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- ABSTRACT

?he machine processing of spetially'variant multitemporal datal.

- such ae‘imagery‘obtained at different times requlres that these:deta
be.in geomettlcal reglstration such that the analyeis processor,mayl
'obtein‘tne.datum for aAepECified ground resolntion element.inVeachAof.
‘the eets of imagery being utilized'tor analyeis.

Misregistration between'cotresponding.subseta‘of lmagery contains
both a displacement and a geometrical distottion component, and the
_affine transformation is postulated to characterize this misregistra—
ttion between date subsets. Search techniques utilizing the moduli

of the Fourier Transforms of these data are developed for estimating
the coefficients of geometrical distortion components of this model
: Following the'correctlon of,thesc distortion compOnente, the dla-l'
'.'nlacement is located by the crosscorrelation of a template obtained.
ffon one set of-data,'termed.the reference; withlthe second, or back-
-gronnd data; This templete, derived for the-optimnm'discrinlnation‘
of the refefence'nate émbedded in the background is determined By
the solution of a system of equations involving the reference data

and the covariance matrix of these data.



: lhe‘derivatiohiof the:optimum>£ilter ineludestcopstraihts sueh thet_ N
the mamimum_filternoutput,_eorrespondimg-tolthe'correct'superpOBitiOn A B
of the refarence template on the background dats,bis unity and the_energ&
-in the filter is finite. The filter'obtained in this development is
linear elthough it may involue:a parameterbrequiringhthe gsolution of a
: nonlihear equation. v' | o
‘The performance of.the erosseorreIAtionvalgorithm-is evalueted
:usihg ideel dsts obteined'by conyolViug;sn array of;oomputerigeherated.
1rsndom.numbers vith a two-dimensional‘lowpsss filter having sfspecified
impulse-response._iThevresults ohtained from_thesehdsta:generslly
subétsntiate'the.conelusionsTdrswnpfrom thejanalysis of this algorithm.
The correlatorpoutput is then obtained for noise free and distortionless-
line scanner dsts; In_these data the reference:is‘seleeted es a suhimage
»Aot the-baokground deta,;and.the:dstalare selected to typify line scanner
1magery. Multitemporsl dataare processed'with'the algorithms deveIOped
'for the noise-free data to evaluate the applicability of this filter
'jto the conjugate point problem.
It is demonstrated that the crosseorrelation of the template

derived from the reference data will not yield use ful results unless '

the geometrical correction of the data is implemented. The~Fourier '
,.transform search techniques are used to-estimate thegdistortion model
coefficients, and a bilinear'interpolation algorithm is utilized to
correct the imagery. Results of the processor output using the
corrected data are given. It is showp that the optimum filter yields
a more discriminable peak of the eorrelation surface at the correct

superposition of the reference templete_on the background than does the



filter chosen as a subimage of the reference data itself,

‘x1i



~ CHAPTER 1

* INTRODUCTION

1.0 Processiﬁg,of Remotely Sensed Data -

The large scale application of femoté sen;ing techniques to the
monitbring_aﬁd evalﬁation of the environment 1is rapidly*becomiﬁg a
reality. This :eglization~1s:due cd_many technical and scientific
advances résultihg in increééing availability of muitispectr;i photo-
metric band fadiomé;ric insi:tum’gnts, -airvctaft and .sgtel'liltg 1ﬁstrument
plg;forﬁs aﬁd large dafa procéssing systéés [28,42]. The data
obtained by thesé multispectral inétruments are images representing
. the apatiai@ spectral,:and temporal characteristics of the afea
undef_inveééigation in contiguous wavelength_iq;ervala throughout
the visible.region of the eleétromagnétic gpéctfum as déll as
sel_e@:ted w’_avqleﬁgth bands in the infrared énd ﬁiérdwave portions -
of ;hih bpectruﬁ.
| A block diagfam of a mu1t1s§ectra1 remote.aensing 1nsttumentat16n

.qyateﬁ is illustta;edlin_Fig,}l-l. To analyze the large quantity of
'. data mﬁde a§a11able by guﬁh a épurce,Autatistical'patterﬁ rgcognition
gigorithmhAIZS] have been developed, and4sucﬁ pattern recognitién '
proeedurea'areliilustrﬁted in Fig. 1-2. The feature'ektfacﬁor.qelééfs'
from the pattefn tﬁose attributes whith "sépérate" a particular
pat:ern‘ao weil”as éoasible frém the set éf all-oéher pafterns.>;The

~output of the extractor is a k-tuple and 1s usually of lower dimghsion i



- Multigpectral
Data Source .

eiement . : - Filters

- Figure 1-1 Block Diégram'bf a Multispectral Data System E

%
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i than'the pattern Vectorf fhevpattern;elassifier theniassigns the
binput<vector-to one ofir¥c1asses‘based on some predetermined decisiona:
- rule., | 7 | | | : . o

An implicit.assumption in such processors is: that any one input '
”h vector 1is. derived from a common . ground resolution element. This |
“;irequirement is usually satisfied if all the elements of the n-tuple

are taken at time t= t with an instrument employing a single optical

1
path and negligible differential optical and electrical delays are
introduced into the channels following the diSpersion of the input
'foptical signal. . .

There has been recent interest in extending the pattern classifier
:input vector to include a multitemporal variation. However, such data
sets are generally misregistered because after obtaining the first data .
fibset the instrument platform cannot be made to follow the same. path‘
v'.to within a resolution element of the instrumentation system.. The. pr‘u

misregistrationnis a dynamic quantity and can be considered quasi-~

ﬂstatic only over that length of data defined by the dynamics of the _.i'

o instrument platform. and the conditions of the atmosphere in the case

'of aircraft platforms. Therefore, for multitemporal data, a pre-
;processing operation must be implemented for removing this misregistra- _
tion: before the data analysis system.can address the same - spatial
data element in each of the. data sets being used for analysis., This'
requirement for addressing a data element in the various data sets

ig illustrated»in,Fig, 1-3.

1.1 Multitemporal Data Reg_stration S

A multitemporal data registration system, shown in Fig 1-4 ‘can
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be divided into two relatively distinct parts with this dichotomy
being a functional division. The ultimate'objectiue of an overlay

4 ayatem, given two seta of imagery A and B' is to procesa set B such
that ita image under the transformation T 18 in geometrical registra-

-1 tion with set A. Thus the first part of the overlay problem is given

- enough information to define the tranaformation T, how.can the mapping

be efficiently implemented for the rectification of set B under the
constraints of computer memory size and data through-put requiremental
This‘correction'of.a misregistered data set is illustrated in Fig.'l-5.

The aolution_of this part of the problem usually involves the
'diviaion_of the total data set into‘smaller images,‘or blocks;_uhich
' nare'more readily handled A transformation is derived for7each'of
.-theae blocks and the rectification is carried out. If it ia required
to have continuity of the image across the boundaries of the blocks, y
thia'conditionvcanvbe approximated by making each block aufficiently
~gmall such that the differential scale factor or rotation wiill not
alter the block sizeAmore than some fractional part of the aize:of
‘an‘image resolution element. The alternative procedure of formulat- |
ing the problem such that the blocks of set B under'the transformation
T are constrained to be continuous across the boundaries may be |
:posaible. .

The second part of the data overlay problem is the.task of
determining the transformation T relating any tvo. blocks of data.
Aaauming that a model has been determined for T, the parameters
-of this model must be estimated from the data since the misregiatraF

tion is a pairwise property of the data sets and is implicitly defined



 T. yi, "221 }Z- ajk'xl *Z'A , 1.V21,2.

Distorted Image R " Rectiffed Image

Figure 1-5 Rectification of'Distortad"Imagéty .



'inithese data.
For the unconstraineq problen, a commonly used model for

' representing the misregistration between data blocksvis the two- -
' 'ldinensionsl polynomial .

N-1 N-1-

: 1) ko o
* -Jfogoajkxﬂ‘zwil’z"_ e

The principal advantage ‘of this polynomial model is that equation (1 -1)
is linear in the coefficients ajk lf‘a set»of cortesponding, or
:"conjugate";pointsl'is known for each ofithe hlocks_constituting a

set of imagery,_the_coefficients of the t:ensfotmstion for each of
'these~blocks are'teadily obtained by use of a lesst;squsres procedure.'

_ Thus'theirequirement arises.for_determining conjugate.points in sets

' of multitemporal imagery. -

Signal processing techniques used to determine conjugate points
almost always use correlation between data sub-blocks as a measute
of the siuilarity of these.data subsets.' To illustrate this
'ptocessing,‘assume.the data to.be acdiscrete set obtained by sampling
‘a continuous scene on a tectangularigrid and the reference data :
 subset S CA to be selected from data set A A background data sub-

block is chosen from data set B and the following inclusion relation -

. is assumed
5. _, §;c_§b . (1-2)
: nhete T is the transformation relsting_the data blocks.
The cortelation.surface |
c(u v)-- T 2 8 (i b)) ab(" +1i, v + j), §£;‘8b é 5, (1-3)5

’ij
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-'is computed for the set of indices (i j); and the peak'of thisv
surface is assumed to be the location of the correct superposition

of S on Sb _ The conjugate point pair is,then~taken to be the

location of S and ‘the corresponding subset of -b in their respective :

fcoordinate systems for this maximum of the correlation surface.-

l.2"gbjectiverof this Investigation

Thislinvestigation ia‘addressed to the problem'of'conjugate g
point'determination in multitemporal.imagery in.nhich.the'taak is
viewed as a problem in signal theory. With conjugate points defined
as in section L. 1 this problem can then be phrased as."given a
vreference set S from data set- A, what signal processing operations
will optimally-discriminate the corresponding subimage S ! in data
.3set B?" This problem is treated in the sequel with consideration
being given to both the noise and misregistration which exist

between the data sets.

1.3 Previous Investigations
‘The implementation of‘an image registration:system'onna general
purpose computer is a-relatively new field although the roots ofv
this task extend into antiquity. Only-recently has there appeared"
in the literature any significant amount of work on the image |
_ registration problem, - The work.which has appeared as well as the
experimental effort in this study have utilized digital computers.;' -
In measuring the correlation surface, ‘Anuta [4] used the-

ormalized correlation coefficient computing quanity
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M N

‘L L sty J+V) s (1,0)
R(u,v) = 1=l d=1 (1-4)
N, T 172 .
[ 3 z S2(L + u, JHv) sq]
fel g=1 B
where
: 1 M N
SQ= X I s (1 )]
{=1 j-

with'sr € §r and sB.E §b' In a later paper Anuta [Sj utilized the
g East‘Fourier.Iransform algorithm for'increasing the efficiency in
:evaluating equation (1-4). |

: Rather.than'use the normalized correlation coefficient as a
measure of image similarity, Barnea and Silverman [7] used an

‘absolute difference metric for their similarity algorithm
e-z.zlsueyé%u+u.3+wi-‘ L .a-5)
i r S , o -

The rational'for-this'algorithm:ia:thatlif the-reference data‘§_r
are not near the correct superposition on —b’ the error vill increase
‘:rapidly and a threshold can be established such that if this boundary .
_is exceeded the checking for similarity for this observation is
"terminated It is suggested that the average number of operations
Afor testing for the correct superposition can be significantly .
reduced compared to the correlation algorithm

Arcese et al. [6] developed a filter which maximized the ratio
lof the square of_the filter output at the correct juxtaposition of

S _onS§,. - Their filter was developed for the noise free case and.
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' 1with no constraints on the'filter characteristics. In addition

- the data were assumed to be from a process having a. simple exponential"'“'

ficovariance function.

| -The most complete system for the overlav ofvlarge data sets was
u,described by Lillestrand [46] This work incorporates some of the |
"ideas that were independently discovered during this investigation,
particularly in the use of pre-processing to. estimate and reduce the |
geometric distortion so as to increase the similarity of corresponding‘
data sets. Hall et al. [33] discuss a method of registering cloud
Aphotographs., Their procedure employsxa crosscorrelstion.method
’similar to that of ‘Anuta for locating corresponding geographical

features in’ the two data sets.

1. 4 Outline of Investigation ‘ _

| The misregistration of the imagery is discussed in Chapter 2

It is observed that the geometrical components of the- misregistration
:'between these data can be considered to have been introduced by a |

i spatially variant operator. ln viewsof'the-analytical difficulties o

“ in formulating a general solution to this problem, a sequential method S

s proposed in which the‘geometrical distortion components -are
‘estimated and removed prior to determining the displacement components.
1t is postulated that the affine model'adequately represents, for~the
purposes of this investigations, the misregistration between data |
'.subblocks- an algorithm utilizing the modulus of the two-dimensional
Fourier-transform of these data_isfdeveloped for:estimating the

geometrical components of this model.
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The optimum filter for disctiminating the data set S embedded
inithe background data.__b is treated in Chapter 3. This filter is
‘ derivedpunder constraints on both the filter output and the filter
energy,lzkeaults obtained in this chapter4inelude'expresgions for
the filter for both.noise free inputs and for inputs assumed‘to_.
contain additive noise with atatiatical charaeterieties given by
vthe ‘covariance matrix-K . | | |

In Chapter 4 experimental results are- preaented uaing both ideal
data obtained by convolving ‘computer generated random numbere with
: lowpaas_filters having known impulse responses and imagery obtained

'with a line seanning‘instrumentation syatem.A Plots of the correlator

"_outputs for various input data sets of interest are given, and the :

'proceaaing gains of the correlator are given for both ideal’ and .

‘_-multitemporal line scanner data.

A summary of the results obtained in this inveatigation is

' presented in Chapter 5.
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CHAPTER 2

' DATA MISREGISTRATION -

_2.Q Introduction'
Misregistration of’data_taken atldifferentvtimes occurs when, '
1after having obtained the firstfset of dats,ﬁit‘is'not possible to
"control the positioning of the instrument platform such thst it will
‘repeat the previous path to within the dimensions of the spatial
kiresolution of the instrumentation'system._ For certain kinds of
};processing of multitemporal imagery, it is necessary to implement i
:-s data pre- processing operation such thst the dats are placed into
. Aregistrstion Following such an operation on the dsta, the computer v
or other processor is able to address (or obtain) the data from a . |
common groundvresolution element in the several data channels_being j
used for analysis. v :
It'is the purpose'of this’chapter tO'develop sn appropriate_model
lof the misregistration process and' to investigate some methods of |
evaluating parameters of such a model. The first topics discussed
are the chsrscterization of the data, and definitions snd nomenclature.
that are used subsequently Models for regional misregistrstion are
" then discussed and the- affine transformation is proposed as a suit-_
able representation of the misregistrstion process. Processors for

estimating the misregistration are introduced and it is concluded
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that for the data of interest in this study, - the geometrical
distortion and displacement parameters can be determined sequentially
The chapter cpncludes_with“the_development of Fourier-transform

V, metnoda for:estimating-the_coefficients of the affine model which
-represent the,geometrieal distdrtion eomponents‘of the misregistration

'_Between'an image'pair.

2.1 Data:Soureer
The data source's(z) is assumed to be a real, stationary, wave-
number limited, two-dimensional random field. Each realization of this
prqcess,‘is,shown'in Fig; 1-1, is obtained by impulse sampling of 8(x)
on a'boundedirectangdlar region R. - Thus the sampled image is
§ = {a) = s - 2 () o @
' where 2'rt is the two-dimensional finite sequence of impulses spaced at

"'un;t distancev

: ' v _ CX,=q

2'ﬂ’(x),m Y £ 68(x.-n,, x,-n,) rect ( 1 o) rect ( 2 o)
)= 17 2™ R, R
onpmee ngmee A : 1 2

- (2-2)

|r\ <R .
0 otherwise

. with rect (ﬁ) =
and (p ,q ) s the center of the data aperture.
' The set S = { 1j : 1 < 1i<op, 1 <3ics < Q} may ‘be represented by -

" the column vector

-s-'.- . : | ' . . ) . . | . (2-38)



‘where the elements 8, are the column vectors -

i
1% j R I C
T . 21
These data'are also quantized; for each sample sij‘G §; the ualue 18
‘aij'" k;.o <k< K-1 where the ei are the quentization leveIs'end-K,'

is the total number of levels provided by the quantizer; .

- Each sampled image S obtained from e(x) is called a quantized
: picture function, or synonymously a digital picture function. Each
Zpicture.funetion s is‘an element in the-pq-dimensionel»Euclidean E
epace, and the distence between any'two digitel picturelfunctionq.g

and Q isvthen

d(p,q) - \\r - qll = (9,9)1/2 o aw

[(_-9.) -0

f=lewe -sm

1/2

- where tr (*) is the trace of the matrix. it should be noted that oncegf,-

a digital picture is obtained it can be regarded as a known.
deterministic, diacrete,_twofdimensional aignal.A Houever, the
statistical properties of this picture,.such'ae yerience-or banduidth,
are in fact reletedito these same propertiea ofve(g)}.~ B

Considering now tbe content of the picture'function, an "object"
is a.subset of §»which'represents gome identifiable thsiceI-entity in
the object plane. The distance betueen two objects in a picture-_

function is defined as the sum of their row'and_column distancee;i
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"Tnus for two objects located at (xl, xé) and (yl, y2) respectively

brow = %2 = ¥5l - (2-52)

Beor = 1% =3yl I (2-5b)
) and :

d(x, ¥) = Brgy + 8.5 o - (2-6)

col

' ’Avﬁscene" is compdsed of a collection of objects.together,with :
-_their mutuai.geonetrieel_relationships;:the term ecenedis synenjmons
| withwthe term iﬁagery.ifithe data are aesumed-continuoue; whereas_it
18 synonymous with digitel-pieture function wﬁen the data are in a
discrete formet; L | |

Geometrical distortion between two scenes. r(x) and e(x) is defined
._to be the mapping D of one scene onto the other Such a mnpping can be

i‘expreeeed as
*@ = [a(;)l-'s[g(:_:), wl @n’

where § n are real valued functions and this mapping is one-to- one
and onto. Distortion manifests itself in the differences in the

_ distances between corresponding objects in the two digital pictures .

R S where
B . r(l:). 2“(5)- | . o o N | . : : _. ) (24_83) v.
- §.. '8_(5) 2{:@):: " o S C . i . _‘(2-AsbA),

" Translation is defined as

rr(g)e- T(8(x)] = e(xl + t;, x, + tz) ‘ (2—9)1
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' Misregistrgtion iﬁlgenerél can bé'expressedjby:the.pfoduct of the

opérators D and T as

- e@ - @ @am

which for digithi p1ctute»fﬁnctions results in -
: 2. " -2 j} Co
r(x) - mx) = (T0(s(x)]} - (@) © (21D
In the séQuel the discussion often requirea'a_qualification ag.toﬁ
the size of the data set.béihg considéréd., To:this end the_imprecisély-f
defined terms locai; global ahd.:egidpa} wilijbé_usgd. Tﬁe tegﬁllocal

1y

is‘uhed to indicat§ that the data set_consfafs of an elemeht 8
‘together with those immediately surrounding elementa_{ski}‘such_that'

id(sij,fskl)‘- 'i:- k| + |j';:l‘ <N .f»i L (2-12)_'7
with N as 1nteger}

The tétm_globéi is USed'in Ehe;sénéévfhat.the’ehfif¢ d§;a ééé iéi,
'beingxconsidered,  Betwgeh-;hese_exﬁreﬁés; the'ﬁerﬁ fegional‘iseused
toYAefiné a.data‘sgt*for which one chéicelo£~diqtortiqh mddei‘

: Zcoefficients setfesqﬁo!adeqﬁatélytreﬁ?eseﬁﬁithe misfegist:gtibnwbetéeen
the data and its cohjggéte iﬁige.- The si;; bf a regidn-isv?e:y agpenaént

oh_both the gssumed midregiatration'modél;and on the data itself.

2.2 A Regional Misregistration Model |

Remotely sensed images typicallof'those.bbtained by a line
scanning instrument are shoﬁn in Fig. 2-1. As illustrated by this
figure, seldom is the misregistration between two data sets |

charﬁccerized solely by the displacement of one 1mage'with respect



Example A Example B

Figure 2-1 Multitemporal Imagery Exhibiting Misregistration
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to the other. Rather, a geometrical component, as defined by
equation (2-7) is also present. A commonly used model for character-
1zing this misregistration 1s the two-dimensional polynomial

N-1 N-1
= ¥ z ia
Y4

x) x5, 1=1,2 (2-13)
=0 k=0

jk

where x and y are respectively the coordinate systems of the reference
and background data sets.
The utility of the polynomial model lies in the linearity of

equation (2-13) as a function of the coefficlents a Thus, this

b
model is useful in least-squares procedures where a set of correspond-
ing image points is given and an equation of a given order which best
relates these points is desired. Table 2-1 lists several polynomials
obtained from equation (2-13) for degree N-1 less th;n or equal to

three. Also given is the number of coefficients i 1= 1,2 which

ajk’
must be specified for a polynomial of a given degree. It is evident
that the number of coefficients required for a model increases rapidly
with the degree of the polynomial.

As a function of the coordinate variables x, equation (2-13) is
linear only if the coefficients 1all # 0, with 1 = 1,2, The terms 1aoo
and 2800 represent the displacement of the origins of the two

coordinate systems x and y. This nonlinearity is removable by the

coordinate translation

Y= X < 8y i=1,2 (2-14)

However, the ia are unknown and are the quantities of ultimate

00
interest. For all indices j,k > 2, equation (2-13) describes a



Table 2-1. No. of Parameters Required for Two-Dimensional
Polynomial Misregistration Models.
Common Degree No. Parameters
Name N-1 Required to
Determine Model
displacement 0 2
linear 1 4
affine 1 6
projection 2 8
quadratic 2 12
cubic 3 20
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nonlinear transformation.

The data of interest in this study are obtained using a
mechanical line scanning instrument mounted in an aircraft and
operatéd at an altitude of approximately 5000 feet. As illustrated
in Fig. 2.2, this imagery is obtained by recording the scene radiance
from an effective ground resolution element as this resolution element
is moved along an approximately linear locus by the rotation of a
mirror within the instrument. Adjacent scan lines are spaced by the
motion of the aircraft, and the angle o between the direction of
the scan lines and the aircraft ground track is

@ =Z Yy (2-15)

where Y is the crab angle of the aircraft with respect to the ground
track.

In this study attention is directed toward the misregistration
of subimages of data, termed regions, which are used for determining
geometrically corresponding points in the two data sets. The size
of a region ranges between 32 x 32 and 128 x 128 picture elements.
With data sets of this size and with any changes in the aircraft
attitude necessarily limited by its dynamics, it is assumed that
each region of data consists of a sequence of equally spaced, linear

scans of the scene. Each scan line is at an angle
v =24y (2-16)

with respect to the aircraft ground track and the ground track has the
angle B with respect to a pre-assigned coordinate system. These

quantities are illustrated in Fig. 2-3.
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e,
Total Scan Angle

Effective / Scan

Ground Direction
Resolution
Element

Figure 2-2 Line Scanning Geometry
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It is observed that the regional misregistration then has the
following four components:
(1) scale
(2) rotation
(3) skew
(4) displacement.
These misregistration components are assumed to be characterized

by the affine transformation

y=Ax+t=Bx (2-17)
where
Y X t
Y. - y X = > L=
Yy Xy ty
and
1 %2
é-
21 %22

is a nonsingular matrix characterizing the geometrical components of
the misregistration. The quantities are illustrated in Fig. 2-3,

where x and y are the coordinate systems and

*10 T Y10

t = (2-18)
%20 T Y20

is the displacement of some known point in each data set.
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It is illustrative to examine the distortion matrix A in detail,
identifying those coefficients which reflect the various distortions.
For scaling differences along directions parallel to the coordinate

axes, the distortion matrix is
A= (2-19)

where the a . are the scaling coefficients. For rotation, A becomes

ii

the orthogonal matrix

cos B sin B
A= (2-20)

-gin B cos B
where
B =B, =8,
is the difference in angular orientation of the ground tracks of

each data set with respect to its coordinate system.

Skew distortion is introduced by a distortion matrix of the form

A= (2-21)

and it is readily verified that the angle o, defined by equation (2-16a)

is

-1
o= o, - dz = tan (321) (2-22)

1
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The distortion matrix A is some combination of these components
distortions. The necessity to determine the elements of A from the
two regional data sets and a procedure for accomplishing this task
for certain classes of data are discussed in the subsequent sections.

The significance of the affine model assumption is that the mis-
registration can be interpreted as consisting of two components; the
first is the displacement of corresponding regions and the second is
the characterization of the geometrical distortion by a linear model.
It will be established in the sequel that for certain classes of data
and under very reasonable assumptions, Fourier transform methods may
be usgd to separate these two misregistration components and straight-
forward search techniques are available for estimating these distortion

parameters in the spatial frequency domain.

2.3 Misregistration Processor

The function of the misregistration processor is to identify
corresponding points in the two sets of imagery being processed.

Since these data are ordered by a Cartesian coordinate system, this
identification requires the determination of the translational com-
ponent t of the assumed misregistration model.

The general problem of conjugate point identification is
illustrated by the block diagram of Fig. 2-4. The operator D
introduces the misregistration; the noise N is assumed to be additive,
independent of S and with a constant power spectral density. The
filter H is to be determined such that with the reference data set S,
selected from S, the filter output when §r overlays its conjugate data

set §; in §, 1is maximally discriminable from the outputs at all other
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1=

o
<}
N

Figure 2-4 Block Diagram of a General Misregistration Processor




29

spatial juxtapositions of §r on §b'

An interesting aspect of this problem is developed by examining
the operator D. For this operator to be spatially invariant it must
have the property of commuting with the translation operator T [56].

Assuming continuous operators on f(x)

D[T £(x)] = T [D £(x)] (2-23)
where T is the translation operator

HE@] = £(x; + £, x, + t,) (2-24)
The operator D induces the mapping

D{f(x)] = fE(x), N(x)] (2-25)

where £, T are real and the mapping is one-to-one and onto. Applying

the criterion of equation (2-22) to the scene s(x) gives
p{r(s(x)]} = s(8(x - ), W(x - O] (2-26)
T{D[s(x)]} = s[E(x) - t;, N(X) - t,] (2-27)
and it immediately follows from equations (2-26) and (2-27) that

D{T(s(x)]} # T{D[s(x)]} (2-28)

From equation (2-28) it is concluded that

Zn@x) - (M s(x)]} # 2m(x) - T{D[s(x)]} (2-29)

and D is a spatially-variant operator.

In view of the fact that the transformation D is spatially variant,

the determination of H for the general misregistration is not pursued
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farther. Rather a sequential procedure is developed, illustrated
by Fig. 2-5, where the geometrical distortion components are estimated
and removed before the signal is processed by the filter H.

For the class of data of interest in this study, additional
simplifying assumptions are made for purposes of formulating the
distortion estimation problem in a straightforward manner. These
assumptions are as follows:

(1) neglect the earth's curvature

(2) neglect scan-line foreshortening

(3) assume uniform illumination
With the affine model assumed to describe the misregistration and these
simplifying assumptions, Fourier transform techniques for estimating
the geometrical distortion are discussed in the subsequent sections

of this chapter.

2.4 The Two-~Dimensional Fourier Transform under an Affine

Trang formation.

Under the assumption of an affine transformation as the model
representing the distortion between two images, the expression re-
lating the spatial frequency domains of these images is readily derived
using the two-dimensional Fourier transform. The significance of
this expression is that under some very reasonable assumptions,
estimates of the distortion coefficients can be readily made for the
clagss of data of interest in this study. The analysis of this section
will use continuous functions, as no generality is lost and the

notation is much clearer.
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The two-dimensional Fourier transform is defined as

(=]

Fw = | ] @ ew [-1men ] ax (2-30)
and in polar coordinates
o 21
G(p,P) = J J r g(r,08) exp [-jZﬂrp cos(0 - ﬂ)] dr de (2-31)
o o

It is shown in Appendix A that if there exists a function £(x) such

that

£(x) = D[£(x)] = £[B x] = £(y) (2-32)

where B is an affine transformation, then

F(v) = -[%]' exp [-JZN(E.Q] F [(A'I)T 1_1] (2-33)
where
s oy
axl axz
J =
¥, 7
| 9%, szd

is the Jacobian of the transformation. It follows from (2-33) that the

modulus of the transform is independent of the displacement vector t.

MW = [F© r*cg)]m

1/2
- il hT wi?} (2-34)
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With proper interpretation of (2-33) and (2-34), several interesting
properties of the two-dimensional Fourier transform can be emphasized.
The Fourier transform is a decomposition of f(x) into a linear

combination of basis functions of the form
exp [-jz'n @,_;_c)] - exp [-jZn(ul x, +u, xz)] (2-35)

For a particular pair of coefficients (ul,uz), the corresponding
elementary function has zero phase along the line described by
— , n is integer (2-36)
u

1
and the wavefront has the direction

0t - u—l (2-37)

2

From Fig. 2-6 it is easily seen that the spatial period of the wave-

front is
1 1
L= o, cos 0= 72 (2-38)
1 [uZ + 2 ]
1 Y2
Thus the corresponding spatial frequency is
1/2
1 2 2
u=7or= [ul + u, ] (2-39)

From (2-34) the relation between coordinates systems u and v

is

vV=(A") u (2-40)




X5

Wavefront Direction
]
1

Yy

AN % x

Figure 2-6 Lines of Constant Phase of Elementary Functions
Associated with Spatial Frequencies (ul,u2)
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It is illustrative to examine the effects of various geometrical distor-
tions in the spatial and spatial-frequency domains. For scaling changes

the distortion matrix is

A = (2-41)

g 892

where the scaling is assumed to be along the coordinate axes. The

relationship between the spatial frequency domain coordinates is then

— o

y=@HT g i u (2-42)
0 ;—1—
22

This relation is illustrated in Fig. 2-7 where the dimensions of the
rectangular blocks in the spatial domain have a width which is two
times the height.

For rotation the distortion matrix is

cos O sin O
A= (2-43)

-sin 0 cos O

which is an orthogonal matrix. Thus

ve @HTu=ay (2-44)

and the transform of the distorted data is also rotated by the angle O;
this distortion is illustrated by the modulus of the transform of the

ideal data shown in Fig. 2-8.



Block Pattern

Modulus of Fourier Transform

Figure 2-7 Modulus of Fourier Transform of Block Pattern




Rotated Block Pattern

Modulus of Fourier Transform

Figure 2-8 Modulus of Fourier Transform of Rotated Block Pattern



Block Pattern with Skew

Modulus of Fourier Transform

Figure 2-9 Modulus of Fourier Transform of Skewed Block Pattern
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For skew distortion the geometric distortion matrix becomes

A = (2-45)

and in the spatial frequency domain the coordinates are related by

891
v = u (2-46)

This distortion and its associated modulus of the Fourier transform
are shown in Fig. 2-9.

The symmetry property of the modulus is the remaining property of
the two-dimensional Fourier transform needed for this study. For real

signals it readily follows from equation (2-30) that

F(-u) = F (u) (2-47)

where the asterisk denotes the complex conjugate. Thus the modulus,
equation (2-34), is symmetric about the origin, and the frequency

domain search techniques need to use only one-half of the modulus.

2.5 Transform Techniques for the Correction of Regional Geometric

Distortion.

For data sets with the affine model characterizing the misregistra-
tion between corresponding regions, Fourier transforms of these data
may be used to advantage in determining the coefficients of the
geometrical distortion components. These advantages are a result of

both the property of the Fourier transform exhibiting the spatial
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'~ characteristics existing in the spatial domain and of the organization
of these characteristics in the spatial frequency domain. The zero
spatial frequency compbnent is mapped into the origin of the‘trans—
 form domain and higher frequency components are mapped into locatioﬁs
proportional to both the value‘of their spatial frequency and in a
directioﬁ from the origin characteristic of the orientation of tﬁe
component in the spatial domain.

With the assumption of the.affine misregistration model,'equation
(2-33) gives the relation between the spatial frequeﬁcy domain
representations Qf the data sets. As'defined by equation (2-34) the
moduli of the two-dimensional Fourier transforms of corresponding
regibns éf data are 1nvarignt under the coordina;e shift t; thus the
coordinate systems can bé chosen érbitrarily. It is further assumed
that for data of.a reasonably homogenoué composition, small shifts Ad
of the data abertute will yield moduli which can be assumed to be
unchanged for purposes of this study. |

' The'differeﬁees Between the modulivof the transforms of two
corresponding regions of data provide all the information required for
determining_values for the coefficients of the linear distortion matrix,
For the data sets employed in this study ﬁhe scale factors can be esti-
mated acéurately from the flight information évailable; Therefore,_
only distort;on due to qkew and.roﬁation ﬁust be estimated from the
“datavsets. |

' The computation Qf the Fourier transforms for the data used in
this‘study is cafried out using the Fast Fourier Transfotm‘technique

[5,9] since the data are in a discrete format.
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2.,5.1, Search Algorithms for Structured Data

The class of agricultural imagery, which is the dacavof principal
interest in this study, typically consists of a collection of
:rectangulat fields with each of these fields having essentially a
homogenoqs ground'cover. The data usually, but not always, are
recorded such that the flight path isvclosélylﬁarallel“té tﬁe 
orientation of these fields. I; hﬁs been observed ;hat the modﬁlﬁs
of the two-dimensional derier Eransfofm‘of data sétg froﬁ this class
- of imagery typically exhibits a Qimple structure with ﬁhe property
that a majority of the eﬁergy in the spatiai frequency domain is
concentrated along lihear loci or rays pe:pendicular to these.field
boundaries. The moduli of ﬁt#nsforms tyﬁicgl of those obtained for.
agriﬁultufally related imagery are shown in Fig. 2-10(a). |

The rotative and skew components of the misregistration are
" obtained by utilizing the geometrical differences between the moduli
of fhe Fourier transforms of éorresponding regions., This is
accomplished by determining the ahgle between the corre8poﬁdihg lbéi
- of energy which are characteristic of this class of data. Assuming
that the location of these loci can be de;ermine&, the distortion
components are evaluated in a straightforward maﬁﬁer.’
(1) Rotation

From equation (2-44) it is seen that rotation in the spatial
domain results in ;hg rigid body rotatioﬁ of the modulus of fhe
Fourié: transforﬁ. Only ﬁhe angle between the cortéspohding loci of
the distorted and reference data transforms is required to détermine

the rotational distortion; this is shown in Figure 2411. Thus



(a) Structured Data Sets

(b) Unstructured Data Sets

Figure 2-10 Examples of the Modulus of the Two-Dimensional
Fourier Transform
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Locus of Energy
Distorted Data

-Reference Data

——— “1

A\ Moveﬁeﬁt;df Data
] C Point Under
Transformation

Figure 2-11 Location of Loci of Energy in the Modulus of the
Two-Dimensional Fourier Transform, Rotational Distortion



- the coefficients of equation (2-43) are

"811 = a22 = cos O
" (2-48)

élz = - a, =% sin e

~where the sign (+) is determined by the sense of the rotation.
(2) Skew |

The angular quﬁntitiés related to the pkew distortion component
are.shdwn in Fig. 2-12. It is assumed that a lqcus of energy in the
‘modulus of théonurier trhnsfo:m of the reference data is at an
angle 6 w;th respect tq the uy axis. The corresponding locus of
energy of the distorted data is at an angle § with respect to the
reference data locus. It then follows from equation (2-26) that

these angular quantities and the skew coefficient ay, are related

by

- -1 ( tan @ ) , | _
¢ tan 1 + ay, tan 0 _ ‘ (2 49)

To determine 321, také»the limit of @ as @ < 1/2; thus

= 1lim tan ( 2) _ (2-50)

= tan”! (;—1—)
21
The skew coefficient is obtained from the expression

L .
81 ¢ tan. @ (2-51)
. "
Q= 3




" Locus of Energy
Distorted Data

Reference Data __]
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Movemgﬁt of Data
~Point. Under
_Transformation B

Figure 2-12 Location of Loci of Energy in the Modulus of:thé
Two-Dimensional Fourier Transform, Skew Distortion
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(3) Rotation and Skew

In the more general case of both a rotative and skew distortion
component in the data, there must be at least two linear loci in each
modulus of the transforms of the data sets to determine these
distortion parameters. For agriculturally related data this require-
ment is usually satisfied with the two loci being separated by
approximately /2 radians,

With reference to Fig. 2-13 assume, without loss of generality,
that one of the loci of.the reference data transform is coincident

with the u, axis. Thus from equation (2-49)

1
-1 tan 01 .
6, +# = tan ( 1+ a. . tan 0 ) toy =0 (2-52)
21 1 :
but 91 = O since the loci is assumed coincident with the vy axis.
Thus '
¢1 = oy ' (2-53)

and the angle ¢i is due only to rotational distortion as equation (2-52)
demonstrates that skew and rotation are uncoupled along the Uy axis.

Now the skew distortion component can be obtained from the

expression
1 tan 92
g, - 8, = tan’ ( ) (2-54)
2 1 1+ ay, tan 92
and solving for ay,
8, = —t— ( i S 1) (2-55)
-?1 pan 92 tan (02 - ¢1)
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Locus of Energy
Reference Data

Locus of Ehergy
(¢—————Distorted Data

Figure 2-13 Location of Loci of Energy in the Modulus of the
Two-Dimentsional Fourier Transform, Rotational
and Skew Distortion : '
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For rectangular fields for which 92 =n/2

~ 1 1 ' '
a,, = - - (2-56)

, .
. where Gz -‘ 02 - ﬂ].‘ -
'The distortion matrix is then the product, with attention given

- to the proper order of the matrices

, 1 0 r r
A= 11 f12 (2-578)
8 ! o1 %22
| 11 T12
- , (2-57b)
81 T YT %1 T2t T2
vhich yields
cos Gl + sin 01
A= o _ ' (2-58)

sin Gl + cos Gl

2y, cos @, + ain.ﬂl t a,

The algorithm implemented in this study, for locating the loci
containing the significanf fraction of the energy in thé spatial
frequency domain, utilizes a two ﬁ#rt procedure. _The concept of the‘
first operation is shown in Fig. 2-14(a). The wedge aperture is scanned
tﬁ;éugh a.tdtal angle ' in steps equal to the angular resolution of
the aperture AY. The output of this spatial filter is the summation

of those data falling within the region (p2 - PI)AY.. The output is
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, 6, Total Angie for
Uy r Wedge Scan '

(a) Wedge Aperture

_ Maxiﬁum Value
u, ‘ K Within the Cell
/
d

/’9
A Cell of Data

/ _ ' Along the Axis of
: Maximum Output

.-
LS

\O

(b) Regression Line

Figure 2-14 Use of Wedge Aperture to Locate Loci in the Modulus
of the Fourier Transform of Structured Data
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Yi + AY Py
wi - z Z M(p, Yi), i = l,onn,N (2-59)
Yi Py

where M(p,Y) 18 the modulus of the two-dimensional Fourier transform
expressed in polar coordinates and N is the number of resolvable
positions of the aperture within the total scan angle.

This summation necessarily 1nvolvesldata interpolation since
the data are located on a discrete grid. The w,  are nonnegative

i

" and the largest w, is assumed to be obtained from the segment con-

i
taining the loci being sought.

The purpose of the second step is to locate the loci within this
segment. A sequence pfvrectangular segments is gselected from the
data along the radial aéis of thé wedge giving the maximum output
as shown in Fig. 2-140ﬁ; The largest data point in each of these

segments is found, and the slope B of the linear regression line

through the coordinates of this set of maxima is computed. Thus

M : . .
. ,.1f1 (g =) (uyy = wy)
g = » : ' o (2-60)
M S :
-2
£ (u,, - u))
o1 u 1
with
M
- 1
u, == L u
17N Y
M
- 1
uy =y I uy
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and M is the number of points belected for the regression procedure.

The estﬁmated angle @ between this locus and the ui axis is then

9= tan'lp e @2-61)

2.5.2, Search Algorithms for Data with Complex Structure

The class of scenes of natural or uncultured terrian has Fourier.4

transforms whose moduli have a more complex structure than the class
considered in the previous section. The moduli of transforms typicall
of these obta;ned for this‘class of data are shown in Fig.;2-10(b).
To identify the distortion parameters relating the'transforms of two
. corresponding regions of data from this class of imagery uecessarily
involves a search procedure. |

A possible search algorithm is to:exemine the uodulus of the
transform of the reference data along some locus and then search
for the corresponding locus in the distorted data such that the
difference between the outputs of these two spatial ftiters is
minimized.. A constant frequency eearch aperture, shown in Fig. 2-15,
for the search locus in the transform of the reference data is
~ appealing because it is both simply implemented -and its corresponding
locus under a linear transformation is readily related to the
distortion matrix parameters.

The output of the constant'frequency spetial filter is the

sequence of numbers w,

9, + 400, | o _
W, = z Z M(p,ﬂi),, ~i=1,...,N (2-62)
’ 9, n | |



Resolution Cell

Figure 2-15 . A Constant Frequency Search Aperture
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where M(p,@#) is the modulus of thg twoedimensioﬁal Fourief transform
expressed.in polar cobtdinates and N is the number of resolvable
positions of the filter with the m radign sea;ch extent,
(1) Rotation
For rotation the search procedure is particularlyAsimplé
because from equation (2-44) it is seen that a‘rotaéional distortion
introduces only a rigid body rotation of the fransform modulus.
Thus the function to.be minimized is |
N : e S
e= Z |w, @ -w,@+9) | N G
1=1 ‘
where the subscripts r and b refer to the.reference and baékground
data sets répectively, and ¢° is the variable for wﬁich the minimum
‘islsought. It then follows thaﬁ the pafameters of the distortion

matrix A are

= = cos
a a ¢°

11 22

a R |

91 = T 8in B | . (2-64)

12
where the sign is dependent on thg sense of rotation.
(2) Skew

For a constant spatial frequency search locus in thé reference
data, the corresponding locus in the distorted data domain undei a
skew transformation is an ellipse. This is shown in the following
development. Let the circular 16cus be gifeq by

u2 + u2 = u2 (2-65a)

b
N
=]
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From equation (2-46) the transformation of coordinates is given by

u =V + a v, _ (2-65b)

\;2 - vz : A (2-65(:)

where unity scale factors are being assumed. Combining equations

(2-65) yields

2

2 2, .2
v] +2a + (1 + a21) Vy = u, (2-66)

211 V2
which 18 recognized to be the equation of an ellipse. To express

(2-66) in polar coordinates, let

v, = p cos ¢ | ' ‘ (2-67a)
' v, =0 sin @ . (2-67b)

Then

V p2 [cos2 8+ 2 a,, cos P sing@d + (1 + agl) sin2¢] - ui (2-68)

solving for 92

. 2
2 u
p" = 2 5 5 (2-69)
1+ a5 gsin 2 ¢ + a5 sin” @
To find the extreme values of p, noting that p > 0,
2 2 |
2 u (2 a,, cos 20 + 2a,, sin @ cos @)
d - o 21 ° 21
- ? 2.2 -0 (2-70)
(1 + 821 sin 2¢ + 8y, sin” @)
The stationary points of (2-70) are
-l l(i) on - -
¢ 7 tan = + 5 » B 0,1,2,3. (2-71)

21
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where the principle values have been taken. Evaluating the equation

22 - : . o T
of i—ﬂi-for the values of @ which are solutions of equation (2-71),
- dé : :

it is found that the maxima of p correspond to n even and the minima
to n odd.

Thus 1if the tranaform of the reference dgta scene.is.séanhed by a
constant frequency aperfure, the.correaponding.search dﬁertureion the
transform of the distorted data’must necesaariiy be elliptical.. Thus

the function to be minimized is

N
_ 9 _

e= T |w (0 -w, ()] (2-72)

i=1 :

where
, p2 ~1/2
b ,.[ ey ] (2-73)
1+ a, sin 29 + a5, sin ¢ _

for the coefficient ay,"

(3) Rotation and Skew
These distortions are coupled in the sense that it is not possible
to solve for each 1ndiv1dually. Thus the eduation that must be

minimized is

‘ ¢ L0012 ,
e = 133 |wri(o,ﬂ) -w (0 )\_ }(2-74)
where .
1/2
p! = [ ¢’ ] !
¥ 2 '
1+ a1 sin 290’ + ay, sip ]

' =9+ 9,
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“This is a two parhmeter.search in which the loci are ellipses and the
" initial starting points are displaced by ﬁo. As the data is experi-
mental there always exists the possibility of local minima which will

prevent the algorithm from reaching'the true regional minima.

PR e S
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CHAPTER 3

" CORRELATION PROCESSORS -

3.0 Introduction

In this chaptef eqﬁations are developed-fdr ghe optimum spatially .
invariant filter for the detection of a two-dimensional discrete data
'pét s gmbedde4~in the background data Sy- This filter, or processor,

is linear although it may contain parameters whicﬁ are determined by

the solution of a set of nonlihéar equations. Thgag'processot eﬁuacions
are interpreted as a crosscorrelation of the background datazset §b-with:
a reference template obtained from the solution of a aygtem of éﬁuations:
involving the reference data covariance ﬁatrix and the reference data
S, |

The processor is derived for both noige frée,data and for datg‘
containing uncorrelated additive noise. All data are‘assumed
distortionless since the geometrical distortion i8 to be removed by
the previous data pre-processing algorithm.

Following the derivation of thé equations for this optimum filter
several algo;ithms for implementing the_processotfare developed. These
algorithms reflect theﬁvﬁryiﬁg assumptionszregarding the form of the |
covariance matrix of bqth the reference dat;'§r and of the noise‘
process N. The chapter concludes with a discussion of the processing

gain given by the correlator processor.
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3.1 Noise Model for Multitemporal Data

A model for the noise components in the remotely sensed date is
shown in Fig. 3f1, It.is assumed that the noise, which is taken to
be the differenees between the reference data set §r and its corres-
ponding subimage in thelbaekground data §b’ can be modeled as an
:uncorrelated additive source N. This source consists'of two conponents;
‘the firse, N(_), .:13 oostulated to characterize euch effects as sensor
'noise, non-zero background temperature and video signal quantization -
“noise. The second term, D(At X, x), is assumed to represent the
changes in the scene due to natural processes such as the growth and
.moturrng of vegetation. This latter term is of little significance
in areas.tyoitied by the desert and mounteinoua regions of the eouth;
western United States. However, for areas engaged in agricultural
activities; the’changee induced by this term-ean be'significant over
a period of a few weeks. Thus thelg component contains the information
made a&ailable by the‘multitemporal data to the seientists eoncerned
with the ground cover changes as a function of both the time between
. measurements and the period within the growing season that these
measurements were taken..

Wﬁen.emolitude correiation is uaed to measure gimilarity for
the detection of two corresponding subregions of data, these temporally
induced changes in the scene decrease the correlation between subimages
which are known to be geometrically corresponding; In this study the
‘time between observations will be limited such that it is reasonable
to assume that the two data sets remain partially coherent This loss

. of correlation, however, leads to the requirement of processing a



Physical
Process

fw

N = N(x) + D(at, A, x)

Figure 3-1 A Model of Noise Processes
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larger set of data to maintain a specifiéd average correlator output
signal-to-noise ratio. That these assumptions are indeed reasonable

rests with the experimental results presented in the sequel. -

3.2 Processor Development

In detection theory literature the binary detection probiem is
most often developed 16 terms of simple hypothesis testing; the likeli-
hood ratio is selécted'as the sufficient statistic and some criterion
of optiﬁal performancef typically the Neyman-Pearson or Bayes
criterion,vis stated. ~Under the assumptioh 6f additive, uncorrelaﬁed
Gaussian_poise, the resulting analytical expressions can be.interpreted

‘as a corréiation broéessor. |

For the problem considered in this investigation, however, it is
not gtraigﬁtforwata to state the two alternative hypotheses. Rather _
'the apﬁrdach taken in chLa study i8 to maximize a performance index
éubject to certain coﬁsttaints.v Thg résuifihg analyticalvexpresQions
again are of a form to admit a correlation 1mp1ementation.

The eéseﬁtial idea embodied in’thi# pérformance index is the
_‘desire.to pfocéés tﬁe.background data éb such that the processor out-
put.correépond;ﬁg to the correct superposition of S, on‘§fr cs, is
v maxiﬁally diecriminéblé from the outpuﬁ at all othét spatial juxta-

posi;ions'df the referénge'template on the‘background data. The
desired processor output, therefore,‘consisté.of a large central peak,
corrgsponding‘to the correct superposition of the template, surrounded
by a non-zero pedestal. The filter output in the pedestal region is
due to the iptefactioﬁ of the template wich the background data for

- Juxtapositions of the template spatially separated from the location
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of~the>¢entra1 peak by distances‘greatef than the recihrocaliqfvthe
"spatial_ffequency Bandwidth of the scene. ,Sﬁch a desirébié'ohfputfu
is shqwn in Fig. 3-2. o | | .

;Thé discrimination between peak #nd pedestal is made by a
comparisonvof amplitudes. Thus for maxihum discriminatioﬁ, assuming
this central_peék to be_normalizéd to unit value; the peak amplitude
of the filter output in the pedesthl regién'ﬁpst be minimized. Peak

'values;are in general not useful for analyticai purposes since such |
" a value may not having meaning. " | |
| The peak values of the ﬁréceséor output can be ﬁfobabilistically:‘.-
" related to the variance of the process; 1f the output in the ﬁedestal
region is modeled as a Gaussian procesé, then the fraction of the timev"
that a specified output value ia exceeded 1§ thé area in the tall of

the Gaussian probability density function; thus, if p(x) = N(O,l);

Prob [X > x] = % erfc(x) : v ‘ (3-1)

where erfc(x) is the complementary error fnnction. ,
I1f the Gaussian assumption cannot be made but the random
variable X has a finite second moment, then the Chebychev inequality

may be used. Thus if

ElXP) <, | o (3-2)

then | ‘ | |
Pmb[H-EmHle]izggl | (3-3)

A e :

for any ¢ > 0,
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_ Central Peak

Non zero‘Pedeatal

. Figure 3-2 A Desired Procesbor_Outpﬁt
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:  The1thrust of this argument is that if a linear‘éroceséor is
'.der1Vea such that the variance in the pedestal tégioﬁ 1s.m1niﬁ;z§d;
" then it follows that the fractiqn@l time that the outpﬁt'éxgeeds the .
specified value x = X Qill also be minimized.

To obtain an expression for this optimal proccésor, the quantity
to be maximized is the ra;io of the ou;put at the.poin;_éf correct
auperpohition of §i on §b to the vari#nég at a11_other juxtapositions.A
In the actual implementation of this filter, Fhis:operatioh corresponds
to maximiziﬁgAthe ratio of the peak of the correlation surface to the
variance of this surface in the pedestal region. The correlation:sugféée
ig'obt;inea by the Cfosscorrelétion of the bkckgrouna data

§b withuthe :

'template generated from the reference data §r.f'

3.3 Noise Free ?rocessor

For noise free data the reference data_gr is a subregion of the

b

diacrete'set obtained from the product of a samble function from a real,

baékground data S,. It is assumed that the background data are a

wavenumber limited, two-dimensional random ﬁrocess with the finite
impulse grid 2o defined by equation (2-2). The statistical propertiés
of the reference data set are assumed to be characterized by the
covarianée matrix K.

Using 5, the linear épatiail& 1nvatian£ filter H is derived such

that when the background data are convolved with H

z(u,v) = H* §

b (3-4a)

=F Ca(u-1+1,v-j+1) hl,] (3-4b)
i )
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the ratio

zz(ur.vr)
Y = Var [z(u,v)]

(3-5)

is maximized. The quantity z(ur, vr) is the filter output when the
template is positioned on the reference data §r' This filter is
further subject to the following constraints. The peak output

z(ur, vr) is constrained to have the maximum value of unity. Thus

‘11 - z(ur, vr) =], (3f6a)

and this constraint can_be expressed alternatively as the inner product

relation
;1 - (§,§r) f 1 . (3-6b)

The filter must have finite energy to be realizable, thus

_ 2
I,= £ |h,| (3-7a)
2773 13

@B < o | G

3.3.1 Filter Equations for the Noise Free Processor

The bgckground data set §b = {sij}‘is assumed to be an M-x N
digital picture funct;on, and the detection templatevg is a P x Q
mdfrix of real numbers.’” For this problem to have physical meaning
the mgtricgs must.have the telationship P < H; Q < N. The filter
output is,giveh by the'twb-dimensional cohvolution of this picture

function and the template

z(u,v) = £ T .s(u -14+1, v- j+1) h(ij) (3-8)
i] ' -
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where,

(=
A
IA
L4 -]

and

P+l<u<M+1

Q+1<v<N+1
These_indiceé are chosen so that the two matrices are fully juxtaposed,
thus deleting the need for consideration of end éffects.. This convolu-
tion is illustrated in Fig. 3-3.

Equation (3-8) is expressible in terms of matrix operationg which
allows the convolution to be written in terms of vector quantities;
note there are

m= (M-P+1) (N-Q+1) (3-9)

distinct . juxtapositions of the template on the background scene; each
of these superpositions is called an observation. The tth_observation

is the subimage of the background data defined by the set‘_.

: {st} - {sij: L<i<P+4L-1,k< jlg Q+k- 1} '. (3-10)
with '.
1<t <M-P+1
1<k<N-Q+1

The set [st} can be written as the equivalent pxl column vector
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Figure 3-3 Convolution of the Background Data Set
with the Detection Template
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(a) Background Data Set ' ' (b) Detection Template
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5, (£)
{s ) = 8, = : . (3-11)
' s (t)
‘where each element of s, is aqx lvcdlumn vector
| sil(t)
B (e = (3-12)
siq(t).

The data subimage which constitutes an obgservation and the organization
of the elements of this observation into a vector are shown in Fig. 3-4.

From the observations defined by equation (3#10),.the pq xXm

matrix §a is formed

[8,(1) 5@ SN
Ep-1 (D) - | |

5, = o | (3-13)
2™ e gy

where the ith column is composed of the elements of the it observa-
tion and m is the total number of observat;oﬁs.,
Let

(3-14)



69
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Figure 3-4 .Otganizétion of an Observation into an Equivalent Vector
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 be a multiple channellfilter with p-anut'channela'nnd'one output . . -

channel. The filter'COefficients for each'channel hi are given
by the q x 1 column vector‘A
~h, = S o SR (3-15)

e T R
hq(i)

The filter output z(u) can be.e¥pr§ssed>as the convolution of

the vgctor qu#nﬁifies . | |

P

T : - - R '
z(u) = 1:2 g.p_t+1(u) hi,-u = 1,...,m. o ‘(3—16)

Forming the m x 1 column vector

o z(1) .
- c (3-17)
L z(m) |
the convolution can be written in the matrix form as
z=S H - |  (3-18)
The ratio that is to be maximized is
v EAD) 2% ()
v T T T
ar (2] gt T (st m]
_ 2o _ 2D - - (3-19)

Eg"ss"H] H KE




71

where K = E[S §?J is the covariance matrix of the process and z(r)

is the output corresponding to the correct superposition of the template

and reference data set S, |
To maximize this expression, z(r) will be constrained to have a

- value of unify:and fhe quadratic form gfgg will be minimized.

' Additionally, from equation (3%7), the resulting H is constrained to

have'finite enétgy. Thus the functional relating these quantities is

’ writfen as 25, 65]
| T 'fﬁ T |
I=HKE+A HS +%, HH, 1,20 (3-20)
where Xl and kz are the Lagrange multipliers., The extremum of this
fuﬁctional is found by first finding the stationary point of I with
respect ;o‘g. Then noting that I is convex, it follows that this

_stationary point is the minimum of I [47]. Thus

) . -

ﬁ 25}_14'118 +2)\2§-0 | (3-21)
Solving for H

He - 20, ®+2, DLs (3-22)

= 2 M 22 2

The values of the Lagrange multipliers A, and ), are obtained by

solvihg the simultaneous set of .nonlinear algebraic eqnations
-1 | ‘ (3-23a)

- M | ' | ' (3-23b)
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Substituting equation (3-22) into (3-23), yields

1. T 1, .
-3A st kA, D s -1 | (3-24a)
1.2 1 L el
s @+, @+, Dls -u,20 (3-24b)

The solution of the equations (3-22) and (3-24) then yields the

solution for the desired procéssor,

3.3.2 Some Observations Regarding the Noise Free Processor
Two salient points should be noted from the form of equationi(3-21).
First, the covariance matrix is the same for both the_refetence data S.

and the background data S, since it is assumed that the proceass is- |

b
stationary. Since there are no energy diffefences between the reference
and background such as required for incqherent detection, thié filter.
must be é coherent processor.

Secondly, there is a striking similarity betﬁeen the filter given
by equation (3-21) and the filter for detecting statidnary targets in
a clutter background in the radar problem [61]. In particular, for |

A, = O, the radar filter is the "inverse filter" which was first

2
discussed by Urkowitz [59]. For Ay ¥ 0, the corresponding filter is

the "clutter rejection filter" [18, 61] which includes the considera-
tion of additive receiver noise. The effect of these filters in the
radar problem is to 1ncréase the bandwidth of the signal being processed;
it has been shown that_for the constraint of a fixed signal bandwidth,

the signal spectrum for the optimum detection of targets in a clutter

background is flat over this specified bandwidth [18].
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The one-dimensional analog of the filter given by equation.(3-21)
. for 12 = 0 is also well known in the field of seismic data processing.

In this area the filter is known as the “spiking" filter.

3.4 Noise Free Algorithm Development

In this section use is made of both equation (3f22) and various
assumptions regarding the form of the covariance matrix K to develop |
algorithms for 1mp1egenting the processor on a digitai computer. Care
_musi be exercised in discussing the stationarity of the process
characterized by the covariance matrix. In one-dimensional data, a
" result of stationarity is the requirement that fhe covariénce depends
bnly on the separation of the points T = X, -4x1. However, in two
diménsions this definition is too restrictive in that it is conceivable
that the covariance can depend on both the spatial separation 71 = X, - X
.and the direction of the line passing through these points.
. Algorithms are developed for both cases; however;‘for nqn—isotrbpic

" covariance hatrices a general covariance matrix ﬁust be considered.
This in turn requires the solution of a large set of linear equations
for determihing the template, thus limiting the value of this procedure
for reasons of computational tractability.

_ Major emphasis is given to algorithms for 12 = 0. Recall from
"équationf(3-7) that this constraint was related to the filter enmergy.
For_finitg'dimensiongl‘filters this eﬁergy is finite so long as the
elements of H are finite; this must be true if the covariance matrix
is non-singular. ;n addition for the noise free processor, the

varigncg in the output is due to the interaction of the reference

template with the background signal. Thus the correlator output
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 ‘signa1-to-n6i8e r#;io, as defined by equatioh»(3-19), 1§ 1nVatiant"
with respect to the filter energy. - | -

The algorithm_for the general cévariance'matfix,ia considefed ’
'first’ﬁnd, following this, study will be given to mére restriéfivg
'assumptiéns.regardihg the forﬁ of the covariance matrix. In tﬁis '
' latter case, the matrix assumes the form of a.block Topliti matrix

which has much practical intéreat.

3.4.1 General Cova:iaﬁce Matrices
1f the two-dimensional process from which §r is éelecfed has
'the-géneral PQ x PQ covariance matrix K, then the gsolution of the

processor template H is given by equatioh (3-22)

1

S, ¢3-25)

-}_ln_

N

A K

and from equation (3-6b)

STKhs =1 (3-26a)

A
-r

]
N

1

and solving for Al

.., S | | ~ (3-26b)

Thus the template for the crosscorrelator is given by

! s |
H= ——— | - (3-27a)

-1
S K's,

=g K8 . (3-27b)
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where

T -
81"(3 51

S, (3-28)

 is the normalization coefficient.

To estimate the covariance matrix K, the data in the region
surrounding §r is partitioned into the subregions as shown in Fig. 3-5.
Each subregion is called an obsgrvation and a correspondence is set up

between the elements of an observation and the vector o as
sij O gj(i) | (3-29)

as illustrated in Fig. 3-5(b). Thus the ith observation is mapped into -

the vector ¢ 1),

il ‘ .
a(i) = . (3-30)
s1.n v

The covariance matrix is then estimated by the unbiased estimator

- M M 1

T o, (D)o, (1) ... T o,(i) o (1)
w1 101 =1 1 e
1 .
R=%1 .
o @)oo, (1) ... I o (i)o (1)
| a1 n 1 fm1 M n ]

(3-31)
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(b) Packing Data Observations into a Vector

Figure 3-5 - Data Format for Computing Covariance
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" where M is the total qumber of observations and n is the number of
elements in g.->1f, for e#ample, the reference data set is a subimage
of 32 x 32 elements, then the resulting covariance matrix is

1024 x 1024 elements in size.

Premultiplying equation (3-27b) by K yields

KH=g S | | - (3-32)

Reference data array sizes generally range between 32 x 32 to
128 x 128 elements in-pfactical algorithms using experimental data.
Thus to solve equation (3-32) for data arrays in this size range requires

a computer with the capability of handling very large array sizes.

3.4.2 Covariance Matrices of the Toplitz Form
The_stationary isotropic covariance matrices tepresenﬁ an_ihterest-’
.1ng class of data for filter development} the symmetry properties of
these covariaﬁce matrices can be utilized to reduce the cqmplexity of

the processor. Covariance matrices for a process of this class have

the form
i T T T
Y
k, o
K= S (3-33)
k . . k
T 1] —OJ

This form of matrix is called a block Toplitz matrix and its properties
have been investigated by Grenander and Szego [31]. An algorithm for

inverting a matrix of this form was first given by Levinson [45] and
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suchjinveréion algorithms have more recéntly Beeﬁ stﬁdied by.
Robinson [ 55, 62] and by Bednar and Fitmer [8]. Thevprincipal
advantage of thié algorithm is that the number of,operationa'requitéd
for 1nversi§n is proportional to m2 rather than m3 as in conventional
methods.

For each obsétvation of the data arranged as shown in Fig. 3.5(b),

the covariance matrix has the péttitioned form

] —— [
58 0 B8 A4m o Rt
| : :
[} ]
. . . .
: 'V * '
. 1 . )
1 ]
’ 58 5,8,, |
5.5 % 2&a R TR
] []
Ko | et e R S ceamem——- .
= 1 T e
541%1 B4 0 Bafenn o Eendap
: | i
.. . L] l
. ' ce ]
. ] * |
[] 1
P — !
22021 2202 1 B28en et 2282
' i
1 f

' [ I

1 ] °
1 ]

i : P EpSy |
(3-34)

where the overbar denotes the expected value and the subscript denoting
the observation number has been omitted. Since the process is real,

stationary and isotropic
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where a unit variance process is assumed. It is immediately evident
that the matrix (3-34) has the same form as matrix (3-33) with each
partitioned block of (3-34) corresponding to the data obtained from
one line of the observation shown in Fig. 3-5(b).

With experimental data it is unreasonable to assume that the
biocka along a diagonal will be equal. However, if the process is
-assumed,to be of this clﬁss, then the blocks are averaged to provide
a matrix of the reqﬁired form. The template is again obtained from a
solution of equation (3-32), |

The difficulty in applying this algorithm is that a large set of
- data is required for estimatinglthe covariance matrix. However, it
has been observed that the correlation function for a large number of
6bservationsvof remotely sensed data exhibits an approximate exponential
form [52]. Thus, it is not clear that this algorithm would yield |

superior results to the next algorithm to be developed.

3.4.3 Isotropic Exponential Covariance Matrices

A very simple processor results if it is assumed that the statis-
tical properties 6f the reference data set §r are modeled by an
isotfopic'gxponential covafiance matrix. ‘This matrix has the block

Toplitz form with the diagonal terms given by
l‘-ii = || pij“ | . (3-35)

with

P31 ™ ) }i-3) (3-36)
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where p i8 equal to the average adjacent cell corfelation coefficient

in the reference scene. The off-di#gonnl'terms are given by

“with p defined as for eqhation (3-35).

This covariance matrix can be written as

[k,

Pk 4

mel(-i_i

"p‘!('ii

L%

2
Pk

0 kyy

"m‘—‘-n
m-1

. kiy

* 511 1

The inverse of this matrix has been showhvto be [6]

5-1,_,._1__
1-p
where
-1
Eii

1
ii
Pkyy
0
0
[ 1
-0
2 0
| 0

-p
1+p

=0

2., ~1
(1_+ P )511

(3-37)

(3538)'”

(3-39)

-1
_114

(3-40)
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To obtain a solution for the desired template, substitute

equation (3-39) into equation (3-28) and neglecting the multiplicative

scalarg ‘
KE;: 'phii B 0 .. 0 7T gp(r)'
SOV G KR IV I
Be |0 ek @+ o5 | 5]
L 0 S
(3-41)

where the reference data set S, has been written as an equivalent
column vector as defined by equation (3-11). Expanding equation

th

(3-41), the 1~ filter element h, is

- -1 ' S 2..-1 LY ]
by [ pkyy 8i4q F (L 0p)kyy 8y - Pkis8 ) (3-42)

where the identifier that the 8, are from the reference data has been

omitted. Now substituting equation (3-40) into equation (3-42), again
omitting multiplicative constants, yields the elements of the template.

Thuys

| 2
P =" ° ['p Syt TP 8y P si-i-l,k-l]

2 - : 2
+ (1 +07) ['psi,k+1 + (1 +p )si,k -0 si,k-l]

o 2
P ["’ Sipyiekn T L F 00D By P si-l,k-l:\ (3-43)
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Expanding,

2

2 2 :
Pl ™0 Sgaiern T PR S TP B kel

2 | 2.2 2 -
-D(1+p)si,k“1+(1+p) si,k'-p(l-'.p)si.,k’l"

2 2 2 .
T8y e TP FTR) B T8 k1

(3-44)
Equation (3-44) is.recognized as one term of the discrete convolution

of the grid operator G, where

o | 7
o -p(1 + od o |

e= | -paa+oh  a+ed?  wa+d | (@9
o2 -p(1 + Pz) - 92‘ J

with the reference data set §r‘ This convolution is written as

r — — — —
84-1,k-1 -1,k Pi-1,k+1

- * —_— —_— -
H=G 84 k-1 8.k 8y ktl (3-46)

Bi+1,k-1  °Si+l,k  Pi41,k#l

where
2<i<pP-1
2<k<Q-1

and only the elements of gr used for evaluating h1k have been explicitly

indicated. The indices have been chosen to eliminate the end effects of



83

the convolution; therefore, the reference data set should be two rows
and two columns laxger than the desired template size,

The result of the development of G is that rather than having to
evaluate H using equation (3-41), H can be evaluated directly using
equation (3-46). The resulting simplification is very substantial.

“The grid operator Q has several interesting properties. For p = 0,

equation (3-46) becomes

o 0 o
é6= o 1 o (3-47)
o 0 o

- Thus if the reference scene consists of a set of uncorrelated points G

. ~
becomes the identity grid operator for the convolution of equation (3-46)
and hik - 8 Thus the template is the reference data set itself.

For p = 1, the grid operator becomes

1 -2 1
6= | -2 4 -2 | (3-48)
1 -2 1

This is the discrete approximation to the mixed fourth partial
.derivative, obtained by convolving the discrete approximations to

the second partial derivative along each coordinate axis. Thus

o o0 o0 o 1 o
G=G *G, = 1 -2 1 * Lo -2 o (3-49)
o 0 o0 o 1 o

The coefficient o required for determining the grid operator G

: ' A' . .
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18 experimentally obtained from the data. A uséfulAprocedure is to
re-format the reference data §r’ which 1is repréaented as the P xQ

matrix, into the [L x 2] matrix §p = {sp(i;j)} with
L-[%]Q (3-50)

where [-] is read "the greatest integer less than or edual to."

The correlation coefficient p is then given by

L S
EARXCOFROCN
pn (3'51)
L L 1/2 2
[ T 82 (1,1) E 82,(1,2)]
a1 P =1 P

3.4.4 Non-zero Constraints on Filter Energy
The solution for the crosscorrelation template was given by

equation (3-22) as

1 -1 |
H=-33 K+, 1) " S, (3-52)

Recall that the Lagrange multipliers kl and 12 were introducéd into the
problem formulation so as to constrain the filter output amplitude and

energy respectively. To solve for kl and Az it was found necessary to

solve the simultaneous system of equations

1 T -1 - _
1.2 T -1-T -1 . }
s ME [®R+2, D7) ®+2, 1) S =M (3-54)
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From equation (3-53) solve for kl
-2 '
A, = (3‘55)
1 T T
s ®+\, D s
and substituting equation (3-55) into equation (3-54) yields
T -1t -1
Se [(K * Ay n ] &+ 1, D 5,
= M (3-56)

T -1
S, ®K+Xr, I) " S
and further

] |
T -1 -1 T -1
st[®+2, D] @+r, D5, -usl ®er, D5 -0

(3-57) .
This 18 & nonlinear equation in the one known Az. To solve this
equatiqn requires an algorithm for evaluating (3-57) which includes
a nonlinear root finding program. If the value of kz.obtained ffom
the solution of equation (3-57) is negative, the constraint is not

active for the specified value of M and xz is set equal to zero [65].

3.4.5 Signal Prewhitening

The function of the inverse covariance matrix is to prewhiten both
the input scene and the stored reference picture function. A processor
for the detection of S in the background S, 1is shown in Fig. 3-6(a).
In this iﬁplementation the observations § fram S, are crosscorrelated

with Ygr-where

(3-58)




=

S
ﬂ
(b) Using the Factored Inverse Covariance Matrix

Figure 3-6 Block Diagram of Signal Processors
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An equivalent expression is obtained if 5-1 is factored into the upper

triangular matrix and its transpose

Kleyy =u'y (3-59)

vhiéh leads to.the processor illustrated in Fig. 3-6(b).

It should be noted that the elements of “S_ of Fig. 3-6(b) are
uncorrelated and are equivalent to samples from a unit variance white
noise process. This is qhown by evaluating the covariance of Y§r;

thus

1[50 s, @sf) - n s, 1]

B S A () Nl Al ' (3-60)

fhe prevhitening of the observations of S, 18 illustrated in

Fig. 3-7. The scatter diagram exhibiting the correlation between
adjacent elements of §r is shown in part (a) of this figure. “It is
inferréd from equation‘(3-60) that an equivalent representation of Ygr
18 a vector conéisting of samples from a unit variance process; the
scatter diagram of adjacent ele@ents of this processed vector is
11lustrated in Fig. 3-7(b). To be noted is that the variance along
eacﬁ coordinate axis is equal, resulting in a circular scatter diagram.

| When the data become highly correlated the pqints in the scatter
diagram tend to become concentratéd along the uﬁity correlation axis;
thus the restructuring of the data into the circular scatter diagram
requires a gain coefficient greater than unity along the axis per-
pendicular to the unity correlation axis. For values of data

correlation apptoéching unity, it is reasonable to assume that‘the
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‘algorithm will introduce serious numerical error into the brocessed
vector and this tebulting vector will be of little value.

Agsuming that the covariance matrix of a data set is known, it
is suggested that a meaéure suitable for determining 1if a vector from
this data is amenable to piewhigening is the determinant of K, or
equivalently det(g-l); For a unit variance éroceas the value of

det(g-l) must always satisfy the relation.
-1 ' .
det(K ) >1 v (3-61)

‘To show this, first note that

det (K KY) = det (1) = det (©) det (K1) = 1 (3-62)
thus,
det (K1) = —L=s | ©(3-63)

det (K)

A covariance matrix has the properties of being symmetric and positive
definite. Thus the matrix K is diagonalizable by the similarity

transformation [26].

dieg (K) =P KPR | (3-64)

- where P is the matrix whose columns are the eigenvectors of K and
the resulting diagonal elements of diag(K) are the eigenvalues Ay of K.
This matrix diagonalization is the well known principal component

transformation [36], and in.géneral'the eigenvalues can be ordered

M 2hy 2o 2h >0 | (3-65)

The energy in the process is represented by the sum of the eigenvalues
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E= T A\, - ) (3-66)

The determinant of the diagohal matrix is

det (diag (K)] = T Ay _ - (3-67)
| fm1 | |

and by the result derived in Appendix D

det [dtag ®I<1 (3-68)

‘which implies that

det [K] < 1 | L (3-69)

since the value of the de:erminan; of the-matriiig is invariant under

1

the similarity transformation P"° K P.

Thus, it is-cqncldded that
det (K1) > 1 | : | (3-70)

The equality holds only for the identity matrix which represents an
ﬁﬁéorrelated process. As p - 1 however, the value of det(g-l) becomes
large because at p = 1, K becomes singular and det(K) = O.

From these considerations it is>concluded that there must exist

‘some range of det(K—l) such that

1< .det(_lg'l) <M <= : ' (3-71)
where the algorithm wili work effedtively; For those data sets where
det(E-l) > Ml’ the data become too highly correlated to be of value and
consequently should be rejected as a data set to be processed for

obtaining registration. For the isotropic data sets this becomes a
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matter only of rejecting those data for which the average adjacent cell

correlation p is greater than some pmax"

3.5 Multitemporal Data Processor

In processing multitemporal data there must be available a
minimum of two data sets; as thesé data sets are processed pairwise,
the discussion will be ﬁhrased in terms of two sets. Subsets of data
‘are selected from one set and are used as the processor reference
signals. The background data are chosén from the second data set.

It is assumed that the reference signal §r i§ noise free. It is
further postulated that the'épproximate location of §;, the corres-
ponding data set in the Background data set, is known, and that the
differences in amplitude béfween §r.and §; are assumed to be due to
.additive noise These assumptions allow the development of_the signal
processor in an analogous manner to that done for the noise free caseg
the major différence is the addition of a covariance term reflecting

the addition of the noise.

3.5.1 Filter Equations for the Multitemporal Processor
In a procedure analogous to that employed in section 3.3.1, the

constrained problem is formed with

5,=5, +N (3-72)

The expected value of the output is constrained as

i, = E(z(r)] = E@T@r +N)] = gr S. = 1} (3-73)

with E[N] = 0. The filter is to have finite energy so that

HH<M< = : | (3-74)

2°= =2

I
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The objective 18 to maximize the ratio given by equation (3-19) by

minimizihg the variance of the fil;er'output

Var (2] = E {'[ﬂ s + g)]r H (§I+,§)} . - "(3-75a)
= ET E [(ET + Ef) (s + g)] H (3-75b)
=B (1—‘;,*51;) H L o (3-75¢)
~ where - | |
wlsex, 0 Gae
B[NN] = K_ (3-75¢)
. E[§?§].= E[N'S]) = 0 ,_ o 'T (3-756)

" Thus all of the eqdations of subsection 3.3.1 are now modi fied By

replacing K by Es.+ En' Thus

T T T | |

T=H (549 +'§H)§_+ ll H §r + lz H'H, .kz >0 . | (3-76)
which has the solution for the stationary point

He -0, & +K +2,D)7Ls | (3-77a)

= _ 271 =8 - 2 = -r
with

T . _ .
H S =1 | | (3-77b)
H H <M . (3-77¢)

As noted previously in the development of equation (3-21), ﬁhe
functional I is convex. Thus the solution for H, equation (3-78), gives

the stationary point of I and this solution is the minimum.
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3.5.2 'Hultitemporﬁl Algorithm Development

| 'for the multitemporal processor both the tefeténcé and noise
_covariange matrices must be determined. Assuming there is sufficient
data for computing these matrices, the reference covariance matrix, 58,
is computed from the reference data as suggested in subsection 3.4.1.
The additive noise componént is taken to be the differences betﬁeen the
reference data §r and the corresponding data set §; in the background

data. The equation of this noise component is written

, :
N= S, - (1 -~ k) S, | (3-78)
where a differential gain k has been considered. To determine the

coefficient k, the stationary point of

2 T, ' T rev
"= NN=[8 -(1-KS8I (8 -0-kS5] (3-79)

with respect to k is found. Thus

2

de ’ T
-—a—i-2[§r-(1-k)§rl $.=0 (3-80)

which has the solution

S
kw1l - —=F : (3-81)

Thi§.va1ue'of k yields the minimum of_e2 since this functional is
conQex.

| .The noise covari#ncg matrix K can now be computed; With KPES + §n>
the algorithmas of section 3.4 are applicable to the multitemporal

processor.



9%

The difficulties encounteréd in thg solution of‘equagiog (3;77)
vfor the multitemporal processor include those requirements observed 1ﬁ
subaecﬁion 3.4;1,.the necessity for hahdling very 1arge'arrdys. |
Howevet, a more fundamental problem is the qnavailability of a
sufficiently largg set of data, hhving similar statisﬁical properties
as the referen;e»data, such that a useful estimate of 58 can be made.
:An additional difficulty is encountered in estimating the noise
properties. With the noise defiﬁed a§ the differences between §r and

S;, the determination of K requires that these data be essentially in
registratioﬁ such that the differences .are due to scene changes and

are not the result of misregistration error.

3.6 Correlator Signal-to-Noise Ratio
A signal-to-noise ratio for the processor is detived for the
purpose of giving a measure of performance to the correlator. A

dimehsionless quantity is desired, thus define

o, | |
S z (r
N = Var (2] | (3-82) -

The result is derived for kz = 0; thus from equations (3-73) and (3-75)

s @ s)?
5. : (3-83)
H KHE '
2
[')"1 «s)HTs ] ’
, = =r’ =r
= - 1 T -1 T _ (3-84)
A K s)TR (KT s)
slxts)? |
-  (3-85)
S” K S
=r = Zr
T -1
-5, Kls, (3-86)
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For the noise free case, K = 9

1

U S |

N5 K 5 ' (3-87a)
1T

- r (5, K sh = N | (3-87b)

where N is the number of observations averaged. For K 40

S _ T -1
=5 Btk S

N (3-88)

r
In the derivation of an equivalent result by Arcese et gl. (6],
there is an error in the derivation. A development such as suggested

by these authors is given in Appendix C and the result is shown to be

consistent with equation (3-87).
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CHAPTER 4

EXPERIMENTAL RESULTS

4.0 1ntroduction

In this chapter certain of the algoritﬁms develéped 1n.the-
previous-chapters are appliéd to both ideal data sets and to imagery
obtained with a line-scanning spectrophotometer mounted in an aircraft.
The algorithms used with a specific data set, and taken collectivel&, -
are termed a processor. Thg results obtained using the ideal data
are presented first,_followed by the applicatioﬁ of the processoi to
a scanner data set in whichbthe,reference data §r is selected as a
subimage of the background dafa. This, of course, yields a distortioﬁ-
less.énd noise free reference data set. |

Mulcitemporal data sets are then considered. Search techniques
utilizing the modulus of the Fourier transform of these data are used
to estimate the regional geometric distortion, and results of the

_processor operating with these corrected data are obtained.

4.1 Ideal Data

The purpose of generating ideal data sets ;s to obtain picture
functions with known statistical properties. These data are then used
to both check for the correct operation of the computer codes as well
as to evaluate the performance of the processihg algorithms with

variations in the data parameters, These ideal data were obtained by
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convolving a two-dimensional array of computer generated random
numbers, having a Gaussian distribution, with a two-dimensional low-
pass filter having a specified impulse response.

Two sets of ideal data were generated, differing in the form
of the filter used to smooth the set of random numbers. The impulse
response of the first of these filters was chosen so as to obtain
a data set with a covariance function modeled by equation (3-38);
this data set exhibits a strong correlation of the data along the
coordinate axes. An alternative data set having no preferential
direction of data correlation was obtained with the second filter.
4.1.1 Separable Exponential Filter

The impulse response of the filter used in this subsection,

termed the ''separable exponential filter,'" is given by
1
h(x) = k, exp [ - e x) | (4-1)

x| <R, 1=1,2

The normalization coefficient k,, derived in Appendix B, is

1’

o= {on[1- e (]}

where R.o is defined as the "characteristic length" of the filter. The
variable R is the size of the truncated impulse response with both R
and Ro being measured in units of picture elements. A plot of the
impulse of this filter is shown in Fig. 4-1(a).

This filter was chosen so as to yield a data set with statistical
properties closely approximating the isotropic exponential covariance

matrix defined by equation (3-38). Thus the processor for this data




(a) Filter Impulse
Response

Figure 4-1 Correlator Outputs for Various Amounts of Data Correlation
(Separable Exponential Filter)



Figure 4-1 Cont.
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set is the crosscorrelation of the background data with the template
given by equation (3-46). This template is obtained by simply by

convolving the grid operator G

2 2
P -p(1l + pz) P
2
6= |-pa+o®  a+eH?  pa+ed (4-3)
2
p -p(1 + pz 92

with the subimage of the background data selected as the reference
data set S . The adjacent cell correlation coefficient p of the
reference data S 1is used to determine the grid operator, and
experimentally observed values of p for various values of Ro and
template sizes are given in Table 4-1(a).

The processor outputs are shown in Figs. 4-1(b)-(f) for data
sets having specified values of R0 and where the template is a subimage
of the background data. The correlator template size for these
results was 32 x 32 picture elements. There are several properties
of these outputs which are of interest. The most obvious result is
that the output function becomes smoother and the pedestal variance,
relative to the central peak, increases as Ro increases; an increase
in R decreases the spatial frequency bandwidth of the two-dimensional
signal. Thus as the spatial-frequency bandwidth is reduced, there is
both a loss in signal-to-noise ratio, as defined by equation (3-19),
and a loss of resolution. In this application resolution is defined
as the width of the central correlation peak at one-half its height.

It is also observed that the peak values of the output in the
pedestal region appear to be distributed such that there are no large

distinct peaks in this region. Thus, a unique central peak can be




Table 4-1. Experimental Values of the Average Adjacent

Cell Correlation Coefficient (p).
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(a) Separable Exponential Filtered Data
Template Filter Characteristic Length (Ro)
Size 0.0 0.5 1.0 2.0 4.0
32 x 32 .049 .309 .652 .868 .953
48 x 48 -.009 .296 .647 .874 .954
64 x 64 -.013 .297 .650 .887 .962
(b) Isotropic Exponential Filtered Data
Template Filter Characteristic Length (Ro)
Size 0.0 0.5 1.0 2.0 4.0
32 x 32 .049 .254 .658 .902 .972
- 48 x 48 -.009 .260 .676 .904 .964

64 x 64 -.013 .268 .699 .902 .967
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unambiguously located.
Ideally the processor for the noise free signal given by equation
(3-27) is the inverse of the filter used to obtain the data. Defining

a parameter a with
0<cac<l (4-4)

as the prewhitening coefficient and choosing

?

p=aop (4-5)

as the parameter for the grid operator, equation (4-3), yields the set
of outputs shown in Fig. 4-2. The background data set used for this
sequence of correlator outputs was obtained with a filter having the
parameter Ro = 2, and the correlator template was 32 x 32 picture
elements in size.

For the case of o = 0.0, the processor reduces to a cross-
correlation between the background data §b and a template consisting of
a subscene of §b‘ For ¢ = 1.0, the processor ideally implements the
inverse filter. The effect of the prewhitening coefficient for o < 0.5
is observed to be small. However for o > 0.7, the processor template
begins to significantly alter the correlator output.

Experimentally obtained curves giving the output signal-to-noise
ratio as a function of the prewhitening coefficient are given in
Fig. 4-3. This family of curves for various values of filter character-
istic length was obtained by computing the processor output for each of
the set of data parameters (Ro’ o) where the processor template was

32 x 32 picture elements in size. The signal-to-noise ratio of each

of these correlator outputs was then determined. The signal component




(a) a= 0.0 (b) a=0

(¢) a=o0.5

Figure 4-2 Correlator Outputs for Various Prewhitening Coefficients
(Separable Exponential Filter)




(d) a=o0.7 (e) a=0.9

(f) a=1.0

Figure 4-2 Cont.
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is defined as the square of the difference of the amplitude of the
central peak and the average value of the output in the pedestal

region. Thus

s, = [2(0) - <z@) ]2 (4-6)

=

The noise component is defined as the variance of the correlator in

the pedestal

) N N 2
Negts T oE [ -y ]
P u=l u,=1 wr — ufr (4-7)

where Np is the number of points used in the summation. It should be
noted that the condition u ¥ r used in equations (4-6) and (4-7)
implies that the central peak was deleted and not just the point u = r.
The average value <-) was also taken of the set of points having the
central peak deleted.

The significant results to be obtained from these plots are that
the signal-to-noise ratio increased approximately 6 dB for reasonably
correlated data and that the slope of each of the curves near o = 1.0
is relatively small. This latter observation means that the processor
is relatively insensitive to the choice of p for values of p near the
correct value pc. The performance of the processor for each value of
Ro is given in Table 4-2.

The processor output signal-to-noise ratio, given by equation
(3-88b), is theoretically independent of the adjacent cell correlation
coefficient. However, for the class of data being considered in this
section, as p % 1 the amplitude of the data must approach a constant

value. Curves giving experimental results of the output signal-to-noise



Table 4-2. Correlator Performance for the Separable
Exponential Filtered Data.
R ] G G Processor
o o=0 o] Gain (dB)
0 . 049 1006 1001 0
0.5 .309 773 1001 1.1
1.0 .652 224 878 5.9
2.0 .868 52.6 441 9.2
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ratio as a function of p are given in Fig. 4-4. It is observed that
the qorrelator output signal-to-noise ratio decreases by approximately
3 dB at p = 0.9. For values of p > 0.9 the signal-to-noise drops
precipitously. It is concluded that the processor yields acceptable
results for the range 0 < p < 0.9, and the value of the results for

p > 0.9 is questionable.

4.1.2 1Isotropic Exponential Filter

The experimental procedure of subsection 4.1.1 is repeated in
this subsection where the data are obtained by convolving the two-
dimensional array of random numbers with a circularly symmetrical

exponential filter. The impulse response of this filter is of the form
1 .2 2 1/2]
h(x) = k, exp [- R_ (x; + x;) (4-8)

x| <R, 1=1,2,

where the normalization coefficient kz,derived in Appendix B, is given

by

k, .{ R [1 - (143 exp (- f{—)] }-1 (4-9)
[o] 0

The parameter Ro is defined as the characteristic length of the filter
as was done earlier in equation (4-2)., The variable R is the size of
the filter, and both R and Ro are measured in terms of picture elements.
A plot of the impulse response of this filter is shown in Fig. 4-5(a).
The data set used in subsection 4.1.1 had preferential correlation
directions introduced by the filter defined by equation (4-1). The

filter used in this section was selected so as not to introduce such




Correlator Output Signal-to- Noise Ratio

109

10

103

b—
-
N = 64
P
# N = 48
: N =32
8 |
e 1 Lllllll 1 L 1 L1

103

0.01

Figure L4-4 Correlator Output Signal-to-Noise Ratio as a

0.1

Average Adjacent Cell Correlation (p)

Function of the Average Adjacent Cell
Correlation
(Separable Exponential Filter)




(a) Filter Impulse
Response
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Figure L-5 Correlator Outputs for Various Amounts of Data Correlation
(Isotropic Exponential Filter)
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preferential directions into the correlation function; this filter is
termed the "isotropic exponential filter.'" Observed values of p for
various values of Ro and template sizes are given in Table 4-1(b).

The purpose of this experimental procedure is to compare the
results of subsection 4.1.1 with the processor performance when the
data set has statistical properties other than those given by
equation (3-38). The correlator outputs for corresponding values
of Ro as used in Fig. 4-1, but using this isotropic set of data as
the input, are shown in Figs. 4-5(b)-(e). The template size was
again 32 x 32 picture elements. Comparing the corresponding outputs
in Figs. 4-1 and 4-5 shows that the outputs have very similar character-
istics.

Defining p’ and o as in the previous section, the sequence of
processor outputs as the prewhitening coefficient o is varied, is
given in Fig. 4-6. The data used in this sequence were obtained with
the filter having R° = 2.0 and the correlator template size was 32 x 32
elements.

The numerical results of the two sequences of experiments shown
in Figs. 4-5 and 4-6 are summarized by the curves of Fig. 4-7. The
identical procedure for determining the signal-to-noise ratios as used
to obtain Fig. 4-3, was used to compute the curves of Fig. 4-7. The
performance of the processor with the isotropic data set is summarized
in Table 4-3.

Care must be used in comparing the results shown in Figs. 4-3
and 4-7 because the value of the average adjacent cell correlation

coefficient differs between the data sets for the same value of Ro'




Figure L4-6 Correlator Outputs for Various Prewhitening Coefficients

(Isotropic Exponential Filter)
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Figure 4-6 Cont.
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Table 4-3. Correlator Performance for the Isotropic

Exponential Filtered Data

R [} G - G Processor
o o=0 o (MAX) Gain (dB)

0 0.049 1006 1005 0

0.5 254 735 967 1.2

1.0 .654 153 813 7.2

2.0 .902 28.5 558 12.9

4.0 972 9.58 423 16.6
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However, it is readily observed that the curve for Ro = 0.5 of
Fig. 4-7 does not reach the curve for R° = 0, In addition the curves
of Fig. 4-7 have their peak values at approximately o = 0.95.

Fig. 4-9 gives the correlator output signal-to-noise ratio as a
function of the average adjacent cell correlation for the family of
curves generated by templates having N x N elements. Comparing Fig. 4-9
to the corresponding earlier result shown in Fig. 4-4 yields insignifi-
cant differences. Thus it is concluded that the processor is not
critically dependent on the exact form of the covariance function of
the data in order to give acceptable performance.

Certain additional results were computed using the data set
obtained with the isotropic exponential filter. The correlator output
for various sizes of templates is shown in Fig. 4-8. The data set
used was obtained using the filter with Ro = 2,0 and the template sizes
were N x N picture elements where the values of N were 32, 48 and 64.
It is observed that the variance in the pedestal decreases as N
increases; however, the width of the central peak remains essentially
unchanged.

In Fig. 4-10 the processor output signal-to-noise ratio is plotted
as a function of the template size; in these plots the independent
variable was chosen as N where the number of picture elements in the
template is N x N. Fig. 4-10(a) gives the results where the template
is a subimage of the background whereas Fig. 4-10(b) gives the results
where the template is obtained by the processor for the prewhitening
coefficient @ = 1.0, It is of interest to note that the results of

Fig. 4-10(b) are a series of linear loci and are approximately parallel.




N2 = 102’4 N2 = 2301¥

Figure 4-8 Correlator Output for Various Template Sizes
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Figure 4-10 Correlator Output Signal-to-Noise Ratio as a
Function of Template Size
(Isotropic Exponential Filter)
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From the results of the two previous sections, it is observed
that the differences which exist between corresponding processor
outputs for the two data sets are not significant. Thus it is suggested
that this processor which is developed for the class of data sets having
isotropic exponential covariance may be applicable to data having
different statistical properties. An additional result of interest is
the smoothness of the curves of signal-to-noise ratio as a function of
the prewhitening coefficient for values of o near @ = 1. This suggests
that the choice of a value for p is not a critical factor for the

processor to yield useful results.

4.1.3 Signal-to-Noise Ratios for Geometrically Distorted Data

If geometrical distortion exists between two corresponding sets
of data, there results a loss in the correlator output signal-to-noise
ratio compared to the value obtainable using undistorted data. An
experimental verification of this statement was obtained and the results
are shown in Figs. 4-11(a) through (c). These curves were computed
using the ideal data discussed in section 4.1.

The distorted data were obtained by rotating the set of computer
generated random numbers with a nearest-neighbor interpolation algorithm.
Following this rotation these data were convolved with the isotropic
exponential filter, equation (4-8), having the appropriate choice of
characteristic length Ro. These data were then crosscorrelated with a
similarly filtered set of undistorted data, and the resulting output

signal-to-noise ratio was determined.
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The significant results shown by these curves is that as the
data becomes more highly correlated, the correlator output signal-to-
noise ratio, although less in magnitude, is less sensitive to the
geometrical misregistration. This of course is an intuitively satisfy-
ing conclusion since the correlation distances become greater as the

characteristic length of the filter increases.

4.2 Noise Free Experimental Data

The processor used in section 4.1 is now applied to line scanner
data. In this section the reference data §r is again selected from
the background data, giving a reference signal which is both noise
free and distortionless. The images processed in this section are
typical of scenes observed in line scanner imagery.

In the results of this section, shown in Figs. 4-12 through 4-14,
the title "image template'" refers to the use of §r itself as the corre-
lator template, whereas the term ''processor template'" is taken to mean
that §r has been convolved with the grid operator G, given by equation
(4-3), to obtain the template for the correlator. In addition the
number of picture elements in the template for a given correlator
output is N2.

A scene of an agricultural area is shown in Fig. 4-12(a); the
outlined area represents the approximate area from which the reference
data set §r was selected. Fig. 4-12(b) shows the output of the cross-
correlation of Er with the background §b' It is noteworthy that
Fig. 4-12(b) typifies the correlator output of those scenes consisting
primarily of agricultrual fields. The correlation function is being

viewed at an angle of m/4 radians, and it is readily apparent that the




(b) Image Template
N° = 409%

(a) Agricultural
Area

(¢) Processor Template

N° = L0%

Figure 4-12 Correlator Output for an Agricultural Area
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correlation distances along each of the orthogonal axes are significantly
different.

The correlator output where the template was obtained by convolv-
ing the grid operator G with §r is shown in Fig. 4-12(c). The peak
of the correlation is readily identified as in the previous figure;
however, this processor exhibits a significant suppression of the
pedestal variance.

An urban scene is shown in the outlined area of Fig. 4-13(a)
and the corresponding correlator outputs are shown in Figs. 4-13(b)-(e).
As was previously observed for the agricultural area, the location
of the peak in the correlator output using the image template is
readily established. However, the pedestal variance in the correlator
output using the processor template is significantly reduced.

The outlined area in Fig. 4-14(a) is an example of a natural area.
The correlator outputs shown in Figs. 4-14(b) and (d) are significant
becguse in each of the outputs the peak corresponding to the correct
juxtaposition of §r on the background appears as a narrow peak project-
ing from a larger bump. If a hill-climbing algorithm was being used
to locate the correct juxtaposition of §r and the step size was large,
it is conceivable that an incorrect maximum would be found. However,
in Figs. 4-14(d) and (e) these undesirable lobes have been reduced
and the central peak is readily identified.

The significant numerical quantities associated with these results

are tabulated in Table 4-4,.
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Figure 4-13 Correlator Output for an Urban Area
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Table 4-4. Significant Numerical Quantities in the

Noise Free Line Scanner Data.

Figure Template Adjacent Cell Signal-to-
Size Correlation Noise Ratio
4-12(a) 64 x 64 i 19 133
4-12(c) 64 x 64 .775 4510
4-13(b) 32 x 32 .629 106
4-13(c) 32 x 32 .629 664
4-13(d) 64 x 64 .690 234
4-13(e) 64 x 64 .690 1880
4-14(b) 32 x 32 .577 21.8
4-14(c) 32 x 32 .577 75.9
4-14(d) 64 x 64 .570 10.4

4-14(e) 64 x 64 .570 966
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4.3 Multitemporal Data

Multitemporal data sets generally exhibit both misregistration
and noise components. The processor template, given by equation (3-78),
requires both the signal and noise covariance matrices. In the general
case, these matrices must be estimated from the data, although for
certain classes of data the form of the matrix is assumed and the
parameters needed for determining the matrix elements are estimated
from the data.

The difficulties in obtaining estimates of these covariance
matrices were discussed in Chapter 3. Briefly, however, these diffi-
culties arise from the requirements of large arrays of computer memory
and the size of the data sets necessary to obtain meaningful statistical
estimates of these matrices.

In view of these computational difficulties the development of the
template given by equation (3-78) will not be carried out; instead, the
processor used previously in this chapter will be used to experimentally
evaluate its applicability to multitemporal data sets.

The data sets selected for multitemporal processing are shown in
Fig. 4-15 with the reference data §r selected from set A and the back-
ground data Sy chosen from set B. Four areas are selected from this
data for processing, and the approximate locations of these areas are
outlined in data set A. The following procedure is used in analyzing
these data sets. The correlator outputs for these test areas for
values of the prewhitening coefficient of 0.0 and 0.9 are computed.

From these results it is concluded that the algorithm will not give

meaningful results for geometrically uncorrected data regions.



Region

Region

Region

Data Set B

Data Set A

Figure 4-15 Multitemporal Data Sets
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Table 4-5. Characteristics of the Experimental

Multitemporal Data

Purdue Flight Line 210

DATA SET A DATA SET B
Run No. 71053900 71062900
Date 13 Aug 1971 30 Aug 1971
Time 1202 1229 hours
Altitude 5000 5000 feet
Heading 180 180 deg.
No. Samples/Line 222 222

3

Angular Resolution 6.06x10" 5.82x10"> radian

Wavelength Band Used .54 - .60 .54 - .60
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The moduli of the Fourier transforms of these data regions are
then computed, and the data of Region 2 geometrically corrected. The
section concludes with the crosscorrelator outputs where the corrected

data are the crosscorrelator inputs.

4.3.1 Crosscorrelation of Misregistered Data

The outputs of the crosscorrelator for the data sets selected
from the set of multitemporal imagery are shown in Fig. 4-16. For the
results shown in this figure, the leftmost display is for a value of
the prewhitening coefficient ¢ = 0.0. This corresponds to using the
reference data set §r as the correlator template. The outputs for
@ = 0.9, a value chosen to approximate a nominally correct value of
this coefficient for most previously observed data, are shown in the
rightmost pictures.

The correlator outputs shown in Fig. 4-16 for regions 2 and 3
exhibit the typtically observed results for scenes consisting of
rectangular fields. Observing the location of region 1 in Fig. 4-15,
it is seen that this area too is composed of agricultural fields.
However, data set B exhibits a non-linear distortion component in
this area, suggesting that the aircraft began executing a maneuver
during the period of time in which these data were being taken.

The correlator output shown in Fig. 4-16, region 4, shows a
results obtained with input data selected from an area containing
undeveloped terrain. This output exhibits a large, readily distinguish-
able unimodal peak. With data from a class exhibiting such a cross-

correlation function, efficient algorithms can be developed such that




Region 1 , @ = 0.0 Region 1 , @ = 0.9

Region 2 , a = 0.0 Region 2 , a = 0.9

Figure 4-16 Correlator Outputs for Multitemporal Data
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Figure 4-16 Cont.
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a complete search of a region of the correlation output plane for
a maximum is not required. Rather a search procedure is implemented
where successive steps move‘toward the peak.

The results for o = 0.9 without exception are of little value.
However, for the processor to yield useful results, it will be demon-
strated that it is necessary to implement a geometrical correction of

the data.

4.3.2 Regional Geometric Distortion

Regional geometrical distortion can, for certain classes of dis-
tortion and data, be estimated by determining the differences in the
moduli of the two-dimensional Fourier transforms of the two apptoximatély
corresponding regions under consideration. Examples of moduli of
Fourier transforms of line scanner data are shown in Fig. 4-17. The
Fast Fourier Transform algorithm was used for computing the transform
of these data. 1In each of these pictures the transformed data have a
logarithmic amplitude scale, and the gray scale employed in the display
system is linear. The size of the data set being transformed is
128 x 128 picture elements.

The transforms of regions 1 and 3 exhibit the concentration of
spatial-frequency energy in the linear loci typical of structured data
scenes, whereas the moduli of the transforms of region 4 exhibit
unstructured characteristics. In each case it is of significance that
most of the energy appears to be concentrated in the very low
frequencies. The double lines in the moduli of the structured data
are due to the aliased energy from the pattern located at the adjacent

harmonics of the sampling frequency.
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Data Set A
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Data Set A
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Figure L4-17
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Moduli of Two-Dimensional Fourier Transforms







The data from region 2 were selected as the set to be geometri-
cally corrected. The moduli of the transforms of these data are
gshown in Fig. 4-18. The algorithm for locating the loci of energy
in the transform domain, which was developed in Chapter 2, was
applied to these transformed data, and the angular quantities given

by the algorithm, measured with respect to the u, axis, are as follows

1

data set A -7.18 x 10”2 radian
1.57 "

data set B -3.30 x 1072w

1.52 "

With a hypothetical transform coincident with the coordinate axes
used as a reference data transform, the resultant angular quantities

defined in Fig. 2-13 are

data set A ¢1 = -4,1°
o
g,= 0
data set B ¢1 = -1,9°
o
¢2 = -303

The two-dimensional polynomial given in equation (2-14) was
used to implement the correction. Rather than mapping one data set in-
to the other, it was chosen to rectify each data set assuming the
reference data set was coincident with the coordinate axes. Examining
the data sets in both the spatial and spatial-frequency domain, the
angular quantities chosen for the rectification differed slightly

from those above. The numerical values used for the rectification are




Data Set A Data Set B

Data Set A Data Set B

Figure 4-18 Modulus of Distorted Data and Geometrically
Corrected Data for Region 2
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data set A ﬂl - -3,7°
o
¢2 = 0
data set B ﬂl - -1,7°
o
¢2 = -3,3

for each of the data sets.
Thus for data set A using equation (2-56) the value of the skew

coefficient is

1

tan.[ % - T%a (-3.7)]

LR ¢

b
N - = PR [ - (3.7)] = -0.0647

The distortion matrix, defined by equation (2-58), is then

0.9979 -0.0645

0.0 1.002

The corresponding quantities for data set B are

~ 1 ”
- = Ean [ - (1.6)] = 0.0279

21 -
tan [ 180 (86.7 + 1.7)]

and the distortion matrix is
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0.9999 -0.0297

0.0576 0.9987

The results of this geometrical correction on the spatial data
are shown in Fig., 4-18. It is emphasized that the correction is
applicable only in the center of each of these pictures as the

distortion introduced by the aircraft motion is a dynamic quantity.

4.3.3 Correlator Output for Geometrically Corrected Data

The output of the crosscorrelator for the corrected data set is
illustrated in Fig. 4-19 for various values of the prewhitening coef-
ficient ¢, The template size for each of these outputs is 64 x 64
picture elements. Comparing the result of Fig. 4-19(a) to the corres-
ponding output of region 2 of Fig. 4-16, it is seen that the geometrical
correction has increased the sharpness of the peak at the correction
justaposition of §r'

A significant result is that the pedestal variance is reduced while
the central peak becomes more discriminable as the value of o approaches
unity. A plot of the correlator output signal-to-noise ratio for these

results is shown in Fig. 4-20,
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Figure 4-19 Correlator Output for Corrected Multitemporal Data
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'~ CHAPTER 5.

SUMMARY-

‘5.0 'Suﬁuagz‘

Given two - sets of imagery of some common area taken at different -
d‘times, it is observed that these data exhibit geometrical misregistra-j,
Ation ‘The rectification of this imagery requires that the parameters'

Y determined for the mathematical model ‘assumed to characterize the

‘misregistration. The problem studied in this investigation 18 the

.identification of conjugate, or corresponding, points in multi— |
temporal imagery such that the coefficients of the- misregistration

model- can be obtained. |
Selecting a reference data subimage; denoted's , from the‘first

-data set, these conjugate points are located by finding the correspond-
ing subimage S which is embedded in the background data S S,- The .

measure of similarity between data sets is taken to be amplitude":

’ correlation. Assuming the mieregistretion between s, and §; to be
modeled;by'an effine trnnsformation, a_eequential procedure'is
:impleuented in which the_geometrical distortion componenté are first

';estimated and removed; Algorithms utilizing the moduli of the_twof

dimensional Fourier transforms_of the dete Er and its approximate

. corresponding subinage §; are developed for estimating»the distortion

~ model coefficients.



17 Following the geometrical correction; the displacement j

»coefficients are estimated by determining the ‘location of the peakl

of the correlation surfacekcomputed by crosscorrelatingva template, p
generatedlfrom the»reference_data,‘with'the backgroundf§5._ .
'of.this correlation surface 1s assumed to be the'point'of correctV
superposition of the reference data on the background data.

| The algorithms reported in. the literature for computing the
.correlation surface or some equivalent quantity, do not give a f{A‘
'surface on which the point of greatest correlation is maximally e
':discriminable from the values at other points of the surface where'
‘the- criterion of discrimination between points on the surface 1is as ib
' defined in Chapter 3. The one'exception'is the filter‘reported by
v Arcese et al. [6] | ‘ |
The filter derived in this investigation extends these previous
' 'results to data having a covariance matrix K and in which the back-
ground data contains an additive . noise component with statistical
' properties characterized by the covariance.matrix En;f The.analytical
‘expression of this'filter is_obtained under the‘constraintslof both fi
an output OE,unity at the correct superposition of_theireference,dataf_
on_the.background and for aibqunded energy in the filter. With the
removal of both constraints.and for no ‘additive noise componenta,ithis
‘filter reduces to the result of Arcese gtlgl. If in addition the
-correlation betveen adjacent;picture elements is neglected, which -
yields‘thevidentity'matrix'for 58,-tﬁ¢ filter.then becomes the

reference image itself.

Coasa e

~ The peak - -
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The‘applicétiqn_of this filter to noiselfree and distértionleés
"data,lﬁith the covgrianée_matrik of the image aséuﬁed'to'be of a
simple exponential form; yields'tesulté which substantiate the
theoretical development of the processor. In thése_resqlté tﬁe_
:“cprfelation suffacés of the Aata sets ptocesséd with the filter
-éxhib#t narpow central peaks and have significantly decreased varianée
in the pedestal region of the surface. |
'7The-applic§ti§n of this.algorithm to multitemporal data
_1ntr6duées some problems which a;.the'pfesent have no solﬁtion.
Implementation of the generél filter for‘this data requires knowledge.
- of the covariance—matriées of Both the reference and nbisé' processes;
however, it'is'nqt possib;e to make meaning~u1 eetimateé'of ;heae.
quantities at the bréseﬁéltime. The difficuity in esfimating'these _
i  matri¢ésvarises.from two sources. The'firsf is thé size of the arrays
required for handling tﬁe matrices in the coﬁpqter."lt h#s'ﬁeén
: expérimentally féund that the useful sizes of-refefence data sets

range between 25 X 2S to 27 x 27 picture elements, with the resulting

sizes of the covariancé matrices ranging between 210 x'210 and

14 x Zla'elemehts. The second difficulty is the unavailability of -

2
é sufficiently large set of'daﬁa having similar statistical properties
ﬁo Ehé reference such thaf a meéningful estimate of the covgfiance'
matrix of gﬁe refefence data can be made. An additional difficulfy
1n“eptimatipg-the noi#ekproperties is that, with the noise defined
as the_differenceAbetween the data sets, the determination of K
' .requires thaf the data be invregiétration to obtain the differencéé

which are related to scene changes and are not due to misregistration

error.
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"If.it ieepossible to approkinete the estimeted covariance metricee
V:with;netrices having a Toplite form, thefrequirement for conputerfvf.
: etorage can be réduced-by:a factor of 1/m where the number of elemente“b
in the.reference data set is m x m. However, the requirement remains
~ for the availability of data sets of sufficient size from which to
make the.initial covariance‘estimates. _ |
The use of the algorithm deriVed‘for,the noise'free proceeeor
hwith‘both noise free and multitemporal date &ields encouraginghreeults‘”
in that - the central peak of ‘the correlator output indeed becomes more i
:.discriminable from the output in the: pedestal region where discrimina- )
'tion is defined as the ratio of the correlator output signal to-noise
‘using the optimum filter to the corresponding correlator output '
>Quantity with the referenceuscene used as the filter. The increase in 1
| discrimination.for the_noiée free data renges_hetweeniﬁ to 15 dB and (
~ for the multitemporalidate the correspondingiincreaee-is greater than
. . . : . o
- A requirement imposed on the data by the.filter,for'theboptimum
» tdiscrimination-of‘the correct ouperpoeition of §t is that the
}geometrical'dietortion components of'thio‘misregistration model must
be reduced below .the magnitudes found to typiCally-occur‘in the multi-
'temporel data., It is demonstrated in thisiinveStigation:thet'the'
linear geometrical_distortion‘existing,hetween two data sets can be de-
. termined from the moduli of the Fourier transrorms of thesevdata, Valuesh
of the skew and rotational‘dietortionjcomponents-were'determined for

a set of multitemporelviuagery using the linear regression algorithms
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‘ deVelopgd in Chapter 2. These values of these distortion components
were fodnd to agree with numerical values obtained by independent

_méthods to within a few tenths of a degree.
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APPENDIX A

THE THO-DIHENSIONAL FOURIER TRANSFORH

The propertiea of the two- dimensional Fourier transform of the

function f(_) under an affine transformation

H=Ax+ s: I - | (A-1)

where A is a [2 x 2] nonsingular matrix and

== (3], e-[3]

_areoof intcrest in this study. Inithe_following, cxpresoions for
ooth cartesinn and polar coordinate syst;ms are oerived cnd the
_'symmetry between the spatial and spatial frequency domains is - |
rdiscussed. '

The two-dimcnsional Pourier transform of the function f(_) is

' defined as | |
ol lwwlmenle o
| ,-'f(z> - J':,f O] exp[ o @ Ja '. | _' @3

where
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-

t8 the sp@tiél‘frequency and (u;X) 18 ‘the inner pfoduct'

w(a)' Tﬁé Affine ﬁapping
" The Foutiet.Ttansférm bf‘thé functiéﬁ‘
f(x) » f(HX =@ o I S
s | . _ | - | : |

| RETI xp {fj_zﬂ.. [@ - o] dl(w .
fre[mesto] L
. | Jew ew [-jzn_m':», sy “ | (547)

1

- P exp [ jéﬂ (u, A" .-t)]

- ‘r: Iv“‘l’ exp {‘szf' E:(é-l':"rg’f!)] }~‘?¥ .,::'(4.'8')

Cetrem[ mes]s[atos]  aw
| .‘,.G(xv)i B o | e

where J is the Jécobiaq of the-trah;fommatipn g

[ dy; 'ayl
axl _ %x,
y, Dy
L 3% 3% ]
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. fhe'rélation betweep these coordinate Qafiableé is
Cf® —> @
T
L F(uw) —> G
:ﬂ'whére {::S”'denofes‘a?Fodrietvtrénsforﬁ«baif.
(b) 'Thg Twp-Dimensiqngl fourier Transqum ip Polar Coordinates
:_To obtain-theeguﬂthxx analogous to equation (A-10) in polar

coordinates, let

-, and

X = cos 9 L . (A-11)
X, =T 8in 9
u = p cos )
o (A-12)
Uy, =p sin @

Spbsfitutiﬁg equation (A-12) into equation (A-2)
o 2nm _ - ‘ . . ‘
F(u) = I J r f[g(r,o)]exp [-jZn'(g,g)] do'dr (A-13)
‘00 ' . 4
‘o 21 . :
= I}J r g(r,9) exp [-jZn(ulr cos @ + u,r sin'O)] de dr
oo‘ . ‘ - . .
‘ _ (A-14)
. . Now using equation (A-11) 1ﬁ_(A-14) |

Flu(p,#)]1=G(p,9)
_ o 2 _ - | | _
o= J j r g(r,0) exp [-janp cos (O-G)] de dr _.(A-15)
oo , -
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_ (c) Scale and Rotation in Polar COOrdinatea :
Uniform scale changes or rotations of the function g(r 0) are i
related by the coordinate mapping;

T o | oo e
8(r,0) g(ar,o-+9) | | S (5 )

',Substituting equation (A-16) into equation (A-lS) yields

- mom
¢ (p.ﬂ) - J' [ ra@r, 040 exp[ J2nrp cos(e- a)] a0 dr (A- 17)‘ |

oo
: 'Letting & = ar
X = 9 + 0

| -A?c (0, 8) = I J (§) g(g 2 exp[ jzrr f;)p cos (A-0, o)]dx d(%) (A-18). -

g 8(E,0) exp{ -32m () cos [x - (@49 )]} ade
(A-19)

°

1 o ~ o - ia
= Y G(p(a, p+8) | SR (a-20)

- (d) Spatial and Spatial-Frequency Domain Symmetries
'Fof tho affine transformation defined by oquntion (A-l) the

,tesultant'transform-waa.given by équatidn'(k?9) as
6@ = TT exp | jZn‘(_ _)] [(A ) u] 3 - (@a-21y
"Thus the coordinates are related as

v - @'l)r'”p. | a2y
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. The energy denﬁity spegﬁrum of-f(5) is
s P . @a-23)

and:thg‘linéaf'bhase'tefm éaﬂcels. ?hus thev¢oordinates of the energy
dgnsiﬁyggpéctrum (6r eqﬁivalently the @odulus) are‘:elaced.to,the ' .
‘linear distortion mafrix iﬁ_thé sb#tial dom#in; whergaé any spatial
' éhifi tesul;é.iniﬁ‘line;rvphase term in thé spatial'frequency domain,

For feal signals it follows'immediétely from equation (A-2) that
P-w) = F'(2) | - - (a-24)
 whgre the asterisk'denotes the'cdmplex conjugate. Thus the energy

density specfrum (or'modulus)vis symmetric about any line passing

'throﬁgh.the'origin in the spatial frequency domain:




APPENDIX B .

" FILTER NORMALIZATION COEFFICIENTS

_ The nermalizarion coefficienrs for.fhe flitets esed)feeEﬁedth -
the random number ideal data are derived assuming a continuous.
, functional form. These weighting coefficients are then used with
the diacrete two—dimensional convolution expression to 1mp1ement
the smoothing filter As a checkvfor the eorrecrness of.rheae |
coefficiente, the gain (volume) of each filter was experimentally
‘verified by convolving each filter impulse_response‘WLth ar_arrey;'

‘each element of which was unity.

Separable Exponertial Filter :

The filtervimpulse'reeponse'is given<by :

@ =k e - -};; FCR ) Y ¢ Y8
R 20, Ixl Ixlsrea.

The gain of h (x) is
RR- , T
G = 4 I J k exp [ R (x + xz)] dx dx2 - . (B-Za)A_

e Rﬁ_ [1:’-"e‘::§ (%;) ]2, - o ‘(B-.Zb.)»v':




{z oo <——m

' v_g~_'Isotropic Exponential Filter

The 1sotrop1c filter 1mpu18e responae is given by

"‘2}@’ - ky e (R_o) )

2, 9. 1/2

| r= (x 2) >0, 0< R? <R<e,

'The gain of h (x) is t:hen given by ' o

R 2w . _
: G-ijre:q:(-s—-)dOdr
g rem(-E) 4
AR re® TR )T
o
© let
. .
X.-,i— ’ Ro-dk = dr
_ [¢)
‘Thus
' : R/R

6=k, [ & xexp(-x)dx

)

and 1ntegrating by parts

’.(_;2=2nk Rz[-k exp()\) ‘

. 2 R ___ (R
=k, B [- R o _(- y

e (1) dk]
o ) -‘e*P(- L)1)
Cerdn[i () w (1))

167

(B=3)

_ (3-4) -

(B-5a)

- (B-6) -
R 3))

(Bésa)'
(B-8b) .

(B-8e)




‘For unity gain ‘ | B o g "' : L . ‘_». o o :

- o - -
DGR (B e

S o’ " . o

_Test'offcafn ' -

‘For each filter the convolution

vy = T Eheud, v-3) att, oo e

'was computed with the filter having characteristic length R = 1 0 and'f

;an a(i 1 consisting of a 100 x 100 array of element each element

having.a.valuevofgunity._ The values obtaineduare

Ky = 1.0006

k2 = 0.9998 .,
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" APPENDIX C -

. CORBELATOR OUTPUT SIGNAL TO NOISE RATIO

In the gbsence of unco:related additive'noise the correlator

output signh1~t64noi§e ratio was shown in Chapter 3 to be given by

- oT
1

kK 5 - (c-1).

- 417

‘vhere S  1s the reference signal and K is the covariance matrix of .
the unit vafiance proceés'of which §t is a finfte realization. It

is assumed.thaﬁ the covariahée matfixvhés-the form

o fx I SO L |
pk k ok | .
K= | o | (c-2)
I S ko]
_ where |
k= {log |l e
and
- ’ C-4
13 { ERS | IR (C-4)

 where p 1s.th¢'corre1atibn between adjacent cells.



The covariance matrix then has the explicit inverse

F 5-1 V -pk-l 0 o e 00 o A
okl e p.2)5-1 .pk-_l
-1 _ 1 1 ) - -
K 7| o ok 1 Qs 02)5 1 (c s)_
-1
o K|
‘ where
[ 1 -p 0 .e 0]
-P 1+02 -
: 0 -p 1+ p2
la—4 1 | | (C-6)
l-p : ‘ .
. O . 1 ]

To evaluate equation (C-1), substitute equation (C-5) into (C-1)

and expand, noting that the r subscript has been deleted.

" - - R
% - —l_i @.’T(l),. ....§T(m)) k 1 -pk ! _ Y 0. T 5(1)
-pk = (MHpT)k =pk 5 :
0 -pk-l (1+p'2)§-1  '§_(‘)’
o E,'I'i
(c-7).

- L Tk - esT@rt, esTK! + adsT@k? - stk
l'p ' . §-(1): .

vees =pST(m-1)k” 1. + sTmrh ~ (c-8)

:
S(m)j




o171
%- ILE [g'_’(i)g_'l s - 8T (1) - ot (K 5(2)
+ ) Tl 5@ - 5T 5 - stk 503)
o+ (1+p S ERE Y 1 5@ - osT@E T 53 -
. - 08 (m-1)k s + s (m)k -1 S(m)] @9
. -qu'e‘ét;h t.ez"m is a 'acaiar;, thus
o f S (1)k -1 S(J) = [S (i)k -1 S(j)]T As (j)k -1 S(i) (C-10)
| _si_.ii_cé (E- )'_ -'-‘lt_'l,' .E'l éymetric.

s

-8, I_ 5[5 (1)k -1 su) - 2ps Tyt scz) +o’s" K 5(2)

45 (z)l_c"1 5(2) + ... + §T(m)5"1.§_(m)] " 0 (c-1D)

. . m-1 -1

- ___[ z skl sy - 2 T S(Ok s(1+1)
1 -p ‘ . 1-1
' 2 m-2 o T
+0" I S (1)1: 5(1)] 0 (C-12)
1,1 - _ C ,. . .

' Expanding a term of equation (C-12)

S stk sw =Ly (o eennd [1 e 0 0] e, ]
=p -1 -p.
0 -p 1
4n
L0 1]

. (C-13)




S 1 o - 20 N
N" T 32 [‘11",°°121.' Pyy + (1 +p7) 85y - P85,

1-p o
LD o+ (1 +0 )8 »Osia»-°°f¥'°5;;h-1{¥‘;in];'
1-62. Bil ;.2918;1512 fy‘l +'??)éi :. 20 312 13
. 1+ p%) éfﬁ.é:"‘.' 0 #i;n_l.sin + 8fn,]:
- ;f;‘ [ z 57y -0 jz. ’11 iy TP ’ij ]

oL [N - 2p8-1) + p 2(n- 2)]

10

gal

- where N (;

- process and (N—i) (

ﬁorrelation between adjacent cells.

Substituting'equAtidn (c-18) inCO‘equacion (c-12)iyie1ds

S

N

N

=1

=1

172

(C-lﬁ)'

. (c-155
© (C-16)
A (c-17)

(C-18)

ij) = N, since § ig assumed to be from a unit variance

- N-1.
2 8,
=1

L
N-1

. M M-1 -,
,.-—-[ I N-2 £ pN+p ):-n]
1-p -

im

j ®1,141

1

) = p(N-1) where p is the

M-2

i=1

(C-19)
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".ﬁ.fp—[m_-v‘zpz(n-nAN-'f_pz@é)N] o .(<'=-20>
T - ez

.,Thus the proeessing gein of the CWo-dimensional crosacorrelator
theoretically is equal to the’ Cotal number of samplea processed and

is 1ndependent of the adjacent cell correlation p.
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APPENDIX D

' THE MAXIMUM PRODUCT OF A CONSTRAINED SUM -

If the sum of a set of real numbers A, is constfained to have
ihg fixed.value
n v ‘ . N N L . .
T A=K - : o (D-1)
.ma], . : .

_ f:hen the product

P= T A . o ‘ '.(D-Z) _

is maximized for all X; equal.

Solving for )\

A
kj = K- I A o _, (D-3)
: : mel . A
mé §
e (x - R "m)-’u TR T (D-4).
wé ] ‘ |
- K()_‘l,f‘; Mg Mg e ) ‘ (n-;) |
n E 7
- ufl )“m (7\1 eee )\j-l 7\j+1 cee )\n)
wh) i
2 RO aee AL Ao ) - £ A Gy o) (D-6)
a)\j+1 1 °°° "1 342 o 1°°°71-1" 342! n"
' -y | S
- (."-1"_‘*3-1"3+1“"‘n" =0
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- But

. therefore, -

-0 I o (0-7) -

-0 | - (D-8)
Ay= A - »' D , | - (D-9)

for all § = 1, ..., n-l.

. Thus all A, ﬁust be equal and haﬁe thg value

. o R @10y




APPENDIX E

© THE AFFINE TRANSFORMATION

The afflhe transformation is defined as.

yeAxte-zx @

where for a real two-dimensional space

‘and

81 %12

821 %22

A=
is a non-singular matrix.
Two properties of thiﬁ transforﬁation‘are of.importancevin this
stuay; these éré proved in tﬁe following. o | |
(1) Any pon-singular affine,ttansformatipn mapé lines into lines.
Ptopf: In any affine’space the vector X lyiﬁg on the line

‘paﬁsing thrpugh.g,-! can be represented as
II =(1-2A)u+thry, A real _ _ L (BE-2)

Then
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g:_"-g[(1+x)g.+x3]+5 L (3
= (-2 Qu++N Ay +D)
= (1 -A\)Bu+rBy
Thus B maps the line passing through u,v 1nto.the line passing
through Bu, Bv. | |

_ (2) Ratios of lengths of line segments are invariant under an affine

_transformtion.
Proof: u, u, 2,‘30 are elements in the real n-dimensional
. Edclideaﬁ apacevEn, The distance between vectors is defined as _
: | _ 2 ,
. 2 . .
H."E-.‘_"H-[f (‘ui-vi)l‘ o ) (E-4)
. Consider thg mappihgq
B ' - _ ' _ S
“Bu o o (E-5)

e

4J*V1th.

22?A2+£
wﬁere A is an n x ﬂ nonsingul#r matrix and t is the nrx 1 displacement
"Qector.» | | | |

Now the ratio of line segments in the affine sphce is-




1

w-f lae-sl
v, - & T TAG -y

S 1 I P PR
R 1 T B e B

'fwh-ef‘e'v\l\éll is the norm of ‘the operhtot A,
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