) \). Because of the small sample sizes involved, it is difficult to make meaningful statements about the true nature of \(r_T(z_1, z_2) \) based on the data; nevertheless, there is reason for disappointment in the poor agreement seen in Figure 5.7. In contradicting the model, these data estimates of \(r_T(z_1, z_2) \) tend to imply that there is no strong linear correlation between \(T \) and \(T_s \). One possible explanation for this is that 10 of the 20 MRN profiles used to estimate \(r_T(z_1, z_2) \) were measured either before 9 a.m. or after 4 p.m., times of day when the heating effects of the sun (particularly in winter) are not as pronounced as they are nearer to midday. Furthermore, the data represent varying sun zenith angles whereas the model-generated sample used a fixed zenith angle. Allowing this angle to vary in the model might produce a different statistical distribution for the \(T_s \) profile, thus affecting the distribution of temperatures. For these reasons, the comparison of model with data in Figure 5.7 is believed to be inconclusive. More data will be necessary in order to either validate or invalidate the model.

The value of \(\lambda = .9 \) used in this model determines the location of the model \(r_T(z_1, z_2) \) curves at points where \(z_1 \) and \(z_2 \) are between 50 and 90 km. A smaller value of \(\lambda \), say \(\lambda = .7 \), gives better agreement with data points (circles) to the left of the curve where \(r_T(z_1, z_2) \approx \lambda^2 \), but it also results in significant differences between model and data at virtually all points where \(|z_1 - z_2| \) is small.
As explained in Chapter III, the natural logarithm of atmospheric pressure, $\log(P)$, is the independent variable used as a vertical scale in the model. The reason for this is that the ozone model gives the partial pressure of ozone as a function of $\log(P)$, and, hence, the solar heating rate profiles are based on this scale.

To be more exact, the vertical scale used in the model is

$$U \equiv \log(P/P_0)$$

where P_0 is sea-level pressure. A set of fixed U values $\{U_0, U_1, \ldots, U_{90}\}$ is defined by

$$U_i = \log(P_{66}(z_i)/P_{66}(z_0))$$

where $P_{66}(z_i)$ is the pressure at altitude z_i, $(z_i = 0, 1, \ldots, 90 \text{ km})$, as defined by the 1966 Standard Atmosphere Supplements, [2], for the appropriate season and latitude. Then at each U_i a pseudo-random temperature is given by

$$T(U_i) = \mu_T(U_i) + \lambda \sigma_T(U_i) \frac{[T_s(U_i) - \mu_s(U_i)]}{\sigma_s(U_i)} + \epsilon(U_i)$$

where $\mu_T(U_i)$ is the mean temperature at U_i defined by

$$\mu_T(U_i) = T_{66}(z_i)$$

and $\sigma_T(U_i) = \sigma_T$ is a constant estimated from the MRN data, as explained
From the $T(U_i)$ profile, one can then compute the geometric altitude $z(U_i)$ as

$$z(U_i) = \frac{\int_0^{U_i} T(u) \, du}{\left[\frac{Mg_o}{K} - \frac{1}{R_o} \int_0^{U_i} T(u) \, du \right]}$$

(5.8)

where $M, g_o, K,$ and R_o are constants. (See Appendix A for derivation of 5.8).

Next, using linear interpolation, the profile $\{T(U_i), z(U_i)\}$ is converted to $\{T(z_i), z_i\}$ where the z_i's are even altitude increments $\{0, 1, \ldots, 90 \text{ km}\}$.

Pressure and density profiles are then calculated for the even altitude increments as

$$P(z_i) = P_b \exp \left[- \int_{z_b}^{z_i} \frac{Mg}{K T} \, dz \right]$$

(5.9)

and

$$\rho(z_i) = \frac{M P(z_i)}{K T(z_i)}$$

where P_b and z_b in equation (5.9) are pressure and altitude, respectively, at some boundary point. It is customary to take $z_b = 0$ and, hence, P_b is sea-level pressure. However, since this is a statistical model, one must specify the statistical distribution of P_b at the boundary altitude z_b, and then sample a value of P_b from that
distribution. It was found that, provided the same mean was used for \(P_b \), the variance and shape of the \(P_b \) distribution had negligible effects on the means of pressures and densities. These choices did, however, have a fairly sizable impact on the variances of pressure and density. The selection of \(z_b \) and its associated \(P_b \) distribution will be discussed in more detail shortly.

Figure 5.8 shows mean density profiles (solid curves) corresponding to the four 30° latitude models. The actual quantity plotted here is the percent departure from the 1962 Standard density \(\rho_{62}(z) \) as defined by

\[
\delta \rho(z) = \left[\frac{\bar{\rho}(z) - \rho_{62}(z)}{\rho_{62}(z)} \right] \times 100\% \tag{5.11}
\]

where \(\bar{\rho}(z) \) is the average of 500 pseudo-random density values generated by the model at altitude \(z \). Since densities and pressures vary by about six orders of magnitude between sea level and 90 km, pressures and densities are customarily plotted as a percent departure from the 1962 Standard pressures and densities, thus avoiding the use of 6-cycle log paper.

The dashed lines on Figure 5.8 represent the 1966 Standard densities for the four seasons, the density profiles which correspond to the mean temperature profiles used in the model. As one can see, there is close agreement between the 1966 Standard and the model's mean densities. However, perfect agreement between the Standard density and the model's mean density should not be expected. Indeed, such agreement would be surprising, since, in general, if \(F \) is a function of a random variable
Figure 5.8 - Comparison of mean density profiles from model with mean densities in MRN data.
Figure 5.9 - Comparison of mean pressure profiles from model with mean pressures in MRN data.
The data symbols (circles) on Figure 5.8 show the percent departures of the MRN density averages from the 1962 Standard density. Again 95 percent confidence intervals are drawn. At best one can say that the data averages and model averages exhibit the same seasonal trends. Figure 5.9, similar to Figure 5.8, is a comparison of the percent departures of pressure means from the 1962 Standard Pressure.

As stated earlier, the choice of the P_b distribution at the boundary point z_b has a significant impact on the variances of pressures and densities. Consequently, this choice could not be arbitrary, but had to be justifiable in terms of physical reality. Accordingly, it was decided to select as a boundary point an altitude where density variation is minimal. There are certain altitudes, called isopynic layers, $[h_0]$, where atmospheric density is almost constant throughout the year. These isopynic layers lie at altitudes of approximately 8, 24, and 90 km. By taking z_b to be one of these altitudes and by letting ρ_b, atmospheric density at altitude z_b, be a constant, then the distribution of P_b is determined by the distribution of $T(z_b)$ since the equation of state gives

$$P_b = \frac{K \rho_b T(z_b)}{M}$$

(5.12)

Two boundary points, $z_b = 24$ km and $z_b = 90$ km, were used in the present model. When $z_i < 80$ km, in equation (5.9), the boundary
point $z_b = 24$ km is used, and when $z_i \geq 80$ km, $z_b = 90$ km is used. The selection of 80 km as a dividing point was made because at $z_i = 80$ km the variance of atmospheric density is the same using either $z_b = 24$ or $z_b = 90$ km.

Although it was only necessary to select one boundary point, the two were chosen here to force the existence of isopynic layers at those altitudes. The 8 km isopynic layer, on the other hand, has been omitted since it does not affect the 30 - 90 km region of primary interest. If the model were perfect, then isopynic layers would be created naturally at 8, 24, and 90 km even if only one of these is used as the boundary point. However, in the present model, the use of only one boundary point resulted in the disappearance of isopynic layers at non-boundary points.

In Figure 5.10 the ratio of the standard deviation of density to the 1962 Standard density is plotted for each season. The solid curves represent standard deviations calculated from samples of 500 model-generated density profiles. The data symbols are the corresponding standard deviations in the MRN samples, and 95 percent confidence intervals are drawn. Note the isopynic layers at $z = 24$ km and 90 km. The peak in standard deviations at 80 km is a result of using this altitude as a dividing point, as explained above, but the peak at around 30 km results solely from the way the temperatures vary and is not related to the integration boundaries.

Figure 5.11 is analogous to Figure 5.10 except that here standard deviations of pressure are plotted. The solid curves, representing the
Figure 5.10 - Comparison of model standard deviations of density with MRN data standard deviations of density.
Figure 5.11 - Comparison of model standard deviations of pressure with MRN data standard deviations of pressure.
model standard deviations, resemble those on Figure 5.10. However, the minimum points appear to be approximately 5 km below the isopynic levels, and the peak at approximately 35 km is less pronounced. There is a discontinuity in the standard deviations of model pressures at 80 km, which is caused by the use of 80 km as an integration boundary.

Conclusions

In comparing the model with data, a distinction should be drawn between model characteristics which are estimated from the data and those which are not. Temperature means and standard deviations are examples of the former, whereas, the statistical properties of pressure and density are of the latter type.

Since temperature means and standard deviations are selected by the model user, the amount of disagreement between these and their counterparts in the data is a matter of choice. It was decided, for example, to use the 1966 Standard Atmosphere temperatures as model means instead of estimating means from the data. In the case of temperature standard deviations, a constant standard deviation was used for all altitudes, and this value was obtained by pooling standard deviations in the MRN data sample. Thus, any differences between model and data seen in Figures 5.1 and 5.2 do not constitute errors in the model.

The means of model pressures and densities agree well with their corresponding 1966 Standard Atmosphere values even though such agreement was not guaranteed a priori. As in the case of temperature, the data estimates of pressure and density means differ from the 1966
Standard and, therefore, cannot be expected to match model means.

The standard deviations of model pressures and densities, which ideally should agree with data about as well as do temperature standard deviations, instead show slightly poorer agreement. If the integration scheme could be modified so as to remove the artificial peak at 80 km, agreement between model and data standard deviations would be significantly improved.

The most serious discrepancy between model and data lies in the interlayer temperature correlations, \(r_T(z_1, z_2) \). Although some of this error can perhaps be explained in terms of zenith-angle differences, it still may be necessary to alter the model. One possible solution would be to extract from the unmodeled error term a source of variation which correlates temperatures at adjacent altitudes. Winds would be such a source, for example. Thus, \(\lambda \) could be reduced and most model \(r_T(z_1, z_2) \) values made smaller without decreasing the correlation between temperatures at adjacent altitudes.

Another possible method of improving the agreement between the data and model \(r_T(z_1, z_2) \) values would be to allow \(\lambda \) to vary as a function of altitude. There is physical justification for this since \(\lambda \), the correlation between temperature and the solar heating rate of ozone, is smaller at altitudes where there is absorption by other gases (e.g., water vapor) than where \(O_3 \) is the only absorber. Before attempting to improve the agreement between model and data, however, the data base should be enlarged so as to increase the confidence in estimates of \(r_T(z_1, z_2) \).
VI. THE EFFECT OF ATMOSPHERIC VARIABILITY ON FIVE IMPORTANT SPACE SHUTTLE ENTRY PARAMETERS: AN APPLICATION OF THE MODEL

A Monte Carlo entry trajectory program was developed by modifying a rapid, three-dimensional point-mass entry program to use pseudo-random atmospheric density profiles instead of the 1962 U. S. Standard density profile, [1]. Large samples of entry trajectories were then generated, and the statistical behavior of five major performance indicators was studied.

The five entry parameters selected for study were:

1. maximum dynamic pressure
2. maximum stagnation-point heating rate
3. maximum g-load
4. final down-range distance
5. final cross-range distance

The objective of the study was to analyze the statistical distributions of these five parameters and, thereby, determine "three-sigma" design values for each. The adjective "three-sigma" is used here to refer to a value which will be exceeded with a probability of .0013. If the statistical distribution of the parameter is normal (Gaussian), then this design value will, in fact, lie a distance of three standard deviations (three sigma's) away from the mean. In general, however, this .0013-probability design value is not three standard deviations from the mean, and hence, the quotation marks on "three-sigma".
A two-dimensional random density model

Instead of entering along a steep trajectory easily described by one atmospheric profile, the Space Shuttle will actually fly back from orbit along a shallow trajectory which takes it a distance of several thousand kilometers down range. (See Figure 6.1.) Thus, a stochastic atmosphere model used to simulate Shuttle entries should provide variation in atmospheric properties along horizontal flight paths; one random atmospheric profile per entry assigning a single set of properties at each altitude is not adequate.

In the present simulation the model described in the preceding chapters was used to generate one pseudo-random atmospheric density profile at the location where entry began. Density profiles at locations down-range differ from this initial profile but are not completely uncorrelated. Therefore, at a location 110 km down range from the initial entry point, it would have been wrong to generate a new independent atmospheric density profile using the same model. Instead, the initial profile was perturbed slightly to give a new profile 110 km down range. An explanation will be given below as to how this was done and why the 110 km increment was used. At a point 220 km down range a new density profile was obtained by perturbing the previous profile, (i.e., the one at 110 km down range), and this was continued until a sequence of density profiles spaced 110 km apart was generated. The Shuttle orbiter was then flown through this array of densities, and the value of atmospheric density at any point along its trajectory was found by linear interpolation
Figure 6.1 - Illustration of shallow entry path of Space Shuttle Orbiter.
between nearby density profiles.

Let \(\rho_0(z) \) denote a pseudo-random value of atmospheric density at altitude \(z \) (\(z = 0, 1, \ldots, 90 \) km) generated by the stochastic atmosphere model described in the preceding chapters. The profile \(\{\rho_0(z) : z = 0, \ldots, 90 \text{ km}\} \) is located at the point where down-range distance \(\text{DR} \) is 0. Let \(\{\rho_j(z)\} \) be the density profile located where \(\text{DR} = 110 \) km, and in general, let \(\{\rho_j(z)\} \) be located where \(\text{DR} = j \times 110 \) km. Then the density \(\rho_{j+1}(z) \) was given by

\[
\rho_{j+1}(z) = \rho_j(z) + \delta(z) \quad j = 0, 1, 2, \ldots \tag{6.1}
\]

where

\[
\delta(z) \sim N(0, \sigma_\delta^2(z)) \tag{6.2}
\]

The variance of \(\delta(z) \), \(\sigma_\delta^2(z) \), was based on a set of maximum horizontal density gradients given in reference [23]. This reference places an upper limit on the horizontal change in atmospheric density between two locations 110 km apart (hence the use of 110 km intervals). Since \(\rho_j(z) \) and \(\rho_{j+1}(z) \), as defined above, are two densities at altitude \(z \) located 110 km apart, then according to [23] the following must hold:

\[
-\gamma(z)\rho_{62}(z) \leq \rho_{j+1}(z) - \rho_j(z) \leq \gamma(z)\rho_{62}(z) \tag{6.3}
\]

where \(\rho_{62}(z) \) is the 1962 Standard atmospheric density at altitude \(z \), and \(\gamma(z) \) is obtained by linear interpolation from Table 6.1.

In the present situation \(\rho_{j+1}(z) - \rho_j(z) = \delta(z) \) is a normal
Table 6.1 - Design Horizontal Density Gradients

<table>
<thead>
<tr>
<th>Altitude</th>
<th>Spring/Autumn</th>
<th>Summer</th>
<th>Winter</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.35</td>
<td>0.20</td>
<td>0.50</td>
</tr>
<tr>
<td>30</td>
<td>0.35</td>
<td>0.20</td>
<td>0.50</td>
</tr>
<tr>
<td>40</td>
<td>0.70</td>
<td>0.30</td>
<td>1.10</td>
</tr>
<tr>
<td>50</td>
<td>0.95</td>
<td>0.40</td>
<td>1.50</td>
</tr>
<tr>
<td>60</td>
<td>1.25</td>
<td>0.50</td>
<td>2.00</td>
</tr>
<tr>
<td>70</td>
<td>1.40</td>
<td>0.60</td>
<td>2.20</td>
</tr>
<tr>
<td>80</td>
<td>1.25</td>
<td>0.50</td>
<td>2.00</td>
</tr>
<tr>
<td>90</td>
<td>0.20</td>
<td>0.10</td>
<td>0.30</td>
</tr>
</tbody>
</table>

If ρ_1 and ρ_2 are two values of density at the same altitude z but 110 km apart, then $|\rho_1 - \rho_2|$ must be less than $\gamma \rho_{62}$, where γ is interpolated from this table, and ρ_{62} is the 1962 Standard Atmosphere density at altitude z.

Table 6.2 - Shuttle Characteristics used in Simulations

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbiter weight</td>
<td>870000 N (196000 lbs)</td>
</tr>
<tr>
<td>Reference area</td>
<td>268 m2 (2890 ft2)</td>
</tr>
<tr>
<td>Angle of attack</td>
<td>34 deg</td>
</tr>
<tr>
<td>Lift-to-drag ratio</td>
<td>1.25</td>
</tr>
<tr>
<td>Drag coefficient</td>
<td>0.572</td>
</tr>
<tr>
<td>Lift coefficient</td>
<td>0.457</td>
</tr>
</tbody>
</table>
random variable and, hence, does not have strict upper and lower limits as required by reference [23], equation (6.3). However, by choosing \(\sigma_\delta(z) \) such that

\[
\gamma(z) \rho_{62}(z) = 3 \sigma_\delta(z)
\]

(6.4)

the absolute limit in equation (6.3) was replaced by

\[
\Pr \left[-\gamma(z) \rho_{62}(z) \leq \rho_{j+1}(z) - \rho_{j}(z) \leq \gamma(z) \rho_{62}(z) \right] = .997
\]

(6.5)

a probabilistic limit. The design horizontal density gradients of reference [23] then became "three-sigma" design values.

Procedure

The vehicle and aerodynamic characteristics used in this study (see Table 6.2) are based on the current Shuttle design, [41]. Four samples of 1000 pseudo-random entries were generated, each sample representing a different season in the 30° latitude band. Within each sample, the only difference between any two entry trajectories was their respective atmospheres. The five entry parameters listed above were recorded for each entry. Sample means and standard deviations were calculated; histograms were constructed, and empirical cumulative frequencies were plotted on normal probability paper. The first four moments of each parameter were used to fit a Pearson distribution, [42], to the empirical distributions (see Appendix D).

For comparison purposes, a number of different methods were used
to determine "three-sigma" design values. The methods used were the following:

Method A (Traditional Method). The parameter was assumed to have a normal distribution, and its design value was given by

\[(A) \text{ design value} = \bar{X} \pm 3s \quad (6.6)\]

where \(\bar{X}\) and \(s\) are the sample mean and sample standard deviation, respectively. A plus or minus sign was chosen depending on the nature of the parameter.

Method B (Probability Paper Method). Again, the parameter was assumed to have a normal distribution. However, by this method, a normal cumulative frequency curve \(F(x)\) was fitted to the empirical cumulative frequencies, using probability paper, and the design value was the parameter value, \(x = (B) \text{ design value, satisfying } F(x) = 0.9987\) (or 0.0013 if it is a minimum).

Method C (Non-parametric Method). The "three-sigma" design value, as defined above, is a value which will be exceeded approximately once in a sample of size 1000. Letting \(x_n\) and \(x_{n-1}\) denote the largest and next largest values, respectively, in the parameter sample of size 1000, then any value between \(x_{n-1}\) and \(x_n\) has been exceeded once in that sample and could justifiably be chosen as the "three-sigma" design value. Method C took the design value to be

\[(C) \text{ design value} = x_n \quad (6.7)\]
the most conservative choice between x_{n-1} and x_n. (In the case where a design value was a minimum the smallest sample value was used).

Method D (Pearson Distribution Method). By this method, the first four sample moments were used to fit one of the Pearson distributions to the observed distribution. Then the "three-sigma" design value was that value which satisfied $F_p(x) = 0.9987$ (or 0.0013) where $F_p(\cdot)$ was the cumulative distribution function of the Pearson distribution which best fitted the data.

Results and Discussion

Table 6.3 lists various sample statistics computed from the four entry samples. Values in the "Deterministic Prediction" column are values of the parameters obtained from non-random trajectories using the appropriate atmosphere from the 1966 Standard Atmosphere Supplements, [2].

The coefficients of variation, defined by,

$$CV = \left(\frac{S}{\bar{x}} \right) \times 100\% \quad (6.8)$$

can be used to estimate confidence intervals for the means. A 95 percent confidence interval for any mean in Table 6.3 is

$$\bar{x} \left(1 \pm 0.0006 \ CV \right) \quad (6.9)$$

For example, since the coefficient of variation of autumn down-range distances is 3%, one can state with 95 percent confidence, that the
Table 6.3 - Entry Parameter Statistics Based on 1000 Entries

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Deterministic Prediction</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Coefficient of Variation, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Maximum dynamic pressure, N/m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>5305</td>
<td>5505</td>
<td>104.1</td>
<td>1.9</td>
</tr>
<tr>
<td>Summer</td>
<td>5296</td>
<td>5431</td>
<td>86.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Autumn</td>
<td>5305</td>
<td>5592</td>
<td>158.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Winter</td>
<td>5307</td>
<td>5674</td>
<td>168.5</td>
<td>2.9</td>
</tr>
<tr>
<td>(b) Maximum stagnation-point heating rate, $\times 10^{-5}$, W/m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>9.910</td>
<td>9.897</td>
<td>0.353</td>
<td>3.6</td>
</tr>
<tr>
<td>Summer</td>
<td>10.059</td>
<td>10.069</td>
<td>0.375</td>
<td>3.7</td>
</tr>
<tr>
<td>Autumn</td>
<td>9.910</td>
<td>9.915</td>
<td>0.462</td>
<td>4.7</td>
</tr>
<tr>
<td>Winter</td>
<td>9.749</td>
<td>9.863</td>
<td>0.414</td>
<td>4.2</td>
</tr>
<tr>
<td>(c) Maximum g-load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>1.165</td>
<td>1.206</td>
<td>0.0251</td>
<td>2.1</td>
</tr>
<tr>
<td>Summer</td>
<td>1.150</td>
<td>1.185</td>
<td>0.0180</td>
<td>1.5</td>
</tr>
<tr>
<td>Autumn</td>
<td>1.165</td>
<td>1.223</td>
<td>0.0346</td>
<td>2.8</td>
</tr>
<tr>
<td>Winter</td>
<td>1.152</td>
<td>1.247</td>
<td>0.0412</td>
<td>3.3</td>
</tr>
<tr>
<td>(d) Down range, km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>13610</td>
<td>13630</td>
<td>294.1</td>
<td>2.2</td>
</tr>
<tr>
<td>Summer</td>
<td>13450</td>
<td>13470</td>
<td>396.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Autumn</td>
<td>13610</td>
<td>13650</td>
<td>415.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Winter</td>
<td>13790</td>
<td>13760</td>
<td>394.1</td>
<td>2.9</td>
</tr>
<tr>
<td>(e) Cross range, km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>1290</td>
<td>1288</td>
<td>22.46</td>
<td>1.7</td>
</tr>
<tr>
<td>Summer</td>
<td>1295</td>
<td>1297</td>
<td>26.80</td>
<td>2.1</td>
</tr>
<tr>
<td>Autumn</td>
<td>1290</td>
<td>1286</td>
<td>32.87</td>
<td>2.6</td>
</tr>
<tr>
<td>Winter</td>
<td>1283</td>
<td>1279</td>
<td>31.56</td>
<td>2.5</td>
</tr>
</tbody>
</table>
estimated mean down-range distance in autumn, \(\bar{X} = 13650 \) km, is accurate to within \(\pm 0.0018 \) \(\bar{X} \) (i.e., to within \(\pm 0.18\% \)).

Figures 6.2 - 6.6 show histograms of the five entry parameters. The dashed lines are the Pearson probability density functions fitted to each distribution. One general characteristic of each parameter is that its autumn and winter distributions have more dispersion (greater variance) than its spring and summer distributions. This reflects the fact that the variances of temperature, density and pressure in the autumn and winter atmosphere models were greater than those of the spring and summer models. The down-range distributions appear to be skewed to the left, whereas all other distributions appear to be skewed to the right.

In the cases of the summer maximum dynamic pressure, down-range, and cross-range distributions, it was not possible to find Pearson distributions using the usual moments fit. This is because \(\beta_1 \) and \(\beta_2 \) were inadmissible (see definitions in Appendix D). It was possible to modify the \(\beta_1 \) and \(\beta_2 \) values for maximum dynamic pressure to get the "closest" Pearson fit. (See Appendix D). This is the dashed curve in Figure 6.2 (summer). The same modification when applied to the summer down-range and cross-range distributions resulted in J-shaped Pearson Type VI distributions which did not resemble the sample distributions at all. Therefore, no Pearson fits were obtained for the summer down-range and cross-range distributions.

Table 6.4 lists the various "three-sigma" design values obtained by Methods A, B, C, and D, as described above. If a design value lies
Figure 6.2 - Seasonal distributions of maximum dynamic pressure based on samples of 1000 pseudo-random Shuttle entries.
Figure 6.3 - Seasonal distributions of maximum stagnation-point heating rate based on samples of 1000 pseudo-random Shuttle entries.
Figure 6.4 - Seasonal distributions of maximum g-load based on samples of 1000 pseudo-random Shuttle entries.
Figure 6.5 - Seasonal distributions of final down-range distance based on samples of 1000 pseudo-random Shuttle entries.
Figure 6.6 - Seasonal distributions of final cross-range distance based on samples of 1000 pseudo-random Shuttle entries.
Table 6.4 - Parameter Design Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>A $\bar{X} \pm 3$s</th>
<th>B Probability Paper</th>
<th>C Sample Extreme</th>
<th>D Pearson Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Maximum dynamic pressure, N/m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>5817</td>
<td>5903</td>
<td>6192</td>
<td>5997</td>
</tr>
<tr>
<td>Summer</td>
<td>5690</td>
<td>5772</td>
<td>6131</td>
<td>5913</td>
</tr>
<tr>
<td>Autumn</td>
<td>6067</td>
<td>6201</td>
<td>6298</td>
<td>6310</td>
</tr>
<tr>
<td>Winter</td>
<td>6180</td>
<td>6305</td>
<td>6421</td>
<td>6345</td>
</tr>
<tr>
<td>(b) Maximum stagnation-point heating rate, $x \times 10^{-6}$, W/m²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>1.096</td>
<td>1.126</td>
<td>1.226</td>
<td>1.161</td>
</tr>
<tr>
<td>Summer</td>
<td>1.119</td>
<td>1.150</td>
<td>1.192</td>
<td>1.177</td>
</tr>
<tr>
<td>Autumn</td>
<td>1.130</td>
<td>1.169</td>
<td>1.204</td>
<td>1.192</td>
</tr>
<tr>
<td>Winter</td>
<td>1.111</td>
<td>1.150</td>
<td>1.317</td>
<td>1.225</td>
</tr>
<tr>
<td>(c) Maximum g-load</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>1.281</td>
<td>1.302</td>
<td>1.325</td>
<td>1.312</td>
</tr>
<tr>
<td>Summer</td>
<td>1.239</td>
<td>1.254</td>
<td>1.273</td>
<td>1.265</td>
</tr>
<tr>
<td>Autumn</td>
<td>1.327</td>
<td>1.355</td>
<td>1.390</td>
<td>1.377</td>
</tr>
<tr>
<td>Winter</td>
<td>1.371</td>
<td>1.401</td>
<td>1.421</td>
<td>1.409</td>
</tr>
<tr>
<td>(d) Maximum down range, km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>14510</td>
<td>14680</td>
<td>14310</td>
<td>14260</td>
</tr>
<tr>
<td>Summer</td>
<td>14650</td>
<td>14830</td>
<td>21830</td>
<td>*</td>
</tr>
<tr>
<td>Autumn</td>
<td>14900</td>
<td>15090</td>
<td>14780</td>
<td>14610</td>
</tr>
<tr>
<td>Winter</td>
<td>14940</td>
<td>15230</td>
<td>14800</td>
<td>14690</td>
</tr>
<tr>
<td>(e) Minimum down range, km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>12750</td>
<td>12550</td>
<td>11900</td>
<td>12420</td>
</tr>
<tr>
<td>Summer</td>
<td>12280</td>
<td>12200</td>
<td>12140</td>
<td>*</td>
</tr>
<tr>
<td>Autumn</td>
<td>12410</td>
<td>12200</td>
<td>12060</td>
<td>12130</td>
</tr>
<tr>
<td>Winter</td>
<td>12580</td>
<td>12330</td>
<td>11450</td>
<td>12100</td>
</tr>
<tr>
<td>(f) Maximum cross range, km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>1355</td>
<td>1374</td>
<td>1431</td>
<td>1393</td>
</tr>
<tr>
<td>Summer</td>
<td>1377</td>
<td>1398</td>
<td>1407</td>
<td>*</td>
</tr>
<tr>
<td>Autumn</td>
<td>1385</td>
<td>1407</td>
<td>1416</td>
<td>1415</td>
</tr>
<tr>
<td>Winter</td>
<td>1374</td>
<td>1400</td>
<td>1482</td>
<td>1428</td>
</tr>
<tr>
<td>(g) Minimum cross range, km</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>1221</td>
<td>1223</td>
<td>1233</td>
<td>1230</td>
</tr>
<tr>
<td>Summer</td>
<td>1217</td>
<td>1224</td>
<td>905</td>
<td>*</td>
</tr>
<tr>
<td>Autumn</td>
<td>1187</td>
<td>1191</td>
<td>1203</td>
<td>1205</td>
</tr>
<tr>
<td>Winter</td>
<td>1184</td>
<td>1191</td>
<td>1206</td>
<td>1208</td>
</tr>
</tbody>
</table>
in the direction of skewness (i.e., in the long tail), then the traditional use of \(\bar{x} \pm 3s \) as a design value will, in general, lead to an exceedance probability (risk) higher than the intended .0013. Because of the positive skewness in the maximum dynamic pressure, maximum stagnation-point heating rate, and maximum g-load distributions, it is not surprising, therefore, that the (A) design values (\(\bar{x} \pm 3s \)) are less conservative (more "risky") than the (B), (C), or (D) design values which are based on sample cumulative frequencies. In other words, the latter three methods estimate the true cumulative distribution function \(F(x) \) and select a design value \(x \) satisfying \(F(x) = .9987 \), whereas the (A) design value, \(x_A \), generally has a cumulative frequency \(F(x_A) \) less than .9987. Taking the autumn maximum stagnation-point heating rate distribution as an example, and assuming the Pearson distribution shown in Figure 6.3 is the true distribution, the probability of exceeding the (A) design value (11.301), is .0119 instead of .0013 as desired. The chance of exceeding this design value at least once in 100 missions (the anticipated Shuttle lifetime) is 70 percent, whereas the chance of exceeding the (D) design value (11.919) at least once is only 13 percent.

In the cases of the minimum cross-range and the maximum down-range design values, the traditional Method (A) is actually more conservative than the (D) method. This is because these design values lie in the short tails of their respective skewed distributions. Nevertheless, over-conservatism is still not a desirable trait since it adds to the cost of the design.
If it is decided that the optimum exceedance probability for a design value should be .0013, and both greater and smaller exceedance probabilities are to be avoided, then the use of a Pearson fit is recommended whenever possible. Accordingly, the (D) design values listed in Table 6.3 are preferred to those given by the other methods.

A pilot study similar to the present study was made by the author, [43], to determine if random fluctuations in atmospheric density, on the order of those observed, could have an appreciable effect on Shuttle entry parameters. (The same five parameters were studied). In that study a fairly crude stochastic atmosphere model was used. However, in spite of its deficiencies, the pilot study did produce some useful information. It showed, for example, that the shape of a parameter's distribution persisted over a wide range in entry angles of attack, and the coefficient of variation for a particular parameter remained quite constant even though the magnitude of its mean varied considerably for different angles of attack.

There is every reason to believe that these same consistencies would apply in the present study. Therefore, even though angles of attack or other trajectory characteristics may change, thus changing magnitudes of the entry parameters, the shape of a parameter's distribution and its percentage variation due to atmospheric effects should not be seriously affected. For this reason, design values expressed as "design factors" to be multiplied by the parameter's mean are perhaps more valuable than strict design values. Table 6.5 lists these factors based on the (D) design values in Table 6.4. The latter
Table 6.5 - Parameter Design Factors Based on Pearson Distributions

<table>
<thead>
<tr>
<th>Parameter Factor</th>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Maximum dynamic pressure</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>1.09</td>
</tr>
<tr>
<td>Summer</td>
<td>1.09</td>
</tr>
<tr>
<td>Autumn</td>
<td>1.13</td>
</tr>
<tr>
<td>Winter</td>
<td>1.12</td>
</tr>
<tr>
<td>(b) Maximum stagnation-point heating rate</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>1.17</td>
</tr>
<tr>
<td>Summer</td>
<td>1.17</td>
</tr>
<tr>
<td>Autumn</td>
<td>1.20</td>
</tr>
<tr>
<td>Winter</td>
<td>1.24</td>
</tr>
<tr>
<td>(c) Maximum g-load</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>1.09</td>
</tr>
<tr>
<td>Summer</td>
<td>1.07</td>
</tr>
<tr>
<td>Autumn</td>
<td>1.13</td>
</tr>
<tr>
<td>Winter</td>
<td>1.13</td>
</tr>
<tr>
<td>(d) Maximum down range</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>1.05</td>
</tr>
<tr>
<td>Summer</td>
<td>-</td>
</tr>
<tr>
<td>Autumn</td>
<td>1.09</td>
</tr>
<tr>
<td>Winter</td>
<td>1.06</td>
</tr>
<tr>
<td>(e) Minimum down range</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>0.91</td>
</tr>
<tr>
<td>Summer</td>
<td>-</td>
</tr>
<tr>
<td>Autumn</td>
<td>0.89</td>
</tr>
<tr>
<td>Winter</td>
<td>0.88</td>
</tr>
<tr>
<td>(f) Maximum cross range</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>1.08</td>
</tr>
<tr>
<td>Summer</td>
<td>-</td>
</tr>
<tr>
<td>Autumn</td>
<td>1.10</td>
</tr>
<tr>
<td>Winter</td>
<td>1.12</td>
</tr>
<tr>
<td>(g) Minimum cross range</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>0.95</td>
</tr>
<tr>
<td>Summer</td>
<td>-</td>
</tr>
<tr>
<td>Autumn</td>
<td>0.94</td>
</tr>
<tr>
<td>Winter</td>
<td>0.94</td>
</tr>
</tbody>
</table>
are obtained by multiplying the design factors in Table 6.5 by the parameter's mean given in Table 6.3.

Conclusions

This study has shown that significant variations can occur in entry parameters as a result of day-to-day atmospheric variability. Parameter distributions showed seasonal trends in both their means and their variances. Largest and smallest means occurred in the summer and winter distributions and intermediate means in the spring and fall. Autumn and winter variances were larger than spring and summer variances in all parameter distributions because the autumn and winter atmosphere models were more variable than the spring and summer models.

Using the design factors in Table 6.5, general conclusions can be drawn about the relative amount of variation one might expect to result from atmospheric variability. Design values for maximum dynamic pressure and maximum g-load range from 7 to 13 percent higher than nominal (mean) values; design values for maximum stagnation-point heating rate range between 17 and 24 percent higher than their nominal values; down-range design values are between +9 and -12 percent, and cross-range design values are between +12 and -6 percent of their nominal.

Interpretation of the design values for maximum dynamic pressure and maximum g-load is straight-forward. The significance of maximum stagnation-point heating rate, however, is its impact on the total integrated heat load and its impact on the maximum stagnation-point surface temperature, \(T_{\text{max}} \). The total heat load was not recorded
during the simulations, and hence, its variation is not known. A surface temperature at any point on the vehicle is proportional to the fourth root of the heating rate at that point. Therefore, T_{max} is proportional to the fourth root of the maximum stagnation-point heating rate. This means that a design value for the latter which is 24 percent higher than its nominal is equivalent to a design maximum temperature approximately 6 percent higher than its nominal (i.e., $1.24^{1/4} = 1.06$).

Departures from the nominal down-range and cross-range distances are not to be interpreted as miss distances since on-board guidance systems will allow the Shuttle orbiter to correct for flight path errors. The down-range and cross-range design values obtained here imply that these guidance systems must be capable of correcting for errors of as much as 12 percent caused by natural variations in atmospheric density.

The present study has shown that atmospheric variability is an important source of error to consider in Shuttle entry design studies. It is not the only error source, on the other hand, since uncertainties in the vehicle's weight, aerodynamic coefficients and initial orbital elements will all cause errors in the entry trajectory. Past error analyses have often either ignored atmospheric variability or else used "extreme" atmospheres as described in Chapter I. It is recommended that future error analyses include atmospheric variations and that a statistical approach such as the present one be used.
VII. SUMMARY AND CONCLUSIONS

Summary

A stochastic model of the atmosphere between 30 and 90 km was developed for use in Monte Carlo Shuttle entry studies. The model is actually a family of models, one for each latitude-season category as defined in the 1966 U. S. Standard Atmosphere Supplements, [2].

Each latitude-season model generates a pseudo-random temperature profile whose mean is the appropriate temperature profile from the 1966 Standard Atmosphere Supplements. The standard deviation of temperature for a given latitude-season model is assumed to be the same at all altitudes and is estimated from sounding-rocket data. Departures from the mean temperature at each altitude are produced by assuming a linear regression of temperature $T(z)$ on $T_s(z)$, the solar heating rate of ozone. First, a profile of random ozone concentrations is generated using an auxiliary stochastic ozone model, which was also developed as a part of this study. The solar heating rate T_s is random since it is a function of the random ozone concentrations. The steps taken in generating a random temperature profile are illustrated schematically in Figure 7.1.

Pressure and density profiles are calculated from each temperature profile by solving simultaneously the hydrostatic equation and the equation of state. Thus, each pseudo-random atmosphere consists of a consistent set of temperature, pressure and density profiles. Isopynic layers, regions where atmospheric density is almost constant, are created
Figure 7.1 - Steps taken in generating one pseudo-random temperature profile.
at 24 and 90 km altitudes by using these two altitudes as boundary points in integrating the hydrostatic equation.

A computer data tape of 442 sounding-rocket measurements of the atmosphere above 35 km was obtained to use in estimating parameters of the temperature distribution. These data were also used for comparing their statistical characteristics with those of the model. After the data were sorted according to latitude-season categories and adjustments were made to assure independence of profiles, the sizes of resultant samples were quite small. For example, in the 30° latitude band, sample sizes ranged from 5 in the summer sample to 20 in the winter sample. Because of such small samples, confidence intervals associated with the sample statistics (e.g., means, standard deviations, and correlations) were so wide that comparison of these statistics with model statistics were inconclusive.

The four 30° latitude models were used in Monte Carlo simulations of Shuttle entries to study the effect of atmospheric variability on five Shuttle entry parameters. The simulations were of point-mass trajectories, and the five parameters studied were maximum dynamic pressure, maximum stagnation-point heating rate, maximum g-load, final down-range distance and final cross-range distance. A sample of 1000 entries was generated for each of the four seasons, and the resultant parameter distributions were analyzed to determine design values. Pearson distributions were fitted to the empirical distributions, and design values obtained from these distributions were compared to the traditional "three-sigma" design values which are based on assumptions that parameter
distributions are normal. Pearson design values were defined as those parameter values with exceedance probabilities equal to .0013 based on the fitted Pearson distribution. (The value .0013 is the exceedance probability associated with a normal random variable located a distance of three standard deviations from its mean.)

In general, the design values based on fitted Pearson distributions were more conservative (farther from the mean) than those obtained with the assumption of normality. This is because all of the empirical distributions were skewed, and most design values lay in the direction of skewness (long tail). Pearson design values ranged from being 24 percent greater than the mean, in the case of winter maximum stagnation-point heating rates, to being within 5 percent of the mean, in the case of spring minimum cross-range distances.

Autumn and winter parameter distributions showed more dispersion than spring and summer distributions, because the autumn and winter atmosphere models were more variable than the spring and summer models. It is apparent from this fact that parameter design values are quite sensitive to the estimates of variances used in the atmosphere models. In particular, two factors contribute to the observed dispersion differences between summer and winter histograms. One is the difference between $\sigma_T(\text{summer}) = 6.82^\circ K$ and $\sigma_T(\text{winter}) = 10.89^\circ K$, and the other is the difference between summer and winter design density gradients (Table 6.1). Because of this sensitivity, Shuttle parameter design values are only as reliable as these estimates. This further underscores the need to increase the data base used in estimates of atmosphere model
Concluding observations

There are two basic philosophies one can use in developing a stochastic model of some random phenomenon. By far the most common approach is to observe the available data relating to that phenomenon and then model that data empirically without any regard to cause-and-effect relationships. By using the data to estimate means, variances, correlations, and higher moments, one can generate artificial data samples with all the statistical characteristics of the original sample.

A second alternate approach is to attempt to identify and model the fundamental random processes which bring about the observed randomness in the phenomenon being modeled. For example, in the case of atmospheric temperature, one would look for underlying random processes which cause temperature to vary.

Believing that a good theoretical model is preferable to a good empirical model, if both were attainable, the author chose the theoretical approach in setting out to model atmospheric variations. Although the development of a workable theoretical model is a much greater challenge, such a model would provide physical insight into the nature of atmospheric variations. A purely empirical model, on the other hand, is strictly limited to describing a particular set of data, and its user must be cautious when projecting the model beyond the range of the original data. Furthermore, empirical models generally are time consuming and require the storage of large correlation matrices.
The fact that the microscopic nature of any gas is basically random was further encouragement for taking a theoretical approach to modeling the atmosphere. For example, the temperature of a gas is actually a direct measure of the variance of molecular velocities in that gas. That is, the velocity of a molecule of gas in any one direction is a normal random variable with mean 0 and variance equal to KT/M, where K is the universal gas constant, M is the molecule's weight, and T is the gas temperature, \([44]\).

In accordance with the "theoretical" philosophy, one fundamental random process, the creation and destruction of atmospheric ozone, was identified as the major cause of temperature variation in the 30-90 km region. An attempt to model it on a microscopic level, using collision rates, etc., lead to the immediate realization that variations in a macroscopic gas property could not be accounted for by modeling random events occurring on a microscopic scale. The law of large numbers steps into play so that, if \(N\) is the number of molecules in the gas volume, the collective effect of \(N\) random events is virtually non-random at altitudes below 90 km where \(N\) is greater than \(10^{20}\) molecules per cubic meter.

Thus, the initial effort to model the causes of temperature variation using purely theoretical considerations failed. It led, instead, to an empirical model of atmospheric ozone based on experimental measurements of ozone concentrations, \([37]\). Pseudo-random ozone profiles were used to calculate the solar heating rate of ozone at each altitude, and these in turn were linked to temperatures via a linear regression model.
A reasonable question at this point might be, "Why avoid the use of an empirical temperature model and at the same time resort to the use of an empirical ozone model?" Admittedly, this is a compromise, and a theoretical model for ozone variation would be preferable. However, even though the present model contains no insight into the nature of ozone variations, it still uses these to explain, at least partially, the variations in temperature, and particularly the correlations between temperatures at different altitudes. The particular ozone model used here determines the shape of the temperature distribution at each altitude. However, any ozone model showing the same uniform increase and decrease in ozone above 30 km, as exhibited by the data, will give the same interlayer correlation structure for temperatures; it is this feature - the correlation structure - which largely governs the pressure and density distributions. Thus, the pressure and density distributions and the interlayer temperature correlations are somewhat robust to the choice of ozone models.

A number of improvements can and should be made in order to obtain better agreement between the temperature model and data. A better, more quantitative, means of estimating λ should be devised; other sources of variation should be included (e.g., winds, water vapor absorption, etc.), and a more acceptable means of estimating boundary conditions in the hydrostatic equation should be sought. A prerequisite to any improvement attempt, however, is the enlargement of the data base. As it stands now, the model represents an encouraging "first cut" at a workable theoretical model.
REFERENCES

APPENDIX A. EQUATIONS FOR CALCULATING ATMOSPHERIC PROPERTIES

List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Units/Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g)</td>
<td>acceleration due to gravity</td>
<td>m/sec^2</td>
</tr>
<tr>
<td>(g_o)</td>
<td>acceleration due to gravity at sea level</td>
<td>m/sec^2</td>
</tr>
<tr>
<td>(K)</td>
<td>universal gas constant</td>
<td>8.314 \times 10^3 J/°K</td>
</tr>
<tr>
<td>(M)</td>
<td>molecular weight of air</td>
<td>28.964 kg</td>
</tr>
<tr>
<td>(P)</td>
<td>atmospheric pressure</td>
<td>N/m^2</td>
</tr>
<tr>
<td>(P_o)</td>
<td>atmospheric pressure at sea level</td>
<td>N/m^2</td>
</tr>
<tr>
<td>(R_o)</td>
<td>radius of earth</td>
<td>m</td>
</tr>
<tr>
<td>(T)</td>
<td>atmospheric temperature</td>
<td>°K</td>
</tr>
<tr>
<td>(U)</td>
<td>\log(P/P_o)</td>
<td></td>
</tr>
<tr>
<td>(z)</td>
<td>geometric altitude</td>
<td>m</td>
</tr>
<tr>
<td>(\rho)</td>
<td>atmospheric density</td>
<td>kg/m^3</td>
</tr>
<tr>
<td>(\phi)</td>
<td>earth latitude</td>
<td>degrees</td>
</tr>
</tbody>
</table>

Governing equations

Atmospheric temperature, density and pressure are related by the equation of state

\[
\rho = \frac{MP}{KT} \quad (A.1)
\]

and the hydrostatic equation

\[
dP = -\rho g dz \quad (A.2)
\]

The molecular weight of air \(M \) can be considered constant, for the
present purposes, at altitudes below 90 km.

The acceleration due to gravity \(g \), a function of altitude \(z \), is given by

\[
g = g_0 \frac{R_o^2}{(R_o + z)^2}
\]

(A.3)

where \(g_0 \), the value of \(g \) at sea level, is

\[
g_0 = 9.780356 \left[1 + 0.0052885 \sin^2 \phi - 0.000059 \sin^2 (2\phi) \right]
\]

(A.4)

and \(R_o \), the earth's radius, is

\[
R_o = 6356798 \left(0.9933070 + 0.0066930 \sin \phi \right)^{3/2}
\]

(A.5)

Equations (A.3) - (A.5) are actually approximations, but they give sufficient accuracy for the model calculations in this study. Equations (A.3) and (A.4) are those used for the calculations in the 1966 Standard Atmosphere Supplements, [2]. The earth's radius \(R_o(\phi) \) at latitude \(\phi \), (A.5), is based on the assumption that the earth is an ellipsoid with an equatorial radius \(R_o(0) = 6378178 \) m, and a polar radius \(R_o(90) = 6356798 \) m.

Solving for \(P \) and \(p \) given a temperature-altitude profile

Let the given temperature-altitude profile be of the form

\[
\{(T_i, z_i): z_i = 0, 1, \ldots, 90 \text{ km}\}
\]

(A.6)

and assume that for \(z \) between \(z_i \) and \(z_{i+1} \), \(T(z) \) is found by
linear interpolation. That is,

\[T(z) = T_i + (z - z_i) \frac{\Delta T}{\Delta z} \]

(A.7)

where \(\Delta T_i = T_{i+1} - T_i \) and \(\Delta z = z_{i+1} - z_i \). (\(\Delta z \) does not have a subscript since \(\Delta z = 1 \) km for all \(i \), \(i = 0, ..., 90 \)). Assume further that between \(z_i \) and \(z_{i+1} \) \(g \) is constant and is given by (A.3) with \(z = z_i \).

In order to solve (A.1) and (A.2) for pressures \(\{P_i\} \) and densities \(\{\rho_i\} \) it is necessary to have a value of pressure \(P_b \) or density \(\rho_b \) at some boundary point \(z_b \). Assume that \(z_b = z_i \) for some \(i \) between 0 and 90, and that \(P_b \) is known at that altitude.

Substituting for \(\rho \) from (A.1), equation (A.2) becomes

\[\frac{dP}{P} = -\frac{gM}{K} \frac{dz}{z} \]

(A.8)

If \(P_i \) is known at \(z_i \) then, integrating from \(z_i \) to \(z_{i+1} \), one gets

\[P_{i+1} = P_i \exp \left[-\frac{g(z_i)M}{K} \int_{z_i}^{z_{i+1}} \frac{dz}{T(z)} \right] \]

(A.9)

Using \(T(z) \) from (A.7), the integral in equation (A.9) can be integrated to give

\[P_{i+1} = P_i \left[\frac{T_i}{T_{i+1}} \right] \frac{g(z_i)M\Delta z}{K\Delta T_i} \]

(A.10)

if \(\Delta T_i \neq 0 \), or
Once the pressures \(\{P_i\} \) are obtained, the equation of state is used to get densities.

\[
\rho_i = \frac{MP_i}{KT_i} \tag{A.12}
\]

Solving for \(z \) and \(\rho \) given a temperature-pressure profile

Let the temperature-pressure profile be of the form

\[
\begin{align*}
\{ (T_j, U_j) : j = 0, 1, \ldots, 90 \}
\end{align*} \tag{A.13}
\]

where \(U_j = \log(P_j/P_0) \) and \(P_0 \) is sea-level pressure. \(P_0 \) can actually be the pressure at any boundary point \(z_b \), not necessarily \(z_b = 0 \). Values of \(U_j \) ranging from \(U_0 = 0 \) to \(U_{90} = -6.4 \) cover the atmosphere up to approximately 90 km.

It is assumed that for any \(U \) between \(U_j \) and \(U_{j+1} \), \(T(U) \) can be obtained by linear interpolation. That is,

\[
T(U) = T_j + (U - U_j) \frac{\Delta T_j}{\Delta U_j} \tag{A.14}
\]

where \(\Delta T_j = T_{j+1} - T_j \) and \(\Delta U_j = U_{j+1} - U_j \).

Equation (A.8) can now be written

\[
\frac{K}{M} T \, du = \frac{g_o R_o^2}{(P_o + z)^2} \, dz \tag{A.15}
\]
Integrating from $U_0 = 0$ to U_j, $(z_b = 0$ to $z_j)$, one gets

$$\frac{K}{M} \int_{U_0}^{U_j} T(u) \, du = - \frac{g_0 R_0}{(R_0 + z_j)} z_j$$

(A.16)

and solving for z_j yields

$$z_j = \frac{\frac{K}{g_0} \int_{U_j}^{U_0} T(u) \, du}{1 - \frac{K}{g_0 M R_0} \int_{U_j}^{U_0} T(u) \, du}$$

(A.17)

where the integral is approximated by

$$\int_{U_j}^{U_0} T(u) \, du = \sum_{i=0}^{J-1} |\Delta U_i| \frac{(T_{i+1} + T_i)}{2}$$

(A.18)

The density ρ_j at z_j is again found by using the equation of state.
APPENDIX B. EQUATIONS FOR CALCULATING SOLAR HEATING RATES

List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Units/Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>shaping parameter in O_3 model</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>surface albedo = reflected radiation/incident radiation</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>parameter in O_3 model</td>
<td></td>
</tr>
<tr>
<td>c_p</td>
<td>specific heat at constant pressure</td>
<td>$1004.7 \text{ J/kg/}^\circ\text{K}$</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
<td>m/sec^2</td>
</tr>
<tr>
<td>g_o</td>
<td>acceleration due to gravity at sea level</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>universal gas constant</td>
<td>$8.3143 \times 10^3 \text{ J/}^\circ\text{K}$</td>
</tr>
<tr>
<td>k_i</td>
<td>linear absorption coefficient for step i</td>
<td>m^{-1}</td>
</tr>
<tr>
<td>M</td>
<td>molecular weight of air</td>
<td>28.964 kg</td>
</tr>
<tr>
<td>M_{O_3}</td>
<td>molecular weight of ozone</td>
<td>47.9982 kg</td>
</tr>
<tr>
<td>P</td>
<td>atmospheric pressure</td>
<td>N/m^2</td>
</tr>
<tr>
<td>P_o</td>
<td>atmospheric pressure at sea level</td>
<td>N/m^2</td>
</tr>
<tr>
<td>P_{O_3}</td>
<td>partial pressure of ozone</td>
<td>N/m^2</td>
</tr>
<tr>
<td>$P_{O_3}^*$</td>
<td>maximum P_{O_3} (model parameter)</td>
<td>N/m^2</td>
</tr>
<tr>
<td>R_o</td>
<td>earth's radius</td>
<td>m</td>
</tr>
<tr>
<td>S</td>
<td>flux of solar energy</td>
<td>W/m^2</td>
</tr>
<tr>
<td>S_{i}</td>
<td>flux of solar energy in step i</td>
<td>W/m^2</td>
</tr>
<tr>
<td>$S_{\infty,i}$</td>
<td>portion of solar constant in step i</td>
<td>W/m^2</td>
</tr>
<tr>
<td>s_R</td>
<td>contribution of Rayleigh scattering to planetary albedo</td>
<td></td>
</tr>
</tbody>
</table>
Symbol | Definition | Units/Constants
--- | --- | ---
T | atmospheric temperature | °K
T_s | solar heating rate of ozone | °K/sec
U | height parameter = \log(P/P₀) |
U* | value of U where PO₃ = PO₃* (model parameter) |
Z | altitude | m
θ | cosine of the sun's zenith angle |
κ | mass absorption coefficient for step i | m²/kg
λ | wavelength | micron \(\mu = 10^{-6} \) m
ρ | atmospheric density | kg/m³
ρ₃ | ozone density | kg/m³

Ozone absorption coefficients

There are three spectral bands in which ozone absorbs solar radiation. These are the Hartley band with \(.2 < \lambda < .3 \) μ, the Huggins band with \(.3 < \lambda < .37 \) μ, and the Chapius band with \(.4 < \lambda < .7 \) μ.

The present study uses an absorption coefficient model, [36], in which these spectral bands are divided into three "steps" each having a constant mass absorption coefficient \(\kappa_i \), \(i = 1, 2, 3 \). The three steps and their respective mass absorption coefficients are listed in Table B.1. The \(\kappa_i \)'s given here are based on ratios of step heights \(\kappa_1 : \kappa_2 : \kappa_3 = 1 : .02 : .0005 \) calculated from data in Inn and Tanaka, [45]. The value of \(\kappa_1 \) was selected to give a linear absorption coefficient \(k_1(z) \), defined by
Table B.1

THREE STEPS IN OZONE ABSORPTION MODEL

<table>
<thead>
<tr>
<th>Step</th>
<th>Wavelengths, μ</th>
<th>Mass Absorption, Coefficient, m^2/kg</th>
<th>Fraction of Solar Constant*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.200 - .300</td>
<td>1292.0</td>
<td>.01203</td>
</tr>
<tr>
<td>2</td>
<td>.300 - .335</td>
<td>25.84</td>
<td>.02113</td>
</tr>
<tr>
<td>3</td>
<td>.335 - .370; .400 - .700</td>
<td>0.6460</td>
<td>.40982</td>
</tr>
</tbody>
</table>

*Solar Constant = flux of solar energy incident on the "top" of the atmosphere = 1353 W/m2
equal to .0005 m\(^{-1}\) at the altitude where ozone density is maximum.

This value was chosen by Su, [36], to yield local heating rates in good agreement with those of an earlier model by Manabe and Strickler, [19].

The value of maximum ozone density used for calculating \(K_1\) was \(3.87 \times 10^{-7}\) kg/m\(^3\) as given by the Mid-Latitude Ozone Model in reference [2].

Solar heating rates

The solar heating rate of ozone at altitude \(z\) is

\[
\frac{dT}{dz}(z) = -\frac{1}{\rho c_p} \frac{dS}{dz} \tag{B.2}
\]

where the solar energy flux \(S(z)\) is the sum of three components \(S_i(z)\) corresponding to the three steps in the model. These components are

\[
S_1(z) = -S_{\infty,i}(1 - s_R)\theta \left\{ \exp \left[-\frac{1}{\theta} \int_z^\infty k_1(x) dx \right] \right.
\]

\[
- \left. a \exp \left[-\frac{1}{\theta} \int_0^\infty k_1(x) dx \right] \exp \left[-\sqrt{3} \int_0^2 k_1(x) dx \right] \right\}
\]

where the values of \(S_{\infty,i}\) are based on Table B.1; \(s_R\) and \(a\) are respectively, 0.07 and 0.10, as used by Su, [36], and \(\theta = .5\) is the cosine of the effective mean zenith angle.

Taking the derivative of (B.3) with respect to \(z\), one gets
\[\frac{dS_i}{dz} = -S_{0,i}(1 - s_R)k_i(z) \left\{ \exp \left[-\frac{1}{\theta} \int_0^\infty k_1(x) \, dx \right] \right. \\
\left. + a\theta \sqrt{3} \exp \left[-\frac{1}{\theta} \int_0^\infty k_1(x) \, dx \right] \exp \left[-\sqrt{3} \int_0^Z k_1(x) \, dx \right] \right\} \]

(B.4)

Letting \(k_i(z) = \kappa_i \rho_3(z) \) and summing (B.4) over all values of \(i \), one gets

\[T(s) = \frac{(1 - S_R) \rho_3(z)}{c_p \rho(z)} \sum_{i=1}^3 S_{0,i} \kappa_i \left\{ \exp \left[-\frac{\kappa_i}{\theta} \int_0^\infty \rho_3(x) \, dx \right] \right. \\
\left. + a\theta \sqrt{3} \exp \left[-\frac{\kappa_i}{\theta} \int_0^\infty \rho_3(x) \, dx \right] \exp \left[-\kappa_i \sqrt{3} \int_0^Z \rho_3(x) \, dx \right] \right\} \]

(B.5)

The present model uses \(U = \log(P/P_0) \) as its independent variable, and, therefore, (B.5) must be expressed as a function of \(U \). The equation of state for a constituent density is

\[\rho_3 = \frac{M_3 P_3}{K_T} \]

(B.6)

and, therefore, the mixing ratio of \(O_3 \) is

\[\frac{\rho_3}{\rho} = \frac{M_3 P_3}{M_P} \]

(B.7)

Then, utilizing (B.7) and the hydrostatic equation, one can write

\[\int_{z_1}^{z_2} \rho_3(x) \, dx = -\frac{M_3}{\epsilon M} \int_{U_1}^{U_2} P_3(u) \, du \]

(B.8)
The acceleration due to gravity g, which actually varies slightly with altitude (i.e., by about 3 percent between sea level and 90 km), is replaced by a constant

$$
\bar{g} = g_0 \frac{R_0}{(R_0 + 90)}
$$

which represents its effective mean between sea level and 90 km.

Using (B.7), (B.8), and (B.9), the heating rate can now be written as a function of U. That is,

$$
\dot{T}_s(U) = \frac{(1 - s_C) M_0 P_0}{c_p M P_0 \exp(U)} \frac{3}{\sum_{i=1}^{S_{\infty,i}} K_i} \left\{ \exp\left[- \frac{Q_i}{3} \int_{-\infty}^{0} P_0(u) \, du \right] \right\}
$$

$$
+ a^6 \sqrt{3} \exp\left[- \frac{Q_i}{3} \int_{-\infty}^{0} P_0(u) \, du \right] \exp\left[- Q_i \sqrt{3} \int_{0}^{U} P_0(u) \, du \right]
$$

where

$$
Q_i = \frac{K_i M_0}{\bar{g} M}
$$

The use of a constant $g = \bar{g}$, and a constant sea-level pressure P_0 in (B.10) introduces a small error in the $T_s(U)$ profile. However, in the temperature model, $T_s(U)$ is standardized so as to become a random variable with mean equal to zero and standard deviation equal to one. Thus, any error which affects the mean and/or standard deviation of $T_s(U)$ does not affect the temperature model.

Calculating optical thicknesses

The quantity
\[\frac{1}{6} \int_{z_1}^{z_2} k_i(x) \, dx = -\frac{Q_4}{6} \int_{U_1}^{U_2} P_{03}(u) \, du \]

(B.12)

is called the optical thickness or opacity of the ozone between \(z_1 \) and \(z_2 \).

The following calculations are based on the ozone model explained in Chapter IV. A value of \(U \) located at approximately 50 km altitude, denoted \(U_{50} \), is used as the dividing point for the two different \(P_{03} \) formulas. For \(U < U_{50} \) (i.e., at altitudes above the dividing point), \(P_{03} \) is given by

\[P_{03}(U) = \exp(AU - AU^* + B) \]

(B.13)

where for a particular profile \(A \), \(B \), and \(U^* \) are constants. Thus, when \(U < U_{50} \), the optical thickness above \(z(U) \) is

\[\frac{1}{6} \int_{z(U)}^{\infty} k_i(x) \, dx = \frac{Q_4}{A6} P_{03}(U) \]

(B.14)

If \(U > U_{50} \), Green's formula (Chapter IV) gives

\[P_{03}(U) = 4P_{03}^* \frac{e^{L(U)}}{(1 + e^{L(U)})^2} \]

(B.15)

where

\[L(U) = A (U - U^*) \]

(B.16)

Thus, for \(U > U_{50} \),
\[\frac{1}{\theta} \int_{z(U)}^{\infty} k_1(x) \, dx = \frac{Q_i}{A\theta} \exp \left[L(U_{50}) + B \right] + \frac{4P0^* Q_i}{A\theta} \left[\frac{1}{1 + e^{L(U_{50})}} - \frac{1}{1 + e^{L(U)}} \right] \] (B.17)
List of Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Units/Constants</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>shaping parameter in Green's formula</td>
<td></td>
</tr>
<tr>
<td>dq/du₁₂</td>
<td>slope of the ozonagram at a point above U* where (P₀₃ = q₂)</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>molecular weight of air</td>
<td>28.964 kg</td>
</tr>
<tr>
<td>M₀₃</td>
<td>molecular weight of ozone</td>
<td>47.9982 kg</td>
</tr>
<tr>
<td>P</td>
<td>atmospheric pressure</td>
<td>(N/m²)</td>
</tr>
<tr>
<td>P₀</td>
<td>atmospheric pressure at sea level</td>
<td>(N/m²)</td>
</tr>
<tr>
<td>P*</td>
<td>atmospheric pressure where (P₀₃ = P₀₃^*)</td>
<td>(N/m²)</td>
</tr>
<tr>
<td>P₀₃</td>
<td>partial pressure of ozone</td>
<td>(N/m²)</td>
</tr>
<tr>
<td>P₀₃*</td>
<td>maximum partial pressure of ozone</td>
<td>(N/m²)</td>
</tr>
<tr>
<td>q₁</td>
<td>ozonagram value of (P₀₃) at height (u₁)</td>
<td>(N/m²)</td>
</tr>
<tr>
<td>q₂</td>
<td>arbitrarily selected value of (P₀₃) where slope (dq/du₁₂) is estimated</td>
<td>(N/m²)</td>
</tr>
<tr>
<td>T₀₃</td>
<td>total ozone</td>
<td>atm-cm</td>
</tr>
<tr>
<td>U</td>
<td>height parameter = (\log(P/P₀))</td>
<td></td>
</tr>
<tr>
<td>u₁</td>
<td>arbitrarily selected value of U above U* where (P₀₃ = q₁) is measured</td>
<td></td>
</tr>
<tr>
<td>U*</td>
<td>value of U where (P = P^*)</td>
<td></td>
</tr>
<tr>
<td>ρ₃</td>
<td>ozone density</td>
<td>(kg/m³)</td>
</tr>
</tbody>
</table>
Criteria for a good fit

In fitting Green's formula,

$$P_0 = 4P_0^* \frac{e^x}{(1 + e^x)^2}$$ \(\text{(C.1)}\)

where \(x = A \log(P/P^*)\), to an ozonagram, ideally one could read the coordinates \((P_0^*, P^*)\) off the curve at the location where \(P_0^3\) is maximum. Unfortunately, however, the data usually have an appreciable amount of scatter at that point, and, consequently, it is sometimes difficult to determine values of \(P_0^*, P^*\) which produce a good fit.

In the present study, a "good" fit of Green's formula is one which (1) fits the smooth segment of the \(P_0^3\) profile above its maximum and (2) has the correct total ozone \(T_0^3\) as reported on each ozonagram.

Calculating the shaping parameter \(A\)

If \(P_0^3\) is known, the shaping parameter \(A\) can be selected to satisfy this latter criterion regarding total ozone. Total ozone, in atmosphere-centimeters, is given by

$$T_0^3 = \frac{2240}{M_0^3} \int_0^\infty \rho_3(x) \, dx$$ \(\text{(C.2)}\)

The ozone density \(\rho_3\) can be expressed in terms of \(P_0^3\) to give

$$T_0^3 = \frac{2240}{gM} \int_0^0 P_0^3(u) \, du$$ \(\text{(C.3)}\)
where \(U = \log(P/P_o) \). (See equations (B.6) - (B.9) in Appendix B).

Using Green's formula for \(P_0^* \), one gets

\[
T_{O_3} = \frac{8960 P_0^*}{e^M} \left[1 - (1 + e^{-AU^*})^{-1} \right]
\]

and since \(P_o >> P^* \) (i.e., \(U^* \) is a large negative number), then

\[
T_{O_3} \approx \frac{8960 P_0^*}{e^M}
\]

This approximate expression is used to calculate \(A \) for any \(P_0^* \) and \(T_{O_3} \). That is,

\[
A = \frac{8960 P_0^*}{e^M T_{O_3}}
\]

(The \(A_0 \) mentioned in Chapter IV is \(8960/e^M \)).

Calculating \(P_0^* \) and \(P^* \)

Since the portion of the measured \(P_0^* \) curve above the maximum is generally smooth, points on this portion can be read with little difficulty. The following information, read from each ozonagram, is used to calculate \(P_0^* \) and \(P^* \):

(a) a point \((q_1,u_1)\) on the curve above \((P_0^*,P^*)\), where \(P_0 = q_1 \) and \(\log(P/P_o) = u_1 \), and

(b) the slope \(dq/du_2 = \Delta P_0/\Delta U \) at a second point \(P_0 = q_2 \) above \((P_0^*,P^*)\).

From this information, i.e., \((q_1,u_1)\) and \((q_2,dq/du_2)\), values of \(P_0^* \) and \(P^* \) are calculated such that the fitted curve passes
through \((q_1, u_1)\) and has a slope equal to \(\frac{dq}{du_2}\) at the point above
the maximum where \(P_{O3} = q_2\).

The derivative of Green's formula with respect to \(U\) is

\[
\frac{dP_{O3}}{du} = \frac{A P_{O3}^2 (1 - e^{2x})}{4P_{O3} e^x} \quad (C.7)
\]

Substituting for \(A\) from equation \((C.6)\) and letting \(\frac{dP_{O3}}{du} = \frac{dq}{du_2}\)
and \(P_{O3} = q_2\), \((C.7)\) becomes

\[
\frac{dq}{du_2} = \frac{2240 q_2^2 (1 - e^{2x_2})}{\varepsilon M T_{O3} e^{x_2}} \quad (C.8)
\]

Solving for \(e^{x_2}\) one gets

\[
e^{x_2} = -y + \sqrt{y^2 + 1} \quad (C.9)
\]

where

\[
y = \frac{\varepsilon M T_{O3} \frac{dq}{du_2}}{4480 q_2^2} \quad (C.10)
\]

Thus, the value of \(e^x\) at \(P_{O3} = q_2\), \(e^{x_2}\), is a function of known
quantities and can be calculated. Then, substituting this into Green's
formula for \(q_2\), it is possible to solve for

\[
P_{O3} = \frac{q_2(1 + e^{x_2})^2}{4 e^{x_2}} \quad (C.11)
\]

where \(x_2\) is given by \((C.9)\).

Now, a value for \(A\) can be calculated from \((C.6)\), and \(P^* = P_0 e^{U^*}\)
can be found by solving Green's formula at \((q_1,u_1)\),

\[
q_1 = 4\text{PO}_3^* \frac{e_1}{(1 + e_1)^2}
\]

\(C.12\)

for \(U^* = u_1 - \frac{x_1}{A}\). Solving (C.12) for \(e_1\) gives

\[
e_1 = \left[\sqrt{r} - \sqrt{r - 1}\right]^2
\]

\(C.13\)

where \(r = \frac{\text{PO}_3^*}{q_1}\). Thus,

\[
P^* = P_0 e^{u_1} \left(\sqrt{r} - \sqrt{r - 1}\right)^{-2/A}
\]

\(C.14\)
Let X be a continuous random variable and let $f(x)$ be its probability density function. Karl Pearson, [42], claimed that the probability density functions of most statistical distributions arising in practice belong to the family of density functions satisfying the differential equation

$$\frac{df}{dx} = \frac{(x - a) f}{b_0 + b_1 x + b_2 x^2}$$

(D.1)

where a, b_0, b_1, and b_2 are population parameters (constants).

Pearson identified thirteen distribution types which satisfy (D.1). These consist of the normal distribution plus twelve types which are designated Type I - Type XII. Of these, the normal distribution, and the Type I, Type III, Type IV, and Type VI distributions are considered the major Pearson distributions, whereas the other eight are called transitional distributions, [46], and can usually be treated as special degenerate cases of the five major Pearson distributions. Methods are presented here for fitting the five major distributions to empirical distributions (data). In instances where a transitional distribution is identified, it is assigned to one of the five major distribution types.

Any probability density function of the Pearson family can be completely determined by its four moments μ_i, $i = 1, ..., 4$, defined by
\[\mu_i = \int_{-\infty}^{\infty} x^i f(x) \, dx \quad (D.2) \]

Assume that a random sample of size \(n \) is drawn from the \(X \) population, and let the population moments \(\mu_i \) be estimated by the sample moments \(M_i \) as defined by

\[M_i = \frac{1}{n} \sum_{j=1}^{n} x_j^i \quad (D.3) \]

Let \(M'_i \) denote the \(i \)th central moment in the sample as defined by

\[M'_i = \frac{1}{n} \sum_{j=1}^{n} (x_j - \bar{x})^i \quad (D.4) \]

where \(\bar{x} = M_1 \) is the sample mean. Then \(M'_1 = 0 \), and \(M'_2 = s^2 \) is the sample variance.

The major Pearson distributions are characterized by three parameters \(\beta_1, \beta_2, \) and \(\kappa \) which are defined as follows:

\[\beta_1 = \frac{(M'_3)^2}{(M'_2)^3} \quad (D.5) \]

\[\beta_2 = \frac{M'_4}{(M'_2)^2} \quad (D.6) \]

and

\[\kappa = \frac{\beta_1 (\beta_2 + 3)^2}{4(4\beta_2 - 3\beta_1)(2\beta_2 - 3\beta_1 - 6)} \quad (D.7) \]

If the sample variance \(s^2 \neq 0 \), then, \(\beta_1 > 0, \beta_2 > 0 \), and
\(\kappa = 0 \) if and only if \(\beta_1 = 0 \).

In most cases, the values of \(\beta_1, \beta_2, \) and \(\kappa \) determine the Pearson distribution to which the sample belongs. A fourth parameter is sometimes required to distinguish the transitional distributions. Figure D.1 illustrates the various regions in the \(\beta_1 - \beta_2 \) plane which are associated with the first seven Pearson distributions. The normal distribution corresponds to the point labeled "N" where \(\beta_1 = 0 \) and \(\beta_2 = 3 \). These first seven Pearson distributions plus the normal distribution are listed below with the criteria for their selection and equations for estimating their parameters.

There are two circumstances in which \(\beta_1 \) and \(\beta_2 \) are inadmissible and cannot be used to estimate Pearson distributions. The first is the violation of a constraint on all frequency functions which requires that

\[
\beta_2 - \beta_1 > 0 \quad \text{(D.8)}
\]

The second circumstance is the violation of a constraint necessary in order for \(\beta_1 \) and \(\beta_2 \) to lead to a Pearson distribution. This constraint requires that

\[
15 \beta_1 - 8 \beta_2 + 36 > 0 \quad \text{(D.9)}
\]

Three instances arose in the Monte Carlo Shuttle entry study in which constraint (D.9) was violated. In these cases an attempt was made to find the "closest" Pearson distribution fitting the data. To accomplish this, a line \(L \) was drawn through the inadmissible point.
Figure D.1 - Regions of the $\theta_1 - \theta_2$ plane associated with the various Pearson distributions.
(\beta_1, \beta_2) \text{ perpendicular to the line } 15 \beta_1 - 8 \beta_2 + 36 = 0. \text{ (See Figure D.1). A point on the line } L \text{ just inside the admissible region was then selected, and its coordinates } (\beta_1^*, \beta_2^*) \text{ were used as new adjusted values for } \beta_1 \text{ and } \beta_2. \text{ The third and fourth central moments, } M_3' \text{ and } M_4', \text{ were then adjusted to be consistent with the definitions of } \beta_1 \text{ and } \beta_2 \text{ in equations (D.5) and (D.6), respectively.}

In the case of one parameter (i.e., maximum dynamic pressure during the summer entries) this method succeeded in producing a reasonable Pearson fit for the empirical distribution. In the two other cases of inadmissible \beta_i's, (i.e., summer down range and cross range), this adjustment produced J-shaped Type VI distributions with poor resemblances to the parameter histograms.

The following summaries explain the criteria used for selecting each Pearson distribution and the methods used in estimating their parameters. No effort is made to show derivations of the formulas. If the reader is interested, a good explanation can be found in Kendall and Stuart, Vol. 1, [42].

The Pearson Type I Distribution

(A) Criterion for selection: \(\kappa < 0 \)

(B) Probability density function:

\[
 f(x) = \begin{cases}
 y_o \left(1 + \frac{x}{a_1}\right)^{m_1} \left(1 - \frac{x}{a_2}\right)^{m_2} & \text{if } x > -a_1; \frac{x}{a_2} < 1 \\
 0 & \text{elsewhere}
\end{cases}
\]
(D.10)
where \(x = X - \mu_1 \).

(C) Equations for estimating parameters:

Let

\[
R = \frac{6(\beta_2 - \beta_1 - 1)}{(6 + 3\beta_1 - 2\beta_2)} \quad (D.11)
\]

\[
S = \sqrt{\frac{6\beta_1 (R + 2)^2 + 16(R + 1)}{12}} \quad (D.12)
\]

and

\[
T = R(R + 2) \frac{\beta_1^{1/2}}{S} \quad (D.13)
\]

The estimates of \(m_1, m_2, \sigma_1, \sigma_2 \), and \(Y_0 \) are, respectively,

\[
\hat{m}_1 = \begin{cases}
(R - 2 + T)/2 & \text{if } M_3' < 0 \\
(R - 2 - T)/2 & \text{if } M_3' > 0
\end{cases} \quad (D.14)
\]

\[
\hat{m}_2 = R - 2 - \hat{m}_1 \quad (D.15)
\]

\[
\hat{\sigma}_1 = .5 S \frac{\hat{m}_1 + 1}{(\hat{m}_1 + \hat{m}_2 + 1)} \quad (D.16)
\]

\[
\hat{\sigma}_2 = .5 S \frac{\hat{m}_2 + 1}{(\hat{m}_1 + \hat{m}_2 + 1)} \quad (D.17)
\]

and

\[
\hat{Y}_0 = \frac{\Gamma(\hat{m}_1 + \hat{m}_2 + 2)}{\Gamma(\hat{m}_1 + 1)\Gamma(\hat{m}_2 + 1)} \left(\frac{8S}{\sqrt{2}} \right)^{-\frac{(\hat{m}_1 + \hat{m}_2 + 1)}{2}} |\hat{m}_1| \hat{m}_1 |\hat{m}_2| \hat{m}_2 \quad (D.18)
\]

The Pearson Type II Distribution

(A) Criterion for selection: \(\kappa = 0, \beta_2 < 3 \)

This is one of the transitional distributions, and is treated as a subclass of the Type I distribution.
The Pearson Type III Distribution

(A) Criterion for selection: \(\kappa = 1 \infty \)

(B) Probability density function:

\[
f(x) = \begin{cases}
 Y_0 \left(1 + \frac{x}{a}\right)^{a-1} \exp(-bx) & \frac{x}{a} > -1 \\
 0 & \text{elsewhere}
\end{cases}
\]
\[(D.19)\]

(C) Equations for estimating parameters:

The equations for estimating \(a \), \(b \), \(a \), and \(Y_0 \) are, respectively,

\[
\hat{a} = \frac{1}{\hat{b}}
\]
\[(D.20)\]

\[
\hat{b} = \frac{2a^2}{M_3'}
\]
\[(D.21)\]

\[
\hat{a} = \hat{a}/\hat{b}
\]
\[(D.22)\]

and

\[
\hat{Y}_0 = \left|b\right| \frac{\hat{a}(\hat{a} - 1) \exp(-\hat{a})}{\Gamma(\hat{a})}
\]
\[(D.23)\]

The Pearson Type IV Distribution

(A) Criterion for selection: \(0 < \kappa < 1 \)

(B) Probability density function:

\[
f(x) = Y_0 \left[1 + \left(\frac{x}{a} - \frac{v}{r}\right)^2 \right]^{-m} \exp \left[-v \tan^{-1} \left(\frac{x}{a} - \frac{v}{r}\right) \right]
\]
\[(D.24)\]

where \(x = X - \mu_1 \).

(C) Equations for estimating parameters:

Let
R = 6(β₂ - β₁ - 1)/(2β₂ - 3β₁ - 6) \quad (D.25)

S = [16(R - 1) - β₁(R - 2)^2]^{1/2} \quad (D.26)

and

T = R(R - 2) \beta₁^{1/2} / S \quad (D.27)

Then the equations for estimating m, a, v, r, and Y₀ are, respectively,

\hat{m} = (R + 2)/2 \quad (D.28)

\hat{a} = ss/4 \quad (D.29)

\hat{v} = \begin{cases} T & \text{if } M₃' < 0 \\ -T & \text{if } M₃' > 0 \end{cases} \quad (D.30)

\hat{f} = R \quad (D.31)

and

\hat{y}_o = \frac{0.3989432 \beta₁^{1/2}}{\hat{a}(\cos \phi)^{1/4}} \left\{ \frac{\cos^2 \phi}{3\hat{f}} - \frac{1}{12\hat{f}} - \phi \hat{f} \right\} \quad (D.32)

where

\phi = \tan^{-1} \left(\frac{\hat{v}}{\hat{a}} \right) \quad (D.33)

The Pearson Type V Distribution

(A) Criterion for selection: κ = 1

This is one of the transitional distributions and is treated as a subclass of the Type VI distribution.
The Pearson Type VI Distribution

(A) Criterion for selection: \(\kappa > 1 \)

(B) Probability density function:

\[
f(x) = \begin{cases}
Y_0 \left(1 + \frac{x}{a_1}\right)^{m_1} \left(1 + \frac{x}{a_2}\right)^{-m_2} & \frac{x}{a_1} > -1; \frac{x}{a_2} > -1 \\
0 & \text{elsewhere}
\end{cases}
\]

(D.34)

where \(x = X - \mu_1 \).

(C) Equations for estimating parameters:

Let

\[
R = 6(\beta_2 - \beta_1 - 1)/(6 + 3\beta_1 - 2\beta_2)
\]

(D.35)

\[
S = [\beta_1(R + 2)^2 + 16(R + 1)]^{1/2}
\]

(D.36)

and

\[
T = R(R + 2) \beta_1^{1/2}/S
\]

(D.37)

Then the equations for estimating \(m_1 \), \(m_2 \), \(\alpha_1 \), \(\alpha_2 \), and \(Y_0 \) are, respectively:

\[
\hat{\alpha}_1 = \frac{(T - R + 2)/2}{(T + R - 2)/2}
\]

(D.38)

\[
\hat{\alpha}_2 = \frac{(T + R - 2)/2}{(T - R + 2)/2}
\]

(D.39)

\[
\hat{\alpha}_1 = \begin{cases}
-0.5 S (\hat{\alpha}_1 - 1)/((\hat{\alpha}_1 - \hat{\alpha}_2 - 2) & \text{if } M'_3 < 0 \\
0.5 S (\hat{\alpha}_1 - 1)/((\hat{\alpha}_1 - \hat{\alpha}_2 - 2) & \text{if } M'_3 > 0
\end{cases}
\]

(D.40)

\[
\hat{\alpha}_2 = \begin{cases}
\hat{\alpha}_1 + S/2 & \text{if } M'_3 < 0 \\
\hat{\alpha}_1 - S/2 & \text{if } M'_3 > 0
\end{cases}
\]

(D.41)
and

\[y_0 = \frac{\Gamma(\hat{\alpha}_1)}{\Gamma(\hat{\alpha}_2 + 1) \Gamma(\hat{\alpha}_1 - \hat{\alpha}_2 - 1)} \left(\frac{\hat{\beta}_1}{2} \right)^{(\hat{\alpha}_1 - \hat{\alpha}_2 - 1)} |\hat{\alpha}_1 - \hat{\alpha}_2| \hat{\beta}_2 |\hat{\beta}_2| \]

(D.42)

The Pearson Type VII Distribution

(A) Criterion for selection: \(\kappa = 0 , \beta_2 > 3 \)

This is one of the transitional distributions and is treated as a subclass of the Type IV distribution.

The Normal Distribution

(A) Criterion for selection: \(\beta_1 = 0 , \beta_2 = 3 \)

(B) Probability density function:

\[f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{x^2}{2\sigma^2} \right) \]

(D.43)

where \(x = X - \mu_1 \).

(C) Equations for estimating parameters .

An estimate of \(\sigma \) is \(s \), the sample standard deviation.
VITA

The author was born in [redacted], on [redacted]. As the daughter of an Air Force officer, she attended schools in different parts of the country and abroad. After graduation from the American High School in San Salvador, El Salvador, she entered Mary Baldwin College in September, 1962, and graduated with High Honors in June, 1966, receiving a Bachelor of Arts degree in mathematics. She attended Vanderbilt University from September, 1966, until June, 1967, on a National Aeronautics and Space Administration graduate fellowship administered by the university, and received a Master of Arts degree in mathematics in January, 1968.

The author has been employed at the Langley Research Center of the National Aeronautics and Space Administration in Hampton, Virginia, since September, 1967. She was granted Graduate Study Leave to attend Virginia Polytechnic Institute and State University in September, 1969, at which time she began the course work leading to the present degree. In the meantime, she was awarded a Master of Sciences degree (without thesis) in statistics in June, 1971. Her husband, James F. Campbell, has recently completed the requirements for a Doctor of Philosophy degree in aerospace engineering from Virginia Polytechnic Institute and State University. He is also employed at the Langley Research Center.