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ABSTRACT

The machine processing of spatially variant multitemporal data

such as imagery obtained at different times requires that these data

be in geometrical registration such that the analysis processor may

obtain the datum for a specified ground resolution element in each of

the sets of imagery being utilized for analysis.

Misregistration between corresponding subsets of imagery contains

both a displacement and a geometrical distortion component, and the

affine transformation is postulated to characterize this misregistra-

tion between data subsets. Search techniques utilizing the moduli

of the Fourier Transforms of these data are developed for estimating

the coefficients of geometrical distortion components of this model.

Following the correction of these distortion components, the dis-

placement is located by the crosscorrelation of a template obtained

from one set of data, termed the reference, with the second, or back-

ground data. This template, derived for the optimum discrimination

of the reference data embedded in the background, is determined by

the solution of a system of equations involving the reference data

and the covariance matrix of these data.



The derivation of the optimum filter includes constraints such that

the maximum filter output, corresponding to the correct superposition

of the reference template on the background data, is unity and the energy

in the filter is finite. The filter obtained in this development is

linear although it may involve a parameter requiring the solution of a

nonlinear equation.

The performance of the crosscorrelation algorithm is evaluated

using ideal data obtained by convolving an array of computer generated

random numbers with a two-dimensional lowpass filter having a specified

impulse response. The results obtained from these data generally

substantiate the conclusions drawn from the analysis of this algorithm.

The correlator output is then obtained for noise free and distortionless

line scanner data. In these data the reference is selected as a subimage

of the background data, and the data are selected to typify line scanner

imagery. Multitemporal data are processed with the algorithms developed

for the .noise-free data to evaluate the applicability of this filter

to the conjugate point problem.

It is demonstrated that the crosscorrelation of the template

derived from the reference data will not yield useful results unless

the geometrical correction of the data is implemented. The Fourier

transform search techniques are used to estimate the distortion model

coefficients, and a bilinear interpolation algorithm is utilized to

correct the imagery. Results of the processor output using the

corrected data are given. It is shown that the optimum filter yields

a more discriminable peak of the correlation surface at the correct

superposition of the reference template on the background than does the



xt

filter chosen as a subImage of the reference data Itself.



CHAPTER 1

INTRODUCTION

1.0 Processing of Remotely Sensed Data

The large scale application of remote sensing techniques to the

monitoring and evaluation of the environment is rapidly becoming a

reality. This realization is due to many technical and scientific

advances resulting in increasing availability of multispectral photo-

metric and radiometrlc instruments, aircraft and satellite instrument

platforms and large data processing systems [28,42]. The data

obtained by these multispectral Instruments are images representing

the spatial, spectral, and temporal characteristics of the area

under investigation in contiguous wavelength intervals throughout

the visible region of the electromagnetic spectrum as well as

selected wavelength bands in the Infrared and microwave portions

of this spectrum.

A block diagram of a multispectral remote sensing Instrumentation

system is illustrated in Fig. 1-1. To analyze the large quantity of

data made available by such a source, statistical pattern recognition

algorithms [28] have been developed, and such pattern recognition

procedures are Illustrated In Fig. 1-2. The feature extractor selects

from the pattern those attributes which "separate" a particular

pattern as well as possible from the set of all other patterns. The

output of the extractor is a k-tuple and is usually of lower dimension



Multispectral
Data Source

Ground Resolution
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>- S

L 8N

Spectral
Filters

Figure 1-1 Block Diagram of a Multispectral Data System
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than the pattern vector. The pattern classifier then assigns the

input vector to one of r-classes based on some predetermined decision

rule-.. . , ' . , • - . . : . ' ' •

An implicit assumption in such processors is that any one input

vector is derived from a common ground resolution element. This

requirement is usually satisfied if all the elements of the n-tuple
• • • - ' • • ' ' - 5 ' ' . ' . " • • '

are taken at time t - t^ with an instrument employing a single optical

path and negligible differential optical and electrical delays are

introduced into the channels following the dispersion of the input

optical signal.

There has been recent interest in extending the pattern classifier

input vector to include a multitemporal variation. However, such data

sets are generally misregistered because after obtaining the first data

set, the instrument platform cannot be made to follow the same path ,

to within a resolution element of the instrumentation system. The

misregistration is a dynamic quantity and can be considered quasi-

static only over that length of data defined by the dynamics of the

instrument platform and the conditions of the atmosphere in. the case

of aircraft platforms. Therefore, for multitemporal data, a pre-

processing operation must be implemented for removing this misregistra-

tion before the data analysis system can address the same spatial

data element in each of the data sets being used for analysis. This

requirement for addressing a data element in the various data sets

is illustrated in Fig. 1-3.

1.1 Multitemporal Data Registration

A multitemporal data registration system, shown in Fig. 1-4, can



Data Element

Data Select

Data Set 1

Data Set 2

Data Set N

JN

Figure 1-3 Multi-Image Registration Requirement
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be divided into two relatively distinct parts with this dichotomy

being a functional division. The ultimate objective of an overlay

system, given two sets of imagery A and B, is to process set B such

that its image under the transformation T is in geometrical registra-

tion with set A. Thus the first part of the overlay problem is given

enough information to define the transformation T, how can the mapping

be efficiently implemented for the rectification of set B under the

constraints of computer memory size and data through-put requirements?

This correction of a misregistered data set is illustrated in Fig. 1-5.

The solution of this part of the problem usually involves the

division of the total data set into smaller images, or blocks, which

are more readily handled. A transformation is derived for each of

these blocks and the rectification is carried out. If it is required

to have continuity of the image across the boundaries of the blocks,

this condition can be approximated by making each block sufficiently

small such that the differential scale factor or rotation will not

alter the block size more than some fractional part of the size of

an image resolution element. The alternative procedure of formulat-

ing the problem such that the blocks of set B under the transformation

T are constrained to be continuous across the boundaries may be

possible.

The second part of the data overlay problem is the task of

determining the transformation T relating any two blocks of data.

Assuming that a model has been determined for T, the parameters

of this model must be estimated from the data since the misregistra-

tion is a pairwise property of the data sets and is implicitly defined



N-l N-l

T:

j=»0 k-0

1,2.

Distorted Image Rectified Image

Figure 1-5 Rectification of Distorted Imagery



in these data.

For the unconstrained problem, a conmonly used model for

representing the misregistration between data blocks is the two-

dimensional polynomial

N-l N-l
* '•- £ 2 a* xj x* i-1,2,. (1-1)

J-0 k-0 JK l L '

The principal advantage of this polynomial model is that equation (1-1)

is linear in the coefficients a... If a set of corresponding, or
• JK

"conjugate".points is known for each of the blocks constituting a

set of imagery, the coefficients of the transformation for each of

these blocks are readily obtained by use of a least-squares procedure.

Thus the requirement arises for determining conjugate points in sets

of multitemporal imagery.

Signal processing techniques used to determine conjugate points

almost always use correlation between data sub-blocks as a measure

of the similarity of these data subsets. To illustrate this

processing, assume the data to be a discrete set obtained by sampling

a continuous scene on a rectangular grid and the reference data

subset S c A to be selected from data set A. A background data sub-
"TT ' . . '

block is chosen from data set B and the following inclusion relation

is assumed

. T ' ' • ' ' . . . . • • . • . • ' ' ' . • . •

'"V,-*' 2rCSb (1'2)

where T is the transformation relating the data blocks.

The correlation surface

C(u,v) -.£•£ »r(i,j) «b<u + i, v + J), sr 6 S^ sb € Sfe (1-3)
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is computed for the set of indices (i,j), and the peak of this

surface is assumed to be the location of the correct superposition

of S on SY. The conjugate point pair is then taken to be the

location of j> and the corresponding subset of S. in their respective

coordinate systems for this maximum of the correlation surface.

1.2-'Objective of this Investigation

This investigation is addressed to the problem of conjugate

point determination in multitemporal imagery in which the task is

viewed as a problem in signal theory. With conjugate points defined

as in section 1.1, this problem can then be phrased as "given a

reference set S from data set A, what signal processing operations

will optimally discriminate the corresponding subimage S ' in data

set B?" This problem is treated in the sequel with consideration

being given to both the noise and misregistration which exist

between the data sets.

1.3 Previous Investigations

The implementation of an image registration system on a general

purpose computer is a relatively new field although the roots of

this task extend into antiquity. Only recently has there appeared

in the literature any significant amount of work on the image

registration problem. The work which has appeared as well as the

experimental effort in this study have utilized digital computers.

In measuring the correlation surface, Anuta [4] used the

normalized correlation coefficient, computing quanity
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M N
S E sb(i + u, j+v) sr(i,j)

R(u,v) - iml *"1 (1-4)
M N

SQf z s s*(i + u,
L i-1 j-1 b

where

M N •
SQ - I L s;(i,J)

i-1 j-i

with s € S and s.€ S.. In a later paper Anuta [5] utilized ther T b ~o

Fast Fourier Transform algorithm for increasing the efficiency in

evaluating equation (1-4).

Rather than use the normalized correlation coefficient as a

measure of image similarity, Barnea and Silverman [7] used an

absolute difference metric for their similarity algorithm

e - 2 I |s (i,j) - s (i + u, j + v)| (1-5)
i j

The rational for this algorithm is that if the reference data S

are not near the correct superposition on S. , the error will increase

rapidly and a threshold can be established such that if this boundary

is exceeded, the checking for similarity for this observation is

terminated. It is suggested that the average number of operations

for testing for the correct superposition can be significantly

reduced compared to the correlation algorithm.

Arcese e_t al. [6] developed a filter which maximized the ratio

of the square of the filter output at the correct juxtaposition of

S on S. . Their filter was developed for the noise free case and
—•' ~ • •
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with no constraints on the filter characteristics. In addition

the data were assumed to be from a process having a simple exponential

covariance function.

The most complete system for the overlay of large data sets was

described by Lillestrand [46]. This work incorporates some of the

ideas that were independently discovered during this investigation;

particularly in the use of pre-processing to estimate and reduce the

geometric distortion so as to increase the similarity of corresponding

data sets. Hall e_t al. [33] discuss a method of registering cloud

photographs. Their procedure employs a crosscorrelation method

similar to that of Armta for locating corresponding geographical

features in the two data sets.

1.4 Outline of Investigation

The misregistration of the imagery is discussed in Chapter 2.

It is observed that the geometrical components of the misregistration

between these data can be considered to have been introduced by a

spatially variant operator. In view of the analytical difficulties

in formulating a general solution to this problem, a sequential method

is proposed in which the geometrical distortion components are

estimated and removed prior to determining the displacement components.

It is postulated that the affine model adequately represents, for the

purposes of this investigations, the misregistration between data

subblocks; an algorithm utilizing the modulus of the two-dimensional

Fourier transform of these data is developed for estimating the

geometrical components of this model.
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The optimum filter for discriminating the data set S embedded

in the background data S. is treated in Chapter 3. This filter is

derived under constraints on both the filter output and the filter

energy. Results obtained in this chapter include expressions for

the filter for both noise free inputs and for inputs assumed to

contain additive noise with statistical characteristics given by

the covariance matrix K .
"""i*

In Chapter 4 experimental results are presented using both ideal

data obtained by convolving computer generated random numbers with

lowpass filters having known impulse responses and imagery obtained

with a line scanning instrumentation system. Plots of the correlator

outputs for various input data sets of interest are given, and the

processing gains of the correlator are given for both ideal and

multitemporal line scanner data.

A summary of the results obtained in this investigation is

presented in Chapter 5.
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CHAPTER 2

DATA MISREGISTRATION

2.0 Introduction

Misregistration of data taken at different times occurs when,

after having obtained the first set of data, it is not possible to

control the positioning of the instrument platform such that it will

repeat the previous path to within the dimensions of the spatial

resolution of the instrumentation system. For certain kinds of

processing of multitemporal imagery, it is necessary to implement

a data pre-processing operation such that the data are placed into

registration. Following such an operation on the data, the computer

or other processor is able to address (or obtain) the data from a

common ground resolution element in the several data channels being

used for analysis.

It is the purpose of this chapter to develop an appropriate model

of the misregistration process and to investigate some methods of

evaluating parameters of such a model. The first topics discussed

are the characterization of the data, and definitions and nomenclature

that are used subsequently. Models for regional misregistration are

then discussed, and the affine transformation is proposed as a suit-

able representation of the misregistration process. Processors for

estimating the misregistration are introduced and it is concluded
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that for the data of interest in this study, the geometrical

distortion and displacement parameters can be determined sequentially.

The chapter concludes with the development of Fourier transform

methods for estimating the coefficients of the affine model which

represent the geometrical distortion components of the misregistration

between an image pair.

2.1 Data Source

The data source s(x) is assumed to be a real, stationary, wave-

number limited, two-dimensional random field. Each realization of this

process, is shown in Fig. 1-1, is obtained by impulse sampling of s(x)

on a bounded rectangular region R. Thus the sampled image is

• • • •• 2 • ' • • - ' ' • ' - • ' ' •
where TT is the two-dimensional finite sequence of impulses spaced at

unit distance

V(x) - Z I 6(x1-.n , x2-n2) rect ("I—
2) rect (^~ 2)

n »-oo n---" 1 2

(2-2)

<f> - {J: ̂ .
and (p ,4 ) is the center of the data aperture.

The set £"|s. ; l £ i < P , l < J 5 < l f may De represented by

the column vector

(2-3a)

8
."P.
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where the elements s, are the column vectors

••ll
(2-3b)

These data are also quantized; for each sample s . € £, the value is

Bi 1 ° ak' ̂  — k — K~^ w^ere tlie ai are 'he quantization levels and K

is the total number of levels provided by the quantizer.

Each sampled image j> obtained from s(x) is called a quantized

picture function, or synonymously a digital picture function. Each

picture function £ is an element in the pq- dimensional Euclidean

space, and the distance between any two digital picture functions P

and < is then

d(p,q)> ||P - 211 - (P.2) (2-4)

1/2tT

where tr (•) is the trace of the matrix. It should be noted that once

a digital picture is obtained, it can be regarded as a known

deterministic, discrete, two-dimensional signal. However, the

statistical properties of this picture, such as variance or bandwidth,

are in fact related to these same properties of s(x) .

Considering now the content of the picture function, an "object"

is a subset of jS which represents some identifiable physical entity in

the object plane. The distance between two objects in a picture

function is defined as the sum of their row and column distances.
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Thus for two objects located at (x-, x~) and (ŷ , y2> respectively

I <2'5a>

(2-5b)

and :

(2-6)

A "scene" is composed of a collection of objects together with

their mutual geometrical relationships; the term scene is synonymous

with the term imagery if the data are assumed continuous, whereas it

is synonymous with digital picture function when the data are in a

discrete format.

Geometrical distortion between two scenes r(x) and s(x) is defined

to be the mapping D of one scene onto the other. Such a mapping can be

expressed as

r(x) - D O(x)] - s[5(x), T1(x)] (2-7)

where 5 , Tl are real valued functions and this mapping is one-to-one

and onto. Distortion manifests itself in the differences in the

distances between corresponding objects in the two digital pictures

R, St where

R = r(x) .'• 2TT(x) (2-8a)

S - s(x) ••' 2TT(x) <2-8b)

Translation is defined as

r(ic) - T[s(x)] - s(x1 + tr x2 -I- t2) (2-9)
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Misregistration in general can be expressed by the product of the

operators D and T as

r(x) - (TD) s(x) - T{D[s(x)]} (2-10)

which for digital picture functions results in

r(x) • 2n(x)"- (TD[s(x)]} • 2n(x) (2-11)

In the sequel the discussion often requires a qualification as to

the size of the data set being considered. To this end the imprecisely

defined terms local, global and regional will be used. The term local

is used to indicate that the data set consists of an element 8
1.

together with those immediately surrounding elements {s..,} such that

d(sir skl) - |i - kj •»• |j - £| < N (2-12)

with N as integer.

The term global is used in the sense that the entire data set is

being considered. Between these extremes, the term regional is used

to define a data set for which one choice of distortion model

coefficients serves to adequately represent the misregistration between

the data and its conjugate image. The size of a region is very dependent

on both the assumed misregistration model and on the data itself.

2.2 A Regional Misregistration Model

Remotely sensed images typical of those obtained by a line

scanning instrument are shown in Fig. 2-1. As illustrated by this

figure, seldom is the misregistration between two data sets

characterized solely by the displacement of one image with respect



Example A Example B

Figure 2-1 Multitemporal Imagery Exhibiting Misregistration



20

to the other. Rather, a geometrical component, as defined by

equation (2-7) is also present. A commonly used model for character-

izing this misregistration is the two-dimensional polynomial

N-l N-l
y - E E a x'j x* , 1-1.2 (2-13)

j-0 k-0

where jc and y_ are respectively the coordinate systems of the reference

and background data sets.

The utility of the polynomial model lies in the linearity of

equation (2-13) as a function of the coefficients a . . Thus, this
jfc

model is useful in least-squares procedures where a set of correspond-

ing image points is given and an equation of a given order which best

relates these points is desired. Table 2-1 lists several polynomials

obtained from equation (2-13) for degree N-l less than or equal to

three. Also given is the number of coefficients a.. , 1-1,2 which
jk

must be specified for a polynomial of a given degree. It is evident

that the number of coefficients required for a model increases rapidly

with the degree of the polynomial.

As a function of the coordinate variables x, equation (2-13) is

linear only if the coefficients a.. + 0, with i - 1,2. The terms a.-

2
and a., represent the displacement of the origins of the two

coordinate systems x and y_. This nonllnearity is removable by the

coordinate translation

yi " *1 "

However, the a,., are unknown and are the quantities of ultimate

interest. For all indices j ,k > 2, equation (2-13) describes a
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Table 2-1. No. of Parameters Required for Two-Dimensional
Polynomial Misregistration Models.

Common
Name

displacement

linear

affine

projection

quadratic

cubic

Degree
N-l

0

1

1

2

2

3

No. Parameters
Required to
Determine Model

2

4

6

8

12

20
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nonlinear transformation.

The data of interest in this study are obtained using a

mechanical line scanning instrument mounted in an aircraft and

operated at an altitude of approximately 5000 feet. As illustrated

in Fig. 2.2, this imagery is obtained by recording the scene radiance

from an effective ground resolution element as this resolution element

is moved along an approximately linear locus by the rotation of a

mirror within the instrument. Adjacent scan lines are spaced by the

motion of the aircraft, and the angle a between the direction of

the scan lines and the aircraft ground track is

a - \ + V (2-15)

where V is the crab angle of the aircraft with respect to the ground

track.

In this study attention is directed toward the misregistration

of sub images of data, termed regions, which are used for determining

geometrically corresponding points in the two data sets. The size

of a region ranges between 32 x 32 and 128 x 128 picture elements.

With data sets of this size and with any changes in the aircraft

attitude necessarily limited by its dynamics, it is assumed that

each region of data consists of a sequence of equally spaced, linear

scans of the scene. Each scan line is at an angle

with respect to the aircraft ground track and the ground track has the

angle B with respect to a p re-assigned coordinate system. These

quantities are illustrated in Fig. 2-3.
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Figure 2-2 Line Scanning Geometry
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It is observed that the regional misregistration then has the

following four components:

(1) scale

(2) rotation

(3) skew

(4) displacement.

These misregistration components are assumed to be characterized

by the affine transformation

where

V

.*2.

. 5 "
V

. X 2-

» 1 -

r tr
.V

and

A -

-a21

!2

22

is a nonsingular matrix characterizing the geometrical components of

the misregistration. The quantities are illustrated in Fig. 2-3,

where x and y are the coordinate systems and

t -

X10 " y!0

. X20 " y20

(2-18)

is the displacement of some known point in each data set.
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It is illustrative to examine the distortion matrix A in detail,

identifying those coefficients which reflect the various distortions.

For scaling differences along directions parallel to the coordinate

axes, the distortion matrix is

'22

(2-19)

where the a are the scaling coefficients. For rotation, A becomes

the orthogonal matrix

A -

cos p sin

-sin P cos p

(2-20)

where

'.Pi-Pi

is the difference in angular orientation of the ground tracks of

each data set with respect to its coordinate system.

Skew distortion is introduced by a distortion matrix of the form

21

(2-21)

and it is readily verified that the angle or, defined by equation (2-16a)

is

" tan
"

(2-22)
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The distortion matrix A is some combination of these components

distortions. The necessity to determine the elements of A from the

two regional data sets and a procedure for accomplishing this task

for certain classes of data are discussed in the subsequent sections.

The significance of the affine model assumption is that the mis-

registration can be interpreted as consisting of two components; the

first is the displacement of corresponding regions and the second is

the characterization of the geometrical distortion by a linear model.

It will be established in the sequel that for certain classes of data

and under very reasonable assumptions, Fourier transform methods may

be used to separate these two misregistration components and straight-

forward search techniques are available for estimating these distortion

parameters in the spatial frequency domain.

2.3 Misregistration Processor

The function of the misregistration processor is to identify

corresponding points in the two sets of imagery being processed.

Since these data are ordered by a Cartesian coordinate system, this

identification requires the determination of the translational com-

ponent jt of the assumed misregistration model.

The general problem of conjugate point identification is

illustrated by the block diagram of Fig. 2-4. The operator D

introduces the misregistration; the noise N is assumed to be additive,

independent of j> and with a constant power spectral density. The

filter H is to be determined such that with the reference data set S

selected from J>, the filter output when S overlays its conjugate data

set j>' in S, is maximally discriminate from the outputs at all other
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Figure 2-k Block Diagram of a General Misregistration Processor
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spatial juxtapositions of S on S, .

An interesting aspect of this problem is developed by examining

the operator D. For this operator to be spatially invariant it must

have the property of commuting with the translation operator T [56].

Assuming continuous operators on f(x)

D[T f(x)] - T [D f(x)] (2-23)

where T is the translation operator

TCf(x)] - f(xL + t^ x2 + t2) (2-24)

The operator D induces the mapping

D[f(x)] - f[$(x), Tl(x)] (2-25)

where £, T] are real and the mapping is one-to-one and onto. Applying

the criterion of equation (2-22) to the scene s(x) gives

D{T[s(x)]} - s[£(x - t), Ti(x - l)] (2-26)

T{D[s(x)]} - s[?(x) - tlf ̂ (x) - t2] (2-27)

and it immediately follows from equations (2-26) and (2-27) that

DtT[s(x)]} ̂  T(D[s(x)]} (2-28)

From equation (2-28) it is concluded that

2TT(x) • D{T[s(x)]} 4 2n(x) • T{D[s(x)]) (2-29)

and D is a spatially- variant operator.

In view of the fact that the transformation D is spatially variant,

the determination of H for the general misregistration is not pursued



30

farther. Rather a sequential procedure is developed, illustrated

by Fig. 2-5, where the geometrical distortion components are estimated

and removed before the signal is processed by the filter E.

For the class of data of interest in this study, additional

simplifying assumptions are made for purposes of formulating the

distortion estimation problem in a straightforward manner. These

assumptions are as follows:

(1) neglect the earth's curvature

(2) neglect scan-line foreshortening

(3) assume uniform illumination

With the affine model assumed to describe the misregistration and these

simplifying assumptions, Fourier transform techniques for estimating

the geometrical distortion are discussed In the subsequent sections

of this chapter.

2-4 The Two-Dimensional Fourier Transform under an Affine

Transformation.

Under the assumption of an affine transformation as the model

representing the distortion between two images, the expression re-

lating the spatial frequency domains of these images is readily derived

using the two-dimensional Fourier transform. The significance of

this expression is that under some very reasonable assumptions,

estimates of the distortion coefficients can be readily made for the

class of data of interest in this study. The analysis of this section

will use continuous functions, as no generality is lost and the

notation is much clearer.
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The two-dimensional Fourier transform is defined as
00

F(u) - J J f(x) exp [-J2n(u,x>] dx

and in polar coordinates

°° 2n

G(p,0) - J J r g(r,9) exp [-J2nrp cos(0 - 0)] dr

o o

d9

It is shown in Appendix A that if there exists a function

that

jfc(x) - D[f(x)] - f[B x] - f(%)

where B is an affine transformation, then

Jj- exp [-j2TT(u,t)] F [(A"1)1 u]

where

(2-30)

(2-31)

such

(2-32)

(2-33)

"2 J

is the Jacobian of the transformation. It follows from (2-33) that the

modulus of the transform is independent of the displacement vector _t.

,1/2
M(v) - [F(V) F*(v)]

1/2
(2-34)
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With proper interpretation of (2-33) and (2-34), several interesting

properties of the two-dimensional Fourier transform can be emphasized.

The Fourier transform is a decomposition of f(x) into a linear

combination of basis functions of the form

exp [-j2tr (u,x)] - exp [-J2n(Uj_ ^ + u., x,,)] (2-35)

For a particular pair of coefficients (u ,u2), the corresponding

elementary function has zero phase along the line described by

u
x2 - -- - Xj^ 4- -2- , n is integer (2-36)

and the wavefront has the direction

-1 ul
0 - tan — (2-37)

U2

From Fig. 2-6 it is easily seen that the spatial period of the wave-

front is

L - i- cos 9 - - - - JT* (2-38)ui r 2 , 2 -]1/z
LU1 + U2 J

Thus the corresponding spatial frequency is

r 2 2 "1*'*
U " I - [Ul + U2 J (2"39>

From (2-34) the relation between coordinates systems u and v

is

v . (A"1)1 u (2-40)
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Wavefront Direction

Figure 2-6 Lines of Constant Phase of Elementary Functions
Associated with Spatial Frequencies (u.,u )
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It is illustrative to examine the effects of various geometrical distor-

tions in the spatial and spatial-frequency domains. For scaling changes

the distortion matrix is

A «

'22

(2-41)

where the scaling is assumed to be along the coordinate axes. The

relationship between the spatial frequency domain coordinates is then

-1 T
v - (A L) u

• 1

u (2-42)

This relation is illustrated in Fig. 2-7 where the dimensions of the

rectangular blocks in the spatial domain have a width which is two

times the height.

For rotation the distortion matrix is

A »

cos 9

-sin 9

sin 9

cos 9

(2-43)

which is an orthogonal matrix. Thus

X - (A"1)1 « " A u (2-44)

and the transform of the distorted data is also rotated by the angle 9;

this distortion is illustrated by the modulus of the transform of the

ideal data shown in Fig. 2-8.



Block Pattern

Modulus of Fourier Transform

Figure 2-7 Modulus of Fourier Transform of Block Pattern



Rotated Block Pattern

Modulus of Fourier Transform

Figure 2-8 Modulus of Fourier Transform of Rotated Block Pattern



Block Pattern with Skew

Modulus of Fourier Transform

Figure 2-9 Modulus of Fourier Transform of Skewed Block Pattern
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For skew distortion the geometric distortion matrix becomes

0

(2-45)

and in the spatial frequency domain the coordinates are related by

-a21

0

(2-46)

This distortion and its associated modulus of the Fourier transform

are shown in Fig. 2-9.

The symmetry property of the modulus is the remaining property of

the two-dimensional Fourier transform needed for this study. For real

signals it readily follows from equation (2-30) that

F(-u) - F (u) (2-47)

where the asterisk denotes the complex conjugate. Thus the modulus,

equation (2-34), is symmetric about the origin, and the frequency

domain search techniques need to use only one-half of the modulus.

2.5 Transform Techniques for the Correction of Regional Geometric

Distortion.

For data sets with the affine model characterizing the misregistra-

tion between corresponding regions, Fourier transforms of these data

may be used to advantage in determining the coefficients of the

geometrical distortion components. These advantages are a result of

both the property of the Fourier transform exhibiting the spatial
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characteristics existing in the spatial domain and of the organization

of these characteristics in the spatial frequency domain. The zero

spatial frequency component is mapped into the origin of the trans-

form domain and higher frequency components are mapped into locations

proportional to both the value of their spatial frequency and in a

direction from the origin characteristic of the orientation of the

component in the spatial domain.

With the assumption of the affine misregistration model, equation

(2-33) gives the relation between the spatial frequency domain

representations of the data sets. As defined by equation (2-34) the

moduli of the two-dimensional Fourier transforms of corresponding

regions of data are invariant under the coordinate shift .t; thus the

coordinate systems can be chosen arbitrarily. It is further assumed

that for data of a reasonably homogenous composition, small shifts Ad

of the data aperture will yield moduli which can be assumed to be

unchanged for purposes of this study.

The differences between the moduli of the transforms of two

corresponding regions of data provide all the information required for

determining values for the coefficients of the linear distortion matrix.

For the data sets employed in this study the scale factors can be esti-

mated accurately from the flight information available. Therefore,

only distortion due to skew and rotation must be estimated from the

data sets.

The computation of the Fourier transforms for the data used in

this study is carried out using the Fast Fourier Transform technique

[5,9] since the data are in a discrete format.



2.5.1. Search Algorithms for Structured Data

The class of agricultural imagery, which is the data of principal

interest in this study, typically consists of a collection of

rectangular fields with each of these fields having essentially a

homogenous ground cover. The data usually, but not always, are

recorded such that the flight path is closely parallel to the

orientation of these fields. It has been observed that the modulus

of the two-dimensional Fourier transform of data sets from this class

of imagery typically exhibits a simple structure with the property

that a majority of the energy in the spatial frequency domain is

concentrated along linear loci or rays perpendicular to these field

boundaries. The moduli of transforms typical of those obtained for

agriculturally related imagery are shown in Fig. 2-10(a).

The rotative and skew components of the misregistration are

obtained by utilizing the geometrical differences between the moduli

of the Fourier transforms of corresponding regions. This is

accomplished by determining the angle between the corresponding loci

of energy which are characteristic of this class of data. Assuming

that the location of these loci can be determined, the distortion

components are evaluated in a straightforward manner.

(1) Rotation

From equation (2-44) it is seen that rotation in the spatial

domain results in the rigid body rotation of the modulus of the

Fourier transform. Only the angle between the corresponding loci of

the distorted and reference data transforms is required to determine

the rotational distortion; this is shown in Figure 2-11. Thus



(a) Structured Data Sets

(b) Unstructured Data Sets

Figure 2-10 Examples of the Modulus of the Two-Dimensional
Fourier Transform
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Locus of Energy
Distorted Data

Reference Data

Movement of Data
Point Under
Transformation

Figure 2-11 Location of Loci of Energy in the Modulus of the
Two-Dimensional Fourier Transform, Rotational Distortion
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the coefficients of equation (2-43) are

a - - 822 • cos 0

a!2 " " a21 * - 8in
(2-48)

where the sign (+) is determined by the sense of the rotation.

(2) Skew

The angular quantities related to the skew distortion component

are shown in Fig. 2-12. It is assumed that a locus of energy in the

modulus of the Fourier transform of the reference data is at an

angle 9 with respect to the u.. axis. The corresponding locus of

energy of the distorted data is at an angle 0 with respect to the

reference data locus. It then follows from equation (2-26) that

these angular quantities and the skew coefficient a., are related

by

0 _ tan- (2-49)
1 + a tan 0

To determine &„,, take the limit of 0 as 9 -» TT/2; thus

lira tan"1 (-r-r- - 5-7 - ) (2-50)
9 -»n /2 V l / t a n 9 + al2;

tan'1

The skew coefficient is obtained from the expression

a21 " tan 0 (2-51)
TT
2
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Locus of Energy
Distorted Data

Reference Data

Movement of Data
Point Under
Transformation

Figure 2-12 Location of Loci of Energy in the Modulus of the
Two-Dimensional Fourier Transform, Skew Distortion
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(3) Rotation and Skew

In the more general case of both a rotative and skew distortion

component in the data, there must be at least two linear loci in each

modulus of the transforms of the data sets to determine these

distortion parameters. For agriculturally related data this require-

ment is usually satisfied with the two loci being separated by

approximately rr/2 radians.

With reference to Fig. 2-13 assume, without loss of generality,

that one of the loci of the reference data transform is coincident

with the u. axis. Thus from equation (2-49)

tan

" a (2'52)in tan 9l I "1 "1

but QI «= 0 since the loci is assumed coincident with the u} axis.

Thus

0 = 0 ' (2-53)

and the angle 01 is due only to rotational distortion as equation (2-52)

demonstrates that skew and rotation are uncoupled along the u. axis.

Now the skew distortion component can be obtained from the

expression

i / tan

-1 ' ^ (2-54)

and solving for a?1

__! / tan92 .\
a21 ~ tan 92 V tan (92 - 0^ " V
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Locus of Energy
Reference Data

u.

Locus of Energy
Distorted Data

Figure 2-13 Location of Loci of Energy in the Modulus of the
Two-Dimentsional Fourier Transform, Rotational
and Skew Distortion
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For rectangular fields for which 0_ -" rr/2

1 1
'21 tan

(2-56)
tan

where $2 * *2 ~ ̂l*

The distortion matrix is then the product, with attention given

to the proper order of the matrices

A -

21 r21 r22

(2-57a)

'11

L*21

which yields

cos

'12

C21 821 r!2 r22J

+ sin 0,

(2-57b)

a0, cos 0. + sin 0. + a01 sin 0. + cos 0,Zl 1 1 — /I 1 • I-

(2-58)

The algorithm implemented in this study, for locating the loci

containing the significant fraction of the energy in the spatial

frequency domain, utilizes a two part procedure. The concept of the

first operation is shown in Fig. 2-14(a). The wedge aperture is scanned

through a total angle F in steps equal to the angular resolution of

the aperture AY. The output of this spatial filter is the summation

of those data falling within the region (p_ - P,)Ay. The output is
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9, Total Angle for
Wedge Scan

(a) Wedge Aperture

(b) Regression Line

.' X.

Maximum Value
Within the Cell

A Cell of Data
Along the Axis of
Maximum Output

Figure 2-lk Use of Wedge Aperture to Locate Loci in the Modulus
of the Fourier Transform of Structured Data
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w - E E M(p, Y ), i-l,...,N (2-59)
V p

where M(p,Y) is the modulus of the two-dimensional Fourier transform

expressed in polar coordinates and N is the number of resolvable

positions of the aperture within the total scan angle.

This summation necessarily involves data interpolation since

the data are located on a discrete grid. The w are nonnegative

and the largest w. is assumed to be obtained from the segment con-

taining the loci being sought.

The purpose of the second step is to locate the loci within this

segment. A sequence of rectangular segments is selected from the

idata along the radial axis of the wedge giving the maximum output

as shown in Fig. 2-14(b). The largest data point in each of these

segments is found, and the slope P of the linear regression line

through the coordinates of this set of maxima is computed. Thus

M
(uu

(2-60)_

(u - u )
Li

with

1 M

Ul * M S U1 M

1 M

U2 " M L2 M
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arid M is the number of points selected for the regression procedure.

The estimated angle 0 between this locus and the u. axis is then

9 - tan"1 P (2-61)

2.5.2. Search Algorithms for Data with Complex Structure

The class of scenes of natural or uncultured terrian has Fourier

transforms whose moduli have a more complex structure than the class

considered in the previous section. The moduli of transforms typical

of these obtained for this class of data are shown in Fig. 2-10(b).

To identify the distortion parameters relating the transforms of two

corresponding regions of data from this class of imagery necessarily

involves a search procedure.

A possible search algorithm is to examine the modulus of the

transform of the reference data along some locus and then search

for the corresponding locus in the distorted data such that the

difference between the outputs of these two spatial filters is

minimized. A constant frequency search aperture, shown in Fig. 2-15,

for the search locus in the transform of the reference data is

appealing because it is both simply implemented and its corresponding

locus under a linear transformation is readily related to the

distortion matrix parameters.

The output of the constant frequency spatial filter is the

sequence of numbers w.

0t + A0 P2
w - I Z M(p,0 ), 1-1 N (2-62)
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Resolution Cell

Figure 2-15 A Constant Frequency Search Aperture
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where M(p,0) is the modulus of the two-dimensional Fourier transform

expressed in polar coordinates and N is the number of resolvable

positions of the filter with the rr radian search extent.

(1) Rotation

For rotation the search procedure is particularly simple

because from equation (2-44) it is seen that a rotational distortion

introduces only a rigid body rotation of the transform modulus.

Thus the function to be minimized is

N ,
e- L | w(0) - w(0 + 0) |Z (2-63)

where the subscripts r and b refer to the reference and background

data sets repectively, and 0 is the variable for which the minimum

is sought. It then follows that the parameters of the distortion

matrix A are

au . a22 - cos 0Q

a!2 * " a21 " - Sin 0o (2"64)

where the sign is dependent on the sense of rotation.

(2) Skew

For a constant spatial frequency search locus in the reference

data, the corresponding locus in the distorted data domain under a

skew transformation is an ellipse. This is shown in the following

development. Let the circular locus be given by

ul + U2 " uo (2-65a)
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From equation (2-46) the transformation of coordinates is given by

Ul " Vl + *21 V2 (2-65b)

u2 - v2 (2-65c)

where unity scale factors are being assumed. Combining equations

(2-65) yields

v2 + 2 a21 vt v, + (1 + a
2,) v2 - u2 (2-66)

which is recognized to be the equation of an ellipse. To express

(2-66) in polar coordinates, let

v^ » p cos 0 (2-67a)

v2 - p sin 0 (2-67b)

Then

p2 [cos2 0 + 2 a21 cos 0 sin 0 + (1 + a21) sinVj - u2 (2-68)

solving for p

u2
p2 2 (2.69)

1 + a21 sin 2 0 + a21 sin 0

To find the extreme values of p, noting that p > 0,

2 u2(2 a91 cos 20 + 2a
2 sin 0 cos 0)

. -2 £L> |i > . 0 (2-70)
(1 + a21 sin 20 + a21 sin 0)

The stationary points of (2-70) are

0 - - | tan'1 (•£?-) -I- Sp , n- 0.1.2.3. (2-71)
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where the principle values have been taken. Evaluating the equation

d2 2of —2_ foir the values of 0 which are solutions of equation (2-71),
d0/

it is found that the maxima of p correspond to n even and the minima

to n odd.

Thus if the transform of the reference data scene is scanned by a

constant frequency aperture, the corresponding search aperture on the

transform of the distorted data must necessarily be elliptical. Thus

the function to be minimized is

N
e - S | w.(p> - w (p )P (2-72)

r

where

' r P2 f/2p - _, 2
L 1 + a0, sin 20 + a* sin 0 -

1
(2-73)

for the coefficient a-..

(3) Rotation and Skew

These distortions are coupled in the sense that it is not possible

to solve for each individually. Thus the equation that must be

minimized is

N ,
''w ,(p,0) - w. .(p',0')r (2-74)ri DI .

where

r 0 -!» r e ii » 5—
u 1 + a sin 20' + a sin 0' J

0' - 0 f 0o
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This is a two parameter search in which the loci are ellipses and the

initial starting points are displaced by 0 . As the data is experi-

mental there always exists the possibility of local minima which will

prevent the algorithm from reaching the true regional minima.
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CHAPTER 3

CORRELATION PROCESSORS

3.0 Introduction

In this chapter equations are developed for the optimum spatially

invariant filter for the detection of a two-dimensional discrete data

set S embedded in the background data S... This filter, or processor,

is linear although it may contain parameters which are determined by

the solution of a set of nonlinear equations. These processor equations

are interpreted as a crosscorrelation of the background data set S, with

a reference template obtained from the solution of a system of equations

involving the reference data covariance matrix and the reference data

S .—r

The processor is derived for both noise free data and for data

containing uncorrelated additive noise. All data are assumed

distortionless since the geometrical distortion is to be removed by

the previous data pre-processing algorithm.

Following the derivation of the equations for this optimum filter

several algorithms for implementing the processor are developed. These

algorithms reflect the varying assumptions regarding the form of the

covariance matrix of both the reference data S and of the noise—r

process N. The chapter concludes with a discussion of the processing

gain given by the correlator processor.
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3.1 Noise Model for Multltemporal Data

A model for the noise components in the remotely sensed data is

shown in Fig. 3-1. It is assumed that the noise, which is taken to

be the differences between the reference data set S and its corres-
—T

ponding sub image in the background data S>. , can be modeled as an

uncorrelated additive source N. This source consists of two components;

the first, N(x), is postulated to characterize such effects as sensor

noise, non-zero background temperature and video signal quantization

noise. The second term, D(At, X, jx), is assumed to represent the

changes in the scene due to natural processes such as the growth and

maturing of vegetation. This latter term is of little significance

in areas typified by the desert and mountainous regions of the south-

western United States. However, for areas engaged in agricultural

activities, the changes induced by this term can be significant over

a period of a few weeks. Thus the D component contains the information

made available by the multitemporal data to the scientists concerned

with the ground cover changes as a function of both the time between

measurements and the period within the growing season that these

measurements were taken.

When amplitude correlation is used to measure similarity for

the detection of two corresponding subregions of data, these temporally

induced changes in the scene decrease the correlation between subimages

which are known to be geometrically corresponding. In this study the

time between observations will be limited such that it is reasonable

to assume that the two data sets remain partially coherent. This loss

of correlation, however, leads to the requirement of processing a
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Physical
Process

N • N(x) + D(At , \, x)

Figure 3-1 A Model of Noise Processes
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larger set of data to maintain a specified average correlator output

signal-to-noise ratio. That these assumptions are indeed reasonable

rests with the experimental results presented in the sequel.

3.2 Processor Development

In detection theory literature the binary detection problem is

most often developed in terms of simple hypothesis testing; the likeli-

hood ratio is selected as the sufficient statistic and some criterion

of optimal performance, typically the Neyman-Pearson or Bayes

criterion, is stated. Under the assumption of additive, uncorrelated

Gaussian noise, the resulting analytical expressions can be interpreted

as a correlation processor.

For the problem considered in this investigation, however, it is

not straightforward to state the two alternative hypotheses. Rather

the approach taken in this study is to maximize a performance index

subject to certain constraints. The resulting analytical expressions

again are of a form to admit a correlation implementation.

The essential idea embodied in this performance index is the

desire to process the background data S, such that the processor out-

put corresponding to the correct superposition of S on S' c Si is

maximally discriminable from the output at all other spatial juxta-

positions of the reference template on the background data. The

desired processor output, therefore, consists of a large central peak,

corresponding to the correct superposition of the template, surrounded

by a non-zero pedestal. The filter output in the pedestal region is

due to the interaction of the template with the background data for

Juxtapositions of the template spatially separated from the location
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of the central peak by distances greater than the reciprocal of the

spatial frequency bandwidth of the scene. Such a desirable output

is shown in Fig. 3-2.

The discrimination between peak and pedestal is made by a

comparison of amplitudes. Thus for maximum discrimination, assuming

this central peak to be normalized to unit value, the peak amplitude

of the filter output in the pedestal region must be minimized. Peak

values are in general not useful for analytical purposes since such

a value may not having meaning.

The peak values of the processor output can be probabilistically

related to the variance of the process. If the output in the pedestal

region is modeled as a Gaussian process, then the fraction of the time

that a specified output value is exceeded is the area in the tail of

the Gaussian probability density function; thus, If p(x) » N(0,l),

Prob [X > x] - i erfc(x) (3̂ 1)

where erfc(x) is the complementary error function.

If the Gaussian assumption cannot be made but the random

variable X has a finite second moment, then the Chebychev Inequality

may be used. Thus if

E[X2] < - . , . . (3-2)

then

Prob [|X - E[X] | > e] l

for any e > 0.



Central Peak

flon zero Pedestal

Figure 3'
A Desired Processor Output
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The thrust of this argument is that if a linear processor is

derived such that the variance in the pedestal region is minimized,

then it follows that the fractional time that the output exceeds the

specified value x - x , will also be minimized.o

To obtain an expression for this optimal processor, the quantity

to be maximized is the ratio of the output at the point of correct

superposition of S_ on S, to the variance at all other Juxtapositions.

In the actual implementation of this filter, this operation corresponds

to maximizing the ratio of the peak of the correlation surface to the

variance of this surface in the pedestal region. The correlation surface

is obtained by the crosscorrelation of the background data S. with the

template generated from the reference data S .

3.3 Noise Free Processor

For noise free data the reference data S is a subregion of the

background data S.. It is assumed that the background data are a

discrete set obtained from the product of a sample function from a real,

wavenumber limited, two-dimensional random process with the finite

2impulse grid TT defined by equation (2-2). The statistical properties

of the reference data set are assumed to be characterized by the

covariance matrix K.

Using S the linear spatially invariant filter H is derived such

that when the background data are convolved with H

z(u,v) - H * Sb (3-4a)

- E £ s(u - 1 + 1, v - j + 1) h(i,J) (3-4b)
i J
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the ratio

z2 .

v • r r M-S^Y Var [z(u,v)] u D'

is maximized. The quantity z(u , v ) is the filter output when the

template is positioned on the reference data S . This filter is

further subject to the following constraints. The peak output

z(u , v ) is constrained to have the maximum value of unity. Thus

IL - z(ur, vr) - 1, (3-6a)

and this constraint can be expressed alternatively as the inner product

relation

l
l " (H.Sr) - 1 . (3-6b)

The filter must have finite energy to be realizable, thus

I, - I E | h |2 (3-7a)
i j J

- (H, H) < M < «. (3-7b)

3.3.1 Filter Equations for the Noise Free Processor

The background data set S, - (s. .} is assumed to be an M x N

digital picture function, and the detection template H is a P x Q

matrix of real numbers. For this problem to have physical meaning

the matrices must have the relationship P < M, Q < N. The filter

output is given by the two-dimensional convolution of this picture

function and the template

z(u,v) - Z I i(u - i + 1, v - j + 1) h(ij) (3-8)
i j
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where

1 < i < P

1 < j < Q

and

These indices are chosen so that the two matrices are fully Juxtaposed,

thus deleting the need for consideration of end effects. This convolu-

tion is illustrated in Fig. 3-3.

Equation (3-8) is expressible in terms of matrix operations which

allows the convolution to be written in terms of vector quantities;

note there are

m - (M - P + 1) (H - Q + 1) (3-9)

distinct juxtapositions of the template on the background scene; each

of these superpositions is called an observation. The t observation

is the sub image of the background data defined by the set

U t} - U t . : j e < i < P + j & - l , k < j < Q + k - l ) (3-10)

with

The set [s } can be written as the equivalent pxl column vector
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Figure 3-3 Convolution of the Background Data Set
with the Detection Template
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C-tl -
(3-11)

where each element of ji is a q x 1 column vector

(3-12)

The data subimage which constitutes an observation and the organization

of the elements of this observation into a vector are shown in Fig. 3-4.

From the observations defined by equation (3-10), the pq x m

matrix S is formed— a . • • ' . ' • . - . •

8 -
—a

•d)i (m)

(3-13)

t*Vi
where the i column is composed of the elements of the i

tion and m is the total number of observations.

Let

r ̂
t

H

observa-

(3-14)
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th „, • •1— pq Element In the
Observation

Figure 3-U Organization of an Observation into an Equivalent Vector
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be a multiple channel filter with p-Input channelB and one output

channel. The filter coefficients for each channel h are given

by the q x 1 column vector

hq(i)

(3-15)

The filter output z(u) can be expressed as the convolution of

the vector quantities

P -.
z(u) - Z £

1=1 P-
u (3-16)

Forming the m x 1 column vector

z(m)

(3-17)

the convolution can be written In the matrix form as

TZ - S H
~

(3-18)

The ratio that Is to be maximized Is

z2(r) z2(r)

E[(STH)T(STH)]

z2(r)

ST H] HT K H

(3-19)
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T
where K - E[2> j> ] is the covariance matrix of the process and z(r)

is the output corresponding to the correct superposition of the template

and reference data set S .—r

To maximize this expression, z(r) will be constrained to have a

T
value of unity and the quadratic form H KH will be minimized.

Additionally, from equation (3-7), the resulting H is constrained to

have finite energy. Thus the functional relating these quantities is

written as f25, 65]

I - HTK H + \1 H
1^ + X2 A, \2 > 0 (3-20)

where X. and \2 are the Lagrange multipliers. The extremum of this

functional is found by first finding the stationary point of I with

respect to H. Then noting that I is convex, it follows that this

stationary point is the minimum of I [47]. Thus

!|-2KH + X1 ̂ + 2X2 H-0 (3-21)

Solving for H

H - - -| XX(K + X2 I)"
1 Sr (3-22)

The values of the Lagrange multipliers X. and X, are obtained by

solving the simultaneous set of nonlinear algebraic equations

HT S^ - 1 (3-23a)

HT H - M (3-23b)
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Substituting equation (3-22) into (3-23), yields

S* (K + X2 I)"
1 Sr - 1 (3-24a)

The solution of the equations (3-22) and (3-24) then yields the

solution for the desired processor.

3.3.2 Some Observations Regarding the Noise Free Processor

Two salient points should be noted from the form of equation (3-21).

First, the covariance matrix is the same for both the reference data S— r

and the background data S, since it is assumed that the process is

stationary. Since there are no energy differences between the reference

and background such as required for incoherent detection, this filter

must be a coherent processor.

Secondly, there is a striking similarity between the filter given

by equation (3-21) and the filter for detecting stationary targets in

a clutter background in the radar problem [61]. In particular, for

\2 - 0, the radar filter is the "inverse filter" which was first

discussed by Urkowitz [59]. For X_ 4 0, the corresponding filter is

the "clutter rejection filter" [18, 6l] which includes the considera-

tion of additive receiver noise. The effect of these filters in the

radar problem is to increase the bandwidth of the signal being processed;

it has been shown that for the constraint of a fixed signal bandwidth,

the signal spectrum for the optimum detection of targets in a clutter

background is flat over this specified bandwidth [18].
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The one-dimensional analog of the filter given by equation (3-21)

for X2 - 0 is also well known in the field of seismic data processing.

In this area the filter is known as the "spiking" filter.

3.4 Noise Free Algorithm Development

In this section use is made of both equation (3-22) and various

assumptions regarding the form of the covariance matrix K to develop

algorithms for implementing the processor on a digital computer. Care

must be exercised in discussing the stationarity of the process

characterized by the covariance matrix. In one-dimensional data, a

result of stationarity is the requirement that the covariance depends

only on the separation of the points T » x. - x . However, in two

dimensions this definition is too restrictive in that it is conceivable

that the covariance can depend on both the spatial separation 1 " 2So ~ -i

and the direction of the line passing through these points.

Algorithms are developed for both cases; however, for non-isotropic

covariance matrices a general covariance matrix must be considered.

This in turn requires the solution of a large set of linear equations

for determining the template, thus limiting the value of this procedure

for reasons of computational tractability.

Major emphasis is given to algorithms for X, • 0. Recall from

equation (3-7) that this constraint was related to the filter energy.

For finite dimensional filters this energy is finite so long as the

elements of H are finite; this must be true if the covariance matrix

is non-singular. In addition for the noise free processor, the

variance in the output is due to the interaction of the reference

template with the background signal. Thus the correlator output
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signal-to-noise ratio, as defined by equation (3-19), is invariant

with respect to the filter energy.

The algorithm for the general covariance matrix is considered

first and, following this, study will be given to more restrictive

assumptions regarding the form of the covariance matrix. In this

latter case, the matrix assumes the form of a block Toplitz matrix

which has much practical interest.

3.4.1 General Covariance Matrices

If the two-dimensional process from which S is selected has

the general PQ x PQ covariance matrix K, then the solution of the

processor template H is given by equation (3-22)

H - - -| \. K"1 S^ (3-25)— & i — —r

and from equation (3-6b)

-\ *! 4 S"1'̂  " l (3-26a)

and solving for X^

(3-26b)1 T -1S K S

Thus the template for the crosscorrelater is given by

K-1^H - -= ^— (3-27a)

4 * ^r

- 8 K"1 S (3-27b)
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where

T -iK * sr> (3-28)

is the normalization coefficient.

To estimate the covariance matrix K, the data in the region

surrounding S is partitioned into the subregions as shown in Fig. 3-5.

Each subregion is called an observation and a correspondence is set up

between the elements of an observation and the vector a as

(3-29)

th
as illustrated in Fig. 3-5(bX Thus the i observation is mapped into

the vector a. (i),

'il

L inj

(3-30)

The covariance matrix is then estimated by the unbiased estimator

M
Z a.(i) a (i)

M
cxn(i)

M M
S a (i) of.(l) ... £ <* U) an<i>. , n 1 . . n n

(3-31)
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0-- *~ ,0 'il
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(b) Packing Data Observations into a Vector

Figure 3-5 Data Format for Computing Covariance
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where M is the total number of observations and n is the number of

elements in a. If, for example, the reference data set is a sub image

of 32 x 32 elements, then the resulting co variance matrix is

1024 x 1024 elements in size.

Premul tip lying equation (3-27b) by K yields

H (3-32)

Reference data array sizes generally range between 32 x 32 to

128 x 128 elements in practical algorithms using experimental data.

Thus to solve equation (3-32) for data arrays in this size range requires

a computer with the capability of handling very large array sizes.

3.4.2 Covariance Matrices of the Toplitz Form

The stationary isotropic covariance matrices represent an interest-

ing class of data for filter development; the symmetry properties of

these covariance matrices can be utilized to reduce the complexity of

the processor. Covariance matrices for a process of this class have

the form

K -

k
T1

k
—o

(3-33)

This form of matrix is called a block Toplitz matrix and its properties

have been investigated by Grenander and Szego [3l]. An algorithm for

inverting a matrix of this form was first given by Levinson [45] and
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such inversion algorithms have more recently been studied by

Robinson [55, 62] and by Bednar and Farmer [8]. The principal

advantage of this algorithm is that the number of operations required

2 3for inversion is proportional to m rather than m as in conventional

me thods.

For each observation of the data arranged as shown in Fig. 3.5(b),

the covariance matrix has the partitioned form

•

-1-1 - A

S.e—1 ' • ' —t—0

S..-8. S«. i 8 / .
~"*"rl 1 — 'Xi+i~~ IL

•

-2A-1 -2&-A
•

'

'
. .

'

3 f t C O
i ** * • t •*• ** i BIA— 1— l/Tl — 1— Z£

-

-A+l-A+i •'" -^A+i^
.

So,lfl+i • • • l2<>-2<»/* J6Tl Z* ZJ6

•

"

.

S S— n— n _

(3-34)

where the overbar denotes the expected value and the subscript denoting

the observation number has been omitted. Since the process is real,

stationary and isotropic

8t 8i '

8j 8i
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where a unit variance process is assumed. It is immediately evident

that the matrix (3-34) has the same form as matrix (3-33) with each

partitioned block of (3-34) corresponding to the data obtained from

one line of the observation shown in Fig. 3-5(b).

With experimental data it is unreasonable to assume that the

blocks along a diagonal will be equal. However, if the process is

assumed to be of this class, then the blocks are averaged to provide

a matrix of the required form. The template is again obtained from a

solution of equation (3-32).

The difficulty in applying this algorithm is that a large set of

data is required for estimating the covariance matrix. However, it

has been observed that the correlation function for a large number of

observations of remotely sensed data exhibits an approximate exponential

form [52]. Thus, it is not clear that this algorithm would yield

superior results to the next algorithm to be developed.

3.4.3 Isotropic Exponential Covariance Matrices

A very simple processor results if it is assumed that the statis-

tical properties of the reference data set S are modeled by an

isotropic exponential covariance matrix. This matrix has the block

Toplitz form with the diagonal terms given by

JSu " 11 PijH O-35)

with

1 , i - J
U ,1 (3-36)
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where p Is equal to the average adjacent cell correlation coefficient

In the reference scene. The off-diagonal terms are given by

-ij H . -ii

with p defined as for equation (3-35).

This covariance matrix can be written as

(3-37)

K-ii

o klt

-il

m-l
P Ji<

(3-38)

The inverse of this matrix has been shown to be [6]

K-1 1• ^
IV

-1
P*ii

0

'•• -ii

(3-39)

where

i-p

1 -p 0 ... 0

-o l + P -P

0 -p 1 + P (3-40)
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To obtain a solution for the desired template, substitute

equation (3-39) into equation (3-28) and neglecting the multiplicative

scalars

H •

^ii "P^ii ° ... 0 •

-pk'J (1 + P2)k~* -pk'[

0 -PisiJ (1 + P2)k^J

*
•
•

. ° - si.

• yr)'

•

•

•

l^r)

(3-41)

where the reference data set S has been written as an equivalent

column vector as defined by equation (3-11). Expanding equation

th(3-41), the i filter element h. is
""""!

K-ii ^m (3-42)

where the identifier that the £ are from the reference data has been

omitted. Now substituting equation (3-40) into equation (3-42), again

omitting multiplicative constants, yields the elements of the template.

Thus

hik - - p '

+ (1 + n (1 + P)si>k - p
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Expanding,

hik •

i,k

(3-44)

Equation (3-44) is recognized as one term of the discrete convolution

of the grid operator G, where

(3-45)

2 2
p -p(l + P )

-p(l + p2) (1 + P2)2

2 2.
. P -p(l + P )

2
P

-P(1+P2)

2
P

with the reference data set S . This convolution is written as

H - G * i,k

8i-H,k 8i-H,krfl

(3-46)

where

2 < i < P - 1

2 < k < Q - 1

and only the elements of S used for evaluating h . have been explicitly—r IK

indicated. The indices have been chosen to eliminate the end effects of
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the convolution; therefore, the reference data set should be two rows

and two columns larger than the desired template size.

The result of the development of G is that rather than having to

evaluate H using equation (3-41), H can be evaluated directly using

equation (3-46). The resulting simplification is very substantial.

The grid operator 6 has several interesting properties. For p - 0,

equation (3-46) becomes

6 -

0 0 0

0 1 0

0 0 0

(3-47)

Thus if the reference scene consists of a set of uncorrelated points G
s,

becomes the identity grid operator for the convolution of equation (3-46)

and h... » s . . Thus the template is the reference data set itself.

For p - 1, the grid operator becomes

(3-48)

This is the discrete approximation to the mixed fourth partial

derivative, obtained by convolving the discrete approximations to

the second partial derivative along each coordinate axis. Thus

1

-2

1

-2

4

-2

1

-2

1

G - *f i 2 -

0

1

0

0

-2

0

0

1

0

*

0

0

0

1

-2

1

0

0

0

(3-49)

The coefficient p required for determining the grid operator G
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is experimentally obtained from the data. A useful procedure is to

re-format the reference data S , which is represented as the P x Q
T

matrix, into the [L x 2] matrix S « [a (i,J)} with

L - [ | ] Q (3-50)

where [•] is read "the greatest integer less than or equal to."

The correlation coefficient p is then given by

I 8 (i,l) s (i,2)
P ~P

r L 2I s (i,
L . , P

n £ 2«1) £ s '(i
4 1 P

,1/2
,2)]

(3-51)

3.4.4 Non-zero Constraints on Filter Energy

The solution for the crosscorrelation template was given by

equation (3-22) as

H . - \ \l (K + X2 I)"
1 Sr (3-52)

Recall that the Lagrange multipliers X, and X- were introduced into the

problem formulation so as to constrain the filter output amplitude and

energy respectively. To solve for X. and \2
 lfc was found necessary to

solve the simultaneous system of equations

- \ *! sj (K + X2 I)'
1 Sr - 1 (3-53)

\ Xl S^ [(K + X2 I)"
1]* (K + X2 I)"

1 Sr - M (3-54)
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From equation (3-53) solve for X.

X, - -= - - - = (3-55)

and substituting equation (3-55) into equation (3-54) yields

T
S* [(K + X2 I)'

1] (K+XjI)'1^

- » M (3-56)

1* & + X2 i*'1 ̂r

and further

T
S* [(K -I- X2 I)"

1] (K + X2 I)"
1 Sr - M S* (K + X2 I)"

1 Sr - 0

(3-57)

This is a nonlinear equation in the one known \2-
 To solve this

equation requires an algorithm for evaluating (3-57) which includes

a nonlinear root finding program. If the value of \2 obtained from

the solution of equation (3-57) is negative, the constraint is not

active for the specified value of M and X2 is set equal to zero [65].

3.4.5 Signal Prewhitening

The function of the inverse covariance matrix is to prewhiten both

the input scene and the stored reference picture function. A processor

for the detection of j> in the background S, is shown in Fig. 3-6(a).

In this Implementation the observations £ fcon S^ are crosscorrelated

with WS where

,-1WS - K"1 S, (3-58)—t — —r
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srIT

T
(a) Using Inverse Covariance Matrix

(b) Using the Factored Inverse Covariance Matrix

Figure 3-6 Block Diagram of Signal Processors
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An equivalent expression is obtained if K is factored into the upper

triangular matrix and its transpose

K"1 - W WT - WT W (3-59)

which leads to the processor illustrated in Fig. 3-6(b).

It should be noted that the elements of WS of Fig. 3-6(b) are—r

uncorrelated and are equivalent to samples from a unit variance white

noise process. This is shown by evaluating the covariance of j> ;

thus

E [\ V ] - E[W ̂  (W S/] - W fi[sr 4 ] W
T

- W K WT - WCw'w)"1 WT - I (3-60)

The prewhitening of the observations of S is illustrated in

Fig. 3-7. The scatter diagram exhibiting the correlation between

adjacent elements of S is shown in part (a) of this figure. It is

inferred from equation (3-60) that an equivalent representation of wj>

is a vector consisting of samples from a unit variance process; the

scatter diagram of adjacent elements of this processed vector is

illustrated in Fig. 3-7(b). To be noted is that the variance along

each coordinate axis is equal, resulting in a circular scatter diagram.

When the data become highly correlated the points in the scatter

diagram tend to become concentrated along the unity correlation axis;

thus the restructuring of the data into the circular scatter diagram

requires a gain coefficient greater than unity along the axis per-

pendicular to the unity correlation axis. For values of data

correlation approaching unity, it is reasonable to assume that the
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algorithm will introduce serious numerical error into the processed

vector and this resulting vector will be of little value.

Assuming that the covariance matrix of a data set is known, it

is suggested that a measure suitable for determining if a vector from

this data is amenable to prewhitening is the determinant of K, or

equivalently det(K ). For a unit variance process the value of

det(K ) must always satisfy the relation.

detQf1) > 1 (3-61)

To show this, first note that

det (KK~l) m det (I) - det (K) det (K"1) - 1 (3-62)

thus,

(3-63)^ ' d e t (K)

A covariance matrix has the properties of being symmetric and positive

definite. Thus the matrix K is diagonalizable by the similarity

transformation [26J.

diag (K) - P"1 K P (3-64)

where P is the matrix whose columns are the eigenvectors of K and

the resulting diagonal elements of diag(K) are the eigenvalues X of K.

This matrix diagonalization is the well known principal component

transformation [36], and in general the eigenvalues can be ordered

X! > X2 - ' * * - Xn > ° (3-65)

The energy in the process is represented by the sum of the eigenvalues
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E - £ X (3-66)
i-1

The determinant of the diagonal matrix is

n
det [diag (K)] - n X (3-67)

i-1

and by the result derived in Appendix 0

det [diag (K)] < 1 (3-6.8)

which implies that

det [K] < 1 (3-69)

since the value of the determinant of the matrix K is invariant under

the similarity transformation I?~ K £.

Thus, it is concluded that

det (K"1) > 1 (3-70)

The equality holds only for the Identity matrix which represents an

uncorrelated process. As p -» 1 however, the value of det(K ) becomes

large because at p =» 1, K becomes singular and det(K) *• 0.

From these considerations it is concluded that there must exist

some range of det(K ) such that

1 < det̂ "1) < Mj < « (3-71)

where the algorithm will work effectively. For those data sets where

det(K ) > M. , the data become too highly correlated to be of value and

consequently should be rejected as a data set to be processed for

obtaining registration. For the isotropic data sets this becomes a
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matter only of rejecting those data for which the average adjacent cell

correlation p is greater than some ptn&x

3.5 Multitemporal Data Processor

In processing multitemporal data there must be available a

minimum of two data sets; as these data sets are processed pairwise,

the discussion will be phrased in terms of two sets. Subsets of data

are selected from one set and are used as the processor reference

signals. The background data are chosen from the second data set.

It is assumed that the reference signal £ is noise free. It is

further postulated that the approximate location of s', the corres-
"""*t

ponding data set in the background data set, is known, and that the

differences in amplitude between S and S' are assumed to be due tor _r —f

additive noise These assumptions allow the development of the signal

processor in an analogous manner to that done for the noise free case;

the major difference is the addition of a covariance term reflecting

the addition of the noise.

3.5.1 Filter Equations for the Multitemporal Processor

In a procedure analogous to that employed in section 3.3.1, the

constrained problem is formed with

S - S + N (3-72)~"™s ~*r ~*

The expected value of the output is constrained as

Ir - E[z(r)] - E[H
T(Sr + N)l - H

T Sr = 1 (3-73)

with E[N] = 0. The filter is to have finite energy so that

I2 » H
T H < M < « (3-74)
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The objective is to maximize the ratio given by equation (3-19) by

minimizing the variance of the filter output

T
Var [Z] - E J T H (S + N)l H (S + N)| (3-75a)

- HT E [(ST -I- NT) (S -I- N)] H (3-75b)

- HT (K + K ) H (3-75c)— N— s — n —

where

E[STS] - K (3-75d)
_ "* *~"8 . •

E[NTN] - ^ (3-75e)

E[STN] - E[NTS] - o (3-75f)

Thus all of the equations of subsection 3.3.1 are now modified by

replacing K by K + K . Thus
™ • ^~S • ""Tl •

I - HT(K8 f ̂H + \l H
T Sr + \2 H

TH, \2 > 0 (3̂ -76)

which has the solution for the stationary point

H - - \ \ (K8 + 1^ + X2 I)"
1 Sr (3-77a)

with

HT Sr - 1 (3-77b)

HT H < M (3-77c)

As noted previously in the development of equation (3-21), the

functional I is convex. Thus the solution for H, equation (3-78), gives

the stationary point of I and this solution is the minimum.
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3.5.2 Multitemporal Algorithm Development

For the multitemporal processor both the reference and noise

covariance matrices must be determined. Assuming there is sufficient

data for computing these matrices, the reference covariance matrix, K ,
8

is computed from the reference data as suggested in subsection 3.4.1.

The additive noise component is taken to be the differences between the

reference data £ and the corresponding data set S/ in the background

data. The equation of this noise component is written

H - S' - (1 - k) S, (3-78)— _j. _j.

where a differential gain k has been considered. To determine the

coefficient k, the stationary point of

e2 - NTN - [V - (1 - k) Sr]
T IV - (1 - k) Sr] (3-79)

with respect to k is found. Thus

,2 T
2|_ - 2 [S; - (1 - k) Srr ^ - 0 (3-80)

which has the solution

.T
S S

k - 1 - -̂ pS (3-81)
S1 S—r —r

2This value of k yields the minimum of e since this functional is

convex.

The noise covariance matrix K can now be computed. With K»K + K

the algorithms of section 3.4 are applicable to the multitemporal

processor.
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The difficulties encountered in the solution of equation (3-77)

for the multi temporal processor include those requirements observed in

subsection 3.4.1, the necessity for handling very large arrays.

However, a more fundamental problem is the unavailability of a

sufficiently large set of data, having similar statistical properties

as the reference data, such that a useful estimate of K can be made.
"™8

An additional difficulty is encountered in estimating the noise

properties. With the noise defined as the differences between S and

£>', the determination of K requires that these data be essentially in

registration such that the differences .are due to scene changes and

are not the result of misregistration error.

3.6 Correlator Signal-to-Noise Ratio

A signal-to-noise ratio for the processor is derived for the

purpose of giving a measure of performance to the correlator. A

dimensionless quantity is desired, thus define

2 '

H Var

The result is derived for \2 - 0; thus from equations (3-73) and (3-75)

K H
(3-83)

-*! of1 )̂1 sj
• - ZEJ - - (3-84).

1 K (-X. K'1 S )

T -1
<!_£
S1 K"1 S— r — —

(3-85)

K"1 S (3-86)
— —
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For the noise free case, K - 0

<3-87a)

- Tr (S K"1 ST) - N (3-87b)
—r —s ~r

where N is the number of observations averaged. For K y 0—n —

| • l£ (£8 + Kn)
-1 Sr (3-88)

In the derivation of an equivalent result by Arcese et al. [6],

there is an error in the derivation. A development such as suggested

by these authors is given in Appendix C and the result is shown to be

consistent with equation (3-87).
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CHAPTER 4

EXPERIMENTAL RESULTS

4.0 Introduction

In this chapter certain of the algorithms developed in the

previous chapters are applied to both ideal data sets and to imagery

obtained with a line-scanning spectrophotometer mounted in an aircraft.

The algorithms used with a specific data set, and taken collectively,

are termed a processor. The results obtained using the ideal data

are presented first, followed by the application of the processor to

a scanner data set in which the reference data S is selected as a—r

subimage of the background data. This, of course, yields a distortion-

less and noise free reference data set.

Multitemporal data sets are then considered. Search techniques

utilizing the modulus of the Fourier transform of these data are used

to estimate the regional geometric distortion, and results of the

processor operating with these corrected data are obtained.

4.1 Ideal Data

The purpose of generating ideal data sets is to obtain picture

functions with known statistical properties. These data are then used

to both check for the correct operation of the computer codes as well

as to evaluate the performance of the processing algorithms with

variations in the data parameters. These ideal data were obtained by
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convolving a two-dimensional array of computer generated random

numbers, having a Gaussian distribution, with a two-dimensional low-

pass filter having a specified impulse response.

Two sets of ideal data were generated, differing in the form

of the filter used to smooth the set of random numbers. The impulse

response of the first of these filters was chosen so as to obtain

a data set with a covariance function modeled by equation (3-38);

this data set exhibits a strong correlation of the data along the

coordinate axes. An alternative data set having no preferential

direction of data correlation was obtained with the second filter.

4.1.1 Separable Exponential Filter

The impulse response of the filter used in this subsection,

termed the "separable exponential filter," is given by

h(x) - kx exp [- ±- <XL + x2)] (4-1)
o

|xj < R, i - 1,2

The normalization coefficient k. , derived in Appendix B, is

(4-2)

where R is defined as the "characteristic length" of the filter. The

variable R is the size of the truncated impulse response with both R

and R being measured in units of picture elements. A plot of the

impulse of this filter is shown in Fig. 4-l(a).

This filter was chosen so as to yield a data set with statistical

properties closely approximating the isotropic exponential covariance

matrix defined by equation (3-38) . Thus the processor for this data



(a) Filter Impulse
Response

(c) R 0.5

(b) R = 0.0
o

Figure 1+-1 Correlator Outputs for Various Amounts of Data Correlation
(Separable Exponential Filter)



(d) R = 1.0

(f) Ro = U.O

(e) Ro = 2.0

Figure k-l Cont
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set is the crosscorrelation of the background data with the template

given by equation (3-46). This template is obtained by simply by

convolving the grid operator G

2
P

2

2

2
-p(l + p )

a + P2)2

2
-P(l + P

2
P

- P ( 1 + P 2 )
2

P

G- -p(l + pfc) (1 + P )' -p(l + P ) (4-3)

2 2 7L P -P(I -i- pz p^

with the subimage of the background data selected as the reference

data set J> . The adjacent cell correlation coefficient p of the

reference data 55 is used to determine the grid operator, and

experimentally observed values of p for various values of R and

template sizes are given in Table 4-l(a).

The processor outputs are shown in Figs. 4-l(b)-(f) for data

sets having specified values of R and where the template is a subimage

of the background data. The correlator template size for these

results was 32 x 32 picture elements. There are several properties

of these outputs which are of interest. The most obvious result is

that the output function becomes smoother and the pedestal variance,

relative to the central peak, increases as R increases; an increase

in R decreases the spatial frequency bandwidth of the two-dimensional

signal. Thus as the spatial-frequency bandwidth is reduced, there is

both a loss in signal-to-noise ratio, as defined by equation (3-19),

and a loss of resolution. In this application resolution is defined

as the width of the central correlation peak at one-half its height.

It is also observed that the peak values of the output in the

pedestal region appear to be distributed such that there are no large

distinct peaks in this region. Thus, a unique central peak can be
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Table 4-1. Experimental Values of the Average Adjacent

Cell Correlation Coefficient (p).

(a) Separable Exponential Filtered Data

Template

Size

32 x 32

48 x 48

64 x 64

(b) Isotropic

Template

Size

32 x 32

48 x 48

64 x 64

Filter Characteristic

0.0

.049

-.009

-.013

Exponential

0.5

.309

.296

.297

Filtered

1.0

.652

.647

.650

Data

Filter Characteristic

0.0

.049

-.009

-.013

0.5

.254

.260

.268

1.0

.658

.676

.699

Length

2.0

.868

.874

.887

Length

2.0

.902

.904

.902

<v
4.0

.953

.954

.962

<v
4.0

.972

.964

.967
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unambiguously located.

Ideally the processor for the noise free signal given by equation

(3-27) is the inverse of the filter used to obtain the data. Defining

a parameter or with

0 < a £ 1 (4-4)

as the prewhitening coefficient and choosing

p' » a p (4-5)

as the parameter for the grid operator, equation (4-3), yields the set

of outputs shown in Fig. 4-2. The background data set used for this

sequence of correlator outputs was obtained with a filter having the

parameter R =2, and the correlator template was 32 x 32 picture

elements in size.

For the case of a * 0.0, the processor reduces to a cross-

correlation between the background data S, and a template consisting of

a subscene of S. . For a - 1.0, the processor ideally implements the

inverse filter. The effect of the prewhitening coefficient for a < 0.5

is observed to be small. However for a > 0.7, the processor template

begins to significantly alter the correlator output.

Experimentally obtained curves giving the output signal-to-noise

ratio as a function of the prewhitening coefficient are given in

Fig. 4-3. This family of curves for various values of filter character-

istic length was obtained by computing the processor output for each of

the set of data parameters (R , a-) where the processor template was

32 x 32 picture elements in size. The signal-to-noise ratio of each

of these correlator outputs was then determined. The signal component



(a) a = 0.0

(c) a = 0.5

(b) a = o

Figure U-2 Correlator Outputs for Various Prewhitening Coefficients
(Separable Exponential Filter)



(d) a = 0.7

(f) a = i.o

(e) a « 0.9

Figure U-2 Cont,
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1200 -r

0

Theoretical

0—o-O-O R«0

R-l

R-2

Figure h-3 Correlator Output Slgnal-to-Nolse Ratio as a
Function of the Prewhltening Coefficient
(Separable Exponential Filter)
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is defined as the square of the difference of the amplitude of the

central peak and the average value of the output in the pedestal

region. Thus

(4-6)
J

The noise component is defined as the variance of the correlator in

the pedestal

N N

Z(u-> ' <l( >̂ (4-7)
Nc " N^l r S I Z(u-> ' <l( >̂N ]

 U-l u-l
 L W r J

where N is the number of points used in the summation. It should be

noted that the condition u <f r used in equations (4-6) and (4-7)

implies that the central peak was deleted and not just the point u » r.

The average value <•> was also taken of the set of points having the

central peak deleted.

The significant results to be obtained from these plots are that

the signal-to-noise ratio increased approximately 6 dB for reasonably

correlated data and that the slope of each of the curves near a = 1.0

is relatively small. This latter observation means that the processor

is relatively insensitive to the choice of p for values of p near the

correct value p . The performance of the processor for each value of

R is given in Table 4-2.

The processor output signal-to-noise ratio, given by equation

(3-88b), is theoretically independent of the adjacent cell correlation

coefficient. However, for the class of data being considered in this

section, as p -» 1 the amplitude of the data must approach a constant

value. Curves giving experimental results of the output signal-to-noise
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Table 4-2. Correlator Performance for the Separable

Exponential Filtered Data.

R
0

0

0.5

1.0

2.0

P

.049

.309

.652

.868

Ga-0

1006

773

224

52.6

<W

1001

1001

878

441

Processor
Gain (dB)

0

1.1

5.9

9.2
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ratio as a function of p are given in Fig. 4-4. It is observed that

the correlator output signal-to-noise ratio decreases by approximately

3 dB at p = 0.9. For values of p > 0.9 the signal-to-noise drops

precipitously. It is concluded that the processor yields acceptable

results for the range 0 < p < 0.9, and the value of the results for

p > 0.9 is questionable.

4.1.2 Isotropic Exponential Filter

The experimental procedure of subsection 4.1.1 is repeated in

this subsection where the data are obtained by convolving the two-

dimensional array of random numbers with a circularly symmetrical

exponential filter. The impulse response of this filter is of the form

h(x) - k2 exp - - (x + X2
) (4-8)

|xj < R, i - 1,2,

where the normalization coefficient k? derived in Appendix B, is given

by

k2 . { 2TT RQ [l - (1 + £-) exp (- f-)] } (4-9)

The parameter R is defined as the characteristic length of the filter

as was done earlier in equation (4-2). The variable R is the size of

the filter, and both R and RQ are measured in terms of picture elements.

A plot of the impulse response of this filter is shown in Fig. 4-5(a).

The data set used in subsection 4.1.1 had preferential correlation

directions introduced by the filter defined by equation (4-1). The

filter used in this section was selected so as not to introduce such
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N - 6k

N - 1*8

N • 32
-B-

i I

0.1 1.0

Average Adjacent Cell Correlation (p)

Figure U-U Correlator Output Signal-to-Nolse Ratio as a
Function of the Average Adjacent Cell
Correlation
(Separable Exponential Filter)



(a) Filter Impulse
Response

(c) R

Figure U-5 Correlator Outputs for Various Amounts of Data Correlation
(isotroplc Exponential Filter)



Figure l*-5 Cont,
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preferential directions into the correlation function; this filter is

termed the "isotropic exponential filter." Observed values of p for

various values of R and template sizes are given in Table 4-l(b).

The purpose of this experimental procedure is to compare the

results of subsection 4.1.1 with the processor performance when the

data set has statistical properties other than those given by

equation (3-38). The correlator outputs for corresponding values

of R as used in Fig. 4-1, but using this isotropic set of data as

the input, are shown in Figs. 4-5(b)-(e). The template size was

again 32 x 32 picture elements. Comparing the corresponding outputs

in Figs. 4-1 and 4-5 shows that the outputs have very similar character-

istics.

Defining p' and a as in the previous section, the sequence of

processor outputs as the prewhitening coefficient a is varied, is

given in Fig. 4-6. The data used in this sequence were obtained with

the filter having R - 2.0 and the correlator template size was 32 x 32

elements.

The numerical results of the two sequences of experiments shown

in Figs. 4-5 and 4-6 are summarized by the curves of Fig. 4-7. The

identical procedure for determining the signal-to-noise ratios as used

to obtain Fig. 4-3, was used to compute the curves of Fig. 4-7. The

performance of the processor with the isotropic data set is summarized

in Table 4-3.

Care must be used in comparing the results shown in Figs. 4-3

and 4-7 because the value of the average adjacent cell correlation

coefficient differs between the data sets for the same value of R .o



(a) a » 0.0

(c) a - 0.5

(b) a = 0.3

Figure h-6 Correlator Outputs for Various Prewhltenlng Coefficients
(isotroplc Exponential Filter)



(d) a = 0.7

(f) a = i.o

(e) a - 0.9

Figure U-6 Cont,
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1200

1.0

Figure k-7 Correlator Output Signal-to-Noise Ratio as a
Function of the Prewhltenlng Coefficient
(isotroplc Exponential Filter)
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Table 4-3. Correlator Performance for the Isotropic

Exponential Filtered Data

Ro

0

0.5

1.0

2.0

4.0

P

0.049

.254

.654

.902

.972

Vo

1006

735

153

28.5

9.58

*̂j /'UFA V\of i rwj\ i

1005

967

813

558

423

Processor
Gain (dB)

0

1.2

7.2

12.9

16.6
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However, It Is readily observed that the curve for R « 0.5 of

Fig. 4-7 does not reach the curve for R « 0. In addition the curveso

of Fig. 4-7 have their peak values at approximately a - 0.95.

Fig. 4-9 gives the correlator output signal-to-noise ratio as a

function of the average adjacent cell correlation for the family of

curves generated by templates having N x N elements. Comparing Fig. 4-9

to the corresponding earlier result shown in Fig. 4-4 yields insignifi-

cant differences. Thus it is concluded that the processor is not

critically dependent on the exact form of the covariance function of

the data in order to give acceptable performance.

Certain additional results were computed using the data set

obtained with the isotropic exponential filter. The correlator output

for various sizes of templates is shown in Fig. 4-8. The data set

used was obtained using the filter with R =2.0 and the template sizes

were N x N picture elements where the values of N were 32, 48 and 64.

It is observed that the variance in the pedestal decreases as N

increases; however, the width of the central peak remains essentially

unchanged.

In Fig. 4-10 the processor output signal-to-noise ratio is plotted

as a function of the template size; in these plots the independent

variable was chosen as N where the number of picture elements in the

template is N x N. Fig. 4-10(a) gives the results where the template

is a subimage of the background whereas Fig. 4-10(b) gives the results

where the template is obtained by the processor for the prewhitening

coefficient or - 1.0. It is of interest to note that the results of

Fig. 4-10(b) are a series of linear loci and are approximately parallel.
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Figure 14-8 Correlator Output for Various Template Sizes
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Figure U-10 Correlator Output Signal-to-Noise Ratio as a
Function of Template Size
(isotroplc Exponential Filter)
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From the results of the two previous sections, it is observed

that the differences which exist between corresponding processor

outputs for the two data sets are not significant. Thus it is suggested

that this processor which is developed for the class of data sets having

isotropic exponential covariance may be applicable to data having

different statistical properties. An additional result of interest is

the smoothness of the curves of signal-to-noise ratio as a function of

the prewhitening coefficient for values of or near a « 1. This suggests

that the choice of a value for p is not a critical factor for the

processor to yield useful results.

4.1.3 Signal-to-Noise Ratios for Geometrically Distorted Data

If geometrical distortion exists between two corresponding sets

of data, there results a loss in the correlator output signal-to-noise

ratio compared to the value obtainable using undistorted data. An

experimental verification of this statement was obtained and the results

are shown in Figs. 4-11(a) through (c). These curves were computed

using the ideal data discussed in section 4.1.

The distorted data were obtained by rotating the set of computer

generated random numbers with a nearest-neighbor interpolation algorithm.

Following this rotation these data were convolved with the isotropic

exponential filter, equation (4-8), having the appropriate choice of

characteristic length R . These data were then crosscorrelated with a

similarly filtered set of undistorted data, and the resulting output

signal-to-noise ratio was determined.
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The significant results shown by these curves is that as the

data becomes more highly correlated, the correlator output signal-to-

noise ratio, although less in magnitude, is less sensitive to the

geometrical misregistration. This of course is an intuitively satisfy-

ing conclusion since the correlation distances become greater as the

characteristic length of the filter increases.

4.2 Noise Free Experimental Data

The processor used in section 4.1 is now applied to line scanner

data. In this section the reference data S is again selected from

the background data, giving a reference signal which is both noise

free and distortionless. The images processed in this section are

typical of scenes observed in line scanner imagery.

In the results of this section, shown in Figs. 4-12 through 4-14,

the title "image template" refers to the use of S itself as the corre-

lator template, whereas the term "processor template" is taken to mean

that S has been convolved with the grid operator 6, given by equation

(4-3), to obtain the template for the correlator. In addition the

number of picture elements in the template for a given correlator

2
output is N .

A scene of an agricultural area is shown in Fig. 4-12(a); the

outlined area represents the approximate area from which the reference

data set S was selected. Fig. 4-12(b) shows the output of the cross-

correlation of S with the background S. . It is noteworthy that—r —b

Fig. 4-12(b) typifies the correlator output of those scenes consisting

primarily of agricultrual fields. The correlation function is being

viewed at an angle of rr/4 radians, and it is readily apparent that the



(a) Agricultural
Area

(c) Processor Template

N2 = 1̂ 096

(b) Image Template

N2 = 1*096

Figure b-12 Correlator Output for an Agricultural Area



129

correlation distances along each of the orthogonal axes are significantly

different.

The correlator output where the template was obtained by convolv-

ing the grid operator G with SI is shown in Fig. 4-12(c). The peak

of the correlation is readily identified as in the previous figure;

however, this processor exhibits a significant suppression of the

pedestal variance.

An urban scene is shown in the outlined area of Fig. 4-13(a)

and the corresponding correlator outputs are shown in Figs. 4-13(b)-(e).

As was previously observed for the agricultural area, the location

of the peak in the correlator output using the image template is

readily established. However, the pedestal variance in the correlator

output using the processor template is significantly reduced.

The outlined area in Fig. 4-14(a) is an example of a natural area.

The correlator outputs shown in Figs. 4-14(b) and (d) are significant

because in each of the outputs the peak corresponding to the correct

juxtaposition of S on the background appears as a narrow peak project-

ing from a larger bump. If a hill-climbing algorithm was being used

to locate the correct juxtaposition of S and the step size was large,

it is conceivable that an incorrect maximum would be found. However,

in Figs. 4-l4(d) and (e) these undesirable lobes have been reduced

and the central peak is readily identified.

The significant numerical quantities associated with these results

are tabulated in Table 4-4.



(a) Urban Area

(c) Processor Template

N2 - 102U

(b) Image Template

N2

Figure U-13 Correlator Output for an Urban Area



(d) Image Template

N2 - U096

(e) Processor Template

N2 = U096

Figure U-13 Cont



(a) Natural
Area

(c) Processor Template

N2 - 102U

(b) Image Template

Figure U-1U Correlator Output for a Natural Area



(d) Image Template

N2 - U096

(e) Processor Template

N2 » U096

Figure k-lh Cont,
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Numerical Quantities in the

Noise Free Line Scanner Data.

Figure

4-12(a)

4-12(c)

4-13(b)

4-13(c)

4-13(d)

4-13<e)

4-14(b)

4-l4(c)

4-14(d)

4-14(e)

Template
Size

64 x 64

64 x 64

32 x 32

32 x 32

64 x 64

64 x 64

32 x 32

32 x 32

64 x 64

64 x 64

Adjacent Cell
Correlation

.775

.775

.629

.629

.690

.690

.577

.577

.570

.570

Signal- to-
Noise Ratio

133

4510

106

664

234

1880

21.8

75.9

10.4

966
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4.3 Multitemporal Data

Multitemporal data sets generally exhibit both misregistration

and noise components. The processor template, given by equation (3-78),

requires both the signal and noise covariance matrices. In the general

case, these matrices must be estimated from the data, although for

certain classes of data the form of the matrix is assumed and the

parameters needed for determining the matrix elements are estimated

from the data.

The difficulties in obtaining estimates of these covariance

matrices were discussed in Chapter 3. Briefly, however, these diffi-

culties arise from the requirements of large arrays of computer memory

and the size of the data sets necessary to obtain meaningful statistical

estimates of these matrices.

In view of these computational difficulties the development of the

template given by equation (3-78) will not be carried out; instead, the

processor used previously in this chapter will be used to experimentally

evaluate its applicability to multitemporal data sets.

The data sets selected for multitemporal processing are shown in

Fig. 4-15 with the reference data S selected from set A and the back-

ground data S, chosen from set B. Four areas are selected from this

data for processing, and the approximate locations of these areas are

outlined in data set A. The following procedure is used in analyzing

these data sets. The correlator outputs for these test areas for

values of the prewhitening coefficient of 0.0 and 0.9 are computed.

From these results it is concluded that the algorithm will not give

meaningful results for geometrically uncorrected data regions.



I
'

Region
1

Region
2

Region
3

Region

Data Set A Data Set B

Figure U-15 Multitemporal Data Sets
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Table 4-5. Characteristics of the Experimental

Multitemporal Data

Purdue Flight Line 210

DATA SET A DATA SET B

Run No.

Date

Time

Altitude

Heading

No. Samples/Line

Angular Resolution

Wavelength Band Used

71053900

13 Aug 1971

1202

5000

180

222

6.06x!0"3

.54 - .60

71062900

30 Aug 1971

1229 hours

5000 feet

180 deg.

222

5. 82x10" 3 radian

.54 - .60 u
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The moduli of the Fourier transforms of these data regions are

then computed, and the data of Region 2 geometrically corrected. The

section concludes with the crosscorrelator outputs where the corrected

data are the crosscorrelator inputs.

4.3.1 Crosscorrelation of Misregistered Data

The outputs of the crosscorrelator for the data sets selected

from the set of multitemporal imagery are shown in Fig. 4-16. For the

results shown in this figure, the leftmost display is for a value of

the prewhitening coefficient a » 0.0. This corresponds to using the

reference data set S as the correlator template. The outputs for

Of => 0.9, a value chosen to approximate a nominally correct value of

this coefficient for most previously observed data, are shown in the

rightmost pictures.

The correlator outputs shown in Fig. 4-16 for regions 2 and 3

exhibit the typtically observed results for scenes consisting of

rectangular fields. Observing the location of region 1 in Fig. 4-15,

it is seen that this area too is composed of agricultural fields.

However, data set B exhibits a non-linear distortion component in

this area, suggesting that the aircraft began executing a maneuver

during the period of time in which these data were being taken.

The correlator output shown in Fig. 4-16, region 4, shows a

results obtained with input data selected from an area containing

undeveloped terrain. This output exhibits a large, readily distinguish-

able unimodal peak. With data from a class exhibiting such a cross-

correlation function, efficient algorithms can be developed such that



Region 1 , a = 0.0 Region 1 , a = 0.9

Region 2 , a = 0.0 Region 2 , a = 0.9

Figure k-l6 Correlator Outputs for Multitemporal Data



Region 3 , a - 0.0 Region 3 , a = 0.9

Region k , a = 0.0 Region h , a = 0.9

Figure U-16 Cont.
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a complete search of a region of the correlation output plane for

a maximum is not required. Rather a search procedure is implemented

where successive steps move toward the peak.

The results for a - 0.9 without exception are of little value.

However, for the processor to yield useful results, it will be demon-

strated that it is necessary to implement a geometrical correction of

the data.

4.3.2 Regional Geometric Distortion

Regional geometrical distortion can, for certain classes of dis-

tortion and data, be estimated by determining the differences in the

moduli of the two-dimensional Fourier transforms of the two approximately

corresponding regions under consideration. Examples of moduli of

Fourier transforms of line scanner data are shown in Fig. 4-17. The

Fast Fourier Transform algorithm was used for computing the transform

of these data. In each of these pictures the transformed data have a

logarithmic amplitude scale, and the gray scale employed in the display

system is linear. The size of the data set being transformed is

128 x 128 picture elements.

The transforms of regions 1 and 3 exhibit the concentration of

spatial-frequency energy in the linear loci typical of structured data

scenes, whereas the moduli of the transforms of region 4 exhibit

unstructured characteristics. In each case it is of significance that

most of the energy appears to be concentrated in the very low

frequencies. The double lines in the moduli of the structured data

are due to the aliased energy from the pattern located at the adjacent

harmonics of the sampling frequency.



Data Set A Data Sct B

Region 1 Region 1

Data Set A Data Set B
Region 3 Region 3

Data Set A Data Set B
Region U Region k

Figure k-lj Moduli of Two-Dimensional Fourier Transforms
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The data from region 2 were selected as the set to be geometri-

cally corrected. The moduli of the transforms of these data are

shown in Fig. 4-18. The algorithm for locating the loci of energy

in the transform domain, which was developed in Chapter 2, was

applied to these transformed data, and the angular quantities given

by the algorithm, measured with respect to the u, axis, are as follows

_2
data set A -7.18 x 10 radian

1.57

data set B -3.30 x 10"2 "

1.52 "

With a hypothetical transform coincident with the coordinate axes

used as a reference data transform, the resultant angular quantities

defined in Fig. 2-13 are

data set A 0. = -4.1°

02= 0°

data set B 0. « -1.9°

02 - -3.3°

The two-dimensional polynomial given in equation (2-14) was

used to implement the correction. Rather than mapping one data set in-

to the other, it was chosen to rectify each data set assuming the

reference data set was coincident with the coordinate axes. Examining

the data sets in both the spatial and spatial-frequency domain, the

angular quantities chosen for the rectification differed slightly

from those above. The numerical values used for the rectification are



Data Set A Data Set B

Data Set A Data Set B

Figure 1̂ -18 Modulus of Distorted Data and Geometrically
Corrected Data for Region 2
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data set A 0,_ - -3.7'

data set B -1.7*

-3.3

with the reference transform angular quantities having the values

9l-o°

92 = 90°

for each of the data sets.

Thus for data set A using equation (2-56) the value of the skew

coefficient is

- tan [ -̂  (3.7)] - -0.0647

The distortion matrix, defined by equation (2-58), is then

0.9979 -0.0645

0.0 1.002

The corresponding quantities for data set B are

tan [ ̂  (86.7 + 1.7)]

tan[ -̂ 5 (1.6)] = 0.0279

and the distortion matrix is
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0.9999 -0.0297

0.0576 0.9987

The results of this geometrical correction on the spatial data

are shown in Fig. 4-18. It is emphasized that the correction is

applicable only in the center of each of these pictures as the

distortion introduced by the aircraft motion is a dynamic quantity.

4.3.3 Correlator Output for Geometrically Corrected Data

The output of the crosscorrelator for the corrected data set is

illustrated in Fig. 4-19 for various values of the prewhitening coef-

ficient a. The template size for each of these outputs is 64 x 64

picture elements. Comparing the result of Fig. 4-19(a) to the corres-

ponding output of region 2 of Fig. 4-16, it is seen that the geometrical

correction has increased the sharpness of the peak at the correction

justaposition of J3 .

A significant result is that the pedestal variance is reduced while

the central peak becomes more discriminable as the value of a approaches

unity. A plot of the correlator output signal-to-noise ratio for these

results is shown in Fig. 4-20.



(a) a a o.O

(c) a = o.

(b) a = o.

Figure k-19 Correlator Output for Corrected Multitemporal Data



(d) a - 0.7

(f) a - i.o

(e) a = 0.9

Figure U-19 Cont
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0

Alpha (a)

Figure lv-20 Correlator Output Slgnal-to-Noise Ratio aa a
Function of the Prewhltening Coefficient
(Geometrically Corrected Multitemporal Data)
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CHAPTER 5

SUMMARY

5.0 Summary

Given two sets of Imagery of. some common area taken at different

times, it is observed that these data exhibit geometrical misregistra-

tion. The rectification of this imagery requires that the parameters

be determined for the mathematical model assumed to characterize the

misregistration. The problem studied in this investigation is the

identification of conjugate, or corresponding, points in multi-

temporal imagery such that the coefficients of the misregistration

model can be obtained.

Selecting a reference data subimage, denoted S , from the first

data set, these conjugate points are located by finding the correspond-

ing subimage S' which is embedded in the background data S, . The

measure of similarity between data sets is taken to be amplitude

correlation. Assuming the misregistration between S and s' to be—r • ~~r

modeled by an affine transformation, a sequential procedure is

implemented in which the geometrical distortion components are first

estimated and removed. Algorithms utilizing the moduli of the two-

dimensional Fourier transforms of the data S and its approximate

corresponding subimage S7 are developed for estimating the distortion

model coefficients.
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Following the geometrical correction, the displacement

coefficients are estimated by determining the location of the peak

of the correlation surface computed by crosscorrelating a template,

generated from the reference data, with the background S, . The peak

of this correlation surface is assumed to be the point of correct

superposition of the reference data on the background data.

The algorithms reported in the literature for computing the

correlation surface, or some equivalent quantity, do not give a

surface on which the point of greatest correlation is maximally

discriminable from the values at other points of the surface where

the criterion of discrimination between points on the surface is as

defined in Chapter 3. The one exception is the filter reported by

Arcese et al. [6],

The filter derived in this investigation extends these previous

results to data having a covariance matrix K and in which the back-. . . . . . ° • —3 •• . . . • . •

ground data contains an additive noise component with statistical

properties characterized by the covariance matrix K . The analytical

expression of this filter is obtained under the constraints of both

an output of unity at the correct superposition of the reference data

on the background and for abounded energy in the filter. With the

removal of both constraints and for no additive noise components, this

filter reduces to the result of Arcese et al. If in addition the

correlation between adjacent picture elements is neglected, which

yields the identity matrix for K , the filter then becomes the

reference image itself.
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The application of this filter to noise free and distortionless

data, with the covariance matrix of the image assumed to be of a

simple exponential form, yields results which substantiate the

theoretical development of the processor. In these results the

correlation surfaces of the data sets processed with the filter

exhibit narrow central peaks and have significantly decreased variance

in the pedestal region of the surface.

The application of this algorithm to multitemporal data

introduces some problems which at the present have no solution.

Implementation of the general filter for this data requires knowledge

of the covariance matrices of both the reference and noise processes;

however, it is not possible to make meaningful estimates of these

quantities at the present time. The difficulty in estimating these

matrices arises from two sources. The first is the size of the arrays

required for handling the matrices in the computer. It has been

experimentally found that the useful sizes of reference data sets

range between 2 x 2 to 2 x 2 picture elements, with the resulting

sizes of the covariance matrices ranging between 2 x 2 and

14 142 x 2 elements. The second difficulty is the unavailability of

a sufficiently large set of data having similar statistical properties

to the reference such that a meaningful estimate of the covariance

matrix of the reference data can be made. An additional difficulty

in estimating the noise properties is that, with the noise defined

as the difference between the data sets, the determination of K

requires that the data be in registration to obtain the differences

which are related to scene changes and are not due to misregistration

error.



154

If it Is possible to approximate the estimated covariance matrices

with matrices having a Top11tz form, the requirement for computer

storage can be reduced by a factor of 1/m where the number of elements

in the reference data set is m x m. However, the requirement remains

for the availability of data sets of sufficient size from which to

make the initial covariance estimates.

The use of the algorithm derived for the noise free processor

with both noise free and multitemporal data yields encouraging results

in that the central peak of the correlator output indeed becomes more

discriminable from the output in the pedestal region where discrimina-

tion is defined as the ratio of the correlator output signal-to-noise

using the optimum filter to the corresponding correlator output

quantity with the reference scene used as the filter. The increase in

discrimination for the noise free data ranges between 3 to 15 dB and

for the multitemporal data the corresponding increase is greater than

6 dB.

A requirement imposed on the data by the filter for the optimum

discrimination of the correct superposition of £ is that the

.geometrical distortion components of this misregistration model must

be reduced below the magnitudes found to typically occur in the multi-

temporal data. It is demonstrated in this investigation that the

linear geometrical distortion existing between two data sets, can be de-

termined from the moduli of the Fourier transforms of these data. Values

of the skew and rotational distortion components were determined for

a set of multitemporal imagery using the linear regression algorithms
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developed in Chapter 2. These values of these distortion components

were found to agree with numerical values obtained by independent

methods to within a few tenths of a degree.
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APPENDIX A

THE TWO-DIMENSIONAL FOURIER TRANSFORM

The properties of the two-dimensional Fourier transform of the

function f (x) under an af f ine transformation

H - A x + t (A-l)

where A is a [2 x 2] nonaingular matrix and

are of interest in this study. In the following, expressions for
V .

both cartesian and polar coordinate systems are derived and the

symmetry between the spatial and spatial- frequency domains is

discussed.

The two-dimensional Fourier transform of the function f (x) is

defined as

F(u ) - J J f(x) exp [-J2TT (u,x) ] dx (A-2)
•CO .

and the inverse is

f(x) - J J F(u) exp [ J2n (u,x) 1 du (A-3)
•OD - . •

where

U2
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is the spatial frequency and (u,x) is the inner product

T
(".»*) ." H * " uj *i + U2 X2 *

(a) The Affine Mapping

The Fourier Transform of the function

H

is

f (x) *» f (H x) - g(Z)

F(u) - J J f(H x) exp [-j2rr(u,x)~j dx
— 00

i r* p A v r •« r, ;-iTT 8(x) exp •< -J2rr (u,A.
J J _J I L ~

exp[ J2n(u, A"1 t)]

J J S<*> e^ [-J2Tr(u , A'1

- jjj- exp [ j2rr (u, A"1 _p

op

J J

(A-4)

(A-5)

(A-7)

- Jjy exp [ J2rr (u,t)] 9 [(A^t) u]

G(v)

where J is the Jacobian of the transformation

J -

(A-9)

(A-10)
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The relation between these coordinate variables is

F(u) < » G(v)

where <—> denotes a Fourier transform pair.

(b) The Two-Dimensional Fourier Transform in Polar Coordinates

To obtain the equation analogous to equation (A-10) in polar

coordinates, let

Xj - r cos 9 (A-ll)

x- - r sin 9

and

u. » p cos 0

(A-12)
u2 - p sin 0

Substituting equation (A-12) into equation (A-2)

« 2TT

C«) - J J r f[x(r,9)]exp F-l2ir (u.x)l d9 dr

o o

» 2tf
J J r g(r,9) exp F-j2TT(u1r cos 9 + u2r sin 9)1 d9 dr

o o .
(A-14)

Now using equation (A-ll) in (A-14)

F[u(p,0)]-G(p,0)

o» 2rr
- J J r g(r,9) exp [-j2nrp cos (9-0)] d9 dr (A-15)

o o
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(c) Scale and Rotation In Polar Coordinates

Uniform scale changes or rotations of the function g(r,9) are

related by the coordinate mapping.

' - T . . ' . ' • • . ' :

g(r,9) -> g(ar,9 + 9Q) (A

Substituting equation (A-16) into equation (A- 15) yields

a . 2 n . ' . • . . - . . ' . • - ; - _ • ; - • '
G'(p,0) - J J r g(ar, 9 + 9Q) exp [-J2nrp cos(9-0)] d9 dr (A-17)

o o

Letting 5 « ar

\-9-f6
- 2n °

G'(p,0) - J J © g(5.X) exp [-J2TT (£)p cos (X-9o-0)]dX d(S) (A-18)

o o
00 2rr

" "Tji J J5 8(5'x) •̂ •J2"? (l)cos [x • w
Ia ' o o (A-19)

G(p/a, 0 -I- 9Q) (A-20)

(d) Spatial and Spatial-Frequency Domain Symmetries

For the affine transformation defined by equation (A-l) the

resultant transform was given by equation (A-9) as

G(r) - yjj exp [ J2rr(u,t)] -5 [(Â t) u] (A-21)

Thus the coordinates- are related as

v • (A"1)1 u (A-22)
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The energy density spectrum of f(x) is

S(u) - |F(u)|2 (A-23)

and the linear phase term cancels. Thus the coordinates of the energy

density spectrum (or equivalently the modulus) are related to the

linear distortion matrix in the spatial domain, whereas any spatial

shift results in a linear phase term in the spatial frequency domain.

For real signals it follows immediately from equation (A-2) that

F(-u) - F*(u) (A-24)

where the asterisk denotes the complex conjugate. Thus the energy

density spectrum (or modulus) is symmetric about any line passing

through the origin in the spatial frequency domain.
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APPENDIX B

FILTER NORMALIZATION COEFFICIENTS

The normalization coefficients for the filters used to smooth

the random number ideal data are derived assuming a continuous

functional form. These weighting coefficients are then used with

the discrete two-dimensional convolution expression to implement

the smoothing filter. As a check for the correctness of these

coefficients, the gain (volume) of each filter was experimentally

verified by convolving each filter impulse response with an array,

each element of which was unity. .

Separable Exponential Filter

The filter impulse response is given by

x exp [- |- (X,. + x2)] (B-l)

R0 ><>, Ixjl, |x2J < R<»

The gain of hj(x) is

R R

G - 4 f [ k, exp f- ~ (x. + x,)l dx. dx. (B-2a)
1 J J l l R ^ l 2 J 1 2

(B-2b)

o o
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For unity gain

(B-3)

I so tropic Exponential Filter

The isotropic filter impulse response is given by

h2(x) » k2 exp (- f-) (B-4)
• • ' ' 'o

r - (x2 •*• x2) > 0, 0 < RQ < R < ».

The gain of h.(x) is then given by

' • ' , ' • • R 2 T T . . .

G2- | 1 k, T«ip I-S- ) d9dr (B-5a)

o o

R

'-. 2rr k. J r exp'(- |-) dr (B-5b)
o

o

l e t • ' ; ; . . , ' . , . - . ' . . • • , . ' • • • . •

X - |- , R^ dX - dr (B-6)
. • • R " O . . - . - .

o •

Thus

G0 - 2n k0 [ R2 X exp (-X) dX (B-7)
2 / «J O

and integrating by parts

2 r R/Ro p " 1
G2 •• 2n k2 R^ I -X exp (-X) I + J exp (-X) dXj (B-8a)

0

F e«P (' r ) " cx" (- F + <B-8b>o o o
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For unity gain

f 1 IT /• D \ / n \\ •
(B-9)

Test of Gain

For each filter the convolution

C{u,v)? - <E Eh(u-i, v-j) a(ii,J;y

i j

(B-10)

was computed with; the filter having characteristic length R » 1.0 and

an a(i,j) consisting of a 100 x 100 array of element each element

having a value of unity. The values obtained are

kr • 1.0006
ll • •

k0 -• 0.9998 .
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APPENDIX C

CORRELATOR OUTPUT SIGNAL TO NOISE RATIO

In the absence of uncorrelated additive noise the correlator

output signal-to-noise ratio was shown in Chapter 3 to be given by

T -1
N (C-l)

where S is the reference signal and K is the covariance matrix of

the unit variance process of which S is a finite realization. It

is assumed that the covariance matrix has the form

k pk P2k ... p111"1]!

pk .k Pk

K *

where

n-1,p IE

•'ij II
and

P<4 "

where p is the correlation between adjacent cells.

(C-2)

(C-3)

(C-4)
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The covariance matrix then has the explicit inverse

R-1

-1 -pk-1

-pic"1 (1 + p2)jfl

-pk-1

-Pi'1

(1 + p2)̂ "1

where

IV

1 -p
-p l

0 -p

P2 -p

-1

(C-5)

(C-6)

To evaluate equation (C-l), substitute equation (C-5) into (G-l)

and expand, noting that the r subscript has been deleted.

1-p
-pk"1 o

•PJE

0

-1 -Pi 1

S (B)

(G-7)

(ST(l)kf * - PS
T(2)k"1, -p

, -osfOn-Dk'1 4- Ŝ nOfc"1)

(l+p2)S;T(2>k-1

S(m)
(C-8)
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N
1-p

- pS<l)k" S(2)

ST(2)k"1 S(2) - ps'o)̂ "1 S(2) - pST(2)k'1 S(3)

+ (1+p2) S^O)*"1 S(3) - pST(4)jk"1 S(3) -

... - pST(m-l)k"1 j>(m) + ̂(m)̂ "1 S(m)] (C-9)

Now each term is a scalar, thus

FXDJs" ,s(j) - [s^Dk"1 s(j)]1 - s^j)^"1 s(i) (c-io)

since (k"1)1 - k"1, k"1 symmetric.

1-P
- 2PST(l)k-1 S(2) lf S(2)

ST(2)k"1 S(2) + ... + S^m)^1 S(m)l
~* " ~* . ~ " " " - J

(C-ll)

-W [ I S(i)k"1 8(1) - 2p I KDJt'1 S(i+l)
1-p Li-l i-1

2 m"2 T T 1+ fv I ^(i)^1 S(i)
i-1 J

(C-12)

Expanding a term of equation (C-12)

1-P
1 -p 0 .... 0

rp 1 -p

0 -p 1

in

(C-13)



172

s i
S"7~1-0

,,;- psn-Ml + p ) si2 - ps13,

-Ps12 ».. ,-ps. .'•+ s.i4 i,n-l inj

L-p
- 2p 8il8i2

(1+ p2)

- 2p

p 8. , . 8.• . i,-n-l. in
2
'in

'il

'in

(C-14)

(C-15)

N 2 N-1' 2N"2 2
] (C-16)

- -i-r [N - 2p(N-l) -I- P2(N-2)"|
* L J

(C-17)

•W (C-18)

/I N 2Nwhere N I— 2 s. .) » N, since S is assumed to be from a unit variance
VN ^

J-l

/ ! H-.l. v. •
process and (N-l) l̂ -r E s s . J - p(N-l) where p is

\H-1 . j 1J 1,JT1/
the

correlation between adjacent cells.

Substituting equation (C-18) into equation (C-12) yields

' . r M
N " ~^\ S N - 2p

L

M-l
I PN

M-2 _
E N

1-1 J
(C-19)
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| - -J-s |~MN - 2p2(M-l)N + p2(M-2)N~l (C-20)
N l-p2L J

- [ MN ] (C-21)

Thus the processing gain of the two-dimensional crosscorrelator

theoretically is equal to the total number of samples processed and

is independent of the adjacent cell correlation p.
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APPENDIX D

THE MAXIMUM PRODUCT OF A CONSTRAINED SUM

If the sum of a set of real numbers X is constrained to have

the fixed value

n
E X • K (D-l)

TO

then the product

p . n \ (D-2)

is maximized for all X. equal.

Solving for X .

•' • • • • - n . • ' ' • • .-..••..
X. - K - S X (D-3)

E
VfL

(K- E X m ) x i . . .X j . l .X j . . .X n (D-4)

l ... X X j ... Xn) (D-5)

n

m-1

c)P m K(\ \ X X } - S X fX X X X } fD-6^
^ 1 I ** 1 i «*2 H • 01 JL • i "* A I«•» • H

Q|B3 Ĵ

W1
..X ) » 0
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But

n
K - E X_

therefore,

n n (D-7)
ffl-1

(D"8)

for all j » 1, ..., n-1.

Thus all X, must be equal and have the value

X4 - - .
J n
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THE AFFINE TRANSFORMATION

176

The affine transformation is defined as

» A x •*• t « B x

where for a real two-dimensional space

"V
- X 2 -

» t •• V

. '2-

and

'11

2l

12

(E-l)

is a non-singular matrix.

Two "properties of this transformation are of importance in this

study; these are proved in the following.

(1) Any non-singular affine transformation maps lines into lines.

Proof: In any affine space the vector x lying on the line

passing through u, v can be represented as

x - (1 - X) u + X v, X real (E-2)

then
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B x - A [(1 ̂  X) u + X v ~j + t (E-3)

- (1 - X) (A u + t) + X (A v 4- t)

» (1 ̂  X) B u + X B v

Thus B_ maps the line passing through u,v into the line passing

through Bu, By.

(2) Ratios of lengths of line segments are invariant under an affine

transf oration.

Proof: u, u , v, v are elements in the real n-dimensional

Euclidean space E . The distance between vectors is defined as

||a - v.|| - |_ £ (u. - v.rj (E-4)

Consider the mapping

' B - . .
u •* B u (E-5)

with

where A is an n x n nonsingular matrix and _t is the n x 1 displacement

vector.

Now the ratio of line segments in the affine space is



HA « + 1 - A ̂  : - ; til |!4<u - ao) II

t - A v. - .t|| l|A(y - v
'O

HAll llu - uoll I!" - uoH

l|v - vll ' H v - vl|

where 1|A|| is the norm of the operator A.

178

HH(u - u^ir I I H u - H t^l! ' . . . ; '

HH(v - v )|| " ||H v - H v || (E'6)
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