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PREFACE

When man first invented the wheel,’he did so without any theory.
Several thousand years later, when man first went to the moon, he
built the wheel for the Lunar Roving Vehicle (LRV), again without
adequate theory. If man had waited for exact theory, the LRV probably
would not have been carried to the moon.

So it seems that the ekistentialist is right in saying that
existence precedes essence; that discovery proceeds from conceiving the
physical phenomenon, to supplementing this phenomenon with explanation,
usually expressed by mathematical abstractions. At least in wheel-soil
interaction, wheels have preceded theory. Thué, a theoretical framework
for a physical phenomenon which is known to exist can be useful, but it
is not essential.

This philosophical argument presents a fundamental restriction to the
value of any theory. There are, however, other less fundamental but more
immediate restrictions.

In reviewing trafficability literature and in contemplating such
phenomena during the past two years, the author (schooled primarily in soil
mechanics) has become impressed with the complexity of the general problem of
off-road mobility (see, for example, Bekker, 1969). This problem does not
consist merely of a single, ideal wheel operating in an ideal environment,
but of coupled wheels operating both in ruts made by preceding wheels
and in virgin terrain. Further, the traverse over sucﬁ a terrain is
likely to include various soils, rocks, and bumps. The dynamic overall
ride over such a terrain may, therefore, be only remotely related to

theory developed for ideal wheel-soil conditiomns.
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A general solution to a complex problem often results from research
on separate aspects of the problem. This report presents a different and
perhaps practically applicable theory on the very limited phenomenon of
a rigid cylindrical wheel operating im a homogeneous soil. The develop-
ments are based on relatively simple considerations of statics and dynamics.
Fundamental observations render the problem determinate. This leads to
solutions of the sinkage and the pull which are likely to be within 157
of the correct value.

It is hoped that the theory presented in this report will be useful
in evaluating and designing wheels for off-road mobility. Some new ideas
are presented, and these need to be thoroughly checked and tested. It is
hoped that concepts such as 1) the line of action of the resultant of
radial stresses, 2) slip at a point, 3) the shear stress surface
T = £(8,8), 4) the closed-form approximate relation between contact angles
and sinkage, 5) the general graphical solution for pull, 6) soil inertia
forces, 7) equivalent cohesion, and 8) the performance surface, will inspire
further thinking and relevant research.

The author wishes to express his appreciation to the National
Aeronautics and Space Administration (NASA) for sponsoring this research.
Special thanks go to Professor James K. Mitchell for his continued support
and patience throughout the investigation, and for reviewing the manuscript.
The author also greatfully acknowledges Mr. Dieter‘J. Schuring for
reviewing Chapter 7 and Ms. Madeline Travers for editing the report.
Finally, in one way or another, this treatise reflects understanding and
~ experience accumulated in off-road mobility literature, without which

this study would have been impossible.
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CHAPTER 1. INTRODUCTION

A primary objéctive in off-road mobility is the desigﬁ of a wheel
which allows the most efficient transformation of mechanical energy of
the engine to translational capability of the wheel. The most importént
single parameter in such a design is the pull, P, that the wheel can
develop. This is defined as the pull that can be developed from the
traction of a given wheel on a given soil for a certain input torque, T.
In order to perform the desired design, it must be possible to predict
this pull, either from theory or from experience.

Previous approaches to wheel-soil interaction have been either
quasi-theoretical (Bekker, 1956) or empirical (U. S. Army Waterways
Experiment Station [WES], 1954). One major shortcoming of the empirical
approaches, and to a certain extent of the quasi-theoretical approaches,

is the necessity to test a full size wheel. Adequate theory would consider-
ably reduce the need for such expensive testing, although it would not do
away with testing entirely.

A fairly substantial body of literature on Whéel—soil interaction
has accumulated over the years. An adequate review will not be attempted
1) because an excellent review is available (Bekker, 1969), and 2) because
most of the previous approaches have little direct bearing on the d;;elop—
ments presented in this report.

Because the wheel-soil interaction problem is indeterminate, and the
torque input and wheel variables are rather specific, maﬁy investigators

hoped that the secret to the solution could be found in the soil. Conse-

quently, much recent research has dealt with methods of measuring and pre-

dicting soil flow and pressure distributions at the wheel soil contact.

»
These investigations have resulted in a better understanding of the



wheel-soil interaction problem. They have also led to the conclusion that
deformation processes in the soil are very complex, and that consequences
of assumptions are difficult to evaluate.

This report presents both rigorous (general) theory and approximate
theory for wheel-soil interaction. The purpose of the general theory is
primarily to form a basis for fﬁrther developments. The approximate
theory forms the basis for a practical solution to the problem. It will
be shown that two fundamental observations render the problem
determinate:

1. The line of action of the resultant of radial stresses

acting at the wheel soil interface approximately bisects

the wheel-soil contact angle, 9., for all values of slip, s.

T

2. A shear stress surface, T = f£(0,s), can be hypothesized.

The influence of soil inertia forces is also evaluated. A concept
of equivalent cohesion is introduced which allows a convenient experi-
mental comparison for both cohesive and frictional soils. This theory
compares favorably with previous analyses and experimental data, and
shows that soil inertia forces influencing the motion of a rolling wheel

can be significant. It is assumed that the inertia forces can be super-

imposed on forces resulting from a static analysis.



CHAPTER 2. WHEEL-SOIL INTERACTTION

As a wheel moves on a deformable soil, a complex interaction takes
place at the wheel-soil contact and in the adjacent soil. Fig. 2-1
illustrates a track and associated shear surfaces resulting from pulling
a 24-inch (61-cm) diameter rigid spherical wheel on Yuma sand.

Model studies of this interaction (Hovland and Mitchell, 1972) show
that the most noticeable features are:

1. Forward bending (movement) of initially vertical soil sections;

some associated lateral movement.

2. Volume change in soil (compression directly under the wheel and

dilation to the sides and front).

3. Shear surfaces, and sliding primarily forward along these

surfaces.

To explain some of the detalls associated witﬁ general
shear , the sequence of rolling and shearing is
diagrammed in Fig. 2-2; (a) the soil before the wheel has rolled over
it; (b) the shear surfaces and deformations that dévelop as the wheel
rolls to the right, to position B; and (c) the appearance of the section
after the wheel has rolled past.

Observations of particular interest are:

1. Shear surfaces do not appear to originate at the wheel surface

(see Fig. 2-2b), as is often considered the case with shear
under a loaded footing.

2. At the time a shear surface develops, its l;wer end is roughly

parallel to the wheel surface. It diverges from a direction
parallel to the wheel surface as it proceeds up and forward.

2
3. A wedge of soil is apparsntly pushed up and forward.



Fig. 2-1. Track and shear surfaces resulting
from pulling a 24~inch diameter,
564-pound sphere on Yuma sand.
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4. Movement along any one shear surface is restricted, as implied
by the relatively short but constant displacements.

5. AShear surfaces are spaced at relatively constant intervals as
can be seen from the spacing of the teeth marks (compressed
remnants of once active shear surfaces).

It is possible to conclude that the shearing process is not
continuous, but consists of separate small shear phenomena spaced at
relatively constant intervals with respect to space and time. The
spacing of the shear surfaces as well as the amount of movement along
any one shear surface is undoubtedly a function of soil type. Hence,
although the rolling of a wheel may appear continuous to the naked eye,
it is possible that the soil acceleration acting on the wheel changes
slightly from one shear surface to the next.

The fact that shearing along any one shear surface appears to be
restricted to a relatively small distance is perhaps associated with
the change in direction of the shear surface with respect to the stress
causing the movement. Most of the movement along'a shear surface
probably takes place when the surface is first formed. At that time,
the shear surface is directed forward at an angle of 45° - ¢/2 to the
direction of the major principal stress. As the wheel moves forwaid,
the shear surface bends or turns toward a more vertical position. As
the wheel passes, the shear surface is again bent down toward a final,
more horizontal position (Fig. 2-2).

An instrumented spherical wheel, which was tested in Yuma sand,
allowed further insight into wheel-soll interaction. The maximum radial
wheel—soil contact pressure increased with increasing wheel load and then

remained approximately constant, as showh in Fig. 2-3. This suggests



that the maximum radial pressure increases until the soil bearing
capacity is reached. With further increase in wheel load, equilibrium
is established by sinkage into the soil, with the load being distributed
over a larger area. It is to be noted that; with the two lightest wheel
loads, no distinct shear planes could be detected. Similar information
can also be deduced from analysis by Vincent (1961) who noted that the
rear wheel-soil contact angle for wheel loads too light to generate
shear is relatively larger than the same angle for wheel loads heavy
enough to generate shear,

The number of shear surfaces that could be distinguished in the
forward shear zone (soil in front of wheel) were counted, and the results
are presented in Fig. 2-4 as a function of track depth. The point on the
horizontal axis of Fig. 2-4 corresponds to the 1200-Newton wheel load in
Fig. 2-3.

The above discussion and data are primarily applicable to a spherical
wheel rolling in sand. For such a soil, the interaction mechanism is
dependent on the state of compaction. In a very loose state, the material
would be compressible and the deformations would consist of both volume
change and shearing distortion, but no general shear surfaces would develop.
In a very dense state, general shear would be more significant, although
volume change and shearing distortion would also take place. The usual
case would involve all three phenomena; initial volume change accompanied
by shearing distortion would be followed by generalnshear.

The following steps appear to be involved as a yheel rolls over a
sand surface:

1. Compression éccurs under the wheel.

2. TInitially vertical soil sections are bent forward.
2
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3. A horseshoe-shaped zone of dilation, which extends from the

sides and around the front of the wheel, develops. This zone
moves forward with the wheel. Some of the external evidence
of this zone of dilation is the bow wave that forms in front

of the wheel,
4. When volume changes and shearing distortion can no longer account
for all the soil that must be displaced, shear surfaces develop.

The development of shear surfaces is probably influenced by the

magnitude of shearing distortion and the magnitude and direction
of the major principal stress.

5. Sliding along the shear surfaces continues only for a short time
and distances, as previously described. ‘

6. After a certain distance, a new shear surface dévelops and the

shearing cycle repeats itself.

7. As ﬁhe wheel rolls forward, deformations assume a final position,
and excess material from the bow wave is wasted to the sides to
form the crests of the track.

Other experimenters have investigated wheel-soil interaction in clay
(Yong and Webb, 1969; Yong and Windisch, 1970). These studies indicate
that deformations are similar in clay although the elastic recovery or
rebound is greater. -

However, the relative importance of cohesion or friction depends on
the nature of the phenomenon being investigated. A soil may be classified
cohesionless by ordinary soil mechanics criteria, and yet for very small
loaded areas cohesion may account for post of the resistance. Consider,
for example, spheres :011ing in a soil typical of lunar soil, with cohesion,
¢, of 20 psf (1 kN/m?) and a friction angle, ¢, of 37°. For analysis

based on bearing capacity theory (Fig. 2-3), cohesion provides most of
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the resistance for a 10-cm in diameter sphere, while friction provides
most of the resistance for a 2-m in diameter sphere, Fig. 2-5 also shows
the relative contribution to total soil resistance (beariﬁg capacity)
from the various terms in the bearing capacity equation (Hovland, 1970),

and it shows how these are influenced by the gravity field.
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CHAPTER 3. GENERAL WHEEL~SOIL INTERACTION THEORY

The developments in this chapter form a basis for theory in subse-

quent chapters. It is hoped that these developments will also be of wvalue

to other wheel-soil interaction investigations which depend on a knowledge

of the distribution of normal and shear stresses along the wheel-soil

interface.

DYNAMIC EQUILIBRIUM

A free-body diagram of a wheel and all the forces and pressures

acting on it

a =

dN =
dF =

dR =

are shown in Fig,., 3-1., The symbols are defined below:
linear acceleration of wheel
angular acceleration of wheel

mass of wheel, W/g

wheel load or weight

acceleration of gravity

linear velocity of wheel

angular velocity of wheel

mass moment of inertia of wheel

input torque

output pull, pull developed by the input torque and thé
wheel~soil traction

differential normal force

differential shear force

differential resultant .

algebraic sum of shear forces along thg wheel-soil contact

algebralc sum of resultants dR

vectorial sum of resultants QR

wheel radius
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Teg = moment arm of any dR
T, = moment arm of R

XyV4Z = coordinates

0 = any central angle measured counterclockwise
Ol = angle between the vertical and front soil contact
92 = angle between the wertical and rear soil contact.

For a rigid wheel rolling on an unyielding surface, the forces
acting on the wheel can be represented graphically as shown in
Fig. 3-2a. Analogously, for a wheel rolling on a deformable surface,
the forces can be represented as shown in Fig. 3-2b. It is, therefore,

valid to express the developed pull by

P = 1/ R? - @2 (3-1)

For the general case represented by Fig, 3-1,

P = R2 - W2 - ma . (3-2)

The unknown in equation (3-2) is the vectorial resultant of all forces
acting at the wheel-soil contact, R, which is a function of the shear

and normal stress distributions.
At any point on the contact surface, the normal stress may be -

defined as °ez and the shear stress as

Tez = C_gq + Gez tan@es ’ (3-3)

If we further include the possibility of a toroidal,‘or other than a
cylindrical wheel, the radius may also be a function of z. (Such cases
have usually been stu&ied using the average wheel radius called the
effective radius, re.) Then the total shear force along the wheel-soil

&
contact is for the general case
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Fig. 3-2. Force polygons of forces acting on a wheel.
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Fa = _l];z(caﬁs + Geztandes)dedz (3-4)

In the above equations, the subscripts 6, s, and z indicate that the
parameter having the subscripts is a function of the contact angle, 0,
slip, s, and the dimension perpendicular to the plane of the paper, z.
Also, in these equations, c,6 = wheel~to~soll cohesion or adhesion and

§ = the wheel~to~-soil friction angle. The mobilization of c, and ¢

will be considered later. They are in general much lower than the soil-

. to-soil cohesion, c, and the soil-to-soil angle of shéaring resigtance, ¢.
Taking moments about the center of the wheel (Fig. 3-1) and noting

that all the normal forces go through the center,
v = = - ’ -
Reg =Fr=T-1u | (3-5)

Thus we note that the quantity er' is determinable if either the total
shear force, Fa; or the 1nput torque, T, and the dynamics of the wheel

are known. In this case,

R = -}%— (T - Tu) (3-6)
£

If the input torque and wheel dynamics are not known, a more general’
and interesting'case since it demonstrates the dependence on soil type,

we have, from combining equations (3-4) and (3-5),
T =1 2 -
R = -r-g Fa -]-:-; ffrz (caesmeztanﬁes)dedz (3-7)

Combining equations (3+2) and (3-7) results in a general expression for

the developed pull

? 2
(P4ma)? = [;-].'- ﬂ rz2 (caesweztanﬁes)dﬁdz] - w? (3-8)
f
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which is valid for any pressure distribution and any soil obeying

the Mohr-Coulomb failure criteriom.

From this point the derivation will be continued for a cylindrical

wheel, and it will be assumed that the pressure distribution is a representa-

tive average with respect to z. Equation (3-8) then reduces to
(P4ma) 2 r* +0 tand, )do|> - W
;§ (caes ptan es)d - W (3-9)

It now remains to evaluate the force components associated with R,

and r%.

FORCE COMPONENT EQUATIONS

Consider the wheel-soil contact shown in Fig. 3-3 and the forces
acting there.

Depending on the sign of 6 (the location on the wheel-soil contact
of the point in question), the sign of the dNY forces will always be
positive, thle the sign of the dFy, de, and de forces will vary
depending on @ and the state of slip of the wheel. By appropriately

adding up all the x and y force components,
2 _ 2 2 -
R (Fx + Nx) + (Fy + Ny) J (3 %0)

the vectorial resultant.

The terms in equation (3-10) can be evaluated from:

dN = o, dA

9 10 ,.d8 (3-11)

0

d¥ T,dA

e

r7d0 ' (3-12)



Figo 3—30

Forces broken to x and y components.
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F =1 /ﬁTGCOSGde
x -
N = —r-jfc s8infdb
X 6
(3-13)
F =r | 1,8in0db .
y 6

r[ O,.cos0d6
y 6

SLIP AND INSTANTANEOUS WHEEL VELOCITY

=
i

The instantaneous velocity of the wheel, can be easily determined
(see also Andreyer, Sitkei, and Janosi (Bekker, 1969)). |
Velocity components of a rolling wheel are showﬁ in Fig. 3-4.
The wheel is moving to the right with a velocity, Vc/x; of the
center of the wheel with respect to an instantaneous coordinate system,
x, fixed to é far point in the soil. Point, p, has a tangential
velocity With respect to the center of the wheel of vp/c' The desired
velocity, vp/x,vis that of the point p with respect to x and it is the

vector sum of v and v .
p/ec c/x

vp/x = gﬁlc + Veo/x (3-14)
or.
| vp/x = 4/0Vc/x - vP/ccose)2 + (vp/csine)2 (3t15)
Slip may be defined as
1= DRDI-{- DT (3-16)

where DR = distance wheel would have revolved had it been rolling on a hard

surface without slip, and DT = distance wheel actually travelled. Then

DT _ |
R 1 - i (3-17)
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Fig. 3-4. Velocity components of a rolling wheel.
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but also,

v
DT cl/x c/
DR v t v = (3-18)
- ple p/e

t v

where t = time; therefore,

Substituting equation (3-19) into equation (3-15) gives

v 1/[(1-1) - cosB]? + sin?0 (3-20)

p/x - 'ple

which defines the magnitude of the instantaneous velocity of any point
on the wheel perifery.

The direction of vp/x can also be determined., First, let

A= A, -8 (3-21)
v -V cosf
A, = tan™t ( c‘/, x s% 3 ) | (3-22)
ple
v - v cosf
- -1{ ¢/x p/c
A, =6 - tan ( Le_ ple ) (3-23)
p/c

~

Substituting equation (3-19) into equation (3-23), and simplifying gives

-1 ((l—i) ~ cosb

-A1= © - tan sTnd (3-24)

To establish a graphical solution for the instantaneous center of
rotation, it would be interesting to determine at what vertical distance,
y, from the bottom dead center of the wheel a line drawn at an angle A1

to the tangent at a point would intersect a vertical drawn through C.

Referring again to Fig. 3-4,
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y=d-z (3-25)
but d = rsinetan(9+A1)
= r sinetanA2
- -1 ,(1-i) - cos©
Ay = tan™ 55 )
z = r(l - cosB)

With these substitutions

_ -1,(1-i) - cosb |
y = rsinftan [;an ( e )] - r(l-cost)  (3-26)
Simplifying
Yoo s (1-i) - cosB, _
= sind ( ey ) -1+ cose‘
or %.= -1 (3-27)

This equation shows that the instantaneous center of rotation is located
a vertical distance, ri, from the bottom dead center of the wheel-soil
contact. For positive slip (+1), a distance +y = +ri above, and for

negative slip (41), a distance -~y = -ri below the bottom dead center of

the wheel.

Theréfore, the magnitude of the velocity of any point along the wheel
perifery with respect to a fixed coordinate system in the soil can be deter-
mined from equation (3-20), and the direction of the same vel?city can be
determined using equation (3-24) or graphically using the instantaneous

-

center of rotation.

THE FRICTION CIRCLE METHOD

The forces acting along a sliding contact are 1llustrated in
y _

Fig., 3-5.



‘Fig. 3-5.

Forces acting along a sliding contact.
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Clearly the direction of dR for any differential contact area, dA, is
defined by the angle, ¢

T,dA c

tand = S = —= = (B':' + tand) (3-28)

Then, the moment arm of any dR (Fig. 3-1) must be

Teg = rsind (3-29)

f

Noting that if the ratio ca/Ue in equation (3-28) is insignificant or
zero, and if we have soil-to-soll sliding with friction angle ¢ rather

than §,

r.. = rsin® = rsin(tan-ltan¢) = reind = r

£0 (3-30)

f

Equation (3-30) defines the radius of the friction circle as used by
Taylor (1937). (Taylor first introduced the friction circle method for the

analysis of the stability of cohesionless embankments.) In equation (3-30),

Teo is independent of 6 and therefore equal to Tee
Combining equations (3-4) and (3-29) we obtain

¥
f_1 fa
Teg sin® R

Equation (3-31) expresses the extent by which the moment arm to the

(3-31)

resultant R differs from the moment arm to a dR force. That there is a
difference between r% and Teq Can be clearly illustrated for c, = 0 as

shown in Fig. 3-6. Whereas all the dR forces in Fig, 3~6 are tangent to
the friction ;ircle with radius rfe, the resultaﬁt of any two dR forces,

such as dR 29 acts at a slightly greater distance, rglz. Analogously, the

1

resultant of all dR forces will also act at a somewhat greater distance,

f

e The difference 1s anticipated to bhe small, howéver, and the correction

factor, r%/rfe, will be evaluated for certain cases of interest.
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The friction circle method, c, = 0.
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RIGID WHEEL IN COHESIONLESS SOIL

For a rigid cylindrical wheel driven at constant velocity in a

cohesionless soil for which c, = 0, equation (3-9) reduces to

P2 = | I, 6 o|* - w
= |5r Jeantg ogio|” - v (3-32)

and equation (3-31) becomes

r! F

£ 1 a
i TR pem—tnn m—— (3_33)
Te sinées R

Using equations (3~5) and (3-33), equation (3-32) can be expressed in

terms of the r%/rf ratio

[o} C-2
2 _ r 0 2 _
P {r%/rf ,[003598 de] W (3-34)

Using the force component equations (3-10), (3-12) and (3-13), the
correction ratio, r%/rf, can be solved from equation (3-33) for any
integrable distribution of radial pressure at the wheel-soil contact.
For a constant pressure distribution, for example, equation (3-33)

reduces to

- 1 (343;)
£ V2 Jl-cosBT

iy -

H! &

which is identical to Taylor's solution (GT = total wheel-soil contact
angle). Taylor (1937) presents values of this correction ratio (Fig. 3-7)
for both a constant and a sinusoidal pressure distrib;tion. A constant
pressure distribution is a good approximation for a pure clay; a sinusoidal

pressure distribution is a good approximation for a pure sand. Other

:
pressure distributions would likely lead to some intermediate correction.
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Sirce Fig. 3-7 shows that the correction factor is very small (1-6%)
for either cése, for contact angles less than 70°, we may consider
equation (3-34) a nearly rigorous solution for the pull that can be
developed in a cohesionless soil.

The theoretical developments presented in this chapter are all
based on the Mohr—Coulomb failure criterion, and depend on a knowledge
of the shear and normal stress distributions along the ﬁheel—soil
contact. It is recognized‘that these pressure distributions are
difficult. to determine. In the next chapter it will be shown that, for
all practical purposes, certain observations make it bossible to bypass

the difficult question of pressure distributions.
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CHAPTER 4. APPROXIMATE WHEEL-SOIL INTERACTION THEORY

LINE OF ACTION OF RESULTANT OF RADIAL STRESSES--A fUNDAMENTAL OBSERVATION

The line of aétion of the resultant of radial stresses approximately
bisects the wheel-soil contact angle, GT, for all values of slip, s.

This observation 1is supported by:

a) A rational argumenf based on a cylindrical wheel rolling down
a soll slope at coustant velocity

b) An empirical argument based on data from spheres rolling down a
soil slope at constant velocity

¢) Test data from many wheel-soil interaction experiments.

A relatively simple approximate theory is then developed.

EVIDENCE IN SUPPORT OF THIS OBSERVATION

Cylindrical Wheel Rolling Down a Soil Slope

A cylindrical wheel rolling down a soil slope is shown in Fig. 4-1.
The symbols in Fig. 4-1 are defined as follows:

W

welght of wheel

m = mass of wheel

R = resultant soil reaction force

R.X = component of R parallel to slope

Ry = component of R normal to slope

r = radius of wheel

r% = distance from center of wheel to line of«action of R

1 = moment of inertia of wheel
a = linear acceleration of wheel

. :
u = angular acceleration of wheel
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A
1 ,I’ ‘} . \
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4
R ™
) 4 A ,

Fig. 4-1. Dynamic equilibrium of a cylindrical wheel
rolling down a soil slope.
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X,y = coordinate directions

o slope angle
Negative slip wusually takes place as a wheel rolls freely down a slope,
and, therefore, a # ur.

Applying Newton's Second Law, using the method of dynamic equilibrium,

ma and Iu are considered acting opposite to their actual sense, as shown by

the dotted arrows in Fig. 4-1. We then have

+4 R =0=R - Wcos d, R =W cos o 4-1
8 y kR “-D

1 2: RX =0=Wsin o - Rx - ma, R.x = sin a - Wg (4—2)

# S M, =0=Rr. - Iu R =2yflu (4-3)
2: G £ ? 5 re g

The resultant, R, in terms of Ry and Rx’ is

R? = R2 + R? (4~4)
x Uy

Substituting Ry_and Ry from equations (4~1) and (4-2) into equation (4-4)
gives

2 1/2
R=W [(sin o - -Zi) + cosza] (4-5)

If a and u Qere established experimentally (this can be easily done by
taking movies of the rolling wheels), R and T could be determined from
equations (4-3) and (4-5). This would give the magnitude and direction
of the resultant soil reaction, R, as well as its point of action on the
wheel surface.

For constant velocity rolling, (a = 0), equation (4-5) shows that
R = W, and has the same line of action. Net shear étresées at the wheel-
30il contact must be zero since moments about the wheel center are zero.

Because soil contact pressure tends to distribute itself about the point
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of application of the load, W, the resultant of soil sfresses, R, must
pass approximately through the middle of the wheel-soil contact area.
Further, the continuous process of rolling requires that the line
between the wheel center and the wheel-soil rear contact be nearly perpendi-
cular to the slope. (Soil exhibits some rebound, and the line between the
wheel center and thelwheel—soil rear contact deviates from a perpendicular
by 62). There conditions are illustrated in Fig. 4-2., From these condi~
tions a unique relationship can be established between track geometry and
slope angle. If the line between the front and the rear wheel-soil contacts

is horizontal,
z - - -
1 cos (20 + 62) (4-6)

It has been argued that for a cylindrical wheel rolling at constant
velocity down a slope, the resultant of radial contact stresses bisects
the wheel-soll contact angle, GT, and a unique relationship exists between
sinkage and slope angle (equation (4-6)), which is independent of wheel
load. A free-body diagram of a wheel rolling on a horizontal surface
would differ from the above case only with respecﬁ to the direction of W,
resulting in R = W/coso.,

Therefore, a rational argument exists for the wvalidity of the observa-

~

tion stated on page 29. What about experimental evidence?

Spheres Rolling Down a Soil Slope

For a sphere (spherical wheel) rolling down a soil slope, the track

width, w, is related to the sinkage geometry (Fig. 4-2) by

w2
- 8in(20 + 02) = =

wis

(4-7)
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= 2((2"‘92)'

cos (6;-8,) =1-%
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-

Fig. 4-2,

L]/

Wheel rolling down a soil slope.
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which, again, is a unique relationship independent of sphere load, for
constant velocity rolling only.

Sphereé rolled on Yuma sand provided an opportunity to test equation
(4-7) for 62 = 0. These experiments are described in detail by Hovland
(1970). Fig. 4-3 shows the comparison. The agreement is best for loose,
moist sand. In this material the tracks left by the rolling sphere had
sharp, well-defined edges which could be accurately measured. The devia-
tion is greatest for loose, dry sand where the tracks tended to cave or
slump, and where the crest-to-crest track width, w, measured was undoubtedly
somewhat greater than the track width at the time the sphere was in contact
witﬁ the soil,

Experimental Data on Wheel-Soil Contact Angles
and Radial Stresses

Physical reasoning would indicate that the resultant of radial stresses,
at least for low values of slip, should approximately bisect the contact
angle. The value of stress must be zero at the front contact and zero at
the rear contact. For high positive or negative wvalues of slip, however,
this is not obvious. To compare data from various experiments for all

values of slip, a redefinition of slip is first desirable.

The most common definition of slip, equation (3-16), is .
DR -~ DT _ DT ' _
i DR 1 DR _ (3-16)

where DR = distance wheel perifery rolled, and DT = distance wheel traveled.
Fig. 4~4a shows a plot of eQuation (3-16). A purely skidding wheel, DT/DR
= o, ywould plot at i = = ©, This is consistent dith'the instantaneous
center of rotation, but not ﬁseful for developing tﬁeofy valid for the

whole slip range. Some investigators (for example, Sela, 1964) define

k4
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Fig. 4-4. Illustration of definitions of slip.
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positive slip by equation (3-16) but negative slip by

., _DT-DR _. DR .
- DT 1 - o7 (4-8)

Therefore, it is necessary to have one mathematical expression which

is valid for all values of slip. This is achieved by

L DT
_ DR - DT _ DR

®TDR+DT | DT (4-9)
DR

The author prefers equation (4-9) because a purely spinning wheel has slip
s = +1, and a purely skidding wheel has slip s = -1 (see also Fig. 4-4b).
Since all definitions are functions of DT/DR, one can always go from one
definition to ahother. Occasionally in the literature the definition for
slip has not been explicitly stated. In such a case, it has been assumed
that slip was defined by equation (3-16).

Of the data considered, Sela's‘(1964) showed the most consistent
relationship and also extended over a larger ranée of slip values (Fig.
4-5). The data suggests that the position of the resultant of radial
(normal) pressures, BN, moves slightly forward with increasing slip. All
the data (Fig. 4-6) support the same trend.

A statistical analysis of all the points between s = - ,3 and s = +.3
(Fig. 4-7) shows that the mean is 0.49 and the standard deviation is 0.06.
Comparing inférmation in Figs. 4-5, 4-6, and 4-7, an average drawn through
Sela's data is about one standard deviation above the mean based on all
the data, but the slope of the average line is‘about the same.

In order to use the data in Fig. 4-6, for example, it is necessary
to separate out 61 apd 62. Considering 62, when s = -1, 62 should equal
zero, and when s = +1, 62 should approach 61 as slip sinkage increases.

Thus, if 82/6T were plotted vs. slip, some kind of curve beginning with a
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Fig. 4~7. Frequency distribution of the line of action
of the resultant of radial stresses for data
in the range -.3 < 8 < + .3,
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low value of 62/6T in the negative slip range, and increasing with increasing
slip should be expected. Fig. 4-8 shows an attempt to plot BZ/BT vs.
slip. The scatter does not invalidate the plot, but it does illustrate
that much more detailed experiments are necessary to establish what
influences 62; particular attention should be given to the influence of
soil types.
Fig. 4~9 shows a plot of GN/S1 vs. slip. The plot in Fig. 4—6 shows
a better correlation, however.
The data in Fig. 4-6 can be approximated by the line

GN + 62 ] SN + 0
BT 61 + 6

= 0.5 + 0.1s (4-10)
2

A curve through the centroid of points in Fig. 4~8 can be approximated by

82 e
s = —-0.5 + 40 -é—-') (4-11)
T
or
3] 0
ég,= 5 i — = (s +0.5)l/e (4-12)
T 1 2
Combining equations (4-10) and (4-12)
Oy (.5 ~ .1s)
=—= (.5 + .1s) + - (4-13)
6 1/e
1 1- ( 40 )
s+.5

Judging by the fit between the data and the curve (equation (4-13)) in
Fig. 4-9, the equations appear to be adequate, and the curve in Fig.

4-8 1s a good first approximation.

«

THEORY

Forces Acting on a Wheel

The forces acting on a wheel operating on a horizontal surface are
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shown in Fig. 4-10. Four cases are shown: 1) a driven wheel generating
pull (+F, +P), 2) a.self propelled wheel (+F, P = 0), 3) a towed wheel
(F=0, - P), and 4) a braked wheel (-F, = -~ P). As shown in Fig. 4-10,

if GN and W are known and ¥ is assumed to act perpendicular to N, the
problem is determinate. Arguments and data were presented for GN in

the previous section. F does not always act perpendicular to N, and a
correction will be developed. Interestingly, the line of action of F is
likely to deviate most from a perpendicular to N for low and moderate
mobilizations of F, For high values of iF, when consequences of the devia-
tion could be significant, F acts approximately perpendicular to N.

The following expressions can be written directly from Fig. 4-10:

R? = N* + F? (4-14)
RZ = P2 + Wz (4"‘15)
N = WcosSN - PsinBN (4-16)

In these equations, all forces are vectorial unless otherwise noted.
From equations (4~14) and (4-15),

P2 = N? + F? - w? , (4-17)
The algebraic¢ sum of shear stresseé at the wheel-soil contact can be
expressed by

Fa = Ntanées f Acaes | -~ {4-18)
where A = the wheel-soil contagt area = weTr (w = wheel width). (To
abreviate slightly the subsequént equations, the subscripts 0 and s are
omitted from § and ca).
Taking moments about the center of the wheel, the Vgcorial F is

F
a

T/t (4~-19)

The correction ratio r/r will be considered separately.

4



Fig. 4-10.

Forces acting on a wheel opérating
on a horizontal surface.
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Substituting eduations (4-16), (4-18), and (4-19) into equation (4~17)

gives

p\2 P \2 tans \? P tan§ %4
(ﬁ) = (COSQN W sineN) [1 + ('i’-:;';:”) :|+ 2 (coseN -9 SinQN) WT

2

Ac
+( — ) -1 (4-20)
Wr/r

For a pure sand (ca==0), equation (4-20) becomes

2
(%)2 = (cosGN - % sinGN) [l+(-t—a£§->2J -1 (4-21)

¥/r

For a pure clay (§ = 0), equation (4-20) becomes

. Ac 2
=] = {cosf. -~ = sinb + -1 (4-22)
(W ‘ N W N Wr/r .

For a towed wheel, net shear stresses are zero, which can also be accom~

plished by letting c, and § in equation (4-20) equal zero

P\? P 2
(ﬁ) = (cosGN -z sinGN) -1 (4-23)

These equations are valid for all conditions illustrated in Fig. 4-10.
Although the equations are lengthy, they are not difficult to solve; the
variables are ON, S, C,» and GT. Testing yields §, and s for every case

of interest. Anticipated sinkage and previous developments in this report

yield GN and GT.

Consideration of Magnitude and Direction of F

«

It was noted by equation (4-18) that Fa in that equation was algebraic,
and that, taking moments about the center of the wheel, the vectorial F is
Fa ' »

F = _;_7; . (4~19)
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where T = moment arm to action of F. Then

F
a

\Y Fx + Fy

v

or
r Tedﬂ
‘/ (r./"t'ecosﬂde)2 + (rf'ces:'mﬁde)2

=

|l

(4-25)

For a constant shear stress distribution, equation (4-25) reduces to

°r

= /2 - 2cos T - (4-26)

Ml

which is identical to equation (3—37i. Therefore, the same correction
chart (Fig. 3-7) can be used.
For a sinusoidal shear stress distribution,‘equation (4-25) reduces
to
) |
= —T (4-27)

s
2

!

cos

which is, again, the same correction obtained by Taylor (1937) the
correction is found from'Fig. 3-7.

The amount by which the direction of F deviates from a perpendicuiar
to the direction of N is illustratéd in Fig. 4-11. This deviation can be

expressed by

F
loy + 6, = 8] = |8, + 6, - tan” " 7| (4-28)
X «

where
F! r S t,sin0d6
J_ - 0 |
Fx' r fTecosedB

(4-29)

Solving equation (4-28), using equation (4—2@),for a constant and a sinu-

soidal shear stress distribution respectively, gives



)—Xl

vertical

2

Fig. 4-11. The angle by which the direction of F deviates
from a perpendicular to the direction of N.
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8
T
Tg = constant, lON +62-6F! = iSN +62—-§—|
(4-30)
eT
Tg = sinusoidal, IBN +62—6F| = IGN +62- 7?4

In other words, for constant and sinusoidal shear stress distributioms,
equations (4-30) show that the deviation is equal to the deviation of the
line of action of N from GT/Z.v Figs, 4-6 and 4-7 show that QN + 62

is not likely to deviate much from.GT/Z.

Inaccuracy Resulting from an Error in Selected Contact Angles

Observing equations (4-20) through (4-23), iL appears that an error in
selecting GN and associated 62 would have the greatest influence in the
case of a towed wheel, equation (4-23). Therefore, only the case of a
towed wheel will be considered. This case can be expressed more simply

from Fig. 4-10 as

PT
W = taneN (4-31)

The magnitude by which the computed pull differs from the correct pull

can be expressed by the ratio

)

- 8
correct tan( N correct).

(B /W) tan (0

comp, N comp.
(PT/W)

(4-32)

Based on the data in Figs. 4-6 and 4-8, it is most likely that a high
value of (GN + 62)/6T is associated with a high value of 62/6T° Therefore,
the deviation of eN- from the mean can be expressed as a function of GT

and 62 from

GN + 62 GN 62 » .
= + = = meah * standard deviation
8 6 GT

T T




giving
0 9
N
o = (.50 £ .06) - 5=
T T
Then we have for
6, + 6 8
N
high 5 2 > eN =
T T
8
mean " , §§-=
T
8
low " , —EL-=
eT

The pull ratio computed from equation (4-32), using the mean

-56 - 03

.26

.30

.34

‘(ON = 0.3 HT) as the correct value, is presented in Table 4-1.

Table 4-1 Ratio of Computed to Correct Pull

8 + 0, 0,

Orp 0 50° 50° 60° 90° | 120°
high

0.5¢0.06| 1.00 | 0.87 | 0.86 | 0.86 | 0.85 | 0.84
low

0.5-0.06| 1.00 | 1.13 | 1.14 | 1.15 | 1.16 | 1.18

50

(4-33)

Since for a mormal distribution, the range from -~(one standard devia-

tion) to +(one standard deviation) contains 68.27% of the data, it can be

?

concluded that for about 687 of wheel-soil interaction cases the computed
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pull will be within about 157 of the correct value. fhis conclusion is,
of course, based on the data presented in Figs. 4-5 through 4-9. With
fufure careful testing of (GN + 62)/6T as a function of soil conditions
and wheel conditions, it should be possible to reduce this theoretical

error to a smaller value.
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CHAPTER 5. WHEEL SINKAGE

WHEEL SINKAGE AND CONTACT ANGLES

The towed force (negative pull = -P = PT) expressed by equation (4~23)
is a function of W and BN only. As illustrated in Fig. 4-~10, every"
state of slip of a wheel has associated with it a motion resistance, Nx'

For a horizontal surface the Nx/Ny ratio can be expressed directly

N

x - —
ﬁ; tane.N (4-31)

The sinkage, z, associated with this angle, 0 is 1llustrated in

N 3
Fig. 5-1. Sinkage is here defined as the vertical distance between the

bottom dead center of the wheel and the front wheel-scil contact
z = 1(1 - cosel) i (5~-1)
from which

= cos™} 2 ‘ -
Ql =cos (1 -2 D) (5~2)

where D = wheel diameter. ¥From Fig. 4-9, we note that BN /61 is

nearly constant and equal to 0.4 for most likely slip values. Therefore,

-1
eN = 004 cos (l - 2 %) (5-3)
Combining equations (4-31) and (5-3) gives

N -

T = tan[0.4 cos™!(1 - 2 9] | (5-4)

y

Equation (5-4) relates sinkage to the motion resistance for a rigid
cylindrical wheel. It is an approximate solution essentially independent

’
of slip. Improvements to equation (5-4) should be sought from improved
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Fig. 5-1. Relationship between sinkage and wheel-soil
contact angles. o
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data of the.type plotted in Fig. 4~9. To check equation (5~4), experimental
data from towed wheels are compared in Fig. 5~2, “

Many relationships between sinkage and rolling resistance have been
advanced previously, and many of these are éonveniently summarized by
Schuring (1972). He defines rolling resistance as p = sinBN. With this
definition and equation (5-3), rolling resistance can be expres;ed as a
function of sinkage. This leads to results which are almost identical with
the Bernstein line (Schuring, 1972). The experiméntal data reported by
Schuring in this paper deviate from the Bernstein line particularly for
driven, pneumatic tires and low sinkagé. (Actual rolling resistance appears
to be considerably less than predicted.) Schuring proposes an explanation
for this deviation: For low sinkage, the rear angle, 62, tends to be
proportionately larger, which leads to a smaller BN and smaller rolling
resistance. He also proposes a relationship which seems to acecount for the

influence of 62 rather well.

PRESSURE~SINKAGE RELATIONS

While equation (5-4) relates sinkage to motion resistance,'Nx, it
cannot be used to compute sinkage directly from soil parameters. To do
this, an independent relationship is required. .
Perhapé tﬁe most commonly used formula in the field of off—road’.

mobility, to define vertical stress-strain relationships, is (Bekker,

1969)

k ] :
q = [ - + k¢ z . (5~5)
where q = bearing pressure on a plate of width, w, and sinkage, z. The

constants kc and k¢, and exponent n are determined from testing and curve

fitting. Bekker (1969) presents a thoroygh description of the use of
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equation (5~5), and many experimentally determined pressure~sinkage curves.
A significant amplification of the type of pressure-sinkage relation-
ship represented by equation (5-5) has been made by Firth (1968). On the

basis of dimensional analysis, he derived a more general pressure-sinkage

relationship.
L. gf.m E.n—l £lo, — (5~6)
YV A L ’ vz
where V = volume of probe below plane of original surface
A = cross-sectional area of probe in plane of original surface
% = major dimension of area, A

m and n are exponents to be determined from testing
Some separately postulated relatlonships, such as equation (5-5), are, in.
fact, special cases of equation (5-6) (Firth, 1967).

Alternatively, it is possible to use plasticity theory for pressure-
sinkage relationships. A notable application of @lasticity theory to the
wheel-soil interaction problem has been made by Karafiath (1971) in an
effort to predict stress distribution beneath wheels. His studies have
also provided valuable information on the effect éf soil pore water
pressures in wheel-soil interaction (Karafiath, 1972).

Bearing capacity theory (a special solution based on plasticity theory)
can also be used for pressure-sinkage relationships. The bearing capacity

equation

YW

q = —g— NY + cNC + q'Nq (5-7)

-

was first derived by Terzaghi (1943). Equation (5-7) is a function of
sinkage by 1) q' = YSZ/Z, and 2) q = N/A, where A, the wheel-soil contact

area, is a function of sinkage.



57

The main assumption in both Karafiath's analysis and equation (5~7)
is that of two~dimensionality (an infinite dimension perpendicular to
the plane of rolling in the case of wheel-soil interaction). Analysis
based on this assumption, therefore, may be, at best, adequate for
relatively wide wheels and for those cases‘where theory is substantiated
or modified b& experiments.

It is customary to modify the bearing capacity equation by shape
factors (SY and s, = sq) for other than an infinitelyylong load-soil
contact area. Using shape factors, and noting that Nq = Nc tand+l,

equation (5-7) can be expressed for rectangular loaded areas as

Y% :
q =5 SYNY + scq[(c+q tan¢)Nc +q") (5-8)

where Yg = soil unit weight, w = width of contact area, q' = surcharge,
and N_,
Y
soil friction angle, ¢, and slope angle, 0, (Meyerhof, 1951).

Nc, and Nq are bearing capacity factors which are functions of

While equation (5-8) has some empirical backing and considerable
precedent in soil mechanics practice, it has nét,'to the author's
knowledge, Been experimentally modified or substantiated fdr rectangular
wheel-soil contact areas. Although equation (5-8) will be suggested
for long, rectangular, wheel-soil contact areas, its use in wheel-soil
interaction must be considered hypothetical.

Bearing capacity theory can, however, be modified.by experiments
for specific cases of wheel-soil interaction. Extensive testing (Hovland,
1970) demonstrates that bearing capacity theory can be used to evaluate
pressure-sinkage relationships of rolling spheres and spherical wheels.
Fig. 5~3 shows a comparison between theoretical (modified bearing

capacity theory) and experimental values of the density ratio, yr/ys,
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vs. track width to diameter ratio, w/D. Fig. 5~4 shows a comparison
between theoretical and experimental values of sphere‘diameter vs, track
width to diameter ratio, w/D. In these figures Y, = sphere unit weight.
Fig. 5-5 shows a comparison between theoretical (calculated) and ex~—
perimental friction angle values. The theoretical values were again
calculated from bearing capacity theory modified to the rolling sphere~
soil interaction problem (see equation (7-12)).

Such testing showed that, for the sphere-soil interaction problem,
the bearing capacity factors (Meyerhof, 1951) need td be modified in
equation (5-8). Specifically, for a sphere or spheticél wheel

N
Y

~

Nysphere

i

o= e

and N
C
sphere

N
c

Substituting these bearing capacity factors into equation (5-8) gives

for a spherical wheel

_Ys”
1=73

NY Nc

sY‘77-+ ch,[(c + q'tan¢) -+ q'] _; (5-9)

We have, therefore, matched bearing capacity theory in an approxi-
mate way to two end-points of the wheel-soil interaction problem; 1)
a rather narrow cylindrical wheel for which equation (5-8) applies, and
2) a spherical wheel, which is analogous to a wide wheel or a very light
wheel, for which.equation (5-9) applies. What about intermediate
conditions?

Fig. 5-6a illustrates wheel-soil contact areas, as viewed from above,
for various wheels:

(1) A spherical wheel.
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(2) A wide cylindrical wheel with a contact area approximately
equal in shape to that of a spherical wheel.
(3) A cylindrical wheel with a square contact area, at which

point the &/w ratio in the shape factor expressions

sY = (1 - .3 %}

and ' (5-10)

L

s 1+.2;)

cq B (
equals one.
(4) A typical cylindrical wheel with sufficient sinkage for the
%/w ratio to be larger than one, at which point the ratio
must be inverted, giving
, Sy T (l -3 %1 o
and’ (5-11)
scq = (1 + .2 %’
(5) A rather narrow cylindrical wheel.
For the condition of Fig. 5-6a (1), equation (5-9) applies, using
the ratio Z/W in determining the shape factors. For the condition of
Fig. 5-6a (5), equation (5-8) applies, using the ratio w/% in determining
the shape factors. For intermediate cases, compute ﬁhe shape factors
from equations (5-10) and (5-11), and select from Fig. 5-6b the COérection
factor to the bearing capacity factors of equatioﬁs (5-8) and (5-9). 1In

all cases, select the bearing capacity factors from Meyerhof (1951)

(Figs. 5-7, and 5-8), using GN = Meyerhof's Bm.
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CHAPTER 6. MOBILIZATION OF SHEAR STRESSES

SLIP AT A POINT

The relationship between measured slip and slié'at any point along
the wheel-soil contact is illustrated in Fig. 6-1. Slip is established
from measured distance through which the wheel revolved, DR, and distance
through which the wheel traveled, DT. The measured slip (slip by its usual
definition) takes place at the bottom dead center of the wheel, and may

be expressed as

_ DR - DT : _
S 7 DR + DT : (4-9)
from which
DT 1 -s
T , _ (6-1)

S1iip at a point, SB’ is a function of 0, and may be expressed from

Fig. 6~1 as

_ DR - DT cos@
® DR + DT cosb ~ (6-2)

s

combining equations (6-1) and(6-2),

_ 1 - cosB + s (1+cosh)

%0 =1+ cosb + s (1-cosB)

(6-3)

Because the expression of slip at a point (equation 6-3) may be new,
it is desirable to see if predictions of its value are realistic. A
surface of slip at a point, Sg» is plotted in Fig. 6-2. The surface
appears to be realistic and in accord with physical feasoning. Note
particularly the cross-hatched area at the towed point; as the wheel load
increases, the wheel-soil contact angle increases, and the towed point
moves to a higher'negaﬁive slip value. When the necessary relationships

are established, later in this chapter, the towed point.will be reconsidered.
»
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DT COS 8

%4_—07
DR = Const.

Fig. 6-1, Slip as a function of 0.
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SOIL DISPLACEMENT VS, SLIP

A shear ring type of test (Bekker, 1969) (Fig. 6—35) is probably most
realistic for establishing wheel—-soil interface strength parameters c
and §. In this type of test, soil is allowed to strain
analogously to what happens to the soil under a wheel. Cbmbare this test for
ekample, to a direct shear test where strain is limited to a very narrow zone;
peak strength would occur at a much smaller displaéeﬁent‘in a direct shear
test than in a ring shear type of test shown in Fig, 6~3b.

In this type of test, however, as in the case of the wheel, it is
difficult to establish fundamental stress-strain relatibﬁships since
strain cannot be defined. That is, the vertical diétance, Az, to which
soil deforms is unknown. It is, however, possible to establish displace-
ment relationships which may be useful.

Fig. 6-3 1illustrates soil displacements and terminology for
wheel- and ring-soil interaction. For the wheel, the rate of displacement

can be expressed as

ﬁg _ DR - DT _ Oy Ty - O &, -1 _ Oy rw,i (6-4)
t t t t
w W w W

where tw = time increment for wheel, and i = slip as defined by equation
(3-16). » -

For the ring shear test (Fig. 6-3b)

where tt = time increment for test.
An equivalence may be written from equations (6-4) and (6-5) by

assuming that the rate of soil displacement for the wheel and the test

are the same
&
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'Fig. 6-3. Soil displacements for wheel and test.
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._7__.AW/tW =1 = _E__E_i’.:. (1) (6-6)
At tt et rt tw

If instead it is required that the strains for the wheel and the test be

equal,
€, ,ew,rw Azt :
— = 1= (i) . (6-7)
et Bt r, Azw ,

While these equations may be useful in selecting test setup and
equipment, they do not tell us the slip, associated with a particular
displacement.

From equation (6-4)
A =8 ri - (6-8)

where r is the radius of the wheel, consistent with our earlier

definition. Using equations (3-16) and (4-9), equation (6-8) can be

expressed in terms of "s"

A = ' (6~9)

Solving for s from equation (6~3) and substituting for s into equation

(1 - Se) -
AW = ewr 1 -~ Ti;g;j—zsgg ) (6—10)

(6-9):

Note that if 6 = 0, 8 = 8, and equation (6-10) reduces to equation (6-9).
To facilitate certain comparisons and illustrative calculations to
be presented in this report, equation (6-10) is plotﬁed in Fig. 6-4 for

6 = 0, assuming Ow = § In reality, Gw could have any value; however,

T’
physical reasoning suggests that BW = GT is a good first approximation, and

it provides a convenient bridge from slip at a point to displacement.



At or Aw (in)

20 Y T
<,
15 %
,,\”-’
& r
%,
10
O
R
5 [\}
B¢ > 2
0 l 1 |
0 ._2 6 .8
S Or Sg

Fig . 6"4 .

Plot of equatioix (6-10).

72



73

With better understanding of the wheel-soil interaétion process,
the functional relationship expressed by equation (6-10) undoubtedly
will need to be mbdified. For instance, AW is probably a function of
soil type; a coefficient, which would be very small for a brittle soil
and relatively large for a very plastic soil, may be required. Further,
it appears that soil elements influenced by the wheel are subjected to
various states of shear; while some soil elements are in a state
analogous to direct shear for high values of slip, some soil elements
are in a state analogous to compression for‘low values of slip. These

complexities also need to be considered.

WHEEL~SOIL INTERFACE STRENGTH PARAMETERS

As in many other engineering problems, the fundamental relationships
to be obtained from testing are stresg-~displacement cufves. Suppose that
testing of a wheel surface material to soil, using a ring shear device,
yields the curves shown in Fig. 6-5a (three tests - three different normal
pressures - are adequate). From Fig. 6-5a shear.stress vs. normal stress
lines can be plotted for various displacements (Fig..6—5b). From Fig. 6-5b
strength parameters, c, and §, can be plotted as a fﬁncinn of displacement

(Fig. 6-5c). These are the required wheel-soil strength parameters.

SHEAR STRESS SURFACE

Experimental wheel-soil interaction data suggest a shear stress
surface, T = f (s, 68). An attempt will now be made to predict such a
surface from the previously presented relationships. The procedure is
as follows: |

1. Testing yields soil strength parameters, ca‘and § as a function

of displacement (Fig. 6-5). ’
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2. Slip, s, can be éonverted to slip, Sg» using equation (6-3).

3. Displacement can be related to slip, 8gs frém'Figq 6-4.

4. The sﬁeér parameters are then known for slip at any point, 8g»
along the wheel-soil contact. |

5. Therefofe, the shear stress mobilized at any'foint along the
wheel-soil contact can be computed'from o

T + 0y tand_g (6-11)

s - Casf
In this predictién, the normal’stress distribution, oe; may'be assumed
sinusoidal for a sand and constant for a pure clay. -Fbr any real soil,
the normal stress distribution is probably closer té_sihusoidal.

The predicted shear stress surface is shown iﬁ Fig. 6-6, which shows
a three-dimensional view. In this figure thé contact angle, 6, is plotted
on the horizontal axis, slip, s, is plottéd on the diagonal axis, and shear
stress is plotted on the vertical axis, The front part of the surface
(dotted lines) is below the 6, s plane and the rear part (solid lines) is
above the 6, s plane. The normal stress distribution wa§ assumed to be |
sinusoidal. Soil strength parameters were’obtained from Fig. 6~5, with
e, = 10.0 at disblacement = 0. In Fig. 6-4, ST r was assumed to equal
10 inches. Foi a 20-inch diameter wheel, GT would then #e approximately

~

60 degrees. The rear wheel-soil contact angle, 62, was agsumed to be 10

degrees.,

The predicted shear stress surface appéars quiﬁe pealistic.‘ The
towed point forvthis case occurs approximately at s = #0.08; it is indicated
by the cross-hétched area in Fig. 6-6. If friction at the wheel hub is
zero, torque must be zero for a towed wheel (see also Yong and Webb, 1969),

and the towed point is characterized by

. #
- ﬁ:ede =0 (6-12)
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In summéry; given three stress-displacement curves, it is possible
to estimate the shear stress mobilized at any point along the wheel-soil

contact, for any value of slip.
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CHAPTER ‘7. SOIL INERTIA IN WHEEL-SOIL INTERACTION
In previous investigations of wheel-soil interaction phenomena, the
. influence of inertia forces of moving soil have usually been assumed to be
negligible. Although this assumption is probably valid for many wheel-
so0il interaction problems, it is supported by 1imitéd in&estigations and
experimental data.

The investigations described in this chapter present a universally
applicable hypothesis, to be tested experimentally. The’hYpothesis is
based on the concept of a soil wedge being continuously formed and
accelerated in front of the wheel. | | |

Fig. 2-1 illustrates a track and associated sheér surfaces resulting
from pulling a 24-inch (6l-cm) diameter wheel on Yuma sand. The extent of
the shear surfaces is evaluated, andAtheory is,#resented from which the
mass and acceleration of the moving soil can be deduced, thus forming the

basis for evaluation of soil inertia forces.

THEORETICAL ANALYSIS
The resistance to a rolling wheel caused by the inertia of the soil

set into motion by the wheel, R_, is the product of the mass of soil

I’

involved, m_, and its acceleration, a_,

RI = m_ a (7-1)

Mass of Moving Soil

Boundary of soil wedge:

A mechani;ﬁ of shear in front of and below a wheel rolling down a soil
slope is shown in Fig. 7-1. Imagine that the wheel center is at position 1.
As the wheel cenﬁer moves from position 1 to 2 and then to 3, the front of

the wheel moves.respectively from 1' to 2! then 3'. As the wheel moves
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from position 1, a shear surface confining an incremental soil wedge forms
withran active Rankine zone aibici, a radial shear zone with log-spiral
center at a;, an& a passive Rankine zone. As the wheel continues to move
(roll), the active Rankine zone grows and new shear surfaces form. Evidence
for such shear surfaces is shown in Fig. 2-1; shear surfaces have also been
observed in model tests (Hovland and Mitchell, 1972). The active Rankine
zone and the corresponding soil wedge continue to grow until a limiting
(maximum) size of wedge is formed. Beyond that point, new limiting (maximum)
soil wedges will continue to form as the wheel rolls forward. It has been
found that the maximum soil wedge (see Fig. 7-1) can be defined approximately
by
1. An active Rankine zone, azbzcy, where distance (azb2) equals one~-
half the soil-wheel contact or 1/2 (ad,), with angle ¥ = 1.2 ¢
(Meyerhof, 1955) |
2. A radial shear zone with log-spiral center at a:
3. A passive Rankine zone with 9, and 63 as indicated (Sokolovski,
1969; Karafiath and Nowatzki, 1968)
As the wheel moves from 2 to 3, the limiting soil wedge will deform and
move out with relative motion, as shown by the arrows in Fig. 7-1. At this
point, the active Rankine zone will be more compressed and the center’ of
the log-spiral will be located at the intersection of the 8, line, with
the vertical drawn through c33. At this point, with the center of the log-
spiral directly above c3, motion along this ultimate shear surface will
stop, since the angle between the direction of motion 6f the active Rankine
zone and the normal to the shear surface is ¢. For the wheel at position 3,
the limiting soil wedge, constructed with the center of the log-spiral at
3, has the same size as that constructed for the wheel at 2 with the center

of the log-spiral at a,.
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To investigate how well the soil wedge selected by the procedure out-
lined above describes the actual soil wedge, a 24-inch (6i cm) diameter
spherical wheel was rolled on Yuma sand, and the extent of the shear zones
in front of and to the sides of the wheel were measured. Fig. 7-2 gives
the results of this comparison. Predicted distance of forward shear (the
distance at which the shear surface exits the slope) is plotted in comparison
with measured distance of forward shear for different wheel loads. The
measured distance of forward shear is the disténce from the crest of the
track to the furthest shear surface. The measured distance of side shear
is also shown. It is the width of the shear zone on the side of the track
measured from the crest of the track. The selected shear surface geometry
appears to be adequate.

Mass of soil wedge:

Due to mathematical complexities in expressing exactl;4the mass of
soil bounded by a log—-spiral shear surface, and inhereﬁt assumptions in
applying plasticity theory to the wheel-soil interaction problem, an
approximation for the mass of soil is developed.

A longitudinal section of the boundary confining the moving soil,
and an approximation to that boundary confining approximatgly the same mass
of soil are shown in Fig. 7-3a. The ratio of d/do is plotted in Fig. 7-3b;
this ratio was determined graphically. The curve in Fig. 7-3b can be
expfessed by

1
= 1+ 0.002¢ 77

ol

(7-2)
o

where ¢ is the soil friction angle in degrees.

From Fig. 7-3a, it follows that
8

Top
d = V2 (7-3)

0 A ;
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Wheel load vs. predicted and measured dimension of soil wedge.
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where r = radius of wheel, 9T = wheel-soil contact angle (see Fig. 7-1).
Fig. 7-2 suggests that the width of the moving soil wedge can be approximated
by 1.4 w, where w is the track width. Then, the mass of soil can be expressed

as

ps wd?
m = pV = 0.7

s s's tanf, (7-4)

where Py = soil mass density and VS = so0il volume.

Acceleration of Moving Soil

Acceleration of the moving soil wedge is related to its velocity.
Velocity of the soil wedge is, in turn, related to the velocity of the
wheel, which is known. It is, therefore, of interest to express the soil
acceleration in terms of the velocity of the wheel.

Maximum soil acceleration as a function of average soil velocity:

Since motion of the soil wedge starts from rest and stops after the
rolling wheel has passed, the initial and final soil velocities are known
to be zero., Somewhere in between, the velocity of the shearing soil reaches
a maximum. Fig. 7-4 shows experimentally determined disténce, velocity,
and acceleration relationships for shearing soil wedges. ' The plots were
made from films taken of rolling spheres. Some 200 spheres were rolled on
Yuma sand carefully prepared to desired densities in large soil cars at
the U. S. Army Waterways Experiment Station (WES) (Hovland and Mitchell,
1971), and in some cases it was possible to determine the motion of soil
wedges.

The relationships shown in Fig. 7-4 can be approximated theoretically
by various assumed functions as listed in Table 7-1 and plotted in Fig. 7-5.
The indicated accelerations, as; velocities, Vi and diétances, xs; are

derived from the assumed function by simple ;differentiation and integration.
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Functions Approximating Motion of Soil Wedge

Table 7-1

86

Assumed Function Resulting Expressions Maximum
acceleration
. . t a
Linear acceleration = 6 (1-2 T:—-) re y
s s 6 -2
ts
a = - Bt + By =5_.E(1.__££)v
s s
2
-~ L et l_lt
= 6 t (2 3¢t ) Va
s s
72 t Va v
Sinusoidal velocity = - =—cos [T (1- =] — a
2 t t 4.9 —
s s t
s
v, = Bisin (B+B3t) = —g-sin [n (1 - -E*)] Va
]
—————— ‘s t
= 5 [cos[n(1l - —t—-)] + 1] v,
s
Va v
Step acceleration = 4 4{1
s s
t
a_ = constant = 4 v -
[ at
s
= £
= 2 V.t
s
t Va va
Sinusoidal acceleration = 27 sin (Zﬂ-‘-__—-) . o 6.28 e
s s s

a = amaxsin(B1t+Bz)

t
(1 - cos (217-;__——)) v,
s
t

(t - -ZST- sin (gm%—)) v, |
s
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In Table 7-1, va‘= average soil velocity, ts = time in which soil moves, and
B, B2, and B3 are integration constants,

By comparing the experimental curves (Fig 7-4) and the theoretical
curves (Fig. 7-5), and the values of maximum acceleration listed in Table
7-1, the following conclusions can be made:

1. Since a small difference in the distaﬁce vs. time curve (Fig. 7-5)
can lead to a drastic difference in the acceleration curve, it is
difficult to interpret the exact acceleration function from an
experimentally measured distance vs. time curve.

2. Since the maximum accelerations for .the various functions (Table
7-1, Fig. 7-5) only vary from 4 va/tS to 6.28 Va/ts’ it is not
necessary to know the exact acceleration function, for a first
approximation.

3. The curves in Fig. 7-4 show greatest resemblance to the step
acceleration and sinusoidal velocity functions in Fig. 7-5 for
which a = 4 va/tS and 4.9 valﬁs, respectively.

In the following development, & ax = 5 Va/tS will be used. Deviations

from this value will then be within * 20Z of the range of functioms
considered.

Average soil velocity as a function of wheel velocity: .

Fig. 7-1 indicates that in the time the wheel moves from 2 to 3, the
s0il wedge (midpoint of a,c,) moves approximately 1/6 that distance in the
same direction. Therefore, the average soil velocity is

v .
V. % v (7-5)

where v = velocity of the wheel parallel to the slope. The maximum soil
acceleration may‘then be expressed as
?

v
e (7-6)
S

®
I
o
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To have a useful expression for ag it is necessary to eliminate tS from
equation (7-6). Observations of wheel-soil interaction show that the soil
at a;, Fig. 7-1, begins to move before the wheel reaches position 1. With
the very limited experimental data available on this problem, it will be
assumed that the soil moves in the time the wheel moves twice the distance
from position 1 to 3 in Fig. 7-1. Then we can say that tS = GTr/v, and

2

- 2V _
8 T % GTr @-7

<

It is now possible to compare experimental maximum soil accelerations
shown in Fig. 7-4 and theoretical values determined using equations (7-6)

and (7-7). This comparison is shown in Table 7-2,

Table 7-2

Comparison Between Experimental and Theoretical Accelerations

Identification Experimental Theoretical
Soil car|Slope|Sphere v ts g aS(Eq.7—6) aS(Eq.7—7)
° Diam. (cm/sec) {(sec) | (em/sec?) | (cm/sec?) | (em/sec?)
(cm) '
1 20 12 19 .25 67 63 51
4 25 | 25 27 .085 320 265 102
4 35 25 106 .085 1060 1040 1675 -

In Table 7-2, the theoretical accelerations computed using equation (7-6) and
experimental values for ts compare well., The theoretical accelerations

computed using equation (7-7) and the assumed value for tS compare less well,

Soil Inertia Resistance to a Rolling Wheel
Combining equations (7-4) and (7-7) gives

O.58pswd2 v?
i

R, =
1 tanf; GTr

(7-8)
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This inertia force can be expressed as force per unit area of wheel to soil
contact, analogous to unit bearing capacity, by dividing by the contact
area, eTrw,

0.58 p_ d? 2

97 = “tand, (GTr) (7-9)

A convenient dimensionless expression results by dividing both sides by Py &8

and substituting for d, equations (7-2) and (7-3)

2

I, @ +0.002 BT 2 (7100

psgw 13.8 tanf; wg 7
or

q 2

1 v

= B — 7-11

oo b (7-11)

where
2
g - 1+ o0.0020 H77)
13.8 tanf;

As an aid in solving equation (7-11), values of B are presented in Fig. 7-6.
As « approachgs ¢, 03 approaches zero and B approaches infinity. Since such
values of B are unreasonable, Fig. 7-6 is considered valid for o f_¢ - 5°

only; i.e., the solid portion of the curves only.

SCHURING'S ANALYSIS X

It is also possible to study the effects of inertia forces by consider-
ing the floﬁation providéd a moving wheel by soil inertia and soil static
forces (bearing capacity). It is to be noted that while the volume of the
soil wedge is no;.a function of cohesion (previous sect}on), bearing
capacity is a function of both cohesion and friction. Thus, at this point

cohesion, ¢, is introduced.

Schuring (1968) studied inertia forces by moving plates at various
2
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velocities and inplinéd at yarious angles to a bed of soft clay. He plotted
his results as shown in Fig. 7-7. This plot is analogous to the familiar
Moody diagram in fluid mechanics; the ratio plotted on the vertical axis

is similar to the drag coefficient and the ratio plotted on the horizontal
axis corresponds to Reynolds number. Schuring concluded that:

1. For ordinary vehicular speeds, inertia effects are likely to be
insignificantly small.

2. "For special applications, such as dynamic testing and aircraft
landing, inertia of accelerated soil may be the most important
factor."

Wheel velocities which lead to either insignificant or significant
(static range and dynamic range, respectively) inertia forces can be
conveniently separated by plotting data as shown in Fig. 7-7. 1In the
static range, where inertia forces are negligible, data plot along a 45°
line. 1In the dynamic range, where inertia forces predominate, data
become asymptotic to the horizontal axis. Thus, this approach places
bounds on velocities for which inertia forces can be neglected and for
which they predominate.

This ingenious approach appears to have two shortcomings, which Schuring
also recognized. First, although the method is good for separating -
negligible and predominating inertia forces, it does not provide a basis
for predicting performance for specific conditions, particularly in the
transition range. Further, data for a ¢ - ¢ soil cannot be accounted for.
(¢ represents an additional parameter, and the frictioﬁal force is further
complicated by being a function of the normal force (see Schuring, 1968)).
The theoretical analysis presented earlier in this’paper attempts to
overcome the first shortcoming. A concept pf equivalent cohesion pre-

sented below attempts to overcome the second shortcoming.
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EQUIVALENT COHESION

While a general relationship between cohesion, ¢, and frictiom, ¢,
is not possible (c and ¢ being independent soil parameters), it is always
possible to express‘the total effect of the two by one strength parameter.
for any one type of problem. Soil resistance to a rolling wheel can be
considered a bearing capacity type of problem. (It has been demonstrated
that bearing capacity theory can be used as a basis for analyzing soil
resistance to freely rolling spherical wheels and spﬁeres (see Chapter 5
and Hovland and Mitchell, 1971). It is believed that phenomenologically
bearing capacity theory can provide the basis for analyzing soil resistance
of rolling wheels in general). Thus, for this specific problem, an
equivalent cohesion is developed below.

The general bearing capacity equation (5~7), was adapted to the rolling

sphere problem (Hovland and Mitchell, 1971)

4a_ . £ 5 % -
W 0.188 NYs + 1.1 Y, NCS + 0.55 - Nqs (7-12)

where
q = soil bearing capacity

N , N, N = bearing capacity factors (Meyerhof,Al951)

=2
R

0.25 N
v

=
13

0.50 N
c
N =N tan¢ + 1
cs
z = sinkage

Ys = 501l unit weight = psg

If a soil (x) 1s to give the same resistance as a soil (1),

q c zZ
WYs)x [.‘188NYS +1.1 (WYS) N__ +0.55 (W) Nqs]
e = 1 = -

1_ [.188N +1.1 (YN +0.55 (E)N ]
Ws)p Ys wyY cs w/ Tgs g

(7-13)

s
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- = 0.25 NY’ Ncs = 0.5 Nc,

and Nqs = Ncs tand + 1 leads to an expression for cx/c1

Rearranging equétion (7-13) and substituting N

[

0
(]

c wy N N -N N
—£ [—1— (%}(-ﬁf-‘- tand, - tambx) + 0.085 ( LN vs) ] rt (-14)
1 cX cX cX

In this equation geometrical parameters are held constant (wx =w, = W),

and Yox = Y .= Y. A c~¢ soll can be treated as an equivalent Co soil by

8

letting ¢x in equation (7-14) equal zero

c c N N

e _|1lz W 3 Y X1 -

— [2 = tanp + - ] S+ 0.085 & (7-15)
S 8 cX cxX

where Nc1 and NYl are determined for ¢ = ¢1, and ch is determined for ¢=0.

Using equivalent cohesion as determined from equation (7-15), experi-
mental data for any c ~ ¢ soil can be analyzed on the type of plot shown in
Fig.‘7—7. Comparing theory and experimental data on this type of plot has

certain important implications, which are discussed subsequently.

DISCUSSION

Theory Compared with Schuring's Data

To compare predictions of the theoretical analysis presented in this
paper with Schuring's data, load-soil interaction must be e%pressed for
comparable geometries. The geometries of a rolling whéel and Schuring's
plate are illustrated in Fig. 7-8, The geometries are comparable, and
the wheel geometry is defined, if the‘length and orientation of the chord-
length for a wheel-soil contact is the same as the length, %, and the

orientation of the plate.
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Fig. 7-8.

Comparable geometries for wheel and plate.
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The axes of Fig. 7-7 can now be expressed in terms of developed theory

using equation (7-11) and Fig. 7-8:

lift R*  (a+ap .
inertia force pslzgf - g Beosa’, and.
vip_ g
inertia force - s _ 1
cohesion force c Bce

where o' = inclination of plate; % = length of plate in the plane of the
paper, equal to the chord distance of GT; and Ry= 1ift, equal to the vertical
component of the total bearing capacity. In working out the parameters of
these axes, qq is computed from equation (7-11), ¢ is computed from equation
(7-12), assuming o' = slope angle in determining the bearing capacity

factors (Meyerhof, 1951), and c, is computed from equation (7-15).

Ordinates and abscissas were computed as described above for the soil
conditions of Schuring's tests. His experimental curves are compared with
theoretical predictions, curves A and A', in Fig. 7-9. While for Schuring's
experimental curves, the separation in the static range is caused by a
change in coheéion, c, the separation for the theoretical curves A and A'
is primarily caused by the change in o' from 15° to 30°. Schuring's data
for ¢ = 165 psf (8.1 kN/m?) are very close to the theoretical curves. For
\the data for c = 35 psf (1.7 kN/m®), the experimental ordinate is more than
twice the theoretical ordinate for high velocities. Since the mechanisms
of soil shear under a rolling wheel (theofetical analyéis) and a bulldozing
plate (Schuring's data) are somewhat different, a closeragreement for this
comparison shouid not be expected. ' -

The influence of changes in soll parameters on 1gert1a forces 1g also

illustrated in Fig. 7-9. If ¢; is increased from zero to 10°, 20° and 30°,

»
*In Schuring's analysis, £ = area of plate (verbal communication with Mr.
Schuring).
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keeping all other soil parameters in curve A constant,v_ce increases from

165 psf to 250, 420, and 780 psf (8.1 kN/m® to 12.2, 20.6, and 38,2 kN/m?)
respectively, and we obfain curves B, C, and D. Therefore, in the dynamic
range, curves A, B, C, and D separate with an increase in ¢. If, instead,-c;
is increased, keeping $: = 0, curve A remains unchanged. This behavior is
consistent with plasticity theory, which predicts that the volume of a

soil wedge is a function of ¢ but is not a funetion of c.

Theory Compared with Data from Rolling Sphere Tests

An experimental compérison can also be made for spheres rolled on
Yuma sand (Hovland and Mitchell, 1971); In this case, experimental values
for the ordinates and abscissas for the type of plot shown in Fig. 7-7 are
most conveniently determined as R/(pslzvz) and (psvz)/ce, respectively.
Dynamic equilibrium of a freely rolling sphere (Hovland and Mitchell, 1971)
(see also Fig. 4-1 and equation (4-5)) shows that

1/2

2
R = W (sino - é) + cos?a] (7-16)

where R = vertical force or lift, W = sphere weight, and a = sphere
acceleration. Since W, a, and o are known, R can be‘calculated from
equation (7-16). The sphere-soil contact area is 22 - 0.393 w? (Hovland
and Mitchell, 1971), where w = track width. Theoretical values for the
ordinates and abscissas are determined as B(é + qI)/qi) and qI/(Bce),.
where 9y is computed from equation (7-11), q is computgd from equation
(7-12), and c, is computed from equation (7-15). Note that for a freely
rolling sphere, the forces are vertical as determined, and the cosa

correction of the ordinate values is not necessary. Table 7-3 lists the

type of data compared and Fig. 7-10 shows the comparison.
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Table 7-3

Data for Spheres Rolled on Yuma Sand

101

Experimental Data Basis for The;fetical Curves
Curve Soil
on Cars Range | Range of O ve | ¥ Pg ci co
Fig. 7-10 of 2’(cm) Dave oan2 ;° (gm/cmz)( Jem?)
0° D (gg sec ) gm/cm
(cm) cm*
A 1,2 15-25} .45~-1.00 | 20 .68 .00150 | 37 0 12
B 3 10-35 | .30~.65 20 .40 .00165 | 42 2.1 36
c 14,8,9f 10~35 | .10-.47 20 .33 .00150 { 37 10.5 85
c 5,6,7] 10-351] .32-.87 20 .61 .00128 | 32 4.8 28

If Figs. 7-9 and 7-10 are compared, it will be noted that the data for

Yuma sand (32° < ¢ < 42°)are approximately averaged byISchuring's c =

165

psf (8.1 kN/m?) line, for which ¢ = 0. This suggests that, in the static

range, data plotted in terms of Co tend to converge to a narrow zone.

While it has been argued that a change in cohesion has a minor effect,

curves A and C in Fig. 7-10 suggest that a change in w/D .can have a much

larger effect.

comparison. between theory and experimental data.

However, the curves in Fig. 7-10 provide only a general

Note that while

the curves were determined for an average w/D,.for the experimental

data, w/D changed from data point to data point.

A more direct comparison is shown in Fig. 7-11, where the actual w/D

ratio for each point was used in computing the theoretical values.

general, the comparison is good.

02

In

The data in both Figs. 7-10 and 7-11

particulﬁrly for cars 1, 2, and 3 show a relatively large amount of scatter.

Most of the data for the spheres rolled on moist, dense Yuma sand (cér 4)

2

lie approximately 20% below the 45° line. Most of the data for the spheres
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rolled on moist, loose Yuma sand (cars 5,6,7) lie approximately 207% above
the 45° line.

Since for the soil conditions of these tests (Table 7-3) B varies
approximately from 0.75 to 1.25 (Fig. 7-6) with an average value of 1.00,
the relative contribution due to soil inertia is approximately the in?erse
of the value of the axes in Fig. 7-11. That is, for R/(p_Av®) =1, 10,
and 100, inertia QOntribution to total scil resistance is approximately 100%,
10% and 1% respectively. Therefore, to the right of R/(pSAVZ) = 10, the
comparison is indirect evidence for the applicability of bearing capacity
theory in wheel-soil interaction. For all data to the left of R/(pssz) =
10 in Fig. 7-11, soil inertia forces were significant. This fact is not
clearly revealed in Fig. 7-10, where the data essentially plot along a
straight 45° line with no indication of bending into the transition range.

For low valﬁes of the abscissa in Fig. 7-11, the data tend to be above
the 45° line. Although the data are limited, this suggesté that for these
rolling spheres, the theory underestimated the inertia.effects by perhaps
50%.

Value of Theory to Experimental Work

While the agreement between theory and experimental data is generally
good, although very preliminary, it is equally important that B can»be
determined experimentally. At high velocities (100 mi/hr.), as 4z becomes
very large, (qI + q)/qI approaches one, and the value.of the ordinate
(for example in Fig. 7-10) approaches B.

It will be recalled that the assumptions used in developing equation
(7-11) are all incorporated into B. Therefore, as experimental data on B
become available for various soils, the assumptions can be checked and

better analysis will be possible.
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The expression for B used in equation (7-11) can be generalized as
vy a
B = —S——a-;— . (7-17)
(O1) “w o
where VS = volume of soil, and wa is a function or coefficient relating the
2
v

acceleration of the moving soil to the velocity of the wheel (aS = wa 6;9.

The only unknowns in equation (7-17) are Vv, and wa' Therefore, experimentally
determining B is a way of backcalculating sza' Since wa may be close to
one (see equation (7-7)), experimentally determining 8 is a way of back-
calculating the volume of moving soil.
Examples

To illustrate the practical implications of the theoretical analysis,
consider first a Cessna 150 attempting a landing on a éoft playa or marsh.
If the gross weight of the airplane is assumed to be 1600 1b. (7300 N), at
what velocity will severe and immobilizing sinkage of the wheels begin? (At
what velocity will the wheel loads exceed the total 1ift?) Fig. 7-12 shows
the velocity at which the wheels begin to sink severely into the soil, the
total 1ift, and the 1lift provided by soil inertia forces as a percentage
of total lift. (Soil and wheel conditions are indicated in Fig. 7-12.)
The curve shown is computed in accordance with presented theory, and no
experimental data are available at this time for comparison. )

Consider now the inertial contribution to 1lift of the Lunar Roving
Vehicle (LRV) operated on the surface of ;he moon. Estimates by the
theoretical analysis are shown in Fig. 7~13. (Soil conditions are as
indicated.) Inertia forces are shown to be significaﬁf at low velocities.
Note that, on the mooh, soil forces which are dependeﬁt on gravity are
reduced by 1/6; therefore, the contributions due to inertia and cohesion

are relatively six times more important. *
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CONDITIONS:

w =7" L=s7", z:=2"

¢ =10°

C = 500psf: 24.5 kN/m?

Ys = 100 pcf = 16.0 kN/m?

VELOCITY, v, Km/hr
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1500 . , , ,

1 L}
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Fig. 7-12. Relative importance of soil inertia forces for a light
airplane landing on a soft clayey soil.
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CONDITIONS :
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20 psf = 0.98 kN/m?

c
Y= 100/6 pcf = 16/6 kN/m?>

VELOCITY , v, Km/hr
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Fig. 7-13. Relative importance of soil inertia forces for the Lunar
Roving Vehicle operated on the surface of the moon.
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While in the first example (Fig. 7-12) the wheellload is higher than
the static bearing capacity, the wheel load for the Lunar Roving Vehicle
(appr. 35 1b = 160 N on the moon) is much less than the static bearing
capacity (appr. 118 1b = 540 N on the moon). Therefore, not all the soil
within the soil wedge defined by theory moves. The relative amount of
s0il that moves can, however, be estimated.

Radial ptessure, o, at a wheel—soil‘contact is prpportional to the
resistance to shear that is mobilized along a shear surface. Resistance
to shear is proportional to the normal pressure along'the shear surface.
The normal pressure at any point along the shear surfacé (see Fig. 7-1) can
be estimated by adding the pressure due to wheel load and the pressure due
to soil weight. (The préssure aue>to the wheel load can be estimated from
theory of presSure beneath a uniform load on an elastic half-space.)

Assuming that for an increment of deformation, x, of the soil at the

wheel-soil contact, shear stresses are mobilized along a related portion
AN

of the shear surface, we can estimate and plot resulting radial pressure,
O, vs. displacement, x. Such a plot suggests that the ratio of displace-
ment, x, to displacement for full mobilization of shear stresses along
the shear surface, X ax® €301 be considered proportional to the ratio of

0 to bearing capacity, q, squared. That is, : .

, -
X —a 9) 7-18
o ® (o (7-18)

Therefore, for the LRV wheel-soil interaction, the mégnitude of soil
inertia forces, which are proportional to the amount of moving soil, are
reduced by approximately (35/118)7 = (1/11). This leads to the dashed

line in Fig. 7-13.
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The above exémple also clearly illustrates that the performance of
a deformable wheel operating beiow soil bearing capacity is a different
and a more complex problem than a rigid wheel, aﬁd Fig. 7-13 is intended
as an example and a rough estimate only. Note that while for a rigid
wheel, equilibrium is achieved by appropriate sinkage into the soil, for
a deformable wheel, equilibrium is achieved mainly by appropriate flexure
of the tire.

Based on the dashed curve in Fig. 7-13, soil inertia forces are
likely to contribute from 10 to 20 percent of the total 1ift to the Lunar

Roving Vehicle.

CONCLUSIONS

A theory.has been presented from which inertia forées of moving soil,
influencing the motion of a rolling wheel, can be estimated. The theory
is compared with previous experimental analysis and experimentai data from
rolling spheres; ' These comparisons indicate that the’theoretical pre-
dictions are reasonable, and that predictions specifically of the magnitude
of inertial effects are within 50% of the measured values. These inertial

effects are computed from equation (7-11)

where qy = pressure due to inertia of moving soil (acting in the same
direction as static bearing capacity, q), Pg = mass denéity ofvsoil,

g = acceleration of gravity, w = track width, v = velocity of wheel, and
B is a function of soil friction angle, ¢, and slope angle, 0. Values
of B are given in Fig. 7-6.

A concept of equivalent cohesion is introduced, which allows data for
¢
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and ¢ - ¢ soil to be plotted and analyzed as shown in Figs. 7-7, 7-9, and
7-10. The main advantage of this type of plot is that Bvcan be determined
experimentally from tests at high wheel velocities (100 m/hr = 161 km/hr).
Since all assumptiohs necessary in developing equation (7-11) are incor-
porated in B, refinements in values of B can be made as additional
experimental data‘bécome available.

The studies presented show that soil inertié forces can be important

(5 to 50% of total soil reaction) at even moderate wheel velocities.
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CHAPTER 8. WHEEL~SOIL INTERACTION ANALYSIS

A summary of the relationships derived in the previous chapters

is given below., These relationships are related to:

Sinkage of a wheel
Pull that can be developed from a wheel
Mobilization of shear stresses at the wheel~soil contact

Soil inertia effects

The derivations are all based on the assumption that the wheel-

soil interaction 1s two~dimensional in the sense that relevant inter-

action between soil particles and the wheel is all in the plane of

rolling of the wheel. The presented relationships were based on two

fundamental observations:

l'

Summary of Basic Relationships

The line of action of the resultant of radial stresses approxi-

mately bisects the wheel~soil contact angle, 6., for all values

T
of slip,As.

For developing general wheel-soil interactién theory, all
parameters operating at the wheel-soil interféce are functions
of slip and position. This led to concepts such as 1) slip at
a point, 2) the shear stress surface, and 3) the performa;ce
sufface (to be presented). The general problem requires that

all functional relationships be visualized in some three—~

dimensional way.

For a rigid cylindrical wheel operating in any soil, sinkage can be

related to the towed force by
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N L |
= = tan [0.4 cos -2 %)) (5-4)
y

where z = sinkage, D = wheel diamefer, N

x ~ Wotion resistance, and

Ny = vertical component of N associated with motion resistance (Fig. 4~10).

Sinkage can be estimated, using bearing capacity theory, from equation

(548) or equation (5-9) by noting that the total bearing capacity, Q, must

equal, N, giving

q = §:= z—gz—syNY + ®q [(ctq' tang) N, + q'] . (5-8)
where g = unit bearing capacity

q' =z YS/Z or surcharge

N = resultant of radial stresses

A = wheel-soil contact area = 8prw

w = wheel width
Y. = soil unit weight
¢ = soil cohesion
¢ = soil friction angle
s s = shape factors which can be'deﬁermined from equations
(5-10) and (5-11)
N , N = bearing capacity factors which can be determined from

Figures 5-7 and 5-8, using ON = Meyerhof's,B;

Sinkage can also be estimated from

k

q= [—;]9- + k¢]zn (5-5)

using procedures outlined by Bekker' (1969), and tékihg into account

experience gained from the use of these procedures.
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Pull, P, negative or positive, can be determined from a force polygon

(Fig. 4-10) or from the following equations

For a soil with both cohesion and friction, where the wheel-soil cohesion

c, > 0, and the wheel-goil friction angle § > 0,

P \? ( P 2 ' tand \2
E) = (cosO, - = sinb ) |1+
(W) cos N W sin N) [ (?Yr )'}

2

Ac Ac .
P tand a a
+ Z(COSGN-W sinBN) I W (W ?/r) -1 (4-20)
For a pure sand (ca= 0),
r 08 2
2 = - 2 —-—
P [r%/rf fcosﬁ de] W (3-34)
or
2 2 2
G‘]_) - (cosBN - sineN) [1 + (_%7—‘;9-) ]- 1 (4-21)
T
For a pure clay (6§ = 0),
Ac 2 .
- (ot ()
=1 = [{cosB, - = sinf + -1 ’ -
(w) NW N) W T/r (4-22)

For a towed wheel in any soil,

(

s~

2 P 2
) = (cos()N o sinBN) -1 : (4-23)
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The towed force can also be analyzed from

PT
(—ﬁ—) = taneN (4-31)

Soil inertia forces influencing the wheel can be evaluated from

q 2
I .g¥L (7-11)
P&V gw

where B can be estimated from Fig. 7-6.

In the above eguations, § and c, are functions of position, 0,
and slip, s, but the subscripts were omitted to shorten the expressions.
(The use of § and c, and the mobilization of shear stresses are discussed
in detail in Chapter 6.) The ratios T/r and rglrf, which turn out to be
equal, can be determined from Fig. 3-7. The terms in the above

equations are defined as follows:

c, = wheel-soil cohesion

g = acceleration of gravity

P = pull (negative or positve) for any slip

9 = soil inertia pressure

r = radius of wheel ’

F = radius to line of action of F (vectorial) .
T, = moment arm to dR (see Fig. 3-1)

rg = moment arm to R (see Fig. 3-1)

v = translational velocity of wheel

W = wheel load

B = ahbreviation used in solving equation (7-11), see Fig. 7-6
§ = wheel-soll friction angle

8 = angle identifying any positionsat the wheel soil contact

(see Fig. 3-1)
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Oy = angle to the line of action of the resultant of radial (normal)
stresses

Oy = radial stress at the wheel-soil contact

p. = soil mass density

ANALYSIS PROCEDURE

Suppose that we are to determine performance of a wheel in a given
soil at a particular state of slip of the wheel. In solving all forces
of the force polygon (Fig. 4-10), two separate procedures may be considered:
1) sinkage known, 2) sinkage unknown. These cases will be described in
detail below., The written outline follows the block diagram and

graphical solutions in Figs. 8-1 and 8-2.

Sinkage Known (Fig. 8-1)

Given: Wheel load

Procedure:

1. Determine wheel-soil strength parameters, § and c,» 38 @
function of displacement from 3 ring=shear tests, as shown in
Fig. 6-5.

2. Select ﬁhe appropriate strength parameters, ¢ and [ for desired
slip, using Fig. 6-4 and the test data. .

3. Compute GN from equation (5-~3), and draw to scale W and GN,

4., Assume a value of N and compute F using equations (4-18) and
(4—19). Draw F‘perpendicular to the GN line, and draw N
parallel to the BN line, from F. (‘

5. Compare’F and N to the required closure. The resultant of ¥ and N
must reach the line of action.at P, Whichvis a horizontal line drawn
from the top of W. If the force polygon does not close, a wrong N

)
value was used.
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Fig. 8-1, Solution of the wheel-soil interaction
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6. Select a mew N and compute F; continue stéps 4, 5 and 6
until the force polygon closes.

7. Closure of the force polygon determines the pull, P, and all
other forces associated with the force polygon. Once all
these forces are known, the required tbrque, or torque

associated with F, can also be determined.

Weakest Link:
The weakest 1link or step in the above procedure is probably

that of relating soil parameters to slip (Fig. 6~4). This requires

further research.

Sinkage Unknown (Fig. 8-2)

Given: Wheel load

Procedure:

1. Determine soil strength parameters, ¢ and ¢, and/or coefficients
assoclated with equations (5-5) or (5-6).

2, Compute q vs. %N from equations (5-8) or (5—9) or equations
(5-5) or (5-6), using adlso equation (5-3).

3. Assume a value of N giving a value for QN. Draw to scale W and GN.
4, Determine wheel-soil strength parameters, ¢ and c,s 28 2 function
of displacement from 3 ring-shear tests, as shown in Fig. 6-5.

5. 8Select the appropriate strength parameters, G'and.ca, for
desired slip, using Fig. 6-4 and the test data.

6. Compute F using equation (4-18) and (4-19), 'and draw F perpendi-
cular to the 6y 1ine Draw N parallel to‘the BN‘ line, from F,.

7. Compare F and N with the required closure.

4
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Fig. 8~-2. Solution of the wheel-soil interaction
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8. 1If the force polygon does not close,‘select a new N, compute
a new F, and continue steps 3, 6, 7, and 8 until appropriate
closure is achieved.

9. Closure of the force polygon determines all the forces
consistent with the computed sinkage and wheel-soil contact
angles. Again, the torque, T, associated with F can now be

determined.

Weakest Link:

The weékest link or step in the above procedure (sinkage
unknown) is probably that of estimating sinkage (step 2), either
using bearing capacity theory or equations (5-5) or (5-6). This
requires further research. 1In addition, step 5, which relates soil

parameters to slip (Fig. 6-4), requires further research.

COMPARISONS

it has not been possible to compare predictions based on the
procedures outlined above directly with experimental data, because
the type of displacement dependent wheel-soil strength parameters
(Fig. 6~5) required have not been found in the literature. It is
possible, however, to make some general comparisons. -

A common expression for developed pull (Bekker, 1969) is

P=H-R (8-1)
H = Ac + Wtan¢
& .

% = b

where H = traction developed by the wheel, Rb = motion resistance, k = a

sinkage coefficient, and the exponent x varies between 1 and 2.
?
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Consider the simple case of a pure sand with 6.='45°, k = k¢ = 3,

and a wheel with w = 5 and D = 20. Equation (8-1) then reduces to

P=W -3 : (8-2)

Based on theory presented in this report, the same simple case can
bé studied using equation (4~21). For the same soil conditions used
above, and assuming r/r = 1, equation (4-21) reduces to

P2 = 2(Wcos6N - PsinBN)2 -w: (8-3)

While equation (8-2) is a function of the width of the wheel,
equation (8-3) is just an equilibrium solution of forces in the plane of
rolling. Equation (8-3) incorporates also the case of an undeformable
surface, such as may be the case with a rail. Note that'in this case
GN = 0, and equation (8-3) reduces to P/W = 1. This is obviously correct
for § = 45°.

For a deformable surface, such as a soil, GN is a function of W.
Assume for the sake of this comparison that ON increases linearly from
0 to 20 degrees as W increases from 0 to 300. On this basis, equations
(8~2) and (8~3) are compared in Fig. 8-3. As shown, the two theories lead
to similar P vs. W relationships for this simple case. Ih the use of
equation (8-2), the trick is to select the proper x. In the use of equation
(8-3), the trick is to select the proper GN.

The influence of the uncertainty in selecting GN was also evaluated
by solving equation (8-3) for GN t one standard deviation, based on data in
Figs. 4~5 to 4~9. The range suggested by these solut}ons is shown by the
cross~hatched area in Fig. 8-3. The same range can also be defined by
x = 1.87 and x = 1.91. While it may be difficult to even distinguish

between 1.87 and 1.91 by curve-fitting techniques, this range represents
} .
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Fig. 8-3. Comparison between equations (8-2) and (8-3).
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approximately 68% of the data shown in Figs. 4-5 to 4-9. The potential
value of presented theory, rather than theory based on aﬁ exponential
equation, is therefore demonstrated. Solutions can be more accurately
bracketed by eN rather than x.

Considerafion of ﬁull as a function of both sliﬁ, s, and position, 0O,
suggest a performance surface as illustrated in Fig. 8—4. Reanalysis of
data by Leflaive,_1967, demonstrates experimentally the same type of surface,
as shown in Fig. 8-5. There is a separate P vs. s relétionship for each
value of W, Therefore, P/W by itself, although very ffequently given in
the literature, may not be a very meaningful dimensionless parameter.

It is also possible to predict a performance surface from theory
presented in this report. Such a surface (Fig. 8-6) was computed on the
basis of Leflaive's wheel and sinkage data, and Figs. 6-4 and 6-5. It is
to be noted that Figs. 8~5 and 8-6 are not comparable; a comparable
theoretical prediction could only be made using soil étrength parameter
relationships based on actual testing instead of Fig. 6~5. Fig. 8-6
illustrates, however, the general and realistic nature of the prediction.
Also, the performance surface of Fig. 8-6 suggests a more plastic soil than
that of Fig. 8-5, where there is essentially no increase in pull, P, beyond

s =+ .15. ‘ ot

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Approximate and general solutions have been develoﬁed for a rigid cylindrical
wheel operating in soil. A detailed summary of these Aevelopments was pre-
sented earlier in this chapter. The Sblutions deal with

1. Sinkage of a wheel

2. Pull that can be developed from a wheel
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Fig. 8-4. Performance surface; pull as a function of wheel load and slip.



123

200~
© towed
+ s=0
& s=.143
x s¥.45
100

P
~(ib) ©

—100L-

200 w |0 165 270 375 570
symbol| © & X 8 +

100 |-

Fig. 8-5. Performance surface, rigid wheel data,
Leflaive (1967)

¥



124
200

100

P
(ib) O

-100

200

Fig. 8-6. Predicted performance surface.
i



125

3. Mobilization of shear stresses at the wheel-soil contact
4. Soil inertia effects |
The solutions are primarily the result of simple considerations of statics
and dynamics. The error associated with the solutions can be evaluated,
and theoretical predictions are likely to be within 157 of the correct value.
For each of the four phenomena listed above, the developments suggest
how prediction of wheel-soil interaction can be improved, and these items
are discussed below.

Recommendations

Sinkage of a Wheel:

Sinkage, as computed from equation (5-7), is subject to typical
limitations of bearing capacity theory. Because the wheel-soil interaction
problem requires an exact solutlon as opposed to an uppér or lower bound,
if bearing capaeity theory is to be used, it must be tailored specifically
to fit the problem. This is possible, as was demonstrated by ﬁodifying
the bearing capacity equation to the case of rigid spherical wheels (Fig.
5-3, 5-4, and 5-5). The intermediate cases (3) and (4) in Fig. 5-6a,
require further research.

Tests should be conducted where soil conditions are controlled, and
careful measurements are made of wheel-soil contact angles, 61, 92, ST,
and GN as these are influenced by the state of slip of the wheel. Then
the measured wheel load and pull or towed force can be compared to predic-
tions by the bearing capacity equation, and more realistic shape factors
and correction factors to the bearing capacity factors,can be developed.

The observation that the line of action of the resultant of radial
stresses approximately bisects the Wheel-éoil contact angle for all values

of slip, which is substantiated by data in gigs. 4-5 and 4-6, clearly
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suggest that the mobilization of shear stresses along the wheel-soil
contact, and the mobilization of radial stresses, are associlated Qith two
separate mechanisms. It is believed that the resultant of radial stresses,
N, should be related to bearing capacity for all values of slip.

Pull that can be developed from a wheel:

Further, whilé much data has been accumulated on performance para-
meters, much less detailed data is available on wheel~soil contact angles.
Since it has been demonstrated that, knowing GN, the wheel~soil interaction
problem becomeg determinate, careful data on GN should be collected. With
the data presented in Figs. 4~5 through 4-9, it is pfdbable that about 687
of predictions of pull will be within approximately 15% of the correct
value. Improved data, adequate to separate out variébles associated
with the states of the wheel and the soil, should reduce the error to an
acceptable value in probably all cases.

Mobilization of shear stresses at the wheel-soil contact:

Further theoretical contemplation shoul& be first undertaken to relate
soil test displacements to slip at a point, Sg» as was attempted in Fig. 6-4.
This could lead to a general and rigorous relationship. Contemporaneously,
shear stress surfaces (Fig. 6-5) should be plotted from experimental data
whenever possible to further our understanding of the general problem:

Soil inertia effects:

The developments in Chapter 7, and particularly Figs. 7-9 and 7-10, show

that B in equation (7-11)

q, _ 2 '
Pg8¥ vg

can be experimentally determined. Since all assumptions necessary in de~

veloping equation (7~11) are incorporated in B, our dependence on these
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assumptions need only be temporary. Tests conducted by running a wheel
at relatively high velocity on a soil, and measuring the lift provided
the wheel by the soil, will allow determination of £ for desired soil

conditions from the type of plots shown in Figs. 7-9 and 7-10.
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LIST OF SYMBOLS

wheel-soil contact area

linear acceleration of wheel

linear acceleration of soil

maximum acceleration of soil

integration constants

width of footing in the bearing capacity equation
soil cohesion

wheel-to~-soil cohesion or adhesion

équivalent cohesion

cohesion of soil (1)

cohesion of soil (x)

wheel diameter

distance revolved

distance traveled

dimension defining triangle base proportional to d0
dimension of cone (active Rankine zone) undernéafh wheel
base of natural logarithm

vectorial sum of shear stresses at wheel-soil contact
algebraic sum of shear stresses at wheel-soil contact
x component of F

y coﬁponent of F

acceleration of gravity

traction_developed by wheel, equation (8-1)

mass moment of inertia of wheel
>
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slip = 1 - DT/DR

cohesion parameter in equation (5-5a)

friction parameter in equation (5-5a)

length of wheel-soil contact in direction of motion

mass of wheel

mass of soil set in motion by wheel

Meyerhof (1951) bearing capacity factors

bearing capacity factors for rolling spheres

vectorial sum of norﬁal stresses at wheel—sdil contact

x component of N (motion resistance) |

y component of N

pull developed by the wheel (negaﬁivé or positive)

towéd force

total bearing capacity

unit bearing capacity

unit resistance due to soil inertia

surchatge pressure

vectoriél sum of all stresses at the wheel-soil éontact
algebraic sum of all stresses at the wheel-soil contact
motion resistance, equation (8-1) ‘ ‘ A
soil inertia force

x component of R

y component of R

wheellradius

wheel effective radius

moment é?m to any dR, but e # £(0)
moment arm to any dR from wheel center

moment arm to R from wheel center
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radius of shear ring test, chapter 6

radius of wheel, chapter 6

wheel fadius as a function of z

radius, or distance from wheel center, to actiom of F
slip = (DR - DI)/(DR + DT) |

slip, s, as a function of O

shape factors used in bearing capacity thebry

input torque

time

time of soil movement

time increment for ring shear test

time incfement for wheel

angular acceleration of wheel

volume of moving soil

linear velocity of wheel

average soil velocity

velocity of soil

velocity of wheel center w.r.t, X

velocity of point p w.r.t. ¢

velocity of p w.r.t. coordinate system, x, £1$gq in soil
wheel load or weight o
track:width

coordinates

distance Qf soil displacement

distance of wheel displacement

vertical distance to instantaneous center of rotation

sinkage
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slope angle

inclination of plate

abbreviétion used in solving equation (7-1)
angle‘defining Meyerhof's free surface
wheel-soil friction angle

§ as a function of 0 and s

unit &eight of soil

unit weight of sphere or rock
angle identifying any position at the wheel-soil contact

angle defining the line of action of F
total wheel-soil contact angle

angle to the line of action of the resultant of normal (radial)
stresses :

contact angle assoclated with ring sheqr,tesc; c%apter 6
contact angle associated with wheel, chapter 6
wheel-soil contact angle forward of vertical cepterline
wheel-soil contact angle rear of vertical centerline

angle‘qf intersection of slope and upper end of passiye Rankine
zone

angle of intersection of slope and shear suxface -
angle defining the direction of any dR in a ¢ - ¢ soil
soil'friction angle, or angle of shearing resié:ance
friction angle of soil (1)

friction angle of soil (x) .

angle défining frictional resistance at whgelwsoil contact

function or coefficient relating soil acceleration to wheel
velocity
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soil mass density
radial pressure at wheel-soil contact
as a function of 6 and direction perpendicular to the paper, z
shear’siress at the wheel-soil contact
shear stress as a function of 0 and z
soil strain associated with wheel
soil strain associated with a ring shear test
soil displacement associated with a ring shear test
soil displacement associated with wheel
depth of soil strained in the ring shear test
depth of soil strained by wheel . |

angular velocity of wheel



