
0 04

o DOPPLER SYSTEM IN ATMOSPHERIC MEASUREMENTS

04

4 FINAL REPORT

to

National Aeronautic and Space Administration

n George C. Marshall Space Flight Center

Al Huntsville, Alabama0 0U

0

4 by

S. Karaki

Reproduced by d
NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 2215,

-TAT

0
o, Colorado Stae University

. engneering ReseaIch Cente



NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.



A COMPARISON OF A COAXIAL FOCUSED LASER

DOPPLER SYSTEM IN ATMOSPHERIC MEASUREMENTS

by

S. Karaki

Prepared under

National Aeronautic and Space Administration
Contract No. NAS8-26234

Marshall Space Flight Center
Huntsville, Alabama

June 1973 CER71-72SK35

T



Contractor: Civil Engineering Department
Engineering Research Center
Foothills Campus
Colorado State University
Fort Collins, Colorado 80521

Title: Final Report

Author: S. Karaki

Type of Report: Final Report
Contract Number: NAS8-26234
Control Number: DCN 1-0-75-00101(1F)&S1(1F)

DCN 1-0-75-00101 S1 (1F)

Date: June 25, 1973

Prepared for George C. Marshall Space Flight Center
NASA, Huntsville, Alabama 35812



TABLE OF CONTENTS

Page

LIST OF FIGURES . ............ ..... . .... .. . . . iii

LIST OF TABLES . .............. . . . .. ..... . v

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . .. . 1

BASIC PRINCIPLES . . . . . . . . . . . . . . . . . . . . . . . . 2

DESCRIPTION OF THE LASER DOPPLER VELOCIMETER . ........ . 6

Spatial Resolution . . . . . . . . . . . . . . . . . . . . . 7

Signal Processing . . . . . . . . . . . . . . . . . . . . . 9

TEST FACILITIES . .............. .. ......... 14

INSTRUMENTATION .. .. ................... .. 16

RECORDING OF TEST DATA ................... .. 21

TEST PROCEDURE . . . . . . . . . . . . . . . . . . . . . .. . 23

Pre-Test Preparation . .................. . 23

Pre-Test Calibration . .................. . 25

Data Recording . . . . . . . . . . . . . . . . . . . . . . . 26

DATA REDUCTION PROCEDURE . .................. . 27

Selection of Digitizing Rates . .............. 27

Multiplexed Data Groups . ................. 28

Data Format . . . . . . . . . . . . . . . . . . . . . . . . 29

Data Reduction . . . . . . . . . . . . . . . . . . . . . . . 29

EXPERIMENTAL RESULTS AND DISCUSSION . .............. 34

Calibrations . . . . . . . . . . . . . . . . . . . . . .. . 34

Measurements of Run 50801 . ................ 37

Measurements of Run 32701 . ................ 51

I



TABLE OF CONTENTS - Continued

Page

Measurements of Run 101401 . ................ 64

Measurements of Run 102501 . ................ 72

OBSERVATIONS AND CONCLUSIONS . ................. 80

REFERENCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

APPENDIX A . . ................. . . . ....... 82

A-1 Computer Program for Analysis of Doppler Signals

A-2 Computer Program for Determination of Velocity Profiles

A-3 Computer Program for Determination of Temperature and
Humidity Profiles

ii



LIST OF FIGURES

Figure Page

1 Schematic arrangement of the laser Doppler velocimeter. . 4

2 Definition diagram for Doppler shift frequency . .... 5

3 Range positioning as a function of lens position . . . . 8

4 Spatial resolution of the 12-in. telescope. . ....... 10

5 Spectrum analyzer block diagram . ............ 11

6 Block diagram of signal detection circuitry . ...... 12

7 Typical spectrum analyzer output for calibration and
Doppler frequencies . .................. 13

8 Block diagram of frequency tracker . .......... 14

9 Field site at Christman Field . ............. 15

10 Site arrangement for towers and instrument van . .... 17

11 Instrument vans at test facility . ........... 18

12 Towers at test facility. Profile tower is at left . .. 18

13 Instrument arrangement inside laser van . ........ 18

14 Sample data sheet . .................. . 22

15 Simplified flow chart of Doppler data reduction .... . 31

16 Calibration curves for climet anemometer . ....... 35

17 Hot-wire calibration curve . ... .......... . 36

18 Velocity profiles for test period 50801 . ........ 38

19 Calibration frequency 1.007 MHz. Test 50801 . ..... 40

20 Detector noise calibration. Test 50801 . ........ 40

21 Sample Doppler signal. Test 50801 . .......... 40

22 Sample Doppler signal. Test 50801 . .......... 40

23 Time traces of wind velocity. Test 50801, Interval 1 . 41

24 Time traces of wind velocity. Test 50801, Interval 2 . 42

iii



LIST OF FIGURES - continued

Figure Page

25 Distributions of velocities about the mean. Test 50801. . 45

26 Spectral density distributions for cup anemometer.
Test 50801 . . . . . . . . . . . . . . . . . . . . . . . 46

27 Spectral density distributions for hot-wire anemometer.
Test 50801 . . . . . . . . . . . . . . . . . . . . . . . 47

28 Spectral density distributions for LDV data. Test 50801 . 48

29 Comparison of spectral density distributions. Test 50801. 49

30 Velocity profiles. Test 32701 . ............ 52

31 Calibration frequency 4.009 MHz. Test 32701 . ..... 54

32 Noise Calibration. Vertical scale is 100 mv/cm.
Test 32701 . . . . . . . . . . . . . . . . . . . . . 54

33 Typical Doppler signal. Test 32701 . .......... 54

34 Typical Doppler signal. Test 32701 . .......... 54

35 Time traces of wind velocity. Test 32701, Interval 3 . 55

36 Time traces of wind velocity. Test 32701, Interval 5 . 56

37 Distributions of velocities about the mean. Test 32701. 59

38 Spectral density distributions for cup anemometer data.
Test 32701 . . . . . . . . . . . . . . . . . . . . . . . 60

39 Spectral density distributions for hot-wire anemometer.
Test 32701 . . . . . . . . . . . . . . . . . . . . . . 61

40 Spectral density distributions for LDV data. Test 32701 . 62

41 Comparison of spectral density distributions. Test 32701. 63

42 Calibration frequency 1.691 MHz. Test 101401. . ...... 65

43 Noise Calibration. Test 101401. . ............. 65

44 Sample Doppler signal. Test 101401. . ........ . . 65

45 Time traces of wind velocity. Test 101401, Interval 1 . . 66

iv



LIST OF FIGURES - continued

Figure Page

46 Time traces of wind velocity. Test 101401, Interval 5 . 67

47 Distribution of velocities about the mean. Test 101401. 70

48 Comparison of spectral density distributions.
Test 101401 . . . . . . . . . . . . . . . . . . . ... 71

49 A.C. tracker and hot wire traces. Test 101401 .... . 72

50 Calibration frequency 1.678 MHz. Test 102501 . .... 74

51 Noise calibration. Vertical scale is 200 ms/cm.
Test 102501 . . . . . . . . . . . . . . . . . . . ... 74

52 Sample Doppler signal. Test 102501. . .......... 74

53 Time traces of wind velocity. Test 102501, Interval 1 . 75

54 Time traces of wind velocity. Test 102501, Interval 2 . 76

55 Distribution of velocities about the mean. Test 102501. 78

56 Comparison of spectral density distributions.
Test 102501 . . . . . . . . . . . . . . . . . . . ... 79

v



LIST OF TABLES

Table Page

1 MAXIMUM SAMPLE RATES FOR SELECTED SCAN TIMES . ..... 20

2 MINIMUM BANDWIDTHS IN kHz FOR COMBINATIONS OF SCANWIDTH
AND SCAN TIME . . . . . . . . . . . . . . . . . . . . . . 20

3 MEANS AND VARIANCES FOR TEST 50801 . ....... . . . 43

4 MEANS AND VARIANCES FOR TEST 32701 . ......... . 57

5 MEANS AND VARIANCES FOR TEST 101401 . .......... 68

6 MEANS AND VARIANCES FOR TEST 102501 . .......... 77

vi



INTRODUCTION

Measurements of fluid flow speed may be made by utilizing the

Doppler shift of laser light scattered from small particles suspended

in the flowing fluid. The principle of the Doppler shift is of course

well known, but only recently was a technique introduced by Yeh and

Cummins (1964) to utilize the Doppler shift of a laser radiation to

successfully measure fluid flow speeds. Since that time there have

been a number of separate investigations reported in the literature

(see references). The instrument utilized in this investigation was

developed by a team of scientists at NASA/MSFC (Huntsville, Alabama),

Raytheon Company (Sudbury, Massachusetts) and Lockheed Missiles and

Space Company (Huntsville, Alabama). Much of the technology used was

originally developed in assembling a system to be used in subsonic and

supersonic gas flows with large quantities of particle entrainment

[Rolfe et al. (1968)]. The system used in this study involved only

aerosols and particulate matter suspended naturally in the atmosphere.

Interest in application of the instrument has broadened currently

(1972) to a variety of practical situations where a remote-sensing

instrument has particular advantages over conventional velocimeters.

Two applications currently under research is for use as an airport

warning system for wake vortex detection and as an air-borne system for

clear-air turbulence detection. A potentially important use of the

instrument is in meteorological investigations of the atmospheric

boundary layer. Further uses of the instrument could be for remote

air-pollution detection and for measurement of mass and momentum fluxes

in a variety of fluid flow fields.
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In principle it is possible to measure "point" velocities in the

flow field with complete vector directional resolution. A laboratory

three-dimensional instrument is presently being investigated at

NASA/MSFC (Huntsville, Alabama), where also an atmospheric three-

dimensional arrangement is under research and development. The instru-

ment used in this investigation was a one-dimensional co-axial system,

using a 25-watt CO2 laser and back-scattered radiation. The direction

of wind velocity was resolved by utilizing an ordinary wind-vane

direction sensor.

The purpose of this research project was to obtain measurements

of atmospheric velocities and turbulence with the laser Doppler system

and to compare the results with cup anemometer and hot-wire measurements

in the same wind field.

BASIC PRINCIPLES

The frequency of laser light scattered by moving particles in a

flow field is shifted by the Doppler effect. The Doppler shift is

detected by optical mixing of the emitted or incident and scattered

beams. A variety of optical configurations is possible to accomplish

the optical mixing. In the present arrangement the back-scattered

radiation along the axis of the incident beam was redirected into the

laser to combine with the original laser beam. The resultant hetero-

dyne or "beat" frequency is equal to the difference in frequencies of

the emitted and scattered frequencies, and is directly proportional to

the particle speed. If the scatterers are small, and no relative velo-

city exists between the particle and the fluid, then fluid velocity is
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measured. An infrared detector was used to convert the Doppler-shifted

frequency to a measurable electrical signal. The arrangement of the

system is shown schematically in Figure 1.

The laser Doppler velocity measurement system (hereinafter referred

to as the laser Doppler velocimeter and mnemonically denoted LDV) is

almost instantaneous and has the advantage that no prior calibration is

required as with other velocity instruments. The range of detectable

velocities is very large. There is minimal perturbation of the fluid

flow field by the laser radiation. The spatial resolution which is

fixed ultimately by diffraction limitations can be controlled to a large

degree by size and optical quality of the lenses and mirrors.

A nonrelativistic derivation of velocity determination from the

Doppler shift frequency follows. A definition diagram relative to the

derivation is shown in Figure 2. For purpose of clarity, the scattered

beam is shown at an arbitrary angle e from the direction of particle

motion. In the case of a coaxial system, e = a.

The emitted monochromatic laser radiation of wave length xo and

speed c illuminates a particle having a velocity V. The direction of

the incident beam is defined by the unit vector fo. If the particle

is motionless, the number of waves incident on the particle per unit of

time is fo = c/x0, where c is the speed of the laser radiation and xo

is the wave length.

If the particle is in motion at an angle a with respect to the

incident beam, the frequency of the waves per unit of time relative to

the moving particle is

c + Vcosa
fP -
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Figure 1. Schematic arrangement of the laser Doppler velocimeter.
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Figure 2. Definition diagram for Doppler shift frequency.

which is also the frequency of the scattered waves relative to the

particle. The scattered radiation is directed toward a fixed point

along a direction rs from point P. The frequency of the scattered

radiation relative to the particle is fp, but to a fixed observer

along rs , the wave length appears to be

c - Vcose _ c - Vcose
s f c + Vcosa o

p

and the frequency of the scattered radiation appears to be

c c c + Vcosa
s As  A 0C - Vcose

which is rearranged to give

Vcos1 + os
f s c_ c

X 1 Vcse)
o c
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The apparent shift in frequency, the Doppler shift, is

fD =fs - fo

or,

fD = X-{V(cosa + cose)]
0

using the approximation that IVI << 1.

For backscatter along the incident laser beam, e = a, thus

2Vcosa
D ~A

and

SofD _ c fD
2cosa 2cosa fo

In particular the component of the particle velocity along the laser

beam axis Vo is always determinable from

XofD cf D
V0 =Vcosa = 2 2f o

The wavelength of the CO2 laser was 10.6 microns, thus the velocity is

given by

Vo = 5.3 x 10- 6 f m/sec

or,

Vo = .53 cm/sec/KHz Doppler shift.

DESCRIPTION OF THE LASER DOPPLER VELOCIMETER

The optical configuration of the LDV is shown schematically in

Figure 1. It consists of a 25-watt, 10.6p, CO2 laser, beam splitters,

mirrors and attenuators, an f8 12-inch Newtonian telescope and a

liquid-helium cooled Ge-Hg infrared detector.
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Based on relative power of 100 percent of the laser output

(nominal 25 watts), the power at the focal region F was about 60 per-

cent. The focal region is the sample space or volume from where the

scattered signal is effectively heterodyned. The relative power at

the detector was about 1 percent.

The laser radiation is focused at the desired range by a 2-in.

focusing lense L. A diagonal, 1-7/8 by 2-21/32 inches mounted on a

spider within the 15-in. diameter tube of the telescope, directs the

beam to a 12-in. diameter schlieren mirror mounted at the end. The

mirror is adjustable on a 3-point mount. Physical limitation of the

focusing lense movement limited the near range of the telescope focus

to about 60 feet from the mirror. The other limit of the telescope

focusing range is limited to about 250 feet by the size of the diagonal.

Of course if the power loss from beam "spill over" at the diagonal is

not of concern the range can be extended. A curve of focal distance as

a function of lense movement is shown in Figure 3. The reference posi-

tion of the lense is arbitrary and made relative to 60 feet in the

figure. The range of the telescope relative to "performance" is also

diffraction limited [cf. Lockheed Missiles and Space Company (LMSC)

progress report D162417, July 23, 1970].

Spatial Resolution

The spatial resolution of the system is specified in terms of the

signal-to-noise, S/N, ratio. A calculation of S/N was made by LMSC

(cf. Appendix A, Interim Report D225028, June 1971). It has been shown

[Thomson and Dorian (1967)] that only radiation scattered from the

region near the focus of the telescope contributes most significantly
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to the Doppler signal. Nevertheless, there is some amount of heterodyned

signal attributable to scattered returns in the whole space of illumina-

tion. The ratio of S/N from the focal region in comparison to the total

S/N, then, is a method of defining the spatial resolution. A curve of

spatial resolution (axial dimension) as a function of focal range is

reproduced from the LMSC calculations as Figure 4.

Signal Processing

There are several options for discriminating the Doppler shift in

frequency from the detector. These are:

1. Spectrum analyzer

2. Wide-band frequency discriminator

3. Filter bank

4. Doppler frequency tracker

5. Phase-locked receiver.

The merits, advantages and disadvantages are discussed by Rolfe et al.

(1968). In this system principal use was made of a spectrum analyzer

and to a limited extent of a frequency tracker.

Spectrum Analyzer - The Hewlett-Packard Model 8553B/8552A spectrum

analyzer used in this investigation is a swept superhetrodyne receiver.

A simplified block diagram is shown in Figure 5. Essentially the signal

frequency is compared with a harmonic of the local oscillator frequency

and the analyzer displays the signal directly in the frequency domain

as a carrier with its side bands. The center frequency is tuneable,

and a scan of the total band is selectable. The spectrum analyzer

resolution is determined by a selectable IF bandwidth. The scan time

can vary from 1 millisecond to 100 seconds for the selected scan width.
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Figure 5. Spectrum analyzer block diagram.

If time intervals are too small, power output of the signal may be

too small to measure. On the other hand, for large time intervals the

output reflects the spectrum of particle speeds passing through the reso-

lution focal volume of the beam, and can give therefore only a spectrum

of velocities (Doppler frequencies) and not an "instantaneous" velocity

as a function of time. Clearly, for "instantaneous" velocities

the time interval should be consistent with the focal resolution volume,

convected particle speed and S/N ratio of the spectrum analyzer.

In order to convert spectral information in frequency space to

velocity, use is made of the linear variation of velocity with Doppler

frequency shift. The frequency bandwidth of the spectrum analyzer is

"swept" at a rate consistent with resolution of the analyzer and the

power contained in the bandwidth is recorded on a conventional FM re-

corder in time space. Conversion from time to frequency hence to velocity

in principle is simple, requiring only a reference zero frequency and

known bandwidth or alternatively a calibrated external frequency. The

rate at which the spectral bandwidth is swept is controlled externally

to the spectrum analyzer. A schematic arrangement of the process inclu-

ding preconditioning of the detector signal is shown in Figure 6. A

typical time, frequency trace of the power output is shown in Figure 7.
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Figure 6. Block diagram of signal detection circuitry.
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Figure 7. Typical spectrum analyzer output for
calibration and Doppler frequencies.

Doppler frequency tracker - A device which provides an output

voltage proportional to a given Doppler frequency is termed a Doppler

frequency tracker, or simply frequency tracker. The technique is also

known as "frequency compressive feedback" or "frequency-locked loop"

[cf. Rolfe et al. (1968)]. The Doppler frequency, fD(t), is heterodyned

with a local oscillator frequency. The local oscillator frequency, fLO'

is varied so that the difference fLO - fD is constant and equal to the

center frequency of a discriminator. The driving voltage of the local

oscillator is then proportional to fD' hence to the velocity. A sche-

matic representation of the tracker is shown in Figure 8.
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fD(t) Mixer flF = fLO-f D Frequency
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Figure 8. Block diagram of frequency tracker.

TEST FACILITIES

The field site for the experiments was selected at the Colorado

State University airport (Christman field) located approximately three

miles west of the city of Fort Collins, Colorado (see Figure 9). The

test site has a clear field from northwest to northeast, and from south

to southwest. There are buildings and trees in the range from south to

east, although the nearest building is some 1100 feet away. To the west

is the foothills of the Rocky Mountains about a mile distant. The site

was selected on the basis of land and power availability and proximity to

the research center about 1/2 mile away. The dominant wind directions in

the area are north-south, as evident from the alignment of the runway,

although strong winds also blow over the foothills directly from the west.
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Figure 9. Field site at Christman Field.
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The site facilities included two towers and two trailer vans to

house the instruments and the LDV system. The arrangement shown in

Figure 10 was to provide clear wind fields to the north and south. As

winds seldom blow from the east, the instrument vans were located so

as to cause as little interference as possible to the wind field.

The 60-ft high tower was used to mount the wind profiling anemo-

meters. The 40-ft tower was used to mount mirrors to direct the laser

beam and also to mount the comparison instruments, a climet anemometer

and wind vane, and a hot wire for turbulence measurements. Photographs

of the established arrangement are shown in Figures 11 and 12.

INSTRUMENTATION

The arrangement of the various instruments in the laser instrument

van is shown in the photograph of Figure 13. The total instrumentation

for data taking and recording included the following:

Spectrum analyzer - The function and description of the spectrum

analyzer was given in a previous section.

Frequency tracker - This instrument was also discussed in the

earlier section.

Wide band frequency generator - A frequency generator of MHz range

was used to establish a calibration point for the spectrum analyzer.

Depending upon the prevailing wind speed, a calibration frequency was

selected near the extreme of the wind speed range and the scan width of

the spectrum analyzer was selected to contain this calibration frequency.

Frequency counter - A frequency counter was used to determine the

calibration frequency.
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Figure 11. Instrument vans at Figure 12. Towers at test facility.
test facility. Profile tower is at left.

Figure 13. Instrument arrangement inside
laser van.
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Function generator - A stable function generator was used to drive

the sweep of the spectrum analyzer IF at a rate consistent with the

spectrum analyzer scan time. A finite sweep time and "flyback" is

involved. A given combination of sweep duration and scan width has its

optimum IF filter bandwidth. A table of sample rates for various scan

time settings is given in Table 1, and bandwidths as a function of scan

width and scan time is given in Table 2. These tables were reproduced

from the LMSC report No. D162840 describing the operating procedures of

the LDV system.

Mirror position indicator and drive - The upper mirror on the

40-ft tower had a motor drive to rotate the mirror about its vertical

axis. This permitted orientation of the laser beam into nominal align-

ment with the wind direction. The position of the mirror was indicated

by a 357 degree potentiometer. There were 3 degrees of ambiguity from

357 degrees to 360 (zero) degrees. The position pot of the mirror was

oriented so that zero was due east.

Climet wind translator - The translator presented wind direction

and speed as sensed by the cup anemometer and wind direction sensor

into recordable analog signals. The wind direction sensor was oriented

so that zero output coincided with due east. The analog signals were

then monitored on a dual channel strip chart recorder.

FM tape recorders - Two 14 channel FM tape recorders were used to

record the analog signals, one a CP-100 Ampex unit and the second an

FR-1300 Ampex recorder.

Temperature sensor - A standard bridge and amplifier circuity was

constructed for this study to measure the deviations in temperature of

the various thermistors from a reference unit.
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TABLE 1. MAXIMUM SAMPLE RATES FOR SELECTED SCAN TIMES

Spectrum Analyzer Maximum Sample External
Scan Time Rate SYNC Period

(Millisec/cm) (Hz) (sec)

0.5 165 0.006
1.0 69 0.0145
2.0 40 0.025
5.0 18.2 0.055

10.0 5.0 0.200
20.0 3.3 0.303

TABLE 2. MINIMUM BANDWIDTHS IN kHz FOR COMBINATIONS
OF SCANWIDTH AND SCAN TIME

Scan Scan Time, Millisec/Division
Width/cm 1.0 2.0 5.0 10.0 20.0 50.0

0.02 kHz 0.3 0.3 0.1 0.1 0.1 0.1
0.05 kHz 0.3
0.1 kHz 1.0 0.3
0.2 kHz 1.0 0.3
0.5 kHz 3.0 1.0 0.3
1.0 kHz 3.0 1.0
2.0 kHz 3.0 1.0
5.0 kHz 10.0 3.0 1.0

10.0 kHz 10.0 3.0
20.0 kHz 30.0 10.0 3.0
0.05 MHz 30.0 10.0
0.1 MHz 100.0 30.0 10.0
0.2 MHz 100.0 30.0 10.0
0.5 MHz 300.0 100.0 30.0
1.0 MHz 300.0 100.0 30.0
2.0 MHz --- 300.0 100.0
5.0 MHz --- --- 300.0 100.0
10.0 MHz --- --- 300.0
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Hot-wire anemometer - A constant temperature hot-wire anemometer

was used to measure the atmospheric turbulence. A 100-ft long cable

was used for the probe and a cable capacitance compensator was used

for the long-length cable. The hot wires were calibrated with the

extra cable and compensator.

Time code generator - A time code generator in IRIG B format was

used to synchronize the two tape recorders. Usually the times were

synchronized with the National Bureau of Standards time broadcasts.

RECORDING OF TEST DATA

There were in all 26 separate pieces of continuous information

desired for each test. Two analog 14 channel FM recorders were needed.

However, two recorders were not available for all tests and some infor-

mation was therefore sacrificed. The sample data recording sheet shown

in Figure 14 indicates the data recorded on each channel of each

recorder. They were arranged in such a way that temperature and

humidity data were sacrificed when the second recorder was unavailable.

The data can be grouped into the following sets. On the 60-ft

tower, six levels of wind speed were obtained to establish the vertical

profile of the wind field in which comparison data were taken. These

were grouped in the CP-100 Ampex recorder. Also, on the same tower,

there were six levels of temperature measurements to determine the

temperature profile and four levels of wet bulb temperatures to establish

the humidity profile. These were grouped on the FR-1300 Ampex recorder.

On the 40-ft tower the comparison instruments, the cup anemometer, the

wind vane, and the hot wire were mounted. These data together with the
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Test No.

ATMOSPHERIC LASER DOPPLER VELOCIMETER PERFORMANCE VERIFICATION

3 NASA-MSFC Field Test Site, Huntsville, Alabama
0 Airport Field Test Site, Foothills Campus, Colorado State Univ., Ft. Collins
O Other

Test Conducted Between _ a. m. /p. m. and a. m. /p. m. on

METEOROLOGICAL DATA (date)
Air Pollution Index: . Visibility: OGood; OFair; OPoor
Sky Condition: O Clear; OLight Clouds; OMedium Clouds; OHeavy Overcast
Temperature __ OF; Relative Humidity % or Dew Point OF;
Barometric Pressure mb; Anemometer(s) Locale

Time into Test (min) 0 15 30 45 60

Mean Wind Speed (knots, mph, ft/sec)

Mean Wind Direction (deg wrt north)
Laser Coolant Temperature (oF)

General Weather Conditions (frontal presence, rain in past 12 hours, etc.):

OPTICAL CONFIGURATION
Mirror Orientation deg (wrt north)
Telescope mirror to lower tower mirror distance: ft in.
Distance between top and bottom mirrors on tower ft in.
Total distance from telescope mirror to focus vol: ft
Homodyne configuration: O Mach Zehnder; C internal cavity
Laser power into telescope: _ watts; Power at focal volume: watts; He dewar check O
Telescope mirror size: in. diam.; Lens focal length: in; Detector type:
Comments:

SPECTRUM ANALYZER/AVERAGER DATA
Sweep Rate: ms/cm; Sample Rate: _ samples/sec.
Number of sweeps averaged per sample:
Frequency dispersion: _ MHz/cm. Filter bandwidth: kHz; Bandwidth: kHz.
Othe r:

FM RECORDER DATA - OIDEL CP-100 AMPEX FM RECORDER DATA - MIOULL FR-1300 AMPEX

Label Tape Reel with Test No. Label Tape Reel %ith lest .o.
Tape No. ; Tape Speed ips; Response ____tz. Tape No. _ ; Tape Speed ips; Response Iiz.

Cha. No. Contents Ch. No.' Conc-t:, fi ed loer Data)
I Voice: Test ident. etc. I I T ierm., r(f. a ,1. te:p. ievel 2
2 Spect. analy. sync. pulse: 2 1 herm., dftf. j, air level 3
3 Spect. analy. Y out. Freq. dis . 3 ITherm., Jtff. dr air level 1
4 hind dir. Climet volts -- wrt 4 ITherm., Off. ,s: ilu level 1
5 Wind speed Climet volts - fps 5 Therm., diff. dri air level 4
6 Mirror azimuth volts - wrt 6 ITherm., i, ff. ,ct: iulb level 4
7 lHot wire aneaeter 7 Therm., diff. Jr\ air l vel 5
8 Fixed tower data - wind sp. level 1 8 Therm., dd:ff. .. t i: ,: . I 5
9 Wind sp. level 2 9 Therm., iff. air le l
10 hind sp. level 3 10 Therm., diff. ,et ,ul level 0
II Wind sp. level 4 11 Wild dirct.on lec l .

12 Wind sp. level 5 12
13 hind sp. level 0 13
4 Time code ident. IRIG b 14 l ime code 1dent. I1IG B

Aux iVoice: Test ient. etc.

AUDIO RECORD

OTest Identification Number; O Spectrum Analyzer settings (sweep rate, number samples averaged,
etc.); OMean Wind; 0 Distance from telescope mirror to focal volume; OVisual quality of signal;
*,nd C Problems and other comments.

(Signed) Test Engineer

Figure 14. Sample data sheet.



23

spectrum analyzer signal and appurtenant data were grouped 
into the

CP-100 recorder. On one channel of each recorder there was an IRIG B

time code for referencing the two sets of data to corresponding times.

A voice channel (direct record) was reserved for verbal description of

conditions and problems which occurred during a test.

Data with a frequency tracker were taken during a period when the

second tape recorder was unavailable. Since two additional channels

were required to record the signals from the tracker, two levels of wind

speed data were sacrificed on the CP-100. These were levels 2 and 4.

TEST PROCEDURE

Pre-Test Preparation

Preparations for recording one-hour of continuous wind data and

associated documentation was elaborate and time-consuming. For any

given test, or attempted test, the following routine was necessary.

Coolinq the Ge-Hgq detector - The Ge-Hg detector was pre-cooled

with liquid nitrogen for a period of about one hour before filling

with liquid helium. This procedure was followed primarily to conserve

liquid helium, which is comparatively many times more expensive than

liquid nitrogen. Just prior to data-taking, after all preparations

were completed, the dewar of the detector was filled with liquid helium.

Optics alignment - Before each test, alignment of the optics was

necessary. A specific alignment procedure progressing outward from the

laser to the tower was necessary. Although the beam splitters and

mirrors did not require frequent adjustment, the optical beam on which
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the focusing mirror was mounted required frequent adjustment. As the

scattered radiation was redirected back into the laser, slight mis-

alignment of the optical axis caused poor to no heterodyning, hence weak

or no Doppler detection. Since alignment of the focusing lense mount is

coupled with the diagonal and the schlieren mirror, a sequence of trial

and readjustment was usually necessary.

After the optical beam was adjusted, the diagonal required minute

adjustment to center the diverging radiation on the schlieren mirror.

The schlieren mirror in turn required adjustment to direct the converging

beam through the end of the 9-ft long tube. Thereafter, the entire

mounting table required movement to center the beam on the lower external

mirror near the base of the 40-ft tower. If the optics were bumped out

of alignment during this process, then the entire procedure was restarted.

Once the laser beam was centered on the lower mirror, then the lower

mirror was adjusted to center the beam on the upper one, and finally the

upper mirror was rotated to direct the beam as closely as possible either

directly into the prevailing wind direction or downwind along the wind

direction, checking also to see that the beam was parallel with the

ground. To establish the latter, an identification mark on the adjacent

60-ft tower was used to place the line of sight parallel to the ground,

hence the axis of the laser beam was in the horizontal plane of the mean

wind.

Profile tower - The thermistors on the 60-ft tower were arranged in

a radiation shield, with a suction pump arranged to draw 2 ft/sec air

velocity over the "dry bulb" thermistor and 30 ft/sec over the "wet bulb"

thermistors. Distilled water was forced up the tower by air pressure

into water wells with wicks leading to the "wet bulb" thermistors.
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These thermistors were checked before each test and wicks were prewetted

to insure that the distilled water would be drawn up from the wells.

Hot-wire anemometer - The hot-wire anemometer which was dismounted

during a non-test period was remounted. The wire was placed in a verti-

cal axis and the probe was oriented toward the wind and in a location

such that there was no interference from the mirror, the cup anemometer

or the tower itself.

Pre-Test Calibration

Tape recorder - The FM record amplifiers of the tape recorder are

subject to slight deviations from calibrated conditions from day to day.

To account for these deviations, a five-level DC signal was provided as

a calibration of tape-recorded (and playback) voltage against a "true"

voltage registered by a calibrated digital voltmeter (DVM). Since in

the data set, a continuous square-wave signal was recorded, the calibra-

tion set did not include a sinusoidal signal of known rms value.

Climet anemometers - Both climet anemometer translators were

calibrated for zero and full scale 1 volt outputs and recorded on the

tape recorder. Prior to mounting the anemometers in the towers, all

cup anemometers as well as the hot wires were calibrated in the Colorado

State University wind tunnel against a pitot probe of known performance.

Calibrations were performed twice, in February and June 1971.

Mirror position - The mirror position, with zero oriented directly

east for convenience, was calibrated for zero and full scale ouput, with

the assumption of linearity with angular position. Since the position

was indicated by a potentiometer, the assumption seems justified.

Spectrum analyzer - Proper settings of the spectrum analyzer

controls were established consistent with the prevailing wind speeds.
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The sweep of the spectrum analyzer was triggered by an external square

wave from a stable function generator by a change from negative to posi-

tive voltage. A known deviation frequency was input to the spectrum

analyzer and the resultant signal from the IF output was recorded as the

frequency band was swept. This calibration thus provided the reference

for determining velocity from the Doppler shifted frequency of the back-

scattered radiation.

Noise calibration - The final pre-test calibration was made of the

background noise emitted from the detector. With the detector dewar

charged with liquid helium, and the main laser beam to the telescope

blocked, the output signal from the detector which consisted only of

noise was recorded.

Data Recording

After completing the pre-test preparations and calibrations, data

were recorded on the tape recorders for nominal periods of one hour

duration. Constant monitoring of the data was provided, and instrument

adjustments when necessary were properly recorded as to time and nature.

The turbulence range of interest extended only to a maximum of 5 Hz,

thus the CP-100 tape recorder was operated at 7 inches per second (ips)

and the FR-1300 recorder at 1-7/8 ips. The higher speed of the CP-100

recorder was necessary to record the Doppler signals from the spectrum

analyzer. At 7 ips the recorder amplifiers are responsive to 2.5 KHz.

Anomalies in the data noticed were recorded on a voice channel

(direct record) of the tape recorder, as well as on the data record

sheet (Figure 14).
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DATA REDUCTION PROCEDURE

All data for this investigation were analyzed digitally, the

digitizing being done in prescribed sets in simultaneous sample and

hold mode at the NASA-MSFC computer center. The digitized data were

analyzed at the Colorado State University computer center.

Selection of Digitizing Rates

The turbulent frequencies of interest in this study are less than

5 Hz, thus the digitizing frequency should be at 10 samples per second,

and also, because in general the recorded information should be related

to the same instants of time, a simultaneous sample and hold mode was

used in digitizing. The analog signals were filtered at 5 Hz (real-

time base).

The scan rate of the spectrum analyzer for Doppler frequencies was

16 Hz. Since the Nyquist frequency is equal to one-half sampling

frequency,

fD

N = "-

the highest frequency information contained in the recorded signal is

8 Hz. However, the usual criterion of digitizing rate to obtain this

frequency information does not apply. The objective in data reduction

was to determine the location (time base) of the Doppler signal with

reference to zero frequency, hence of Doppler frequency and of wind

velocity. The bandwidth and resolution of the spectrum analyzer deter-

mines the nature of the Doppler signal. If we view the peak signal in

the bandwidth as depicting the mean velocity in the prescribed resolu-

tion interval, then the digitizing rate of the Doppler signal is
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independent of the spectrum analyzer settings. Thus with a view to

maximizing the frequency resolution (of the peak) in a given sweep,

a choice of 250 points per sweep was made. The choice of this digiti-

zing rate does however affect the total quantity of digitized data. Two

channels of information, the external function generator and the IF

output of the spectrum analyzer, were digitized at this higher rate,

multiplexed on digital magnetic tape in binary format. The sampling

rate for these channels was thus 4 KHz/channel and the data were filtered

at 2 KHz.

Multiplexed Data Groups

The 26 channels of analog information were digitized in three

separate groups.

Group 1 - The sweep signal (square wave) and the spectrum analyzer

IF(y) output were multiplexed and digitized at a rate of 4 KHz/channel.

Group 2 - The climet anemometer and wind direction sensor, the

mirror position, the hot wire output and six levels of wind speeds on

the profile tower were multiplexed and digitized at a rate of

10 Hz/channel.

Group 3 - The ten channels of thermistor data were multiplexed and

digitized at a rate of 10 Hz/channel.

The remaining four channels of voice, time codes and wind direction

on the profile tower were not digitized and were retained for reference.

The time code information was of course used to identify the regions of

the analog tape which were digitized.
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Data Format

The A/D converter used at NASA/MSFC generated data words of 10 bits

plus sign. The packed format of the multiplexed data therefore were

written in groups of 11 bits. The CDC 6400 at Colorado State University

is a 60-bit word machine, thus some tape reading problems were presented

with the original format of the generated data tape. In order to reduce

the reading problem, the original data tapes were reformated to give data

words which were 11 bits plus sign, or 12 bit words where a zero was

inserted into the most significant bit. The packed 12-bit data words

were thus conveniently separated and sorted from the 60-bit computer

word.

The data included a record of header information at the beginning

of each data set, and a 24-bit time word at the beginning of each data

record. This time word is a reference digitizing time, and relates to

real time in accordance with the ratio of record to playback tape speed.

However, for records of the order of 60 minutes real time duration, the

time word (expressed in milliseconds) becomes excessively large. Thus

the digitizing clock which recycles after 100 seconds requires accounting

of the cycles to convert digitizing time to real time as well as the

ratio of record to playback speeds.

Data Reduction

Laser Doppler signals - The bulk of data reduction involved the

Doppler signals. The view adopted in computer program formulation was

to devise a general, automatic program. This was successful to a

degree, however sufficient problems with data anomalies were encountered

that some initialization is necessary. Considerable time was spent in

developing this feature of a data reduction program. In retrospect,
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perhaps less automatic, sequential programs would be more economical in

terms of total effort. The flow chart for the program is shown in

Figure 15 and a listing is given in Appendix A.

The essential technique is as follows: Data from Group 1 (identi-

fied above), and the first channel of the multiplexed data of Group 2,

are necessary to convert the spectrum analyzer data to wind speed. If

the mirror direction varies in the data period, that information is also

required.

The cup anemometer wind speed, the hot wire data and the profile

information can be processed separately, but because the two groups of

data were arranged on different tapes and had to be read in "simulta-

neously" to analyze the Doppler signal, the program included processing

of these data at the same time. It should be noted here that several

alternative methods were recognized from the outset, and a one-pass

automatic program seemed feasible and most desirable. Ultimately the

profile data program was separated from the others and analyzed in a

separate pass. The flow chart in Figure 15 reflects this variation to

the original technique.

The program first determines the input-output calibration of DC

voltage. This calibration enables conversion of such data as wind and

mirror directions, cup anemometer speeds and hot wire turbulence velo-

cities from tape output voltage to true voltage hence to the physical

quantities. The next step in the analysis is to determine the calibra-

tion Doppler frequency. That is, the known frequency input is identi-

fied in the time space (number of points) from zero frequency, and

since velocity is linear with Doppler frequency, then calibration is

obtained for the velocity component along the laser axis. In order to
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Tape Calibration

Instrument Calibrations
(a) Wind direction
(b) Mirror direction
(c) Wind speed

Calculate Calibration
Frequency to Time

Determine Background
Noise Levels

Analyze One Record
of Group 2 Data

(a) Wind direction
(b) Mirror position
(c) Hot wire velocity
(d) Cup anemometer velocity

Analyze One Record
of Group 1 Data

(Doppler indicated velocity)

ime
Greater
than
roup

Yes

Are

0Yes There

Data

No

Stop

Figure 15. Simplified Flow Chart of Doppler Data Reduction.
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distinguish the Doppler "peak" from the background noise, the noise

calibration established the noise level across the entire frequency

band of the spectrum analyzer. In the program the S/N ratio is a

variable and may be set at any level compatible with the recorded

Doppler signal.

The first step in the data analysis is to read in one record from

the multiplexed Group 2 data. Each digital value is converted to velo-

city, and reference times for each value are calculated. The velocities

and reference times are stored. The cup and hot wire data are digitized

at identical times, thus one reference time serves both channels of

information. Means and variances are calculated. Wind direction voltages

are averaged for 10 seconds (one record) and converted to angle with

respect to the laser beam. The value is temporarily stored. The mirror

azimuth (direction) is averaged and checked. If no change occurred

(i.e. the mirror was not rotated) the information is redundant and

discarded.

The first record of Group 1 is then read in. Each spectrum analyzer

scan, approximately 250 points, is searched for zero frequency (the change

in voltage of the square wave from negative to positive identifies the

beginning of the sweep) and the Doppler signal. The reference time for

Doppler-converted velocity is referenced to the beginning of the sweep.

Successive sweeps and time words at the beginning of each record references

the true time of the calculated Doppler-measured velocity. The first

identifiable Doppler peak is accepted as the measured velocity. To deter-

mine the peak value, comparison is made to successive points, and if the

signal level (voltage) drops, the previous point is accepted as the

Doppler frequency. It is possible that in a given sweep there is no
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Doppler signal (signal dropout), in that event, the velocity determined

in the previous sweep is recorded. The Doppler-indicated velocity is

then converted to wind velocity by the 10-second average angle of the

wind direction with respect to the laser beam axis (mirror direction).

There are 3000 data points (2 channels) in each record of the

Group 1 data. This corresponds to 6 sweeps of the spectrum analyzer

and 0.375 second in terms of real time. Successive records of Group

1 are read in and analyzed until the real time reference period

exceeds the real time period of the data read in from the Group 2

data. Additional Group 2 data are then read and reduced, and the

process repeated.

The stored values of velocities and reference times are periodically

purged from storage and written on a magnetic tape. Thus the entire test

record is converted to velocity-time history with the same reference

times for the cup anemometer and hot-wire data, but a different reference

time for the Doppler-indicated velocities.

The generated velocity-time history tape is then reprocessed to

obtain the statistical characteristics of the turbulent wind data. These

characteristics are the mean, variance (standard deviation), probability

density and spectral densities (power spectrum).

Velocity profiles - The velocity profiles are calculated in a

straight forward manner, using the other six channels of data in Group

2. Only the mean values are of concern, and ten-minute average velo-

cities are calculated for each anemometer. The calibration data for

voltages, and the prior wind-tunnel calibrations, are all that

are required. A program listing is given in Appendix A.
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Temperature profiles - Temperature and humidity profiles likewise,

are relatively straightforward requiring manufacturer's calibration data

for the thermistors and conversion of average tape voltage to true

voltage. The resistances are calculated from a standard bridge equation,

hence temperatures are determined. The program listing is given in

Appendix A.

EXPERIMENTAL RESULTS AND DISCUSSION

Calibrations

Climet anemometers - Calibration curves of the climet anemometer,

Series No. 828, are shown in Figure 16. The calibration was performed

in a wind tunnel with the translator set for 1 volt output at 1896 Hz

input (signal frequency generated by the cup) for the 60 scale setting

on the translator. Ordinarily, the translator is adjusted to output 1

volt for specific input frequencies on each scale. However, for purpose

of this calibration, adjustment was made for 1 volt output on the 60 scale

only (any frequency would have served as well) and outputs read from both

30 and 60 scales. In setting the translator during an experiment, there-

fore, adjustment was always made only for the 60 scale. The output is

linear with velocity as seen in the figure.

The CP-100 tape recorder has a low input impedance, causing a

loading problem with virtually all the instruments connected to it.

Thus the cup anemometers and hot wires were calibrated with the outputs

connected to the tape recorder.

Hot-wire anemometer - A typical calibration curve for the hot-wire

anemometer is shown in Figure 17. For purpose of this investigation,

the King's law relationship is shown, and it is seen that in the region
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Figure 16. Calibration curves for climet anemometer.



36

6 -

5

I .....

4

.-.- ' -. .. . .i

-:Hot Wire Calibration

INo. 5488

C-t

June 4, 1971

30 40 50 60 70 80 90

E2 (Volt)2

Figure 17. Hot-wire calibration curve



37

of interest, the curve was linear. A linearizer was not used with the

anemometer. Instead, each digitized data point was converted to actual

voltage and velocity calculated from the calibration.

Measurements of Run 50801 (May 8, 1971)

The data for this test were taken from 1:48 pm to 2:45 pm, covering

a period of approximately one hour. At the beginning of the test the

wind was blowing from the south-southeast (30 degrees east from south)

which gradually changed to south-southwest (15 degrees west from south)

by the end of the test period. The wind speed was reasonably constant

at about 4 m/sec (9 mph) throughout the test period. Particle counts in

the atmosphere were not available for this test; however, with the pre-

vailing south wind, the pollution from Denver was evident as a blue haze

along the horizon. This was also reflected in the strength of the Doppler

signals on the spectrum analyzer.

Velocity profiles - The velocity profiles for successive 10-minute

periods throughout the test are shown on Figure 18. The velocity profiles

were logarithmic as expected; however, the slope of the profiles differ,

indicating that the effects of accelerating and decelerating winds

(gusts) are reflected in the profiles. It will be seen in the time

traces of velocities that the fluctuations are of the same order of

magnitude as the means, and the mean values change with time. The

analysis to establish the profiles assumes piece-wise stationarity.

Spectrum analyzer settings - The following settings were made on

the spectrum analyzer:

Sweep rate: 5 ms/cm

Sample rate: 16 sweeps/sec
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Figure 18. Velocity profiles for test period 50801.
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Frequency Dispersion: 0.2 MHz/cm

Filter Bandwidth: 10 KHz

Bandwidth: 30 KHz

The calibration frequency was 1.007 MHz (5.34 m/sec) which is

pictured in Figure 19. The noise level from the detector is shown in

Figure 20. The photograph is the oscilloscope trace from playback (at

record time) of the recorded signal on the CP-100. The signal is inver-

ted to avoid confusion with the square wave shown at the top part of the

picture. The vertical scale is 200 mv/cm.

Typical Doppler signals are shown in Figures 21 and 22. As noted,

the S/N ratio is large, but the spectral bandwidth is also large. Peaks

in the signal of the kind shown in Figure 21 are relatively easy to

determine; however, multiple peaks are evident in Figure 22. In these

instances, the first largest peak is detected, and the others ignored.

There were undoubtedly particles of different sizes in the focal region

with different angularity with respect to the laser beam axis which cause

the multiple peaks in a given sweep.

Velocity time traces - Time traces of velocity from the cup anemo-

meter, hot wire and the LDV, for two consecutive 4.26-minute periods are

shown in Figures 23 and 24. Mean velocities for each 4.26-minute

interval have been subtracted; the fluctuations thus are referenced to

zero for each plot.

As seen in these traces, there is reasonable conformance between

the cup anemometer, hot wire and LDV outputs. It should be noted here

that the cup anemometer was at a level 11.3 meters above ground, the

hot wire was 0.3 meters below the cup level and the laser beam axis was

at the same level as the hot wire although the focal region was 3 meters
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farther upwind. It should be noticed in making visual comparisons that

the vertical scales are different for the traces.

Means and variances - The means and variances from a 34-minute

interval of the total record were analyzed and are shown in Table 3.

The choice of a 34-minute period was based largely on the limitations

of the spectral analysis program. This was also a sufficiently large

period to reflect a reasonable confidence interval for the spectral

densities.

TABLE 3. MEANS AND VARIANCES FOR TEST 50801

4.26-Minute Mean Velocities m/sec Variances (m/sec)2

Intervals Cup Hot Wire LDV Cup Hot Wire LDV

1 4.203 4.232 4.044 .612 .604 .689

2 4.486 4.488 4.253 .539 .524 .672

3 3.762 3.799 3.585 .340 .258 .348

4 4.245 4.270 4.247 .458 .355 .596

5 3.976 4.000 3.953 .444 .340 .526

6 3.823 3.847 3.693 .342 .342 .503

7 3.618 3.642 3.489 .623 .598 .573

8 4.212 4.235 4.073 .461 .361 .674

Averages 4.041 4.064 3.917 .472 .413 .567

The mean wind speeds detected by the LDV is in overall 3 percent

agreement with the cup anemometer, and within 5 percent for any given

4.26-minute interval. The greater spread for smaller time intervals is

to be expected because of the spatial spread of sampling points for the

two instruments.
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The variances for LDV are larger than those detected by either

the hot-wire or the cup anemometer. It is surprising to note also

that the variances for the hot wire are less than that for both the

cup anemometer and LDV measurements. The greater variances for the

LDV results are due in part to the fact that only mean horizontal

angularity of the particle motion with respect to the laser axis is

included in the correction. Thus there are greater variations of

velocities from the mean. This is observed also in comparing the

mean speeds for the three data sets. The mean is lower for the LDV

as compared to cup speeds.

Probability distributions - The distributions of velocities about

the means for the three instruments are shown in Figure 25. These data

are in terms of standard deviations, and are not normalized so that

straight lines are drawn from one data point to another. The distribu-

tions are skewed to the right. This skewness is governed by the nature

of the turbulence in the atmosphere rather than by instrument response,

as it can be seen that all three instruments respond similarly. The

percentage of data near the mean is greater for the cup anemometer than

for the other instruments, as was suggested in the preceding paragraph,

the percent of low velocities appear to be greater for the LDV than for

either cup or hot wire measurements.

Spectral densities - The spectral densities for measured turbulence

in the atmosphere are shown in Figures 26, 27 and 28 for the cup, hot

wire and LDV instruments, respectively, and a comparison of the three

are shown on Figure 29.

There are apparent energy concentrations in the spectra for the

cup anemometer and hot wires at 5 Hz which are also noted at 2.5 and
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1.25 Hz. These must be due to mechanical aliased frequencies from the

tape recorder, for they appear in the hot-wire and cup anemometer data

but not in the LDV data. Mechanical aliasing does not appear in the

LDV data because of the manner in which the velocity-time history is

generated (see section on data reduction).

If the aliased spectral densities are ignored, it can be seen that

the hot-wire and cup anemometer have identical spectra up to 0.4 Hz.

Beyond that frequency, the spectrum decreases because of the limited

frequency response of the cup anemometer. The cup anemometer data may

in principle be corrected by a frequency response function (see Camp

1965), but in this study the correction was not made, as the comparison

spectrum for higher frequency is given by the hot-wire anemometer data.

The response of the constant temperature hot wire used here is up to at

least 1 KHz and the data were filtered at 5 Hz before digitizing.

As it is seen on Figure 29, the spectral densities for the LDV-

measured turbulence is slightly greater for frequencies less than 1 Hz,

but essentially parallel to the hot-wire data. For higher frequencies,

there appears to be more energy contained in the LDV-measured turbulence.

This must be aliased information because the hot-wire data do not show

this trend.

The aliasing must arise from the technique used in data reduction.

While the spectrum analyzer is being swept (sampled) at a rate of 16 Hz,

thereby effectively establishing the Nyquist frequency, the velocity

time data cannot be filtered at 8 Hz before the sampling is done. That

is, turbulence of higher frequency transporting aerosol and solid parti-

cles in the atmosphere are sensed in the resolution volume of the LDV.

Thus in calculating the velocity from the sampled spectrum, the aliasing
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from higher frequency cannot be avoided. What is surprising, however,

is to note the magnitude of the aliased spectrum in the LDV-measured

turbulence indicated by the deviation beyond 1 Hz.

Measurements of Run 32701 (March 27, 1971)

The data for this test were taken from 3:30 pm to 4:18 pm, a period

of 48 minutes. The wind was essentially steady from the north-east (60

degrees east from north) at around 12 m/sec (27 mph). Particle counts

in the atmosphere were not available for this test. There was an arctic

front moving in from the north and the air was "clean." Visibility was

virtually unlimited. The laser beam axis was directed downwind in this

test because the direction of the wind was such that the laser beam axis

would have been close to a vertical leg of the tower.

Velocity profiles - The velocity profiles for successive 10-minute

intervals are shown on Figure 30. The profiles are logarithmic and the

mean velocities increased in the first 20 minutes of the 50-minute period

and decreased thereafter. The spread of mean velocities for the total

period varied from about 10.7 to 13 m/sec at the level of the focal re-

gion of the laser beam.

Spectrum analyzer settings - The settings of the spectrum analyzer

were as follows:

Sweep rate: 5 ms/cm

Sample rate: 16 sweeps/sec

Frequency dispersion: 0.5 MHz/cm

Filter Bandwidth: off

Bandwidth: 30 KHz
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The calibration frequency was 4.009 MHz (21.2 m/sec) which is shown

in Figure 31. The noise level from the detector is shown in Figure 32.

The vertical scale in the oscilloscope trace is 100 mv/cm.

Typical Doppler signals are shown in Figures 33 and 34. As noted,

the S/N ratio is small and the spectral dispersion is also small. There

were larger periods of signal dropout, that is sweeps when there were

no detectable signals. In these instances the analysis was made assuming

that the velocity indicated in the current sweep was equal to that of the

previously detected velocity.

Velocity time traces - Time traces of velocity from the three

instruments are shown in Figures 35 and 36 for two representative

4-minute time intervals.

There is reasonable agreement between the cup anemometer and hot-

wire traces in general trend of mean velocities. However, the turbulent

fluctuations in the hot-wire signals are greater than that indicated by

the cup anemometer traces. The LDV signals have several peculiarities.

The fluctuations are clipped at both the upper and lower limits. These

clipped signals are results of the low S/N ratio and the computer pro-

gram. As indicated previously, the low particle concentration in the

atmosphere often caused no detectable signal in a given sweep of the

spectrum analyzer. In such instances the velocity was set equal to the

immediately-previous calculated velocity. At the lower end, the signal

was lost in the noise (see the noise calibration trace of the oscillo-

scope) and a previously higher value was then identified as the velocity

for that sweep. There are noticeable high peaks in the LDV trace. It

is believed that these signals are spurious, resulting from identifica-

tion of high noise peaks as Doppler signals. The trend of mean
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velocities is generally identifiable, but the comparison is not as

favorable as for test 50801.

Means and variances - The means and variances from a 34-minute

interval of the total record are given in Table 4.

TABLE 4. MEANS AND VARIANCES FOR TEST 32701

4.26-Minute Mean Velocities m/sec Variances (m/sec)2

Intervals Cup Hot Wire LDV Cup Hot Wire LDV

1 12.041 12.152 11.697 2.686 5.067 4.326

2 13.659 13.835 13.460 4.951 4.281 6.111

3 13.164 13.203 13.990 6.497 7.258 9.897

4 13.973 14.094 14.226 4.117 5.382 5.415

5 13.486 13.575 14.557 5.167 5.429 6.833

6 12.658 12.697 12.441 2.812 3.349 6.620

7 12.417 12.578 11.570 4.000 6.290 3.193

8 11.453 11.551 10.071 2.934 3.826 2.802

Averages 12.856 12.961 12.751 4.093 5.040 5.448

The average wind speed detected by the LDV in the 34-minute period

is within 1 percent of the cup and hot wire averages. There are larger

variations however for the shorter 4.26-minute intervals, and as the

time traces would suggest, variations become greater for even shorter

periods. As noted in the preceding section, these are undoubtedly caused

by the spurious signals in the velocity calculations. The mean velocities

measured by the hot wire were generally larger than the cup anemometer,

and the variances as expected are definitely greater because the frequency

response of the cup anemometer is limited.
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Over a 34-minute period, the fluctuations (variances) detected by

the LDV are larger than those of the hot wire. This was also true for

Test 50801 which had considerably lower mean wind speeds. Again, the

spurious signals in the LDV velocities contribute significantly to

variances.

Probability distributions - The distributions of velocities about

the means for the three instruments are shown in Figure 37. Turbulence

velocities are skewed to the left for all three instruments. The LDV

data indicated difficulty in tracing the larger velocities. As explained

previously, this could be due in part to the three dimensional nature of

turbulence and only the horizontal angularity was corrected (in the mean)

in these measurements. This feature of the LDV traces was noted also for

test 50801.

Spectral densities - The spectra for the cup anemometer, hot wire

and LDV data are shown in Figures 38, 39 and 40, respectively. For

comparison, the three are replotted in Figure 41. Spikes of high fre-

quency are again noted at 2.5 and 5 Hz in the cup anemometer spectra.

It was noted that the time traces of the LDV data included spurious

spikes of high velocity. These spikes are transformed into the spectra

and are noted particularly as spikes of power near 1 and 3 Hz. These

spikes in the spectra were ignored in replotting on Figure 41.

The spectra of turbulence measured by the LDV and hot wire compare

favorably. This is also indicated by the comparison of variances in

Table 4. The cup spectra however drops off at around 0.2 Hz because

of the limited frequency response. Response corrections for the cup

anemometer were not made.
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Measurements of Run 101401 (October 14, 1971)

The data for this test were taken from 9:16 pm to 9:55 pm, a

period of 39 minutes. The wind was from the north-northwest across the

clear grassland. The mean wind speed varied from about 4 m/sec at the

start of the test to about 5.7 m/sec at the end. The wind direction

remained constant. With a northern weather front moving in, the air

was clear, (little pollution), and visibility was good.

Spectrum analyzer settings - The settings of the spectrum analyzer

were as follows:

Sweep rate: 5 ms/cm

Sample rate: 16 sweeps/sec

Frequency Dispersion: 0.2 MHz/cm

Filter Bandwidth: 10 KHz

Bandwidth: 30 KHz

The calibration frequency was 1.691 MHz, which is shown in Figure 42.

The noise level is shown in Figure 43. It will be noted that reference

zero frequency is shifted slightly from the pulse rise of the square

wave, resulting from a horizontal axis shift of the spectrum analyzer.

An accounting of this shift was made in data analysis.

A sample trace of one sweep of the spectrum analyzer is depicted

in Figure 44. The S/N of the Doppler trace is small but was sufficient

to discriminate from noise. There were drop outs in Doppler signature

as indicated by the time traces of wind speeds.

Velocity time traces - Time traces of wind speeds from the cup

and hot wire anemometers and the LDV are shown for representative

4-minute intervals in Figures 45 and 46. As with the two previous tests,

the mean trends correspond with apparent differences in turbulence
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fluctuations. The large number of low points in the LDV signature

resulted from the low S/N ratio; particularly by having to set a low

level trigger in the computer program. The spurrious high peaks are

believed to be caused by extraneous signal in the Doppler sweep. There

are not enough of these to cause difficulty with the statistical anslysis.

Means and variances - Means and variances for the entire 34-minute

test period are given in Table 5 for each 4.26-minute segment.

TABLE 5. MEANS AND VARIANCES FOR TEST 101401

4.26-Minute Mean Velocities m/sec Variances (m/sec)2

Intervals Cup Hot Wire LDV Cup Hot Wire LDV

1 5.150 5.154 5.451 .760 .654 .770

2 5.535 5.543 5.677 .736 .600 .847

3 5.425 5.479 5.722 .940 .760 .977

4 6.052 6.092 6.463 .813 .744 .856

5 5.381 5.406 5.742 .714 .586 .692

6 6.417 6.426 6.698 .822 .809 .879

7 6.417 6.457 6.821 .702 .659 .707

8 5.958 5.996 6.218 .745 .614 .675

Averages 5.792 5.819 6.099 .799 .678 .800

The average wind speed indicated by the LDV measurements is about

5 percent greater than that indicated by the cup anemometer. This is

comparably about the same as for Test 50801. The variance for the LDV

is greater than for the anemometers. Also, the variance for the hot

wire is less than that for the cup anemometer as was the case also for

Test 50801.
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Probability distributions - The distributions of velocities about

the means for the three instruments are shown in Figure 47. The

turbulent fluctuations are more normally distributed about the mean

than was the case for the previous two tests. As before, the probability

distributions compare favorably one instrument to another.

Spectral densities - A comparison of the spectral density distributions

with frequency for the three instruments is shown in Figure 48. The

spectral distribution for the cup anemometer drops off slightly at about

0.5 Hz, the hot wire spectrum decreases on a constant slope and the LDV

spectrum tends to level off for higher frequencies. The 2.5 and 5

hertz spikes were not included in drawing these spectra. The comparisons

are reasonable to about 1 Hz frequency.

Frequency tracker - Considerable difficulty was experienced in

tracking the LDV output with the frequency tracker. The tracker

required frequent adjustments during the test, and tracking was often

lost. Consequently the tape recorded output was too intermittent and

analysis was difficult.

From observations during the test, it was noted that when tracking

was achieved, the D.C. output (although slightly nonlinear) corresponded

with the mean Doppler frequency, hence with the indicated wind speed.

The A.C. output however did not correspond very well with the turbulent

fluctuations. For example, in Figure 49, is shown a simultaneous trace

of the hot wire and the A.C. output from the tracker for Test 101401.

The hot wire leads the laser focal volume by about 3 meters and the

average wind speed was about 6 meters per second. The horizontal sweep

on the oscilloscope was 0.2 sec/cm.
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I h

Figure 49. A.C. Tracker and Hot Wire Traces.
Test 101401

The A.C. output (top trace) resembles noise rather than turbulence,

while the hot wire output is clearly that which traces the turbulence.

The intermittency of the tracker signal created considerable difficulty

with digital data analysis. After considerable effort, this part of the

data analysis was abandoned. The particular frequency tracker used in

these tests (1971) should be modified to provide long-term uninterrupted

velocity-time histories. This of course is related to Doppler S/N

ratio and to the concentration of aerosols which provide the Doppler

shifted signals. With no Doppler signature (signal drop out) there can

be no tracking regardless of the quality and design of the frequency

tracker.

Measurements of Run 102501 (October 25, 1971)

Test time was from 2:04 pm to 2:45 pm. The wind was from the

south-southeast at about 5 m/sec. There were no active weather fronts

in the vicinity and the sky had been clear for the day. Some pollution

was evident in the air, but visibility was good.



73

Spectrum analyzer settings - The settings were as follows:

Sweep rate: 5 ms/cm

Sample rate: 16 sweeps/sec

Frequency Dispersion: 0.2 MHz/cm

Filter Bandwidth 10 KHz

Bandwidth: 30 KHz

The calibration frequency was 1.678 MHz as shown in Figure 50.

The noise level from the detector is shown in Figure 51. The vertical

scale is 200 mv/cm. A sample Doppler trace of one sweep is shown in

Figure 52. As is observable, the S/N ratio is small which made data

analysis difficult.

Velocity time traces - Time traces of velocity from the cup and hot

wire anemometers and the LDV are shown in Figures 53 and 54. There was

much more variability of wind speeds during this test than in previous

tests. The smaller scale turbulence is superimposed on larger scale

variations. Thus, it should be expected, as will be seen later, that

the power spectra would indicate greater power at the lower frequencies.

Some amount of dropout in signals is indicated for the LDV. In general

comparisons of the time traces appear satisfactory.

Means and variances - The means and variances for 8 segments of a

34-minute time period are given in Table 6.
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TABLE 6. MEANS AND VARIANCES FOR TEST 102501

4.26-Minute Mean Velocities m/sec Variances (m/sec)2

Intervals Cup Hot Wire LDV Cup Hot Wire LDV

1 4.397 4.444 4.298 1.077 .900 .984

2 4.154 4.169 3.946 1.372 1.273 1.418

3 6.025 6.010 5.805 .762 .482 .762

4 4.943 5.000 4.683 1.450 1.162 1.436

5 5.307 5.315 4.989 .992 .717 .921

6 4.713 4.748 4.252 .873 .710 .953

7 5.082 5.102 4.878 .933 .702 .968

8 5.278 5.284 5.004 .628 .385 .666

Averages 4.987 5.009 4.732 1.011 .792 1.014

The average wind speed indicated by the LDV is within 5 percent of

the cup and hot wire averages. The comparison is reasonably good.

Probability distributions - The distributions of velocities about

the means for the three instruments are shown in Figure 55. Turbulence

velocities are skewed to the right. The distributions are about the

same as for the other tests.

Spectral densities - The spectral distributions of turbulence are

shown in Figure 56. As was noted earlier the lower frequency variations

of velocities produced greater power spectral densities at the lower

frequencies. The cup anemometer response drops off at about 0.5 Hz,

and the LDV tends to level off for frequencies greater than about 2 Hz.

The comparison of spectral distributions is reasonably good.
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OBSERVATIONS AND CONCLUSIONS

As a consequence of the comparisons presented, the following

observations can be made regarding the one-dimensional LDV system.

1. The gross features of atmospheric phenomena in the boundary

layer are measured by the LDV system. The time traces show

reproduction of these gross features and comparison with

other anemometers are favorable.

2. Mean values determined from the LDV data are in general within

5% of other anemometer data for long (34-minute) time periods.

The variations are larger for shorter time periods, chiefly

because of larger variations in measured velocities. That the

LDV measures larger velocities is also indicated by the proba-

bility (percent) distributions of the data and by the spectral

distributions with frequency.

3. The confidence of measuring high frequency turbulence (greater

than 2 Hz in atmosphere) is not yet established.

4. The technique for data reduction of the LDV data is cumbersome

in its present form. Immediate improvements can be made by

including on-line analog to digital equipment including a

special purpose minicomputer to calculate the velocities from

the digitized data. Alternatively an analog system to detect

Doppler signals such as an improved frequency tracker could be

used. The frequency tracker used in this study required

very fine tuning, and dependable frequency lock was not achieved.
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APPENDIX A-1

Computer Program for Analysis of Doppler Signals



PROGRAM LASDOP TRACE CQC 6400 FTN V3.0-P261 OPTsO 02/10/72 13.01.02. PAGE

PROGRAM LASDOPIINPUT*OUTPUT*TAPE5=INPUT*TAPE620(JTPUTeTAPE2oTAPEIO
.TAPE3)
COMMON/BLOCKI/LENARR19WINDIRE(100)oNkECORI*NFILEIv

ZEROTM19DIRMIRR(100)oVOLT(29100)oWRIDATI
COMMON/BLOCK2/LENARR2*SYNC(1500)-YLASER41500)oNRECON29NFILE2*

ZEROTM.2*WRIDAT2.NrAPL2
COMMON/BCALIBR/SLOPE42)oLEROTAP(2)95LOPEANoANINTERtSLOPEHW9

SLOPEWD*WDINTEP-SLOVEMD.DMINTER
COMMON/BTAPECA/NCHANTPeNCALVALvVARITP*ACTYOLT(iI
COMMON/BINSTCA/NINSCALiVARILN.FULSLAWiZEWOWDoFULSCAM*ZEROM09

FWSTINT
COMMON/BLASER/NFLYBACiNPTSWP
COMMON/BLASCAL/NCALRECoNSWPREC91BEbCHKCALEVELCALVEL09WAVLENq

DEvFREQ

ir, COMMON/HNOISCA/FLYBACK*NOISRECgXNLEVEL42?5)
COMMON/BHUFLAI/NrOTFIloiCLOCKI#IEXITgTIMADAiNREC
COMMON/BSOPTI/IHEGSKI-ISKIPloFACTORI
COMMON/RRUFLA2/JCLOCK29TEXTIMEiNREC2*NkEC39NkEC4*TIMADJI*TIMADJ29

TIMAOJ39TIMAUJ4
COMMON/8SOPT2/IhEt>%K291SKIP2
COMMON/HSKPEOI/LPACDAI. IDE14TIoNFLSKPI914RCSKPI

COMMON/8SKPEo2/LPAC0AZ9 NTOFF1291DENT29NFLSKP29NRCSKP29
NTUTAPEqILXlf2.NTOTHEC9TIMADJ

COMMON/HCO icTM/NAVFMIRtt)IRECMPtCHGAlkeTIMEMIR
2r COMMON/HVOLTAD/ISCALE

COMMON/4SPFEU/SUMVEL091SAMPLEIDATAHWoSUMVOLT*TINRATI*CHANNE19
DlGkArl*TIMECH6.VOLTCHG.MULTIME*TIMEHW*DCSUPRE
FRSTSPDWRITAPE.PQINTOK

COMMON/BAVEwlt4/JSA,4PLEgSUMNINr)oMULTIMI*TIMAV*09AVEWD(3000)
3M LAST IIIE

COMMON/BBUMPUP/TIMEI(702)*VELnC2(702)
COMMON TIME2(200)qVELOLAS(io0)91POINT
COMMON/UNPKI/ITIMEI*ICOMWRU(2ni).IJATWRD(1000)
COMMON/UNPK2/ITTME29LC04wRD(601)gLuAIWRD13000)

3S READ(Sql) YOLTC'iGtWRIDAT2,(-ALTAPEgLALINSTtCALLAS9
CALN-)ISoWRIDATioliEt!TloluEN72*LENARRI*LENARRZ*IBEGSKIt
ISKIPI91HE(,SK291SKIOZ.NAVEMIR.NFLYdAC91SCALEPNTOTF129
NTOTAPEtLPACOA29NCHANTPgNCALVALoLPACOAloNIOTFIloNCALREC9
NSWPRFC91HEGCHK*Nol,,KECgNINSCALoNLASRECoDIGRATI9

4ft TIMECHGgTIMEHW.SLOPFHWoTIMRAYI.CHANNEI#VAR17P9fACTVOL7
(1)91=195).TIMAVolUq('ALEVELiFLYBACK90FLYBACiVAkliNe
FULSCAwgZEROwD.FULSCAM9Z6ROMD*DCSUPRE.DEvFRE09WAVLEN9
CHANNE29DIGRAT2,TIMQAT2

I FORMAT( 9A3*1114,/.1114.5F6.0./.2F6.O954FS.0197F6.09/93F6.092E9.39
49; 3F6.0)

READ(59S) TIMAUJIgTI14AOJ29TIMAUJ391IMAUJ49TIMAUA*NREC29NREC39
NPEC4-NCALFlLqNCALIAPqNWEC

5 FORMAT(SFIO.3,315.212.15)
REAnI598) FNSYAPEoFRSTIfilofPSTLAS.FRSTNOSNTAPFlIoNLASF[2*NINSF119

sn NOISF12qWRITAPEq1kUNNO9MkCUNiT
8 FORMAT(4A394l3*A3*l6*A3)

WRITEf6910) IRUNNO
10 FONMAT(IHI.5X*JNPUT UATA FUW PUN NUM8ER*171

WRITE(6.2)VoLTCHGwRlDAt2,CALTAPEtLALINSTgCALLAS9
5c; CALNOIS.WRIDAT191DENTiglUENT2.LENARRIoLENARR2*IBEGSKI9
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IS*11ES21KI2NvMRN BA*SA~NOF2

* NTOTAPELPACOA2,NCHANTPeNCALVALLPACUAleNTOTFI 1.NCALRECs

NSWPREC. I8EGCHKNO1 SRECNNSCAL.NLASREC9OIGRAT1t

* TIMECHGTIMEHWSLOMF~WTI4RAT1,CHANNE1,VARITP-(ACTVOLT

bn (1,.I=1.5lTIlAV,CALEVEL9FLYt3ACKOFLY8ACoVA01IN9
FULSCAW9lEW0WDFULSCAMZLROMDOCSUPRL9DEVFREO9WAVLEN#
CH-ANNE2.OIGRAT2.T 1mpAT2

2 FVORMAT(1H0.* VOLTCHG =*A4
0 
*WRTDAT2 =*40 CALTAPE =*A4* CALINST =*A

.'* CALLAS =*A.* CALNOIS =
0
A4* WRIDATI =

0
A4* IOLNTI =*A. 10EN12 =0

6c ~ A4/0 LENARPI =I140 LENADNi? =. 140 IbEGSKI =0130 1SKIP1 =*130 BEGSK

.2 =0130 ISK102 =0130 NAVLMIR =013* NtLYdAC =6144 ISCALE =012/0 NTO

*TVI2 s0120 NIOTAPE =012* LPACpA2 ='4I'* NCtIANTP =0130 NCALVAL =012

*LPACDAI =0140 NIOTFII =*e NCALIREC =*13* NSwP14EC =012/0 IIBEGCHK

=-0130 NOIS14EC =-130 NINSCAL =01e* NLASREC =*13/* DIGRAII =0F7.1

7n .0 TIMECH-G =*F3.1
0 

TI!AEHrW =*F,I...0 SLUPrLu =*F9.40 TIMRATI =*F4.1/

0 CHiANNEI =1b.1* VAPITP =*Fj.3/O ACTVOLY(1 THwU 5) =05FS.I/* TIMA

*VWD =OF5.2* CALEVEL =*F9.2* FIYGACK =*il UFLYUAC =*k5.1* VARIIN

* *Fb.3/* FUI-SCAw =*F9.3 * ZEPOwu =019.3* FULSCAM =*F9.3* ZEOMO

*-F9.3- OCSURRE =*F7.3* DEVFHEO =*EI0.3/* WAVLEN =*E13.6* CHANNE2

71, .*oF5.10 O1GRAT2 = *F9.10 TltMNATe? =*Fbt1)
WPITEE6 ,6 )FRSTAPEFRS~IlIFSTLASHRSTNOSNTAPFIlNLASE

1
I2NINSFIIq

1l~SF 12 WkIT APE ,MRCfNST
6 FORmAT(1H .* FRSIAPE =*A4* FkSTINT =*AL. FRSTLAS =*A4* FRSTNOS =*A

* NTAPFII =0130 NLASF12 =0130 NINSFIl =*13* NOISF12 =*13* WRITAPE

8(% . *A3
0 

MRCONST =*A3)

wRITE(6.9)TI 4ADJlT1RADJ2,TIMADJ3,1IMAOJ4,TIMAUAiNREC29NREC
3
9NREC

4

* ,tALFIL.NCALTAP9NkFC
9 FOPMAT(IH .- TIIAA')J =*F4.10 TI14ADJ2 =*FIO.10 TIMADJ3 =0F10.1 TIM

*A0J4 .F 10.10 TIMADA =OF1O.I/= NkEL2 =0150 NREC3 =olb* NREC4 =*16

B.; * PCALFIL =0j20 14CALTAP =*12* NREC =*14)

REWIND 1
REWIND 2
IF (WRITAPE .EQ. 3HYES) REWIND 3
FRSTPT =3HYES

9n IEXTIME =0

MULTIME =I

SUMVELO =0.0

ISAmPLE =0

SUMVOLT 0.0
9q JSAPPLE =0

SUmwIND 0.0
CALVELO 0.0
NSWPS = 0
NRECORI= 0

100 NRECOR2=0
NTRIG =I

NFILEI =I

NFILE2 I
ZEPOTMI= 0.0

10c; ZEPOTM?0O.0
IEX(IT 3= 3140
IEXIT2 =3mi NU

SLASTPT =10.0

ICMANDUE =0

Ii"FACTORI =SOPT(2.)/(2.**9-1.0)
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FRSTSPO = 3HYES
NTAPE2 = 1
NEXTPTS = 0
NAVEWD = 0

I s NDATAPT = 1
JCLOCKI = 0
JCLOCK2 = 0
IWIND = 1
IPOINT = 1

?10 JCOUNT = 0
IF (IOENTI .EO. 3HYES) CALL HEADERI
IF (IDENT2 .EQ. 3HYES) CALL HFADERZ
IF (FRSTAPE .EQ. 3H OK) GO TO 20
NFLSKPI = 0

124 NPCSKPI = I
CALL SKPEOFI

20 IF (CALTAP .EO. 3HYES) CALL TAPECAL
IF (CALTAPE .EQ. 3HNED) READ(1ll) (SLOPE(I)ZEROTAP(I)llSl2)

11 FORMAT(4FI0.3)
13a IF(NFILEI .GT. NTAPFII) GO TO 21

NFLSKPI = 1
NPCSKPI = 0
CALL SKPEOFI

21 IF (CALINST .EO. 3HYES) CALL INSTCAL
13r IF (CALINST .EQ. 3HNED) READ(SI11) SLOPEWO*SLOPEMDWDINTERDMOINTER

IF (NFILE1 .GT. NINSFII) GO TO 23
NFLSKPI = 1
NRCSKPI = 0
CALL SKPEOFI

14n 23 IF(FRSTLAS .EQ. 3H OK) GO TO 24
NFLSKP2 = 0
NRCSKP2 = 1
CALL SKPEOF2

24 IF (CALLAS .EO. 3HYES) CALL LASCAL
14c IF (CALLAS .EQ. 3HNED) READ(S.12) CALVELONPTSWP

12 FORMAT(FIO.3.*I)
FLYBACK = FLYdACK - DFLYBAC
IF (NFILE2 .GT. NLASFI2) GO TO 25
NFLSKP2 = 1

15O NRCSKP2 = 0
CALL SKPEOFI

25 IF (FRSTNOS .EQ. 3H OK) GO TO 26
NFLSKP2 = 0
NRCSKP? = I

155 CALL SKPEOF2
26 IF (CALNOIS .EQ. 3HYES) CALL NOISCAL

IF (CALNOIS *EQ. 3HNED) REAO(S.4) (xNLEVELII)1*I=1202)
4 FORMAT((13F6.0))

IF (NFILE2 .GT. NOISFI2) GO To 27
16n NFLSKP2 = I

NRCSKP? = 0
CALL SKPEOF2

27 CALL VOLTAOJ
IF (MRCONST .EO. 3HYLS) CALL CONSTMR

16 IF (MRCONST .NE. 3HNED) GO TO 75
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READ(59I4) CHGMIR9TIMEMIR
READIS13) DIRECMR

13 FORMAT(FI0.3)
14 FORMAT(A39F6.2)

170 wRITE(6,15) DIRECMR*CHGMIRTIMEMIR
15 FORMATIIHO.SX*OIRECMR =*FO1.1* ChGMR =*A3* TIMEMIR ='Fl0.31

75 JCLOCKI = 0
ZEROTMI = 0.0
JCLOCK2

= 
0

171 ZEROTM2 = 0.0
IDATAMHW =I
MULTIMI = I
IExTINE = 0
LASTIME = I

180 MULTIME = I
PRINT 16

16 FOPMAT(IHI)
100 CALL SPEED

CALL AvEWIND
|14 IF(PRINTOK .EO. 3HYES) wRITE(6hl)NFILE2,NTAPE2

7 FORMAT(IHOSX*LASER VELOCITIES*SX*
F
ILE*1

2
,5X*TAPE*

I
2/

IO X
TIME

t
SEC*

.o10XVELOCITYM/SEC*1OX*RECORD*)
150 CALL BUFLAS2

IBEGIN = I
19n 175 00 ?00 M=19EGINLENARR2

IF (YLASER(M) .GE. FLYBACK) Gn TO 400
200 CONTINUE

GO TO ISO
300 JCOUNT = JCOUNT * I

19S M = M I
IF (M .LE. LENARRZ) O60 TO 500

400 CALL BUFLAS2
M= I

500 IF (YLASER(m) .GE. FLYBACK) Go TO 300

200 IF (JCOUNT .GT. 15) GO TO 600
JCOUNT = 0
IBEGIN = M
IF (M .LE. LENARR2)GO TO 175
GO TO 150

20c 600 M = M * IBEGCHK - I
IF (M .LE. LENARRZ)GO TO 650
CALL BUFLAS2
N = M - LENARR2

650 JCOUNT = 0

21n LAST = NPTSWP-NFLYBAC
DO 800 I= IdEGCHK9 LAST
IF (YLASEH(N) .GE. XNLEVEL(II * 2.)O0 TO 900
M= M* I
IF (M .LE. LENARR2) GO TO 800

21c 700 CALL BUFLAS2
M = 1

800 CONTINUE
IBEGIN = M
IF (FRSTPT .EQ. 3HYES) GO TO ITS

22n VELOLAS(IPOINT) = VELOLAS(IPOINT - )l
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TIME2(IPOINT)= TIME2(IPOINT-I1)(NPTSwP*CHANNE2*TIMRAT2)/OIGRAT2
IF (TIME2IPOINT) .GT. IWINO*TIMAVWD)IWIND =IWIND * 1
IF (AVEWODIWIND) .NE.O.0) GO TO 825
IF (IExlT .EQ. 3HYES) GO TO dp0

224 IF (WRITAPE .EO. 3HYES) CALL LASWRIT
IPOINT = 1

810 CALL SPEED
CALL AVEWINO
IF (PRINTOK .EQO. 3MYES) wRIE(6.7)NFILE2,NTAPE2

23m GO TO 825
820 IWIND = IWIND - I

IF (AVEWD(IWIND) *EO. 0.0) GO TO 820
825 IF (PRINTOK .NE. 3HYES) GO TO 875

wPITE(
6
.
3
)TIME2(IPOINTi,VELOLAS(IPUINT)tNRECOR2

235 875 IPOINT = IPOINT * I
GO TO 175

900 IF (YLASER(M*I) .LT. YLASER(M)) GO TO 925
I = I .1
M = M * 1

240 60 TO 900
925 TIME2(IPOINT) = TIMRAT2*((ITIME2-ZEROTM2/OO10000+(M )*CHANNE2)/

DIGRAT?)
FRSTPT = 3H NO
IF (TIME2(IPOINT) .GE. TIMEMIP .A. CHGNIR .EQ. 3HYES) CALL CONSTMR

24c IF (TIME2IPOINT) .GT. IWINOD TIMAVwD) IWINO = IWIND * I
IF (AVEWD(IwIND) .NE. O.O)GO TO 93S
IF (IEXIT .EQ. 3HYES) GO TO 930

IPOINT = 1
S 250 926 CALL SPEED

CALL AVEWIND
IF (PRINTOK .EQ. 3HYES) WRITEE6T7)NFILE2*NTAPE2
GO TO 935

930 IwIND = IwlND - 1
259 IF (AVEwD(IWIND) *EQ. 0.0) GO TO 930

935 wDIPEC = AVEwD(IIw4D) - DIHECuR
WDIREC = (wDIREC * 2. * 3.14)/ 360.
VELOLAS(IPOINT) = ((I * 4)*CALVELO)/COS(WOIREC)
IF (PRINTOK .NE. 3HYES) GO TO 1000

260 WRITEI
6
9
3
)TIME2(IPOINT).VELOLAS(IPUINT)*NRECOR2

3 FORMAT(IH , 8XF8.3*15XF6.3914K 4)
1000 IPOINT = IPOINT * I

IBEGIN = M
IF IM .LE. LENARR2)GO TO 175

265 GO TO 150
END
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SUBROUTINE TAPECAL
COMMON/BTAPECA/NCHANTPNCALVAL.VARITPACTVOLI (5)
CO'MON/BLOCKI/LENARR1.WINDIRE(100),NRECOR1,NFILE1,

* ZEROTM1,DIHMIsQR(100).VOLT(2,100IWRIOATI
COMMON/BCALI9R/SLOPE(2).ZERUTAP(2),SLOPEANANINTERSLOPEHW9

* SLOPEWDqWDINTEQ*SLOePEMODMINTER
DIMENSION SUMCAL(2).*SUMTAP(2).SOVALUE(2),SU4ACT(2),ACT X TAP(219

* SUMSQ(2,S),MECMEAN(?-),TOTMEANE2,5),TEPMEAN(2),SUMEAN(2.
* TEMPSUP4(2),STANOEV(?,S)

InICHECK 0
NSAMPLE =0

LASTCAL 0
ICALVAL I
DO 100 I= I.NCHANTP
SU'4EAN(I) = 0.0
TEMPSUMMI 0.0
SUMCALM1 = 0.0
SUMACTMI = 0.0
SU'4TAP(I) = 0.0

2A SOVALUE(!) 0.0
ACT X TAPMI = 0.0
TEPMEANIl) = 0.0
RECMEAN(I) = 0.0
DO 100 J=19NCALVAL

2- TOTMEAN(Ij) =0.0
100 SUMSO(IJ) = 0.0

110 CALL BUFLASI

IF ICAVAL. EQ. NCALVAL) LASTCAL a LASTCAL I
3D 0 2 I=1.14CHANTP

DO 120 K=1.LENARRI
120 SUMCALM = SUMCALMI * VOLT(!.K)

IF (ICHECK .6T. 0) GO TO 151
NSAMPLE = NSAMPLE * 1

3r DO 140 1=1.NCHANTP
RECp4EAN(I) = SUMCALMI /LENARPI
IF INFkECOHI .EQ. 1) GO TO 125
IF (RECMEAN(I) .GT. TOTMEAN(IoICALVAL) * VARITP .0. RECMEAN(1)

*LT. TOTMEAN(IICALVALI- vARIYP) 60 T0 150
4A 125 DO 130 K=1.LENARR(1

130 SUMSQ(IICALVAL) SUMS041,ICALVAL) + VOLT419KI*Z
SUMEANUl) = SUMEAN(I) # RECMEAN(I)
SUMCALMI = 0.0
TOTMEAN(I,1CALVAL) = SUMEAN(h)/NSAMPLE

4c; IF 11 .EQ. 1)
.'RITE(6.1)NiRECO1,CALVALACTVOLT(ICALVAL)
I FOPHAT(1H0,5XoIRECORU MFANS*4X*RECORD NUMBER*1497X*CALIBRATION*1Z.
.4X-INPUT VALUE-FS.1/1X.Ct1ANNFLe10A.NEAN*IJX.CUMULATIVE MEAN* 6X
.*NUMBER~ RECUOS FOR CUMULATIVE MEAN*)

So 140 WRITEI692)1,PIZCMEAN(I),TOTMEAN(IiCALVAL).NSAMPLE
2 FORMAM H * 212 2. 10XFB.4. l'xFS.4925X, 13)

GO TO 110
150 NSAMPLE = NSAMPLE I

ICALVAL =ICALVAL I
Sri 151 IF (ICALVAL .GT. NCALVAL .A. jASTCAL .GT. 3) GO TO 180
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ICHECK =ICHECK + I
WRITE(6.5)NRECOR1,!CALVALACTVOLT(ICALVAL)

5 FORMAT(IIHO.SX*TEMPORARY MEANS*dX*kECORO NUMBER44,IX*CALIBRATION

*@I2.4X*INPUT VALUE *FS.1/11X*CHANNLLO10AMEAN*3

6n DO 170 1=1,NCHANTP
RECMEAN(I) =SU,CALI13/LENARRI
WRITE(6*611,RECMEAN(1b.

6 FORMAT(H 912X12,IOXF8.4)
SUMCAL(I) =0.0

6c; IF (ICHECK .EQ. 1) GO TO 160
0O 155 K=1.LENARR1

355 SUMSO(IICALVAL) SUMSO(1,1CALVAL) + VOLTII.K)**Z

TEMPSUMM1 = TEt4PSUMM1 + RECMEANII)

160 IF (RECMEANI!) *GT. TOT'EAN(.ICALVAL-I) + VARITP .0. RECMEAN(13

1o * LT. ToTmEAN1441ICALVAL-11-VARITP) GOTOBUF 3HYES

170 CONTINUE
IF(ICHECK *(6T. 3S) GO TO 180

IF(GOTOE3UF EQO. 3rtYES) GO TO 110
00 175 I=1,NCIANTP

7c;TE'4PSU'4(I = 0.0

175 SUMSO(19!CALVAL) =0.0

ICHECK =0

ICALVAL =ICALVAL -1

6.0 TO 110
Rnf 180 lEND =ICALVAL - 1

WRITE(6983 IENDACTVOLT(IENUI

8 FOWMAT(1H09/,SX.*STANOAR0 DEVIATIONS*OACALIBRAT1ON12,5XAINPUT VA

*LUE@FS. 1/11 K*CtANNEL0XRM5*)
00 190 11,.NCHANTP

bq STAKDEV(l,!EN0) = SORT 4SUMSfo I.END)/(NSAf4PLE*LENARR1) I
TOTmEAN(IIEND)**21

190 WRITE46.9) IS(ANOEV(IIENO)
9 FORMAT(I *12A12,7XF9.3)

NSAMPLE = ICHECK - 1

9fl U0 195 1=1.NCH~ANTP
SUMEANRI) = TEMPSUMMI
TOTMEAN(IICALVAL) = TEPPSUM(I)/NSAMPLE

195 TEMPSU?4(I= 0.0
ICHFCK = 0

9c; IF (ICALVAL *LE. NCALVAL) GO TO 110
WRITE (6. 30)tIRECORI

10 FOPMAT(IHO.SX*ACTUAL VS TAPE vOLIAGEOiOZ*LEAST SQUARE METIIOO*5A'NU

*MBER RECORDS USED FOR CALCULATIONS!13)

DO 210 1=1.NCHANTIP

100 00 200 J=1,NCALVAL
SUMTAP(I SU'4TAPII) * TOT,4EAN(1,J)

SOVALUIEII) S~vALUE(1) * TOTmEAN(19J)*02

ACT X TAPMI= ACT X TAP(1 + TOTt4ANII#J)*ACTVOLT(J)

200 SUMACTI!) =SU'4ACT(1) * ACIVULT(J)

10c; SLOPEIT) =(SUt4ACT(l) *SUMTAPIl) -NCALVALf ACT X TAP(I3)/

(SUMACT(1)**2- NCALVAL*SQVALUEEI))

ZEROTAP(I) = (SUMACT(I)OACT A TAP(1) - SUMTAP(1)*SQVALUEEIII)
(SUMACT(I)**2- NCAI VAL*SUVALUE(I))

wRITE(6,11) 1,(ACTVOLT(J),TOIMFAN(1.J)9J=1,NCALVAL)c**)11 FORMAT(1HO.IOA*C H A N N E L*13/1SAOVALUES USE3J FOR LEAST SQUARE C



SUBROUTINE TAPECAL TRACE COC 6400 FTN V3.0-P261 OPTrO 02/10/72 13.01.02. PAGE 3

.ALCULATIONS*IOx*INPUT VALUE*SX*TAPE VALUE*/o69XF4.1elAXF6.3))
210 WRITE(6.rl)SLOPE(I)*ZEROTAP(I)
12 FORMAT(IHOISX*VALUES OBTAINED FROM LEAST SQUARE CALCULATIONS* TX*

.SLOPE*8X*INTERCEPT*/68XFS.3.I1X5F.3J
115 PRINT 13

13 FORMAT(IHI)
RETURN
END
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SUBROUT INE INST CAL
COMMON/BINSTCA/NINSCAL.VARIIN.FULSCAWZEROWOFULSCAM9ZEROMDo

* FRSTINT
CO,MON/BLOCKI/LENARR1.WINORE(OOh.NRECORINFILE1.

* ZEROTM1,OIRMIRR(100bVOLT(2,100).WRIOATI

COMMON/RCALIBR/SLOPE(2) ,ZEROTAP(2) ,SLOPEANANINThRSLOPEHW.
* SL0)%EWO.WOINTEQSLOPEMO.OMINTER

DIMENSION SuNSQWt)(3),SUPSMO3TKEANUOE3$tTNEANMD(3)9STDEVWDt3)9
* STDEVMD(3)

10 LEVEL = IOH-ZERO INPUT
NRECORI = 0
IF (FRSTINT .EQ. 3HYES) NRECOR1 I
SU'4WD = 0.0
SUMMD = 0.0

Ir SUMAVEW = 0.0
SUMAVEM = 0.0
NSA'4PLE = 0
INSCAL = I
TEMPWD 0.0

2tn TEMPMD 0.0
ICHECK = 0
D0 100 1 =I.NINSCAL
SUMSOWD(I) = 0.0

100 SUMSOMD(I) =0.0
2c; IF (NRECORI .EO. 1) GO T0 175

ISO CALL BUFLASI
GOTORUF = 3H NO
IF (NFILEI *GT. 1) 60 TO 850

175 00 200 K=I.LENARRI
3n SUMIwD = SUMIWO # WINDIRE(K)

200 SUMMU = SUMMUL * O!RMIRR(1)
AVEWU = SUk4WU/LENARRI
AVEMU = SUMMD/LENARRI
SUMWD = 0.0

3c; SUP4MD = 0.0
IF (NRECOI1 EQ. 1) GO TO 300

IF (ICHjECK .GT. 0) GO TO 600
IF (AVEW0 *GT. TMLANWD(INSCAL) *VARIIN) 60 10 S00

300 SUMAvEw = StiMAVEW * AVEU)
4A SUMAVEM = SUMAVEM 4 AVEMO

NSAMPLE = NSAMPLE - I
TMEANLO( INSCAL) =SUMAVFW/NSAMPLE
TMEANMD(INSCAL) =SUMAVEM/NSAMPLE
RITE (6,1) NRECOR ILE VELA VLNL).TMEANMNt INSCAL INSAMPLEAVEWD,

45 *TMEANwU(INSCALINSAMPLE

I FORMAT(IH0.5KOINSTPUMENT CALIPRAT1ON*SX*RECORO MEANS*SXORECORDI139

.5X*TNPUT .A10/10AIINSTRitENr10X*RLCORD ,EANIOX*CUMULATIVE MEAN*

.IOX-NUMBEH OF RECORDS IN CUMULATIVL MEAN*/7X*MIRNOR DIRECTION090*6

* .3, I9AFb.3930A12/ 8XeWlfj D IRECTIONi~oOXF6.3, 19XF6.3,30A!2)

sn U0 400 K=1.LkfJA.RRI
SUMSOWD(INSCAL) = SUMSOWLUCINSCAL) * WINDIREIKI*02

4.00 SUMSUMDIINSCAL) = SUMSOM4INSCAL) + OIRMIPR(K) **2
GO TO 150

500 INSCAL =IliSCAL 0 1

55 600 ICHECK = ICHECK * I
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IF (!Cb4ECK *LT. 2) 60 To 150
TEMPWD = TE'4PWO # AVEW)
TEP4PMD = TEMPMD # AVEMD
lEND ICHECK - I

6n ~ LEVEL =10HFIJLL SCALE
WPITE 16,2)NRECOR1,LEVEL.AVEI4D.TEM4PMD.IENDAVEWOTEM4PWD.IEND

2 FORMATIIH0,Sx*TEMPORARY SUM4S*10X*RECORD*13*1OX*INPUT *AIO/ IOA*INS
*TPUMENTO10XeRECOR) MEAN-10X*SUM OF RECORD MEANS*I0X-NUMHER OF RECO
.RDS IN SUM*/ 7X*MIRROR DIRECTION-9XF6.3.20XF6.3925X12/SX *WINDO IR

6c;*ECTION*IOXF6.392OXF6.392SX12)
00 700 K=1.LENARlI
SUMSOWOfINSCAL) = SIJMSQWD(INSCAL) * WINOIRE(KI.*2

700 StV4SOMUlIrNSCAL) = SUMSOMU(INSCAL) # D!RMIQR(K)**2
800 IF (AVEWD *GT. TMEAN4D(INSCAL-1) **VA1R!1N) GOTOBUF 3HYES

7fl IF (ICHFCK .6T. 3) 60 TO 900
IF(GOTOBUF .EQ. 3HYES) GO TO 150
SUMSOWD(INSCAL) = 0.0
SUmSOMD(INSCAL) 0.0
IC'IECK 0

79;TE4PwU( 0.0
TEwMN 0.0
INSCAL INSCAL -I
GO TO 150

850 INSCAL = INJSCAL I
R90 Io END =INSCAL -1

LEVEL I OHZERO INPUT
IF IIEND *EQ. 2) LEVEL z IOMFuLL SCALE
STDEVwDlIEND) = SQRT(SUMSQWD(!END)/(NSAMPLE*LENARRI) -

* TMEANWD(1LN0)*.Z)
STOEVMO(IE,!D = SURT(SUUSOMO(IEND)/(NSAMPLE*LENARRI) -

* TPEANMO(IEND)0*2)
WPITE(6,3) IEND.LEVELSTOEVMU(IENO).STDEVWO(IENO)

3 FOR'MATtIH0.5X*STANOARD DEVIATIONS*IOX*CALIBRATION.12,1OX.INPUT
AIO0/I0XOINSTRUMENT*IOXRS/7*4IROR DIRECTION* 6XFS.3/ SXOWIND 0

Qfl IRECTION-7XF6.3)
LEVEL = 1OHFULL SCALE
NSAMPLE = ICHECK -I

SUMAVEWsTEMPWO
SU(4AVEM = TEMPMO

9rTMEANWD(INSCAL) SUMAVEW/NSAMPLE
T*EANMD(INSCAL) SUMAVEMj'NSAMPLE
TEOAPWO = 0.0
TEMPHD =0.0
ICHECK z0

i0n IF (INSCAL *LE. NINSCAL) GO Tv) 150
SLOPEWD = (FULSCAW-ZERO40)/4Tm4EANWO(2)-TMEANW0(l)I
SLOPEMD =(FVuLSCAM-LEROmD)/(TmEANMOD(2)-TNEANMO(1)I
DMINTEP = FULSCAM - SLOPEMD*TMEANMUJ(2)
WOINTEP = FULSCA. - SLOPEWDTEANWv)(2)

101; wRITE(69A)Nv4ECORI*TMEANMD(1)9?EROMU.TMEANMD(2),FULSCAM.SLOPE0,
.OMINTEPTMEANW()ZEROWDYTMEAND(e) FULSCAWOSLOPEWDWDINTER
4FORmATfIH0,5X*INSTRUMENT CALIPAT!ON*5X*NUMBER OF RECORDS USEOOI3/
.IOXMIRRUP (JIRECTION*/Ih*Aj.UES USED FOR CALIBRAIIONO1OX*INPUTOS

.X *TAPE VALUL&5x*ACjuAL vALuE*/ 53x*ZERO*6XF6.3,1OAFI.3/ 49X*FuLL
IIA.SCALE*4XF6.3. IoXF7.3/ ISXEVALijES O,3TAINED*22X

4
SLOPEOSXO!NTERCEPTe/
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.SIXF?.396XF5.3//10E*WIN0 DIRECTION*/ 15X*VALUES USED FOR CALIBRATI
*ONO10X*INPUT*5X *TAPE VALUE*Sx*ACTUAL VALUE*/3XZERO6XF.31OXF7
..3/ 49X*FULL SCALE*4XF6.3,1OXF7.3/ISX-VALUES OIBTAINED-22X-SLOPEOSX
*.INTERCEPT-/SIXF7.396XF7.3)

116; RETURN
END
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SUBROUTINE LASCAL
COMMON/BLASCAL/NCALRECNSWPRECtIBEGCHK*CALEVELCALVELO9WAVLENt

DEVFREO
COMMON/BLOCK2/LENARR2.SYNC(1500)tYLASER(1500ltNRECOR2.NFILE2t
* ZEROTM2*WRIDAT2.NTAPE2
COMMON/BLASER/NFLYBACNPTSWP
DIMENSION NPTRIG(20)
NEXT = 0
NPTSWP = 0

In SLASTPT = 10.0
CALVELO = 0.0
NSAMPLE = 0
NSWPS = 0
LASTPT = 0

1c; GO = 3H NO
LEFTOVR = 0

100 CALL BUFLAS2
IF (NRECOR2 .GT. NCALREC) GO TO 900

150 NTRIG = I
2n DO 50 1=1920

50 NPTRIG(I) = 0
DO 500 K=1LENARRZ
IF (K .GT. 1) GO TO 200
IF (SYNC(K) .GT. 0.0 .A. SLASTPT *LT. 0.0) GO TO 300

2c GO TO 500
200 IF (SYNC(K) .GT. 0.0 .A. SYNC(K-0 *LT. 0.0) GO TO 300

GO TO 500
300 IF (GO .EQ. 3M NO) GO TO 400

NPTSWP NPTSP * K - LASTPT * LEFTOVR - I
30 NSWPS = NSWPS * 1

LEFTOVR = 0
400 NPTRIG(NTRIG) = K - 1

NTWIG = NTRIG * 1
LASTPT = K - I

3c GO = 3HYES
500 CONTINUE

SLASTPT = SYNC(LENARR2)
LEFTOVR = LENARR2 - NPTRIG(NTRIG-)
LASTPT = 0

40 NEXT = 0

NTRIG 1
NAVEPTS = NPTSWP / NSWPS

600 ISTART = NPTRIG(NTRIG) + IBEGCHK
LAST = NPTRIG(NTRIG) + NAVEPTS - NFLYBAC

4c IF (LAST .GT. LENARR2) NEXT = LAST - LENARR2
IF (LAST .GT. LENARR2)LAST=LENARR2
00 700 I = ISTARTLAST
IF (YLASER(I) .GT. CALEVEL) NFAT = 0
IF (YLASEH(I) .GT. CALEVEL) Gn TO 800

5n 700 CONTINUE
IF (NEXT .EQ. 0) GO TO 750
CALL BUFLAS2
DO 725 J=1.NEXT
IF (YLASER(J) .LE. CALEVEL) Go TO 725

5S I=J*LENARR2
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GO TO 800
725 CONTINUE

IF (NRECOR2 .GT. NCALREC) GO TO 900
GO TO 150

61 750 NTRIG = NTRIG * I
IF ( NPTRIG(NTRIG) .GT. 0) GO TO 600
IF (NRECOR2 .GT. NCALREC) 60 TO 900
GO TO 100

800 IF (YLASER(II1) .GT. YLASENt(I) I=l .1
6 * CALVELO = CALVELO * I - NPTRIG(NTRIG)

NSAMPLE = NSAMPLE * I
NTRIG = NTRIG * I
IF (NRECOR2 .GT. NCALREC) (0 TO 900
IF (NEXT .GT. 0) GO TO 150

70 IF (NPTRIG(NTRIG) GT. 0) GO TO 600
GO TO 100

900 CALVELO = CALVELO/NSAMPLE
NPTSWP = NPTSWP / NSwPS
wRITE(6.5)NRECORCALVELONPTSWP

74 5 FOqrATI(HI.5X*DEVIATION FREQUENCY. CALIBRATION*iX*NUMBER OF RECORDS
. USED FOR CALIBRATION*I3/95x*wAVELENGTH X OEV. FREQ.*/IOX*AVERAGE
.NUMBER OF POINTS TO DEVIATION FREQuENCY*SX*AVERAGE NUMBER OF POINT
.S/SwP*sX* ------------------------ / 95X*2 X POINTS TO DEV. FREQ.*/
* 32XF5.1,39AX3)

80 CALVELO = (WAVLEN*DEVFREQ)/(2*CALVELO)
WRITE(696)CALVELO

6 FORMAT(IH*104XFS.4)
NETURN
END
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SUBROUTINE NOISCAL
COMMON/BNOISCA/FLYBACKeNOISRECoXNLEVEL(275)
COMMON/8LOCK2/LENARR2.SYNC(ISOO),YLASER(SO500NRECOR2,NFILE29

ZEROTM2,WRIOAT2NTAPE2
COMMON/BLASER/NFLYBACNPTSwP
DIMENSION SUMPTS(300)
00 100 I=1.NPTSwP

100 SUMPTS(I) = 0.0
150 CALL BUFLAS2

In K = 1
JCOUNT = 0

175 DO 200 I=KoLENARR2
IF (YLASER(I) .GT. FLYBACK) Go TO 300

200 CONTINUE
Ic IF (NRECOR2 .GE. NOISREC) GO TO 800

GO TO 150
300 00 400 J=ILENAR0Z

JCOUNT = JCOUNT * 1
IF (YLASEH(J) .LT. FLYBACK) GO TO 450

fn 400 CONTINUE
IF (NRECOR2 .GE. NOISREC) GO TO 800
CALL BUFLAS2
I=1

60 TO 300
2c 450 IF (JCOUNT .GT. 15) GO TO 500

JCOUNT = 0
K=J

IF (K.LE. LENARR2) GO TO 175
IF (NRECOR2 .GE. NOISREC) GO TO dO0

39 GO TO 150
500 M=1
550 ISTART = J - 1

DO 600 K=ISTART*LENARR2
SUMPTS(M) = SUMPTS(N) * YLASEQ(K)

35 M=M*1
IF (M .GT. NPTSWP - NFLYBAC) GO TO 700

600 CONTINUE
IF (NRECOR2 .GE. NOISREC) GO TO 800
CALL BUFLAS2

4n J= I
GO TO 550

700 NSAMPLE = NSAMPLE * 1
JCOUNT = 0
IF (K .LE. LENARRZ) GO TO 175

45 IF (NRECOR2 .Lt. NOISREC) GO TO 150

800 LAST = NPTSwP - NFLYBAC
DO 900 1 = 19LASI

900 XNLEVEL(I) = SUMPTS(I) / NSAMPLE
WRITE (bl1) (XNLEVEL(I).I=21LAST)

50 1 FORMAT (INO,/,* NOISE LEVELS*,/txlIS5(F8.3))
00 1000 I=99LAST

1000 XNLEVEL(I) = 40.0
RETURN
END
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SUBROUTINE BUFLASI
COMMON/BBUFLA1/NTOTFIlJCLOCKlIEXITTIMADAoNREC
COMMON/BLOCKI/LENARRIWINDIRE(100),NRECORI.NFILElI

ZEROT1MDIRMIRR100) VOLT2100)t.WRIDOATI

COMMON/BSKPEOI/LPACDOAI IDENTI ,NFLSKPleNRCSKPI

COMMON/UNPKI/ITIME1,ICOMWR(I201)9IUATWRD(lO000
CORTIMI = 3M NO

100 BUFFER IN(1rl) (ITIME1lCOMWRO(LPACOAI))
IF (UNIT(I)) 500,200,400

10 200 wRITE(6,I) NkECORINFILEI
I FORMAT(IH0,* THERL ARE*15 RECORDS ON FILE*I36 UNIT 1. ENCOUNTERE

.D IN bUFLASIO)
NRECOI = 0
NFILEI = NFILEI * I

lc; IF (NFILEI .(T. NTOTFII) 00 To 300
IF (IDENTI .EQ. 3HYES) CALL HFADERI
GO TO 100

300 IEXIT= 3HYES
RETURN

20 400 NRECORI = NRECORI * I
LEN 

= 
LENGTH(1)

WRITE(6.2) NRECORINFILEILEN
2 FORMAT (IHo0, PARITY ERROR ON NEXT DATA# RECORD*15* FILE*14,SX* NU

.MBER OF COMPUTER WORDS*I4)

2r IFILEN .NE. LPACUAI) 60 TO 100
CALL UNPAKI
CALL SORTI
IF (WRIDATI .EO. 3H NO) CALL DATWRI1
GO TO 600

3n 500 NRECORI = NRECORI * I
LEN = LENGTH(1)
IF (LEN .NE. LPACDAI) GO TO 700
CALL UNPAKI
CALL SORTI

3s 600 IF (NRECOHI .EQ. 1) ZEROTMI ITIME1
IF (ITIMEI-999999 *GT. -12000) CORTIMIm3HYES

ITIMEI .=TIyE1 *JCLOCK1I999999 * TIMADA/(NREC-I)*(NRECORI-I)

IF (CORTIMI .EO. 3HYES) JCLOCKI = JCLOCKI * 1
RETURN

40 700 WRITE(6.3)NRECORI*NFILELEN
3 FORMATIIHO,* RECORD ENCOUNTERED OF IMPROPER LENGTH ON UNIT 1. RECO

.RDO14* FILE*I2* NUMBER OF COMPUTER WORDS*I4)

GO TO 100
800 RETURN

4% END
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SUBROUTINE HEADERI
COMMON/BLOCKI/LENARRI1WINDIRE(100 ,NRECOR1,NFILE1e

ZEROTMIDIRMIRRE(00,*VOLT42,100)WRIOATI
COMMON/BHEADI/ID(9)

50 BUFFER IN(1,0)(IO(I).ID(9))
IF (UNIT(1))300.200100

200 PRINT 1,NFILEI
I FORMAT(IHO,* EOF READ IN HEADER ON FILE*I2* UNIT 10)

60 TO 50
In 100 PRINT 29 NFILEI

2 FORMAT(IHO* PARITY ERROR IN HEADER ON FILE*12* UNIT I1)
300 LEN = LENGTII()

PRINT 3. NFILEl(10(I)t1=I12).LEN
3 FORMAT(IH0. ID ON UNIT It FILE*I2* IS *2AIO* NUMBER OF COMPUTER W

I4 .ORDS*I4)
RETURN
END

'yl
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SUBROUTINE SORTI
COMMON/BSORTI/IBE6SK1. ISKIP! eFACTORI
COMMON/BLOCKI/LENARR1.WINDIRE(100I .NRECOR1tNF!LE1,

ZEROTM1.OIRM.q( 100) .VOLT 42.l1 WRIOATI
COMMON/UNPKI/ITIME1,!CO'4WRDE201),IOATWRDIIOOO)
M= IIBEGSKI
00 100 1,1LENARRI.
WINDIRE(1 z IDATWRD#4) 0 FACTORI.
VOLT41.!) = IDATwHO(M*I) * FACTOR!
DIRMIRRMI = JDATWRD(M+2) * FhCTOR!
VOLT(?,I) = IDATWRO(M*3) * FACTOR!

100 M= M. ISKIPI
IF (WRIDATI *EQ. 3HYES) CALL nATWRII
RETuRN

C; END
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SUBROUT INE DATWRII
COMMON/BLOCKI/LENARR1,WNDIREq1O0) .NRECORINF IE1,

ZEROTM1,OIRMIQR(100,tVOLTZ,9100),WRIDATI
COMMON/UNPKI/ITIME1,1COMuRD(201),!oATWRDg1000,
WRITE (6911 NRECOBR191TIP4E1

I ORM4AT (IHI.. RECORDO NUMtdER *1496X* ITIHEI*16)
WRITE (692) (VOLT(1I)o ,1,LENARRI)

2 FORMAT (IHO./. (1X.10(Fl.o.52X9)-
WRITE (6.2) IVOLT(291).I=19LENARRI)
WRITE (6.2) (WINUIREII)*I=19LFNARRI)
WRITE (6.2) (DIRI4IRR(1),1=1,LFriARRI)
RETURN
END
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SUBROUTINE BUFLAS2
COMMON/BBUFLA2/JCLOCK2*IEXTIME#NREC2NREC3NREC4TIMADJItTIMAJ2

TIMADJ3,TIMADJ4

COMMON/BLOCK2/LENARR2,SYNC( 15003YLASERi(500)*NRECOR29NFILE2*

S * ZEROTM2,WRIDAT2.NTAPE2
COMMON/BSKPEO2/LPACDA2* NTOTFIZ2IDENT29NFLSKP2,NRCSKP29

NTOTAPEIEXIT2.NTOTRECoTIMADJ
COMMON/BSPEEO/SUMVELOISAMPLE,IOATAHWSUMVOLTTIMRAT1,CHANNEIv

DIGRATI*TIMECHG.VOLTCHGIMULTIMEtTIMEHNWDCSUPRE

In * ,FRSTSPDoWRITAPE.PRINTOK
COMMON/BwRITE/TIME2(1500)tVELfLASIS500).IPOINT
COMMON/UNPK2/ITIME2LCOMWRU(iOl)tLUATWRD(3000)
CORTIM2 = 3H NO

100 8UFFER IN(2.1)ITIME2,LCOMWRO(LPACUA2))
1; IF (UNIT(2)) 400,200.300

200 wRITE(6.1) NRECOR2,NFILE2,NTAPE2
I FORMAT (IHO, THERE ARE*Ib* RECORDS ON FILE*13

* 
TAPE*12)

NFILE2 = NFILEe * I
NRECOR2 = 0

2P IF (NFILE2 .GT. NTOTFI2) GO Tn 250

225 IF (IDENT2 .EQ. 3HYES) CALL HEAOER2
GO TO 100

250 NTAPE2 = NTAPE2 * 1
IF (NTAPEZ .GT. NTOTAPE) GO TO 600

25 NFILE2 = I
NTOTFI? = 1
CALL UNLOADw(2)
JCLOCK2 = 0
IEXTIME = ISTORTM

30 260 GO TO (220.230.240)tNTAPE2
220 NTOT.EC = NREC2

TI4ADJ = TIMADJ2
GO TO 225

230 NTOTREC = NREC3
3
c  TIMADJ = TIMADJ3

GO TO 225
240 NTOTREC = NREC4

TIMAUJ = TIMADJ4
GO TO 225

4) 300 NRECOR2 = NRECOR2 *1
LEN = LENbTH(2)
WRITE (6.3) NRECOR29NFILE2*NTAPE29LEN

3 FORMAT (IHO,* PARITY ERROR ON RECORD*I6* FILE*13* TAPE*I2* NUMBER

.OF COMPUTER WORDSI4)
4 g IF (LEN .NE. LPACDA2 ) GO TO 100

CALL UNPAK
CALL SORT2
IF (wRIDAT2 .EQ. JH NO) CALL DATWRI2
GO TO 500

s5 400 NRECOR2 = NRLCOR2 * 1

LEN = LENGTH(2)
IF (LEN .EO. LPACOA2) GO TO 450
wRITE(b.4)LENNNRECOR2.NFILEeNTAPE2

4 FORMAT(IHQ,* ENCOUNTERED RECORD OF IMPROPER LENGTH. LENGTH WAS*13*

5 . COMPUTEQ wORDS. THIS OCCURRED ON NECORD*IS* FILE*I2* TAPE*I2* ON



SUBROUTINE BUFLAS2 TRACE CDC 6400 FTN V3.0-P261 OPT=O 02/10/72 13.01.02. PAGE 2

.UNIT 2-)
GO TO 100

450 CALL UNPAK2
CALL SORT2

60 500 IF (NTOTREC .EO. 0) RETURN
IF (NRECOR2 .EO. 1) ZEROTM2 = ITIE2
IF (ITIME2 - 999999 .GT. -935) CORTIM2 = 3HYES
ITIME2 = ITIME2 * JCLOCK2*999999*(TIMADJ/(NTOTREC-1))*INRECOR2*1

|

* IEXTIME
b6 550 IF (COPTIM? .EQ. 3HYES) JCLOCK2 = JCLOCK2 * I

ISTORTM = ITIME2
IF INRECOR2 .LE. NTOTREC)RETURN
4RITE(b62)NRECOR2?NTAPE2

2 FOROAT(IHOSX*REACHEO RECORD*I5* ON TAPE*I2* WITHOUT EOF*)

Tn GO TO 200
600 IF (wRITAPE .NE. 3HYES) CALL FXIT

LENARR2 = 1
CALL LASWHIT

700 ENDFILE 3
7T ENDFILE 3

ENDFILE 3
ENDFILE 3
REwINO 3
CALL EXIT

8n RETURN
END

iVi
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SUBROUTINE HEADER2
COMMON/BLOCK2/LENARR2*SYNC41500IS YLASER|ISO500NRECOR29NFILE29

ZEROTM2*WRIDAT2.NTAPE2
COMMON/BNEA02/ID(9)

S50 BUFFER IN(2.O) (ID(1).I0(9))
IF (UNIT(2)) 300.100.200

100 PRINT ),NFILE2.NTAPE2
I FORMAT(IHO.* EOF IN HEADER ON FILE'12* TAPE*12* ON UNIT 2.0)

GO TO 50
10 200 PRINT 29 NFILE29NTAPE2

2 FORMAT(IHO* PARITY ERROR IN nEADEM ON FILE*I2* TAPE*I2* UNIT 2*)
300 LEN = LENGTH(2)

PRINT 39 NFILEZ2 NTAPE2.(ID(lllt2)gLEN
3 FORMAT(IH0.* 10 ON FILE*12* TAPE*I2* UNIT 2 IS *2AIO* NUMBER OF CO

Is ,MPUTER WORDSOI)
RETURN
END
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SUBROUTINE SORT2
COMMON/BSORT72'IBEGSK29 ISKIP2
COMMON/8LOCKU/LENARR29SYNC(lSqO) .YLASER(1500) ,NRECOhR2.NFILE29

ZEROTM2*WR IOAT2 .NTAPE2

C; COMNUP2/TM2LOMR ,~)LLATWRO43000)
M=IBEGSK2
00 1.00 I=1,LENARR2
SYNCUl) = LOATWRO(MI
YLASERM1 = LDATWR()t1-.n)

In 100 M=M.!SKIP2
IF (WR!0AT2 *EQ. JHYES) CALL OATWRI2
RETURN
END
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SUBROUTINE OATWRIZ
CO)M0ON/OLOCK2/LENARR2,SYNC(15n0) .YLASER(1500) .NRECOR2.NFILE2,

ZEROTM29WRIDAT2*NTAPE2
COMMON/UNPK2/IT!ME2,LCOMWRD(bOl) ,LDATWRO(3O00)
WRITE (691) NRECOR29ITIME2

I FORMAT (1"19* RECORD NUr48Ek*I4* I1TIE2=016)
WRITE (6.2) (SYf4C(I)iI=I9LENAQR2)

2 F04MAT (lH~o/vfIX91O(FIO.5,IX)
WRITE (692) fYLASERUI),I=I9LENARR2)

Inl RETURN
END
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SUBROUTINE SKPEOFI
COMMON/BLOCK1/LENARRI.WINDIRE(100),NRECORIoNFILEI9

ZEROTM1IDIRMIRR(00)*.VOLT(I2.100WRIDATI
COMMON/UNPKl/ITIME1,ICOMWRD(201)lOATWRD(1000)
COMMON/BSKPEOI/LPACDAI IDENTIrNFLSKPI*NRCSKPI
NREC = 0
IF (NFLSKPI .LE. U) GO TO 500
NFILSKP = 1

100 BUFFER IN(1.1)(ITIME1ICOMWR(LPACUAII)
In IF (UNIT(1)) 300'.00,200

200 LEN = LENGTHI1)
NREC = NREC + 1
NRECORI = NRLCORI * 1
WRITE(6.2) N4ECORI.NFILEINFLSKPIeNREC-LEN

i 2 FORMAT(IHOo PARITY ERROR IN RECORD*I4* FILE*I2* ON UNIT 1. ENCOU

*NTERED WHILE SKIPPING FILE*IJ/ 5X* NUMBER RECORDS SKIPPED*I30.

LENGTH OF RECORD*140 COMPUTER WORDS*)
GO TO 100

300 LEN = LENGTH (1)
?q NREC = NREC + I

NRECOR I = N4ECORI * I
IF (LEN .NF. LPACDAI) WRITE(63J)LPACDALENtNRECORI.NFILE19

NREC
3 FORMAT(lHO.* A RECORD WAS ENCOUNTERED WITH LENGTH NOT EQUAL TO*104

2; . COMPUTER WORDS. LENGTH WAS*14*.*/5SX RECORO*I4* FILE*I2* ON UNIT

.1. NUMBER OF RECORDS SKIPPED*OI4
GO TO 100

400 WRITE(694)NRECOR|1NFILEIeNREC.NFILSKPoNFLSKPI
4 FORMAT(IHO.SX*THERE WERE*I5* RECORUS ON FILE*I2* UNIT 1.*/SXI3* RE

30 .CORDS SKIPPED ON THIS FILE. TOTAL NUMBER OF FILES SKIPPED*I2* TOT

.AL NUMBER TO BE SKIPPED*12)
NFILE 1

= 
NFILEI * I

NFILSKP = NFILSKP + 1
NREC = 0

3c NRECORI= 0
IF (IDENTI .EO. 3HYES) CALL HEADERI

IF (NFILSKP .LE. NFLSKPI) GO TO 100
IF (NRCSKPI .GT. 0) GO TO 500
RETURN

4 500 DO00 900 I=1,NRCSKPI
BUFFER IN(ili)(ITIMEI.ICOMWRDILPACuAIl)
IF (UNIT(1))800.700,600

600 LEN = LENGTH (1)
NREC = NREC # I

A49 NRECORI = NRECORI # I

WRITE(4.5) NRECORINFILEl1NRECNRCSKPILEN
5 FORMAT(IHO* PARITY ERROR IN RFCORD*e14 FILE*I2* ON UNIT 1.*/SX* NU

.MBER RECORDS SKIPPED*I44 NUMBFR RECORDS TO BE SKIPPED*13*. LENGTH

. OF RECORD WAS*I4* COMPUTER WRDS.*)

50 GO TO 900
700 WRITE(b.6) NRCSKPlrNREC.NRECORIsNFILE|
6 FORMAT(IhO* EOF READ WHILE TRYING TO SKIP*I3* RECORDS.*I4* RECORDS

.S HAVE BEEN SKIPPED. RECORD NUMBE*14* FILE*I2* ON UNIT It)

GO TO 900
55 800 NREC = NREC * 1
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NRECOR 1x NRECORI * I
LEN = LENGTH(I)
IF (LEN .NE. LPACDAI) WRITE(693)LPACOA1,LEN.NRECORINFILE9l

NREC

60 900 CONTINUE
WRITE(6.7) NREC9NRCSKPI9NRECOR1INFILEi

7 FORMAT(IHO.* COMPLETED SKIPPING*14* RECORDS. NUMBER OF RECORDS TO
* HAVE BEEN SKIPPED*I4/5X* NECORD NUMBER5IS* FILE*I2* ON UNIT 1*|
RETURN

6r END
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SUBROUTINE SKPEOF2
COMMON/BSKPEO2/LPACDA29 NTOTFIZIDENT2ZNFLSKP29NRCSKP29

NTOTAPE.IEXIT2.NTOTRECoTIMAOJ
COMMON/BBUFLA2/JCLOCK2,IEXTIME*NREC2tNREC3.NREC4,TIMADJI.TIMAOJ29
* .TIMAOJ39TIMAOJ4
COMMON/BLOCK2/LENARR2,SYNC(1500) *LASER(l5OO)tNRECOR2,NFILE29
* ZEROTM29WRIDAT2.NTAPE2
COMMON/UNPK2/ITIME2*LCOMwRUD6011tLATWR(I3000)
NREC = 0

1o IF (NFLSKP2 .LE. 0) GO TO 600
NFILSKP = I

100 BUFFER IN(2o1) (ITIMEZ2LCOMWR(LPACDA2))
IF (UNIT(2)) 3009400,200

200 NREC = NREC * I
1c LEN = LENGTH(2)

NRECOR2 = NRECOk2 * 1
WRITE(6b2) NFILL2tNTAPE2sNRECOR2ZNREC.LEN

2 FGRMAT(IHO.* PAWITY ERROR OCCURRED WHILE SKIPPING RECORDS ON FILE
.NUHBEROI2* OF TAPE*I20 UNIT 2.*/5X* THE RECORO NUMBER IS*I5,2XI39

2n .RECORIDS HAVE BEEN SKIPPED. THE RECORD LENGTH WAS*140 COMPUTER WOR
.DS*)
GO TO 100

300 NREC = NREC * I
NRECOR? = NRECOR2 * I

2r LEN = LENGTH(2)
IF (LEN .NE. LPACDA2) WRITE(6.3)LPACDA2ZLEN*NRECOR2NFILE2,NTAPE2*

NREC
3 FORMAT(IHO0, LENGTH OF A RECORD WAS NOT EQUAL TO'14* COMPUTER WORD

.5. IT CONTAINED*I4* COMPUTER WORDS.*/SX* THIS OCCURRED WHEN RECOR
3n .D

o
15* wAS SKIPPED ON FILE* 12* TAPE*I2* UNIT 2. TOTAL NUMBER

* OF RECORDS SKIPPLOI13)
GO TO 100

400 wRITE(6,4 NRECOR2,NFILEZTNTAPE2tNRECoNFILSKP*NFLSKP2
4 FORMAT(IHO.SxTHERE WERE*I5* RECORDS ON FILE*I2* TAPEI2* UNIT 2.*/

3c ./bAI30 RECORDS SKIPPED ON THIS FILE . TOTAL NUMBER OF FILES SKIPP
.ED*12 O 

TOTAL NUMBER TO HE SKIDPED*I2)
NFILE2 = NFILE2 * I
NFILSKP = NFILSKP * 1
IF (NFILE2 .LE. NTOTFI2) GO TO 500

4f NTAPE2 = NTAPE2 * I
IF (NTAPEZ .LE. NTOTAPE) GO To 450
IEXIT2 = 3MYES
RETURN

450 NTOTFI2 = I
A4 CALL UNLOADW(2)

NFILE 2
= 

1
NRECOR 2= 0
NREC = 0

475 GO TO (480,485#490)#NTAPE2
n50 80 NTOTREC = NWEC2

TIMADJ = TIMADJ2
GO TO 495

485 NTOTREC = NREC3
TIMAUJ = TIMADJ3

55 GO TO 495
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490 NTOTREC = NREC4
TIMADJ = TIMADJ4

495 IF (IDENT2 .EO. 3MYES) CALL HFADER2
IF (NFILSKP .LE. NFLSKP2) GO TO 100

6n IF (NRCSKP2 .GT. 0) 60 TO 600
RETURN

500 NRECOR2 = 0
NREC = 0
IF(NFILE2 .EO. NTOTFI2)GO TO 475

6% IF (IDENT2 .EO. 3HYES) CALL nEADER2
IF (NFILSKP .LE. NFLSKP2) GO TO 100
IF (NRCSKP2 .GT. 0) GO TO 600
RETURN

600 00 1000 I=,NRCSKP2
7n BUFFER IN(2,1) (ITIME29LCOMWRn(LPACOA2 )

IF (UNIT(2)) 900,8009700
700 LEN = LENGTH(2)

NREC = NREC * I
NRECOR2 = NRECOR2 * 1

75 WRITE(6b5) NRECOR2*NFILENTAPE2,NRECtLEN
5 FORMAT(IHO,* PARITY ERROR OCCURRED WHILE SKIPPING RECORDS. RECORD

. NUMBER*I5* FILE*I2* TAPE*I2* ON UNIT 2.*/5XI4* RECORDS HAVE BEEN

.SKIPPED. LENGTH OF RECORD WASO*4* COMPUTER WORDS.*)
GO TO 1000

o0 800 wRITE(b,6) NREC*NRECORZ2NFILENTAPE2
6 FORMAT(IHO* AN EOF WAS ENCOUNTERED WHILE SKIPPING RECORDS.* 15* RE

.CORDS HAVE BEEN SKIPPED.*/SXA RECOND NUMBER*IS* OF FILE*12* ON TAP

.E*12* OF UNIT 2.*)
GO TO 1000

85 900 NREC = NREC * 1
NRECOR2 = NRECOR2 * I
LEN = LENGTH(2)
IF (LEN .NE. LPACDA2) WHITE(6*3)LPACUA2*LENNREC*NFILE2*NTAPE29

NRECOR2

91 1000 CONTINUE
WRITE(bt7) NREC.NRCSKP2.NRECOR2.NFILE2,NTAPE2

7 FORMAT(IHO.* COMPLETED SKIPPING*14* RECORDS. NUMBER OF RECORDS TO

* HAVE BEEN SKIPPEDI4O RECORD NUMBER*IS* FILE*I2* TAPE*I2* ON UN

.IT 2*)
95 RETURN

END
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SUBROUTINE CONSTNR
COMMON/BCONSTM/NAVEMIR*DIRLCMRCHGMIRtTIMEMIR
COMMON/BLOCKI/LENARRIWINDIREE(lOO)NRECORItNFILE1e
. ZEROTMIODIRMIRR4IO0),VOLT42100)oWRIDATI
COMMON/BCALIBR/SLOPE(2).ZEROTAP2)SLOPEANANINTERLOPEH
* SLOPEWDWDINTERoSLOPENDD0MINTER
AVEMIR = 0
NRECORI= 0
CALL BUFLASI

10 100 CALL BUFLASI
DO 200 K=1-LENARRI

00 AVEMIR = AVEMIR * OIRMIPRIK)
IF (NRECORI .LE. NAVEMIR) GO TO 100
DIRECMR = AVEMIR/(LENARRI*NAVEMIRI

15 LAST= NAVEMIR * I
00 300 I=1,LAST
BACKSPACE 1

300 CONTINUE
REAO(So,) CHGMIR9TIMEMIR

20 1 FORMAT (A3Fb6.Z)
wRITE(bt2)NRECORI1DIRECMRtSLOPE4OTuMINTER

2 FORMAT(lHO5X*'MIRROR DIRECTION*SXONUMBER OF RECORDS USED FOR AVERA
.GE*13/ IOX*AVERAGE VOLTAGE*SA*SLOPE5X*INTERCEPTOSAO*IRECTIONOEGR
.EES*/14XF7.39.3 XF7.3SXFS.3)

2- DIRECMR = SLOPEMO4DIRECMR * DMINTER * 180
WRITE(6.3)DIRECMR

3 FORMAT(IH.,59XF7.3)
NRECORI = 0
RETURN

30 END
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SUBROUTINE VOLTADJ
COMMON/BVOLTAD/ISCALE
COMMON/BCALIBR/SLOPE(2).ZEROTAP(2),SLOPEANtANINTERSLOPEMWe

SLOPEWD INTEPoSLOPEMDDNMINTER
5 GO TO (100.200.300)1ISCALE

100 SLOPEAN = 47.736
ANINTER = -0.411
WRITE(6,1)ISCALESLOPEAN*ANINTER

1 FORMAT(IHO*SX*ANEMOMETER VALUFS*SX* SCALE*I2/1OX*SLOPE*5X*IN
T
ERCEP

tI .T*/10XF6.3.6xF6.3)
RETURN

200 SLOPEAN = 93.021
ANINTER = 0.451
WRITE(6rl)ISCALE*SLOPEANANINTER

14 RETURN
300 SLOPEAN = 0.0

ANINTER = 0.0
WRITE(6l1)ISCALESLOPEANtANINTER
RETURN

20 END
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SUBROUTINE SPEED
COMMON/BSPEED/SUMVELOISAMPLE,IDATAHWtSUMVOLT.TINRATICHANNEI

SDIGRAT1,TIMECHG.VOLTCHG.MULTIMETIMEMWDCSUPRE
vFRSTSPDWPITAPEPRINTOK

S COMMON/BBUMPUP/TIME1(702),VELOC2(702)
COMMON/BLOCKI/LENARR1,WINDIRE(100)oNRECORI*NFILEl9

ZEROTMDI;IRMIkRf100).VOLT(29100)WRIDATI
COMMON/BCALIBR/SLOPE(2)OZEROTAP(2).SLOPEAN*ANINTEReSLOPEHW

SLUPEwDowDINTEPSLOPEMDoDMINTER

In COMMON/UNPKI/ITIME19ICOMWRU(ol)*uATWRD4100!0
COMMON/BBUMP/WRITIME(100) VELOCI(100)
COMMON/BBUFLAI/NTOTFIlJCLOCKIIEXITTIMADANREC
PRINTOK = 3H NO
KFIRST = 1

15 IF (FRSTSPO .EU. 3HYES .A. NRFCORI .NE. 0) GO TO 25

CALL BUFLASI
IF (IEXIT .EQ. 3HYES) GO TO 200

25 DO 100 IDATAWS = KFIRSTLENARP1
VELOC1(IDATAwS) = SLOPE(1)* VOLT(.IDATAWS) * ZEROTAP(I)

20 VELOC(IDATAWS) = (SLOPEAN* VFLOCIEIDATAWS) * ANINTER) 00.3048
VELOC2(IDATAHW) = SLOPE(2)*VOLT(2*IDATAWS) * ZEROTAP(2)* DCSUPRE

IF (FRSTSPD .EO. 3MYES) GO TO 50
SUMVELO = SUMVELO * VELOCI1IDATAwS)
ISAMPLE = ISAMPLE * 1

2c SUMVOLT = SUMVOLT * VELOC2(IDATAHW)
50 TIMEI(IDATAHW) = TIMRATI*((ITIMEI-ZEROTMI/10000 * ((IDATAWS |

,*CHANNEI)/DOIRATI)
IF (TIMEI(IDATAHW) .GE. TIMECHG .A. VOLTCHG *EQ. 3HYES)

CALL VOLTADJ
30 IF (TIMEI(Il)ATAHW) .GE. MULTIMEOTIMEMW) GO TO 200

100 IDATAHW = IIATAHW * I
FRSTSPO = 3H NO
ISTART = IOATAMw - LENAPRI*KFIRST-1
00 115 I=KFIRSTLENARRI

3r ' wRITIME(I) = TIME1(ISTART)
115 ISTART = ISTART * I
120 IF (NRECORI .GE. 2 .A. NRECORI .LE. B) GO TO 125

I = NRECORI - 1
IF (MOD(l30) .EQ. O)GO TO 125

40 GO TO 160
125 PRINT 3,NRECORI
3 FORMAT (IO.* ANEMOMETER VELOCITY RECORD NUMBER*I4//2X*TIME9SEC

.S*SX* VELOCITYM/SEC*IOX* TINMESECS*5X* VELOCITY9M/SEC*10X* TIME9S

.ECS*SX
* 
VELOCITYM/SEC'/)

45 PRINTOK = 3HYES
WRITE(6,1)(wRITIME(I)*VELOCI(t)tl=1oLENARRI)

I FORMAT(IH IlxF.3,11XF6.315XF..3,11XF6.3.15XF8.3gliXF6.3)
IF (wRITAPE .NE. 3HYES) RETURN

160 WRITE(612) NRECORI
50 12 FORVAT(IH .* NRECORI=*I5)

BUFFER OUT(3,1) (JRITIME(l).VFLOC1(100))
IF (UNIT(3)) 4009180,190

180 wRITE(696) NRECORI1NFILEI
6 FORMAT(IM ,* EOF ON RECORD NUMBER*IIO* FILE NUMBER*I13)

55 GO TO 400
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190 WRITE(697) NRECORI9NFILEl
7 FORMAT(lH ,* PARITY ERROR INPUT ON RECORD NUMBER*IIO FILE NUMBER

6O TO 400
60 200 AVEVELO = (SUMVELO/ISAMPLE)/O.3048

AVEVOLT = SUMVOLT/ISAMPLE
KFIRST = IDATAWS * 1
DO 250 JK = 1.IOATAWS

250 WRITIME(JK) = TIME1(IDATAHW-IOATAWS * JK)
65 SUMVELO = 0.0

SUMVOLT = 0.0
ISAMPLE = 0
MULTIME = MULTIME * 1
HWINTER = SORTtAVEVELO)-SLOPEHNWAVEVOLT'*2

70 DO 300 I=1.IDATAHW
300 VELOC2(I) =((SLOPEHW*VELOC2(II)**2*WINTER)**2)*0.3048

IF (NRECORI .GE. 2 *A. NRECORI *LE. 8) GO TO 305
I = NRECORI - I
IF (MOD(I30) .EQ. 0)0GO TO 305

79 GO TO 310
305 wRITE(692) TIMEI(1l)TIME1(IDATAHW)NRECORI,(TIME1(IIVELOC2(I)o I1

.ItIDATAHW)
2 FORMAT(IHO** HOT WIRE VELOCITY* CALCULATED FOR TIME PERIOD FROMO

.F7.2* TO*F7.2* RECORD NUMBER*I3//* TIME*SECS*SX* VELOCITY#M/SEC*10
8f ,X* TIME*SECSOSX* VELOCITY*M/SEC*IOx* TIME*SECS*5X* VELOCITYeM/SEC*

.//*(IXF8.3*I2XtF6.3.14XFd.312XeF6.3.14XF8.3*I2XtF6.3)I
IF (WRITAPE .EQ. 3HYES) GO TO 310
IF (IEXIT .EO. 3HYES)RETURN

307 IDATAHW = 1
8c IF (KFIRST .GT. LENARRI)GO TO 120

GO TO 25
310 M = I

PRINT 13.NRECORIIlDATAHW
13 FORMAT(IH ,0 H. W. NRECORI=*II0* NUMBER OF WORDS = *1101

90 LAST = 2
IF (IDATAHW .LE. 301)LAST = 1
DO 370 I=1iLAST
N = M * 300
IF (I .EQ. LAST) N = IDATAHW

95 BUFFER OUT(3.1) (TIMNEl(M)TIMEI(N)l
IF (UNIT(3))3409330.320

320 WRITE(6,8) NRECORI.NFILE1.M.N
8 FORMAT(IH ** PARITY ERROR ON HW TIME. RECORO*IIO* FILE*13* Mu*I5*

.N=IS5)
100 GO TO 340

330 WRITE(699) NRECORI*NFILEItMeN
9 FORMAT(IH *0 EOF ON HW TIME, RECORO*1100 FILE*13* M*IS. N=*15)

340 BUFFER OUT(3,I) (VELOC2(M)eVELOC2(N))
IF (UNIT(3)) 370.360.350

loq 350 wRITE(6,l0) NRECORI*NFILEItM.N
10 FOR4AT(IH *0 PARITY ERROR ON HW VELOCITY. RECORO*I1O

0 
FILE*I3* M=*

.15* N=*I5)
GO TO 370

360 WRITE(6.11) NRECORIoNFILElMo.N
lI 11 FORMAT(IH .* EOF ON HW VELOCITY* RLCORD* 1100 FILE*I3* MN*I5 NaI3
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.5)
370 M : M * 301

IDATAHW = 1
IF (IEXIT .EO. 3HYES) RETURN

115 IF (KFIRST .GT. LENARRI)GO TO 120
GO TO 25

400 RETURN
END
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SUBROUTINE AVEWINO
COMMON/BAVEWIN/JSAMPLESUMWINONULTIM1,TZMAVWDAVEW(3000

* .LASTIME
COMMON/BSPEEO/SUMVELO. ISAMPLE. IOATANW.SUNVOLTTIMRAT1,CNANNEIo

C; OIGRAT1,TIMECHG.VOLTCHGMULTIETIqEiWDCSUPRE
* ,FRSTSPO*WQITAPE.PRINTOK

COP4MON/BBUMPUP/TIME1 (702),VELOC2E702)
COMMON/BLOCKI/LENARNI ,W!NOIREIIOO) ,NRECOR1.NFILE1,

* ZEROTMIDJRMIRdO0obVOLTEZ,100bWRIDATI
in COMMON/BCALIBR/SLOPE (2 .ZEiROTAP(2) ,SLOPEANANINTERSLOPEHW9

* SLOPEW~iUlDIEP*,SLOPEMDMDINTER
J= IOATAHW - LENARRI - I

DO 100 K=1,LENARRI
J = , 1

IS ~ JSAMPLE =JSAMPLE # I
SU?4W1N0 = SUP4WIN) + WINDIRE(K)
IF (K .LT. LENAPRI)GO TO 100

150 AVEWD(MULT!MI) =SUMWIND/JSA4PLE.
AVEWD(MULTIMI) =SLOPEWO*AVEWOg.4ULTIMI) # WDINTER

2n MULTIMI =MULTIP4I # I
SUMWIND 0.0
JSAMPLE = 0

100 CONTINUE
IF (WRITAPE .EG. 3HYES)PETURN

2c;WRITE (6.1) TI?AVW0,MULTIMI,(AVEWD(I),1.LASTIP4EMULTIMII
I FORMAT(IN 90 WIND DIRECTIONS IN DE~jREES# MEANS OF DATA FOR*FS.1*
.SEC INTERVALS. THIIS IS INTERVAL NUMBEROI4/41OFIO.311
LASTIME MULTIMI
RETURN

30l END
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SUBROUTINE LASWRIT
COMMON TIME2(200)9VELOLAS(200)9IPOINT
COMMON/BLOCK2/LENARR2,SYNCI50O).YLASER(I500)tNRECOR2NFILE2.
* ZEROTM2,WRIDAT2,NTAPE2
WRITE(6.5) NRECORZ.IPOINT

5 FORMAT(IH .* NRECOR2=*I10* NUMBER OF WORDS aI*10)
50 M = 1

N = IPOINT - 1
BUFFER OUT(3.1) (TIME2iM),TIME2(N))

In IF (UNIT(3))300.200,I00
100 WRITE(69l) NRECOR2*NFILE29M9N
I FOPMAT(IH .* PARITY ERROR ON LASER TIME RECORD NUMBER*IIOFILE NUN
.BER*I3* M=*IS

* 
N=*I5)

GO TO 300
Ic 200 wRITE(6,2) NRECOR2,NFILE29M9N

2 FORMAT(IH ,* EOF ON LASER TIME RECORO*IIO0 FILE *I3* MN*15* Nz=I5)
300 BUFFER OUT(3,1) (VELOLAS(M)oVELOLASIN))

IF (UNIT(3))b00.500,400
400 WRITE(6.3) NRECOR2,NFILE2.M9N

7p 3 FORMATI(H .* PARIFY ERROR ON LASER VELOCITY, RECORD*IIO* FILE*I3*
.M=*IS* N=*15)
GO TO 600

500 wRITE(694) NRECOR2,NFILE2*M*N
4 FORMAT(IH ,* EOF ON LASER VELOCITY. RECORD*II0*FILE*I3* M*IS

0 
N=*

?cz .15)
600 TIME2(I) = TIME2(IPOINT)

VELOLAS(I) = VELOLAS(IPOINT)
RETURN
END

N,
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IDENT UNPAKI
* INSERT LENGTHS OF PACKED AND UNPACKED ARRAYS

312 LENGTHA SET 202
1750 LENGTHS SET 1000

5
USE /UNPKI/

0 NE BSS LENGTMA'
312 B BSS LENGTHB

USE
10 ENTRY UNPAKI

0 UNPAKI BSS 1
1 7170000001 SX7 1B

7100004000 SXO 40008
2 43214 MX2 Z1

15 5110000000 C SAl NE A(l) --- FIRST WORD OF ARRAY (TIME WORD) IS IGNORED
3 6160000311 C SBa P-1 B(J) BASE

6170002261 C SB7 R+LENbTHB-1 B(LAST)
4 6150000060 S85 48

6110000074 SBI 60
20 5 5011000001 GET60 SAI all GET AII)

6 6166000001 GETI2 SBb R6*1
11621 Bx6 x2*XI MASK OUT 12 BITS

67515 SB5 l1-85 RIGHT SHIFT
7 22656 LX6 W5,X6 BUT

25 67515 S5 R1-85 AVOID SIGN EXTENSION

11760 BX7 X6*AO CK FOR SIGN BIT
10 0307000011 * ZR x7,STORB

15660 8X6 -XO*X6 MASK OUT SIGN BIT
30 14666 BX6 -16

11 STORS 8SS 'n
11 21601 AX6 I DELETE ZERO-BIT RIGHT-FILL

56660 SA6 96 STORE IN B8J)
35 0467000000 * EQ 96 8d7OONE

12 0550000014 * NE R5980.lNNIO
6150000060 SB5 46

13 43214 MXz 12
0400000005 * EQ GET60

40 14 20260 INMID LXz 48
6155777763 SB5 '5-12

15 0400000006 * EO GETI2
0 * DONE EOU IJNPAKI

16 END

46302 STORAGE USED 44 STATEMENTS 10 SYMBOLS
6400 ASSEMBLY 0.338 SECONDS 23 REFERENCES
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IDENT UNPAK2
INSERT LENGTHS OF PACKED AND UNPACKED ARRAYS

1132 LENGTHA SET 602
5670 LENGTHB SET 3000

5
USE /UNPK2/

0 NE BSS LENGTHA

1132 8 HSS LENGTHB
USE

10 ENTRY UNPAK2
0 UNPAK2 BSS 1
1 7170000001 SX7 IB

7100004000 SXO 40008,
2 43214 MX2 12

15 5110000000 C SAl NE All --- FIRST WORD OF ARRAY (TIME WORD) IS IGNORED

3 6160001131 C S86 0-1 B(J) BASE
6170007021 C Su7 P*LENGTH8-I B(LAST)

4 6150000060 S5S 48
6110000074 SBI 60

20 5 5011000001 GET60 SAl 61*I GET All)
6 6166000001 GETI2 SBb 96*1

11621 8X6 X2*X1 MASK OUT 12 BITS
67515 SB5 91-85 RIGHT SHIFT

7 22656 LX6 R5.X6 BUT

25 67515 585 81-85 AVOID SIGN EXTENSION

11760 8X7 X6*XO CK FOR SIGN BIT

10 0307000011 * ZR x7STORB
15660 Bxe -XO*X6 MASK OUT SIGN BIT

30 14666 BX6 -X6

II STORS BSS 0
11 21601 AX6 I DELETE ZERO-BIT RIGHT-FILL

56660 SAo 86 STORE IN B(J)

35 0467000000 * EQ 69H87.DONE
12 0550000014 * NE P5.80,INMID

6150000060 SOSB 48
13 43214 MX2 12

0400000005 * EO GET60

40 14 20260 INMID LX2 48
6155777763 SB5 P5-12

15 0400000006 * EQ GETI2
0 * DONE EQU JNPAK2

16 END

43417 STORAGE USED 44 STATEMENTS 10 SYMBOLS
6400 ASSEMBLY 0.339 SECONDS 23 REFERENCES
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IDENT UNLOAOW
ENTRY UNLOADW
USE DATA.

246 03111720000000000000 CIOC VFD 18/3LCIO92/1.40/0
5 247 15230700000000000000 MSGC VFD 18/3LMSG*42/0

250 01022401000000000000 ABTCS VFD 18/3LATt6/1,36/0
251 01022400000000000000 ABTC VFD I8/3LA8T,42/0
252 15051500000000000000 MEMC VFD 1A/3LMEM,42/0
253 22031400000000000000 RCLC VFD 18/3LRCL*42/0

10 254 05160400000000000000 ENDC VFD 18/3LEND*42/O
255 01030520000000000256 * CNTCC VFD 18/3LACE,2/I922/0s18/CNTCCB
256 00000000000000000000 CNTCCB DATA 0 . 108 READ FORWARD 408 FOR BACKSP
257 061114U5552701235522 MSGI DATA COFILE WAS HtWOUND BEFORE RETURN *
263 55251614170104551716 MSG2 DATA C* UNLOAD ON NON-TAPE FILE *

IS 266 55251614170104551716 MSG3 DATA C* UNLOAD ON UNDEFINED FILE *
271 55202217072201155503 MSG4 DATA C* PROGRAM CONTINUED *
274 55222516550102172224 MS65 DATA L* RUN ABORTED WITH SPEC PROCESSING *
300 55?22516550516241122 MSG6 DATA CO RUN ENTIRELY ABORTED - DUMP
304 5522251655010?172224 MSG7 DATA C* RUN ABORTED WITHOUT DUMP *

20 307 5?7011124111607550b MS(9 DATA C* OAITING FOR NExT REEL - GO TO CONTINUE*
314 55222516550516040504 MSGH DATA C* RUN ENDED WITH NO DUMP -NORMAL CC STREAM '
321 00000000000000000000 SAVEW DATA 0

USE

30 CALLPP MACRO A
IFC NE**"A'*I
BX7 x.A

* SAS I
NZ 5rs**

35 * SA7 A5
SA5 A5
NZ xSo*
ENDM

45 3 CLOSER MACRO
LOCAL LOPE
SA3 82+2
SA4 A3*I
IX5 X3-X4

50 ZR XStLOPE * IN EQ OUT
MXO 18
LXO 18
SA3 82
BX7 -XO*X3

55 BX4 AO*X3
SXl 38
8X3 -XI*X4
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ZR A39LOPE * FILE NOT OPENED

SX1 48 * WRITE MASK
ZR x39LOPE *NOT OPEN FOR WRITE

SXl 5008
BX3 xl*X4
NZ x3tLOPE * SPECIAL FUNCTION CODE

SX0 28
BX6 xO*X4
SX5 ?48 . WRITE CODE

10 BM6 Ax6XS * ADD PARITY BIT
10BX6 7*X6 ADD LOGICAL FILE NAME

SA6 b2 * RESET FIRST WORD FET

SX6 d2
SA5 CIOC

15 BX? x5#X6 * ADD FET ADR TO CALL WORD

CALLPP
LOPE BSS 0 END INSTRUCTION IN MACRO

ENUM

25 3 REWIND MACRO
CLOSER
SA5 H2
MX0 18
LXO 18

30 BX6 -XO*xS *SAVE FILE NAME

SXO 28
BXS XS*XO
SX4 b0B *REWIND CODE

BX5 x4*X5 *ADD PARITY BIT

35 8x6 x6*XS *ADD FILE NAME

SA6 82
SX6 82
SA5 CIOC
8X7 xS*X6

40 CALLPP
SX6 MSGI
SAS MSGC
1xA7 A6#XS
CALLPP

45 ENOM

WAITER MACRO
LOCAL LOP
SXA MSG9 *GET WAIT DAYFILE MESSAGE

SAS MSGC .GET PP CALL WORD
557 X4*XS .AOD ADDRESS TO CALL WORD

CALLPP
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SAO 100008
SAS BO
BX6 x5*XO
SA6 AS

5 SA2 RCLC
LOP' CALLPP 2

SAS '80
BX5 A5*XO
NZ XSLOP

10 END4

3 UNLOAD MACRO
CLOSER
SAS d2

20 MXO 18
LXO 18
BXb -XO*XS *SAVE FILE NAME
SAO le
BXb XS~XO

25 SX4 bOB .UNLOAD CODE
BX5 X4+XS .ADD PARITY BIT
BX6 X6XS *AODD FILE NAME
SA6 U2
SXb d2

30 SAS CIOC
BX7 XS5X6
CALLPP
ENDM

40 PMSG MACRO A
SX6 A
SAS MSGC
BX7 X6X5S
CALLPP

45 ENDU

LIST -R
0 UNLOADW BSSZ I
I 5021000001 SA2 All1

55 2 0302000003 * ZR X2**+!
53220 SA2 X2

3 10722 BX7 A2
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5170000321 * SA7 SAVEW
63210 SB2 X1*80

4 67202 SB2 60-82
0100000000 x RJ =XGETBA

5 5 0720000105 * LT 82O809NTOEF
5152000001 SAS 82.1

6 0325000106 * PL XS*NTTAPE
5132000002 UNLOAO

35 7140000307 * WAITER
10 51 5132000002 REwINO

104 0400000000 * EO UNLOADW
105 7160000266 * NTDEF SX6 MSG3

0400000142 * EQ CONT.
106 NTTAPE bSS 0

15 106 5132000002 REWINO
141 7160000263 * SX6 MSGZ
142 5150000247 * CONT. SAS MSGC

12765 BX7 Xb*XS
143 5150000001 CALLPP

20 146 5150000321 * SAS SAVEW
63250 S82 AS

147 6130000005 SH3 58
150 0632000151 * * GE 839B2***I

66200 - S0
25 151 0220000153 * * JP JMP*B2

152 0400000000 * EQ UNLOAOD
153 0400000161 * JMP EQ EXITI
154 0400000167 . EO EXIT2
155 0400000201 * * EQ EXIT3

30 156 0400000211 * * EO LXIT4
157 0400000234 * * EQ EXIT5
160 0400000000 * * EQ UNLOADW
161 7160000271 * EXITI PMSG MSG4
166 0400000000 * EQ UNLOADW

35 167 7160000274 * EXIT2 PMSG MSG5
174 5150000251 * SAS ABTC

10755 CALLPP >
200 0000000000 PS
201 7160000300 * EXIT3 PMSG MSG6

40 206 5150000250 * SA5 ABTCS
10755 CALLPP 5

212 0000000000 PS
213 7160000304 * EXIT4 PMSG MSG7
220 5140000255 * SA4 CNTCC

45 221 71l000001 LOOP SX6 108
5160000256 * SA6 CNTCCB

222 10744 CALLPo 4
226 5150000070 SA5 708

0315000221 * NZ ASLOOP
50 227 5120000254 * SA2 ENDC

10722 CALLPP e
233 0000000000 PS
234 7160000314 * EXITS PMSG MSGd
241 5120000254 * SAe ENOC

55 10722 CALLPOD
24S 0000000000 PS
322 LNU
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PROGRAM ANEVEL( INPUTOUTPUTTAPES5INPUTTAPE6=OUTPUTTAPE1 ,FILMPL)
COMMON TIME(101).VELOC(6,100),NCHiANNCLENARRNFILENRECORIEXIT
COMMON /BCAI8R/ NCALVAL, ACTVOLT(5)*SLOPE(6),ZEROTAP(b),

* STANDEV(6,5):vARI
9 CO04MON/BBUFANE/lOENT, IPARITYLPACOAT*EOFMUL*NTOTFILPLOT

COMMON/3SORT/I3EGSKP.InRIIDAT9 TSKIPVACTOR
COMMON/8VOL.TAD/ICMANGE,SCALE(AIZEOACT6)VOLTCGTI4ECNG,

* ISCALE(6)
COMMON/BPLOTVE/ELEV(6),SUMAVE(6,!SAMPLELAELA'.),LABELY(4),

10 *LTITLL(4).MULTIME.IUATAPT

COMMON/RSK~IPF.O/NF ILSKPqNRECSKP
COMMON/UNP'K,1TIME.ICOMWOE2-.).IDATWWO(10O00
DATA LABELY/4OH VELOCITY, M/SEC

* LABELY/40H1 FLEVArION, M
IS * LTITLE/40H VELOCITY PROFILE/

REWIND I
READIS, I) IOENTgWRITAP,EOFMULWRITOAIWRITPAPPLOVOLTCH6
* LPACDATNCHIANNCNCAIVALISK1PI8EGSKPLENARRNTOTFIL,
* PLOTIME.AVETImE, (ISCALE(1I ,I=1.61 .EELEV(1).1=1,6),VARI,

2n OIGRAT,(ACTVOL-Ti)1kI=I5,TIMERATCIANNELTIMEC4G
* INSTCALTAPECAL

I ORM4AT (3X,?A3,7I4,2F5.3,b( I,)/,6(F6.2h ,2V5.295(F5.1I,3F3.1/2A3)
WRITE46,3) IDENToWRITAP,EVmUL*WRI IDATWRIIPAPPLOT.VOLTCHG,
* LPACDATNCHANNCNCALVALISKI1P,1RE0SKPLENARRNTOTF1L*

PC PLOTIMEAVETIm4E, (SCALE(1),1=1,61,(ELEVII91=1,6).VARI,
* CIGRAT,(ACTVOLT(1) .1=l95k ,IMERATCHANNELTIMECHG,
* I14STCALgVAPECAL

3 FORMAT(TH09* IDENT =*A4* WkITAP =*A'. EOFMUL .*A4* WRITDAT =*A4* W
.RITPAP =*A4* PLOT =*A'

4
* VOLM6 =OA4/* IPACOAT =014* NCHANNC =*12*

30 * NCALVAL =*12* ISKIP =*13* It3FGSKP =*13* LENARR =0l4* NTOTFIL =*12
./* PLOTIME z'F5.1* AVETIME =*F5.1* ISCALE(1 THRU 61 =0612/* ELEVI!
*TMPU 6) =*6F6.20 VARI =*F4.2* DIGRAT =*FS.I/0 ACTVOLT(1 THRU 5)
.*SF5.lo TIURAT =*F4.1* CHANNEt =OF4.1t TIMECHG ='F3.1/* INSTCAL
*A4* TAPECAL =*A4)

3r, IF 4IDENT.EO. 3HYES)CALL HEAL)VR
JExIT = 3H NO
CORTIME = 3H NO
JCLOCK = 0
ZEPOTIM =0.0

4f) ICHANGE =.
FACTOR = SONT(2.)/(2.**9 -1.01
MULl IME = I
NRECOR =0
H)ADDATA = 3H1 NO

49; NEXTPTS = 0
NFILE =1
IPAkITY =0
ISAMPLE = 0
DO 100 11I.NCIANNC

5n 100 SUMAVE(1) 0.0
IF (TAPECAL *EQ. 3HYES) CALL CALIBRA
IF(IISTCAL *NE. 3HYES)G0T0 102
NFILSKP = I

ss CALL SK IPEoF
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102 CALL VOLTADJ
103 CALL BUFANE

IF (IEXIT .EQ. 3HYES) TIMEIIOATAPT-I) z TIME(IOATAPT-I) * 0.1

IF (IEXIT .EO. 3HYES) CALL PLnTVEL

6n IF (NRECOR .EQ.I .ANO. ITIME .NE. 0) ZEROTIM z ITIME

IF ((ITIME - 999999) .GT. -1200) CORTIME = 3nYES
ITIME = ITIME * JCCOCK * 999999
IF (CORTIME .EO. 3HYES) JCLOCK = JCLOCK + 1
CORTIME = 3H NO

65 - IDATAPT = 1
105 00 110 I=1.NCHANNC

VELOC(IIDATAPT)=SLOPE(I)*VELOC(IlATAPT) * ZEROTAP(l)

110 VELOC(1,IDATAPT) = (VELOC(IDInATAPT)*SCALE(I) *ZEROACTIII*0.3048

TIME(IOATAPT)
= 
TIMERAT*((ITIME -ZEHOTIM)/I0000.*(fIDATAPT-)*

7 CHANNEL)/nIGNAT)
IF (TIME(ItATAPT) .GE. TIMECHG .ANU. VOLTCHG .EQ. 3NYES)

CALL VOLTADJ
IDATAPT = IDATAPT * I
IF (AVETIME*MULTIME .LE. TIMEfIOATAPT-I) *ANO. PLOT

7 . .EQ. 3HYES) GO TO 120
IF ( IDATAPT .LE. LENARR) GO TO 105

IF (wRITPAP .EO. 3HYES) 60 TO 134
IF IRITAP .EQO. 3HYES) GO TO 135
GO TO 103

8n 120 00 130 I= 1.NCHANNC
130 SUMAVE(I) = SUMAVE() + VELOC(IIDATAPT-1)

ISAMPLE = ISAMPLE * 1
IF ( TIME(IOATAPT-) .GE. PLOTI4E*MULTIME) CALL PLOTVEL

IF (IDATAPT .LE. LENARR) GO Tn 105
bq IF (WRITPAP .EQ. 3HYES) GO TO 134

IF (wRITAP .EQ. 3HYES) GO TO 135
GO TO 103

134 aRITE(6.2)
2 FOkWAT(IHl4X* TIMESECS*IOX* VELOCITIESnM/SEC*4X* LEVEL 1*4A

9n . * LEVEL 2*4X* LEVEL 3*4X* LEVEL 4*4X* LEVEL 5*4X* LEVEL 6*

WRITE (6,4) (TIME(J),(VELOC(I.J),I=1,6)*J=1,LENARR)
4 FORMAIItH ,100(4XtFIO.3.28X.6(F6.3.6X)/))

GO TO 103

9c 135 CONTINUE
140 CONTINUE

END
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SUBROUTINE CALIBRA
COMMON TIME(101)*VELOC(I6,1003.CANNCHLENARR*NFILENRECORIEXIT
COMMON /BCAIHR/ NCALVAL, ACTVOLT(5)*SLOPE(6)oZEROTAP(6),
. STANDEV(695)'vARI
DIMENSION SUMCAL(6)tSUMTAP46).SQVALUE|t61SUMACT(6)tACT X TAP(6I,
* SUMSQ(6,SIRECNEAN(6eTOTMEAN(6,STEPMEAN(6)SUMEAN6Ib

TEMPSUM(6)
ICHECK = 0
NSAMPLE = 0

In LASTCAL = 0
ICALVAL = I
DO 100 1=1, NCHANNC
SUMEAN(I) = 0.0
TEMPSUM(I) = 0.0

|1 SUNCALII) = 0.0
SUMACT(I) = 0.0
SUMTAP(II = 0.0
SOVALUE(I) = 0.0
ACT x TAP(I) = 0.0

2n TEPMEAN(I) = 0.0
RECMEAN(I) = 0.0
DO 100 J=l, NCALVAL
TOTMEAN(IJ)I = 0.0

100 SUMSOII.J) = 0.0
2c 105 CALL RUFANE

GOTOBUF= 3H NO
IF (ICALVAL .EQ. NCALVAL) LASTCAL = LASTCAL ' I
DO 110 K=1*LENARR
DO 110 I=1. NCHANNC

30 110 SUMCAL(I1
= 

SUMCAL(I * VELOCIIK)
IF (ICHECK .GT. 0) GO TO 131
NSAMPLE = NSAMPLE * I
DO 125 1=1. NCHANNC
RECMEANI)= SUMCAL(I)/LENARR

3c IF (NRECOR .EQ. 1) GO TO 120
IF (PECMEAN(I) .GT. TOTMEANII.ICALVAL) * VARI .OR. RECMEANII) *LT.

TOTMEAN(IICALVAL) - VARI) GO TO 130
120 IF (I .EO. 1) w ITE(6,)lNRECOPICALVAL*ACTVOLTEICALVAL)

I FORMAT(IHO5K*RECORD MEANS*4AXRECOHU NUMBER*II47AX*CALIBRATION*I294
4 .X*I'JPUT VALUL*FS.I/IIX*CHANNEL*IOX*MEAN*e3XeCUMULATIVE MEAN*6X*NUM

.BER RECORDS FOR CUMULATIVE MEAN*)
DO 123 K=ILENARR

123 SUMSAIlLCALVAL) = SUMSOIIlCALVALI * VELOCIIK)**2
SUfEAN(I) = SUMEAN(I) # RECMEAN(I)

45 SUCAL(II = 0.0
TOTMEANiItICALVAL) = SUMEAN(Ii/NSAMPLE

125 wRITE(6,2)IRECMEANII )TOTMEANiItlCALVALitNSAMPLE
2 FOPMATIIH ,IlArItlO*Fd.414x I Fd.425XI3)

GO TO 105

5n 130 NSAMPLE
= 
NSAMPLE - 1

ICALVAL = ICALVAL * I

131 IF (ICALVAL .GT. NCALVAL .ANU. LASTCAL .GT. 3) GO TO 160

ICHECK = ICHECK * 1

WkITE(b3)NRECORIlCALVALACTVOLT(ICALVAL)
55 3 FORMATtlHO.5A*TEMPORARY MEANS*BX*RECORD NUMBER*14.90X*CALIBRATION*
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.1294X*INPUT VALUE*FS.1/11CXCHANNEL*IOx1MEAN*)
DO 140 I=1. NCHANNC
RECMEAN(I) = SUMCAL(I)/LENARR
WRITEf6.4) IRECMEAN(I)

60 4 FORMAT(IH 12XI210OXF8.4)
SUMCAL(I) = 0.0
IF (ICHECK .EQ. I)GO0 To 135
D00 137 K=lLENARR

'137 SUMSUIIICALVAL)=SUMSQ(ItICALVAL) * VELOC(IItKl*2

6 TEMPSUM(I) = TEMPSUJM(I) * RECtEAN(I)
135 IF (RECMEAN(I) .GT. TOTMEAN(I.ICALVAL-I) * VARI *OR. RECNEAN(I)

S*LT. TOTMEAN(IICALVAL-1) - VARI) GOTOBUF=3HYES
140 CONTINUL

IF (ICHECK.GT. 3) GO TO 160
7n IF (GOTOBUF .EQ. 3JYES) GO T0 105

DO 150 I=1, NCHANNC
TEMPSLM(i) = 0.0

150 SUMSO(tllCALVAL)=0.0
ICHECK = 0

7r ICALVAL = ICALVAL - I
GO TO 105

160 IEND = ICALVAL - I
WRITE(695) IENDeACTVOLT(IENO)

S FORMAT(IH0.SA*STANDARD DEVIATIONS*IOAOCALIBRATION*12SAXINPUT VALU
Sn .EOF5.1/IIX*CHANNEL*IOX*RMS*)

00 170 I=1, NCHANNC
STANODEVICALVAL-1)= SORT(SUMSQ4(IICALVAL-1/INSAMPLEOLENARR) -

TOTMEAN(ItICALVAL-I1**2)
170 WRITEI6.6) I.STANUEV(IoIEND)

85 6 FORMAT(IH ,12XA2,7xF9.3)
NSAMPLE = ICHECK - I
00 175 I=1.NCHANNC
SUMEANI) = TEMPSUM(I)
TOTMEAN(I*ICALVAL) = TEMPSUM(I)/NSAnPLE

n ITS175 TEMPSUM(I) = 0.0
ICHECK = 0
IF (ICALVAL .LE. NCALVAL) GO TO 10!

180 *PITE(6.7) NRECOR
7 FORMAl(IH0,5A*ACTUAL VS TAPE vOLTAGE*IOX*LEAST SQUARE NETHOO*SA*NU

9; .MBER RECORDS USED FOR CALCULATIONS*13)
00 200 1=1. NCHANNC
DO 190 J=1. NCALVAL
SUmTAP(I)=SUMTAPI) * TOTMEANflJ)
SOVALUE(I)=SQVALUE(I)*TOTMEAN(IJ)**2

100 ACT x TAP(I) = ACT X TAP() # TOTMEAN(IJO*ACTVOLT(J)

190 SUMACT(I) SUMACT(I) * ACTVOLT(J)
SLOPE(1) = (SUMACT(I)*SIMTAP(1) -NCALVAL*ACT X TAP(Ill/

, tSUrTAPtIl)*2-NCALVAL* SUVALUEII)l

LERnTAP() : (SUMTAP(I)*ACT A TAP(I) - SUMACT(I)*SQVALUE(I))/

10 . (St)MTAP(I)**2
- 

NCALVAL*SQVALUE(I))
WRITE(6.8) I.(ACTVOLT(J).TOTMEAN(loJIoJ=1 *NCALVAL)

8 FORMAT (IHO.I0AXC H A N N L L*I3/ISX*VALUES USED FOR LEAST SQUARE
.CALCULATIONSIOX*INPUT VALUE*cX*TAPE VALUE*/(69XF4.lXF6.3))

200 WRITEf69) SLOPE(1)tZERoTAP()
tln 9 FOWNAT(IH .15X*VALUES O0TAI.iEn FRO4 LEAST SQUARE CALCULATIONS7IX*S
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.LOPE*BX*INTERCEPT*/68XFS.3.IIxF5.3)
RETURN
END
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SUBROUTINE BUFANE
COMMON TIMEIO01I*VELOC(I6100).NCHANNC*LENARRNFILE*NRECORIlEXIT
COMMON/BRUFANE/IDENTIPARIT7VLPACOAToEOFMUL.NTOTFILtPLOT
COMMON/UNPK/ITIMEICOMWRD(200).IDATWRD(O000)

;5 100 DO 105 I=I*LPACOAT
105 ICOMWPD(I) = 0

LUNPDAT = LPACOAT * 5
00 110 I = I.LUNPOAT

110 IDATWRD(I) = 0
In 115 NRECOR = NPECOR * I

120 HUFFER IN (I1l)(ITIMEI1COMkD(LPACOAT))
125 IF (UNIT(l)) 140.130,135
130 NRECOR = NRECOR - I

WRITE (6.1) NRECOR, NFILE
1c NRECOR = 0

NFILE = NFILE *1
IF (NFILE .GT. NTOTFIL) GO TO 136
IF (IDENT .EO. 3HYES)CALL HEAOER
GO TO 100

2n 135 IPARITY = IPARITY * 1
WRITE (6.2) NRECOR# NFILE
NRECOR = NRECOR - I
WRITE (6,3) IPARITY
GO TO 115

2c 136 IF (PLOT EQ. 3HYES) IEXIT = 3HYES
IF (PLOT .EQ. 3HYES) GO TO 150
CALL EXIT

140 CALL UINPAK
CALL SORTANE

3n I FORMAT (lHo0, THERE ARE *14* RECORDS ON FILE NUMBER*13)
2 FORMAT (11HO* PARITY ERROR OCCURRED ON RECORD NUMBER*I** FILE NUNB

ER'13)
3 FORMAT (1HO** THERE HAVE BEEN*I3* PARITY ERRORS*)
150 RETURN

35 END

G.
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SUBROUTINE HEADER
COMMON TIME(O01),VELOC(6100),NCHANNCLENARRoNFILENRECORIEXIT
COMMON/RHEAOER/ID(2)
qUFFER IN(l.0)lO(1)tIO(2))
IF (UNIT (1)) 100*110110

110 WRITE(6.2) NFILE
2 FOQMAT(IHO.* PARITY ERROR OR EOF OCCURRED IN HEADER OF FILE NO*

13)
100 WRITE(6,1i IDNFILE

I 1I FORMATfIHI,* HEAOER IN BINARY *2Al0O ON FILE NUMBER *123
120 RETURN

END
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SUBROUTINE SORTANE
COMMON TIME101O)VELOC(6,t000)NCHANNC*LENARR*NFILENRECORIEXIT
COMMON/PSORT/IBEGSKPoWRITDATeISKIP.FACTOR
COMMON/UNPK/ITIME*ICOMWRD(200tlDIATWRO(1000)

9 MN= IBEGSKP
00 100 I=I1LENAR
VELOC(1,I) = IDATWRO(M) * FACTOR
VELOC(t2l) = IOATWRD(M*I) * FACTOR
VELOC(39l) = IDATWRD(M*2)*FACTOR

1n VELOC(G4I) = IOATWRD(M*3) * FACTOR
VELOC(5,I) = IDATWPD(M*4) * FACTOR
VELOC(6I) = IDAT.D(M+5) * FACTOR

100 M = * ISKIP
IF ( WRITDAT .EQ. 3HYES) CALL OATAARI

IR RETURN
END



SUBROUTINE DATAWRI TRACE CDC 6400 FTN V3.0-P261 OPTsO 02/10/72 12.53.49. PAGE

SUBROUTINE DATAwRI
COMMON TIME(IO1JVELOC(6,100).NCHANNCtLENARRoNFILE*NRECOR*IEXIT
COMMON/UNPK/ITIMEICOMWMRO(nOO)0IATWRDOIIO00
00 10 I=19NCHANNC

10 WRITE (691) l,(VELOC(ItJ)9J=1.LENAWR)
I FORMAT(IH0IOX,* ANEMOMETER VELOCITY DATA* LEVEL NUMBER*I2/101

(IOFII.5/))
PRINT 2ITIME

2 FORMAT IHO,1OX,*IT144E AT bEGINNINu OF RECORO*110)

In RETURN
END

()K:
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SUBROUTINE SKIPEOF
COMMON TIME(101).VELOC(6100),NCHANNCLENARRNFILENRECORIEXIT
COM4ON/BUFANE/IOENTIPARITY*LPACOATtEOFMULNTOTFIL*PLOT
COMMON/UNPK/ITIMEICOMWRD(200)tIDATWDO(IOOO

- COMMON/BSKIPEO/NFILSKPsNRECSKP
NREC = 0
IF (NFILE .GT. NFILSKP) GO TO 125

100 BUFFER IN(Itl)(ITIMEICOMWRDILPACDAT))
IF (UNIT(I))1159120110

In 110 NREC = NREC + I
LEN = LENGTHil(
NRECOR = NPECOR * I
PRINT 2,NFILE,NPECORNRECLEN

2 FORMAT(IHO05X*PARITY ERROR OCCURRED WHILE SKIPPING FILE*I2* RECORD
15 .*14/7AI*3 PECORDS HAVE BEEN SKIPPED. LENGTH WAS*14)

GO TO 100
115 LEN = LENGTH(1)

NREC = NREC * I
NRECOR = NPECOR * I

?n IF (LEN .NE. LPACOAT * I) WRITE(6*3) LENNRECOR9NFILENREC
3 FORMAT(IHO5XERECORD SKIPPED OF IMPROPER LENGTH. LENGTH WAS*I4/7X

.*RECORD*I14 FILE*I2o2XI2* RECORDS SKIPPED*)
GO TO 100

120 WRITE(6,4) NREC*NFILE#NRECOR
2c 4 FORMAT(lHOoSX*SKIPPED*I3

* 
RECORDS ON FILE*I2* THERE WERE*I4* RECOR

.ODS ON THIS FILE*)
NFILE = NFILE 1I
IF (IDENT .EQ. 3HYES) CALL HEADER
NREC = 0

30 NRECOR = 0
IF (NFILE .LE. NFILSKP)GO TO 100

125 IF (NRECSKP .EQ. 0) RETURN
DO 160 I=.INPECSKP
BUFFER IN (1.1) (ITIMEICONWROILPACOAT))

35 IF (UNIT(l))130*150 140
130 NRECOR = NRECOR * I

NREC = NREC * I
LEN = LENGTH(I)
IF (LEN .NE. LPACUAT * I) WRITE(63) LENNRECOWNFILE9NREC

40 GO TO 160
140 NREC = NPEC * I

NkECOR = NRECOR * I
LEN = LENGTH (1)
WPITE(6.5) NRECSKP.NFILENkECORsLENNREC

4c 5 FORMATI(HO.5*PARITY ERROR OCCURRED WHILE SKIPPING*12* RECORUS ON

.FILE*I2/7X*RECORO*I4* LENGTH*I4* RECORDS SKIPPEO'D3)
GO TO 160

150 URITE(6.6)NFILEONRECOR9NREC
6 FORMAT(IHO0.5*EOF OCCURRED WHILE SKIPPING RECORDS ON FILEI2/7X*LA

50 .ST RECOWOID*.2XIJ3 RECORDS nAVE UELN SKIPPED*
)

160 CONTINUE
WRITE(6,7) NREC,NFILE

7 FORvATIlH0.5KXI3 RECORDS HAVE BEEN SKIPPED ON FILE*I2)
RETURN

55 END
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SUBROUTINE VOLTADJ
COMMON TIMEI01)tVELOC(6100,C3IANCHLENARR*NFILENRECORgIEXIT
COMMON/BVOLTAD/ICHANGE.SCALE(6),ZEROACT463)VOLTCHGTIMECHGo
. ISCALE6)

C IF (ICHANGE .GT. 0) READ (5l)(ISCALE(1)l=1*l6),VOLTCHGCTIMECHG
00 90 I= 1.6

20 GO TO (30940,50960.70980)31
30 GO TO (31.32,33)9ISCALE(I)
31 SCALE(I) = 40.166

In ZERCACT(I) = 2.799
GO TO 90

32 SCALE(I) = 7i.867
ZEQOACT() = 2.413
GO TO 90

IS 33 SCALE(I) = 0.0
ZEROACTII) = 0.0
GO TO 90

40 60 TO (41942,43)lSCALE(l)
41 SCALE(1) = 42.161

2n ZFnACTII) = 2.183
GO TO 90

42 SCALE(Il = 81.437
ZEROACT(I) = 2.281
GO TO 90

2c 43 SCALE(I) = 0.0
ZEROACT(I) = 0.0
GO TO 90

50 GO TO (51952.53)1ISCALE(I)
51 SCALE(1) = *2.981

30 ZEROACT(I) = 2.057
GO TO 90

52 SC4LE(I) = 83.606
ZEROACT(I) = 1.883
GO TO 90

3c 53 SCALE(I) = 0.0
ZEPOACI(I) = 0.0
GO TO 90

60 GO TO (61.62.63)1ISCALE(l)
61 SCALEiI) = 42.869

41 ZEkOACT(I.) = 3.674
GO TO 90

62 SCALE(I) = 83.224
ZEROACT(I) =3.065

) 6 GO TO 90
44 63 SCALE(I) = 0.0

ZEROACT() = 0.0
GO TO 90

70 GO TO (71.72.73).ISCALE(l)
71 SCALE(I) = 47.070

Sq ZEROACT(1) = 0.075
GO TO 90

72 SCALE(I) = 93.300
ZEROACTI!) = 0.330
GO TO 90

55 73 SCALE(I) = 0.0
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ZEROACTI) = 0.0
GO TO 90

80 GO TO (81*82983)*ISCALE(II
81 SCALE(1) = 40.217

60 ZEROACT(1) = 3.764
GO TO 90

82 SCALE(1) = 77.313
ZEROACT(I) = 3.639
GO TO 90

6c 83 SCALEII) = 0.0
ZEROACT(I) = 0.0

90 CONTINUE
ICHANGE = ICHANGE * I

I FORMAT (6(12)9A3.FS.3)
70 WRITE(6*2)

2 FORMAT(IHO,5X*ACTUAL VOLTAGE VS VELOCITY*SX*REGRESSION VALUES*/1OX
.*LEVEL*SX*SLOPE*iA*INTERCEPT*)
DO 100 I=19NCHANNC

100 WRITE(6.3) I SCALE(I l ZEROACTI)
7c 3 FORMAT(H .llXII7XF6.3*6XF5.l)

RETURN
END
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SUBROUTINE PLOTVEL
COMMON TIME(101D.VELOC(6,100),NCHANNC.LENARR.NFILENRECOR.IEXIT
COMMON/BPLOTVE/ELEVE6),SUMAVEI6),IsAMPLELABEL(4)LABiELY44).

* LTITLE(4)9MULTIP4E*IUATAPT
DIMENSION AVEVEL(b)
MULTIME = MULTIME * I
WRITE(691) TIME(lL)ATAPT-l)*NRECOR

I FORMAT(1M0,SXOVELOCITY PROFILE PLOITED AT TIME*F9.3#SX*RECORD NUMB
*ER*I4/IOX-VALUES USED FOR PLOT-5A*LEVEL*5X'ELEVATIONg M.*SX*VELOCI

In *TY9 P4/SEC*)
00 100 1I 1.NCHANNC

100 AVEVEL(I) =0.0

00 110 !=l,NCHANNC
AVEVELMI = SUMAVEMI/ISAMPLE

IS ~WRITE(692) 1,ELEv(IhqAVEVEL(l)
2 FORMAT jIj ,3bXII9I0XF6.39f3XF6.3)
110 SUMAVE(I) =0.0

CALL 11)101 IAVEVELELEV,6,2,Dq9MLAt$ELXLASELYLTITLE..1)
ISAMPLE =

PA IF (ZEXIT .Eo. 3HY4ES) CALL EXIT
RE TURN
FND
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IDENT UNPAK
* INSERT LENGTHS OF PACKED AND UNPACKED ARRAYS

311 LENGTHA SET ?01
1750 LENGTHB SET 1000

5
USE /UNPK/

0 NE BSS LENGTMA

311 8 bSS LENGTHB
USE

10 ENTRY UNPAK
0 UNPAK BSS 1
1 7170000001 SX7 18

7100004000 SXO 4000B
2 43214 Mx2 12

15 5110000000 C SAl NE AT) --- FIRST WORD OF ARRAY (TIME WORD) IS IGNORED

3 6160000310 C S86 A-1 BIJI BASE
6170002260 C Sd7 R*LENbTHB-1 BILASTI

4 6150000060 SB5 48
6110000074 SBI 60

20 5 5011000001 GEf60 SAI AIlI GET A(I)

6 6166000001 GETI2 Sdb6 6+1
Il621 bA Ax2*Xl MASK OUT 12 BITS

67515 585 Pl-d RIGHT SuIFT

7 22656 LA6 RSX6 BUT

25 67515 SB5 RI-d5 AVOID SIGN EXTENSION

11760 BX7 X64XO CK FOR SIGN BIT

10 0307000011 * ZR x7STORB
15660 8Xb -XO0*b MASK OUT SIGN BIT

30 14666 BXb -X6

II STORS BSS 0

11 21601 AXb I DELETE ZERO-BIT RIGHT-FILL
56660 SAb Pb STORE IN B(J)

35 0467000000 * EQ 687.B.DONE.

12 0550000014 * NE S80BO.INMID
6150000060 585 Ad

13 43214 XM2 12
0400000005 * EQ rET60O

40 14 20260 INMID LX2 48
6155777763 S5 H45-12

15 0400000006 * EQ nETI2
0 * DONE EQU UINPAK

16 END

46302 STORAGE US6U 44 STATEMENTS 10 SYMBOLS
6400 ASSEMOLY 0.341 SECONDS 23 REFERENCES
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Computer Program for Determination of Temperature
and Humidity Profiles
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PROGRAM TEMPNUM( INPUT.OUTPUTTAPE5=INPUTTAPE6=OUTPUTTAPEI,
FILMPL)

CS DEBUG
CS ARRAYS

COMMON NFILENRECORLENARRNCHANNTEMPI10,Io0,,WRITDAT
COMMON/8SORT/IBEGSKPFACTOR, ISKIP
COMMON/BINSTCA/NINSCAL.VARIIN.EECITVO.RESIS(10923 .CALRESI1O.23,

GAIN(10)
COMMON/BCALIESR/SLOPE(10) ,ZEROTAP(I03

In COMMON/FBUFTEM/IDENTMULEOF. IEXITNTOTFILPLOT, IPARITYZEROTIM,
JCLOCK

COMMON/UNPK/!IIMEICOMWPD(200o.DATWRO(10003
COMMON/HSKPEOF/8AQATALPACUAT .NRECSKP.NV ILSKP
COMMON/8HUM IU/SIG'4A,8ARPRESqtFATLAT.CPCPV.HUMIDI (103

1c;COM'40N/ITAPECA/NCALVALVARITP.ACTVuLT(5)
COMMON/B3PLOTEM/AVETEMP(103,TIl1EELEV(63,LABELX443LABELY(4),LTITLE

DIMENSION RESIS4M(IO) .SUMTEMP4103
DATA LASELX/40H YFMPERATURE*C/

?fl * LABELY/40H FLEVATIDN9M
o LTITLE/40H TEMPFR41UNE PROFILE/

READIS.13 CALTAPE.CAIUNSTWITDATIDENTMULEOFPLOTNCIANNLENARR
* NAVERVC.IBEGSKPISKIPNINSCAL.LPACOATNTOTFIL.EXC1IV.
* PESISR(13,A9B.C.DETIMRATVARIINSIGMA,8ARPRESCP

2c HEATLATCPVVARITP, IACTVoLT (1)11.53,4RESIS(1,1).1u1,10
* 3, (PESIS(I,2),I=I1n3.(*CALRESEI1,,!t=l1),,(CALRES(1.23.
* 1=I1). (ELEV(IJI=1,6)9NCALVAL

IFORMAT (6A3,dI4.3F8.3/4Fp.3,2Fq.2.5F 7.3/IFS.2.51F5.2) 910 (FS.2)/
*I0(FS.2) .b(F5.2)/4(F5.2).IoEF5.2,,6gF6.3),I3,

3A REwIND I
PRINT 3

3 FOP*ATIIH95X*NOTE ... CHANNEL I IS LEVEL 29 AMBIENT TEMPERATURE*/12
.X*CHANNEL 2 IS LEVEL 39 DRY*/I2X*CHANNEL 3 IS LEVEL It DRY*/12X*Chl
*ANNEL 4 IS LEVEL It WET*/12x*rHANN.L 5 IS LEVEL 4, DRY*/12X*CMANNE

3c;*L 6 IS LEVEL 4s WET*/12X*CIIANNEL 7 IS LEVEL St ORY*/12X*CHANNEL 8
JS5 LEVEL So WET*/12X*CHANNEL Q IS LEVEL 6. DRY*/12XOCHANNEL 10 IS
*LEVEL 6, WFT*)
P41NT 4, CALTAFPE9CALINSTWRITDATIDENTMULEOFPLOT.NCHANNLENARRO

* NAVEREC.IBEGSKP91SK!P.NINSCALLPACDATNTOTFIL.EXCITVO.
4n RESISREII .A9b9CU.E.TIMRAT.VAQIIN.SIGMA.BARPNESCP,

* ~HEATLATCPV.VARITP, (ACTVuLT(1) ,II,53 , RESISE 13 1=1,10
* 3, 9(RESIS(1,93 *I=1.1fl3.(CALRES(1,13.InI9l0),(CALRES(IZ),

4 FOR4ATfIH0,: CALTAPE =*4 AIS *A* WRITOAT =*A4* IDENT -e*A4

.0 iRPRE =*F.2* P tF5.3* hEATLAT :*F6.1* CPV =*F5.3* VARITP =0
*F4.2/*ACTVOLT(1 TRhU 1)=*S5.I/* RESIS(1 THRU 1091) =10OF5.2/0 RES
.IS(1 THRU 10,23 =10F5.2/* CAI.RES1I TIIRU 1091) =*IOF5.2i. CALRES (1
.1 THRU 109?) =*1OFS.2/* ELEV(I Tl1RU 6) =06F7.30 NCALVAL ='12)
IEXIT = 3H NO
JCLOCK = 0

55 BADATA z 3H NO
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FACTOR = SORT42.0) /(2.0009-1.0)
NFILE =I
NRECOR = 0
ZEROIIM =0.0
IPAPITY 0
MULREC x1
00 100 I=19NCHANN

100 SUt4TEMPE!) =0.0
IF (CALTAPE .EO. 3HYES)CALL TAPECAL

6c; IF (CALINST .EQ. 3HYES) CALL INSTCAL
NFILSIKP=I
NRECSIKP =0
IF INFILE oLE. 11 CALL SKIPEOF
JCLOCK = 0

?A ZEROrIM = 0.0
NRECOR =0
RE AD1 E595) FPSTREC

5 FORMAT(A3)
IF (FRSTREC *NE. 3HBAD) GO 1O 200

7c; NFILSKP = 0
NwFCSKP = I
CALL SKIPEOF

200 CALL BUF TEMP
IF (IEXIT *EQ. 3HYES) GO TO 400

An DO 300 I=1,NCMANN
00 300 K=1.LENARR

300 SUMTEMP(I) = SUMTEMP(J) # TEMP(I*K)
IF (NRECOR *LE. NAYERECOMULREC) GO TO 200
GO TO 500

8c; 400 NAVERECz tRECOR-(NAVERECO(MULREC-1))
500 DO 700 I=1,NCHANN

AVFTEMPII) =SU'4TEMP (I) /(NAVEREC*LENARR'
SUMTEMP(I) =0.0
AVETEMPEI) = (SLOPEII)*AVETEMP(I) * ZEROTAP(I))/AI4(I)

9n FACTORI = AVEYEMP(flEXCITVO
FACTOR2= RFSIS(!,1)/(RESISRII) * RESISEI.)
AVETEMPM = RESIS(I,2)/fFACTORZ-FACTORI)- QESISfl,2)
IF 11 .61'. 1)G0 TO 700
DO 600J=2*NC-ANN

91;600 RESISR(J) =AVETEMPE!)
700 AVETEM41) =A.OOAVETEMP(I) * COAVETEMPII)002 *0'AVETEMPII1*03

E*AVETE4P (1)**4
TIME = (TIPRATO(IITIME-ZEROITIM,/1000O.
*RITE(692)TI4ENRECOR(AVETEMPEI).1=1,NCHANN)

1()0 2 FO4ATI0,O* TEMPERATURES AVEPAGED OVER 10 MINUTE INTERVALS. TIME
. *F9.34 SECS. RECURD NljMIER*4//2A*ChANNEL 104A'CHANNEL 204A*CHAN
.NEL 3*4X*CH-ANNEL 404X*CHANNEL 5*4X*CMANNEL 604X*CHANNEL 704X*CHANN
AEL 8*4)AOCHAINEL 9*4X*CHANNLL 10*/3A*LEVEL 2*631'LEVEL 3*6X*LEVEL I*
6X*I EVEL I.#X*LEVEL 4

0
6X*LLVEL 4-6X*LEVEL 5*6X-LEVEL 5-hX-LEVEL 6'

to= .6X*LEVEL 6'/3XAM.wIENT*SX*ORYOI 0X'ORY'10X'WET'IOX'oRYeI 0X'WET*10X'
*ORYO10,X*WETUI0A*OIY*I0JX*WET*/-,XF6.3* C'5XF6.30 COSXFb.3* C*SXFb.3*
*C*5AF6.30 COSAF6.30 C*SxFb.3. C*5AF6.3* CO51F6.3. C*SXF6.30 C')
CALL HUMID
IF fPLOT *EQ. 3HYES) CALL PLOTEMP

tin MULREC =MULREC * I
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IF (IEXIT .NE. 3HYES) GO TO 200
END
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SUBROUTINE TAPECAL
COMMON/BTAPECA/NCALVAL*VARITPACTVOLTIS5
COMMON/BCALIBR/SLOPE(10)*ZEROTAP(103
COMMON NFILE*NRECORLENARRtNCHANNTEMP(i0100) WRITDAT
DIMENSION SUMCAL(I0).SUMTAP(Ifl)SQVALUE(IO).SUMACT(10)*ACT X TAPi(
* N0)SUMSQ(10IS)*RECMFANIIO)tTOTMEAN(IO.5)tTEPMEANIIO)tSU

*EAN(IO).TEMPSUMIO)*STANDEV(105I
ICHECK = 0
NSAMPLE = 0

In . LASTCAL = 0
ICALVAL = I
00 100 I=1.NCHANN
SUMEAN(I) = 0.0
TEMPSUM(I) = 0.0

Is SUMCAL(I) = 0.0
SUMACT(I) = 0.0
SUMTAP(I) = 0.0
SOVALUE() = 0.0
ACT X TAP(I) = 0.0
TEPUFAN(I) = 0.0
PECPEAN() = 0.0
DO IOOJ=1tNCALVAL
STANDEVI(lJ) = 0.0
TOTMEAN(IJ) = 0.0

25 100 SUMSO(IJ) = 0.0
200 CALL 8UFTEMP

GOTOBUF = 3H NO
IF (ICALVAL *EQ. NCALVAL) LASTCAL - LASTCAL * I

00DO 300 K=1,LENARR
3n 00 300 I=I.NCHANN

300 SUMCAL(Il = SUMCALI) * TEMP(ItK)
IF (ICHECK .GT. 0) GO TO 800
NSAMLE = SAPLE NSAPLE I
wRITE(691) NRECORtICALVALtACTVOLTIICALVAL)

35 1 FORMAT(IHO0Sx*RECORD MEANS*4X*RECOR
D NUMBER*14e7Z*CALIBRATION*12,

.4X*INPUT VALUE*FS.I/I1X*CHANNFL*OX*NMEANl13X*CUMULATIVE MEAN* 6X
*NUMBER RECORDS FOR CUMULATIVE MEAN*)
DO 600 I=1]NCHANN
RECMEAN() = SUMCAL(I) / LENARR

4A WRIlE(f6211,RECMEANII)
2 FORMAT(IH ,l2X9I2,10X9F8.4)

IF INRECOR .O. 1) GO TO 400
IF (RECMEAN(I) .GT. TOTEAN(I.ICALVALI. VARITP .0. RECMEAN(I)

* LT. TOTMEAN((IICALVAL) - VARITP) GO TO 7004% 400 00 500 K=I.LENApR
500 SUMSO(tlCALVAL) = SUMS(I.ICALVAL) * TEMP(IlK)*e2

UVLANl() = SUMIEAN(Il) HCMEAN(I)
SUMCAL4) = 0.0
TOTEAN(ItICALVAL) = SUMEAN(II/NSAMPLE

Sn 600 IILt(6.4) TOTMEAN(illCALVAL).NSAMPLE
4 FORWAT(lI,4h6X9F8.4,25EXI

3 )
GO TO 00

700 NSAMPLE = NSAMPLE - I
ICALVAL = ICALVAL * 1

55 800 IF (ICALVAL .GT. NCALVAL *A LASTCAL *GT* 31 GO TO 1300
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ICHECK = ICHECKr * I
WRITE(695) NRECOR*ICALVAL#ACTVOLTIICALVAL)

5 FORMAT (1H0.5XOTEMPORARY MEANS.8E*RECORD NUMBER*14910XOCALIBRATION
.*12,4A'INPUT VALUE *F5.1/11X*C#4ANNELO10X'MEAN*l

6n D0 1100 I=1,NCHANN
RECMEAN(l) =SU,4CAL(13/LENAPR
IRITEf696) 19PECMEAN(I)

6 FORMAT41H 912412.IOXF8.4)
SLD14CAL41) = 0.0

6c; .,IF fUCHECK .EQ. 1) GO To 1000
DO 900 K=1.LENAPR

900 SUM4SOtI*ICALVAL) SUMSO(1IlCALVAL) * TENP419K)*
TEMPSUMEIIJ TEMPSUM(I) # RECuEAN413

1000 IF (RECMEANUl) .GT. TOTMEAN(I,ICALVAL-1) * VARITP .0. RECHEAN11)
7f *LT. TOTMEAN(I@ICALVAL-1) -VARITP) GOTOBUF 23NVES

1100 CONTINUE
IF (ICtiECK *GT. 31 60 TO 1300
IF (GOTOBUF .EQ. 3H'v:S) GO TO 200
DO 3200 11I.NCHANN

7q ~ TEMPSUM(Il 0.0
1200 SUM50(tICALVAL) =0.0

ICHFCK =0

ICALVAL ICALVAL I
GO TO 200

80 13300 lEND =ICALVAL - I
.RITE(698)IFNOsaCTVOLT(IENO,

8 FORMATfIHO,/*5M*STANOAR0 DEVIATIONSOl0X*CALIBAATION*12.5IOINPUT VA
*LUE*F5. 3/11XOCHANNEL.10X.RMS*l
DO 1400 1=19NC.IANN

PIC. STANDEV(191CALVAL-1)= SORT(SII4SO(,iCALVAL-1l/ENSAM4PL~ELENARR)
* TnTHEANEIIICALVAL-11**2)

1400 WRITE(69)ISTANDEV(IIENO)
9 FOR'4AM(3 912X12.7XF9.3)

NSAMPLE = ICHECK - 1
9ft DO 3500 1,1NCANN

SUMEAN(!) = TEMPSUM(Il
TOTHEAN(I.ICALVAL) = TEMPSUM(TI/NSAMPLE

1500 TE'4PSU'4(1 = 0.0
ICHECN = 0
IF (ICALVAL .LE. NCALVAL) 6O TO 200

1550 ,wRITE(6910) NRECOR
10 FOPM'ATEIM0,5x*ACTUAL VS TAPE VOLTAGE*IOX*LEAST SQUARE MET0HOD*5X*NU

*MBER kECORDS USED FOR CALCULATIONS*13)
00 1700 1 =19NCH-ANN

100 DO 1600 J=3,NCALVAL
SUMTAPE!) zSUP4TAP(I) 0 TOT.4EAN(!.J)
SOVALUE(I) = SUVALUEMI # TOTmEAN(IJO*02
ACT X TAP(1= ACT X TAPMI * TorMEAN(19J) * ACTVOLT(J)

3600 SUIOACT(Il = SUJMACTI1) *ACTVOLT(J)
30c SLOPE (1) =ISUMACT(!) *SUMTARPUI - NCALVAL*ACT X TAP(I3)/

* (SUMTAP(13"02-NCALVAL@SOVALUE(1) 3
ZEPOTAP411 = (SIMTAP(13.ACT X TAPE!) - SU'4ACT(I)OSOVALUE411)/

*~ (SUMTAP I ) '*2-NCAL VALOSOVALUE (1,3
WRITE16,l11 I' (ACTVOLT(.J),IOTMEAN(IJ),J=1,NCALVAL)

lln 11 FORMATIH 91OA*C HI A N N E L*13/ISA-VALUES USED FOR LEAST SQUARE C
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.ALCULATIONSOIOX*INPUT VALUE*SX*TAPE VALUEe*/69XF4.IIIXF6.31)
1700 WRITEt6.12) SLOPE(I).ZEROTAP(!)
12 FORMAT(HOS15X*VALUES OBTAINED FROM LEAST SQUARE CALCULATIONS* 71X

.SLOPEa*8XINTERCEPT*/68XF5.3,olXF5.3)
IIc RETURN

END

Qyx
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SUBROUTINE INSTCAL
COMMON/BINSTCA/NINSCALVARIIN.EXCITVO.RESISfIO2) tCALRES(1092).

. GAIN(IO)
CONON/BCALIBR/SLOPE(10) ZEROTAP(1O)
COMMON NFILENRECORtLENARRNCHANNsTEMPil0.O100)WRITOAT
COMMON/BSKPEOF/BADATALPACOAT.NRECSKPsNFILSKP
DIMENSION SUMAVE(10).TSUMAVE(10),SUVALUE(O0)hSTANDEV(102)s
* TOTAVE(10,2) SUNTEMP(IO).TSUMNS(10)tACTUAL(IO0t
. AVEREC(O)

In . NRECOR = 0
BAOATA = 3HYES
00 100 I=INCHANN
SUMAVE(I) = 0.0
TSUMAVE(l) = 0.0

1; TSUMSO(I) = 0.0
SQVALUE(I) = 0.0
SUMTEMPI() = 0.0
DO 100 K=1,NINSCAL
STANDEV(IIK) = 0.0

2n 100 TOTAVE(ItK) = 0.0
INSCAL = 1
ICHECK = 0
NSAMPLE = I
LEVEL = IOHIERO INPUT

2r 200 CALL BUFTEMP
IF (NFILE .GT. 1) GO TO 1050
GOTOBUF = 3H NO
UO 400 I=INCHANN
DO 300 K=I.LENARR

3
n  

300 SUMTEND(I) = SUMTEMP(I) * TENP4IIK)
AVEPEC(I) = SUMTENP(I)/LENARR

400 SUMTEMPII) = 0.0
IF (ICHECK .GT. 0) GO TO 800
IF (NRECOR .EO. 1) GO TO 500

39 IF (ABS(AVEREC(I)) .GT. ABS(ToTAVE(ItINSCAL)) + VARIIN) GO TO 700
500 WRITE(6.3) NRECORsINSCALLEVEL
3 FORMAT(IHO.5x*RECORD MEANS*A.*RECORO NUMBER*14T7X*CALIBRATION*I294

*X-INPUT *AIO/1IXOCHANNEL*IOXeME4N*13X*CUMULATIVE MEAN*6X*NUMBER OF
* RECORDS FOR CUMULATIVE MEAN*)

4A DO 600 I=I.NCHANN
SUMAVE(I) = SUMAVE(I) * AVEREC1)
TOTAVE(ItINSCAL) = SUMAVE(!) / NSAMPLE
WRITE(6.2)lAVEREC(I)tTOTVE.(TINSCALINSAMPLE

2 FORMATIIH *Il2X.l lx0F8.4l4xF8.4,25X*I3)
4C 00 600 K1=,LENARR

600 SOVALUF(I) = SOVALUE(l) * TEMP(I.K)**2
NSAMPLE = NSAMPLE * I
GO TO 200

700 INSCAL = INSCAL * I
5n LEVEL = I0hFULL SCALE

800 ICHECK = ICHECK * I
IF fICHECK .EQ. 1) GO TO 200
IEND = ICHECK - I
WRITL(6.4) NkECOR.INSCALLLVEL

5 4 FOrMAT(IHO,5A*TEMPORARY SUM OF MEANS*4X*RECORD NUMBER*I47x*CALIBR
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.ATION*I294X*INPUT *AO/llX*CHANNEL*O0X*SUm OF MEANS*13X*NUMBER OF

.RECORDS IN SUM*)
DO 900 I=11NCHANN
TSUMAVE(I) = TSUMAVE(I) * AVEPECI)

n WRITE(695) ITSUMAVE(),I END
5 FORMAT(IH .13XIl2*I6XF6.3927X12)

DO 900 K=1.LENARR
900 TSUMSO(I) = TSUMSO(I) * TENP(lK)**2

IF (ABS(AVEREC(1)) .GT. ABS(TnTAVE(ItINSCAL-1)) * VARIINI
6c GOTO9UF = 3HYES

IF (ICHECK .GT. 3) GO TO 1100
IF (GOTOBUF .EQ. 3HYES) GO TO 200
00 10001=I1NCHANN
TSUMAVE(I) = 0.0

7n 1000 TSUSO(I) = 0.0
LEVEL = IOHZERO INPUT
ICHECK = 0
INSCAL = INSCAL - 1
iO TO ?00

7 O1050 INSCAL = INSCAL * 1
NS&MDLE = NSAMPLE - 1

1100 IENP = INSCAL - I
LEVEL = O1HLERO INPUT
IF (IEND .E0. 2) LEVEL IOHFILL SCALE

in WRITE(696) IENDLEVEL
6 FORMAT(IHO,5X*STANDARD OEVIATIONS*IOX*CALIBRATION*eI2z5XINPUT *AIO

./IIX*CHANNEL*10X*RMS*)-
DO 1200 I=1.NCHANN
STANDEV(I.INSCAL-1) = SORT(SOVALUE(IIINSAMPLE*LENARR). TOTAVESI,

Ar INSCAL-I)*2)
1200 WRITE(67)ISTANDEV(IlEND)

7 FOQMATtIH *I2XI2.7KF9.3)
NSAMPLE = ICHECK - I
00 1300 I=INCHANN

9n SUMAVElI) = TSUMAVE1)
TOTAVE(IlINSCAL) = SUMAVE(I)/NSAMPLE
SOVALUE(I) = TSUMSO(I)
TSUMAVE(I) = 0.0

1300 TSUMSO(I) = 0.0
95 ICHECK = 0

NSAMPLE = NSAMPLE + I
LEVEL = IOMFULL SCALE
IF (INSCAL .LE. NINSCAL) GO TO 200

1400 00 1600 I=1.NCHANN
100 00 1500 K=19NINSCAL

1500 TOTAVE(ItK) = SLOPE(I) * TOTAvE(I.K) * ZEROTAPEII
ACTUAL(I) = EXCITVOe((RESIS(ItI)/IESIS(Il1)*CALRESt11)i) - (RESI
* S(I,L)/(RESISilo2) * CALRES(I2)I))
GAINII) = (TOTAVE(II)2 - TOTAvEIlI))/ACTUAL(l)

IO~ 1600 wkITE(6,8) I.TOTAVE(II)TTOTAvE(IIed)ACTUAL(I),GAINiI)
8 FO~4AT(IMH0lOXC H A N N E L*13/ISA*VALUES USED FOR GAIN CALCULATI
*ONS*IOX*INPUT*SXoTAPE VALUE*5x*ACTUAL VALUE*/SYX*ZERO*7XF6.32x*0
•.O*/56X*FULL SCALE*4XF6.39I1XF6.3//15X*GAIN COMPUTED*FO.3)
RETURN

Iln END
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SUBROUTINE BUFTEMP
COMMON/BBUFTEM/IDENTMULEOFI1EXITNTOTFILPLOTIPARITYZEROTINt

JCLOCK
COMON/BSKPEOF/BADATA*LPACOATNRECSKP.NFILSKP
COMMON NFILE*NRECORLENARRNCHANN.TEMP(IOel000)WRITDAT
COMMON/UNPK/ITIMEoICOMWRD(Z00) IDATWROD1000)
IF (IDENT .EQ.'3HYES .A. BADATA .EU. 3H NO .A. NRECOR *EQ. 0)

CALL HEADER
CORTIME = 3H NO

In HADATA = 3H NO
100 NRECOR = NRECOR * I

BUFFER INII(t)(ITIME9ICOMWRO(LPACOATI)
IF(UNIT(1))500*200.400

200 WRITE(6,1) NRECOR*NFILE
Ic I FORMAT(lIHO.* THERE ARE*Ib* RECORDS ON FILEI3)

NRECOR = 0
IF (MULEOF .NE. 3HYES) GO TO 300
NFILE = NFILE * I
IF (NFILE .GT. NTOTFIL) GO TO 300

2, GO TO 100
300 IF (PLOT .EO. 3HYES) IExIT = 3HYES

IF (PLOT .EQ. 3HYES) RETURN
CALL EXIT

400 WRITE(6.2) NRECOR*NFILE
2; 2 FORMAT(IH0,* PARITY ERROR IN nATA9 RECORO*IS5 FILE*13)

IPARITY = IPARITY # I
WRITE (6,3) IPARITY

3 FORMAT(IHO,* THERE HAVE BELtN*3* PARITY ERRORS*)
CALL UNPAK

3n ' CALL SORT
IF (wRITDAT .EQ. 3H NO) CALL DATWRIT
GO TO 600

500 CALL UNPAK
CALL SORT

3' 600 IF (NRECOR .EO. I .A. ITIME *NE. 0) ZEROTIMN ITIME
IF (ITIME-999999 .GT. -120001) CORTIME w 3RYES
ITIME = ITIME * JCLOCK * 999999
IF (CORTIME .EO. 3HYES) JCLOCK = JCLOCK * I
RETURN

4n END
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SUBROUTINE HEADER
COMMON NFILE*NRECOR*LENARRNCHANNTEMPi0100),*WRITOAT
DIMENSION ID(2)
BUFFER IN(lO) l1D(1)lID(2))

5 IF (UNIT(1)) 200.100.100
100 WRITE(6.I) NFILE
I FORMAT(IHO.* PARITY ERROR OR FOF IN HEADER OF FILE NUMBER*13)

200 4DITE(6,2) NFILE(ID(lI)l=1i2
2 FORMAT(IHO9, HEADER ON FILE*I3* IS *2110)

In RETIJRN
END
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SUBROUTINE SORT
COMMON NFILE.NRECORtLENARRtNCHANNoTEMPIIO1l001WRITDAT
COMMON/BSOQT/IBEGSKPFACTOR*IsKIP
COMMON/UNPK/ITIMEICOMWRD(Z00).IDATWRD(1000)
M = IBEGSKP
L=0
DO 200 1= |1LENARR
DO 100 K=|1NCHANN
TE4P(KtI) = IDATWRDO(M * L) * FACTOR

100 L 
= 

L * 1
L=0

200 M=M # ISKIP
IF (wRITDAT .EQ. 3HYES) CALL OATWRIT
RETURN

Ic END
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SUBROUTINE DATWRIT
COMMON/UNPK/ITIMEIlCOMWRD(200)IDATWRD(1000)
COMMON NFILENRECORLENARReNCMANNoTEMP(10100)oWRITDAT
wRITEI6l1) NRECOR* ITIME

I FORMAT'(IHO*, RECORD NUMBER*IS ITIME IS*Il10
00 100 I=19NCHANN

100 wRITE(6*2) I.(TEMP(I9K)9K=1.LFNARR)
2 FORMAT(IHO,* TAPE CHANNEL NUMRER*I39/(1I6F8.3|)

HETURN
If ENO
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SUBROUTINE SKIPEOF
COMMON/BSKPEOF/8aAATAtLPACDATNRECSKP.NFILSKP
COMMON/BBUFTEM/IDENT.MULEOFeIEXITNTOTFILPLOT#IPARITYtZEROTINt

JCLOCK
S COMMON/UNPK/ITIMEICOMWRD(200).IDATWRD(1000)

COMMON NFILE*NRECOROLENARRNCHANNTEMPtiiO.|00) WRITDAT
NPEC = 0
IF (NFILE .GT. NFILSKP) GO TO TO 500

100 bUFFER IN(II)(ITIME#ICOMWRODLPACDAT))
In IF (UNIT(1))300.0,200 200

200 LEN = LENGT(I)
NREC : NREC * I
NRECOR = NRECOR * 1
WRITE(6b,) NFILENRECORNREC*LEN

1c I FORMAT(IHOS5xPARITY ERROR OCCURRED WHILE SKIPPING FILE*I2o RECORD
.*I *.*I33 RECORDS HAVE BEEN SKIPPED. LENGTH OF RECORD*I4)
GO TO 100

300 LEN = LENGTH(l)
NREC = NREC * I

?n NRECOR = NRECOR * I
IF (LEN .NE. LPACOAT * I) WQITE(692)NRECOR9NFILE9LEN9NREC

2 FORMAT(IHQ05X*RECORD ENCOUNTEpED OF IMPROPER LENGTH. RECORODI4* Fl
.ILE*I2* LENoTH*I4 ZXI3* RECORDS HAVE BEEN SKIPPED*)
GO TO 100

?p 400 WRITE(693)NRECoNFILENRECOR
3 FORVAT(HOSXAI30 RECORDS HAVE BEEN SKIPPED ON FILE*I2*. THERE WER

.E*14* RECORDS ON THIS FILE-)
NFILE = NFILE * I
NREC = 0

30 NRECOR = 0
IF (IDENT .EQ. 3HYES) CALL HEADER
IF (NFILE .LE. NFILSKP) GO TO 100

500 IF (NRECSKP .EO. 0) RETURN
DO 900 I=1.NRECSKP

3c bUFFER IN(IlI)ITINE.ICOMWRO(LPACDAT))
IF (UNIT(1))80700O600

600 NREC = NREC * I
NRECOR = NRECOR * I
LEN = LENGTH(I)

44 WRITE(694)NRECORoNFILE*NREC*LEN
4 FOrMAT(lHOSX*PARITY ERROR OCCURRED WHILE SKIPPING RECORDOI4* ON F

.ILEoIZ'.*2XI3* RECORDS HAVE 8FEN SKIPPED. LENGTI*I41
GO TO 900

700 WRITE(6*SINRECOR9NFILEoNREC
S FOqMAT(lnO.SK*EOF OCCURRED WHILE SKIPPING RECORDS. LAST RECORD WA

.S*14. ON FILE*12.XI3* RECORDS HAD BEEN SKIPPED.*)
GO TO 900

800 NRECOR = NRLCOR * I
NREC = NREC * I

^n LEN = LENuTHII)
IF (LEN.NE. LPACDAT + 1) WRITE(692)NRECORoNFILELEN*NREC

900 CONTINUE
WRITE(66)IREC.NFILENRECOR

6 FONMAT(IHO,9AI30 RECORD(S) HAVE BEEN SKIPPED ON FILE*I2e. RECORD
55 .NUMBER IS*1Il



55 .NUMUBR IS*'I)
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RETURN
END
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