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(ABSTRACT)

Two methods_df simulation of multicorrelated random processes
from the given matrix of spectral density function have been pre-
sented. It has been noted that FFT method works as efficiently as
the Trigonomefric method and is much faster. It has béen found_that_
there are certain cases in which Trigonometric approach has advén-
tages over the FFT method. Some example problems are solved to show
the usefulness of tﬁis approach in solving the prob]éhs of linear
and nonlinear random vibrations. It has been observed that this
technique and particu]ariy the FFT method offers a very fast and
convenient a]ternatfve for perforhing random non]inear4response
anaiysis. Various possible areas in which this approach can be

extended have been also discussed.
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CHAPTER I
. INTRODUCTION

In this dissertation, two methods are describéd fo simulate on a
digital computer a set of correlated, stationary and Gaussian time
series with zero mean from the given matrix of powerrspectral densi-
ties and'cross-spectra1 densities. Some example pfoblems are investi-
gated to show the power of this technique to solve the problems of
linear and in particular nonlinear random vibrations. The development
set forth is f6r any arbitrary number of dorre]ated-ééries; however, 
in practice, the number is limited by the storage capability of the
computer.

The first method is based upon trigonometric series with random
.éﬁplitudes and deterministic phase angles. The random amplitudes are
a génerated by using a standard random number generqtor subroutine. An
example is presented which corresponds to three components of wind
velocities at two differént spatial locations for a tota].of Six
correlated time series. Selected spectral densities computed from the
simulated time series are compared to the original spectral densities
from which the time series were generated.

In the second method, the whole process is carried out using the
Fast Fourrier Transform approaéh in place of trigonometric series. It
is found that this method gives more accurate results and works about

twenty times faster for a set of six correlated time series.



To show one of the many areas of application 6f the present
method of simulation, namely the class of random‘structura1 vibration
analysis, the following problems have been investigated: (1) The
linear vibration characteristics of a long tower under the action of
correlated wind loads have been presented. Taking it to be a fourteen
degrees of freedom system, the time history of tﬁe displacement of the
top of the tower has been plotted considering up tq three modes of
vibration. The usefulness of this method in the case. of linear
analysis can be significant and very important, e.g., looking for the
occurrence of maximum structural response rather than the r.m.s. value
of response. This knowledge will be very useful for the reliability
study of structures under random loads; (2) One.of the most interesting
and significant applications of the proposed method is the simulation
of random generalized forces. The necessity of simuiating random
generalized forces arises when the dynamic response analysis is per-
formed in time domain either for the purpose‘of obtaining information
beyond the second order statistics (such as first'paSSage time distri-
bution) or when the structure is nonlinear and therefore an approximate
random response is sought by simulating the excitation.

In order to assert the validity of the preceding discussion, the
problem Qf'the nonlinear vibration ofa string has been solved in the
time domain by simulating the random generalized forces.

Finally to show the application of this method to a more complex
problem, the random nonlinear vibration of a flexible plate immersed

in a fluid flow on one side and backed by a fluid filled cavity of



finite dimensions on the other side is considered. The nonlinear
plate stiffness induced in the plate by out-of-plane bending and'the
mutual interaction between the external and the internal fluid flow
is included.

The FFT simulation technique is utilized for the response
analysis of the plate undergoing'1arge'deformation. 'The same problem
has been done by Shinozuka [1] where he has taken a multidimensional
trigonometfic series model for the generalized forces. The analysis
is performed in the time domain rather than in the frequency or wave
number domain as is usually done in linear response analysis. The

. -numerical example has been presénted for subsonic f]ow over the plate.



CHAPTER II
LITERATURE SURVEY

Part A: Review of Existing Simulation Methods

Numerous papers dealing with simulation of random process have
been published in recent years. Although many authors dealt with the
simulation of single random processes utilizing trigonometric series
[2], filtered white nbise [2], filtered shot noise [3] and correlated
random pulse trains [4] etc, only Hoshiya and Tideman [5], Shinoiuka [6]
and Borgman [7j»studied the simulation of multicorrelated processes.

I. In the simulation of ocean surface elevation, Borgman used wave
supefposition'by choosing the frequency in such a way that the ampli-
tude of each wave'function was an equal portion of the cumulative
spectrum. Bofgman also presented a method for simulating several
simultaneous time series by passing a white noise vector through

filters. He proposed the following model [7].

. m o
ym(t) = jz] f kmj(T)Xj(t-T)de

where,

ym(t) = m th time series



xj(t) = independent random inputs

kmj(T) = kernals
Let Sp,.(f) represent the cross spectral density between ym(t) and
yr(t). Kernals kmj(T) and its Fourier Transform ij(f) are deter-

mined from the relation

r
Smr(£) = I Kpj(D)Kp5(£)8,4(),
j=1
r=1,2, ..., mand ' : (2-2)
m=1,2, ..., M |

where the.bar'denotes the complex conjugate.
This systém of equation can be solved sequentially (taking_ij to
have zero gain for j =1, 2, 3 ...) as |

Ky1(f) = /S (F)

Ko1(f) = /s27(F)
B S11(F) ’

Koa(F) = [Sp2(F) - |Koy (£)]21 ete.

This, in turn, determines the digital filter co-efficients, Am; »

(2-3)

- needed to approximate the kernel associated with the system function

kmj(f). Then the final simulation equation reduces to

N N
ya(kat) = T T a._.Xs:, k-n,
m j=1 n=-N "I
m=1,2, ... M (2-4)
in which Xjs N forn=1, 2, 3, ... is the j th generated sequence of

independent, zero mean, unit variance, normal random variables.



II. Later Hoshiya and Tieleman [5] considered the following trigo-

nometric model for simulating two correlated random processes:

n .
x(t) = jE]v(ajcos Wit + bysin wjt)
n ,
y(t) = jzl {cjcos (th + aj) + djs1n (wjt + aj) (2-5)

where aj,'bj; cj and dj are random variables and aj-is deterministic.

The two stationary normal processes are correlated if there exists a

non-zero correlation between aj and c¢; and/or bj and dj. The co-

J
variance Cyyj between the two random variables a; and cj is defined
as |
and the standard deviation at frequency Wis Oyj and oyj are given as
oxj = Y255 (ws) 0w | - (2-6)
= V255 (W : -
oy = Y25y(wy)aw (2-7)

where Sg(wj) and'S§(Wj) are the discrete form of the power spectravfor

processes x and y respectively.

Expressions for the co-spectrum and the quadrature spectrum are given as
2C§y(wj)Aw = Oy jTyjPxyjCOS 05 o (2-8)
ZQ,‘E_y(wj)Aw = -0y j0yjPxyjSin o | ' (2-9)

whence,

-1 A[_ MJ . (2-10)

- and ’
2 (CSy (wy)}” + 10§ (w))?
S%(w;)S5(w;)

(2-11)



Thé random variables aj and bj are generated independently from a

normal distribution with zero mean and a standard deviation

Ogy = Y255(w)Aw and o, =,VZS§(Wj)Aw respectively. Then cj and dj

XY ¥
are generated'as follows. Since aj and'cj are both normally dis-

tributed, the joint probability density function of a; and C; is

_ asl !
P(a;,c:) = ———l————-exp - ] 1
I7IT - 2moy oy 2(1-py; | oxs?
2 .
20yyi8sC.  Cg
- PxyJ ?414. J d]} (2-11a)
%x3%3 %yJ -
and. the probability density function of aj is
2 .
] 8
sy = ex - ® . (2"]][)
P(aj) Zrong p{ —3—72%} | | )
The conditional probability density function of cj for given 35 is
P(as,ci) _ 1
P(cs;/a;) = —”TJ—7J_'—
37 X 12
] P aJ /ZI—TT_O"YJ ]-pxyj
X exp {- . 12 5 (c pny_lJ.a ) } (2-11¢)
0’ : (]-pny ,

Consequent]y, the conditional probability density function of c5 for

G -
given a; is also Gaussian with mean p -—XJa- and a standard deviation
j XYioy

i 1-0,2. . Similarly, the conditional distribution of dj for a given

i 'Pxy;
bj is Gaussian with mean pXYJEX§bJ and standard deviation ofcijl-pxy§.

Thus random variable cj is generated from Gaussian distribution with
mean prJ—XQa and a standard deviation of oyj'l-pxyg- Similarly, the
random var1ab1e_dj is generated from a Gaussian distribution with mean

G -«
pnyafibj and a standard deviation of ijl]’pxy§°



ITII. In his paper [é], Shinozuka proposed a different
trigonometric model for the simulation of multivariate random pro-
cesses. He used a series of cosine functions with weighted ampli-
tudes, almost evenly spaced random frequencies and random phase
angles with uniform distribution. He considered a set of n sta-
tionary random processes fo;(t) (i =1, 2, ... n) with a specified
cross-spectral density matrix S%(w) = [Sofifj(w)],.where Sofifj(w)
are mean square spectral densities if = j and cross spectral
densities of fo;(t) and foj(t) if i+ j.

He proposed the following model
' i ok N
Hilo - j§1oj(ﬁ> RAMERCTY
X €0S [Wjt + Qjk + 853(Wy)] o (2-12)
where, | | '
Wk (k =1, 2, ... N)- are random variables identically and independent;

ly distributed with the density function

g5(w) = [Hy;(w)|%/05? (2-13)
with o2 = [m lHjj(w)lzdw o (2-14)

and (hk (k =1, 2, ... N) are also identfca]]y and independently dis-
tributed with the uniform density 1/(2m) between 0 and 2m. Hji(w)
are obtained from

n .
I Hip (W)Hj (w) ' (2-15)

BRI



and,
_ Hij(w)
Y'ij(w) = IH—JJ—(W)"l (2-16)
01 5(w) = ta;‘[%] : (2-17)

The series simulated by the above technique have the asymptotic
ergodicity. |

IV. Comparison of Various Approaches.

It appears that method of simulation proposed by Shinozuka [8] is
the most efficient so far. Thismodel [8] seems to be more general than
that due to Hoshiya and is more efficient than that due to Borgman [7].
Since the meaédred cross spectral densities are usué]iy giveh
numerically in terms of the real and the imaginary parts or the
modulii and the angles, the computation work associaféd with finding
1H1j(w)|, from which yij(w) = |H1j(w)|/Hji(w) and the angles 6;;(w)
can be directly evaluated in the case of Ref. [8]. Therefore, methodv
of simulation presented here appears more practical than that proposed
in Ref. [7]1, which requires (a) the inverse Fourier Transformation of
N(N+1)/2 functions of w, Hjj(w) and (b) the same number of integra-
tion in the time domain. Also, form of simulated functions con-
sisting of sum of cosine funct1ons can be proved extremely advan-
tageous, when used as input, in eva]uat1ng the correspond1ng output

of a 1inear system.
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PART B.

The main usefulness of the simulation method is in the area of
(a) a numerical analysis of dynamic response of non-linear structures,
(b) time domain analysis of linear structures under random excitations
performed for the purpose of obtaining the kind of information, such as
first excursion probability and exact time history of a sample
function, that is not obtainable from the standard. frequency domain
analysis, and (c) numerical solution of stress wave propagation
‘through a random medium and eigen value problems of structufes with
randomly non-homogeneous material properties. The usefulness of this
method has been demdnstrated in the later chapter of‘this dissertation.
In this connection, it looks appropriate to make a relative stddy of
the prevalent methods of handling the non-linear random vibration'

problems. -

Review ofIStationary Random Response of

Multidegree of Freedom Nonlinear Systems

Fokker-Planck Approach.

One exact method of studying the stationary random response of
a nonlinear system is the Fokker-Planck approach. If the excitation
js a Gaussian'white noise, then the transitional brobabi]ity density
of the response proéess is governed by the Fokker-Planck equation.
The equation governing the first probability density function for the
stationary response has been solved under the following rather

restrictive conditions:
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(1) the damping forcé is. proportional to the velocity

(2) the excitétion is a Gaussian white noise

(3) the correlation function matrix of the excitation is
proportional to tﬁe damping matrix of the system. Under the above

conditions, the equation of motion may be written as follows:

MX + CX + §§§Zl F(t) | , (2-18)
with

e =

R}-'(T) 2405 (x - | (2-19a)

where y is a constant, u(§) js the potential energy of the system and

i U
) Py
Cau(x) | o1 (2-19b)
axn

Suppose that there exists an orthogonal matrix A which can simul-

taneously diagona]ize;the mass matrix M and the damping matrix C:

ATA = 1
ATMA = v ‘ - (2-20)
ATCA = A

where V and A are two diagonal matrices. Then, upon using the trans-

formation x = Az and noting that

A ugx) Taz u(z) _ 2 .. é u(z)

3X 9z 3 k=) Mk 3z

- auz). (2-21)
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Equation (2-18) becomes

171 ¢4
Vi gz + —31;1 ATF(t) = B(t) (2-22a)
and the correlation function matrix of b(t) is given by

RE(T) = 2yAS(t) - (2-22b)

The stationary Fokker Planck equation associated with (2-22a) is given

by
n n
) 3 . dulz
5 w(zp) - ] “T‘[A-z- + —-iqu
P T Rty B2 A | (AR
e ik (2-23)
Vj 3Zj

where Aj and Vj denote the j th diagona1 element of A and V, p is the
\ ) .
abbreviation for the first probability density of the Markovian

z s _
vector(é). The solution to (2-23) may be written as fo]]ows:

p(Z,i) =B eXp{ ][]2 21 i J .+ U(—)]} . (2-24)

This solution was first obtained by Ariarathan [9] for a two-degree-
of freedom‘system, and it was extended to. the above form by Caughey

[10]. The constant B in(2-24) is a normalizing factor such that

f” [» p(z,_)dz1 .dz d21 d =1. ' (2-25)

In the or1g1na1 co-ordinates, equat1on (2 24) becomes

- = Mler o
p(xsx) = B exp( - ;{ngMx + u(?ﬂ . ' (2-26)
It will be noted that the terms in the square brackets are

respectively the kinetic energy and the potential energy of the system.
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Equation (2-26) may also be written as
o R XV N, [
P(X,X) = B exp {-z- XM'x} exp’ {~ “u(x)} (2-27)
Hence X and i'are linearly independent.

Normal Mode Approach

Consider an n-degree-of-freedom system governed by the equation
of motion
Mx + Lok + k(o)X + ug(x,%) = F(t), | (2-28)
Cu = a smll parameter
The matrices C(O)_and K(°) are respectively the damping matrix and
thé stiffnéss matrix of the system due to the linear part of the
| damping forces and the spring forces, and»uali}i) represents the non-
linear.forcgs of the system. Here, f(t) is a stationary Gaussian random
vector. Without loss of generality, one can assume that the mean vector
of ?'ﬁ?-= 0. |
In using this approach, the fo]]owing two conditions must be
satisfied:. (1) the Tinear system obtained by neglecting the nonlinear
term §(§}§7 in (2-28) must possess normal modes; (2) the correlation.
function matrix R?(r) must be diagonalized by the s§me matrix which
diagonalizes the matrices M, c0) ang k(0),
The second condition is quite restrictive and is seldom realized in
real systems. »
Assume that the above restriction can be met, then there exists

a matrix A such that
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ATMA = 1
ATK(O)A

20), 1, ©) = (@, -
ATC(O)A

A(O)? Akj(o) Ak(o)akj
ATRE(T)A = D(1), dyj = d(T)8; »
By using the transformation X = Az, Eq. (2-28) reduces to
5+ 400)3 4 l0)7 4 UATg(2,7) = ATF(x) = B(t) (2-30a)
Where the corre]atlon function matrix of b is
Rg{t) = D(1). : (2-30b)

In component form Eq. (2-30a) becomes

g+ 0z 4 (w02, 4 1§ a 9, (Z,2) = bs(t)  (2-31a)
NI R R VI S St i

and Eq. (2-30b) becomes

Efby (t)b;(t+1)] = di(T)8kgs Js k=1, oome (2-31b)
The differential equation in (2-31a) may be written as '
2 = -
ZJ + AJzJ W zJ + ey (z,_) b (t) - (2-32)
i=1,...n

where the deficiency term e; is given by

= (. (0) 4 s (0)y2 _ 2
ey (Aj Aj)zj + [(wJ ) W, 12,
E a0 (5:7)  (2-m3)
+ul a9 (z,z), =1, ... n : 2-33
k=1 K37k .

If the quantities Aj-and wjz are chosen in such a way that some
measure of the_deficfency_term is minimized, then it seems reasonable
that the statistics of the response of the nonlinear.system can be
approximated by those of the linear system described by

7. .'.4 2 = . 1 = -
Zj + A525 4 Wy zj _bJ(t), Jj ]f R (2-34)
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At this stage, the differential equations are uncoupled and the
excitation B(t) is an uncorrelated vector process. Hence each un-

coupled differential equation can be solved separately.

In order to determine A; and wjz

J
to minimize the mean square value of the deficiency term e. This can

» Caughey [11] chose them so as

be achieved by requiring that

9

3Xj )

Efele] = 0
i=1,...n. (2-35)
-~ 9
3(w;°) |
Substituting (2-33) in (2-35) and interchanging the order of dif-

Efele] = 0

ferentiation and expectation, we obtain
: (o) n s )
Aj = Aj + ukz]akjE[zjgk(z,z)]/E[zj ]

wi? = (0O 4y T ayFliElze (5,01 (2-36)
J N SRatetia St R K Sk |

ezt -

Equations (2;34) and (2-36) can be used to find various mean square
values of the response process.

In certain cases, the contribufion from the first mode may be
dominant. In these casesf we may 1et.x- = aj]z] 1nxthe above

J
derivation. Then

n
n? = (w02 + uj£1aj1E[zlgj(£1’21)]/E[z12]
(2-37)

n . .
>\] = }\-IO + uji.laj‘lE[i]gJ(Z]_’Z])]/E[Z]Z] .
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This is rathér-a rough approximation, but it is very simple and in some
cases, it does give reasonably approximate solutions.

Perturbation Approach

Consider the same problemas defined in the previous section, whose
equations of motion are |
Mx + clo)x + k()% 4 Lg(x,x) = F(t) | (2-38)
Assume thaf u is so small that the solution of Eq. (2-38) can be
approximately represented by [12]
X = X + uxy (2-39)

Substituting (2-39) into (2-38), neglecting terms involving uz,
p3, ... and equating corresponding coefficients of uO and u] yields

the following sets of linear differential equationsﬁ
f(t) | (2-40a)
-g(xp(t)%(t)) (2-40b)

Correct to the same order of accuracy, the instantaneous correlation

Mib + C(o)ib + K(O)Ib

M + clo)xy + klo)x,

matrix for disp]acément becomes
— _—— e —— — =T

E[xxT] = E[xoxoT] + u{E[xox]T] + E[x]xo 1} (2-41)
Note that '

E[Xo)('l, 1= (E[XOX] ]) ° (2‘42)
The matrix E[ibibT] can be found from (2-40a) by the various approaches
as in linear analysis, and E[ibi&T] may be evaluated as follows.
Since (2-40a) and (2-40b) are linear, their stationary solutions are

Xg = fé G(t-1)F(1)dt (2-43a)

-00
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_ e _
Xy = J G(t-t)g(t)dt » e (2-43b)

-00

where G(t) is the common impulse response function matrix of (2-40a)

and (2-40b) and g(t) is the abbreviation of EKRO(T),XO(T)). Thus,
2T = .
(%%, 11 = - f” f” 6(t-1) ELF(17)9" (1)1

X GT(t-TZ)dTTde- (2-44)
The matrix E[?(T])ET(TZ)] can be evaluated with the He]p of proper-
ties of Gaussian protesses. Therefore, we can find E[?bi}T] and
hence E[XX']. '
Usually, the evaluation of the integrals in (2-44) is not easy, so
Tung [13] has developed a different approach to generafe E[XXT]
from (2-40a) and (2-40b). He applies Foss's method [14] to uncouple
(2-40a) and.(2f40b) into first order differential equations and then
solves the resulting equations to find the various instantaneous
correlation matrices.

This approach will fail if the damping matrix’C(o) is a null
matrix. In this case, Equation (2-40a) does not have a stationary
solution since a]](its correlation functions will finally go to
infinity. Anothef limitation of this approach is that not onlymust the
nonlinearity of the system has to be small, but also the excitation
has to be sufficiently low.

Generalized Equivalent Linearization

The normal mode approach is quite powerful if it applies. How-

ever, due to the conditions imposed on the excitation, its application
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is rather limited.

In his thesis Yang [15] introduced a more general approach.
Except that the excitation must be stationary, the only additional
.restriction to this approach is that the excitation be Gaussian. In
this approach, we define an auxiliary set of linear differential
equations for the original nonlinear system. The soiution of the
original nonlinear systém is approximated by the solution of an
auxiliary set and the unknown co-efficients are chosen in such a way
that some Measure of the difference between the two sets of equations
is a minimum.

Consider the following linear equation |

WX+ CX + KX = T(t) (2-45)
ahdffhe'non1inear‘$ystem given by

Mx + GOGR) = Ft). (2-46)
The difference between (2-46) and (2-45) ' v »

&= g(x.X) - CX - KX : (2-47)

The necessary conditions to minimize E[EJE] are given by

dE[ele] = 2E[§T % ] = 2E[e;X, ] = 0
N 3¢5k g
J E (2-48)
JE[ele] = 2E[€T e ]= 2E[e %, ] = O-
3K; ) 8y |
Upon using Eq. (2-47), they become in the matrix form.
E[exT] = E[GOGLRXTT - EDc] - KE[Xx1] = 0 .
Efex'] = E[g(X,X)X1] - CE[xX'] - KE[xX'] = 0O

It has been shown that the conditions in Eq.A(2—49) do define a

minimum for E[ele][15].
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In order to solve Eq. (2-49) fo; K and C, it is first necessary to
express E[§(§:§)§T] and E[EK?}?)?T] in terms of E[XX'1, E[iiT] and
E[iiT]. Let y,,. denote the displacement of k th mass relative to
the r th mass and let the approximate force acting 6n-the k th mass
by the nonlinear element connecting the k th mass and the r th mass
be denoted by Skr(ri’ykr)' Then

Elgy (XR)X31 = 2 ElSyplYirabi )]

| ad (2-50)
ELgy (X.X)x;1 = : ELS i (YigrsYy o) %51 »
rek

where the sﬁm is taken over all nonlinear elements connected to the

k th mass. Since X is a Gaussian vector, it follows that the

quantities ri, Yiy? xj, and ij will be Gaussian distributed. Hence

ELSir Ok Yier) %31 = ELSir O ierYice]
X E[yerj]/E[yEry
+ E{Skr(ykr,ykr)ykr]-E[yerj]/E[yﬁr]

. . . . (2-51)
ELS) nYip oYy p)%51 = IS (YppsY i) Ykp)
S ‘o
X ELY)pX31/Elyip] . :
+ ELS e (YipsY e ipd "ELY X5 1/E DY -
Define |
_ . . . 2
Yir = ElSkp(Yips¥ )i p 1 /EDYk ] cor (2-52)
_ ' 2
Xep = EIS) o (YkpoYip ) Yir )/ ELY K] .
Then Eq. (2-51) reduces to
Bk (YipsYip) %31 = ELOYYip + X X51 (2-53)

E[Skr(ykrv’ykr)xj],f E[(Ykr‘ykr + Xkrykr)xj]
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Hence, there exists a linear system with spring constant Xkr and
damping co-efficient v, defined.by Eq. (2-52) sucH that if the
nonlinear system is replaced by this linear system, the expectation
values E[§K§}§)§T] and E[§(§}§)§T] will not be changed.
Substituting Eq. (2-53) in Eq. (2-50) gives
E[Ek(ili)xj] E[i(Ykrykr * Kepgp) %)
‘ rgk

L. . . (2-54)
Elg, (xsx)x51 = E[E(Ykrykr t X ier) %3]

r4-k _
Let the stiffness matrix and the damping matrix of the linear system
defined by Eq. (2-52) be denoted by k(&) and c{e). Then Eq. (2-54)

.~ can also be written as

s=
(2-55)
AV (e) (e ) .
E[gk(x,i)xj] = E[ z (Ck Xg + Ko X )xj]

since thé right-hand side of (2-54) and (2-55) are just two different
representations of. the total force acting on the k th mass. In
matrix form Eq. (2-55) becomes

E[g(x,_)x ] = C(e)E[xx ] + K(e)E[xx ]

Efg(x,x)x1] = c(®ExxT + k(&)ErxxT] (2-56)
Substituting Eq. (2-56) in Eq. (2-49) and solving for K and C which

minimizes E[ETE], yields

(k - k(ENERTY + (C - cle)yexx’y =

i
o

(2-57)

i
o

(k - k(e))ERxT] +(C - cleNExxT] =
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which can also be written as
E(¥XT] E[XXT] (k - k{ehT |
{EGaT ET1 | | (c - clehT -0 (2-58)
If the square matrix is non-singular, the only solution to Eq. (2-58)

is

k = k(e
(2-59)

C C(e).

If the square matrix is singular, (2-59) is not the only solution.
But in this case any solution to Eq. (2-58) will lead to the same
minimum for E[ee!]. So we still can use Eq. (2-59).

Thus, it has been shown that the linear system formed by
replacing each nonlinear element by a linear spring and a Tinear
damper defined by Eq. (2-52) will minimize E{eé!] provided that the
excitation is Gaussian. | ) |

It should be pointed out that. the smallness of the noniinear
term in the original equation was not a presupposition in the develop-
ment of the above method. In general, the accuracy of this method -
depends on the smallness of the nonlinearity. When the nonlinear
terms are not small, this method is often an iterative procedure.

This concludes the relevant literature survey. In the light
of the review study in this chapter, we will be better ab]e to
appreciate, in the next chapters, the power and usefulness of the
simulation approach in,the analysis of random linear and nén]inear

" problems.



CHAPTER III
DISCUSSION OF SIMULATION METHODS

In thié chapter -we will present two methods to simulate a set
of Gaussian pfocésses {f1(t), fg(t), oo flt)s ...‘fM(t)} when the
power spectral density function of each process and cross spectral
density functions between any two processes are known. These
spectral densities are usually arranged in the form of a matrix
commonly known as spectral matrix. This matrix is given by
6 (W) Gyp(w) ... Gry(w)
Gpq (W) Goo(w) ... Goy(w)

-

G(w) = (3-1)

LGM](W)' GMZ(W) voe Gyy(w)

where G, (w) is the one-sided cross spectral density between the pro-

cess fp(t) and f(t). When m +n, Gyu(w) is complex with real part
Cnn{w) called the co-spectrum and imaginary part - an(w) called the
quad-spectrum. When m = n, the quad-spectrum is zero and then
Gun{w) stands for power spectrum for that particular process.

I. Trigonometric Model

Here we will show that a set of random processes can be simu-

lated by a trigonometric series of the form
. \
f](t) = kz] {a”(k)cos [Wkt + a-”(k)]

' o (3-2a)
+ bll(k)sin [wkt + a]](k)]}

22
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N i . .
fo(t) = kgi{az](k)cos Wt + apy(k)1 + by1(K)sin [wt + ay1(k)]

+ {azz(k)COS [Wkt + azz(k)] + b22(k)sin [Wkt + azz(k)]}

(3-2b)
. _
f(t) =k§] {am](k)cos [t + oy ()1 + by (K)sin wet + apyy (k)]
+ ago(k)cos [wt + amz(k)] + bpo(k)sin [wet + apo(k)]
+
+ app(k)cos Twt + o (k)T + b (k)sin [wet + opp(k)] - (3-2¢)
More generally, the above set of processes can be represented as
)= 3 3 o (K (
f(t) = £ I {a_.(k)cos [wt + k)]
m p=1 k=1 P et T Omp
+ bmp(k)sin [w t + ump(k)]. , (3-3)

The coefficients amp(k) and bmp(k) are Gaussian random variables'wjth
zero mean that have the following additional properties: (i) amp(k)
and bnq(Q) are always independent and for the case when m=n, p=9q
and k =1 they_are identically distributed, (ii) amp(k) and anq(z)
(or bﬁb(k) and bnq(R)) are statistically corre\ated'ff p=gq and
k = 2, otherwise fhey‘are independent.

The phase angles amp(k) are deterministic. Since the co-

efficients amp(k) and bnq(k) are Gaussian distributed it follows from
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the Central Limit Theorem that thé time series f (t) will also be
Gaussian distributed.

The form of the simulated time series given by Eq. (3-3) lends
itself to a very simple physical interpretation. For the first time
series (m = 1) the index of summation p takes the value of unity.

For the second time series (m = 2) the index p takes the values

unity and two. The value of p = 2 adds to the second series two

terms that are independent of the_first series. Physically it adds
some energy to the second process independent of the first process.
Likewise for each new process two additional terms are tacked on which
allow that process to have some energy that is indépendent of all the
previous processes.

In order to see how the co-efficients amp(k) and bnq(z), and
the phase angles app(k) should be determined it is necessary to con-
sider the cross correlation between the time serieé fp(t) and fn(t).
Here for convenience we will assume m < n. The cross correlation

between these time series is given by

Rin (T)

E[fp(t)fr(t +1)]

m n N N
E[: I £ =T
-p=1.g=1 k=1 &=1

{agp(k)ap (2)cos [wyt + opp(k)Icos [wo(t + 1) + apq(2)]

+ amp(k)bnq(z)cos [wt + amp(k)]sin [wl(t + 1) + anq(l)]

+ bmp(k)anq(z)sin'[wkt + opp(k)Icos [wy(t + 1) 4+ ang ()]

* bpp(K)bpg(2)sin [wit + opp(k)Isin [we(t + 1) + ang(2)11]
(3-4)
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The expectation operator-can be brought inside the summations,
and since the expectation of a sum is the sum of the expectations, we
get |
m h N N

r ¥ L I
p=1 g=1 k=1 &=1

Ran( ©)
(€l (K)agg(£)1cos Twit + app(k)lcos [wi(t + T) + apg(2)]
+ Elapp(k)bng(2)1cos [wt + opp(k)Isin [we(t + 1) + ang(2)]
+ E[bmp(k)anq(z)]éin [wpt + ump(k)]cos [wz(t + T) + anq(z)]
+ Elbmp(k)bpg(£)1sin [wyt + apy(k)Isin [wo(t + 1) + opg(2)13
| (3-5)
Because amp(k) and bnq(z) are always independent the middle terms in
‘the above expression are both zero. Furthermore, since app(k) and
anq(z) (or Bmp(k) and bnq(z)) are independent unless p = g and k = &,
Eq. (3-5) reduces to Ryn(T)
m N
Rpn () f pE] k£1
"{E[émp(k)anp(k)]cos [wt + amp(k)]cos [w (t + ) + dnp(k)]
+ Elbpp(K)bpp(k)1sin [wit + app(k)Isin Wit + 1) + app(k)1}
' (3-6)
Let Kmnp(k) = E[amp(k)énp(k)]. That 1sl<mnp(k) is the covariance
between amp(k) and anp(k). Because bmp(k)_has the same distribution
as amp(k), we also haveKan(k) = E[bmp(k)bnp(k)]. Using these
relationships and a trigonometric identity Eq. (3-6) becomes
m N

Ryn(T) = 21 kZ]Kmnp(k)cos [weT - op(k) + anp(k)] (3-7)
p: =
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The right hand side of Eq. (3-7) is independent of the time t; there-
fore, the assumed trigonometric form for the time series yields
stationary random processes.

Noting the fact that the spectral density is the Fourier Trans-
form of the'correlation function, the one-sided éross-spectra]
density for processes fp(t) and f,(t) is given by

2 (1)e™dr, w > 0
' Gmn(W) = [i Rmn f ) o

(3-8)
0, w<0

The next step is to substitute Eq. (3-7) into Eq. (3-8) and perform

the integration. However, it should be recalled that Kmnp(k) in Eq.

(3-7) is the eXpected value of amp(k) times anp(k) (or bmp(k) times

bnp(k)); Therefore, by substituting Eq. (3-7) into Eq. (3-8) what

we obtain is an expected value for the cross-spectral density. Thus

we have
[
1= |23 3 (k)
ElGun(w)) = |2 £ T { k
f p=1 k=1 np
1x Im cos [wT - opp(k) + anp(k)]éJWTdT}
w>0
LO’ w<o0 (3-9)

Carrying out the integration gives
( ,
2L Koy (KD - w)
2r & L k)S(w - w
1 k=1 Kmnp k

ElGpn(w)] = { p=1 %= .
x {cos [amp(k) = opp(k)] - J sin[ump(k) - anp(k)]} yW >0
0, w<a (3-10)
where &(w - wg) is the Dirac delta function.
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 we thus see that for the assumed trigonomefric time series given by
Eq. (3-3))Gmn is composed of both real and imaginary terms. When

m = n, Gyn corresponds to a power spectral density and the imaginary
portioh is zero. A schematic plot of Eq. (3-10) is shown fn Figure
1. The frequencies wy are chosen such that

W= wp (k- MW, k=1, 2, L N

W.o-W ' .
Aw. u 2 (3_]])

where wy, and w, are respectively the upper and lower cut off fre-
quencies of the spectra that is used to geherate the time series.
Suppose an actual power spectrum G(w) for which we want to obtain a
simulated time series is shown in Figure 2. We can slice this
spectrum. up into N intervals of width Aw as shown. The amount of
energy contained in the slice centered ét W= wk is G(wk)Aw. We want
the expected value of the spectrum corrésponding to our simulated
time series to have the same amount of enérgy at w = wg. This means
. that the expected amplitude of the delta function at w = wkx should be
G(w)Aw. Similar criteria must be applied for the cross-spectra of the
simulated time series. |

We assume that at any frequency w = wg the cross-spectral
matrix can be factored into an upper and lower triangular matrix,
where the upper triangular matrix is theicomplex transpose of the

Tower triangular matrix, as indicated below:
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Fig. 1.

Schematic sketch of a discrete power spectrum
from a simulated time series.
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Fig. 2. Schematic sketch of a continuous power spectrum
used to generate a time series



61 (0)  Gypl) oo Gy(v) |
G2~| (Wk) Gzz(Wk) ..... G2M(Wk) )
GM1(Wk) GMZ(Wk) ..... GMM(wk)
L | -
Ha1 (W)~ Haplin) 0 0 Haalw) ... Hyplwy)
(3-12)
The bar is used to denote the complex conjugate.
If Eq. (3-12) holds then
Gpn(w) = Z Hmp(w)an(w) | (3-13)

p=1-
for n <m. Eq. (3-13) can be rewritten with the 1imit of summation
taken as m instead of n since Hyn(w) = 0 for m > n. Thus Eq. (3-13)

becomes
' m _ .
Gpn(w) = Z] Hmp(w)an(w) : (3-14)
p=

~ Using the above relationssolutions are obtained as

Op(we) %
H = ]
Mo (i) [Dm-1(Wk5 , m=1,2, .... M (3-15)

where Dy(wy) is the m th principal minor of G(wg) with Dy being

defined as unity, and
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- G(l, 2, veees p=1,m
Hop (W) = Hpp (W) P(y2 52 oo BTy )
Dy (w) : (3-16)
p=1, 2, M, m ='b +1, M
where,
G” G'|2 ...... G-I 3p-1 G]p
Gel, 2, s p-1, m = |G Goo « ¢ v v o Go p-
(]s 29 ] p'], P) 2] 22 2’p ]
Gp-] s] ’ Gp_] 32 ’ Gp-.| p-] Gp'] sP
G » Gm2 » » ¢ v -+ Bm,p-1 Cp

is the determfnant of a Submatrix obtained by deleting all elements
except (1, 2, ... p-1, m) th rows and (1; 2, ... p-1, p) th columns of
é(wk).
It is notéd that the above solutions are valid only when the matrix
G(w) is Hermitian and positive definite, as can be seen from Eq.
(3-15).
Because the cross-spectral density matrix a(w) is known to be only
non-negative definite, special consideration is needed in those cases
where é(w) has a zero principal minor. This is discussed in Appendix
C. | |
For the band of frequency Wy - %jAw, W + %Aw] we want the ex-
pected value of thé energy in the spectrum of the simu]ated time
series to be equal to the energy Gyn(w)Aw of the original spectrum.
Thus equating the energy in the band centered at w = w, as given by
Eqs. (3-10) and (3-14) we get
2mkmnp (k) {cos [op, (k) - anp (k)1 - § sin [og, (k) - any(k)1}
='Hmp(Wk)th(Wk)AW (3-17)
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If we write

Hmp(wk) = lep(wk)l éJdmp(k) (3-18a)
= |Hpp(wy) [ [cos opp(k) = § sin opy(k)) (3-18b)
= REHpp(wi)1 + 3 TMEH, ()] | (3-18¢)

then by substituting Eq. (3-18a) into Eq. (3-17) we can see that
Kmnp(k) = %%1Hmp(wk)||nhp(wk)| (3-19)

From Egs. (3—18b) and (3-18c) we find

(k) = - ton!)IM[Hmp(wk)1| - | _
%mp an ﬁffﬁ;%(ﬁ;jT o (3-20)

Thus it follows, as stated earlier, that the phase angles are deter-
ministic.
We recall that
| Elamp(K)ap, (k) - (3-21a)
or. _ _
E{bmp(k)bnp(k)] (3-21b)

That is we want amp(k) and bmp(k) to be independent random variables

Kmnp(k) =

with their covariances given by the right hand side of Eq._(3-19).

This can be done in the following manner, if we let

anp(k) = Sl (wi ) 1€ - (3-22a)

and

bp(K) = S Hepy () In, | | (3-22b)

wherem=1,2, .... ; p=mym+1, ... Mand gp and np are in-
dependent Gaussian random variables generated on a digital computer.
Because the £'s and n's are Gaussian distributed, the a's and b's

will also be Gaussian distributed.
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~ Substituting Eq. (3-22a) in Eq. (3-21a) or Eq. (3-22b) in Eq. (3-21b)
and takihé the expectation of both sides we see that in order to
make the left-hand-side equal to right-hand;side, thevmean of £ or
n should be zero and their variances should be unity.
From Eq. (3-21a) We have - |

Elapp(K)1 = Z51Ho () [ECE] = 0 (3-23a)
and :

Elamp (k)apy (k)]

= D ) I ) B -
| . (3-23b)

= Aw T
- EI Hmp(wk) I an(wk)

Thus the terms amp(k) (6r bmp(k)) satisfy the properties stated eér]ier
and they also satisfy Eq. (3-17). |

This conc]udé$ our explanation of how to simulaté‘seQera1 multi-
correlated time series.. |

Aftér discussing the Fast Fourier Transform in tﬁe next.section, we

will give an example problem to check and compare the two methods.

IT. Fast Fourier Transform (FFT) Method

Assume that a set of discrete time series can be represented by the
following expression: |
N-T

_ 1 . 2mkn
f, -szoxpkExp[a v o (3-24)

>

where,

number of time series

time index

1}

frequency index
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The terms ka are elements of a complex vector generated in the

following way

oot - 1P |
pk} = léﬁl[Hk]{cpk} (3-25)
where, :

h = At, discrete time increment

[Hgl is a Tower triangular matrix obtained from the given
spectrum matrix as discussed in the preceding section, that is, it

satisfies the relation

[H 1T = (6] - (3-26)
and, to = By *+ 3 ngy _ (3-27)
where Epk and Npk are independent Gaussian random numbers such thatv

Elgpi] = Elnpgl = 0 - (3-282)

E[gpf] = EM2,1 = 0.5 (3-28b)

Writing Eq. (3-25) in expanded form

- - - -
X1 N e R T
Xok iH21k Hoop = - - - 0 z2k
o= (L ) .
IR . , (3-29a)
Xy Hyik MMk -« -+ Mg z MKk
J L - 4J4 L
That is, we can write '
iM
- IND? : -
Kok = [Zh % il (3-29b)
_ N i '
Xpg = [EEJSE]HFSRFSZ : (3-29¢)

where the bar denotes complex conjugate.
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Then s
N M M
2h

EL 2 I HoqeHpseBakEss! (3-30a)

E[X X
Pk ¢=1 s=1

rz]

Moving the expectation operator inside, we can write
N M M
2

r2] - _ﬁ'qZ] =1 quHrszE[qugszl (3-30b)

E[kaX
Making use of properties of complex random number as given in terms
of £'s and n's by Egs. (3-28a) and (3-28b), it can be easily seen
that N

ElZqklse] = Sqsdke (3-30c)
where Gqs and &y are Kronecker delta functions;substituting (3-30c)

into (3-30b), we get

, M M _
_ N o :
g=1 s=1
N‘ T

Taking the inverse Fourier Transform of Eq. (3-24), we get

N-1
2mkn :
Xpk = fpnEXP[-j S5 (3-32a)
n=0
Therefore,
N-]
_ 2n(N-k)n
Xp(N-k) = fpnEXP[-J =————1
n= O
- N1 . 2mkn )

n=0
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Since fpn is real, comparing Eqs. (3-32a) and (3-32b), we see

that

Xo(n-k) = Xpk (3-33)

Thys, it is only necessary to generate g-va1ues of X for each time
series because the other half of the values of X are just the complex
conjugate of the first half of the values of X.

Now, it is necessary to show that time series represented by
Eq. (3-24) do indeed have the proper power and cross-spectral
densities.
From Eq. (3-24)

N 1

f =

=2|-

o PkE?
~Since fpn is real, taking the complex conjugate on both sides of
the above equation, we can write

2mnk

fon = N

pn

]- (3-343)

|IP1I

kaEXP[ -j

Zf—'

k=0

Thus, the cross correlation between time series p and time series r

is given by
where, n and m stand for the time indices of process p and process r
respectively. _
Substituting for fy, and f from Eq. (3-24) and Eq. (3-24a)
respectively in Eq. (3-34a), we get
N-1 N 1 n(kn gm)
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Moving the expectation sign inside

) -] N-1 N-1
R.{n,m) == I I E[X X0l
pr NZ (=g g=g = PKTH

-8
x EXPL] ZEiﬁl‘-——'ﬁ)-]- (3-34c)

From Eq. (3-31b)one obtains

: M
o . _ N _
“Upitred = 20 I oakfirqatie -
Substituting this in Eq. (3-34c)

N-T N-T M

Ryn(nom) = 57w & & { X HogpHo pSp}
pr 20N 20 920 q=1 pak ' rge ke

x EXP[J zniﬁn:&ml], (3-34d)

Unless k = 2, Eq. (3-34d) is zero.
Hence,

N-1 M

r LH

. - 2ak(m-n)
p,.(n,m) 2 o 5 quHrq cmomnl

N

R EXPLJ 1. (3-34e)

That is; the correlation is a function of the time lag which
proves that the process is stationary.

Finally we can write Eq. (3-34e) as

N-1T M
=1 e . 2nk(m-n) .
Rpr(m n) = Eﬁﬁ.kzo q§1HquHquEXP[J N 1. (3-35)

The spectral density function is the inverse Fourier Transform of

Eq. (3-35). That is

N-1 . .
Gprk = 2h kEORpr(m-n)EXP[-J Zﬂkgm ny (3-36a)
M —
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which is equal to the elements of the spectral matrix between the
process p and process q.

Thus, we see that the assumed form of the time series given by
Eq. (3-24) has the same spectral density as the target spectral
density function.

Simulation of Strong Wind Turbulence

In order to check the two simulation techniques described above
namely the trigonometric model and Fast Fourier Transform model, we
generated six correlated time series representing the fluctuating
part of wind velocities. These six series represent the three com-
ponents of the wind at two different spatial locations. Each simu-
Tation technique was checked by comparing the spectra of the simulated
data to the spectra used to generate the data. The input spectra
used for these time series are based on wind velocity measurements

made by several investigators [16, 17, 18]. These spectra will not
| be discussed here in detail. Under strong wind conditions turbulence
is due to mechanical mixing caused by frictional effects. In this
case, the turbulence can be considered a stationary random process with
zero mean and a Gaussian distribution.

The following expressions for the spectra were used for this
simulation:

nC]](n) _ 87.56f

T (3-37)
w2 ((1.0 + 1.5 (19.6F)0-845)1.945

nCop(n) 24.23f, (3-38)
u*? ((1.0 + 1.5 (7.368f7)0-781)2.134
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nC33(n) _ _3.36

E 3-39
w2 1+ 10853 ’ (3:39)
= 3‘40
u2 ((1.0 + 1.5 (39.3F,) = ~)1-972 (3-40)
nC55(n) 46.46f, _
= 3-41
ux2 ((1.0 + 1.5 (11.06f,)0-781)2.1 (34D
nC66(n) 3.36f2
= -42
w2 1+ 1073 (3-42)
nC]3(n) 12.5f
= . 3-43
ur2 (1.0 + 7.5f)8/3 (3-43)
nCag(n)  12.5f,
— = . 3-44
w2 (1.0 +7.57)8/3 (3-48)
Cialn) = (c11(n)c44(n))%(exp(-19Af))%cos (2nAf) (3-45)
Qr4(n) = (C17(n)Cqq(n))%(exp(-194F))2sin (2nAf) (3-46)
Co5(n) = (Cap(n)Cs5(n))%(exp(-134F))2cos (4naf) (3-47)
Q5(n) = (Cpp(n)Cce(n))%(exp(-132F))%sin (4maf) (3-48)
C35(n) = (C33(n)Cgq(n))%(exp(-134F)icos (4maf) (3-49)
Q36(n) = (C33(n)Cqg(n))2(exp(-134F)) %sin (4naf) (3-50)
C34(n) = (Cy5(n)Caq(n))%(exp(-164F))%cos (3maf) (3-51)
C16 = Cqg (3-52)
Q34(n) = (C13(n)C46(n))%(exp(-16Af))%sin (3naf) ~ (3-53)
Qyg(n) = Qzq(n) | (3-54)

where Cij and Qij represent the co-spectrum and quadrature-spectrum

parts of the spectral density function respectively.
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Note that Cij = Cji
and Q45 =-0y;
The elements of the components of the spectral matrix, which have not
been listed above, have been assumed to be zero. The following actual

values were used for simulation

zy = 100 ft, zp = 50 ft
vy = 60 ft/sec., vp = 50.974 ft/sec.
f1 = nzy/vqy, fp = nzp/vy

ur? = (5.212)2 = 27.1649 £t2/sec’

f = nAz/v = n (100 - 50)/(60.0 + 50.974)/2
where v = average velocity

n = frequency in cycles per sec.
Suffix 1 or 2 refers to the station at 100 ft or 50 ft respectively.
Results o |

Fig. 3-& shows a set of six simulated correlated time series
based onthe trigonometric model. Time Series oné, two and three repre-
sent the wind ve]ocities"in the mean wind, cross wind and vertical
direction respectivg]y at a height of 100 ft. Time series four,
five and six are similar simulations for a spatial position 50 ft.
below the first point. Series one and four are positively corre]ated,
while series three and six are negatively correlated to one and four.
Seriés two and five, the series representing the cross wind, are
positively correlated to each other but uncorrelated to the other

four series. For these series, velocities were calculated every second
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for 2b48 seconds. The number of frequencies used; equal to N in
the analysis, was 600.

Fig. 3-b shows a similar set of simulated time series based on
the Fast Fourier Transform method. It is interesting to note the
similarity of the outcome. The number of frequencies used, equal
to N in the analysis, has to be the same as the number of time points
5 that is 2048.

A comparison between the spectra used to generate the simu]atéd
data and the spectra of the simulated data is‘presented in Figures
4-a through 9-a for the trigonometric model and in Figures 4-b
;}through 9-b for the»FFT model. Figures 8-a and 9-a are respectively
the co- and quad-spectra between time series one and time series four
. based on triéonometric model. Figures 8-b and 9-b are the FFT counter
part. In each case fhe solid 1ine represents the original spectrum
and the dashed 1ine represents the spectrum of the simulated time
series. The spectra were calculated from the simulated data using
the "Cooley-Tukey" method of calculating the correlation function
first, and then the "Tukey window" was used for smoofhing purposes.
As can be seen the comparison between the actual spectra and the
simﬁiated spectra is quite good in all cases. We did not consider it
necessary to show all 36 possible power and cross-épectra. The
aéreeﬁent looks the worst for the quad-spectrum between series one
and four (Figures 9-a and 9-b). The vertical scale for this compari-
‘son, however, is very expanded and about all we can conclude is that

both the original and simulated spectra are very close to zero. Also,
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FIG 3a. SMULATED WIND VELOCITIES BY

TRIGONOMETRIC MODEL
THE TOTAL RECORD LENGTH IS 2048 SECONDS
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Fig. 4a.
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Comparison between the original Gyj(w) and the spectrum
of the first simulated time series based on
trigonometric model. (Vert. Scale: 100(M¢/sec)/in;
Horz. Scale: 0.53(rad/sec)/in)



40, 20

45

Fig 4b.

Compamson between the omgma] Gy (w) and the
spectrum of the first simulated t1m§ semes based
on FFT model. (Vert. Scale: 100(M¢/sec )/in;
Horz. Scale: 0.63(rad/sed/in)
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Fig} 5a. Comparison between the original G22(W) and the spectrum

of the second simulated time series based_on
trigonometric model. (Vert. Scale: (50 M2)/sec)/in;
Horz. Scale: 0.63(rad/sec)/in)
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.. Comparison between the original G 2(w) and the

spectrum of the second simulated €ime series based

on FFT model. (Vert. Scale: (50MZ/sec)/in; Horz.
Scale: 0.63(rad/sec)/in)

EN



=
=
o

48

T T T T )
.00 63 1L 75 1 88 Z sl 3L
W
Fig. 6a: Comparison between thevbrigina1 G33(w) and the

spectrum of the third simulated time series based

on trigonometric model. (Vert. Scale: (5 Mz/sec)/in;
Horz. Scale: 0.63(rad/sec)/in)
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Fig. 6b. Comparison between the original G33(w) and the

spectrum of the third simulated time series based
on FFT model. (Vert. Scale: 5(MZ/sed/in; Horz.
Scale: 0.63 (rad/sec.)/in)
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Comparison between the original Ggq(w) and the
spectrum of the fourth simulated time series based
on trigonometric model. (Vert. Scale: (150 M2/sec)/
in; Horz. Scale: 0.63(rad/sec)/in)
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Fig. 7b. Cdmbarison between the original Gg4(w) and the

spectrum of the fourth simulated time series based

on FFT model. (Vert. Scale: 150(M2/sec)/in;'Horz.
Scale: 0.63(rad/sec)/in)
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Fig. 8a.

Comparison between the original Cy4(w) and the co-
spectrum between simulated time series one and four

based on trigonometric model. (Vert. Scale:
»81.25(M2/sec)/in; Horz. Scale: 0.63 (rad/sec)/in)
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Fig. 8b.

PN e l, - I

Compariéon between the original 014(w) and the co-

spectrum between simulated time series one and four
based on FFT model. (Vert. Scale: 81.25(M2/secjiin;
Horz. Scale: 0.63(rad/sec)/in)
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Fig. 9a. -Comparison between the original Q]4(w) and the quad-
' spectrum between simulated time series one and four

based on trigonometric model. (Vert. Scale:
4.0(M2/sec )7in; Horz. Scale: ' 0.63(rad/sec)/in)
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it is interesting to note thét, in general, the comparison between
the simu]éted spectra and the actual spectra looks better in the
case of FFT approach.

Comment .

Considering the above results we feel that both the simulation
methods presented work very well. The only drawback we see is the
‘ampunt of -computer storage that is necessary. It ié noted that FFT
method works about twenty times faster in terms of computer time
compared to trigonometric model. But FFT approach has a drawback in
that the number of tihe points is equal to the frequency pOints and
we caﬁ‘t restart the simulation at any given time t. It has to
-sfart with t = 0. Also, the time interval is re]atéd-to frequency'
intervals. The‘frigonometric approach does not suffer from these
disadvantages. ‘Here, we can start the simulation beydnd any given
time and also the time interval is not dependent on the frequency
discretizatfon.. Bécause of the presence of §ine and cosine functiohs
in the trigonometric model, it can be very useful in the response
analysis of linear System. Thus, we see that whereas the Fast
Fourier SimuTatjon method has a tremendous advantage in terms of

computer time, trigonometric model is more useful in certain cases.



CHAPTER IV
APPLICATIONS OF THE SIMULATION TECHNIQUE

Example 1. Forced oscillations of a free standing latticed tower.

To show the application of the simulation method for a linear
problem the dynamic response of a three-legged, 1a£ticed steel
. tower, shown in Figure 10, due to wind load in the y direction was
investigated. The tower was idealized as a space truss, and the
strucfura] members were assumed to resist axial'loads only.

For thé dynamic analysis, the tower was modeled mathematically
as a discrete system of fourteen masses lumped at the panel points.
Horizontal loads were assumed to be abp]ied at the panel points, and
secondary stresses were assumed to be small. |

The assumptions made in deriving this analytical model are
“summarized below:

1. The tower is a linear elastic spacé truss;

2. Motion in two orthogonal horizontal directions are uncoupled;

3. Vertical motidns are negligible; .

4. Loads are appiied only at panel points;

5. Secondary stresses are negligible; |

6. Masses are concentrated at centroids of planes at panel
points;' “ |

7. The base of the tower is rigid; and

57
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8. The deformations afe small enough to be géometrfcai]yv1inear.
Under these assumptions, the column elements of the f]exibi]ity matrix
were computed by successively app]ying a unit load horizontally at
each panel point in y direction. The flexibility coefficients are
shown in Table 2. The mass matrix is diagonal.[37]

After the flexibility and mass matrices for the tower had been
computed, the natural frequencies and mode shapes were obfained in
the usual manner as described in the following sectibn.'

The equatibn of motion for an undamped, multi-degree of freedom,
disgrete mass systems are given by | |

My + Ky = F(t) | ~ (4-1)

where M

‘mass matrix,

K = stiffness matrix of the system,

?Kt),='forCing function vector of the system,
y'é dfsp]acement vector,
and,
§'= acce]efation vector of the system.
When the system is vibrating harmonically at a natural frequency,
?(t) is zero and the displacement vector may be written as
y = Bosin(wpt) | (4-2)

where An

displacement vector of the n-th mode

Wn n-th natural frequency.
Eq. (4-1) then becomes

-wnzMﬂhsin (wot) + KBpsin (wyt) = 0 - (84-3)
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2

Dividing Eq. (4-3) by wn sin (w,t) and rearranging terms, then

- 1 =
MA,,-= W KAy (4-4)

Premultiplying both sides of Eq. (4-4) by the inverse of K

R = 5 KTKR, (4-5)

and rep]acing'K°] by S, the flexibility matrix of the system, and
K']K =1= 1déntity matrix, then

SMy = 5 By -~ (4-6)
Wn _
Denoting D = SM as the dynamical matrix and XA, = ;liu the standard
n B

algebraic eigen value problem %s obtained as

DAn = AnA, o (4-7)
The computed first three eigen values and their correspondfng eigen
vectors are shown in Table 3. Three natural periods were 0.496 sec.,
0.158 sec., and 0.080 sec. in the y direction.

After having determined the modal shape and natura] frequencies,
we will pqueed.tovdo the dynamical analysis as follows: Let the
masses Mj,lconCentrated at points 1, 2, 3, ... j, ks ... r of the
system be subject to disturbing forces.

Fj(t) = Faj + Foj(t) | (4-8)
where Faj = 0.5prijv§j -- the static wind loading acting at the

point under consideration, v_: is the average value of the longitudinal

aj
component of the velocity at this point,

2vyi(t)  vpi2(t
_Xgli_l + —Qléi—l) is the disturbing force relevant

ajJ - Vaj

Foj(t) = Fajl
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for the pﬁ1$ating part of the velécity voj(t),

o is‘the air density,

ij is the drag coefficient of the construction at the level j,
and Sj is thelérea of the projection of the strucfure at the level j
on the plane péfpendicu]ar to the direction of the wind.

Now, let

IIM's
—-l

Yk = (t)a 1(xk) | (4-9)

3
where Yy = dynamic displacement
qyi(xk) = modes of natural oscillation
q;(t) = generalized coordinates.

Then the equation of motion for the i th mode is

t
q; () + (u + iv)w; q1(t) Q‘( ) , (4-10)
4 - 2
~where u=I"To_ .
. =‘ 4Y‘o ,——- r =§_
v 4 + r02 "

The generalized force Q;(t) = 2 F5 (t)a 1(xJ-), and the generalized
. ) J_]

2
Z Ms ay1(x :) where

mass Mg =
j= 1

w; = 1 th natural circular frequency of the system
'§ = logarithmic damping decrement of oscillation
Neglecting the square term in the expression for the disturbing

force, which is very small compared to the first term, we can write

Foj(t) = Faj(32%§§22) | (4-11)
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Now,

N
- 2vy;(t)
G(8) = T (Fagoyi )1 + ) (4-12)
. j aj _
Then
Q;(t) = mean genera]izea force = ZFajdyi(Xj) (4-13)
. qu(r) = correlative function of the generalized
force = E[Q;(t)Q;(t + 1)1
N N
: - . 2v,;(t)
Bhs{t) = E[ T I {F .o .(x;)(1 + 01 "7
Qi 521 kel aji%i‘\"j Vai )}
.. o2Vt + T
X {Fakayi(xk)(] + ;_Q%ET____l)}] (4-14a)
aJ

Multiplying thesé two eXpressions and moving the expectation sign

inside
N N
Bai(t) = I I FasFaroyi(xj) yilxe)
=1 k=l
- (x5) )
+4 3% X FaiFopays(xs) yi(x
31 k1 Ak Tk
x Evoj(t)vgy(t + 1)) (4-14b)
VajVak
BQin(T) = Cross correlative function for the generalized force =
E[Qi(t)QQ(t + T)]
N N '
2vgil(t) .
Bgine = EI I I {F s;0.i(x;)(1 + 2201 "")y
0102. =1 k=1 WY Va3 |
2v k(t + T)
X {Fak“yz(xk)(] +-—JLT7—————J] (4-15a)

ak
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N .
Bhine = L L F (x Ja (x )
QiQe J=] k=1 aj ak 'yt Kk
N N v Q(t)vok(t +1

. . (ON|
* T T FagFacyr (xg)oy (BT 3

Jj=1 k=1

1 (4-15b)

Taking the Fourier Transform of the correlative and cross correlative

functions we get
SQi(W) = spectrum of the i th generalized force
N N

T I FhsFapaqs(xs)a :(x,)
=1 k=1 aj'ak®yi\ i/ By Wik

[m (1 + 0 Elog(ENVok(t + 1)1 miwry.
YajVak

Assuming the mean wind to be invarient with time

NN
Sqi(w) = z k’f]FajFakayi(xj)“yi(xk)

x (8(w) + 4 SVojVok)
VajVak

(4-16a)

(4-16b)

where SVojVok is the cross-spectrum of the fluctuating velocities at

points j and k. Note that Sqi{w) will be complex because SVpjVok Might

have real and imaginary parts.

Howevér,.the imaginary part can be neglected if this turns out

to be very sma]] compared to the real part.

Similarly,
SQiQQ(w) = cross-spectrum of the generalized force
N N
‘ SQiQR(W) = jE] ki]FaJFakayi(xj)ayl(xk)

4 ., .
x (8(w) + VajVak SVOJVOk)

(4-17)
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For considering the dynamic effect, we don't consider the static de-
flection and in such cases the spectral density for the fluctuating -

part only will be

' "N N
Sai(w) = £ T F_.F_,ays(xs)ay:(x,)
Qi =1 k=1 aj ak>yi‘tj/tyi\ik
X (——5———-Svojvok) | (4-18)
VajVak
and,
| N N
Sqige(W) = I I FajFakayi(xj)aye(x)
B =1 k=1

4 o ‘
X (=t SVg35V) (4-19)

VajVak )
Now, to find: the expression for the transfer function of the system,
Tet

edwt

Qi (t)
and, qi(t)

'<I>1-(w)e'jWt
where &;(w) is the transfer function.
Substituting these expressions in Eq. (4-10) we get
' -w2<1>1-(w)ejWt + (u + iv)wizéi(w)eth = ﬁ%gz

1

_w2 + (u - iV)Wiz
o, = '
i (w) Mig(‘W2 + (u+ iv)w,-z)(-w2 + (u - iv)w,-2 '
w2 + (u - iv)wi®
@i(w) - ( ) 1 (4_20)

Mig[w4 - 2uy~l2w-i2 + wi4]
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,Sqiql(w) =

64

Since u + vZ = 1
1

o3 (w) |2 = Mo lwd - 2unlu.2 + witl (4-21)
_ A ig i i
Then,
Sqi(w) = spectrum of the generalized coordinate
Sqi (W) = Sqi (w) o5 (w)|?
Sqi (W)
Sqi (W) = (4-22)

Migz(w4 - 2uw2w1.2 + wiz)

- and using the re]atibn

Sqiqz(W) = SQin(W)Qi(W)Eh(W)
we get the cross-spectrum of the generalized coordinate as

.SQ{QQ(W)[W4 - u(w1-2 + wgz)w2 + 1v(w12 - wzz) + wizwzzl

Mingg(w4 ->2uw1-2w2 +wi)(wh - 2uw22w2 + wQ4)
' (4-23)

Now, for the motion of any point k

r
y(t) = -Z1qi(t)ayi(xk)
Similarly for ahy point %
o r _ :
Yolt) = Z qs(t)ays(xg)
s=1 , _
Then correlation function between yk(t) and yz(t)

- r r
Rykyl(T) = iE] S§1quqs(T)“yi(xk)ays(xl) (4-24)

Then the spectral density of the dynamic displacement

SYkYy, 5:fm RkaQ(T)e'iWTdT
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r
ror _
S.Yk.Yg‘ = 'iE] S.E]ayi(xk)ays(xz)ﬁ (W)Q(W)SQ]'QQ, (4-25b)
r r :

Sykyz = 121 Si]ayi(xk)GyS(XR)

NN | 45Vg VoK
X T % FaiFarou:(xs)age (X )——i2X
521 k=1 37 ak"yit7 3 ys Tk va3vak

W - u(wi? + ww? + iv(wi2 - wg2) + wi2ng?)

X Mingg(w4 - 2uw1-2w2 + wi4)(w4 - 2uw52w2 + ws4)

(4-26)

when k = 2, it gives the power spectrum of the displacement.
Thus,‘having obtained the expressions for cross and powér spectrum,

we can simulate the displacement at any point. Thus the spectral |
density function of the displacement being known, FFT simu]ation
method was used to simulate the displacement of the top of the tower
shown in Fig.']Q.whose important parameters are listed in Tables 1-3.
The vé]ue of the co-efficient of drag was taken to be 0.6 and one per-
cent of the Critiéal damﬁing was used.

| Fig. 11 $hows the simulated samples of the displacement and the
generalized forces. The first three samples are the time histories of
the generalized force for the Ist, 2nd and 3rd mode of motion respec-
tively and the fourth sample shows the time history of the normalized
disp]acement,of the top of the tower due to all the three modes

combined’together.
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PANEL
POINT

K3 VA

SECTION A-A

Fig. 10. Lat;iced steel tower subjected to turbulent wind
Toad. '
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TABLE 1
CONCENTRATED MASSES AND PROJECTED AREAS

Panel Elev. Projected ©D.L. (Tb.) at
Point (ft) Area (sq. ft.) Panel Point
A 150 2.87 . 1810
2 | 147 5.22; . 510
3 B V't 8.06 | 750
4 137 8.75 810
5 130 10.32 | 920
6 123 11.97 o 1790
7 115 14.12 1190
8 107 16.76 | 1360
9 | 97 19.30 | 2940
10 87 - a3 1900
_11’ 75 28.08 | 3580
12 6l 32.35 2940
13 45 43.45 | 5670

14 25 60.37 - 5240

NOTE: 1. Values for projected area are for one face only.

2. Values for D.L.(Dead lead) are for entire tower.



TABLE 2

FLEXIBILITY COEFFICIENTS IN Y DIRECTION

(inch/kip)
1 2 3 4 5 6 7 8 9 10 1 12 13 14

10.4113

2 0.3890 0,3702

3 0.3599 0.3441 0.3231

4 0.3190 0.3066 0.2900 0.2652 Symmetrical

about diagonal

5 0.2762 0.2665 0.2537 0.2344 0.2119

6 0.2382 0.2307 0.2205 0.2053 0.1875 0.1697

7 0.2001 0.1943 0.1864 0.1747 0.1610 0.1473 0.1317

8 0.1667 0.1622 0.1562 0.1471 0.1366 0.1261 0.1140 0.1020

9 0.1308 0.1276 0.1233 0.1168 0.1092 0.1016 0.0930 0.0843 0.0736
10 0.1006 0.0983 0.0953 0.0907 0.0854 0.0800 0.0739 0.0678 0.0602 0.0526

11 0.0708 0.0694 0.0674 0.0645 0.0612 0.0578 0.0539 0.0501 0.0453 0.0404 0.0347

12 0.0440 0.0432 0.0422 0.0406 0.0388 0.0370 0.0349 0.0328 0.0302 0.0276 0.0245 0.0209

13 0.0223 0.0220 0.0216 0.0209 0.0202 0.0194 0.0186 0.0177 0.0167 0.0156 0.0143 0.0128 0.0112
14 0.0062 0.0062 0.0061 0.0060 0.0060 0

.0059 0.0058 0.0057 0.0056 0.0054 0.0053 0.0051 0.0049 0.0048

89



COMPUTED NORMALIZED MODE SHAPES
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TABLE 3

(Normalized with respect to bottom panel)

Y DIRECTION
Panel First Second Third
Point Mode Mode Mode
1 39.93 -5.60 1.78
2 38.31 -4.73 1.23
3 36.15 -3.59 0.52
4 33.00 -2.00 -0.41
5 29.50 -0.38 -1.14
6 26.22 10.93 -1.56
7 22.71 2.10 -1.63
8 19.47 ©2.95 -1.44
9 15.82 3.61 -0.90
10 12.56 3.83 -0.21
1 - 9.18 3.72 0.63
12 5.96 3.13 1.29
13 3.19 2.20 1.56
14 1.00 1.00 1.00
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FIG. Il. GENERALIZED FORCES AND DISPLJACEMENT

.FOR LATTICED TOWER:

(A)  GENERALIZED FORCE FOR FIRST MOOE
(B) GENERALIZED FORCE FOR SECOND MODE
(C) GENERALIZED FORCE FOR THIRD MOOE
() NORMALIZED DYNAMIC DISPLACEMENT OF THE TOP OF THZ TOWER
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Example 2.‘ Nonlinear Random Vibration of String

One of the most significant applications of the simulation tech-
nique is for simu]ating‘random generalized forces. The necessity of
simu]ating random generalized forces arises when the dynamic response
analysis is performed in time domain for the purpose ofvobtaining

“information beyond second-order statistics or when the structure is
nonlinear and therefore an approximate random response is sought by
simulating the excitation. In order to assert the validity of the
preceding dfééussion, the problem of nonlinear vibration of a string

ﬁwil] be considered in this example followed by the problem of non-
linear vibration of a plate in the next example.

The governing differential equation for nonlinear vibration of
a string is -

‘ L

92u ou AE Juy 2 22y
pl— LA R -
2t Cat [To + 31 fo(ax) dx]ax2 + f(x,t) (4-27)

where p is mass per uﬁit length, C is the Tinear viscous damping, T,

js the initial tension, f(x,t) is force per unit length of string, A

is the cross-sectional area of string, and the boundary conditions are
u(o,t) = u(L,t) = 0 _ |  (4-28)

Assuming an approximate solution of the form,

M
u(x,t) = £ bp(t)sin x - (4-29)

n=1 L

one obtains
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.M

) (pg + Ch )sin DX
=y 0 n T

L M
- AE nm nm,2
[Tg + EE—/; (nzlbn~ttos L ) “dx]

or, S
Mo M
AE n
hfl[pan'Cbn*(To*Z[[ E by (") ()% 5
x sin BX = gy 1) (4-31)

Multiplying both sides of Eq. (4- -31) by sin mE——-and 1ntegrat1ng, one
obtains

M
oby, + Cb, +no+25kzb2(‘<“) 1o )b

= f f(x,t)sin BIX 4y
0 L

(4-32a)
Dividing by p throughout, we get
- . To fﬂi M kn nw
T[ f(x,t)sin Ty (4-32b)
0 N
where g = Eg
or,
b+ 28b, + [“‘“2‘+ AE3 b (k”)2](2nw)zb
n on 160L° 1 K n

EF [ f(x,t)sin szdx (4-32¢)
Jo
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Assuming that the fundamental frequency of the corresponding linear

spring is 0.1 Hz or IE__= 4 sec'z, we can write Eq. (4-32c) as

oL2
b, + 236 + [1+ AE g‘ (k“)zbkz](Znn)zb
nooe Mo T n
8L L mrX
-8 [ F(x,t)sin Mgx (4-33)
To Jg

The right-hahd side of Eq. (4-33) is the random generalized forces to

be simulated.
L

. mmx)
Let f,(t) = f f(t,x1)sin X
m o —t—-d 1

, L -
f.(t +1) = f f(t + 1,x9)sin "“tdez

0
Then,
(1) = correlation function of the generalized force
Run
Rmn(t) = E[f(t) fp(t + )1
- L (L
Rmn(T) 'AI f E[f(t,x])f(t + T’XZ)]
0’0 : .
X sin mtxlcin nIXZHX]de
Lt mmX nmx2 |
&nn(T) = !0 IOR(T,X] ,XZ)Sin _L_l_Sin T—-dX'IdXZ B (4"34)

where R(T,x],xz) is the correlation function of the actual force.

Taking the Fourier Transform of Eq. (4-34) we get

: L ,L
: . mmWXy . nmx
Smn(w) = [O‘fos(w,x],xz)s1n T lsin A{ gdx]dxz (4-35)

where Sp,(w) and S(w,x],xz) are the spéctra] density functions of the
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generalized force and actual force respectively.

For the particular case we take (Ref. [8]),

S(W,xy5%5) = So(w)e'“lw”xl'xzI (4-36)
where
al 01’2

So(w) = I 21 \3=37)

o and a are constants and of gives the standard deviation of the
-actual force.

Substituting Eq. (4-36) in Eq. (4-35)

L ,L - -
Spn(w) = f f So(w)e alwllx x2|s n Tgfls1n —%igdx]dxz
0’0
= So(W)Tpn " (4-38)

L (L
where I = f [ e-olwlIx1-x2lg5p X1 g5p x1dx2
LI 'If"ﬁ

or,

L Xy - X
Ipn = f sin ™ ][e a|W|x1f ]ea'wlxzsin nmXo %)
0 L 0 L

L .
+ ealw|x1f e alwlxzsin nxz xz]dx]
| X
1

B nwx] '
s1n m:x1 2a|wlsin T e alwl(x L)(nﬂ)( " + 1]

@G T (my?
L

mnx1 -a|w|x](nn

L
X dxy + f sin )dx1

" (aw) + (mm)?
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= 1

(aw)2 + (DT)
L

Z{GIWIL R (Smn

b (my gy melwll alwlLgmmy (g )™, oy
AL TREANRN W

(aw)? + (112

+ ) el )™, )

2 mmy2
(ow)e + (L.)

which can be further simplified as

_ 1 ,
L
(T A : :
. - m+ +
f(Lﬂi<m¢“+(4W“+e””%on £ (DN
aw ——
L .
(4-39)
So,
s, () = 2 OF Tl
W) = ——s —— X L. 3§
mn a2 + wl (uw)z 3 (%392 ofw] mn
flutYi | o
+-L L 0+ ()™ w eIt y™y ™y

(ow)? + (1?2

(4-40)

A numerica] example was carried out for the case where g = 0.1 x

2n sec”!, a = 4n sec”!, ol = 0.7 sec, %% = 0.05, L = 25 in., Ty =
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100 1b., p 1b/in, E = 3x107 psi.

=L
25
From the derived expression for the spectral density function, the
generalized forces for Ist, 2nd and 3rd modes were simulated by the FFT
method. They are shown in Fig. 12. Equations of motion (4-33) fdr
n=1, 2, and 3 were reduced to six first order differentiail }
equations which were solved numerically by using the Modified Pre-
dictor-Corrector method. Fig. 13 shows the simulated samples of the
displacement at the midspan. The first three time series are the
generalized displacement histories for the 1st, 2nd, and 3rd modes
of motion respectively. The fourth one gives the actual displacement

due to all three modes of motion at the center of the string. The

root mean square oj of nondimensional response

Catk) = uhe)
u(5:t) = ulzt)/ (G,)

at the midspan is plotted as a function of the root mean square o}
of nondimensional forcing function |

f(x,t) = f(x,t)'/(.za)

in Fig. 14. The total number of 2000 time points with time increment
of 0.025 sec. were used for response calculation. For the sake of
éomparison, the response of the linear string was also plotted on the
Fig. 14.
Conclusion

By comparing the results with\the one obtained'by Shinozuka [8]

for the same problem, it is found that they are very close. This

demonstrates the usefullness of the FFT simulation method. It is very
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FIG. I2. GENERALIZED FORCES FOR NONLINEAR
STRING: | |

(A) NONDIMENSIONAL GENERALIZED FORCE FOR Ist MODE
(B) NONDIMENSIONAL GENERALIZED FORCE FOR 2mxp MODE
{C) NONDIMENSIONAL GENERALIZED FORCE FOR 3mo MODE
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FIG. |3 DISPLACEMENT TIME HlSTORIES FOR
NONLINEAR STRING:

(A) NONDNENS!ONAL GENERALIIED DISPLACEOENT FOR ls7 - MODE
@) MNDWENSOONAL GENERALIZED DISPLACEMENT FOR 2w0 MODE
(C) NONDIMENSIONAL GENERALIZED DISPLACEMENT FOR 30 MODE

(D) NONDIMENSIONAL DISPLACEMENT TIME HISTORY AT THE CENTER
OF THE STRING
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interesting to-note thatvtotai computer time for 2048 simulated

points was 1ess:than 2 minutes which shows the advantage of time-
saving due to FFT method. To simulate the same number of points |
using trigonometric model takes about 30 minutes of computer time.

Exampie 3. Nonlinear Panel Response Due to Turbulent Boundary Layer.

The random vibration of a flexible plate immersed in a fluid
flow on one side and backéd by a fluid filled cavity on the other
side has been considered in this analysis (Fig. 15). The nonlinear
plate stiffness, inducéd in the plate by out-of-plane bending and
the mutual interaction betweén the extérna1 and interna] fluid flow,
is included.‘ Tﬁe same problem has been considered by'Shinozuka [11]
where he usgd‘mﬁ1tidimensiona1 simulation method to find the deflec-
tion at the center of the plate. In the bresent work, the
FFT simulation approach has been used to do the response analysis at
the center of plate. The results are compared with the ones obtained
in Ref. [1].

The deflection w of a simply supported plate having geometric
nonlinearity is described, in dimensionless form, by two partial

differential equations

4 - -+ - _
\ W = dyy + Ty 1@; xy - Wy

- By - Wgp PP - (4-81)
w3 = 12(1-v2 ){w;( - Wy | (4-42)

with- boundary conditions
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Fig. 15. Problem geometry for nonlinear p]ate v1brat1on due to
turbulent boundary layer pressure
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0

W0.5.5) = w(1.5.5)
w(x,0,t) = w(x,1,t) =0

War(%,0,8) = Weg(X,1.8) = 0
%7(0.7.5) = z(1.7,8) = 0

(4-43)

where X = x/a, a = plate length

y = y/b, b = plate width
w = w/h, h = plate thickness
-9 = nondimensional airy stress function for membrane stresses

v = Poisson's ratio

i
i

nondimensional time =-E—L/Q-where
abV p

D= Eh3/12(1-v2), plate stiffness

E = modulus of elasticity

B = damping co-efficient
_ a2 |
P =50 p(x,y,t) where p(X,y,t) is turbulent pressure

2n2 -
Pe = ahg p€(X,y,t) where p&(X,y,t) is fluid pressure due to

external flow

- 2p2 - -
Pe = Eﬁ%—-ﬁc(x,y,f) where p.(X,y,t) is fluid pressure due to

cavity flow
In solving Eqs. (4-41) and (4-42), the plate deflection w is expanded
in terms of the normal modes of the corresponding Tinear plate:

w(x,y,t) = Z £ bypy(T)sin mrxsin nmy , (4-44)
n

where bmn(f)ﬁis the modal amplitude.
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After the stress function @ is eva1uated‘[19], the assumed modal
solution‘is_satisfied in the Galerkin sense by computing its integral
which is average weighted in turn-by each term of Eq. (4-44). The

result is a system of simultaneous nonlinear. integral-differential

equations for bmn(t) which involve the following generalized forces
F a2 (Vv
Fan(t) = o p(x,y,t)sin mxsin nrydgdy (4-45a)
0

0

S -
Fﬁn(ib FTjL"TT f f p®(X,y,t)sin mrxsin nnS&ggr— (4-45b)

. R S L |
Fan(t) = 5 f [ p-(X,y,t)sin mrxsin nmydsds (4-45¢)
hpwac 0°‘0

=
>
)
3
o
K3
!

= free stream density

U, = mean external flow velocity

]

‘velocity of sound, cavity flow

To promote computation ease, a two mode approximation corresponding ,
to x coordinate and one mode approximation corresponding to y co-
ordinate to Eq. (4-44) has been assumed. Then the solution for & [19]
satisfying Eq. (4-42) is given by |

2gp3 2 2.-2
= o — = {1 (1+val)by< S + (4+val)b

+ [(o? + \))b”2 + (a? + 4\))b212]u272}

EnZe2, P12 o X
+ =3p [Tg Tos 2mx - byybpycos mx -

by b bo12 b112 , Aboe2
+ P11by 21 — 11° + 4bs
- g cOS 3nrx + T3 ©O0s anx] + [ 8ol
+ 9b11boy —  byiby

(1+4a2)2c°§ X - Tgrga2)2¢0s 3mxIcos 2y} (4-46)
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_a
where a = b -
Substituting Eq. (4-46) and Eq. (4-44) into Eq. (4-41) we get the
following set of equations
. . , » »
by + Byby + (Cyg + Cryby™ + Cabp®)byy
| = 4(F; #0FC + 27 °) - (8-472)

. . ) ,
by + Boby + (Cop + C21b" + Copby)byy

= 4(F, + Ac?éc + A?ée) . (4-47b)
where by = byy, by = byq, ?} = ?}], Fé = Fpy, etc.

Gio = (o + Pt
o0 = (a + )"

3 1 1 :
& = g 109 (a? + 2) + 2(2v + o + )]

W PP NP | 8102
c]z zi‘" {(] AY )'[4(0 + az) + (]4‘4& )2
___g'.z_._. 2 4

O 2

C1 = G2
16
. C22 = 23“”4[(]'\)2)((12 + ;E)

+2(8v + o + 13
) a

By ahd By are the damping coefficients for the first and second mode
respectively. The generalized aerodynamic force of the external flow

is given by
Tl =L O (4-48)
r .

where Qyy is given in references [20] and [21]. For high mach
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numbers, Eq. (2-48) can be abproximated to.

D - 2 [Embe(D) + Prn1br(D)1 | (4-49)
where
Eym 2M(r:2-r2)n SN for g
=0 for r = m
Py = ZﬁfEZJE for r = m
=0 for r+ m, M = mach no.

Again based on Ref. [21], the generalized cavity force is given by

. m r
Fl-.2ml - (0, 0= (D0, 4-50

Thus having obtained the approximate expressions for the generalized
forces due'to external flow and cavity flow, we proéeed to find the
generalized forces due to turbulent pressure fluctuations as follows
'by usingthe FFT simulation technique:  the semi-empirical formula of
cross-spectral density for subsonic boundary layer turbulence is

given by [22]

-6 2
S(w,ky 1kp) ={o.715 x 107° ?r'?_;u:
Zexp(-2%%) + 0, -0.47%%
X I3 gxp( Um), 0.8exp(-0 47Um)

i 3.4exp(-e!‘U§)](g-c-)2}

(4-51)
[(0-14)° i DA00.7152 + k]

for 0 <w<w

where, w = freq. in radians{ ky and ko are wave numbers in the x and y
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di rections'_ respectively. U, = 0.65 Uo, g = dynamic pressure =
pU,,,z/Z, z = boundary Tlayer thickness.
Let E] = Xp - X

=00 =00

00, i rok -
S(w,&y,85) = r fng]k‘ngz 25 (w,ky ,kp)dkydky

il

]0'5(9_25_) cor JE1K1 (9'—]-‘1”-)dk
A

-Q0

(3 1”’)2 + (J——L+ k1)?1

x

jEpko(0.715w)

2
[(o.ﬁww) _—

0.715w jlw|g;
ox'|0 5(9_5__)e lg'll U ‘IEZI Ug e Uc (4-52)

n

oo

\J
where Co = 3.7exp(-2HE)+ p.sexp(-o.47-‘$§) - 3.4exp(-8—U§)

Now, the generalized force due to turbulent pressure fluctuation is
given as -
a2pe 1 1 _ _ _
Fm]mz(t) el Io fop(x] Y1 ,t)sin m) X

sin mpmy,dx; »dy; " (4-53a)
o a2 (v _ _ |
Fn1n2(t + 1) =T fo [op(xz,yz,t + 1)sin mmx,
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Then

E['F'm]mz('ﬂfn]nz(? + 1)1

2p2 2l 1 11 - -
= (ah—D" j f J JE[P(X] ,.Y'l ’ﬂp(x2:y29t + T)]
0’07070
x sin mmxysin momy;sin nymxosin nymy,dxydydxadys,
OY‘,
2122 1.1 .1 .1 o
- L[] e
Rn]mzn]ng(j ( o o o o p( ‘I’ 29y'|s.y23?)

x sin m1nx]s1n mzvy1s1n n]nx251n nznyzdx]dxzdy]dyz
(4-54)

where Rm1m2n1n (t) is the cross correlation function of the generalized
force and R (x1,x2,y1,y2,~) is the cross correlation function of the
turbulent pressure fluctuations.
Taking the Fourier Transform of both sides of Eq. (4-54) we get

_ 202 of1 1 (1 41 o

_ (ab%,2 f
Smngnyn,® = Co?[ [ [ [ s

070

X s1n m1wx]s1n mzny]s1n n]ﬁxzs1n nznyzdx]dxzdy1dy2
(4-55)
where Sm1m2n ny (w) and S(w, E],Ez) are the spectra] density functions
of the generalized forces and turbulent pressure fluctuations
respectively and w is the nondimensional frequency.
Nondimensionalizing Ed. (4-52) with respect to w, & and &, and sub-

stituting in Eq. (4-55) for S(w;Ei,E;) we get
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2,2
ab2-5
Saymgyn, ™ = Ci) 107 (% )_VD
1721
0.715wb

< jl Il fo [0 -x2-x l—U—"UZ‘Yﬂ—U“‘

X sin nzwyzdx]dxzdy1dy2 (4-56)
In order to solve the integral in Eq. (4-56) we proceed as follows:

let

‘ Twa
_ { I‘ -lxz"x] "—U_ -i(xp-xq )Uc
0

Jo

—
I

sin mymxysin nymx,dxqdxp (4-57a)

] 0.715wa’
[ e” l.VZ'.Y]! Uc

ngn, = |
mon2 g to

sin mzﬂylsin nzn:y_zdy1_d31—2 - (4-57b)

then wa ,
13 -
JU-EX 0.1lwa

1S'in my X, e Uc X1

x, 0.lwa_ -jWe
X f TeTUc *2¢ U-C_7r251'r\ n]ﬂYZdYZ

0. lwa= -0.lwa_. . wa—

“Te f] . Uc 2 "ucke

X

t+ e

x sin nmx,dx,1dx, | (4-58)

- Evaluating the integrals inside the square bracket separately:
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1wa_
r l]c -3—%

J e sin nymx,dx,

0.lwa—

- X
X (X-I UC 2 wa . < A<
- 1o oS =Xpsin nymx,dxp
Jo e ' i

0.lwa—

X U "2
3 i dx.
JIO' e sin chzsm n]nxz o

0.lwa—

o U 2
- fo o cos ch251n n-|1rx2dx2

0.lwa—

_jf;]e e 21-[(:05 (nm - WX, - ;OS (nym + g2)X,}dx
) > 1™ - g *e 7O
0.lwa_
e Uc *1,0.1 X |
=_% {.___ﬁs-m (n-l'n' + %%)X-l - (n]'n +%’%)
cos (nym + ‘1']'%);]
A
3 wa,—
N lwasm (nym - ‘l’J‘_f;.)x] - (nym - ﬁ—z)cos (T - TIX
B
1 wa,
R 5
0.1wa

.1 Uc 0.1wa wa,—
e (e eos (- R

+ (n.l'n' - %%)Sin (n]'" = %%);])
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{e‘ K _,Oulwa os (nym + U )x]

+ (n111 + wu%)sin ("1” + %ac“);])

1
- Ouzwa -3 | (4-59a)

where, 5 = (.O_U]_W_a.) + (ngm + ﬁ)Z

wa,2

B=(0]wa)+(]ﬂ‘uc

Integral Table [23] was used to evaluate the above integrals.

Now, we want to evaluate

-0.1wa_  wa-
1 U X2 -iugXe o
f_ e e sin nymxydx,
X'I '
- -0.1wa-
1 Uc %2 Wa— o
= f_ e cos chzsin N mxodxo
X
1
-0.1wa—

(! Ue 2_ : WayT wa
-Jf_ e 5{cos (n]n - UE')XZ - coS (‘n]n + DZ)XZ}dXZ

] .
_Cc,.D
ol W
0.lwa—
X1 -0.1wa wa,— wa © L Way—
. Ue ’l{ Tsm (nqm + ITC')XI - (mm + UE)COS (nym + W)x]

A

Wa,\— —
+ gu—l‘ﬂsm (mym - U%)x] - (nym - g%)cos (n]w - %%)x]

B




Ey
- 3@
-0.Tw_
jo Ve
B 1 UC —CO0S ]TT U'C-X'I n‘I’IT - UES]n n-l'n'
Je-O ]WY]
' — wa
R Oulwa'os (01“ + g%Jx] + (n]w + Po)sin (nyw
where,
-0.1wa - 0.1
a
C=e Uo —U-ﬂis1n (n]n + %%) = (nqm + ge)cos (n1ﬂ +
-0.1wa ‘
D=¢e U { ——lﬁ@s1n (n]w - %%) - (n]ﬁ - %%)cos (nm -
-0.1wa
E=e {’Q—lﬂﬂcos (nym - %%J + (mm - H%)sin (nym -
~0.1wa . _
F= e —Ulﬂicos (nym + ﬂé) + (nym + ﬂgosin (nym +

Multiplying Eq. (4-59a) by

adding them, we get

- 0.1wa_
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0 Iwax-

—U———X] and Eq. (4 59b) by

sin n1n§éd§é :

-J —.'_
e Ue 2sin nlnxzdxz

-0.lwa— Wa—
e U wax1 Uc xz Uiy
0
_ -0.1wa_ _
e e %
+e C I e
X1

——d

‘{-Tr——$1n (n]n +

-

U"xl

Wa .
+ Uc)x1

(4-59b)
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-0.lwa— 0.lwa—

| P
+ 2A{(n]':w Ucle

+-2§un]ﬂ-n-g

Uc ™ Uc 1

+ 3pCiBoos (m + M2y,
- j%‘{gﬁ!@coé. (nqm - "—J%)Y]}

1. .-0.7wa -Qﬁlgi;] 0.;I:wa-—]
il Ty, ® | + Fe }
: -0. lwa Oﬁlwa_

b pelylie Yo e e T

(4-59c¢)

Substituting Eq. (4-59¢) in Eq. (4-58) and carrying out the inte-

gration, we get

_,0.lwa 0.1wa}

Tmny om0 * 28U Tomny
wa
AL 7 L
S
0.1wa

- +C D Uc c2 , D2
+ {Zﬁ'+ zg}e {KT'+ ETJ

-0.1wa
dwa .1

0.lwa

0 1 Uc El F1
U, g - Gyt

Ve (F_ _ E 3.6l _ G2
+ec{m H ET}

4B° "Al

0.1wa p (_”m~|+n]+ ]}
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m] +n]

+ j :
T Coreee ML I
wa _ wa -0.1wa
+3 M0 M7 U, U (B, EL
4A 4B B1 Al
0.lwa
+ {Q_’+ D e UC'{§1.+ G2,
J \ZA T 78 AT T BT
0.1wa,] QU]ﬁ DI
. 0.1wa
+ J U‘C Z’B- }e { -I} ‘
+§ {ix - Eole {Cz ¥ DZ} (4-60)
where
2 2
Al = (Qﬁ%ﬂﬂj + (mym + wa,
- 0.1Wa 2 wa,?2
B1 = ( ) + (m]'ﬂ' - UC
v . -0. 1wa wa wa wa wa
Cl = —EE——s1n (mm + UE) - (m]ﬂ + UEJcos (mym + UEJ + (m1w +-UE)
D1 = Qn%ﬂis1n (mym - %%) - (mm - w);os (mym - g%) + (mym - ﬁ%)
- -0.1wa . wa wa, . wa, = 0.lwa
E1 = —UE——cos (mym + c) + (mym + Uc)s1n (m1w + Uc) + U
Twa . Twa
F1 = QEE-—cos(m1n - 2) + (m]n - %%)s1n (m]n - UE. + 2 .
Gl = Q—l-v—'—qcos (mym + 9 &+ (m7m + M)sin (mr + ¥ 0 1va
Ue LT " 7 U 1 Uc U
= 0. 1wa way _ 4 Wa way wa
_ 0.1lwa wa wa wa‘ wa
D2 = —U———51n (m]n - UEJ - (mm - UE)C°S (mm - UE) + (mym + UZ)
62 = 2MMacoq (mor - W) 4 (o - ¥)gip (myn - %2y _ O.1lva
Uc [ 1Y 1" - U 1" 7 Uc Uc
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Now,

— ,0.715wb

- 1 A1 -!yz".‘/] | U
- C 5§ y1si yydy;dy.
Im2n2 = fo Joe | SN mymy1sin nzvry]dy1dy2

Carrying out the integration we get

] [0.715wb6
I = 2 U mano
mon 0.715wb 2 c
2 2 (—_UE___J + (nzﬂ) ]

-0.715wb

+ (mzﬂ)(nzn% {1 + (_])m2+n2 + e ”C
(Q.71500)% + (mym)?
x ((-1)"2* 4 "2ty (a1
Then | V
2h2,2, 5,92z \1 D
) S w) = (22°)410 D¢ 11 + 1.1 4-62
m]mzh]nz(_) ( hD (nzum)ab > of m,n, myn, ( )

where Im1niand Im2n2 are given by Eq. (4-60) and Eq. (4-61) respec-
'.tive]y.‘ o

Thus, the spectral density funqtion of thevgeneralized force due to
turbulent pressure having been obtained, the generaiized forces were
simulated by using the FFT simulation technique.

As pointed out earlier, to work out a numerica} example a two
mode apprdximation in the x direction and one mode approximation in
the y direction was taken. In order to compare the results with ones

given in ref. [1],the following numerical values taken in [1] were used:

a =10 in., b = 20 in.
d=5in., v=0.3
d o = 0.1h 1b/inZ, E = 107 psi
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-
O
1]

0.65 W, op = 0.0056 g

Pw = pc = 0.00089 slugs/ft>

o = A 995 ft/sec

5

800 ft/sec, z = 0.157 in.

The thickness of the plate was varied in a way to adjust the non-
dimensional pressure, p, for the convenience of illustration. The
damping coefficienté By and B, were taken as 1 percent of the
critical damping of the 1st and 2nd modes of linear plate, respec-
tively. | ‘ .

In order to solve the equations (4-47a) and (4-47b), 4096
discrete values of both Fj(t) and ?é(?ﬁ were simulated from the
defived expreséion for spectral density function uSing the FFT simu-
lation technique. Eqs. (4-47a) and (4-47b) were reduced into four
first order differential equations, and a modified predictor corrector
method was used to solve for by(t) and bZ(TD with zero initial con-
ditions. Fig. 16 shows the displacement time history at the center
of the plate and the generalized forces for the first and second mode.
The nondimensional R.M.S. response at the center of the plate versus
the nondimensional R.M.S. pressure is plotted in Fig. 17 with and
without the cavity effect. Fo% the purpose of comparison, response
corresponding to 1inear plate is also plotted in Fig. 17. |
Conc]usfon '

If is seen that the results obtained here compare veryAclésely

with the one given in Ref. [1] for the sub-sonic case. Resuits obtained

in [1] are based on the multidimensional simulation analysis where
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FIG. 16. GENERALIZED FORCES AND DISPLACEhENT
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(M) NONDMENSIONAL GENERALIZED FORCE FOR FIRST MODE
(B) NONDIMENSIONAL GENERALIZED FORCE FOR SECOND MODE
(C) NONDIMENSIONAL DISPLACEMENT AT THE CENTER OF THE PLATE
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Shinozuka has‘taken only 100 frequency points which looks Tike a very
small number considering the fact that turbulent preésure fluction
takes place oVer a wide frequency range. From this point of view,
our analysis seems more accurate because we have divided the
spectrum into 4096 points. The total compﬁter time to simulate 4096
values of both F(t) and ?é(f) and to obtain 4096 points for both
by(t) and b,(t) was only 3 minutes 30 seconds. It is needless to
point out that.the time required to simulate 4096 points for the
generalized fqrces by using the trigonometric model of_simulation
wi11'be>much much more. This once again brings out the immense.use-

‘fulness of FFT simulation approach wherever it is applicable.



CHAPTER V
CONCLUSIONS AND FUTURE EXTENSIONS

Two methods of simulation of a multivariate and multicorrelated
random pﬁbceSé have been presented and these methods have been -
applied to ana}yze some example problems of linear and nonlinear |
random vibration. |

Comparing the two methods of simulation, we conclude that both
the methods work’very well. The only drawback isfthe'amount of
computer storage, which can become prohibitive if there are too many
correlated brocesses to be simulated or if a very large number of
discretized points are necessary for ana1ysis. It is noted that FFT
gmgfhod works much faster in terms of computer time_compared to the
zﬁhtrfgonometric mode]Q This speed ratio is directly proportional to
the number of series and discretized points to be simulated. For
example, the time required to simulate the six components of wind -
turbulence, with each .of the tfme series having 2048 discretizéd
poinfs, was twenty times less in the case of FFT method compared to
the trigoquetric approach. But FFT approach has a drawback in that
the number of time points is equal to the number 6f frequency points
and we cannot restart the simulation at any given time t. It has to
‘start at t = 0. Also, the time interval is related to the frequency

interval. The trigonometric approach does not suffer from these
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disadvantages. Here, we canlstart the simulation beyond any given
time and also the time interval is not dependent on the frequency
discretization. Thus, we see that whereas the FFT method has a
tremendous.advahtage in terms of computer time, the trigonometric
method can be more useful in certain cases.

As to the usefulness and importance of the simulation technique,
we conclude that it offers probably the best means of performing the
nonlinear response anélysis of random vibration prbb]ems when the
spectral function for the forcing function is specified. In Tight
of the review study in Chapter II, we feel that the simulation approach
and particularly the FFT method gives a much faster solution with
lesser number of constraints. ft is noted that FFT method works as
- well as the ones in Ref. [1, 6, 8] for analyzing the nonlinear re-
sponse and.this approach is much faster than that of Shinozuka
(1, 6, 8].

Tﬁe methods of simulation presented here can be’extended to in-
clude mu]tidimensiona] homogeneous and nonhomogenoué processes. For
example, writing
fh(t,x1,x2,.;.xn)

mo N gz Nn

= I 3z v {a, (kysko...kpn)
oo kq=l k=l ko= TR T2

x

cos [w]k1t + wzkzx] + ... 4 wnknxn + oKy skp. .. ky)]

+

B (k1 5k +kp)
sin [w]k]t F W XY s kg Xy oKy sKp- - kp)
| ' (5-11

x
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~one can simulate a mu]tivarfate multidimensional process using trigo-
nometric method. Shinuzuka [6, 8] has already exténded his trigono-
metric mdde1 to include the multidimensionality and.the above proposed
extension wi]i not be much of a problem. But it will be really

he rFT approach to a mu

exciting to extend t tivariate-multidimensionai
case. It does not seem very difficult particularly when the sub-
routine HARM can téke care of up to 3-dimensional inVerse Fourier
‘Transfonn. We feel that it should work without trouble, but it does
need a ]ftt]e closer look. It might be also interesting to extend the
FFT approachnto include the nonhomogeneous process by- utilizing the
concept of evolutionary power spectrum. This will be useful in sihu-
lating traéient and siesmic response and will also lead to considerable-
time saving over Shinozuka's methpd [81. |
There' are lots of other areas in which the simulation approach
can be very useful and about which we have not discussed in this
dissertation. For example, in the area of reliability analysis and
in the response analysis of structures when the spatia1 variation of
material properties are spetified. These are somerof,the many areés,

the simulétion_technique and particularly the FFT approach can be

extended. These extensions look very practical.
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APPENDIX A

1. Random Variable and Probability Distribution Function

Let X be any random variable which varies with statistical fegu-
larity. Since X is a random variable, any function of X is a]sd a
random variable.

The first-order probability distribution function of X can be
described by a graph as in Fig. A-1 which shows the probability den-
sity function p(X). The hatched area gives the probability that X
1ies between a and b. It is apparent that the probabi11ty is zero

that X actually assumes any given value x. Also we have

rp(X)dx -1 | (A1)

The cumulative -distribution function (CDF) defines the probability of

occurrence of a value of X less than or equal to a given value X, i.e.,

X
P(x) = f o(X)dx. (A-2)

-00

According to fundamental theorem of integral calculus,

9Rx) L i) N (A-3)

wherever this derivative exists.

Properties of CDF

(1) CDF is a non-decreasing function of x

(2) P(x) varies between 0 and 1 as x varies from —» to «. Thus
P(-=) = 0 and P(») = 1.

Several random variables X], X2,...Xn are sqid to be jointly dis-

tributed if they are defined as functions on the same sample description
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space. We shall refer to p(X], Xz,...Xn) as the joint probability
density of these random variables. Thus, the probability that 2, <

X1 < b1, a, < X2 < b2,...an < Xn < bn is given by

b] b2 bn
. f fa . ..ja> p(x-l ,X2,- . .Xn)dX]dXZ.. .an_l (A'4)
S n
Also, ' . N
: rrr DXy g - K JARy Ky 0K = 1 (A-5)
The joint probability distribution of two random variab']es.x1 and X2
ié given by
p(x'l ,xz) _ (A-6)
and

p(a1 <X < b] and a, < X, < bz)-
b1 b2 ‘
= f f p(X],Xz)dX1dX2 (A7)
ay ‘a, ,
Supposing that X is now a random function of spacial coordinates
5_6r time t, the first and joint probability distribution functions
defined above are valid for any given values 6f_§ or t. That is, the

probability that X (x or t) lies between a and b is given by

b ' '
f p(X(x, or t))dX(x or t) (A-8)
a
and
P(x) = fw p(X(x or t))dX(x or t)- (A-9)

2. Mean, Mean Square, Variance and Standard Deviation

The ensemble average
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[s¢]

My = E[X] = fX p(X)dX (A-10)
defines the mean of X or the expected value of X. The operator E is
used to denote this kind of average. The mean square value of X is
given by

E [X2] = fx2 p(X)dx+ (A-11)
An important statistical parameter is the variance of X which is the
ensemble average of the square of the deviation from the mean. Thus

the variance of X is given by

o=t il = [ (ew? pnen: (A-12)

“An alternate expression is

o2 = E[x?] - g+ | o (a13)
When the mean is zero, the variance is identical with mean square.
The square root of Eq. (13 ), that is o, is called the standard

deviation. The co-efficient of variation is defined by
g
V= u (A-14)

which tells the degree of variation.

3. Random Process

Let us consider random functions X(t) and Y(t) in which t

represents any variable, say, spacial co-ordinates or time.
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For a random process, we may express the correlation between
X(t1) and X(t,) by means of the autocorrelation function
Ry (tysty) = E [X(t7) X(t2)]

© - o]

= J[ /[X(t1) X(ty) p(X(ty), X(tp))dX(ty) dX(t2) (A-15)
The prefix auto refers to the fact that X(ty) and X(ty) represents a
product of values on the same sample at two different coordinates.
If X(t]) and X(t2) are statistically independent, we have

p(X(t1), X(tp)) = p(X(t7)) p(X(tp)) and hence

Ry(tq, t) = E [X(t])] E [X1tp)] | (A-16)
Cross correlation function is defined for two samples X(t;) and
Y(tp) by |

Ry (15 t2)

E [X(ty) Y(tp)]

f X(t1) Y(t2) p(X(£7) Y(£n)) dX(ty) d¥(ty)
—o ' (A-17)

b

Correlation coefficient is given by'

_E L(X(t) - E DXt (V(tp) - E [V(tp)1)]
OXY oy (£1) oy(t5)

(A-18)

It can be shown that
-1 <oy <1 | (A-19)
and the intermediate values of pyy measure the degree of linear

statistical dependence between X(tj) and Y(t,).
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4. Stationary Random Process

A random process is said to be stationary if its probability
distributions are invariant under a shift of the co-ordinates. In
other words, the family of probability densities applicable at ti also
appiies at tp. In particular, the first order probaﬁi1ity density
function p(X) becomes unﬁversa] distribution independent of time.
This implies that all the averages baseed on p(X), say, E[X] and 02,
are constants independent of time.

For a stationary process, the autocorrelation or'cross cor-
relation functions become functions of the difference between ti and
t, and independent of t] or t,.

Therefore, for a stationary process, Equation (A-15) becomes

Rx(r) = E [X(t]) X(t+0)1, T = & - tp  (A-20)
and Equation (A-17) is

RXY(T) = E [X(t]) Y(t-l +1)], T = ty - to . (A-21)



APPENDIX B

Fast Fourier Transform

- Restricting the Timits to a finite time interval for the record
x(t), say in the range (o, T), the finite range Fourier Transform is
defined as
T
X(f, T) = .]. x(t)e 32 tqt | (B-1)

o}
Assume now that time x(t) is sampled at N equally sbaced points a
distance h apart, then for arbitrary f, the discrete version of
Equation (B-1) becomes
N-1
X(f, T) = h nzb xp Expl-j 2m fnh] (B-2)

Selecting the discrete frequency values as

. o
fi = kf = 3= Kﬁ' k=0,1, 2, ... N-1 (B-3)

=

At these frequencies, the transformed values give the Fourier com-

ponents defined by
» X(fk, T) N-1 21k
X = ——"= I x,exp |-j =0
; oxy ex -3 5
k=0,1,2 ..., N-T (B-4)
where h has been included with X(fk, T) to have a scale factor of

unity before the summation. Note that results are unique only out to
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k = g'since the Nyquist cutoff frequency occurs at this point. Fast
Fourier transform (FFT) methods are designed to compute these
quantities, Xk, and ‘can also be used to compute the co-efficients of

the regular Fourierseries Aq and Bq in the expression

. N/2 [, T
X, = x(nh) = Ao + 3 Aq cos(fﬁﬂﬂo
' g=1 _

Bq sin(gﬁgﬂo . . (B-5)

To simplify the notation further, let

w(u) = exp [-j ZNNU]. | (B-6)

Observe that w(N) = 1 and for all u and v,

w(u + v) = w(u) w(v) - (B-7)
Also, let |

X(k) = X and x(n) = x, - (8-8)
Then Equation (B-4) becomes

X(k) = :z:) x(n) w(kn)s k=0, 1, 2, ... N-1- (8-9)

Equations (B-4) and (B-9) should be studied so as fo.be easily
recognized as the Fourier transform of x(n) when x(n) is expressed by
- a series of N terms. Such equations require a total of approximately
N2 complex multiply-add operations to compute all of the X(k) terms
involved.

Fast Fourier Transform procedures are now based upon decomposing
N into its cohposite (nonunity) factors, and carrying out Fourier

transform over the smaller number of terms in each of the composite
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factors. In particular, ifN is the product

N = gri = F]rz < Tp

in an‘iterative fashion the sum of p terms,

r2

Fourier transform requiring 4rs

Fourier transform requiring 4rp2

of p factors such that

(B-10)

unity, then it can be

o~

8 A
v uriu

=h

a har Ammamird s
[ Ly LullipuLi

21 Fourier transform requiring 4r]2 real operations each,

2 real operations each,

(B-11)

real operations each.

p
Hence the total number of real operations becomes
4(Nr]‘+ Nrp + Nrg + ...+ Nrp)

P .
=4'Z Y‘z

(B-12)
i=1

The resulting speed ratib of these FFT procedures to the standard

method is then
N2
speed ratio = — p = D
4N r; 4% r
i=1 j=

speed ratio for powers of two:

If N =2P, then & F; = 2p =2 logy N
=1

(B-13)

In this case, the speed ratio by equation (B-13) appears to be

N N

speed ratio = §NE-— )
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However, a doubling of the speed can be achieved in practice by
noting that the values for w(kn), when N is a power of 2, all turn

out to be +1 or -1, so as to yield a higher speed ratio of the order

of

enead v
speea v

N (B-14)
4p AY i
For eXamp]e, if N =213 = 8192, Equation (B-14) givés a speed ratio

- 8192
0f-—5—2—-— 158.



APPENDIX C

Expanding Eq. (3-14), with H(w/) being a lower triangular matrix, one

obtains

|
Jos o
|
+
ot
o
+

. H for n < m,

Gon = Hp mnﬁhn’
| 2 2 2
Gy = |Hm1| + |Hm2| + ..o. |Hynl (c-1)

From Eqs. (3-22a), (3-22b), and (3-3) and (C-1) one can see that
m th component process is simulated from Hmp(wk) (p=1, ..., m) and
the coherence between the m th component and n th component with
n <m is generated by Hmp(wk) and Hpp(wy) (p=1,2, ....n). When
a vanishing minor is due to a zero mean square density of, say, the
m th cdmponent process at a frequency Wi s then the elements of cross-
spectral denéity associated with this component are also zero at this
particular frequency. It is easy to show that a sufficient condition

for this case is

0, for n

Hmn(wk) 1, 2, ... m

Hom(wg) = 0, form=m+ 1, .... M
The remaining elements of Hyn(wy) are then determined from the sub-
matrix obtained by deleting the m th row and m th column from the
matrix G(w). '

A coherence of unity between two component processes (the m th

and the (m + 1) th) at a frequency w, will also give rise to vanishing

116



117

principal minors. This implies a complete linear dependence at this
frequency between the two processes and hence the existence of the
transfer function B(wy) such that

Gpe1» M (W) = |B(w) |26y (W)

(C-2)
s w1 (wy ) = B{w)Gyp{wy) |
Therefore, at this w, it can be shown that G(wy) will take the
vfo]lowing form:
= . ’ T
G‘” ...... G]J G'I ,J"‘] ..... G.IM
Gj'l ...... ij GJ ,j+] ..... GJM -
Gj+1,1 G415 Gyt Gj+1,M
GM] ...... GMj GM’j+1 ..... GMM j
[~ —
G-I-l oooooo G]J BG.iJ' ------- G'IM
Gj] ...... ij BGjJ ....... GJ'M ‘ (C-3)
f— — 2 . —
BGj'I ..... BGjJ IBI GJJ . BGJM
i GM'I ...... GMj BGMJ ....... GMM i

In this case, H(wk) can be solved for a particular frequency in the
following fashion. _

First, reduce the size of both matrices G(wk) and H(wk) by
deleting the (j + 1) th row and (j + 1) the column, then solve for

the reduced H(w, ) from the reduced G(wk), by the method mentioned in

)
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Chapter III. Finally, the deleted elements of H(w.), as can be seen
by direct substitution in Eq. (C-1), are given by
| Hipqop = Eij, forp=1,2, ...
Hipp2341 = 0, (C-4)
'Hp,j+1 =0, for p = §+2, .... M
If two component processes, again, séy, the j th and (j + 1) th,
are completely correlated, then 8(w) as defined for fhe previous case
will reduce to a real constant B, independent.of the frequency. This
will lead to Dp(wk) =0, p=3+1, ... M, for all freduencies. For
this case, it is necessary to simulate only m - 1 component processes
“with the (j + 1) th removed from the system, since it can be obtained
by | ”
fjf](t) = Bofj(t)
With the proper combination of the above procedurés, it is possible
to deal with the foT]owing situations:
(i) more than one component of G(wy) vanishes;
(i1) more than two components are completely coherent or

correlated;

(iii) the combination thereof.



APPENDIX D
COMPUTER PROGRAM

This section of the report deals with the listing of some of
the important input parameters in the computef programs included.
On the left-hand column is the computer language (FORTRAN) symbo1'and
on the right-hand side, just opposite, is the equivalent variable

used in the derivation of the equations in Chapter III and Chapter

IV.
Listing for Program for Simulation by Trigonometric Method:
K KA, frequency index
amp(k) ' ALPHA(I,KK,KA), deterministic phase angles
Wy WU, upper cut-off frequency - |
Wy | WL, Tower cut-off frequency
Gn , S(I,J), element of spectral density function
Hy HHH(I,J), elements of lower triangular matrix
ap » bmp AA(I,KK,KA), BB(I,KK,KA), random Gaussian variables
Aw DW, discretized frequency 1nterva1
m KK, number of time series
‘Ep, ”p ’ V}, V2, random number generated by Gauss subroutine
At - DT, time interval
fm(t) F(1,JdJ), representation of time series

119
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Listing for Program for Simulation by FFT Method:

K KA, frequency index

G(1,J) . S(I,Jd), input spectral density function

Hqu | HHH(I,J), elements of lower triangular matrix
‘npk, Epk Z1(K), Z2(K), independent Gaussian random numbers

Zp XI(K), complex random number

h DT, time interval

ka | DDX(I,KA), elements of complex random vector

fpn F(I,d), time series representation

Listing for Program for Nonlinear Response

Analysis of String

Of SIGF, standard deviation of the forcing function

L TL, Tength 6f the string

d ALPHA, a constant

To TO, initial tension in the string

P ' ROE, density per unit length

Wy, Wo, Wg W1, W2, W3, natural frequency of vibration for

1$t, 2nd and 3rd modes respectively

A AR, area of cross section

So(w)' SO(KA), spectral density function of actual force
Smn{w) . -~ S(I,d), spectral density of the generalized force
fn(t) F(I,J), generalized force representation
Bn(t) - AN(t), derivative of modal disp]acemeht

BN(t), modal displacement
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b,.(t) ANPR(t), second derivative of the modal dis-

placement

Listing for Program for Nonlinear Panel

Response Problem:

By BET1, percentage of critical damping for Ist mode
of vibration
B2 : BET2, percentage of critical damping for 2nd mode

of vibration

Tp _ | SIGP, r.m.s. pressure of boundaryl]ayer bressure
fluctuations | |

Uso | UINF, mean external flow velocity

a SA, plate length

b SB, plate width

\Y ‘ GNU, Poisson's ratio

Ue UC, convectional speed

M CM, mack number

p _ ROE, plate density per unit area

d : S1, cavity depth

u SV, sound velocity

C XSI, boundary Tayer thiﬁkness

2 ALP

D RIG, plate stiffness

AC DEMC, constant

A DEM, constant
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SQ, dynamic pressure

CONST, constant



1= M

14

SIMULATION OF MULTICORRELATED RANDDM PROCFESSES BY THRIGUNMETRIC

METHOD -

DIMENSION UULE.6) oTZ2(2050) ClE4E) 4GLE 6 ) 9y ALPHA(S46,60C)
1yV(676, 15(016)9 U(é,b,v HH(()Q(),,HHH((JQé)' . Y(SJDX(b"A(b)OB‘ﬁ’
L sAA{6964690)9BBLOyE6C0) yWIECC) yWWIE)9vF{H92048)FLI2C40E),
LF2(2048) 4 F312C48) +F4(2048),FF(2C5C) 4F5(2048) ,FA{2048)

COMPLEX S 4 HHyHHH,YYY,DD

N=600

WU=3.1415G2

WlL=0.00377

XN=N :

D= (WU-WL )}/ {XN=-1.)

DDW=SORT(DW/6.28318)

DT=1.

KA=1

XK=KA

DO 7 I=1,46

DO TKK=1l,1

ALPHA({1 +KKyKA)=0,D

WIKA)=(XK~1+0)%DW+wl

INPUT SPECTRAL DENSITY FUNCTION
D 401 =146

DO 401 J=1,6

Cil,J)=0.C

G{IeJ)=Ce?

253048

CU=6.,1G8

VU=04.845

PUS(Z2/718.0)%%x({~0.63)

FMU=2,03%2/18."

UsS=1.529

=100,

gel



1

1

1

1

H shURIUSE*2 ) xCU%x7 -

G={12C  O¥FMUI K (1o +1 a5 (WIKA)Z/{ ED2%2,0%3,14159%FMU) ) R2VU)2%(5,0
/{3.0%VU))

Cllsl)= H/G

I=15.24 .

BU=(2/18.0)*%(-0,63)

FMU=0.03%7/15.0Q

=50,

H =BUR (1S %% 2)*CU*Z

C={101le 9*FMUI%X{ls+1.5% (h(KA)*Z/(5\.J 2eD*¥3,14159%FMUY }*FVU)*F(5,0
/(3.05VU))

Clas4)= H/G

2=30.48

CU=8,68¢6

VU=0,512

BU=(Z/1B.0)%%(-0,.35)

FMU=0o1%*(Z/18.0)%*%0,58

1=100.

H =BU{US**2)*CU*Z

C={120,0%FMU) X (Lo +1 5% IWIKA)RZ/( 65.%2.0%3,14153%FMU) )Ix3VU)#%{E,0
/(3.0%vU})

C(2y2)= H/G

7=15.24 |

BU=(Z/18.0)1%%{~0,35)

. FMU=0.1*( Z/ 1801))**6058

_Z=50o

H =8*(US**2 )} xCUx*7

Gl 1I0LleOxFMUIF (L a4] o DX WIKA)HZ/{SC 9% ,0%3,141509%xFMY) ) V) ¥%(5,0
/{3.G%VU))

C(54+5)= H/G

=170, '

C 3,43 )=({3.30¥USHER2)*Z P/{1oCH10 0% WIKAY X /(2. 0%3,14159%50,0

el



1 ))**(5.0/,.0)))/129.

C(616)=((3.36*(HS**2)*Z J/CL 0410 O {WIKAIHZ/(2,0%3,14150%5C,97
L ))x%(5,0/3.90)))/101,54 '

1=100C.

H-(US**&)*IZ.)*Z

G==120.C%(1.0¢6. CEUIKA)XZ/(2.0%3,14158%60.C) ) *%(8./3, )
C{l1,3)=RH/G

Cl3,1)=C(1,3)

2=5Q.

H={US**2)*10,0%Z
CG==101.9%{1.,04+6.CHW(KA)RZ/(2.0%3.14159%50.9))**(8,./3,)
Cl4,6)=H/G

L(64+4)=C{4,6)

DELZ=5C.,

DELF=0.0366

E=0.7

Cll,4)= (C(l,l)*C(éy#))**O S*D.S*(EXP(—C 673%¥W(KA)ERDELZ/12.%
1 3.1416%55,5%DELF 1) 1 %%C . 5% (COS(W(KAI¥DELZFE/55.5))
C(4,1)=C(1,44)

QULly4)=(ClLla1)%C(494) V%50 5%C 5% (EXP(-0sH93%WIKA)XDELZ/(2,.%
1 3.1416%55,5%DELF)))*%C, 5*(€Ihlh(KA)*PFLZ*F/5S 5))
Q(4,1)=-0(1,6)

E=1.5

NELF=0.0448

C 245)={C1242)%C{5,5) )% 520, 5% (EXP(=C. 693 W (KA)EDELZ/(2.*
1 3.1416%55,5%DELF 1) ) %x0o 5% (COS{W{KA)*DELZ*¥E/55.5))
C{5421=C(2+5)

QIU2,5)=(C(242)%C(5,5))%%0, S*O.Sw(FXP(-C CO3%W(KAP*DELZ/L24%
1 3e61416%55,5%DELF)))%%C, 5% (SIN(WIKA)XDELZ4E/55,5))
Q154,2)==01(2,5)

CU3+6)=LC 343 )4C {646 ) XD OFD SR (EXPI-DL,003X¥WIKA)FDELZ/T2.%

Gel
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25

1 301416%55,5%DELF)))1¥%0C 0% (CNS{W(KA)YRDELZIFE/554.5) )

Clo43)=C(3,6)
GU346)={CUZ43)%CLE,6))FXG 530 oEX(EXP(~C,093%a{KAPXDELZ/T124%

1 3.14156%55,5%CELF ) ) =0, 5% {SIN{W{KA)Y*DELZ*E/S55.5)) '
Qlo,3)=-Q(3,6) T
DELF=0.04 '

E=1.0
c(3, 4)—(f(1,3)*C(4 6))**0 50 5%(EXP( -0 6QJ*W(KA)*DELZ/(

1 341416%55,5%DELF))*%D,5)*{COS(WIKA)RDELZ*E/55.5) }x{~-1.1
C(443)=C(3,4)
QI3494)=(C(1e3)*C(4,6) )*ED5%0 S5E(EXP(~0 693 W(KAI*DELZ/{2.%
1 3.1416%55,5%0FELF ) **,5) *2(SIN{W(KA)IXDELZ*¥E/55.5))
Ql4,3)==-Q(3,4)

Cll,6)=C{3,44)

C(64+41)=C(1,6)

Q{l,61=Q(3,4)

Q(641)==-0(1,6)

DO 25 1I=1,6

DO 25 J=1,456

Cl{led)=C(1,4J)%2.0
Q(led)=Q(1,J)%2.0
S{IJ)=CMPLX(C(I,J),-0Q1I,4))
BREAKING THF SPECTRAL MATRIX INTG THE UPPER AND LOWFF TRIANGUL AR
MATRIX

DO 29 I=l,.F

DO 29 J=1,46

HH{ T 9 J)=CMPLX{0.Cy(Ca0)

HHH( T p J)=CVMPLX(D.G40.0)
HH{1,1)= CSQFT(S(1,1))
HrH{l,1)=HH{1,1)

PO L10 J=246

HH(l.J) = {S(1led)/HHEL1,11)

921



110

113

1120
1121

117

HHH{Jy1)= CONJLOHH{1,J))
DO112C I=24¢6
CO=CMPLX(0.0y0.0)

- M=]-]

DO113 LP=1,M ,
DD=0D0+  (HH(LP, 1) *CONJGIHHILP,1)))
YYY=S{1,1)-DD

HH{I,1)= CSQRT(YYY)

HHH(T,1)=HH(I,1)

IF (1.EQ.6) GO TO1121

NN=T+1

MM=1-1

DOL12C J=NN,6

DD=CMPLX(0.0,0.0)

D0222 LP=1,MM

DD=DD+ (HH{LP s I)*CONJGIHHILP+J)) )}
HH{1,J)= ((S(I+J)=0D)/HH(1,1))
HHH{ J 4 1)=CONJGIRH(I,,J})

CONTINUE

CONTINUE

DO 117 I=1,6

DO 117 KK=1,6

ALPHACT JKK4KA) =040

AA(T KK yKA) =040

BB(1,KK,KA)=040

RANDOM NUMBER NUMER GENERATOR SUBROUTIME GAUSS
DO 123 KK=1,6 | '
CALL GAUSS{17+1+05Ca0yV1)

CALL GAUSS(2991.C4Ga0,V2)

DO 123 1=1,¢

AA(T KK KA)= (CABS(HHHL T,KK)))IRVI*D0W
RALT o KKoKA)= (CARSUHHH( LoKK D) )%V 2%DDwW

L2l



TFOABSIREAL (HHE{ T, KK))) oLTLCL.CCCGL) GO TH 2001

ALPHA( [ gKK g KA)=ATANCAIMAG (HHH(T o KEJ J/FEALIHHH{T KK) ))

GO TC 1233 :
Z0GCl ALPHA(I 4KK¢KA)=1,5708
1233 {F(KALGEL.20) GO TO 123

WRITE(&,2000) V1yVZ
123 CONTINUE '
2003 FORMAT(215)
2000 FORMAT(2E16.8)

IF(KALEQ.6CC) GG TO 40

KA=KA+1

GO TO 14
40 1=1
' XX=0e0

YY=6,0
100 TT7=0.0

DO 45 JJJ=1,2048
45 F(l14JJJ1=0.0 ,

DO 46 JJJ=1,2048

B0 47 KA=1,600

DO 47 KK=1,1
47 F(LoJJII=FT33JJ) +AA{T KKy KA *COSIWIKAYSTTH+ALPHA{ I4KK,KA) )+

I BRIT KKy KAIESIN(W(KAI®=TT+ALPHA(] yKKoKA))

TT=TT+DT
46 FFLJII)=F(1,J4J)

DN225 J=1,2048
225 TZ2(J)=4-1

PLUTTING DOF THE TURSULFENCE TIME HISTOFIES

FF(204%)=1£.0

FF(205850)==164.4

CALL SCALE (TZ7 4204892009 TZMINyTXs1)

CALL SCALE(FF,2050,4.0,FEMINYFXe1)

8¢l
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79

CALL AXIS (XXyYYy2HTZ 32920090ty TIMIN,TX)
CALL AXIS (XXygYY 2HIF 3294.09C0,GeFFMIN,FX)
CALL PLOT (XX4YYy=-3)
CALL LINE (TVTZ,FF,2048,1)
XX=22.0 '

YY=0.0

[F(l.EQB) GC TO 111
I=1+1

GO TQ 140

CONTINUE

DO 79 [=1,2C4¢&
FL(I)=F(1,1)
F2(1)=F(2,1)
F3(I)=F(3,1)
Fall)=Fl4a,1)
F5(1)=F(5,1)
Foll)=F(6,1)

WRITE(10) F1

WRITE(10) F2

WRITE(1C) F3

WRITE{(1Q)Y F4

WRITE(10) FS

WRITE(LIQ) F&

CALL PLLT {CeCy(Calv—4)
STOP :

END

6¢l
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401

1
1
1
1

SIMULATICN 0OF MULTICORRFELATED RANDOM PFOCESSES BY FFT METHQD
DIMENSION UHU{E96)2TZ(2C50), ClE90)9C{696) 9 AL2048,141)
sVIB6) ¢SLE96)y Ulby6)y HHIEE) yHHHIE,6) FF{2050)
’ e _ W{L1C25) 4 WiW(B) 4FLE,2048) 2 F1(2048),
F2{2048),F3(2048) +F4{2043),F5(2048)4F6l2040)
sMVI3) g INVILO24) 9Z1(6)622(6)9CX(6)4DLX{6420468)4X1(6),P(1024)
CUMPLEX S 1HH,HHH,YYY:DD,XI'QX1DOXQA
XX=0,0
YY=50 C
N=1025
WXX=SQRT(2.%2048.)
WU=3,141592
XN=N
DW=(WU-WL)/{XN-1.)
DOW=SQRT(DW*0.5)
CT": )
KA=1
XK=KA
WIKA)=(XK=1.0)*DW+wWL
INPUT SPECTRAL DENSITY FUNCTIGN
DO 401 I=1,6 :
DO 401 J=1,4.4
ClIyJ)=0.0

QUIL4J)=0C.0

7=30.48

CU=6.158

VU=G.845
BU=(2/18.0)#%(~0.63)
FMU=0.03%Z/18.7
US=1.589

z=100C.

H o =RUL(US¥*2) %LU 7

0el



C=( 120, C*¥FMUI* (1a+1 5% {(WIKAIFZ/( 6De%2.0%3414159%FMUI) )H¥VU)ER(5,0
1 7(3.0%vU))
C{l,1)= H/G
L=15.24
BU=(Z/1B.0)%%(-0.863)
=50,
H =BU*{US*%*2)*(Uy*Z
G=(101eS*FMUIX (Lo +1 5% (WIKAIXZ/(50,9%2,0%3,14159%xFMU) IEEVU)XE(5,0
1 /7{3.0%vU)) '
Cl4y4)= H/G
1=30.48
CU=8.686
VU=0.512
BU=(Z/18.0)**(-0,35)
FMU=0.1%{72/18.0)%%0.58
1=100. .
=BUX(US*%2)*CU%Z
G=(1200%FMU)* (1e41 5% (WIKA)XZ/( 60.%2.0%3,14159*%FMU) )*RVU)**(5,0
-1 /{3.0%VvU)) '
C(242)= H/G
I=15.24%
BU={1/18.0)%*¥(-0,3%)
FMU=0.1*1Z2/18.0)%%(0,58
1=50,
H =BUX(US**2)%CU*7? _
G={101.9%FMU)*(LetleS*¥(W(KA)XZ/(50,9%20%3,1415G%FMU) ) *XxV)¥*(5,C
1 /7(3.0%vU))
C(54,5)= H/G
=100, : ‘
Cl343)=((3e36%x{S¥xg)*7 P/l GHIN TR WIKA)RZ/ {20435 14155%00 0
1 1)**(5.0/3.00))/120. '

LEL



=20

ClS526)=({3,36%(USHR2) %7 /{1 CHL10 O (WIKA)*RZ/{2.0%34141559%50,

1 ) =x(5.0/3.0)))/7101.94

=100,

H (US*%2)%12.5%7 ‘ :

==-120.0%{1.0t6. C*h(KA)#Z/(:. *¥3414159%60,0) 1%x(5,/3,)

C(l 3)=H/G .

C(3,1)=C{1,2)

2=50.

H={US*%2)*]0,0%7

G=—101.9%(1.0+56. C*w(KA)*l/(Z 0%2,14159%50,9) ) *%(8./3,)

Cla,6)=H/G -

Cl6,4)=C(4,¢)

DELZ=50.

DELF=0,03566

E=0.7

Clle4)=(Cl1,41)%C(494))¥*0,5%0,5F(EXPI=0,693%W(KA)XDELZ/(2.%
1 3.1416%55,5%DELF)))%*C. 5% (COS{W(KAIXDELZ*E/55.5))

Cl4,1)=C(1,4) '

QUly4)=(Cl141)%C(4,54) )%%xD5F05F(EXP(=0 6923%WIKA)RDELZ/(2.%
1 341416%55,5%¥DELF)) )%%0,5%(SIN(W(KAY*DELZ*E/55.5))

Ql441)=-G(1,+4)

E=1.5

DELF=0.0448 :

Cl2+5)=(C(292)%C(595) 10 5% CoSX(EXP(-CoO63FWIKAY¥DELL/ (2 4%
1 3.1416%55 ,5%DELF)) )&% 5% (COS{R(KAIXDELZ*F/55,5))

C{54,2)=C12,5)

Cl295)=(C{242)%C U545 ) 2xN, S50, 5% (EXP{-L692%WIKAP*DREL 2/ (247
1 3al4al6355, 5*DELF)))**C.S*(Slh(h(KA)*DFLZ*F/E%.S))

Cl%42)Y==0(2,+5)

C 346)={Cl3431%0 {66 %¥),0%0a 5% (EXPL-0,693%WIKA)FDELZ/ (2%
I 341415%55.5%DFLF)) ) %0 5%(COSIW{KA)*DELZ¥F/55.5))

a7
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110

Cl643)=C13,¢)
QU346)={C(3,3) 50 LAY IR0 ERCER(EXP(—Cab03XW(KAYXTELZ/{2.%

1 3.1416%55,5%DELF )} )%%C 5% (SIN(W(KAVXDELZ*E/55.5) )

QU6,3)1=-0(3,6)

DELF=0.04

E=1.0 ) . )
CU332)1={CU153) %0 {4y )HEC,BEDBH(EXP(=5.693%WIKA)XDELZ/ (2.5

1 3.1416%55,5%DELF) ) *%C.5) =(COSIWIKA)XDELZ*E/55.5) )*(~1.)

Cl443)=C13,4)
QU3456)=(Cl1s3)*CL456) ) *¥%0eS5F0C5F{EXP(-0L.693FWIKAYXDTLL/ 2%

1 3.1416%55,5%DELF) ) ¥x,5) #(SIN(W(KA)XDELZ*E/55.5))

0(413)='Q(3y4)

C{1,6)=C(3,4)

Clé64,1)=C(1,6)

Q(ls6)=Q(3,4)

Ql641)==Q(1,6)

DO 25 I=1,6

DO 25 J=1,:6

ClIsd)=C{I,Jd)*2.0
QIIJ)=Q(I,J)*2.0
S{L,y)=CMPLX{C{I+,J),-Q(1I,J))
BREAKING THE SPECTRAL MATRIX INTG THE UPPER AMD LOWER TRIANGUL AR
MATRIX .
DO 29 I=1,6

DO 29 J=1,6

HH{ 1y J)}=CMPIX{0.0,0.0)

HHH( I 3 J)=CHVPLX{D.Cy2a0)
HH{1s1)= CSQFT(S(1,1))
HHH{l,1)=KH{1l,1)

CO 110 J=25€

HH(1,Jd) = {S(1,J)/HH{1,1))
HHH{J sl )= CCNJGIHH(1,J))

eel



113

222

1129
1121

1049

DOL12C [=246
CO=CMPLX(CaCy0eC)

M=1-1
DOl13 LP=1,M
CD=0D+  (HH(LP, I)#CONJGLHH(LP,1)))

YYY=S{I,1)-DD
HH{I,1}= CSQRT(YYY)
HHH{ I 4T )=HH(I, 1)

IF {(I.EQ.6) GU TO1121
NN=T+1

PM=1-1

DOL120 J=NNsb6
CD=CMPLX{C.0,y0.0)
D3222 LP=14MM

DD=DD+ (HH(LP, 1)*CONJG(HE(LP,J)}))
HH{ I,J)= ({(S(IyJ)-DDI/HH(TI,1))
HHH{J s 1)=CONJGLHHI{I,J))

CONTINUE .

CONTINUE

RANDOM NUMBER NUMER GENERATCGR SUBKOUTINE GAUSS
CO 1C9 K=1,¢€

CALL GAUSS(3340.7C7,C4CyV2)
CALL GAUSS(27,0CaT7CT74+C.CyV3)
22(K)=V2

Z1(K)=V3 _

DO 252 K=146
¥T(K)=CMPLX(Z1(K),Z2(K))}

D3 300 I=1,6
DD=CMPLX(CeCy(CWC)

L0 309 J=1,1

Do SNO+EHHIT 9 J )X 1Y)
DX(I)=00

'yl

vEl
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W
2
~

DDXA{T+KA)Y=DX(T)
IF{KALEQL.LIC25) GO TC 40
KA=KA+1
GO T0 14
40 $0 600 I=146
DO 60C N=1,1023
K=1025+N
J=1025-N
€20 DDX(I14K)I=CONJGLDOX(I,4))
DO 80C J=1,6
CO 700 1=1,2048
TG0 Al 4141)=DDX(Jy1)
MV(1)=11
MV(2)=0
MV{3)}=0
SUBROUTINE TO PERFORM THE INVERSE FOURIER TRANSFURM
CALL HARMUAMV,4INV,yP,1,IFEER)
DN225 1=1,2048
FF{I)Y=REAL(A(I41,1))/WXX
FldyI)=FF(I)
225 TZIZ(l)=I-1
. PLOTTING OF THE TURBULENCE TIME HISTORIES
FF{2049)=16.0 )
FF{205Q)==1¢.0C )
CALL SCALE (TZ2,2048420.0,TZMIN,TX,1)
CALL SCALE (FF 3205044 .CoFFMINGZFX41)
CALL AXIS (XXeYY2HTZ y=2920e9CaCepTZMIN,TX)
CALL AXIS (XXg VY9 2HFF 3244409 QCaCyFFMIN,FX)
CALL PLCT - {XXsYY,-3)
CALL LINE (TZ,FF,2048,.,1)
XX=22.0
YY=0.0

Gel



CONTINUE
CALL PLGT
STap

END

{(LolaDel

v—4)

g€l
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FING USING

o]

PRAOGRAM FQR RANDOM RESPONSE ANALYSIS GF:ﬁ MOMLINEAR S
EFT STIHMULATION METRHOD o

DIMFNSID w(leG),QF(ltz"),S(1,‘)

Ly FFRI2D50)9F(542049), T(l”)vr\‘(b)yp'})((q 75)"’)

1 yHH{G444) s HHHU 444 )y AX(2048, 1, l),lNV(lU')/H,ZI(’)y[’(b)u’ (6)y
I XI(6)4MV(3)4P{1C24),TZ(208(),
1 ALPRI{Z2048) 9y A2PRI2C4B)yA3PR(2548) 4B Pb(ZUéﬂ)quPN(7“*5),D“PF(2\4“)
Ly ALMF(2048) yA2MF(2048) 9 ABMF (2048 ) yBLMF {2048 ) g RZMF (2045) , R3MF(20:4R)
1 ALCR(20 49)7A2CR(2U4°)yAJCK(2C4Q)951C{(’@%’)yﬁZCH(ZO45’?83CE(EQQR)
1,G1(2C48),G2(2942),63(2048) -
COMMON A1(2048),A2(2048) 4 A3(2048)R2(2348),81(2043),B82(2048),
"1 ALP(2048),A2P(120(48), A3P(?O48)y81p(7948)'H?P(2\43)y§3P(204d),
1 F1(2048)+F2{2048), F3(4048)

COMMON BETA1,BETA2,BETA3 W1 ,W2,W3 AR, TL,TOHE

COMPLEX AXyXI9DZ4DXeDDX ' :

XX=C.0

YY=3,0

KKK=1

S1G=0.2

CONTINUE

Do 239 1=1,3

DD 239 KA=1,10025%

DDX{UT+KA)=CMPLX( 20y 2.0)
CSIGF=(SIG=#* *J.;Q*rq 16. 3/1a19

N=257

XN=N

WXX=SURT{Za%,025%2043)

W= 10,0%3,14153

WL=90,0

DW= (wWli=WL Y/ {(XN=14)

A=%.0%3,141593

TL=2%.C

LEL



ALOHAZND G T/25,0
TC=100.0
RIE=1.400/25.0
E=3,0%]10, (#x7
AR=TN/ (0. 05*E)
WI=SQRTU{(1,0%3.14153/TL)*%2)%TH/RNE)
W2=SQRTE((2.0%3414159/TL)*%2)%TC/RUE)
WASSORT(((3.0%3,14153/TL)*%2)*TL/ROE)
RETAL=D.1%6,28318/Wl
BETA2=0.1%86.28318/W2
EFTA3=0Q.1%6. 28318/h5
KA=1 '
14 XK=KA
WIKA)={XK=1.0) %D+l
SO(KAI=(A/{A%% 2+ W (KA)*%2) )%SIGF/3,14]15%
JJdJd=3
DO 15 I=1,JJJ
DD 15 J=1,JJJ
YJ= (ALPHARWIKA)IE*2+4(J%3,14159/TL ) %%
YI= (ALPHAXWIKA) )#¥2+(I%3,1415G/TL ) %%2
XIJ=T%J%( 3414159/ TL)**%2
[F(1.EQaJ) GO TO 16 '
S{T4J)=SO(KA)=XIJ%*(1. 0+(—1 l)**(I+J)+F79(—ALPHA*V(KA)*TL)
VoA (=1ad % I+1)+( =1 ) Ex(J+1) )/ LY IRY])
GO TO 15 -
SPECTRAL DENSITY FUNCTIDN OF ThHE GFNFRALIZED FORCE
15 SUT2d)=(ALPHAFRIKAY*TL#XIJ/Y IR {le4(=1 )45 { T+ )4 EXP(~ALPHAR WKL) RTL
1 IR ({ =1 )% [41)4( =1 )3 (J¢1))))/YIESC(KA)
15 CONTINUE
003 29 I=1,.4J4
N 29 J=lyd4Y
HA(T1,J)=0.0

gel



25 HHR(T yJ)=" o1
HH{1y41)= SQFTIS(141))
HHEH{l>y1)=tHH{1.1}
£ 11C J=2,3d0J '
HH{1,J) = SO, d¥ /8801, 1))
115 HHH(GJ1)= HH(1,J)
COL120 1=2,JJ4
ER=0.0

M=1=1
DO113 LP=1,M
113  DD=DD+ (HHILP, 1) #HHILP 1))

YYY= S{1,1)-DD
HH{Ts1)= SQRTIYYY)
HHH( L, T )=HH{I, ]} .
IF {1.FER.JJJ) GG T 1121
NN=1+1
MM=1~1
NEL120 J=NNsJJJ
DD=0.0N
D0222 LP=1,MM
222 DDO=DD+ {HHILP , JYAHH(LP,J))
HH{1,4)= (0 SUL43Y=22)/1iHLE, 1))
HHH(J s T)=HHIT,, 0)
1120 CIONTINUF
1121 CONTINUE
NN 109 K=1,Jd4J
TCALL GAUSS({17,0e707 430604V
C ALY GAUSS(2307’-7‘..:775.(17‘\’23)
12{K)=Vv2
1ne  Z1iK)=v32
BN 252 K=1,JJJ
ZE2 0 XTAK)I=OMPLX(Z LK) 422(K))

6L



(@]

ng 300 1=1,J3JJ

CZ=UMPLX{Caly(al)

DO 309 J=1,1 _

09 D2 =DZ+HER {1 J) =X 11 Y)

nX(1)=n7

300 DDX{I,KA)I=DX{ 1), '

IF(KALEQ.257) GO TN &C

KA=KA+1

GO 10 1&

4y DO 600 1=144JJ

DO 600 N=1,41023

K=1025+N

"Jd=1025-N .

A00 DOX{ILK)I=CONJGIDDX(I,3))

DO 800 J=1,44J

DO 700 I=1,2048

720 AX{I,141) =DDX(Js1)
My(l1)=11
MV{2)=0
MV{3)=0
CALL HARM{AXyMVyINVyPs1,IFEER)
STMULATED GENERALIZED FORCE
D0225 1=1,204¢%
FE{II=REAL(AXITy141))%8.0%TL/(TCHWYX)
F(JyI)=FFLI) _ -

25 T2(l1)=1-1
FF{204%)=25.0
FF{2050)==-28.0 _
CALL SCALF ({T7427068920,04TIMIMNsTX,y1)
CALL SCALE (FE 42080944, eFiMINGFXye1)
CCALL AXTIS UXXgYY 2 Z2HVY y=2420 a9Uecy 1280, TX)
CALL AXIS (XXgYYp2HIF 42 36420900,y FFRMIN,FX)

ovl



CALL PLOT (XX,YY,-3)
CALL LINF (TZ,E5F,2068,1)
YX=2240)
YY=0D.0

ann CONTINUE
00 801 1=1,204#
FI(I)=F(1,1)
FU1)=F(2,1)

SOL F3(I)=F(3,1)

C SIMLATED GENERALTIZED FOR{E
C CALCULATION OF NONLINEAR RESPMSE RY MUDTFIED PRFEDICTOR CURRECTOR
1 METHOT .
C INITIAL CONDITIONS
M=1

A3(1)=0.0

o B3(1)=0.0
C STARTING VALUES
CALL FCT{M)

€ PREDIDTIOR
ALPR(2)= 4,0%H F(2eU0*A1IP(1)Y)/3.2
RIPRE(2)= 4 0%H {2408 1P(1)) /340
AZPR(2)= 4,0%H F{Z2J0%A2PI1))/ 3.0
FE2PEL2)= &,0%K H(Z2,0%P22P (1))} /3 .0
A3PRI2)= 4 ,0%H FL2.0XA23PL1))}/ 3.0
CAPR(Z2)= 6,0%H FL2JO®BIPIL)I/Z3 .0

C MY MODIFIER
AL(2Y=AL1PE(2)

L



- C

C

C

T

BL(2)=R1PF {2}
A2(2)=A2PEA{2)
B2{2)=R2PR{2)
A3(2)=A3PR(2)
B3{2)=8B3PR(2)
M:Z'
CALL FCT(M™)

COGRRECTOR 3
AICR(2)=0. 1263 (S, CxAL() )+

BICR(2)=04125%(9,0%RL(1)+ G

A2CR{2)=D,125%(9.,0%A2(1)+

B2CR(2)=0,125%(Q.0%B2(1)+ 3

A3CR{2)=0.125% (G 0%A3(1)+
B3CR(2)=0.125%(9,0%B3(1 )+
FINAL VALUES

A 0FHE (ALF (2142, C%ALP(1]

1))
LOXHE(BIP(Z)+2.0¥01P (1))
B MAHEF(AZP(Z)+2.0%42P(1)))

cCHRH*{R2P(2)42,.,(%82P(11)))
3LOXHF(AZP(2)+2,0%A30(1)}))
3. 0%H® (B3P (2)42.0%B3P(11)))

AL(2)=A1CR(2}+9. L *(ALPR(2)-A1CR(2))}/121.0
Bl{2)=BICR(2)+9.0 #(31PR(2)-BICR(2))/121.GC
A2(2)=A2CF(2)+9,0 *(A2PR(2)1-A2CR(2))/121.C
82(2)=B2CR{21+93.C *(B2PR(2)-B2CR(Z))/121.0
A3(2)=A3CR(2143,0 FLAZPR{ZY-A3CR(Z2)}/121.C
B3(2)=B3CR{2)+3,.0 #(B83PR(2)-B3CR(2))/7121.0

THIRD POINT
M=2

WRITE(G6,66)IM, R1IM)B2(M),P3( M), FI(M)QF“(V)g 3(H)

CALL FCTIM)

ALPR(2)=4.C AHY (2. 0%ALP(2)=A1P (1)) /3,0
B1PR(2)=4,0 #HAR{ 2 OFRIPL2)-B1PLL )Y /2.0

ACPR(3})=24,7 FHR3 (L« MFAZP(Z)~AZ2P (1)) /3.0
R2PR(3)=4,0C RHE(ZD%B2F(2)-B2P(1))}/ 2.0
A3DPR(3)=4.0 AL 2,0%A3P(2)-A3P (L)) /3.0
RAPR(B)=4,0 F(2eFBIP(Z)-H3P(LY)/BW

MUDEFTER

el



C

ALMFE(3)=A100(2)-112.0
BIMF(2)=RB1PR{32)=-112.0
A2MF{3)=A2PR(3)=112.C
F2MF{3)=B8B2PR(3)-11Ze0
ABMF{2)=A2PR(3)-112.0
B3MF{3)=R3PR{3)-112.0
AL{3)=A1¥F(3) '
B1(3)=31MF{3)

- A2(3)=A2MF(3)
B2(3)=B2MF(3)
A3(3)=A3MF(3)
B3(3)=B3MF(3)

M=3
CALL FCT(M)

FLAIPRLZ2)-ALCR(2))/7121 .22
(BRIFR(Z)=-8B1CR(2)1} /121,43
HLAZPRAZ)-AZCRIZYYI/L21 .70
AR{B2PR(2)-8B2CR(Z2)1)1/7121.0
#®{AZPR(2)=-A3CR(2)) /121D
¥(RIPR(2)-B3CE(21)/121,.0

ALCRI(3)=0.125%¥(9.0%AL{2 )43 0%HX{ALP(3)42.0%ALP(2)~ALP (]
BICR{3)=0,125¥%(9,0%B1{2)+3 .0 H*(BL1P(3)+2,0%B1P(2)~31P(1
A2CRI3)1=0.125% (9. 0%A2(2 143, GxHx(A2P(3)+2.0%A2P(2)~-A2P (1

A3BCR(3)=0o125%(9,0%A3(2)+3,C*H¥X{A2P (3)+42,0%A3P(2)-~-A3P(1

1))
)))
BN
B2CR(3)=0.,125%{9,0*%B2(2)+3 . 0%H*{(B2P (3 )+42.,0*B2P(2)-82P{1)})
1))
) ))

B3CR(3)=0,125%{9.,0%B3(Z)+3,0%HXIB3P(3)+2,0%83P{2)~83P(1
C FINAL VALUES

A1{3)=A1CR(3)+2.0

BEL(3)=B1CR(3)+9.0

A2(3)=A2CF(3)1¢9,0C

B2({3)=B2CR(3)+9.0
CR3{3)=A3CR(3)4+9,.0

B3(3)=R3CR(3)+9,"

FOUSTH POINT
M=13

*(ALPR(3)=A1CR(2))/121.0
*(R1PRE(3)-BICRI(3))/121.0
#LAZPR{3)-AZCR(3))/121.0
¥(B2PR(3)-B2Cr(3))/121.C
HA2PF(3)-2A3CR{Z2))/12L,0
#O3rR(3)-R3CR(3)I1/121.C

HRITE(&,&é)M'?l(M)vBZ(N)vB3(H’,Fl(N)yFZ%M),FB‘M)

CALL FOT{NM)

A1PR{4) =/ e 0K {2, 0FAIDP(3)=21R (2 -2, 0%xA10 1L} )/ 2,0

evlL



A2PRI4) =49 .0%H *(2. AAD(*)—AzP(c)—Z.D*“do(l))/3.J
B2PRUG) =4, 0% (2, 0%82P(2)-B2P(2)-2.G%32P (1)) /3.0
A3PR(4)=4,0%H ?(2.‘*439(X)-A’U(z)—a.g~A3P(1))/}.O
B3PR{4)=400%H RL26 OXRIDP(RN—RIF(2)-2,0%R3P(1))/3.0

. b6 FURMAT(IB6F1E.6)
C MONDIFIER : .
AIME(4)=A1PR(4)-112.0 LALFR(3)-21CR{2Y)/121.0

BIMF(4)=81PR(41-112.0 A{RLIPRAZ)I-BLICRL5)) /1214
AMF(4)=A2PR(4)-11c.C #{L2PR(3)-AZ2CR(3))1/121.2
B2MF(4)=R2PRI14)-112.0 #{RZPR(3)-B2CR(2))1/121.0
ABMF({4)=A3PR(4})~-112.0 CX{AZPR(3)-L3CR(3))/121.0
B3MF{4)=R3PP(4)-112.0 - ®(A3PR(3)-83CR(32))/121.0

AL{&)=A1MF(4)

B1(4)=B1MF(4)

A2(4)=A2MF{4)

B2{4)=B2MF(4)

A3{4)=A3MF(4)

B3(4)=B3MF(4)

M=¢4

CALL FCT(M)

AlCR{4)=0.,125%(9, 0*Al(3)-A1(l)+3 O*H*(AIP(4)+2 G*AIP(3)-A1P(¢))

BICR({4)=0,125%(9.C*BL(3)-BL{1)¢3.CHHX{BLIP(4)+42,0%81P(3)-R1P(2))

A2CRI4)=04125%(9.0FA2(3)-A2{ 1) +3.0%xH*(A2P(4)+2.0%A2P(3)-A2P(2))

AZCR(4)=0,125%{9,0%A3{3)-A3(1)+3. O*H*(AJ“(Q)+2.;*AJP(j)-A4P(7))

B3CR(4)=0.125%(9,0%B3(3)-R2(1)+2,0%HX (D3P (4)+2.0%BR3P(3)-R3IP(2]))

B2CRU4V=04125% (G OFRZ{31-B2(1 )43 xHE{22P (£ )42 0%B2P(3)-62P(2))
{ FINAL VALUES

)
)
)
)
)
)

A1(4)}=A1CR(4}-9,0 FALPF(4)-ALICR(4)) /12140
BEl{4)=01C%(4)-9.0 F(BLPR{4)=-BLICR2{E1) /1217
A2{4)=A2CR(4)-%.C HAZPEALA)=-A2C2{4))/121.0

ABL4)=A3CR(4)=9 .0 BASvR(L)=ATCR(L)) /L2 .7

1421



B3{4)=82CR(4)-9.0" ¥(AIPR(4)-B3CR(L))/121.0

B2(4)=B2CR{4)-9.D © R(H2PE(4)-B2CR{&))/121.0

DO 139 T=4,2045 ' ' o

M=1

CALL FCT{M) : o - .

A1PR (M+1)=A1(M=3) +4 4 O%H X (2 C¥ALP (M)=A1P(M-1)42,0%ALIP(M=2)) /3,0

B1PR(ME1)EBL(M=3)+4 0%H {2 O%BE1IP(M)=RIP (M=L)#2.,0%B1P(1=2)) /3.0

A2PE(M+1)=A2(F-3) 44, O%H H( 24 CHAZP(M)=A2F (M=1 ) +2,3%A2P (M=2)) /3.0

B2PK(M4+1)=R2(M=3) +4 ,O*H %(2.0%D2P(M)=R2P (M=1)+2.0%BZP(¥=2)) /3.0

A3PR(M+1)=A3{M=3)+4, 0%H # (2. 0%AZPIMI—A3P (M—1)+2.5%AZP(M=2)) /3,0

B3PR{M$1)=B3(M=3)#4 O%H  *{2,0*¥B3P(M)=B3P (M-1)+2.0%83P(M=2)1/3.0
C MODIFIER :

AIMF({M#EL)=ALPR(M+1)~-112.0 X {ALPR(M)=ALCR(M)) /121.0

B14F(M+1)1=B1PR(M3+1)~-112.0 *(R1PR(M)=BICR(M))/121.0

A2MF (M+1)=A2PR(M+1)~112.0 #(A2PR(M)=A2CR{M)) /12140

B2MF(M¢1)=B2PR(M+1)-112.2 X(B2PR(M)=R2CR(M))/121.0

AZMF{M+1)=A3PR(M+1)-112.0C *(A3PR(M)=ARCR(M))/121.C

B3MF(MN+1)=RB3PR(M+1)-112.0 H(R3PR(M)-RIECR(M))/121.0

AL{M+1)=A1MF{M+]) ) :

B1{M*1)=B1IMF(M+1)

A2{M+1)=A2MF (M+1)

R2{M+1)=B2MF(M+1)

A(M+1)=A3MF(M+]1)

B3(M+Y)=B3IMF(M+])
TTN=M+] .

CALL FCTIN)

ALCR{MA+1)=0,125% (e URATIM) = AL (M=2 ) +3 UFHR (A1P(MEL )42 ,0%ALP (MY -ALP
1 (M=11)) .

BICRIMHL)=0a L2855 (4 0%BL (M) =PRI (=2 143, 0 (B 1P {M+1)+2.0%R1P(M)-8]1D
1 (M=1)))

A2CR(M+1) =0, 1255 1 Qa0 A2 (M) = A2 (M=2 )+ 2, 0 xHX (AP (M+ L)+ 2o THA2F (M) - 427 .

Lo M=1))

apl



139

1101

201

B2CRIMELI=CL12S% (9 0%R2 (A)=R2(M=2 )43, 3H3 ([ 2P (M4 1) 42, S4B 2P (M) =02P
1 (M=13)) _— '
ABCR(M+1)=0,125% (G 0%A3(M)=AZ{M=2) 434 G¥H* (AP (Me1)+2.0FATP (M) ~A3P
1 (m=-11)) -
B3CR(M+1)=0a125%( Co 0¥BI (M) =B3(M=2) 43, H¥H* (E3P (141 )42, 0%B3P (M) =-B3P
1-(M=1))) . ' ‘
C FINAL VALUES . '
AL{M+1)=A1CR(M+]1)=-9.0 #{ALPR(M+1)-AICF (M+1))/121.0
BL(M+1)=BICE(M+]1)=5,0 *(BIPR(M+1)=B1CHIM+1)) /1210
A2(M#1)=A2CR(K+1)-0.0 *(A2PR(M+1)=A2CK (M+1))/121.0
R2(M#1)=B2CR(M+1)=9.0 %(B2PR(M+1)-B2CR(M+1))/121.,0
A3(M#1)=A3CR{M+1)-9.0 CX(ABPR(M+11-A3CR(M+1))/121.C
B3(M+1)=B3CR(M+1)=0,0 % (E3PR(M+L)=RICRIM+L))/121.0
CONTINUE '
DO 1101 I=1,2C46
AL(I)=RL{1)=-B3(1)
DO 201 I=1,2046
T2(1)=1
PLOTTING THE RESPONSE FOR DIFFERENT MODES
B1(2047)=1.0
B1{2048)=-1.0

CALL
CALL
caLt
CALL
CALL
CaLL

SCALE (TZ:2C46420.0sTIMINsTX,1)

SCALFE (B142048,34.0,31MIN,BX,y1)
AXISIXXgYY92HTZ29=24202404CeCy TZMIN,TX)
AXIS ( XXy ¥YY92HRL1 92 94a 990, 0eBIMINSSX )
PLOTIXX,sYY,-3) :
LINE(TZ,8142046,1)

XX=22.0

YV=0.

0

DO 202 I=1,2048
TZ(1)=1
B2{2047})=1.0

vl



223

205

B2(2048)=~1.8 -

CALL SCALE (T242746920,0, TZMIN,TXy1)

CALL SCALE (32,2068,4.0,32MIN,RBX,1)

CALL AXISUXXgYYyZ2HTZ3-2420.040.0CeTIMIN,TX)
CALL AXIS (XXg¥YVY,2H2242 ¢440,90.09 B2MIN,BX) .
CALL PLOTIXX,YY,~3) o

CALL LINE(TZ4E2,20486,1)

XX=22.'-') ‘

YY=0,0

DD 203 1=1,29%46

TZ(1)=1

B3({2047)=1.¢C

B3{2048)=-1.0

CALL SCALE (TZ,2046+20.,09TZMIN,TX41)"

CALL SCALE (R34204894.0,83MIilgyBXy 1)

CALL AXISUXXyYY32HTZ4~24204030.0,TZMIN,TX)
CALL AXIS {XXsYYs2HB392340(03s90s0yBIMIN,HX)
CALL PLOTIXX,YYy~3)

CALL LINE(TZ,B3,2046,1)

DO 205 [=1,2046

TZ(1)=1

PLOTTING OF THE RESPONSE AT THE CENTEP 0F THE
THE 3 MODNS COMBINED TOGETHER

Al(2047)=1.0

AL{20438)=-1.D

CALL SCALT (T292046,20e0,TZMIN,TX,1)

CALL SCALF (AL4204F 44 ,CG,AIMINGAXy1)

CALL AXIS (XXeYYg2HAL 2 3%aDe O30 De ALMIN,AX)
CALL PLUT(XXyYYy=3)

CALL LINFUTZ4A1,42046,1)

CALL PLOT(D 1400 4=4)

STRING DUE TO ALt

AN



STUP
END

8hl



SURBROUTIME USFD TO CALCULATE THE FIRST AnD STCOND DERIVATIVES

GF THE RESPONSE DOE TO DIFFFEENT MADES

SUBROUTINE FCT () ‘ E
COMMON AI{2068),8202360) 5 A3(2068),4L2020645),8112545),82(2048),
1 ALPU2047) 4 A2P12C48) JABP(204R) yRLIPI2048) ,B2P(2068),R3P(2043),

1 FL{2048),F2(2048),F3({2048)

COMMON BETALGBETA2 RBETAZ, Wl yW2,83 4R, TLATOyE , :
ALP (M)==2,0% 04 628318%AL (M)~ (L o0+ LARRE ) /(4o 5T ) )% (3 .1415G/TL) *%2
1 H(BLIM)E*246 ,0%B2(M) %224 0¥BB(M)&X2) )5 6,283 La%%2) %R LIMI+F 1{M)
B1P{M)=A1(M)
BZP(M)==2.0%04628318%A2 (M)=( 1.0+ { (ARPFED/ (4, 0%TU))#{ 3414159/ TL) %2
1 R(BLIMIEE2+44 0%R2( M) 54249 ORI (MI%%2) 16 (12.55636%%2) %B2( M) +F2(M)
B2P (M)=A2(M) '
A3PI{M)==2.0%0.628318%A3 (M) -1 10+ ( (ARKE )/ (4, 0%TD))*{3.1416G/TL)**2
1 % {BLIM)I*%244, CRB2 (M) %% 2+, 0%B3 (M) %*2) )= (18 ,84054%%2) ¥A3 (M) +F3(M)
R3P (M)=A3(M)

RETURN

END

6vlL



N

3532

399
401

239

PROGRAM FCR NONLINEAR PANEL FESPONSE DUE TD TURBULENT PRESSURE
FLUCTUATIONS FDR SUBSONMIC BOUNDARY LAYER
DIMENSICN C(242)3Q(292) 3W{2048)y F(2,3000) . HH{242) +HHH(2+2),
AX{41005191) INV(2048)521(3)522(3)+5(2+2),T2{1505), ‘
XI(3)y MV(3),DDX(2441C0),DX(3)sFF(300C),
ALPR(3000),A2PR{3000),BLlPR{3000),B2PR{3000),
A1MF(300C) A2MF(3000),B1IMF(3000),B2MF(3000),
ALCR{3000),A2CR(3000),B1CR(3000),B2CR(300C)
COMMON A1(3000),A2(3000),B1(3000),B82(3000),

1 ALP(3000),A2P(3000),B1P(3000)+B2P(3000),
1 F1{3000)+F2{3000),8ET1,BET2,
1 Cl0,C11,C12,£215C22,C33,C044,C209L66,C55

COMPLEXS, DYY, HHs HHH oy YYY DDy DDX 3 AX 9 XI5 DX
COEFFICIENTS IN THE GOVERNING EQUATIONS

BET1=0.5

BET2=1.7

KOUNT=1

SIGP=7500.0

KOUT=1

DO 401 [=1,2

D0 401 J=1,2

C(1,J4)=0.0

Q(1,4)=0.0

po 239 I1=1,2

DO 239 KA=1,204°

COX{1,KA)=CMPLX(D.0;,0.0)

WU= 1000.0%3,14159

WU= 2000,0%3,14159

WL= . 0.0 :
H4=56 o C¥128 ,0%8.9%12,0%0.91/((10.0%%7)%144,0%SIGP)
H=H4*%0,25 ’ :
TH1=3.14158%C,5

04t



THZ2=3.14156%0.5

UINF=800.D

SA=10.0

SB=20.C

S1=5,0

GNU=0,.3

RO=04.1*H/386.4%

N=2049

XX=0.,0

‘'YY=3,0

UC=0,65%UINF%12.0

CM=800,0/995,C

ALP=0.,5

P14={314159)%%4

ALPS=ALP%%2

GNUS=GNU*=%2

ROC=0,00G89

SV=995,0

XN=N

DW={ WU-%L )/ (XN-1.0)

KA=1

E =10.0%%7
RIG=E*(H*%3)/(12.0%(1=-GNU**2))
SQ=8.9%32,0

DEMC= ROC*SV*#*2%¥SA¥SB**2/(RIG*144.0)
DEM=2,0%SQ*SA¥SB**2/{RIG*144.0)
ClO=({ALP+]1.0/ALP }%*2)%p[4

C20=((ALP+4 . 0/ALP }%X%2) %P4 .
Cll=C.75%PI4%({1.,0-GNUS)*(ALPS+1,0/ALPS)I+2.0%(2,0*CNU+ALPS+1.0/
1 ALPS})) '
Cl2=0.75%PT4*{{1.0~-0GNUSI®R{ 4 OK{ALPS+1.C/ALPS)*81,0%ALPS

LSt



466

196

14

1 701044, 0D%ALPS)*%24ALPS/ (9,044, 0%ALPS)*#2) 42, 0%{ 5, O*GNU+ALPS+
1 4.0/ALPS5))

c21=C12 .

C22=0,75%PI4*( (1o O~GNUS)*(ALPS#+16.0/ALPS)4+2.0%( B8+ 0*%CNU+ALPS¢16.0 "
1 /ALPS)) '

C33=DEMC*{(~-SA/(PI4%S1))

C44=—DEM*0.666/CM

C66=DEM*0D 6666/CM
CS5=SQRT(RIG)/ {4+ *CMESBXUINF*SQRT(RO)*12,0) *DEM

SD2= SQRT(RIG/RO)/(SA%*SB)

CONS1= (SIGP*%2)*XSI*SD2/((3.14159%%2)%3,136*UINF)
DELT=SD2/(1000.0)

DELY=SD2/(2000.0)

WXX=SQRT( DELT*4096.0)
WRITE(64466) RG,SQy DEMC o DEMySD2,R1IG ,DELT,WXX
FORMAT({1X,8F13.6}

esl

WRITE(6,196) C10,C11,C129C21,C20+C22+4C33,4C44,C55,C66
FORMAT(10F12.5)
SIG=H

- INPUT SPECTRAL DENSITY FUNCTIONS OF THE GENERALIZED FORCES

XK=KA ; _
WIKA)=(XK=1.0) «DW+WL

CONS2=3, T*EXP(-2.0%W(KA) *xXSI/UINF)
CONS3=0.8%EXP(=-.4TxW(KA)*XST/UINF)
CONS4=3 ,4%FEXP(-8.0%¥W{KA)&XSI/UINF)
CONST=CONS1%{CONS2+CONS3-CONS4)
Ml=1

M2=1

N1=1

N2=1

CQ=0.1*W{KA)*10.0/UC
ES=EXP(-0e1*W(KA)*1C.0/UC)



&

EX=EXP(O.1*%W{KA)*10,0/UC)
AGL=N1%*3,14159+W({KA)*10.0/UC
AG2=N1%3,.14159~W(KA)*10.0/UC
AC=CQ*%2+AG1%%2
BC=CQ&*24AG2%%2
SAG1=SIN{AG1)

CAG1=COS(AGL).

SAG2=SIN(AG?2)

CAG2=COS{AG2)

C CONSTANTS GON PAGE 91°
CC=ES*{-CQ*SAGL-AG1*CAG1)
OC=ES*(-CQ*SAG2-AG2%CAG2)
EC=ES*(~CQ*CAG2+AG2%SAG2)
FC=ES*(—CQ%CAG1+AGL*SAG1)

C CONSTANTS ON PAGE 83
AAL=M1%3,14159+W{KA)*10.0/UC
BBl=M1%3.14159~W{KA)%*10.0/UC
SA=SIN(AAL)

SB=SIN(BB1)

CA=COS(AAl)

C8=COS(BB1)
CCl=—CQ*SA-AALl%CA+AAL
NDD1=-CQ*$B-BB1 *CB+BB1
CC2=CQ*SA-AAL*CA+AAL
DD2=CQ*SB-BB1*CB+BB1

- EE1=—CQ*CA+AA1*SA+CQ
FF1=—CQ*(B+BB1*SB+CQ

6GGl= CQ*CA+AA1*SA-COQ

GG2= CQ*CB+BR1*SB-CQ
AC1=CQ**24AA1*%2
BC1=CO**2+RB1%*2 ,
ACCL={14.30%W(KA) /UC)I**2+({N2%3,14159) %32

€sl



BCCLl=(14.30*%W{KA) /UC)*%2+{M2%3,14159)%%2
Cl141)=0.5%CQ/ACH+0.5*CQ/BCH+(0.25%AGL/AC+0,25%AG2/BC)*ES*

1 (CC1/ACL+DD1/BC1)+(0.25%CC/AC+0. ZS*DC/BC)*EX*(|C2/AC1+DDZ/BC1)
1 +CQ*%(0.25/BC-0.25/ACI*ES*{EE1/ACL+FF1/8C1)
1 #+(0.25%FC/AC-0.25%EC/BCY*EX*{GG1/AC1-GG2/BC1)

1 4(14e30%W{KA) /UCH+{(3,14159)%%2%(M2%N2)/BCCL)I*(1.0¢(=1.0)&*(M2+N2)
1 +EXP(-14.30%W(KA)/UC) *((-1.0)%%x(M2+1)+(-1.0)%%x(N2+1))))/ACCl
Cll,1)=C(1,1)*CONST

Qll,1)= (C.25%AG1/AC+0. 25*AGZ/BC)*FS*(EEI/ACI+FF1/BC1)

1 +(0.25%CC/ACH+0.25%DC/BCYI*EX*{GG1/AC1+4GG2/8BC1)
1 +#CQ%(0,25/BC~0.25/AC)%ES*{CC1/ACL1+DD1/BC1)

1 +(0.25%FC/AC~0.25*%EC/BC)*EX*(CC2/AC1+CD2/8BCL)
Q(l,l)'—'Q(lvl)*CGNST .

M1=1

M2=1

N1=2

N2=1

AG1=N1%*3.,14159+W(KA)*10.0/0UC

AG2=N1*3,14159-W({KA)}*10,0/0UC

AC=CQ**24AG1%%2

BC=CQ**2+AG2%%2

SAGL1=SIN(AG1)

CAG1=CCS(AG])

SAG2=SIN(AG2)

CAG2=C0OS{AG2)

C CONSTANTS ON PAGE gy’

CC=ES*(-CC*SAG1-AG1*CAC1)

DC=ES*(-CQ*SAG2-AG2*CAG2)

EC=ES*(~CC*CAG2+AG2*SAG2)

FC=ES*(-CQ*CAGL+AGL*SAGL)

C(ly2)= ' (0a25%AGL/ACH+(425%AG2/ BCI*ES*
1 (CC1/AC1+DD1/BC1)+(0.25%CC/AC+0.25%DC/BCI*EXX(CC2/AC1+DD2/8C1)

vsl



1 #+0Q*(Ce25/BC-0.25/AC)I*ES*(FEL/ACLI+FF1/RC1)
1 +(0425%FC/AC-0.25*%FEC/BC)*EX*(GG1/ACL-GG2/BC1)
1 #014.30%WIKA)Y/UCH((3.14159)%%2%(M2%N2)/BCCLI*¥(L.0+{~1.,0)**x(M24N2)
1 +EXP(-14.30%W(KA)/UC) *((-1, 0)**(M2+1)+(-1.0)**(N2+1))))fACCl
C(192)=C(1,2)%CONST
Q{142)=CQ/(AC*(M1*3,14159+N1%3,14159))-CQ/(BC*(M1%3.,14159+N1*
1 3.14159%))
1 +(0.25%AG1/AC+0.25%AG2/BC)*ES*(EEL1/ACL+FF1/BC1)
1 +{0.25%CC/AC+0.25*DC/BCI*EX*(GGL/ACL+GG2/8CL)
1 +CQ%{0.25/8BC~0.25/AC)I*ES*(CCL/ACL1+DD1/BC1)
1 +#{0.25%FC/AC-0. 25*EC/BC)*FX*(CCZ/ACI+CDZ/BC1)
Q(1,2)=Q(1,2)%CONST
Cl241)=C(1,2)
Q(241)=-0(1,2)
Ml=2
M2=1
N1=2
N2=1
AA1=M1%3.14159+W(KA)*10.0/UC
BBl=M1%3,14159-W{KA)*10.0/UC
SA=SIN(AAL) '
SB=SIN(BB1)
CA=COS(AAl)
CB=COS(BB1)
CCl=—-CQ&SA—AAI *CA+AAL
DD1=~CG*SB-BB1 *CB+BB1
CC2=CQ*SA-AAL%CA+AAL
ON2=CQ*SB-B8B1*CB+RR1
EE1=—CQ*CA+AAL*SA+CC
FF1=—CQ*CRB+8B1%SB+CY
GGl= CQ*CA+AAL*SA-CQ
GG2= CQ*CB+RB1%*SR-CQ

ast



25

29

110

ACL=CO**2+AA1 ¥%2 ‘
BC1l=CQ**2+BB1*%*2
C(242)=0.5%CQ/AC+0.5*CQ/BL+ (Co25%AG1/AC+0.25%AG2/BC)*ES*

1 (CCL/ACL+DDL1/BC1)+(0.25%CC/AC+0.25%DC/BC)*EXX{CC2/ACL+DN2/BC1)

1 +CA*(Ce25/BC~0.25/ACI*ES*(EEL/ACLI+FF1/BC1)

1 +#(0.25*%FC/AC-0,25%EC/BC)I*EX*(GG1/AC1-6GG2/BC1)

1 +(14.30%WIKA) /UCH((3.14159)%%2%(M2%N2)/BCCL)*(1.0+{-1.0)*%x(M2+N2)

"1 +EXP(-14430%W(KA)/UC) *((-1.0)*x{M241)+(-1.0)*%{N2+1))))1/ACCL

C(2+42)=C12,42)%CONST

Q{242)= (0.25%AGL/AC+0,25%AG2/BC)I*ES*(EEL1/ACL+FF1/BC1)
1 +{0.25%CC/AC+0.25%DC/BCI*EX*(GG1/AC1+GG2/BC1)
1l #CQ*(0.25/BC-0.25/ACY*ESX{CCL1/ACL+ND1/BC1)

1 +(0,25%FC/AC—0.25%FC/BC)*EX*(CC2/AC1+DD2/BC1)
Q(2+2)=Q(2,2)*CONST

DO 25 I=1,2

DO 25 J=1+2

S{T9J)=CMPLX{C({IJ)+-Q(1,J))

CALCULATICNS OF THE GENERALIZED FORCES STARTS
JJJ=2

DO 29 I=1,JJ4J

DO 29 J=1,.J44J

HH{ T3 J)=CMPLX{0.0+00)

HHH{1 y )Y =CMPLX{0.,Cy0L.0)

HH{1l,1)= CSQRT(S(1,1))

HHH{1,1)=HH{1l,1)

DO 110 J=2,4yJJ9J

HH{1l,J) = {(S(14J)/HR(1,1))

HHH(J41)= CONJGIHH(1,J))

DO1120 1=2,JJJ

CD=CMPLX{(0.0,0.0C)

M=1-1

DN112 LP=1,M

941



113

222

1120
1121

109

252

309

300

49

DD=DD+ (HH{LP, I} *CONJG(HH(LP,1)1})
YYY= S(1,1)-D0
HH{I,I)= CSQRT(YYY)

THHH(I 1) =HH(I,1)

IF. {1.EQ.JJJ) GO TO 1121
NN=I+1

MM=1-1

D01120 J=NN,JJJ
DD=CMPLX(Q0.0+0.0)

D0222 LP=1,MM

DD=DD+ T AHH{LP, 1) *CONJG(HH{LP, 4)))
HH{1,J)= S UUST{I4J)-DDI/HH(I,LI))
HHH(J, 1 )=CONJG(HH(1,4))

CONTINUE

CONTINUE

DO 109 K=1,J4J

CALL GAUSS{1740.70790.C,V3)
CALL GAUSS(2340.7074+0.0,V2)
12(K}=V2

Z1{K)=V3

DO 252 K=1,JdJ
XT(K)=CMPLX{Z1(K)Z22(K))

LO 300 I=1,JJJ
CD=CMPLX(0.0,0.0)

DD 309 J=1,1

CD =DD+HHH{ T, J)1 XX T1J)
DX(1)=DD

DOX(I1,KA)=DX(1)
IF{KA<EQ.2049) GC TO 4C
KA=KA+1]

GO TO 14

DO 60C I=1444J

Sl



00 600 N=1,2047
K=2049+N
J=204G=N “
600  DOX{1,K)=CONJG(DDX(I,Jd))
DO 800 J=1,JdJ
DO 700 1=1,4096
700 AX(1,1,1) =DDX(J,1)
MV(1)=12
MV(21=0"
MV(3)=0
CALL HARM{AX,MV,INV,Ps1,IFEER)
D0225 I=1,43000
FFUI)=REAL{AX(I,1,1))/WXX
F(J T1)=FF(I)
225 CONTINUE
800 CONTINUE
DO 801 1=1,3000
F1(T)=F(1,1)
801  F2(11=F(2,41)
SOLUTICN OF THE GOVERNING DIFFERENTIAL EQUATIONS BY MODIFIED
- PREDICTGR CORRECTOR METHOD STARTS .
INITIAL CONDITIGONS
M=1
H=DELT
A1(1)=0.0
Bl1(1)=C.0
A2(1)=0.,0
B2(1)=0.0
C STARTING VALUES
CALL FCT(M)
C PREDIDTOR
ALPR(2)= 4. 0%H #(2 C*ALP(1))/ 34D

OO

84l



()

(@]

BLPR(2)= 4.0%H *(2.0%81P(1))/3.0C
A2PR(2)= 4,0%H ¥(2.0%A2P(1)1)/3.0
B2PR(2)= 4.0%H *{2.0%B2P(1))/3.0

N MODIFIER.
AL{2)=A1PRI(2)
B1(2)=B1lPR(2)
A2(2)=A2PR(2)
B2(2)=B2PRI(2)
M=2 .

CALL FCT(M)
CORRECTOR

ALCR(2)=0.125%{9,0%A1(1)+ 3.0%HE(AL1P(2)+2.0%A1P(]

A2CR(2)=0.125%{9,0%A2(1)+ 3. 0%HX(A2P(2)+2,.0%*A2P(1]

»))
BICR(2)=0.125%(9.0%B1(1)+ 3.0%H*x{B1P(2)+42.0%B1P(1)))
1))
1))

B2CR(2)1=0,125%(9,0¢B2(1)+ 3,0%H*x(B2P(2)+2.0%B2P(1

FINAL VALUES

A1{2)=A1CR(2)+9.0 *(A1PR(2)-A1CR(2)})/121,.0
B1(2)=B1CR(2)+9.0 *(B1PR(2)-BICR(2))}/121.0
A2(2)=A2CR(2)+¢9.0 *(A2PR(2)-A2CR(2))/121.0

B2(2)=B2CR(2)+9.0 *(B2PR(2)-B2CR(2}))/121.0

THIRD POINT
M=2 '
WRITE(6,66)YM,B1(M),B2{M)},
CALL FCT (M)

F1(M),F2(M)

AlPR(3)=4.0C HHR(2.0%A1P(2)-A1P(1))/3.0
B1PR(3)=4.C HE(2.0%B1P(2)-B1P(1))/3,0
A2PR(3)=4.0 AHE{ 2. 0%A2P{2)-A2P(1))/3.0
B2PR{3)=4,0 kH%(2.,0%B2P{2)-B2P(1)) /3.0

MODIFIER
AIMF(3)=A1PR(3)-112.0
BIMF(3)=81PR(3)-112.0
AMF(3)=A2PR{3)-112.0

*(A1PR{2)-A1CR(2))/121.0
¥(B1PRI2)-BICR(2))/121.0
*(A2PR(2)-A2CR(2))/121.0

6G1



B2MF(3)=8B2PRP{3)-112.C % (BZPR{2)=-B2CR(2))/121.0

AL{3)=A1MF(3)

BL{3)=BIMF(3)

A2(3)=AZMF(3)

B2(3)=B2MF(3)

M=3 ' :

CALL FCT{M)

ALCR{3)=0,125%{9.0%A1L(2)+3 . CxHE{ALP(3)+2.0%A1P(2)-ALP(1)))

BICR(3)=0,125%(9.C0*B1(2)+43.0*H*(B1P(3)+2.0%B1lP(2)-B1P(1)))

A2CR(3)=0,125%(9.0%A2(2)+3.0%H:(A2P(3)+2.0%A2P(2)-A2P(1)))

B2CR(3)=0.125%(9,0%B2(2)+3.0*H*x(B2P(3)+2.0%B2P(2)-82P(1)))
C FINAL VALUES " :

A1(3)=A1CR(3)+9,0 #(ALPR(3)=-A1CR(3))/121.0

B1(3)=B1CR(3)+9.0 #(B1PR(3)-B1CR(3))/121.0

A2(3)=A2CR(3)49.0 #(A2PR(3)-A2CR(3)1/121.0

B2(3)=B2CR(3)#9.0 *(B2PR{3)-B2CR(3))/121.0
C FOURTH POINT ’

M=3

CALL FCT{(M)
AlPR(4)=4,0%H *(2.,0%A1P(3)-A1P(2)-2.,0%A1P(1))/3.0

BIPR{4)=4.C%H %(2.,0%B1P(3)-B1P(2)-2.0%B1P(1))/3.0
A2PR{ 4)=4,0%H *{2,0%A2P(3)-A2P(2)-2.0%A2P(1))/3.0
B2PR{&4)=4,0%H ®(2.,C*%R2P(3)~B2P(2)-2.0%B2P(1))/3,0
66 FORMAT(1544F16,.6) : '
C MODIFIER : :
AIMF(4)=A1PR(4)-112.0 £(A1PR(3)-ALCR(3))/121.0
CBIMF{4)=R1PR(&)-112.0 ®(B1PR{3)-BICR(3))/121.0
A2MF(4)=A2PR(4)-112.0 #(A2PR(3)-A2CR{3)}/121.0
B2MF(4)=B2PR(4)-112.0 *(B2PR(3)-B2CR(3))/121.9

Al(4)=A1MF{4)
Bl(4)=B1MF(4)
A204)=A2MF{ 4)

091



B2(4)=B2MF{4)

M=4

CALL FCT(M)

ALCR{4)= 0.125*(9.0*A1(3)-A1(1)+3 OxHEX(ALP(4)+2, O*ALP(B)—AIP(Z)))

BICR({4)=0,125%(9.0%R1{3)-B1(1)+3.0%H*{BLP(4)+2.0*B1P(3)-8B1P(2])))

AZCR(4)=O.125*(9.0*A2(3)-A2(1)f3.0*H*(A2p(4)+2.0*A2P(3)-A2P(2)))

B2CR14)=04125%({ 9, 0%B2(3)-B2({1)+3,0%H%(B2P{4)+2.0%¥B2P(3)~-R32P(2)))
C FINAL VALUES

Al(4)=A1CR(4)-9.0 *{ALPR{4)-ALCR(4))/121.0
Bl{4)=B1CR(4)=-9.0 *(31PR(4)-BICR(4))/121.0
A2(4)Y=A2CR(4)-9.0 F(A2PR(4)-A2CR(4))/121.0

B2(4)=B2CR(4)-9.0 #(B2PR(4)-B2CR(4))/121.0
DO 139 1=4,2999
IF(1.6T.2500) WRITE{6456) F1{M), FZ(M),BI(M)

56  FORMAT(3F16.6)
M=1
CALL FCT{(M)
ALPR{M#1)=A1(M-3)+4 .0%*H *(2.0%A1P(M)=A1P (M-1)+2.0%A1P(M=-2))/3.0
B1PR{M+1)=B1(M-3)44.0%H (2,0%B1P(M)-B1P(M=1)+2,0%B1P(M=2))/3.0
A2PR(M+1)=A2(M-3)+4 . O%H *(2.0%A2P(M)-A2P(M~1)+2.0%A2P(M-2)) /3.0
B2PR(M+1)=B2(M=-3)+4,0%H X(2.0%B2P(M)—B2P (M-1}+2.0%B2P(M=2)1/3.0

C MODIFIER

AIMF(M+1)=A1lPR(M+1)-112.0
BIMF{M+1)=B1PR(M+1})-112.0
AZMF(M+1)=A2PR(M+1)-112.D
B2MF{M+1)= BZPP(M*I)—112.0
Al(M+1)=AIMF(M+]1)
BLIM+1)=BIMF(M+])
A2(M+1)=A2MF(M+1)
B2(M+1)=B2MF(M+1)

N=M+]1

CALL FCT(N)

¥*(ALPR{M)-AL1CR{M})/121.0
*(B1PR(M)-B1CR(M}))/121.0
®#(A2PR(M)=A2CR(M))/121.0
*(B2PR(M)-B2CR(M}))/121.0
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AlCR(M+l)-0 125%(q, 0*A1(M)—A1(M-2)+3 P*H*(AlP(M+l)+2.“*A1P(M) ALP

1 (M-1)))..

BICR(M+1)‘O-125*(9 0%B1 (M)-B1(M- 2)+3 O*H*(BIP(M+1)+2 O*BIP(M)—BIP
1 (M=-1))) -

A2CR(M+1)=0,125%{ G, CxA2{(M)-B2({M-2)+3. 0*H*(A2P(M+l)+2 0% A2P(M)-A2P
1 (M-1)))

B2CR(M+1)=0.125%(9.,0%B2 (M)-B2(M=-2)+43,0%H*{B2P(M+]1)+2. O*BZP(M)—HZD
1 (M-11))

Al(M+1)=A1CR(M+1)~G,.0 *(AlPR(M+l)—A1CR(M+1))/121.0
Bl(M+1)=BlCR(M+]1)-9.0 *{BIPR(M+1)-8B1CR{(M+1))/121.0
A2{M+1)=A2CR(M+1)-5.0 *{A2PR{M+1)-A2CR(M+1))/121.0
B2(M+1)=B2CR(M+1)-9.0 *(B2PR{(M+1)-82CR(M+1))/121.0

IF(BL1(M).GT.1000.} GO TG 732
139 CONTINUE
332 11=2047
USUM=C. 0
D0 1 1=1500,300C
1 USUM=USUM+BL{I)*%2
X11=3000.6-1500.0
RMS=SQRT (USUM/X 1)
WRITE(6,96) SIG,RMS
96  FORMAT(2F16.8)
555 FORMAT(I6)
732 WRITE(6,555) M . | -
PLOTTING OF THE SIMULATED GENERALIZED FORCES AND THE RESPONSE
AT THE CENTER OF THE PLATE -
XX=0,0
YY=3.0
DO 2271 1=1,500
11=1+42499
TZ(1)=1
FLOT)=F1(11)
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3271

4271

F2(1)=F2(11)

B1(I)=31(11)

B1(501)=2.0

B1{502)=~2.0

CALL SCALE (TZ,500,20.0,TZMIN,TX»1)
CALL SCALE (BLls502,4.0,BIMIN,;BX,1)

CALL AXIS(XXyYY9s2HTZ9=2920.CoCeQsTIMIN,TX)

CALL AXIS (XX9YY92HB19244.0,90,09B1IMINsBX)
CALL PLOT(XX,YY,-3)

CALL LINE(TZ,81,45CC,y1)

XX=22.0

YY=0.0

DO 3271 I=1,500

TZ(I1)=1

F1{501)=800.0

" F1(502)=~-800,0

CALL SCALE (TZ,500920.00+TZMINyTXy1)

CALL SCALE (F1l,502+4.00,FIMIN,FX,y1)

CALL AXISU{XXyYY92HTZ9—-2920eC90,CGyTZMIN,TX)
CALL AXIS {(XX9YYy2HFLly294.05,90.0,F1IMIN,FX)
CALL PLCT(XXyeYY4-3)

CALL LINE(TZ,F1,+500,1)

XX=22.0

YY=0,0

DO 4271 1=1,5C0

TZ(I1)=1 :

F2(501})=8CC.0

F2(502)=-80C. 0O

CALL SCALE (TZ7 450092000, TZMIN,TX,1)

CALL SCALE (F2+50244.0CF2MIN,FX,41) :
CALL AXIS(XXsYYy2ZHTZ1=2920.0490.0, TZM[N TX)
CALL AXIS (XXyYY32HF25244,0,9C,0,F2MIN,FX)
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CALL
CALL
CALL
51GP
END

PLOTIXXe¥YY,—-3)
LINEUTZ,F24+50041)
PLOTLO w040 Cy=4)
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SUBROUTINE USED TC FIND THE FIRST-AND SECOND DERIVATIVES
FOR SOLVING THE GOVERNING DIFF. EQUATICNS :

SUBROUTINE FCT{M)

COMMON AL(30CC),A2(300C),B113000),82(3C00),

1 A1P(32C00),A2P(3GC0),B1P{3CCC)+B2P(3000),

1 F1(3300),F2(3000)+BETL,BET2,

1 C10,C114012,021,40224C33,C4470204C66,L55

AL1P(M)= —BFTl*Al(M)—(C10+C11*Bl(M)**2+C1?*HZ(M)*#2)*BI(M)+4.0*(
1 F1{M)+C33%4,0%B1(M))

B1P(M)=A1(M)

A2P (M) =—BET2*A2(M)—(C20+C21*BI( M) *%x2+L22%B2{ M) x*%2)*B2(M)+4.0%(
1 F2(M)) .

B2P{M)=A2(M)

RETURN

END
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