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(ABSTRACT)

Two methods_df simulation of multicorrelated random processes
from the given matrix of spectral density function have been pre-
sented. It has been noted that FFT method works as efficiently as
the Trigonomefric method and is much faster. It has béen found_that_
there are certain cases in which Trigonometric approach has advén-
tages over the FFT method. Some example problems are solved to show
the usefulness of tﬁis approach in solving the prob]éhs of linear
and nonlinear random vibrations. It has been observed that this
technique and particu]ariy the FFT method offers a very fast and
convenient a]ternatfve for perforhing random non]inear4response
anaiysis. Various possible areas in which this approach can be

extended have been also discussed.
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CHAPTER I
. INTRODUCTION

In this dissertation, two methods are describéd fo simulate on a
digital computer a set of correlated, stationary and Gaussian time
series with zero mean from the given matrix of powerrspectral densi-
ties and'cross-spectra1 densities. Some example pfoblems are investi-
gated to show the power of this technique to solve the problems of
linear and in particular nonlinear random vibrations. The development
set forth is f6r any arbitrary number of dorre]ated-ééries; however, 
in practice, the number is limited by the storage capability of the
computer.

The first method is based upon trigonometric series with random
.éﬁplitudes and deterministic phase angles. The random amplitudes are
a génerated by using a standard random number generqtor subroutine. An
example is presented which corresponds to three components of wind
velocities at two differént spatial locations for a tota].of Six
correlated time series. Selected spectral densities computed from the
simulated time series are compared to the original spectral densities
from which the time series were generated.

In the second method, the whole process is carried out using the
Fast Fourrier Transform approaéh in place of trigonometric series. It
is found that this method gives more accurate results and works about

twenty times faster for a set of six correlated time series.



To show one of the many areas of application 6f the present
method of simulation, namely the class of random‘structura1 vibration
analysis, the following problems have been investigated: (1) The
linear vibration characteristics of a long tower under the action of
correlated wind loads have been presented. Taking it to be a fourteen
degrees of freedom system, the time history of tﬁe displacement of the
top of the tower has been plotted considering up tq three modes of
vibration. The usefulness of this method in the case. of linear
analysis can be significant and very important, e.g., looking for the
occurrence of maximum structural response rather than the r.m.s. value
of response. This knowledge will be very useful for the reliability
study of structures under random loads; (2) One.of the most interesting
and significant applications of the proposed method is the simulation
of random generalized forces. The necessity of simuiating random
generalized forces arises when the dynamic response analysis is per-
formed in time domain either for the purpose‘of obtaining information
beyond the second order statistics (such as first'paSSage time distri-
bution) or when the structure is nonlinear and therefore an approximate
random response is sought by simulating the excitation.

In order to assert the validity of the preceding discussion, the
problem Qf'the nonlinear vibration ofa string has been solved in the
time domain by simulating the random generalized forces.

Finally to show the application of this method to a more complex
problem, the random nonlinear vibration of a flexible plate immersed

in a fluid flow on one side and backed by a fluid filled cavity of



finite dimensions on the other side is considered. The nonlinear
plate stiffness induced in the plate by out-of-plane bending and'the
mutual interaction between the external and the internal fluid flow
is included.

The FFT simulation technique is utilized for the response
analysis of the plate undergoing'1arge'deformation. 'The same problem
has been done by Shinozuka [1] where he has taken a multidimensional
trigonometfic series model for the generalized forces. The analysis
is performed in the time domain rather than in the frequency or wave
number domain as is usually done in linear response analysis. The

. -numerical example has been presénted for subsonic f]ow over the plate.



CHAPTER II
LITERATURE SURVEY

Part A: Review of Existing Simulation Methods

Numerous papers dealing with simulation of random process have
been published in recent years. Although many authors dealt with the
simulation of single random processes utilizing trigonometric series
[2], filtered white nbise [2], filtered shot noise [3] and correlated
random pulse trains [4] etc, only Hoshiya and Tideman [5], Shinoiuka [6]
and Borgman [7j»studied the simulation of multicorrelated processes.

I. In the simulation of ocean surface elevation, Borgman used wave
supefposition'by choosing the frequency in such a way that the ampli-
tude of each wave'function was an equal portion of the cumulative
spectrum. Bofgman also presented a method for simulating several
simultaneous time series by passing a white noise vector through

filters. He proposed the following model [7].

. m o
ym(t) = jz] f kmj(T)Xj(t-T)de

where,

ym(t) = m th time series



xj(t) = independent random inputs

kmj(T) = kernals
Let Sp,.(f) represent the cross spectral density between ym(t) and
yr(t). Kernals kmj(T) and its Fourier Transform ij(f) are deter-

mined from the relation

r
Smr(£) = I Kpj(D)Kp5(£)8,4(),
j=1
r=1,2, ..., mand ' : (2-2)
m=1,2, ..., M |

where the.bar'denotes the complex conjugate.
This systém of equation can be solved sequentially (taking_ij to
have zero gain for j =1, 2, 3 ...) as |

Ky1(f) = /S (F)

Ko1(f) = /s27(F)
B S11(F) ’

Koa(F) = [Sp2(F) - |Koy (£)]21 ete.

This, in turn, determines the digital filter co-efficients, Am; »

(2-3)

- needed to approximate the kernel associated with the system function

kmj(f). Then the final simulation equation reduces to

N N
ya(kat) = T T a._.Xs:, k-n,
m j=1 n=-N "I
m=1,2, ... M (2-4)
in which Xjs N forn=1, 2, 3, ... is the j th generated sequence of

independent, zero mean, unit variance, normal random variables.



II. Later Hoshiya and Tieleman [5] considered the following trigo-

nometric model for simulating two correlated random processes:

n .
x(t) = jE]v(ajcos Wit + bysin wjt)
n ,
y(t) = jzl {cjcos (th + aj) + djs1n (wjt + aj) (2-5)

where aj,'bj; cj and dj are random variables and aj-is deterministic.

The two stationary normal processes are correlated if there exists a

non-zero correlation between aj and c¢; and/or bj and dj. The co-

J
variance Cyyj between the two random variables a; and cj is defined
as |
and the standard deviation at frequency Wis Oyj and oyj are given as
oxj = Y255 (ws) 0w | - (2-6)
= V255 (W : -
oy = Y25y(wy)aw (2-7)

where Sg(wj) and'S§(Wj) are the discrete form of the power spectravfor

processes x and y respectively.

Expressions for the co-spectrum and the quadrature spectrum are given as
2C§y(wj)Aw = Oy jTyjPxyjCOS 05 o (2-8)
ZQ,‘E_y(wj)Aw = -0y j0yjPxyjSin o | ' (2-9)

whence,

-1 A[_ MJ . (2-10)

- and ’
2 (CSy (wy)}” + 10§ (w))?
S%(w;)S5(w;)

(2-11)



Thé random variables aj and bj are generated independently from a

normal distribution with zero mean and a standard deviation

Ogy = Y255(w)Aw and o, =,VZS§(Wj)Aw respectively. Then cj and dj

XY ¥
are generated'as follows. Since aj and'cj are both normally dis-

tributed, the joint probability density function of a; and C; is

_ asl !
P(a;,c:) = ———l————-exp - ] 1
I7IT - 2moy oy 2(1-py; | oxs?
2 .
20yyi8sC.  Cg
- PxyJ ?414. J d]} (2-11a)
%x3%3 %yJ -
and. the probability density function of aj is
2 .
] 8
sy = ex - ® . (2"]][)
P(aj) Zrong p{ —3—72%} | | )
The conditional probability density function of cj for given 35 is
P(as,ci) _ 1
P(cs;/a;) = —”TJ—7J_'—
37 X 12
] P aJ /ZI—TT_O"YJ ]-pxyj
X exp {- . 12 5 (c pny_lJ.a ) } (2-11¢)
0’ : (]-pny ,

Consequent]y, the conditional probability density function of c5 for

G -
given a; is also Gaussian with mean p -—XJa- and a standard deviation
j XYioy

i 1-0,2. . Similarly, the conditional distribution of dj for a given

i 'Pxy;
bj is Gaussian with mean pXYJEX§bJ and standard deviation ofcijl-pxy§.

Thus random variable cj is generated from Gaussian distribution with
mean prJ—XQa and a standard deviation of oyj'l-pxyg- Similarly, the
random var1ab1e_dj is generated from a Gaussian distribution with mean

G -«
pnyafibj and a standard deviation of ijl]’pxy§°



ITII. In his paper [é], Shinozuka proposed a different
trigonometric model for the simulation of multivariate random pro-
cesses. He used a series of cosine functions with weighted ampli-
tudes, almost evenly spaced random frequencies and random phase
angles with uniform distribution. He considered a set of n sta-
tionary random processes fo;(t) (i =1, 2, ... n) with a specified
cross-spectral density matrix S%(w) = [Sofifj(w)],.where Sofifj(w)
are mean square spectral densities if = j and cross spectral
densities of fo;(t) and foj(t) if i+ j.

He proposed the following model
' i ok N
Hilo - j§1oj(ﬁ> RAMERCTY
X €0S [Wjt + Qjk + 853(Wy)] o (2-12)
where, | | '
Wk (k =1, 2, ... N)- are random variables identically and independent;

ly distributed with the density function

g5(w) = [Hy;(w)|%/05? (2-13)
with o2 = [m lHjj(w)lzdw o (2-14)

and (hk (k =1, 2, ... N) are also identfca]]y and independently dis-
tributed with the uniform density 1/(2m) between 0 and 2m. Hji(w)
are obtained from

n .
I Hip (W)Hj (w) ' (2-15)

BRI



and,
_ Hij(w)
Y'ij(w) = IH—JJ—(W)"l (2-16)
01 5(w) = ta;‘[%] : (2-17)

The series simulated by the above technique have the asymptotic
ergodicity. |

IV. Comparison of Various Approaches.

It appears that method of simulation proposed by Shinozuka [8] is
the most efficient so far. Thismodel [8] seems to be more general than
that due to Hoshiya and is more efficient than that due to Borgman [7].
Since the meaédred cross spectral densities are usué]iy giveh
numerically in terms of the real and the imaginary parts or the
modulii and the angles, the computation work associaféd with finding
1H1j(w)|, from which yij(w) = |H1j(w)|/Hji(w) and the angles 6;;(w)
can be directly evaluated in the case of Ref. [8]. Therefore, methodv
of simulation presented here appears more practical than that proposed
in Ref. [7]1, which requires (a) the inverse Fourier Transformation of
N(N+1)/2 functions of w, Hjj(w) and (b) the same number of integra-
tion in the time domain. Also, form of simulated functions con-
sisting of sum of cosine funct1ons can be proved extremely advan-
tageous, when used as input, in eva]uat1ng the correspond1ng output

of a 1inear system.
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PART B.

The main usefulness of the simulation method is in the area of
(a) a numerical analysis of dynamic response of non-linear structures,
(b) time domain analysis of linear structures under random excitations
performed for the purpose of obtaining the kind of information, such as
first excursion probability and exact time history of a sample
function, that is not obtainable from the standard. frequency domain
analysis, and (c) numerical solution of stress wave propagation
‘through a random medium and eigen value problems of structufes with
randomly non-homogeneous material properties. The usefulness of this
method has been demdnstrated in the later chapter of‘this dissertation.
In this connection, it looks appropriate to make a relative stddy of
the prevalent methods of handling the non-linear random vibration'

problems. -

Review ofIStationary Random Response of

Multidegree of Freedom Nonlinear Systems

Fokker-Planck Approach.

One exact method of studying the stationary random response of
a nonlinear system is the Fokker-Planck approach. If the excitation
js a Gaussian'white noise, then the transitional brobabi]ity density
of the response proéess is governed by the Fokker-Planck equation.
The equation governing the first probability density function for the
stationary response has been solved under the following rather

restrictive conditions:
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(1) the damping forcé is. proportional to the velocity

(2) the excitétion is a Gaussian white noise

(3) the correlation function matrix of the excitation is
proportional to tﬁe damping matrix of the system. Under the above

conditions, the equation of motion may be written as follows:

MX + CX + §§§Zl F(t) | , (2-18)
with

e =

R}-'(T) 2405 (x - | (2-19a)

where y is a constant, u(§) js the potential energy of the system and

i U
) Py
Cau(x) | o1 (2-19b)
axn

Suppose that there exists an orthogonal matrix A which can simul-

taneously diagona]ize;the mass matrix M and the damping matrix C:

ATA = 1
ATMA = v ‘ - (2-20)
ATCA = A

where V and A are two diagonal matrices. Then, upon using the trans-

formation x = Az and noting that

A ugx) Taz u(z) _ 2 .. é u(z)

3X 9z 3 k=) Mk 3z

- auz). (2-21)
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Equation (2-18) becomes

171 ¢4
Vi gz + —31;1 ATF(t) = B(t) (2-22a)
and the correlation function matrix of b(t) is given by

RE(T) = 2yAS(t) - (2-22b)

The stationary Fokker Planck equation associated with (2-22a) is given

by
n n
) 3 . dulz
5 w(zp) - ] “T‘[A-z- + —-iqu
P T Rty B2 A | (AR
e ik (2-23)
Vj 3Zj

where Aj and Vj denote the j th diagona1 element of A and V, p is the
\ ) .
abbreviation for the first probability density of the Markovian

z s _
vector(é). The solution to (2-23) may be written as fo]]ows:

p(Z,i) =B eXp{ ][]2 21 i J .+ U(—)]} . (2-24)

This solution was first obtained by Ariarathan [9] for a two-degree-
of freedom‘system, and it was extended to. the above form by Caughey

[10]. The constant B in(2-24) is a normalizing factor such that

f” [» p(z,_)dz1 .dz d21 d =1. ' (2-25)

In the or1g1na1 co-ordinates, equat1on (2 24) becomes

- = Mler o
p(xsx) = B exp( - ;{ngMx + u(?ﬂ . ' (2-26)
It will be noted that the terms in the square brackets are

respectively the kinetic energy and the potential energy of the system.
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Equation (2-26) may also be written as
o R XV N, [
P(X,X) = B exp {-z- XM'x} exp’ {~ “u(x)} (2-27)
Hence X and i'are linearly independent.

Normal Mode Approach

Consider an n-degree-of-freedom system governed by the equation
of motion
Mx + Lok + k(o)X + ug(x,%) = F(t), | (2-28)
Cu = a smll parameter
The matrices C(O)_and K(°) are respectively the damping matrix and
thé stiffnéss matrix of the system due to the linear part of the
| damping forces and the spring forces, and»uali}i) represents the non-
linear.forcgs of the system. Here, f(t) is a stationary Gaussian random
vector. Without loss of generality, one can assume that the mean vector
of ?'ﬁ?-= 0. |
In using this approach, the fo]]owing two conditions must be
satisfied:. (1) the Tinear system obtained by neglecting the nonlinear
term §(§}§7 in (2-28) must possess normal modes; (2) the correlation.
function matrix R?(r) must be diagonalized by the s§me matrix which
diagonalizes the matrices M, c0) ang k(0),
The second condition is quite restrictive and is seldom realized in
real systems. »
Assume that the above restriction can be met, then there exists

a matrix A such that
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ATMA = 1
ATK(O)A

20), 1, ©) = (@, -
ATC(O)A

A(O)? Akj(o) Ak(o)akj
ATRE(T)A = D(1), dyj = d(T)8; »
By using the transformation X = Az, Eq. (2-28) reduces to
5+ 400)3 4 l0)7 4 UATg(2,7) = ATF(x) = B(t) (2-30a)
Where the corre]atlon function matrix of b is
Rg{t) = D(1). : (2-30b)

In component form Eq. (2-30a) becomes

g+ 0z 4 (w02, 4 1§ a 9, (Z,2) = bs(t)  (2-31a)
NI R R VI S St i

and Eq. (2-30b) becomes

Efby (t)b;(t+1)] = di(T)8kgs Js k=1, oome (2-31b)
The differential equation in (2-31a) may be written as '
2 = -
ZJ + AJzJ W zJ + ey (z,_) b (t) - (2-32)
i=1,...n

where the deficiency term e; is given by

= (. (0) 4 s (0)y2 _ 2
ey (Aj Aj)zj + [(wJ ) W, 12,
E a0 (5:7)  (2-m3)
+ul a9 (z,z), =1, ... n : 2-33
k=1 K37k .

If the quantities Aj-and wjz are chosen in such a way that some
measure of the_deficfency_term is minimized, then it seems reasonable
that the statistics of the response of the nonlinear.system can be
approximated by those of the linear system described by

7. .'.4 2 = . 1 = -
Zj + A525 4 Wy zj _bJ(t), Jj ]f R (2-34)
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At this stage, the differential equations are uncoupled and the
excitation B(t) is an uncorrelated vector process. Hence each un-

coupled differential equation can be solved separately.

In order to determine A; and wjz

J
to minimize the mean square value of the deficiency term e. This can

» Caughey [11] chose them so as

be achieved by requiring that

9

3Xj )

Efele] = 0
i=1,...n. (2-35)
-~ 9
3(w;°) |
Substituting (2-33) in (2-35) and interchanging the order of dif-

Efele] = 0

ferentiation and expectation, we obtain
: (o) n s )
Aj = Aj + ukz]akjE[zjgk(z,z)]/E[zj ]

wi? = (0O 4y T ayFliElze (5,01 (2-36)
J N SRatetia St R K Sk |

ezt -

Equations (2;34) and (2-36) can be used to find various mean square
values of the response process.

In certain cases, the contribufion from the first mode may be
dominant. In these casesf we may 1et.x- = aj]z] 1nxthe above

J
derivation. Then

n
n? = (w02 + uj£1aj1E[zlgj(£1’21)]/E[z12]
(2-37)

n . .
>\] = }\-IO + uji.laj‘lE[i]gJ(Z]_’Z])]/E[Z]Z] .
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This is rathér-a rough approximation, but it is very simple and in some
cases, it does give reasonably approximate solutions.

Perturbation Approach

Consider the same problemas defined in the previous section, whose
equations of motion are |
Mx + clo)x + k()% 4 Lg(x,x) = F(t) | (2-38)
Assume thaf u is so small that the solution of Eq. (2-38) can be
approximately represented by [12]
X = X + uxy (2-39)

Substituting (2-39) into (2-38), neglecting terms involving uz,
p3, ... and equating corresponding coefficients of uO and u] yields

the following sets of linear differential equationsﬁ
f(t) | (2-40a)
-g(xp(t)%(t)) (2-40b)

Correct to the same order of accuracy, the instantaneous correlation

Mib + C(o)ib + K(O)Ib

M + clo)xy + klo)x,

matrix for disp]acément becomes
— _—— e —— — =T

E[xxT] = E[xoxoT] + u{E[xox]T] + E[x]xo 1} (2-41)
Note that '

E[Xo)('l, 1= (E[XOX] ]) ° (2‘42)
The matrix E[ibibT] can be found from (2-40a) by the various approaches
as in linear analysis, and E[ibi&T] may be evaluated as follows.
Since (2-40a) and (2-40b) are linear, their stationary solutions are

Xg = fé G(t-1)F(1)dt (2-43a)

-00
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_ e _
Xy = J G(t-t)g(t)dt » e (2-43b)

-00

where G(t) is the common impulse response function matrix of (2-40a)

and (2-40b) and g(t) is the abbreviation of EKRO(T),XO(T)). Thus,
2T = .
(%%, 11 = - f” f” 6(t-1) ELF(17)9" (1)1

X GT(t-TZ)dTTde- (2-44)
The matrix E[?(T])ET(TZ)] can be evaluated with the He]p of proper-
ties of Gaussian protesses. Therefore, we can find E[?bi}T] and
hence E[XX']. '
Usually, the evaluation of the integrals in (2-44) is not easy, so
Tung [13] has developed a different approach to generafe E[XXT]
from (2-40a) and (2-40b). He applies Foss's method [14] to uncouple
(2-40a) and.(2f40b) into first order differential equations and then
solves the resulting equations to find the various instantaneous
correlation matrices.

This approach will fail if the damping matrix’C(o) is a null
matrix. In this case, Equation (2-40a) does not have a stationary
solution since a]](its correlation functions will finally go to
infinity. Anothef limitation of this approach is that not onlymust the
nonlinearity of the system has to be small, but also the excitation
has to be sufficiently low.

Generalized Equivalent Linearization

The normal mode approach is quite powerful if it applies. How-

ever, due to the conditions imposed on the excitation, its application
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is rather limited.

In his thesis Yang [15] introduced a more general approach.
Except that the excitation must be stationary, the only additional
.restriction to this approach is that the excitation be Gaussian. In
this approach, we define an auxiliary set of linear differential
equations for the original nonlinear system. The soiution of the
original nonlinear systém is approximated by the solution of an
auxiliary set and the unknown co-efficients are chosen in such a way
that some Measure of the difference between the two sets of equations
is a minimum.

Consider the following linear equation |

WX+ CX + KX = T(t) (2-45)
ahdffhe'non1inear‘$ystem given by

Mx + GOGR) = Ft). (2-46)
The difference between (2-46) and (2-45) ' v »

&= g(x.X) - CX - KX : (2-47)

The necessary conditions to minimize E[EJE] are given by

dE[ele] = 2E[§T % ] = 2E[e;X, ] = 0
N 3¢5k g
J E (2-48)
JE[ele] = 2E[€T e ]= 2E[e %, ] = O-
3K; ) 8y |
Upon using Eq. (2-47), they become in the matrix form.
E[exT] = E[GOGLRXTT - EDc] - KE[Xx1] = 0 .
Efex'] = E[g(X,X)X1] - CE[xX'] - KE[xX'] = 0O

It has been shown that the conditions in Eq.A(2—49) do define a

minimum for E[ele][15].
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In order to solve Eq. (2-49) fo; K and C, it is first necessary to
express E[§(§:§)§T] and E[EK?}?)?T] in terms of E[XX'1, E[iiT] and
E[iiT]. Let y,,. denote the displacement of k th mass relative to
the r th mass and let the approximate force acting 6n-the k th mass
by the nonlinear element connecting the k th mass and the r th mass
be denoted by Skr(ri’ykr)' Then

Elgy (XR)X31 = 2 ElSyplYirabi )]

| ad (2-50)
ELgy (X.X)x;1 = : ELS i (YigrsYy o) %51 »
rek

where the sﬁm is taken over all nonlinear elements connected to the

k th mass. Since X is a Gaussian vector, it follows that the

quantities ri, Yiy? xj, and ij will be Gaussian distributed. Hence

ELSir Ok Yier) %31 = ELSir O ierYice]
X E[yerj]/E[yEry
+ E{Skr(ykr,ykr)ykr]-E[yerj]/E[yﬁr]

. . . . (2-51)
ELS) nYip oYy p)%51 = IS (YppsY i) Ykp)
S ‘o
X ELY)pX31/Elyip] . :
+ ELS e (YipsY e ipd "ELY X5 1/E DY -
Define |
_ . . . 2
Yir = ElSkp(Yips¥ )i p 1 /EDYk ] cor (2-52)
_ ' 2
Xep = EIS) o (YkpoYip ) Yir )/ ELY K] .
Then Eq. (2-51) reduces to
Bk (YipsYip) %31 = ELOYYip + X X51 (2-53)

E[Skr(ykrv’ykr)xj],f E[(Ykr‘ykr + Xkrykr)xj]
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Hence, there exists a linear system with spring constant Xkr and
damping co-efficient v, defined.by Eq. (2-52) sucH that if the
nonlinear system is replaced by this linear system, the expectation
values E[§K§}§)§T] and E[§(§}§)§T] will not be changed.
Substituting Eq. (2-53) in Eq. (2-50) gives
E[Ek(ili)xj] E[i(Ykrykr * Kepgp) %)
‘ rgk

L. . . (2-54)
Elg, (xsx)x51 = E[E(Ykrykr t X ier) %3]

r4-k _
Let the stiffness matrix and the damping matrix of the linear system
defined by Eq. (2-52) be denoted by k(&) and c{e). Then Eq. (2-54)

.~ can also be written as

s=
(2-55)
AV (e) (e ) .
E[gk(x,i)xj] = E[ z (Ck Xg + Ko X )xj]

since thé right-hand side of (2-54) and (2-55) are just two different
representations of. the total force acting on the k th mass. In
matrix form Eq. (2-55) becomes

E[g(x,_)x ] = C(e)E[xx ] + K(e)E[xx ]

Efg(x,x)x1] = c(®ExxT + k(&)ErxxT] (2-56)
Substituting Eq. (2-56) in Eq. (2-49) and solving for K and C which

minimizes E[ETE], yields

(k - k(ENERTY + (C - cle)yexx’y =

i
o

(2-57)

i
o

(k - k(e))ERxT] +(C - cleNExxT] =
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which can also be written as
E(¥XT] E[XXT] (k - k{ehT |
{EGaT ET1 | | (c - clehT -0 (2-58)
If the square matrix is non-singular, the only solution to Eq. (2-58)

is

k = k(e
(2-59)

C C(e).

If the square matrix is singular, (2-59) is not the only solution.
But in this case any solution to Eq. (2-58) will lead to the same
minimum for E[ee!]. So we still can use Eq. (2-59).

Thus, it has been shown that the linear system formed by
replacing each nonlinear element by a linear spring and a Tinear
damper defined by Eq. (2-52) will minimize E{eé!] provided that the
excitation is Gaussian. | ) |

It should be pointed out that. the smallness of the noniinear
term in the original equation was not a presupposition in the develop-
ment of the above method. In general, the accuracy of this method -
depends on the smallness of the nonlinearity. When the nonlinear
terms are not small, this method is often an iterative procedure.

This concludes the relevant literature survey. In the light
of the review study in this chapter, we will be better ab]e to
appreciate, in the next chapters, the power and usefulness of the
simulation approach in,the analysis of random linear and nén]inear

" problems.



CHAPTER III
DISCUSSION OF SIMULATION METHODS

In thié chapter -we will present two methods to simulate a set
of Gaussian pfocésses {f1(t), fg(t), oo flt)s ...‘fM(t)} when the
power spectral density function of each process and cross spectral
density functions between any two processes are known. These
spectral densities are usually arranged in the form of a matrix
commonly known as spectral matrix. This matrix is given by
6 (W) Gyp(w) ... Gry(w)
Gpq (W) Goo(w) ... Goy(w)

-

G(w) = (3-1)

LGM](W)' GMZ(W) voe Gyy(w)

where G, (w) is the one-sided cross spectral density between the pro-

cess fp(t) and f(t). When m +n, Gyu(w) is complex with real part
Cnn{w) called the co-spectrum and imaginary part - an(w) called the
quad-spectrum. When m = n, the quad-spectrum is zero and then
Gun{w) stands for power spectrum for that particular process.

I. Trigonometric Model

Here we will show that a set of random processes can be simu-

lated by a trigonometric series of the form
. \
f](t) = kz] {a”(k)cos [Wkt + a-”(k)]

' o (3-2a)
+ bll(k)sin [wkt + a]](k)]}

22
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N i . .
fo(t) = kgi{az](k)cos Wt + apy(k)1 + by1(K)sin [wt + ay1(k)]

+ {azz(k)COS [Wkt + azz(k)] + b22(k)sin [Wkt + azz(k)]}

(3-2b)
. _
f(t) =k§] {am](k)cos [t + oy ()1 + by (K)sin wet + apyy (k)]
+ ago(k)cos [wt + amz(k)] + bpo(k)sin [wet + apo(k)]
+
+ app(k)cos Twt + o (k)T + b (k)sin [wet + opp(k)] - (3-2¢)
More generally, the above set of processes can be represented as
)= 3 3 o (K (
f(t) = £ I {a_.(k)cos [wt + k)]
m p=1 k=1 P et T Omp
+ bmp(k)sin [w t + ump(k)]. , (3-3)

The coefficients amp(k) and bmp(k) are Gaussian random variables'wjth
zero mean that have the following additional properties: (i) amp(k)
and bnq(Q) are always independent and for the case when m=n, p=9q
and k =1 they_are identically distributed, (ii) amp(k) and anq(z)
(or bﬁb(k) and bnq(R)) are statistically corre\ated'ff p=gq and
k = 2, otherwise fhey‘are independent.

The phase angles amp(k) are deterministic. Since the co-

efficients amp(k) and bnq(k) are Gaussian distributed it follows from
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the Central Limit Theorem that thé time series f (t) will also be
Gaussian distributed.

The form of the simulated time series given by Eq. (3-3) lends
itself to a very simple physical interpretation. For the first time
series (m = 1) the index of summation p takes the value of unity.

For the second time series (m = 2) the index p takes the values

unity and two. The value of p = 2 adds to the second series two

terms that are independent of the_first series. Physically it adds
some energy to the second process independent of the first process.
Likewise for each new process two additional terms are tacked on which
allow that process to have some energy that is indépendent of all the
previous processes.

In order to see how the co-efficients amp(k) and bnq(z), and
the phase angles app(k) should be determined it is necessary to con-
sider the cross correlation between the time serieé fp(t) and fn(t).
Here for convenience we will assume m < n. The cross correlation

between these time series is given by

Rin (T)

E[fp(t)fr(t +1)]

m n N N
E[: I £ =T
-p=1.g=1 k=1 &=1

{agp(k)ap (2)cos [wyt + opp(k)Icos [wo(t + 1) + apq(2)]

+ amp(k)bnq(z)cos [wt + amp(k)]sin [wl(t + 1) + anq(l)]

+ bmp(k)anq(z)sin'[wkt + opp(k)Icos [wy(t + 1) 4+ ang ()]

* bpp(K)bpg(2)sin [wit + opp(k)Isin [we(t + 1) + ang(2)11]
(3-4)
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The expectation operator-can be brought inside the summations,
and since the expectation of a sum is the sum of the expectations, we
get |
m h N N

r ¥ L I
p=1 g=1 k=1 &=1

Ran( ©)
(€l (K)agg(£)1cos Twit + app(k)lcos [wi(t + T) + apg(2)]
+ Elapp(k)bng(2)1cos [wt + opp(k)Isin [we(t + 1) + ang(2)]
+ E[bmp(k)anq(z)]éin [wpt + ump(k)]cos [wz(t + T) + anq(z)]
+ Elbmp(k)bpg(£)1sin [wyt + apy(k)Isin [wo(t + 1) + opg(2)13
| (3-5)
Because amp(k) and bnq(z) are always independent the middle terms in
‘the above expression are both zero. Furthermore, since app(k) and
anq(z) (or Bmp(k) and bnq(z)) are independent unless p = g and k = &,
Eq. (3-5) reduces to Ryn(T)
m N
Rpn () f pE] k£1
"{E[émp(k)anp(k)]cos [wt + amp(k)]cos [w (t + ) + dnp(k)]
+ Elbpp(K)bpp(k)1sin [wit + app(k)Isin Wit + 1) + app(k)1}
' (3-6)
Let Kmnp(k) = E[amp(k)énp(k)]. That 1sl<mnp(k) is the covariance
between amp(k) and anp(k). Because bmp(k)_has the same distribution
as amp(k), we also haveKan(k) = E[bmp(k)bnp(k)]. Using these
relationships and a trigonometric identity Eq. (3-6) becomes
m N

Ryn(T) = 21 kZ]Kmnp(k)cos [weT - op(k) + anp(k)] (3-7)
p: =
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The right hand side of Eq. (3-7) is independent of the time t; there-
fore, the assumed trigonometric form for the time series yields
stationary random processes.

Noting the fact that the spectral density is the Fourier Trans-
form of the'correlation function, the one-sided éross-spectra]
density for processes fp(t) and f,(t) is given by

2 (1)e™dr, w > 0
' Gmn(W) = [i Rmn f ) o

(3-8)
0, w<0

The next step is to substitute Eq. (3-7) into Eq. (3-8) and perform

the integration. However, it should be recalled that Kmnp(k) in Eq.

(3-7) is the eXpected value of amp(k) times anp(k) (or bmp(k) times

bnp(k)); Therefore, by substituting Eq. (3-7) into Eq. (3-8) what

we obtain is an expected value for the cross-spectral density. Thus

we have
[
1= |23 3 (k)
ElGun(w)) = |2 £ T { k
f p=1 k=1 np
1x Im cos [wT - opp(k) + anp(k)]éJWTdT}
w>0
LO’ w<o0 (3-9)

Carrying out the integration gives
( ,
2L Koy (KD - w)
2r & L k)S(w - w
1 k=1 Kmnp k

ElGpn(w)] = { p=1 %= .
x {cos [amp(k) = opp(k)] - J sin[ump(k) - anp(k)]} yW >0
0, w<a (3-10)
where &(w - wg) is the Dirac delta function.
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 we thus see that for the assumed trigonomefric time series given by
Eq. (3-3))Gmn is composed of both real and imaginary terms. When

m = n, Gyn corresponds to a power spectral density and the imaginary
portioh is zero. A schematic plot of Eq. (3-10) is shown fn Figure
1. The frequencies wy are chosen such that

W= wp (k- MW, k=1, 2, L N

W.o-W ' .
Aw. u 2 (3_]])

where wy, and w, are respectively the upper and lower cut off fre-
quencies of the spectra that is used to geherate the time series.
Suppose an actual power spectrum G(w) for which we want to obtain a
simulated time series is shown in Figure 2. We can slice this
spectrum. up into N intervals of width Aw as shown. The amount of
energy contained in the slice centered ét W= wk is G(wk)Aw. We want
the expected value of the spectrum corrésponding to our simulated
time series to have the same amount of enérgy at w = wg. This means
. that the expected amplitude of the delta function at w = wkx should be
G(w)Aw. Similar criteria must be applied for the cross-spectra of the
simulated time series. |

We assume that at any frequency w = wg the cross-spectral
matrix can be factored into an upper and lower triangular matrix,
where the upper triangular matrix is theicomplex transpose of the

Tower triangular matrix, as indicated below:
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Fig. 1.

Schematic sketch of a discrete power spectrum
from a simulated time series.
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Fig. 2. Schematic sketch of a continuous power spectrum
used to generate a time series



61 (0)  Gypl) oo Gy(v) |
G2~| (Wk) Gzz(Wk) ..... G2M(Wk) )
GM1(Wk) GMZ(Wk) ..... GMM(wk)
L | -
Ha1 (W)~ Haplin) 0 0 Haalw) ... Hyplwy)
(3-12)
The bar is used to denote the complex conjugate.
If Eq. (3-12) holds then
Gpn(w) = Z Hmp(w)an(w) | (3-13)

p=1-
for n <m. Eq. (3-13) can be rewritten with the 1imit of summation
taken as m instead of n since Hyn(w) = 0 for m > n. Thus Eq. (3-13)

becomes
' m _ .
Gpn(w) = Z] Hmp(w)an(w) : (3-14)
p=

~ Using the above relationssolutions are obtained as

Op(we) %
H = ]
Mo (i) [Dm-1(Wk5 , m=1,2, .... M (3-15)

where Dy(wy) is the m th principal minor of G(wg) with Dy being

defined as unity, and
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- G(l, 2, veees p=1,m
Hop (W) = Hpp (W) P(y2 52 oo BTy )
Dy (w) : (3-16)
p=1, 2, M, m ='b +1, M
where,
G” G'|2 ...... G-I 3p-1 G]p
Gel, 2, s p-1, m = |G Goo « ¢ v v o Go p-
(]s 29 ] p'], P) 2] 22 2’p ]
Gp-] s] ’ Gp_] 32 ’ Gp-.| p-] Gp'] sP
G » Gm2 » » ¢ v -+ Bm,p-1 Cp

is the determfnant of a Submatrix obtained by deleting all elements
except (1, 2, ... p-1, m) th rows and (1; 2, ... p-1, p) th columns of
é(wk).
It is notéd that the above solutions are valid only when the matrix
G(w) is Hermitian and positive definite, as can be seen from Eq.
(3-15).
Because the cross-spectral density matrix a(w) is known to be only
non-negative definite, special consideration is needed in those cases
where é(w) has a zero principal minor. This is discussed in Appendix
C. | |
For the band of frequency Wy - %jAw, W + %Aw] we want the ex-
pected value of thé energy in the spectrum of the simu]ated time
series to be equal to the energy Gyn(w)Aw of the original spectrum.
Thus equating the energy in the band centered at w = w, as given by
Eqs. (3-10) and (3-14) we get
2mkmnp (k) {cos [op, (k) - anp (k)1 - § sin [og, (k) - any(k)1}
='Hmp(Wk)th(Wk)AW (3-17)
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If we write

Hmp(wk) = lep(wk)l éJdmp(k) (3-18a)
= |Hpp(wy) [ [cos opp(k) = § sin opy(k)) (3-18b)
= REHpp(wi)1 + 3 TMEH, ()] | (3-18¢)

then by substituting Eq. (3-18a) into Eq. (3-17) we can see that
Kmnp(k) = %%1Hmp(wk)||nhp(wk)| (3-19)

From Egs. (3—18b) and (3-18c) we find

(k) = - ton!)IM[Hmp(wk)1| - | _
%mp an ﬁffﬁ;%(ﬁ;jT o (3-20)

Thus it follows, as stated earlier, that the phase angles are deter-
ministic.
We recall that
| Elamp(K)ap, (k) - (3-21a)
or. _ _
E{bmp(k)bnp(k)] (3-21b)

That is we want amp(k) and bmp(k) to be independent random variables

Kmnp(k) =

with their covariances given by the right hand side of Eq._(3-19).

This can be done in the following manner, if we let

anp(k) = Sl (wi ) 1€ - (3-22a)

and

bp(K) = S Hepy () In, | | (3-22b)

wherem=1,2, .... ; p=mym+1, ... Mand gp and np are in-
dependent Gaussian random variables generated on a digital computer.
Because the £'s and n's are Gaussian distributed, the a's and b's

will also be Gaussian distributed.
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~ Substituting Eq. (3-22a) in Eq. (3-21a) or Eq. (3-22b) in Eq. (3-21b)
and takihé the expectation of both sides we see that in order to
make the left-hand-side equal to right-hand;side, thevmean of £ or
n should be zero and their variances should be unity.
From Eq. (3-21a) We have - |

Elapp(K)1 = Z51Ho () [ECE] = 0 (3-23a)
and :

Elamp (k)apy (k)]

= D ) I ) B -
| . (3-23b)

= Aw T
- EI Hmp(wk) I an(wk)

Thus the terms amp(k) (6r bmp(k)) satisfy the properties stated eér]ier
and they also satisfy Eq. (3-17). |

This conc]udé$ our explanation of how to simulaté‘seQera1 multi-
correlated time series.. |

Aftér discussing the Fast Fourier Transform in tﬁe next.section, we

will give an example problem to check and compare the two methods.

IT. Fast Fourier Transform (FFT) Method

Assume that a set of discrete time series can be represented by the
following expression: |
N-T

_ 1 . 2mkn
f, -szoxpkExp[a v o (3-24)

>

where,

number of time series

time index

1}

frequency index
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The terms ka are elements of a complex vector generated in the

following way

oot - 1P |
pk} = léﬁl[Hk]{cpk} (3-25)
where, :

h = At, discrete time increment

[Hgl is a Tower triangular matrix obtained from the given
spectrum matrix as discussed in the preceding section, that is, it

satisfies the relation

[H 1T = (6] - (3-26)
and, to = By *+ 3 ngy _ (3-27)
where Epk and Npk are independent Gaussian random numbers such thatv

Elgpi] = Elnpgl = 0 - (3-282)

E[gpf] = EM2,1 = 0.5 (3-28b)

Writing Eq. (3-25) in expanded form

- - - -
X1 N e R T
Xok iH21k Hoop = - - - 0 z2k
o= (L ) .
IR . , (3-29a)
Xy Hyik MMk -« -+ Mg z MKk
J L - 4J4 L
That is, we can write '
iM
- IND? : -
Kok = [Zh % il (3-29b)
_ N i '
Xpg = [EEJSE]HFSRFSZ : (3-29¢)

where the bar denotes complex conjugate.
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Then s
N M M
2h

EL 2 I HoqeHpseBakEss! (3-30a)

E[X X
Pk ¢=1 s=1

rz]

Moving the expectation operator inside, we can write
N M M
2

r2] - _ﬁ'qZ] =1 quHrszE[qugszl (3-30b)

E[kaX
Making use of properties of complex random number as given in terms
of £'s and n's by Egs. (3-28a) and (3-28b), it can be easily seen
that N

ElZqklse] = Sqsdke (3-30c)
where Gqs and &y are Kronecker delta functions;substituting (3-30c)

into (3-30b), we get

, M M _
_ N o :
g=1 s=1
N‘ T

Taking the inverse Fourier Transform of Eq. (3-24), we get

N-1
2mkn :
Xpk = fpnEXP[-j S5 (3-32a)
n=0
Therefore,
N-]
_ 2n(N-k)n
Xp(N-k) = fpnEXP[-J =————1
n= O
- N1 . 2mkn )

n=0
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Since fpn is real, comparing Eqs. (3-32a) and (3-32b), we see

that

Xo(n-k) = Xpk (3-33)

Thys, it is only necessary to generate g-va1ues of X for each time
series because the other half of the values of X are just the complex
conjugate of the first half of the values of X.

Now, it is necessary to show that time series represented by
Eq. (3-24) do indeed have the proper power and cross-spectral
densities.
From Eq. (3-24)

N 1

f =

=2|-

o PkE?
~Since fpn is real, taking the complex conjugate on both sides of
the above equation, we can write

2mnk

fon = N

pn

]- (3-343)

|IP1I

kaEXP[ -j

Zf—'

k=0

Thus, the cross correlation between time series p and time series r

is given by
where, n and m stand for the time indices of process p and process r
respectively. _
Substituting for fy, and f from Eq. (3-24) and Eq. (3-24a)
respectively in Eq. (3-34a), we get
N-1 N 1 n(kn gm)
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Moving the expectation sign inside

) -] N-1 N-1
R.{n,m) == I I E[X X0l
pr NZ (=g g=g = PKTH

-8
x EXPL] ZEiﬁl‘-——'ﬁ)-]- (3-34c)

From Eq. (3-31b)one obtains

: M
o . _ N _
“Upitred = 20 I oakfirqatie -
Substituting this in Eq. (3-34c)

N-T N-T M

Ryn(nom) = 57w & & { X HogpHo pSp}
pr 20N 20 920 q=1 pak ' rge ke

x EXP[J zniﬁn:&ml], (3-34d)

Unless k = 2, Eq. (3-34d) is zero.
Hence,

N-1 M

r LH

. - 2ak(m-n)
p,.(n,m) 2 o 5 quHrq cmomnl

N

R EXPLJ 1. (3-34e)

That is; the correlation is a function of the time lag which
proves that the process is stationary.

Finally we can write Eq. (3-34e) as

N-1T M
=1 e . 2nk(m-n) .
Rpr(m n) = Eﬁﬁ.kzo q§1HquHquEXP[J N 1. (3-35)

The spectral density function is the inverse Fourier Transform of

Eq. (3-35). That is

N-1 . .
Gprk = 2h kEORpr(m-n)EXP[-J Zﬂkgm ny (3-36a)
M —
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which is equal to the elements of the spectral matrix between the
process p and process q.

Thus, we see that the assumed form of the time series given by
Eq. (3-24) has the same spectral density as the target spectral
density function.

Simulation of Strong Wind Turbulence

In order to check the two simulation techniques described above
namely the trigonometric model and Fast Fourier Transform model, we
generated six correlated time series representing the fluctuating
part of wind velocities. These six series represent the three com-
ponents of the wind at two different spatial locations. Each simu-
Tation technique was checked by comparing the spectra of the simulated
data to the spectra used to generate the data. The input spectra
used for these time series are based on wind velocity measurements

made by several investigators [16, 17, 18]. These spectra will not
| be discussed here in detail. Under strong wind conditions turbulence
is due to mechanical mixing caused by frictional effects. In this
case, the turbulence can be considered a stationary random process with
zero mean and a Gaussian distribution.

The following expressions for the spectra were used for this
simulation:

nC]](n) _ 87.56f

T (3-37)
w2 ((1.0 + 1.5 (19.6F)0-845)1.945

nCop(n) 24.23f, (3-38)
u*? ((1.0 + 1.5 (7.368f7)0-781)2.134
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nC33(n) _ _3.36

E 3-39
w2 1+ 10853 ’ (3:39)
= 3‘40
u2 ((1.0 + 1.5 (39.3F,) = ~)1-972 (3-40)
nC55(n) 46.46f, _
= 3-41
ux2 ((1.0 + 1.5 (11.06f,)0-781)2.1 (34D
nC66(n) 3.36f2
= -42
w2 1+ 1073 (3-42)
nC]3(n) 12.5f
= . 3-43
ur2 (1.0 + 7.5f)8/3 (3-43)
nCag(n)  12.5f,
— = . 3-44
w2 (1.0 +7.57)8/3 (3-48)
Cialn) = (c11(n)c44(n))%(exp(-19Af))%cos (2nAf) (3-45)
Qr4(n) = (C17(n)Cqq(n))%(exp(-194F))2sin (2nAf) (3-46)
Co5(n) = (Cap(n)Cs5(n))%(exp(-134F))2cos (4naf) (3-47)
Q5(n) = (Cpp(n)Cce(n))%(exp(-132F))%sin (4maf) (3-48)
C35(n) = (C33(n)Cgq(n))%(exp(-134F)icos (4maf) (3-49)
Q36(n) = (C33(n)Cqg(n))2(exp(-134F)) %sin (4naf) (3-50)
C34(n) = (Cy5(n)Caq(n))%(exp(-164F))%cos (3maf) (3-51)
C16 = Cqg (3-52)
Q34(n) = (C13(n)C46(n))%(exp(-16Af))%sin (3naf) ~ (3-53)
Qyg(n) = Qzq(n) | (3-54)

where Cij and Qij represent the co-spectrum and quadrature-spectrum

parts of the spectral density function respectively.
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Note that Cij = Cji
and Q45 =-0y;
The elements of the components of the spectral matrix, which have not
been listed above, have been assumed to be zero. The following actual

values were used for simulation

zy = 100 ft, zp = 50 ft
vy = 60 ft/sec., vp = 50.974 ft/sec.
f1 = nzy/vqy, fp = nzp/vy

ur? = (5.212)2 = 27.1649 £t2/sec’

f = nAz/v = n (100 - 50)/(60.0 + 50.974)/2
where v = average velocity

n = frequency in cycles per sec.
Suffix 1 or 2 refers to the station at 100 ft or 50 ft respectively.
Results o |

Fig. 3-& shows a set of six simulated correlated time series
based onthe trigonometric model. Time Series oné, two and three repre-
sent the wind ve]ocities"in the mean wind, cross wind and vertical
direction respectivg]y at a height of 100 ft. Time series four,
five and six are similar simulations for a spatial position 50 ft.
below the first point. Series one and four are positively corre]ated,
while series three and six are negatively correlated to one and four.
Seriés two and five, the series representing the cross wind, are
positively correlated to each other but uncorrelated to the other

four series. For these series, velocities were calculated every second
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for 2b48 seconds. The number of frequencies used; equal to N in
the analysis, was 600.

Fig. 3-b shows a similar set of simulated time series based on
the Fast Fourier Transform method. It is interesting to note the
similarity of the outcome. The number of frequencies used, equal
to N in the analysis, has to be the same as the number of time points
5 that is 2048.

A comparison between the spectra used to generate the simu]atéd
data and the spectra of the simulated data is‘presented in Figures
4-a through 9-a for the trigonometric model and in Figures 4-b
;}through 9-b for the»FFT model. Figures 8-a and 9-a are respectively
the co- and quad-spectra between time series one and time series four
. based on triéonometric model. Figures 8-b and 9-b are the FFT counter
part. In each case fhe solid 1ine represents the original spectrum
and the dashed 1ine represents the spectrum of the simulated time
series. The spectra were calculated from the simulated data using
the "Cooley-Tukey" method of calculating the correlation function
first, and then the "Tukey window" was used for smoofhing purposes.
As can be seen the comparison between the actual spectra and the
simﬁiated spectra is quite good in all cases. We did not consider it
necessary to show all 36 possible power and cross-épectra. The
aéreeﬁent looks the worst for the quad-spectrum between series one
and four (Figures 9-a and 9-b). The vertical scale for this compari-
‘son, however, is very expanded and about all we can conclude is that

both the original and simulated spectra are very close to zero. Also,
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FIG 3a. SMULATED WIND VELOCITIES BY

TRIGONOMETRIC MODEL
THE TOTAL RECORD LENGTH IS 2048 SECONDS
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Fig. 4a.

L 25 . L 88 Z 5l 3 L

Comparison between the original Gyj(w) and the spectrum
of the first simulated time series based on
trigonometric model. (Vert. Scale: 100(M¢/sec)/in;
Horz. Scale: 0.53(rad/sec)/in)
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Fig 4b.

Compamson between the omgma] Gy (w) and the
spectrum of the first simulated t1m§ semes based
on FFT model. (Vert. Scale: 100(M¢/sec )/in;
Horz. Scale: 0.63(rad/sed/in)
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Fig} 5a. Comparison between the original G22(W) and the spectrum

of the second simulated time series based_on
trigonometric model. (Vert. Scale: (50 M2)/sec)/in;
Horz. Scale: 0.63(rad/sec)/in)
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.. Comparison between the original G 2(w) and the

spectrum of the second simulated €ime series based

on FFT model. (Vert. Scale: (50MZ/sec)/in; Horz.
Scale: 0.63(rad/sec)/in)
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Fig. 6a: Comparison between thevbrigina1 G33(w) and the

spectrum of the third simulated time series based

on trigonometric model. (Vert. Scale: (5 Mz/sec)/in;
Horz. Scale: 0.63(rad/sec)/in)
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Fig. 6b. Comparison between the original G33(w) and the

spectrum of the third simulated time series based
on FFT model. (Vert. Scale: 5(MZ/sed/in; Horz.
Scale: 0.63 (rad/sec.)/in)
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Comparison between the original Ggq(w) and the
spectrum of the fourth simulated time series based
on trigonometric model. (Vert. Scale: (150 M2/sec)/
in; Horz. Scale: 0.63(rad/sec)/in)



300U
]

Ca X 10w I

—

45 0¥
.

51

e e o ——
T T l T ]
00 .83 L 25 L 85 2 5] 314
W
Fig. 7b. Cdmbarison between the original Gg4(w) and the

spectrum of the fourth simulated time series based

on FFT model. (Vert. Scale: 150(M2/sec)/in;'Horz.
Scale: 0.63(rad/sec)/in)
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Fig. 8a.

Comparison between the original Cy4(w) and the co-
spectrum between simulated time series one and four

based on trigonometric model. (Vert. Scale:
»81.25(M2/sec)/in; Horz. Scale: 0.63 (rad/sec)/in)
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Fig. 8b.

PN e l, - I

Compariéon between the original 014(w) and the co-

spectrum between simulated time series one and four
based on FFT model. (Vert. Scale: 81.25(M2/secjiin;
Horz. Scale: 0.63(rad/sec)/in)
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Fig. 9a. -Comparison between the original Q]4(w) and the quad-
' spectrum between simulated time series one and four

based on trigonometric model. (Vert. Scale:
4.0(M2/sec )7in; Horz. Scale: ' 0.63(rad/sec)/in)
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Fig. 9b. Comparison between the original Qig(w) and the quad-

spectrum between simulated time series one and four
based on FFT model. (Vert. Scale: 4.0(M2/sec)/in;
Horz. Scale: 0.63 rad/sec)/in)
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it is interesting to note thét, in general, the comparison between
the simu]éted spectra and the actual spectra looks better in the
case of FFT approach.

Comment .

Considering the above results we feel that both the simulation
methods presented work very well. The only drawback we see is the
‘ampunt of -computer storage that is necessary. It ié noted that FFT
method works about twenty times faster in terms of computer time
compared to trigonometric model. But FFT approa