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PREFACE 

When man first invented the wheel, he did so without any theory. 

Several thousand years later, when man first went to the moon, he 

built the wheel for the Lunar Roving Vehicle (LRV), again without 

adequate theory. If man had waited for exact theory, the LRV probably 

would not have been carried to the moon. 

So it seems that the existentialist is right in saying that 

existence precedes essence; that discovery proceeds from conceiving the 

physical phenomenon, to supplementing this phenomenon with explanation, 

usually expressed by mathematical abstractions. At least in wheel-soil 

interaction,wheels have preceded theory. Thus, a theoretical framework 

for a physical phenomenon which is known to exist can be useful, but it 

is not essential. 

This philosophical argument presents a fundamental restriction to the 

value of any theory. There are, however, other less fundamental but more 

immediate restrictions. 

In reviewing traf f icability literatuie and in contemplating such 

phenomena during the past two years, the author (schooled primarily in soil. 

mechanics) has become impressed with the complexity of the general problem o t  

off-road mobility (see, for example, Bekker, 1969). 

consist merely of a single, ideal wheel 

This problem d6es not 

operating in an ideal environment, 

but of coupled wheels operating both in ruts made by preceding wheels 

and in virgin terrain. 

likely to include various soils, rocks, and bumps. 

ride over such a terrain may, therefore, be only remotely related to 

theory developed for ideal wheel-soil conditions. 

Further, the traverse over such a terrain is 

The dynamic overall 
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A general solution to a complex problem often results from research 

on separate aspects of the problem. 

perhaps practically applicable theory on the very limited phenomenon of 

a rigid cylindrical wheel operating in a homogeneous soil. 

ments are based on relatively simple considerations of statics and dynamics. 

Fundamental observations render the problem determinate. This leads to 

solutions of the sinkage and the pull which are likely to be within 15% 

of the correct value. 

This report presents a different and 

The develop- 

It is hoped that the theory presented in this report will be useful 

in evaluating and designing wheels for off-road mobility. 

are presented, and these need to be thoroughly checked and tested. 

hoped that concepts such as 1) the line of action of the resultant of 

radial stresses, 2) slip at a point, 3) the shear stress surface 

'I = f ( e , s ) ,  4 )  the closed-form approximate relation between contact angles 

and sinkage, 5) the general graphical solution for pull, 6) soil inertia 

forces, 7) equivalent cohesion, and 8 )  the performance surface, will inspire 

further thinking and relevant research. 

Some new ideas 

It is 

The author wishes to express his appreciation to the National 

Aeronautics and Space Administration (NASA) for sponsoring this rrszs-rtsfn. 

Special thanks go to Professor James K. Mitchell for his continued support 

and patience throughout the investigation, and for reviewing the manuscript. 

The author also greatfully acknowledges Mr. Dieter J. Schuring for 

reviewing Chapter 7 and Ms. Madeline Travers for editing the report. 

Finally, in one way or another, this treatise reflects understanding and 

experience accumulated in off-road mobility literature, without which 

this study would have been impossible. 
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CHAPTER 1. INTRODUCTION 

A primary objective in off-road mobility is the design of a wheel 

which allows the most efficient transformation of mechanical energy of 

the engine to translational capability of the wheel. 

single parameter in such a design is the pull, P, that the wheel can 

develop. This is defined as the pull that can be developed from the 

traction of a given wheel on a given soil for a certain input torque, T. 

In order to perform the desired design, it must be possible to predict 

this pull, either from theory or from experience. 

The most important 

Previous approaches to wheel-soil interaction have been either 

quasi-theoretical (Bekker, 1956) or empirical (U. S .  Army Waterways 

Experiment Station [WES], 1954). One major shortcoming of the empirical 

approaches, and to a certain extent of the quasi-theoretical approaches, 

is the necessity to test a full size wheel. Adequate theory would consider- 

ably reduce the need for such expensive testing, although it would not do 

away with testing entirely. 

A fairly substantial body of literature on wheel-soil interaction 

has accumulated over the years. An adequate review will not be attempted 

1) because an excellent review is available (Bekker, 1969), and 2) beeause 

most of the previous approaches have little direct bearing on the develop- 

ments presented in this report. 

Because the wheel-soil interaction problem is indeterminate, and the 

torque input and wheel variables are rather specific, many investigators 

hoped that the secret to the solution could be found in the soil. Conse- 

quently, much recent research has dealt with methods of measuring and pre- 

dicting soil flow and pressure distributions at the wheel soil contact. 

These investigations have resulted in a better understanding of the 
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wheel-soil i n t e r a c t i o n  problem. They have a l s o  l e d  t o  t h e  conclusion t h a t  

deformation processes i n  the  s o i l  are very complex, and t h a t  consequences 

of assumptions are d i f f i c u l t  t o  evaluate.  

This r epor t  p resents  both rigorous (general) theory and approximate 

The purpose of t h e  genera l  theory i s  theory f o r  wheel-soil i n t e rac t ion .  

pr imar i ly  t o  form a b a s i s  f o r  f u r t h e r  developments. The approximate 

theory forms t h e  b a s i s  f o r  a p r a c t i c a l  s o l u t i o n  t o  t h e  problem. It w i l l  

be shown t h a t  two fundamental observations render t h e  problem 

determinate : 

1. The l i n e  of ac t ion  of t h e  r e s u l t a n t  of r a d i a l  stresses 

ac t ing  a t  t h e  wheel s o i l  i n t e r f a c e  approximately b i s e c t s  

t h e  wheel-soil contact angle, BT, f o r  a l l  values of s l i p ,  s. 

2. A shear stress sur face ,  T = f(B,s),  can be  hypothesized. 

The inf luence  of s o i l  i n e r t i a  forces  is a l s o  evaluated. A concept 

of equivalent cohesion is  introduced which allows a convenient experi- 

mental comparison f o r  both cohesive and f r i c t i o n a l  s o i l s .  This theory 

compares favorably with previous analyses and experimental da t a ,  and 

shows t h a t  s o i l  i n e r t i a  forces  influencing t h e  motion of a r o l l i n g  wheel 

can be s i g n i f i c a n t .  It is  assumed t h a t  t h e  i n e r t i a  fo rces  can be super- 

imposed on fo rces  r e s u l t i n g  from a s t a t i c  ana lys i s .  
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CHAPTER 2. WEL-SOIL  INTEXACTION 

As a wheel moves on a deformable s o i l ,  a complex i n t e r a c t i o n  takes  

place a t  the wheel-soil contact  and i n  the adjacent  s o i l .  

i l l u s t r a t e s  a track and associated shear sur faces  r e s u l t i n g  from pu l l ing  

a 24-inch (61-cm) diameter r i g i d  spherical wheel on Yuma sand. 

Fig. 2-1 

Model s tud ie s  of th i s  in t e rac t ion  (Hovland and Mitchell, 1972) show 

t h a t  t he  most no t iceable  f ea tu res  are: 

1. Forward bending (movement) of i n i t i a l l y  v e r t i c a l  s o i l  sections; 

some associated lateral movement. 

Volume change i n  s o i l  (compression d i r e c t l y  under the wheel and 

d i l a t i o n  t o  the s ides  and f r o n t ) .  

2. 

3 .  Shear surfaces ,  and s l i d i n g  pr imari ly  forward along these  

surfaces .  

To explain some of t h e  d e t a i l s  associated with general  

s h e a r ,  t he  sequence of r o l l i n g  and shear ing is 

diagrammed i n  Fig. 2-2; (a) the  s o i l  before  the  wheel has ro l l ed  over 

it; (b) the shear sur faces  and deformations that develop as the wheel 

r o l l s  t o  t h e  r i g h t ,  t o  pos i t ion  B; and (c) the appearance of the sec t ion  

a f t e r  the  wheel has r o l l e d  past .  

Observations of p a r t i c u l a r  interest are: 

1. Shear sur faces  do not  appear t o  o r i g i n a t e  at the w h e e l  su r f ace  

(see Fig. 2-2b), as i s  o f t en  considered the case with shear 

under a loaded footing. 

At the t i m e  a shear sur face  develops, its lower end is roughly 2. 

p a r a l l e l  t o  t h e  wheel surface.  It diverges  from a d i r ec t ion  

p a r a l l e l  t o  the wheel sur face  a.s it  proceeds up and forward, 

& wedge nf s o i l  2s apparsnt ly  pushed up and forward. 
w 

3.  
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Fig. 2-1. Track and shear  sur faces  r e s u l t i n g  
from pu l l ing  a 24-inch diameter, 
564-pound sphere on Yuma sand. 
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Fig. 2-2. Sequence of s o i l  deformation and shear surface 
development under a ro l l ing  wheel. 
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4. 

, 

5. Shear su r faces  are spaced a t  r e l a t i v e l y  constant i n t e r v a l s  as 

Movement along any one shear  sur face  is  r e s t r i c t e d ,  as implied 

by t h e  r e l a t i v e l y  sho r t  bu t  constant displacements. 

can be seen from t h e  spacing of t h e  t e e t h  marks (compressed 

remnants of once active shear su r faces ) .  

It is poss ib l e  t o  conclude t h a t  t he  shearing process i s  no t  

continuous, bu t  cons i s t s  of separa te  s m a l l  shear  phenomena spaced at 

r e l a t i v e l y  constant i n t e r v a l s  with respec t  t o  space and t i m e .  The 

spacing of t h e  shea r  su r faces  as w e l l  as t h e  amount of movement along 

any one shear  su r face  is undoubtedly a function of s o i l  type. Hence, 

although t h e  r o l l i n g  of a wheel may appear continuous t o  t h e  naked eye, 

i t  is poss ib l e  that t h e  s o i l  acce le ra t ion  a c t i n g  on the  wheel changes 

s l i g h t l y  from one shear  su r face  t o  t h e  next. 

The fact t h a t  shearing along any one shea r  su r face  appears t o  be 

r e s t r i c t e d  t o  a r e l a t i v e l y  small d i s tance  i s  perhaps assoc ia ted  with 

t h e  change i n  d i r e c t i o n  of t h e  shear sur face  w i t h  respec t  t o  t h e  stress 

causing t h e  movement. Most of t h e  movement along a shear  su r face  

probably takes p lace  when the  su r face  is f i r s t  formed. A t  t h a t  t i m e ,  

t he  shear  su r face  is d i r ec t ed  forward a t  an angle of 45" - +/2 t o  t h e  

d i r e c t i o n  of t h e  major p r i n c i p a l  stress, As t he  wheel moves forwaid, 

t h e  shear  su r face  bends o r  turns toward a more vertical pos i t ion .  As 

t h e  wheel passes, t h e  shear su r face  is again bent  down toward a f i n a l ,  

more ho r i zon ta l  p o s i t i o n  (Fig. 2-2). 

An instrumented sphe r i ca l  wheel, which w a s  t e s i e d  i n  Yuma sand, 

allowed f u r t h e r  i n s i g h t  i n t o  wheel-soil i n t e rac t ion .  The maximum r a d i a l  

wheel-soil contact pressure increased with increas ing  wheel load and then 

remained approximately constant, as s h o d  i n  Fig. 2-3. This suggests 



7 

t h a t  the  maximum r a d i a l  pressure increases  u n t i l  t he  s o i l  bearing 

capacity is reached. With fu r the r  increase i n  wheel load, equilibrium 

is es tab l i shed  by sinkage i n t o  t h e  s o i l ,  with t h e  load being d i s t r ibu ted  

over a l a r g e r  area. It is  t o  be noted t h a t ,  with t h e  two l i g h t e s t  wheel 

loads,  no d i s t i n c t  shear  planes could be detected.  S i m i l a r  information 

can a l s o  be deduced from analys is  by Vincent (1961) who noted t h a t  t h e  

rear wheel-soil contact angle f o r  wheel loads too l i g h t  t o  generate 

shear  is r e l a t i v e l y  l a r g e r  than the same angle f o r  wheel loads heavy 

enough t o  generate shear.  

The number of shear  sur faces  t h a t  could be dis t inguished i n  the  

forward shear zone ( s o i l  i n  f r o n t  of wheel) were counted, and t h e  r e s u l t s  

are presented i n  Fig. 2-4 as a funct ion of t r ack  depth. The point  on t h e  

hor izonta l  ax i s  of Fig. 2-4 corresponds t o  t h e  1200-Newton wheel load i n  

Fig. 2-3. 

The above discussion and da ta  a r e  pr imari ly  appl icable  to  a sphe r i ca l  

wheel r o l l i n g  i n  sand. 

dependent on the  state of compaction. 

For such a s o i l ,  t he  in t e rac t ion  mechanism is 

In  a very loose state, t h e  material 

would be compressible and the  deformations would cons is t  of both volume 

change and shear ing d i s t o r t i o n ,  but  no general  shear sur faces  would develop. 

In a very dense state, general  shear  would be more s i g n i f i c a n t ,  although 

volume change and shearing d i s t o r t i o n  would a l s o  take place.  

case would involve a l l  th ree  phenomena; i n i t i a l  volume change accompanied 

by shear ing d i s t o r t i o n  would be followed by general  shear .  

The usual  

The following s t e p s  appear t o  b e  involved as a wheel r o l l s  over a 

sand surface: 

1. Compression occurs under the  wheel. 

2.  I n i t i a l l y  v e r t i c a l  s o i l  sec t ions  are bent forward. 
/? 
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3.  

4. 

5. 

6. 

7. 

A horseshoe-shaped zone of d i l a t i o n ,  which extends from the  

s i d e s  and around t h e  f ron t  of t h e  wheel, develops. This zone 

moves forward wi th  t h e  wheel. Some of the external evidence 

of t h i s  zone of d i l a t i o n  is the  bow wave t h a t  forms i n  f r o n t  

of the wheel. 

When volume changes and shearing d i s t o r t i o n  can no longer account 

f o r  a l l  t h e  s o i l  t h a t  must be displaced, shear  sur faces  develop. 

The development of shear  surfaces  is probably influenced by t h e  

magnitude of shear ing d i s t o r t i o n  and the  magnitude and d i r ec t ion  

of t h e  major p r inc ipa l  stress. 

Sl id ing  along the  shear  surfaces  continues only f o r  a shor t  t i m e  

and dis tances ,  as previously described. 

After a c e r t a i n  dis tance,  a new shear  sur face  develops and t h e  

shear ing cycle  repea ts  i t s e l f .  

A s  t he  wheel r o l l s  forward, deformations assume a f i n a l  pos i t ion ,  

and excess material from the bow wave is  wasted t o  t h e  s ides  t o  

form the  crests of t he  track. 

Other experimenters have invest igated wheel-soil i n t e r a c t i o n  i n  c lay 

(Yong and Webb, 1969; Yong and Windisch, 1970). These s t u d i e s  ind ica t e  

t h a t  deformations a r e  similar i n  clay although t h e  elastic recovery o r  

rebound i s  grea te r .  

However, t h e  r e l a t i v e  importance of cohesion o r  f r i c t i o n  depends on 

the  na ture  of t h e  phenomenon being invest igated.  A s o i l  may be c l a s s i f i e d  

cohesionless by ordinary s o i l  mechanics criteria, and ye t  f o r  very s m a l l  

loaded areas cohesion may account f o r  most of t he  res i s tance .  Consider, 

f o r  example, spheres r o l l i n g  i n  a s o i l  t yp ica l  of lunar  s o i l ,  with cohesion, 

c, of 20 psf  (1 kN/m2) and a f r i c t i o n  angle, @, of 37'. 

based on bearing capacity theory (Fig. 2-3), cohesion provides most of 

For ana lys i s  
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the  r e s i s t ance  f o r  a 10-cm i n  diameter sphere,  while f r i c t i o n  provides 

most of t he  r e s i s t ance  fo r  a 2-m i n  diameter sphere. 

the relative cont r ibu t ion  t o  t o t a l  s o i l  r e s i s t ance  (bearing capacity) 

from the  var ious terms i n  the  bearing capaci ty  equation (Hovland, 1970), 

and i t  shows how these  are influenced by t he  g rav i ty  f i e l d .  

Fig. 2-5 a l s o  shows 
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CHAPTER 3. GENERAL WHEEL-SOIL INTERACTION 'THEORY 

The developments i n  t h i s  chapter  form a b a s i s  f o r  theory i n  subse- 

quent chapters. It is hoped t h a t  these  developments w i l l  a l s o  be of va lue  

t o  o the r  wheel-soil i n t e r a c t i o n  inves t iga t ions  which depend on a knowledge 

of t he  d i s t r i b u t i o n  of normal and shear  stresses along t h e  wheel-soil 

i n t e r f ace .  

DYNAMIC EQUILIBRIUM 

A free-body diagram of a wheel and a l l  the  fo rces  and pressures  

ac t ing  on i t  are shown i n  Fig. 3-1. The symbols are defined below: 

a 

U 

m 

W 

g 

V 

w 

I 

T 

P 

dN 

dF 

dR 

Fa 

lia 
R 

r 

= l i n e a r  acce le ra t ion  of wheel 

= angular acce le ra t ion  of wheel 

= mass of wheel, W/g 

= wheel load o r  weight 

= acce le ra t ion  of g rav i ty  

= l i n e a r  ve loc i ty  of wheel 

= angular ve loc i ty  of wheel 

= mass moment of i n e r t i a  of wheel 

= input  torque 

= output p u l l ,  p u l l  developed by t h e  input  torque and the  

wheel-soil t r a c t i o n  

= d i f f e r e n t i a l  normal fo rce  

= d i f f e r e n t i a l  shear  fo rce  

= d i f f e r e n t i a l  r e s u l t a n t  

11 a lgebra ic  sum of shear  forces  along the wheel-soil contact 

= a lgebra ic  sum of r e s u l t a n t s  dR 

= v e c t o r i a l  sum of r e s u l t a n t s  $R 

= wheel rad ius  
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Fig. 3-1. Free body diagram of wheel. 
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= moment arm of any dR 

= moment arm of R 

r f8  

r; 

x,y,z = coordinates 

8 = any central angle  measured counterclockwise 

= angle between t h e  v e r t i c a l  and f r o n t  soil contact 

= angle  between the v e r t i c a l  and rear s o i l  contact.  e2 

For a r i g i d  wheel r o l l i n g  on an unyielding surface,  t h e  forces  

ac t ing  on t h e  wheel can be represented graphical ly  as shown i n  

Fig. 3-2a. Analogously, f o r  a wheel r o l l i n g  on a deformable surface,  

t h e  forces  can be represented as shown i n  Fig. 3-2b. It is, therefore ,  

va l id  t o  express the  developed p u l l  by 

P ={R2 - W2 ( 3 -1) 

For the general  case represented by Fig. 3-1, 

The unknown i n  equation (3-2) is the  v e c t o r i a l  r e s u l t a n t  of a l l  forces  

ac t ing  a t  the wheel-soil contact ,  R, which i s  a funct ion of the  shear 

and normal stress d i s t r i b u t i o n s .  

A t  any point  on the contact surface,  t h e  normal stress may be - 
defined as CJ and the shear stress as 

82 

I f  we fu r the r  include t h e  p o s s i b i l i t y  of a to ro ida l ,  o r  other  than a 

cy l ind r i ca l  wheel, t h e  rad ius  may a l s o  be a funct ion of z. (Such cases 

have usual ly  been s tudied using the average wheel rad ius  ca l l ed  the 

e f f e c t i v e  radius ,  re.) 

contact is fo r  t he  general  case 

Then t h e  t o t a l  shear force  along the  wheel-soil 
? 
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Fig. 3-2. Force polygons of forces acting on a wheel. 
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fr 

In the above equations, the subscripts 8, s ,  and z indicate that the 

parameter having the subscripts is a function of the contact angle, 8, 

slip, s ,  and the. dimension perpendicular to the plane of the paper, z. 

Also, in these equations, c = wheel-to-soil cohesion or adhesion and 

6 = the wheel-to-soil friction angle. 

will be considered later, 

to-soil cohesion, c, and the soil-to-soil angle of shearing resistance, Q. 

a 
The mobilization of ca and 6 

They are in general much lower than the soll- 

Taking moments about the center of the wheel (Fig. 3-1) and noting 

that a11 the normal forces go through the center, 

Rrk = Far = T - Iu (3-5) 

Thus we note that the quantity Rrf' is determinable if either the total 

shear force, F or the input torque, T, and the dynamics of the wheel 

are known. In this case, 
a' 

(3-6) 1 

€ 
R 7 (T - Iu) 

If the input torque and wheel dynamics are not known, a more general- 

and interesting case since it demonstrates the dependence on soil type, 

we have, from combining equations (3 -4 )  and (3-51, 

Combining equations 

the developed pull 

(P-hnaI2 = 

(3-2) and (3-7) results in a general expression for 
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which is v a l i d  f o r  any pressure  d i s t r i b u t i o n  and any s o i l  obeying 

the  Mohr-Coulomb f a i l u r e  c r i t e r i o n .  

From t h i s  po in t  the de r iva t ion  will be continued f o r  a c y l i n d r i c a l  

wheel, and i t  w i l l  be assumed t h a t  t h e  pressure d i s t r i b u t i o n  i s  a representa-  

tive average with respec t  t o  Z. Equation (3-8) then reduces t o  

It now remains t o  eva lua te  t h e  force  components assoc ia ted  with R, 

and rk. 

FORCE COMPONENT EQUATIONS 

Consider t h e  wheel-soil contac t  shown i n  Fig. 3-3 and the  fo rces  

ac t ing  there .  

Depending on the  sign of €I (the loca t ion  on the wheel-soil contac t  

of t he  poin t  i n  ques t ion) ,  t h e  sign of the  dN 

pos i t i ve ,  w h i l e  the sign of the  dF 

depending on 8 and the state of slip of t h e  wheel. 

adding up a l l  t h e  x and y fo rce  components, 

fo rces  w i l l  always be 
Y 

dFx, and dN korces w i l l  vary Y’ X 

By appropriately 

R2 = (Fx + Nx)2 + (Fy 4- Ny)2 (3-10) 

t he  v e c t o r i a l  r e s u l t a n t .  

The terms i n  equation (3-10) can be evaluated from: 

dN = oedA = ragdo 

dF = T ~ ~ A  = r.redfl 

(3-11) 

(3-12) 



Y 
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Fig. 3-3. Forces broken to x and y components. 
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P X = r [.rgcos0d0 

NX = -r /oOsinOdO 

F = r /  rOsinedO 

N = r i  oOcosOdO 

Y 

Y 

(3-13) 

SLIP AND INSTANTANEOUS WHEEL VeLOCITY 

The instantaneous ve loc i ty  of t h e  wheel, can be e a s i l y  determined 

(see a l s o  Andreyer, S i t k e i ,  and Janos i  (Bekker, 1969)). 

Velocity components of a r o l l i n g  wheel are shown i n  Fig. 3-4. 

The wheel i s  moving t o  the  r i g h t  with a ve loc i ty  , 
center  of t h e  wheel w i t h  respect  t o  an instantaneous coordinate system, 

x, f ixed t o  a f a r  point  i n  the  s o i l .  Point ,  p ,  has a t angen t i a l  

ve loc i ty  with respect  t o  the center  of the  wheel of v 

ve loc i ty ,  v 

of the  

The desired 

is  t h a t  of t he  poin t  p with respec t  t o  x and it is the 
PIC'  

P I X '  

c/x vector  sum of v and v 
PIC 

or. 

Sl ip  rnay be defined as 

DR - DT 
DR i =  

where DR = dis tance  wheel would have revolved 

surface without s l i p ,  and DT = dis tance  wheel 

(3-14) 

(3-15) 

(3-16) 

had i t  been r o l l i n g  on a hard 

a c t u a l l y  t rave l led .  Then 

(3-17) 
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Fig. 3-4.  Velocity components of a rol l ing wheel. 



2 1  

but a l so ,  

c/x 

p/c PIC 

V t v  DT c/x 
DR v 
-=-=-  

where t = t i m e ;  therefore ,  

= v (1 -i) c/x p/c  
V 

Subs t i tu t ing  equation (3-19) i n t o  equation (3-15) gives 

(3-18) 

(3-19) 

(3-20) 

which def ines  the magnitude of the instantaneods ve loc i ty  of any poin t  

on the  wheel per i fe ry .  

The d i r ec t ion  of v can a l so  be determined. First, l e t  
P /X 

A ~ =  A~ - e (3-21) 

c tan-l ( V c/x - v  p / c  cose) 

p/c  V 
(3-22) 

(3-23) 

Subs t i tu t ing  equation (3-19) i n t o  equation (3-23), and s implifying gives 

-AI= 0 - t a n  -1 ( ( i - i )  sine - case) ( 3-2 4) 

To e s t ab l i sh  a graphical  so lu t ion  f o r  t h e  instantaneous center  of 

ro t a t ion ,  i t  would be i n t e r e s t i n g  to determine at what v e r t i c a l  distance,  

1 y,  from the bottom dead cmter of the wlied. sz l i n e  drawn at  an angle A 

t o  the  tangent a t  a point  would i n t e r s e c t p  v e r t i c a l  drawn through C. 

Referring again t o  Fig. 3-4, 
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(3-25)  

but 

z = r(l - cos0) 
With these substitutions 

Simplifying 

or 

- r(l-cose) -1 (14) - y = rsinetan [tan ( sine (3-26) 

(3-2 7 )  

This equation shows that the instantaneous center of rotation is located 

a vertical distance, ri, from the bottom dead center of the wheel-soil 

contact. For positive slip (+i), a distance +y = +ri above, and for 

negative slip (-i)9 a distance -y = -ri below the bottom dead center of 

the wheel, 

Therefore, the magnitude of the velocity of any point along the wheel 

perifery with respect to a fixed coordinate system in the soil can be deter- 

mined from equation ( 3 - 2 0 ) ,  and the direction of the same velocity can be 

determined using equation (3 -24)  or graphically using the instantaneous 

center of rotation. 

t 

THE FRICTION CIKCLE METHOD 

The forces acting along a sliding contact are illustrated in 
I 

Fig. 3-5. 
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.Fig. 3-5. Forces ac t ing  along a sl iding contact. 
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Clearly t h e  d i r e c t i o n  of dR f o r  any d i f f e r e n t i a l  contac t  area, dA, is 

defined by t h e  angle,  Q, 

(3-28) 

Then, t h e  moment arm of any dR (Fig. 3-1) must be 

r fe  = rsinQ, (3-29) 

Noting t h a t  i f  t h e  r a t i o  ca/Oe i n  equation (3-28) is i n s i g n i f i c a n t  or  

zero, and i f  we have so i l - to-so i l  s l i d i n g  wi th  f r i c t i o n  angle @ r a t h e r  

than 6, 

(3-30) f r = r s inQ = r s in( tan- l tan4)  = r s i n 4  = r f e  

Equation (3-30) def ines  t h e  rad ius  of t h e  f r i c t i o n  circle as used by 

Taylor (1937). (Taylor f i r s t  introduced t h e  f r i c t i o n  c i r c l e  method f o r  t he  

ana lys i s  of t h e  s t a b i l i t y  of cohesionless embankments.) 

i s  independent of 0 and therefore  equal t o  r f .  

I n  equation (3-30), 

rf e 
Combining equations (3-4) and (3-29) w e  ob ta in  

1 Fa r' f -=- -  
s i n 0  R rf e 

(3-31) 

Equation (3-31) expresses t h e  ex ten t  by which the  moment a r m  t o  t h e  

r e s u l t a n t  R d i f f e r s  from t h e  moment a r m  t o  a dR force .  

d i f f e rence  between r' and r can be c l e a r l y  i l l u s t r a t e d  f o r  c = 0 as 

shown i n  Fig. 3-6. Whereas a l l  t he  dR forces  i n  Fig. 3-6 are tangent t o  

the  f r i c t i o n  circle with rad ius  r t h e  r e s u l t a n t  of any two dR forces,  

such as dR12, acts a t  a s l i g h t l y  grea te r  d i s t ance ,  rF12. 

r e s u l t a n t  of all dR forces  w i l l  a l s o  act a t  a somewhat g rea t e r  d i s tance ,  

r;. 
f ac to r ,  r;/rfo, w i l l  be evaluated fo r  cerckin cases of i n t e r e s t .  

That t he re  is a 

f f e  a 

f e y  
Analogously, t h e  

The difference ie an t i c ipa t ed  t o  be emall, however, and t h e  cor rec t ion  
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Fig. 3-6. The friction circle method, ca = 0. 
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RIGID WHEEL IN COHESIONLESS SOIL 

For a r i g i d  c y l i n d r i c a l  wheel driven a t  cons tan t  ve loc i ty  i n  a 

cohesionless s o i l  f o r  which ca = 0,  equation (3-9) reduces t o  

p2 = [$ I f a d g S  Cfgd0] - W2 

and equation (3-31) becomes 

(3-32) 

(3-33) 

Using equations (3-5) and (3-33), equation (3-32) can be expressed i n  

terms of the  rk/rf r a t i o  

P2 = [ , r  1 cos60s ,el2 - w2 
r f / r f  

(3-34) 

Using the fo rce  component equations (3-LO), (3-12) and (3-13), t h e  

co r rec t ion  r a t i o ,  rk/rf, can be solved from equation (3-33) f o r  any 

in t eg rab le  d i s t r i b u t i o n  of r a d i a l  p ressure  at the wheel-soil contact.  

For a constant pressure  d i s t r i b u t i o n ,  f o r  example, equation (3-33) 

reduces t o  

(3-35) 

which is i d e n t i c a l  t o  Taylor's so lu t ion  (0, = t o t a l  wheel-soil contac t  

angle).  Taylor (1937) presents  values of t h i s  co r rec t ion  r a t i o  (Fig. 3-7) 

f o r  both a constant and a s inuso ida l  pressure d i s t r i b u t i o n .  A cons tan t  

pressure  d i s t r i b u t i o n  is a good approximation f o r  a pure c lay ;  a s inuso ida l  

pressure d i s t r i b u t i o n  is  a good approximation f o r  a pure sand. 

pressure  d i s t r i b u t i o n s  would l i k e l y  lead  t o  some intermediate cor rec t ion .  

Other 
I 
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S i r c e  Fig. 3-7 shows t h a t  t h e  co r rec t ion  f a c t o r  is very small (1-6%) 

f o r  e i t h e r  case, f o r  contac t  angles less than 70°, we may consider 

equation (3-34) a near ly  rigorous so lu t ion  f o r  t h e  p u l l  t h a t  can be 

developed i n  a cohesionless s o i l .  

, 

The t h e o r e t i c a l  developments presented i n  t h i s  chapter are a l l  

based on t h e  Mohr-Coulomb f a i l u r e  c r i t e r i o n ,  and depend on a knowledge 

of t h e  shear  and normal stress d i s t r i b u t i o n s  along t h e  wheel-soil 

contact.  

d i f f i c u l t  t o  determine. In t h e  next chapter i t  w i l l  be shown t h a t ,  f o r  

a l l  p r a c t i c a l  purposes, c e r t a i n  observations make it poss ib l e  t o  bypass 

the  d i f f i c u l t  question of pressure  d i s t r i b u t i o n s .  

It: is  recognized’ that these pressure d i s t r i b u t i o n s  are 
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Fig. 3-7. Correction to be used with the 
friction circle method. 

(Taylor,  1937) 
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CHAPTER 4. APPROXIMATE WHEEL-SOIL INTERACTION THEORY 

LINE OF ACTION OF RESULTANT OF RADIAL STRESSES--A FUNDAMENTAL OBSERVATION 

The l ine of ac t ion  of t h e  r e s u l t a n t  of r a d i a l  stresses approximately 

b i s e c t s  the wheel-soil contact  angle,  BT, f o r  a l l  values of s l i p ,  s .  

This observation is supported by: 

a) A r a t i o n a l  argument based on a c y l i n d r i c a l  wheel r o l l i n g  down 

a s o i l  s lope  at  constant ve loc i ty  

b) An empir ical  argument based on da ta  from spheres r o l l i n g  down a 

s o i l  s lope  a t  constant ve loc i ty  

T e s t  da t a  from many wheel-soil i n t e r a c t i o n  experiments. c) 

A r e l a t i v e l y  simple approximate theory is then developed. 

EVIDENCE I N  SUPPORT OF THIS OBSERVATION 

Cylindrical  Wheel Rolling Down a S o i l  Slope 

A cy l ind r i ca l  wheel r o l l i n g  down a s o i l  s lope  is  shown i n  Fig. 4-1. 

The symbols i n  Fig. 4-1 are defined as follows: 

W = weight of wheel 

m = mass of wheel 

R = r e su l t an t  s o i l  reac t ion  force  

= component of R p a r a l l e l  t o  s lope  

= component of R normal t o  s lope  

Rx 
R 

r = rad ius  of wheel 

r; 

Y 

= dis tance  from center  of wheel t o  l i n e  of ac t ion  of R 

I = moment of i ne r t i a  of wheel 

a = l i n e a r  acce lera t ion  of wheel 

u I 
= angular acce lera t ion  of wheel 
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Y 

/ 

Fig. 4-1. Dynamic  equilibrium of a cylindrical wheel 
rol l ing down a s o i l  slope. 
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X9Y - - coordinate directions 

o? = slope angle 

Negative slip 

and, therefore, a # ur. 

usually takes place as a wheel rolls freely down a slope, 

Applying Newton’s Second Law, using the method of dynamic equilibrium, 

ma and Iu are considered acting opposite to their actual sense, as shown by 

the dotted arrows in Fig. 4-1. We then have 

+ + C R  = O = R  - W C O S C ~ ,  
Y Y 

j - C R  = O = W s i n c x - R  -ma, 
X X 

-ts C MG = 0 = Rrf - Iu, 

The resultant, R, in terms of R and R is Y X’ 

R2 = R2 + R2 
X Y  

R = W,cos 01 (4 -1)  Y 

R =sins-@ 
X g (4-2) 

(4 -3)  

(4 -4)  

Substituting R and Rx from equations (4-1) and (4 -2)  into equation (4-4) 
Y 

gives 

If a and u were established experimentally (this can be easily done by 

taking movies of the rolling wheels), R and rf could be determined from 

equations (4-3) and (4 -5) .  This would give the magnitude and dire5tion 

of the resultant soil reaction, R, as well as its point of action on the 

wheel surface. 

For constant velocity rolling, (a = 0), equation (4-5) shows that 

R =i W, and has the same line of action. Net shear Stresses at the wheel- 

soil contact must be zero since moments about the wheel center are zero. 

Because soil contact pressure tends to distribute itself about the point 
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of app l i ca t ion  of t h e  load, W, t h e  r e s u l t a n t  of s o i l  stresses, R, must 

pas s  approximately through t h e  middle of t h e  wheel-soil contact area. 

Further,  t h e  continuous process of r o l l i n g  r equ i r e s  t h a t  t h e  l i n e  

between t h e  wheel cen te r  and t h e  wheel-soil rear contact be near ly  perpendi- 

c u l a r  t o  the  slope.  (Soi l  e x h i b i t s  some rebound, and t h e  l i n e  between t h e  

wheel cen ter  and t h e  wheel-soil rear contact devia tes  from a perpendicular 

by El2). There conditions are i l l u s t r a t e d  i n  Fig. 4-2. From these  condi- 

t i o n s  a unique r e l a t ionsh ip  can be e s t ab l i shed  between t r ack  geometry and 

s lope  angle. 

is hor izonta l ,  

I f  t h e  l ine  between t h e  f r o n t  and t h e  rear wheel-soil contac ts  

( 4 - 6 )  
Z - = 1 - cOs(2a + e2) r 

It has been argued t h a t  f o r  a c y l i n d r i c a l  wheel r o l l i n g  a t  constant 

ve loc i ty  down a s lope ,  t h e  r e s u l t a n t  of r a d i a l  contac t  stresses b i s e c t s  

t he  wheel-soil contact angle,  B,, and a unique r e l a t i o n s h i p  e x i s t s  between 

sinkage and s lope  angle (equation ( 4 - 6 ) ) ,  which is  independent of wheel 

load. A free-body diagram of a wheel r o l l i n g  on a hor izonta l  su r f ace  

would d i f f e r  from t h e  above case only with respect t o  t h e  d i r e c t i o n  of W, 

r e s u l t i n g  i n  R = W/cosa. 

Therefore, a r a t i o n a l  argument e x i s t s  f o r  t h e  v a l i d i t y  of t h e  observa- 

t i o n  s t a t e d  on page 29. What about experimental evidence? 

Spheres Rolling Down a S o i l  Slope 

For a sphere ( spher ica l  wheel) r o l l i n g  down a s o i l  slope,  t h e  t r a c k  

width, w ,  is  r e l a t e d  t o  t h e  sinkage geometry (Fig. 472) by 

w / 2  w s in(2a  + 02) = - = - r D  (4-7 1 



33 

Fig. 4-2. Wheel rolling down a soil slope. 
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which, again,  is  a unique r e l a t ionsh ip  independent of sphere load, f o r  

constant v e l o c i t y  r o l l i n g  only. 

Spheres r o l l e d  on Yuma sand provided an opportunity t o  test equation 

(4-7) f o r  e2 = 0. 

(1970) .  Fig. 4-3 shows the comparison. The agreement is  b e s t  f o r  loose,  

moist sand. 

These experiments are described i n  d e t a i l  by Hovland 

I n  t h i s  material the  t r acks  l e f t  by t h e  r o l l i n g  sphere had 

sharp,  well-defined edges which could be accu ra t e ly  measured. 

t i o n  is g r e a t e s t  f o r  loose,  dry sand where t h e  t r acks  tended t o  cave o r  

The devia- 

slump, and where the  crest-to-crest  t r a c k  width, w, measured w a s  undoubtedly 

somewhat g rea t e r  than t h e  t r a c k  width a t  t h e  t i m e  t h e  sphere w a s  i n  contac t  

with the  s o i l .  

Experimental Data on Wheel-Soil Contact Angles 
and Radial S t r e s ses  

Physical reasoning would ind ica t e  t h a t  t h e  r e s u l t a n t  of r a d i a l  stresses, 

a t  least f o r  low values of s l i p ,  should approximately b i s e c t  t h e  contact 

angle. The value of stress must be zero a t  t h e  f r o n t  contact and zero a t  

t he  rear contact.  For high p o s i t i v e  o r  negative va lues  of s l i p ,  however, 

t h i s  is not obvious. To compare d a t a  from var ious  experiments f o r  a l l  

values of s l i p ,  a r e d e f i n i t i o n  of s l i p  is f i r s t  des i r ab le ,  

The most common d e f i n i t i o n  of s l i p ,  equation (3-16), is 

i =  

where DR d i s t ance  wheel 

Fig. 4-4a shows a p l o t  of 

DR - DT - DT - I - -  
DR DR (3-16) 

pe r i f e ry  r o l l e d ,  and DT = d i s t ance  wheel t rave led .  

equation (3-16). A purely skidding wheel, DT/DR . .  
= a, would p l o t  a t  i = - @. This is cons i s t en t  w i th  t h e  instantaneous 

cen te r  of r o t a t i o n ,  bu t  not u se fu l  f o r  developing theory v a l i d  €or t h e  

whole s l i p  range. Some inves t iga to r s  ( for  example, Sela, 1964) def ine  
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Fig. 4-3.  w/D vs. slope angle, a, for 
constant velocity rol l ing.  

P 
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(a) Plot of equation (3-16), I - 1 - DT/DR. 

+ I  

DT 
QR 
- s o  

--- 
- I  

DT 

DT * 1 + -  DR 

l - T ) R  (b) Plot of equation (4-9), B 

? 
r .  

Fig. 4-4. Illustration of definitions of slip. 
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pos i t i ve  s l i p  by equation (3-16) but  negat ive s l i p  by 

(4-8) 
DT - DR = 1 - - DR 

DT DT 
-i = 

Therefore; it is  necessary t o  have one mathematical expression which 

i s  v a l i d  f o r  a l l  values  of s l i p .  This  is achieved by 

DR - DT - 
DR + DT 

- S' 

DT 1 - -  DR 
DT 1 + -  DR 

(4-9) 

The author p re fe r s  equation (4-9) because a purely spinning wheel has s l i p  

s = +1, and a purely skidding wheel has s l i p  s = -1 (see also Fig. 4-4b). 

Since a l l  de f in i t i ons  are funct ions of DT/DR, one can always go from one 

d e f i n i t i o n  t o  another.  

s l i p  has not been e x p l i c i t l y  s t a t ed .  

t h a t  s l i p  was defined by equation (3-16). 

Occasionally i n  t h e  l i t e r a t u r e  t h e  d e f i n i t i o n  f o r  

I n  such a case,  i t  has been assumed 

Of the da t a  considered, Sela's (1964) showed the  most cons is ten t  

r e l a t ionsh ip  and a l s o  extended over a l a r g e r  ranbe of s l i p  values (Fig. 

4-5). The da ta  suggests t h a t  t he  pos i t ion  of the r e s u l t a n t  of r a d i a l  

(normal) pressures ,  BN, moves s l i g h t l y  forward with increasing s l i p .  

the  da ta  (Fig. 4-6) support t he  same trend. 

A l l  

A s t a t i s t i c a l  ana lys i s  of a l l  t he  poin ts  between s = - . 3  and s = +.3  

(Fig. 4-7) shows t h a t  t h e  mean is  0.49 and t h e  standard devia t ion  is  0.06. 

Comparing information i n  Figs. 4-5, 4-6, and 4-7, an average drawn through 

Sela's da t a  is about one standard devia t ion  above the  mean based on a l l  

the da ta ,  but the  s lope of t he  average l i n e  i s  about the  same. 

I n  order t o  u s e  t h e  da ta  i n  Fig. 4 - 6 ,  €or examgle, i t  is necessary 

t o  separate out  and e2. Considering 02, when s = -1, O2 should equal  

zero,  and when s = +1, 0 

Thus, i f  8 / 0  were p lo t t ed  vs.  slip, some kind of curve beginning with a 

should approach O1 as s l i p  sinkage increases .  2 

2 T  I 
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F i g .  4-7. Frequency distribution of the l i n e  of action 
of the resultant of radial stresses for data 
i n  the range - . 3  8 L +  . 3 .  
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low value of 8 /e 
slip should be expected. 

slip. The scatter does not invalidate the plot, but it does illustrate 

in the negative slip range, and increasing with increasing 

Fig. 4-8 shows an attempt to plot B2/BT vs. 

2 T  

that much more detailed experiments are necessary to establish what 

influences e2; particular attention should be given to the influence of 

soil types. 

Fig. 4-9 shows a plot of 8 /e vs. slip. The plot in Fig. 4-6 shows 
N 1  

a better correlation, however. 

The data in Fig. 4-6 can be approximated by the line 

e + e2 eN + e2 
eT e 1 + e2 

= = 0.5 + 0.1s N (4-10) 

A curve through the centroid of points in Fig. 4-8 can be approximated by 

O e  
s = -0.5 + 40($) (4-11) 

or 

s + .5 l/e 1 e2 
= (  40 - -  @2 - 

'T '1 -I- '2 

Combining equations (4-10) and (4-12) 

(4-12) 

(4-13) 

Judging by the fit between the data and the curve (equation (4-13)) in 

Fig. 4-9, the equations appear to be adequate, and the curve in Fig. 

4-8 is a good first approximation. 

TILEORY 

Forces Acting on a Wheel 

The forces acting on a wheel operathg on a horizontal surface are 
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shown in Fig. 4-10. Four cases are shown: 1) a driven wheel generating 

pull (+F, +P), 2) a self propelled wheel (+F, P = 0), 3)  a towed wheel 

(F = 0,  - P), and 4) a braked wheel (-F, = - P). As shown in Fig. 4-10, 

if 8 and W are known and F is assumed to act perpendicular to N, the 

problem is determinate. in N 
the previous section. F does not always act perpendicular to N, and a 

correction will be developed. 

likely to deviate most from a perpendicular to N for low and moderate 

mobilizations of F. 

N 
Arguments and data were presented for 0 

Interestingly, the line of action of F is 

For high values of +F, when consequences of the devia- 

tion could be significant, F acts approximately perpendicular to N. 

The following expressions can be written directly from Fig. 4-10: 

R2 = N2 + F2 (4-14) 

R2 = P2 + W2 (4-15) 

N = wcose - PsineN (4-16) N 
In these equations, all forces are vectorial unless otherwise noted. 

From equations (4-14) and (4-15), 

p2  = N2 + F2 - W2 (4-17) 

The algebraic sum of shear stresses at the wheel-soil contact can be 

expressed by 

F a = NtanGes + Acaes - (4-18) 

where A = the wheel-soil contact area = weTr (w = wheel width). (To 

abreviare slightly the subsequent equations, the subscripts 0 and s are 

omitted from 8 

Taking moments 

and ea). 

about the center of the wheel, the vgcorial F is 
W r a x F 5  (4-19) 

The correction ratio r/r will be considered separately. 



Fig. 4-10. Forces acting on a wheel opGrating 
on a horizontal surface. 

45 
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Substituting equations (4-161, (4-18), and (4-19) into equation (4-17) 

gives 

+ 

For a pure 

For a pure 

sand (ca = 0 )  , equation (4-20) becomes 

clay (6 = 0 )  , equation (4-20) becomes 

(4-20) 

(4-21) 

(4-22) 

For a towed wheel, net shear stresses are zero, which cail also be accom- 

plished by letting ca and 6 in equation (4-20) equal zero 

(4-23) 

These equations are valid for all conditions illustrated in F i g .  4-10. 

Although the equations are lengthy, they are not difficult to solve; the 

variables are 0 

of interest. 

6, ca, and BT. Testing yields 6, and ca, for every case 

Anticipated sinkage and previous developments in this report 
I?’ 

yield eN and €$. 

Consideration of Magnitude and Direction of F 

It was noted by equation (4-18) that Fa in that equation was algebraic, 

and that, taking moments about the center of the wheel, the vectorial F is  

F = -  Fa 
F/ r (4-19) 



where r = moment arm to action of F. Then 
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or 

(4-24) 

For a constant shear stress distribution, equation (4-25) reduces to 

- eT 
- =  42 - 2cos r 
r 

(4-25) 

(4-26) 

I 

which is identical to equation (3-37). Therefore, the ‘same correction 

chart (Fig. 3-7) can be used. 

For a sinusoidal shear stress distribution, equation (4-25) reduces 

to 

(4-27) 
cos - 2 

which is, again, the same correction obtained by Taylor (1937) the 

correction is found from Fig. 3-7. 

The amount by which the direction of F deviates from a perpendicuiar 

to the direction of N is illustrated in Fig. 4-11. This deviation can be 

expressed by 

(4-28) 

where 

(4-29) 

Solving equation (4-28), using equation (4-241, for a constant and a sinu- 

soidal shear stress distribution respectively, gives 
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1 

vertical 
9.. 

Fig. 4-11. The angle by which the direction of F deviates 
from a perpendicular t o  the direction of N. 

R 
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T = constant, le, +e2-eFl = 19, +e2- 0 
(4-30)  

In other words, for constant and sinusoidal shear stress distributions, 

equations (4-30)  show that the deviation is equal to the deviation of the 

line of action of N from €IT/2. 

is not likely to deviate much from eT/2. 

Figs. 4-6 and 4-7 show that 0 + e2 N 

Inaccuracy Resulting from an Error in Selected Contact Angles 

Observing equations (4-20) through ( 4 - 2 3 ) ,  it appears that an error in 

selecting eN and associated e2 would have the greatest influence in the 

case of a towed wheel, equation ( 4 - 2 3 ) .  

towed wheel will be considered. 

from Fig. 4-10 as 

Therefore, only the case of a 

This case can be expressed more simply 

(4 -31)  

The magnitude by which the computed pull differs from the correct pull 

can be expressed by the ratio 

(4 -32)  

Based on the data in Figs. 4-6 and 4 - 8 ,  it is most likely that a high 

value of (0 ,  f e,)/€), is associated with a high value of 0,/0,. 

the deviation of B N  

and from 

Therefore, 

from the mean can be expressed as a function of eT 

'N 4- '2 ON 82 = - + - = meah 4 standard deviation 
e m  Om 0- 
I I J. 
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giving 

O2 (.50 It .06) - - ON 
OT 
-E 

Then w e  have for  

8 N  
-3 -56 - .3 - 2 6 ,  

ON + ' 2  
high 

OT ' 'T 

The p u l l  r a t i o  computed from equation (4 -32 ) ,  using the  mean 

= 0 . 3  OT) as t h e  co r rec t  value,  i s  presented i n  Table 4-1. ( O N  

Table 4-1 Ratio of Computed t o  Correct P u l l  

(4-33) 

eT 2 eT eN + e 

eT 0 20" 40" 60" 90" 120° 

high 
0.5+0.06 1.00 0.87 0.86 0.86 0.85 0.84 

low 
0.5-0.06 1.00 1.13 1.14 1.15 1.16 1.18 

Since €or  a normal 

t ion)  t o  +(one standard 

concluded t h a t  f o r  about 

d i s t r i b u t i o n ,  t he  range from -(one standard devia- 

deviation) contains 68.27% of t h e  da ta ,  i t  can be 
I 

68% of wheel-soil i n t e r a c t i o n  cases t h e  computed 



5 1  

pull  w i l l  be within about 15% of the correct value. 

of course, based on the data presented i u  Figs. 4-5 through 4-9. 

This conclusion is ,  

With 

future careful test ing of (6 

and wheel conditions, i t  should b e  possible to  reduce th i s  theoretical 

error to  a smaller value. 

+ e,)/6, as a function of s o i l  conditions N 
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CHAPTER 5 .  WHEEL SINKAGE 

WHEEL SINKAGE AND CONTACT ANGLES 

The towed force (negative pull = -P = PT) expressed by equation (4-23) 

is a function of W and ON 

state of slip of a wheel has associated with it a motion resistance, Nx. 

For a horizontal surface the N /N 

only. As illustrated in Fig. 4-10, every 

ratio can be expressed directly 
X Y  

N 

N 
- 

N = tan0 
Y 

(4-31) 

The sinkage, z, associated with this angle, 0, , is illustrated in 
Fig. 5-1. Sinkage is here defined as the vertical distance between the 

bottom dead center of the wheel and the front wheel-soil contact 

z = r(1 - C0S81) (5-1) 

f +om which 

(5-2) -1 z el = cos (1 - 2 5) 

where D = wheel diameter. From Fig. 4 - 9 ,  we note that BN /e, is 

nearly constant and equal to 0.4 for most likely slip values. Therefore, 

2 BN =i 0.4 cOS-l(l - 2 6) 

Combining equations (4-31) and (5-3) gives 

(5-3) 

Equation (5-4) relates sinkage to the motion resistance for a rigid 

cylindrical wheel. It is an approximate solution essentially independent 

of slip. Improvements to equation (5 -4 )  should be sought from improved 
k 
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Fig. 5-1. Relationship between sinkage and wheel-soil 
contact angles. 
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data of the type plotted in Fig. 4-9. 

data from towed wheels are compared in Pig. 5-2, 

To check equation (5 -4) ,  experimental 

Many relationships between sinkage and rolling resistance have been 

advanced previously, and many of these are conveniently summarized by 

Schuring (1972). He defines rolling resistance as p = sin0 With this N' 
definition and equation (5 -3 ) ,  rolling resistance can be expressed as a 

function of sinkage. This leads to results which are almost identical with 

the Bernstein line (Schuring, 1972). The experimental data reported by 

Schuring in this paper deviate from the Bernstein line particularly for 

driven, pneumatic tires and l o w  sinkage. (Actual rolling resistance appears 

to be considerably less than predicted. ) Schuring proposes an explanation 

for this deviation: 

proportionately larger,which leads to a smaller 0 

resistance. 

influence of 8 rather well. 2 

For low sinkage, the rear angle, e2, tends to be 
and smaller rolling N 

He also proposes a relationship which seems to account for the 

PRESSURE-SINKAGE RELATIONS 

While equation (5-4) relates sinkage to motion resistance, Nx, it 

cannot be used to compute sinkage directly from soil parameters. To do 

this, an independent relationship is required. 

Perhaps the most commonly used formula in the field of off-road 

mobility, to define vertical stress-strain relationships, is (Bekker, 

1969) 

q =  [kc -T+k$ J 2 (5-5) 

where q = bearing pressure on a plate of width, w, and sinkage, z .  The 

constants k and k 

fitting. 

and exponent n are determined from testing and curve 
C 4 '  
Bekker (1969) presents a thoroggh description of the use of 
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10.0 

--- 
S a n d  pneumatic 
Sand spherical 
S a n d  cy1 i ndrical 
Clay cyl indrical  

0.01 

Fig. 5-2 Ratio of towed force to wheel load vs. ratio of sinkage 
to wheel diameter. 
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equation (5-5), and many experimentally determined pressure-sinkage curves. 

A significant amplification of the type of pressure-sinkage relation- 

ship represented by equation (5-5) has been made by Firth (1968). On the 

basis of dimensional analysis, he derived a more general. pressure-sinkage 

relationship. 

where V = 

A =  

R =  

W - =  
YV 

volume of probe 

cross-sectional 

major dimension 

below plane of original surface 

area of probe in plane of original surface 

of area, A 

(5-6) 

m and n are exponents to be determined from testing 

Some separately postulated relationships, such as equation (5-5), are, in 

fact, special cases of equation (5-6) (Firth, 1967). 

Alternatively, it is possible to use plasticity theory for pressure- 

sinkage relationships. A notable application of plasticity theory to the 

wheel-soil interaction problem has been made by Karafiath (1971) in an 

effort to predict stress distribution beneath wheels. His studies have 

also provided valuable information on the effect of soil pore water 

pressures in wheel-soil interaction (Karafiath, 1972). 

Bearing capacity theory (a special solution based.on plasticity theory) 

can also be used for pressure-sinkage relationships. The bearing capacity 

equation 

was first derived by Terzaghi (1943). Equation (5-7) is a function of 

sinkage by 1) q’ = ysz/2, and 2) q = N/A, where A, the wheel-soil contact 

area, is a function of sinkage. 

- -d 

i” 
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The main assumption in both Karafiath's analysis and equation (5-7) 

is that of two-dimensionality (an infinite dimension perpendicular to 

the plane of rolling in the case of wheel-soil interaction). 

based on this assumption, therefore, may be, at best, adequate for 

Analysis 

relatively wide wheels and for those cases where theory is substantiated 

or modified by experiments. 

It is customary to modify the bearing capacity equation by shape 

factors ( s  

contact area. Using shape factors, and noting that N 

equation (5-7) can be expressed for rectangular loaded areas as 

and sc = s ) for other than an infinitely long load-soil Y 9 
= Nc tanwl, 

9 

s N + s [(ci-q'tan$)Nc + 9') ' S  

q = 2  y y  cq (5-8) 

where y = soil unit weight, w = width of contact area, q' = surcharge, 
S 

and Ny, Nc, and N 

soil friction angle, 4, and slope angle, a, (Meyerhof, 1951). 

are bearing capacity factors which are functions of 
9 

While equation (5-8) has some empirical backing and considerable 

precedent in soil mechanics practice, it has not, to the author's 

kriowledge, been experimentally modified or substantiated for rectangular 

wheel-soil contact areas. 

for long, rectangular, wheel-soil contact areas, its use in wheel-&oil 

Although equation (5-8) will be suggested 

interaction must be considered hypothetical. 

Bearing capacity theory can, however, be modified by experiments 

for specific cases of wheel-soil interaction. Extensive testing (Hovland, 

1970) demonstrates that bearing capacity theory can be used to evaluate 

pressure-sinkage relationships of rolling spheres and spherical wheels. 

Fig. 5-3  shows a comparison between theoretical (modified bearing 

capacity theory) and experimental values Df the density ratio, yr/ys, 
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3 

C 

+ 20° 
A 25O 

' 0 35O 

+ =  37O - 
Ys = 1.465 
c = o  

0 0 0 
I I I I 

0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1.0 

(a) Cars I an (b) Car  3 
W/O W / D  

(Loose air - dry sand) (Dense air - dry sand) 

1 Fig. 5-3. Density r a t i o  vs. w/D r a t i o  f o r  spheres r o l l i n g  
on Yuma sand (curves are tb.eoretica1 f o r  constant  
ve loc i ty  ro l l i ng ;  po in ts  are experimental). 
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vs. t r ack  width t o  diameter r a t i o ,  w/D. Fig. 5-4 shows a comparison 

between theo re t i ca l  and experimental values  of sphere diameter vs. t r a c k  

width t o  diameter ratio,  w/D. I n  these  f igu res  yr = sphere u n i t  weight. 

Fig. 5-5 shows a comparison between t h e o r e t i c a l  (calculated)  and ex- 

per imenta l  f r i c t i o n  angle  values .  The t h e o r e t i c a l  values  were again 

ca lcu la ted  from bearing capaci ty  theory modified t o  the r o l l i n g  sphere- 

s o i l  i n t e rac t ion  problem (see equation (7-12)). 

Such t e s t i n g  showed t h a t ,  f o r  t h e  sphere-soil  i n t e rac t ion  problem, 

the  bearing capaci ty  f a c t o r s  (Meyerhof, 1951) need t o  be modified i n  

equation (5-8). Spec i f i ca l ly ,  f o r  a sphere o r  sphe r i ca l  wheel 

- 1 N  
= -  Y ysphere 4 N 

- 1  = - N  
C 2 c  and N 

sphere 

Subs t i tu t ing  these  bearing capaci ty  f a c t o r s  i n t o  equation (5-8) gives  

f o r  a spher ica l  wheel 

(5-9) 

W e  have, therefore ,  matched bearing capaci ty  theory i n  an approxi- 

mate way t o  two end-points of t h e  wheel-soil i n t e r a c t i o n  problem; 1) 

a r a the r  narrow cy l ind r i ca l  wheel f o r  which equation (5-8) appl ies , -and 

2) a spher ica l  wheel, which is analogous t o  a wide wheel o r  a very l i g h t  

wheel, f o r  which equation (5-9) a p p l i e s .  What about intermediate 

conditions? 

Fig. 5-6a i l l u s t r a t e s  wheel-soil contact  areas, as viewed from above, 

f o r  var ious wheels : 

(1) A sphe r i ca l  wheel. 

d 
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I20 

100 

2c 

C 

I a - 
9 0 (24" diam. instrumented 

sphericol wheel) . IO" 
+ zoo 
A 25* 
0 35O I 

I 
Theoretical cum 

0 )  I I I 

Trock Width over Oiameter Rotio, w/O 
0.2 0.4 0.6 

I 

0 

Fig. 5-4. Track width ovpr diameter ratio as a function 
of sphere diameter. 



61 

50 

Triaxiol Test Friction Angle 
(a) All Date 

Triaxial Test Friction An'gle 
(b) Constant Velocity Data 

Fig. 5-5. Comparison between calculated and triaxial test 
friction angle vahes. 
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4 -  

3 -  

2 -  

I 

0 

a - 

_I__+c Direction of motion 

(11 (2) (3 1 (4 1 

= I  3 
= 2  = 4  

a) Wheel-soil contact areas for various wheels. 

b) Correction factor to  the bearing capacity factors of Eqs .  (5-8) 
and (5-9). 

Fig. 5-6. Suggested Correction of bearing capaFity theory for 
wheel-soil interaction. 
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(2) A wide cylindrical wheel with a contact area approximately 

equal in shape to that of a spherical wheel. 

A cylindrical wheel with a square contact area, at which 

point the R/w ratio in the shape factor expressions 

(3) 

and 

equals one. 

( 4 )  A typical cylindrical wheel 

R/w ratio to be larger than 

must be inverted, giving 

s = (1 - .3  Y 
and 

(5-10) 

with sufficient sinkage for the 

one, at which point the ratio 

(5-11) 

(5) A rather narrow cylindrical wheel. 

For the condition of Fig. 5-6a (l), equation (5-9) applies, using 

the ratio R/w in determining the shape factors. For the condition of 

Fig. 5-6a (5), equation (5-8) applies, using the ratio w/R in determining 

the shape factors. For intermediate cases, compute the shape factors 

from equations (5-10) 

factor to the bearing 

all cases, select the 

(Figs. 5-7, and 5-81, 

and (5-ll), and select from Fig. 5-6b the correction 

capacity factors of equations (5-8) and (5-9). In 

bearing capacity factors from Meyerhof (1951) 

using 0 = Meyerhof's 6 . N m 



64 

Fig. 5-7. General bearing capacity factor Nc for s t r i p  
foundation (after Mkyerhof, 1951).  
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F i g .  5-8. General bearing capacity factor N for s t r ip  
foundation (after Meyerhof, 1951). Y 
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CHAPTER 6. MOBILIZATION OF SHEAR STRESSES 

SLIP AT A POINT 

The r e l a t ionsh ip  between measured s l i p  and s l i p  a t  any po in t  along 

t h e  wheel-soil contact is i l l u s t r a t e d  i n  Fig. 6-1. 

from measured d i s t ance  through which t h e  wheel revolved, DR, and d i s t ance  

through which the  wheel traveled, DT. The measured s l i p  ( s l i p  by i t s  usua l  

de f in i t i on )  takes place a t  t h e  bottom dead center  of t h e  wheel, and may 

be expressed as 

S l i p  is es t ab l i shed  

from which 

DR - DT 
DR + DT S '  

DT l - s  
-t- 

DR l + s  

S l i p  a t  a po in t ,  s8, is  a func t ion  of 8, and may be expressed from 

Fig. 6-1 as 

DR - DT case 
e DR + DT case s =  

combining equations (6-1) and(6-2), 

Because t h e  expression of s l i p  a t  a po in t  (equation 6-3) may bepew,  

it is des i r ab le  t o  see if pred ic t ions  of i t s  value are realistic. A 

sur face  of s l i p  at  a poin t ,  s8, is  p lo t t ed  i n  Fig. 6-2. The sur face  

appears t o  be realist ic and i n  accord with physical reasoning. Note 

p a r t i c u l a r l y  the cross-hatched area at  

increases,  the  wheel-soil contact angle 

moves t o  a higher nega t ive  s l i p  value. 

are es tab l i shed ,  later i n  t h i s  chapter,  

the  towed point; as t h e  wheel load 

increases,  and the  towed poin t  

When t h e  necessary r e l a t ionsh ips  

the  towed p o i n t . w i l 1  be reconsidered. 
1 
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I 

e; 

Fig. 6-1. Slip as a function of 8 .  
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9 

40° 60° 

Fig. 6-2. Surface of slip, so, at any point. 
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SOIL DISPLACEMENT VS. SLIP 

A shear r ing  type of test (Bekker, 1969) (Fig. 6-3b) is probably most 

realistic f o r  e s t a b l i s h i n g  wheel-soil interface s t r e n g t h  parameters c a 
and 6. I n  t h i s  type  of test, soil is allowed t o  s t r a i n  

analogously t o  what happens t o  t h e  s o i l  under a wheel. Compare t h i s  test f o r  

example, t o  a d i r e c t  shear  test where s t r a i n  i s  l imi ted  t o  a very narrow zone; 

peak s t r eng th  would occur a t  a much smaller displacement i n  a d i r e c t  shear 

test  than i n  a r i n g  shear  type of test shown i n  Fig. 6-3b. 

I n  t h i s  type of test ,  however, a s  i n  t h e  case of t h e  wheel, it is 

d i f f i c u l t  t o  e s t a b l i s h  fundamental s t r e s s - s t r a i n  r e l a t ionsh ips  s i n c e  

s t r a i n  cannot be defined. That is, t h e  v e r t i c a l  d i s tance ,  Az, t o  which 

s o i l  deforms is unknown. It is, however, poss ib le  t o  e s t a b l i s h  displace- 

ment r e l a t ionsh ips  which may be usefu l .  

Fig. 6-3 i l l u s t r a t e s  s o i l  displacements and terminology f o r  

wheel- and r ing-so i l  i n t e rac t ion .  For t h e  wheel, t h e  rate of displacement 

can be expressed as 

8 r (1-i) Ow rw 
=-i 'w DR - DT = 'w 'W - w w 

-t - 
tW tW tW tW 

where t = t i m e  increment f o r  wheel, and i = s l i p  as defined by equat ion  

(3-16). 

W 

For t h e  r i n g  shear  test (Fig. 6-3b) 

where t = t i m e  increment for test. t 

An equivalence may be wr i t t en  from equations (6-4) and (6-5) by 

assuming t h a t  the  rate of s o i l  displacement f o r  t he  wheel and t h e  test 

(6-4) 

are the  same 
P 
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a 1 Wheei (side view) 

T = Torque 

b )  Sh 

X 

ear Ring Test (three dimensional view 

Fig. 6-3. Soi l  displacements for wheel and test. 
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If instead it is required that the strains for the wheel and the test be 

equal, 

(a Ow rw Azt €W 

Et et Azw 
1 =  -3 (6-7) 

While these equations may be useful in selecting test setup and 

equipment, they do not tell us the slip, associated with a particular 

displacement. 

From equation (6-4) 

a = ew ri W 

where r is the radius of the wheel, consistent with our earlier 

definition. Using equations (3-16) and (4-9), equation (6-8) can be 

expressed in terms of 'Is" 

Solving for s from equation (6-3) and substituting for s into equation 

1 (6-10) 

Note that if 8 -- 0, s0 = s, and equation (6-10) reduces to equation (6-9). 

To facilitate certain comparisons and illustrative calculations to 

be presented in this report, equation (6-10) is plotted in Fig. 6-4 for 

8 = 0, assuming BW = OT. In reality, 0 could have any value; however, 

physical reasoning suggests that 0 

it provides a convenient bridge from slip a$ a point to displacement. 

W 

= BT is a good first approximation, and W 
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20 

I 

IO 

I I 1 I 

.8 1.0 

t 
F i g .  6 - 4 .  Plot of equation (6-10). 
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With b e t t e r  understanding of t he  wheel-soil i n t e rac t ion  process, 

the func t iona l  r e l a t ionsh ip  expressed by equation (6-10) undoubtedly 

w i l l  need t o  be modified. 

s o i l  type; a coe f f i c i en t ,  which would be very small f o r  a b r i t t l e  soil 

and r e l a t i v e l y  l a r g e  f o r  a very p l a s t i c  soil, may be required. 

it appears t h a t  s o i l  elements influenced by t h e  wheel are subjected t o  

various states of shear; while some s o i l  elements are i n  a s t a t e  

For instance,  Aw is probably a function of 

Further,  

analogous t o  d i r e c t  shear  f o r  high values of s l i p ,  some soil elements 

are i n  a state analogous t o  compression f o r  low values of s l i p .  

complexities a l s o  need t o  be considered. 

These 

WHEEL-SOIL INTERFACE STRENGTH PARAMETERS 

As i n  many o ther  engineering problems, the  fundamental r e l a t ionsh ips  

t o  be obtained from t e s t i n g  are stress-displacement curves. 

t e s t i n g  of a wheel sur face  material t o  s o i l ,  using a r ing  shear device, 

y i e lds  the  curves shown i n  Fig. 6-5a ( th ree  tests - t h ree  d i f f e r e n t  normal 

Suppose t h a t  

pressures - are adequate). From Fig. 6-5a shear  stress vs. normal stress 

l i n e s  can be p l o t t e d  f o r  various displacements (Fig. 6-5b). From Fig. 6-5b 

s t rength  parameters, c and 6, can be p lo t t ed  as a function of displacement 

(Fig. 6-5c). These are the  required wheel-soil s t r eng th  parameters. 

a 

SHEAR STRESS SURFACE 

Experimental wheel-soil i n t e rac t ion  da ta  suggest a shear  stress 

An attempt w i l l  now be made t o  pred ic t  such a surface,  T = f (s, 8). 

surface from the  previously presented re la t ionships .  The procedure is  

as follows: 

1. Testing y i e lds  s o i l  s t rength  parameters, c and 6 as a function a 
of displacement (Fig. 6-5). ,l 
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2. 

3. 

4. 

5 .  

Sl ip ,  s, can be converted t o  s l i p ,  58, us ing  equation (6-31, 

Displacement can be r e l a t e d  t o  s l i p ,  se, from Fig. 6-4. 

The shear  parameters are then known f o r  s l i p  at  any polnt ,  88, 

along the  wheel-soil contact .  

Therefore, the shear stress mobilized a t  any poin t  along the 

wheel-soil contact  can be computed from 

‘I: = c + o0 tansse s8 as8 (6-11) 

I n  this  predict ion,  t h e  normal stress d i s t r i b u t i o n ,  may be assumed 

s inusoida l  f o r  a sand and conrstant f o r  a pure clay.  

t h e  normal stress d i s t r i b u t i o n  is probably c lose r  t o  s inusoidal .  

0; 
For any real s o i l ,  

The predicted shear  stress sur face  is shown i n  Fig. 63-6, which shows 

In  t h i s  f i gu re  the contact  angle,  0, is p l o t t e d  a three-dimensional view. 

on the  hor izonta l  axis, s l i p ,  s, is p lo t t ed  on t h e  diagonal axis, and shear  

stress is p lo t t ed  on the  vertical axis. The f r o n t  p a r t  of the  sur face  

(dot ted l i n e s )  is below the 8, s plane and t he  rear p a r t  ( so l id  l i nes )  i s  

above the  0, s plane. The normal stress d i s t r i b u t i o n  was assumed t o  be 

s inusoida l .  S o i l  s t r eng th  parameters were obtained from Fig. 6-5, with 

c = 10.0 a t  displacement = 0. I n  Fig. 6-4, 8 r w a s  assumed t o  equal a T 

10 inches.  

60 degrees. 

For a 20-inch diameter wheel, €IT would then be approximately 

The rear wheel-soil contact  angle, 02, was assumed fo be 10 

degrees 

The predicted shear  stress sur face  appears q u i t e  realistic. The 

towed poin t  f o r  t h i s  case occurs approximately a t  s = -0.08; it is indica ted  

by the  cross-hatched area in  Fig. 6-6. 

zero, torque must be zero f o r  a towed wheel (see a l s o  Yong and Webb, 1969), 

I f  f r i c t i o n  a i  the  wheel hub is 

and the  towed poin t  is charac te r ized  by 

(6-12) 
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Fig. 6-6 .  Shear stress surface, 'r = f ( s , e ) .  
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In summary, given three stress-displacement curves, it is possible 

to estimate the shear stress mobilized at any point along the wheel-soil 

contact, for any value of slip. 
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CHAPTER 7. SOIL INERTIA IN WHEEL-SOIL INTERACTION 

In previous investigations of wheel-soil interaction phenomena, the 

influence of inertia forces of moving soil have usually been assumed to be 

negligible. 

soil interaction problems, it is supported by limited investigatims and 

experimental data. 

Although this assumption is probably valid for many wheel- 

The investigations described in this chapter present a universally 

applicable hypothesis, to be tested experimentally. The hypothesis is 

based on the concept of a soil wedge being continuously formed and 

accelerated in front of the wheel. 

Fig. 2-1 illustrates a track and associated shear surfaces resulting 

from pulling a 24-inch (61-cm) diameter wheel on Yuma sand. The extent of 

the shear surfaces is evaluated, and theory is presented from which the 

mass and acceleration of the moving soil can be deduced, thus forming the 

basis for evaluation of soil inertia forces. 

THEORETICAL ANALYSIS 

The resistance to a rolling wheel caused by the inertia of the soil 

set into motion by the wheel, RI, is the product of the mass of soil 

S' 
involved, m and its acceleration, a 

S'  

m a  - 
RI - 9 s  (7-1) 

Mass of Moving Soil 

Boundary of soil wedpe: 

A mechanism of shear in front of and below a wheel, rolling down a soil 

slope is shown in Fig. 7-1. Imagine that the wheel center is at position 1. 

As the wheel center moves from position 1 t o  2 and then to 3,  the front of 

the wheel moves respectively from 1' to 2' Shen 3 ' .  As the wheel moves 



79  

P 

7.1 

rl 
7.1 
0 
m 
I 
4 
9) 
9) c 
3 
0 

7.1 

$4 
nt 
0)  

% 
u-1 
0 

.. 
M 
rl cr 



80 

from pos i t i on  1, a shear su r face  confining an incremental s o i l  wedge forms 

with an a c t i v e  Rankine zone a l b l c l ,  a r a d i a l  shear zone wi th  log-sp i ra l  

cen ter  a t  a l ,  and a passive Rankine zone. A s  t h e  wheel continues t o  move 

( r o l l ) ,  t h e  active Rankine zone grows and new shear su r faces  form. 

f o r  such shear sur faces  i s  shown i n  Fig. 2-1; shear sur faces  have a l s o  been 

observed i n  model tests (Hovland and Mitchell ,  1972). The a c t i v e  Rankine 

zone and the  corresponding s o i l  wedge continue t o  grow u n t i l  a l i m i t i n g  

(maximum) s i z e  of wedge is  formed. Beyond t h a t  po in t ,  new l i m i t i n g  (maximum) 

s o i l  wedges w i l l  continue t o  form as t h e  wheel r o l l s  forward. It has been 

Evidence 

found t h a t  the  maximum s o i l  wedge (see Fig. 7-1) can be defined approximately 

bY 

1. An active Rankine zone, azbzcz, where d i s t ance  (a2b2) equals one- 

ha l f  t he  soil-wheel contact o r  1 / 2  (andz), wi th  angle $ = 1.2  Cp 

(Meyerhof, 1955) 

A r a d i a l  shear zone with log-sp i ra l  center a t  a2 

A passive Rankine zone wi th  02 and 83 as ina i ca t ed  (Sokolovski, 

1969; Karafiath and Nowatzki, 1968) 

2. 

3. 

A s  t h e  wheel moves from 2 t o  3 ,  t h e  l i m i t i n g  s o i l  wedge w i l l  deform and 

move out with r e l a t i v e  motion, as shown by t h e  arrows i n  Fig. 7-1. A t  t h i s  

po in t ,  t h e  a c t i v e  Rankine zone w i l l  be more compressed and the  center -of  

t he  log-sp i ra l  w i l l  be loca ted  a t  t h e  i n t e r s e c t i o n  of t h e  82 line, wi th  

the  v e r t i c a l  drawn through c33. A t  t h i s  po in t ,  wi th  t h e  center  of t h e  log- 

s p i r a l  d i r e c t l y  above c3, motion along t h i s  u l t ima te  shear sur face  w i l l  

s t op ,  s ince  t h e  angle between t h e  d i r e c t i o n  of motion b f  t h e  a c t i v e  Rankine 

zone and t h e  normal t o  the  shear sur face  is  @. For the  wheel a t  pos i t i on  3 ,  

the l i m i t i n g  s o i l  wedge, constructed wi th  t h e  center  of t he  log-sp i ra l  a t  

3, has t h e  same s i z e  as t h a t  constructed f o t  t h e  wheel a t  2 with t h e  cen te r  

of the  log-sp i ra l  a t  a2. 
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To i n v e s t i g a t e  how w e l l  t he  s o i l  wedge se l ec t ed  by t h e  procedure out- 

l i ned  above descr ibes  t h e  a c t u a l  s o i l  wedge, a 24-inch (61 cm) diameter 

sphe r i ca l  wheel w a s  r o l l e d  on Yuma sand, and t h e  ex ten t  of t h e  shear zones 

i n  f r o n t  of and t o  the  s i d e s  of t he  wheel were measured. 

t he  r e s u l t s  of t h i s  comparison. Predicted d i s t ance  of forward shear ( t h e  

d is tance  a t  which the  shear sur face  e x i t s  t h e  slope) is  p lo t t ed  i n  comparison 

Fig. 7-2 gives 

with measured d i s t ance  of forward shear f o r  d i f f e r e n t  wheel loads. The 

measured d i s t ance  of forward shear is  t h e  d i s t ance  from t h e  crest of t h e  

t r ack  t o  t h e  f u r t h e s t  shear surface.  The measured d i s t ance  of side. shear  

is a l s o  shown. It i s  t h e  width of t h e  shear zone on t h e  s i d e  of t he  t r a c k  

measured from t h e  c r e s t  of t h e  t rack .  The se l ec t ed  shear sur face  geometry 

appears t o  be adequate. 

Mass of s o i l  wedge: 

Due t o  mathematical complexities i n  expressing exac t ly  t h e  m a s s  of 

s o i l  bounded by a log-sp i ra l  shear sur face ,  and inherent  assumptions i n  

applying p l a s t i c i t y  theory t o  t h e  wheel-soil i n t e r a c t i o n  problem, an 

approximation f o r  t h e  mass of s o i l  is developed. 

A l ong i tud ina l  s ec t ion  of t he  boundary confining t h e  moving s o i l ,  

and an approximation to  t h a t  boundary confining approximately t h e  same m a s s  

of s o i l  are shown i n  Fig. 7 - h .  The r a t i o  of d/do is p lo t t ed  i n  Fig. 3-3b; 

t h i s  r a t i o  w a s  

expressed by 

determined graphically.  The curve i n  Fig. 7-3b can be 

where $I i s  the 

From Fig. 

s o i l  f r i c t i o n  angle i n  degrees. 

7-3a, i t  follows t h a t  



82 

500 
v) 
L a 
400 

0 
-J 
x 
- 

300 - 
0 

A 
a 
0 ‘200 

100 s 
1 
0 

w = track width 

0 MEASURED SIDE SHEAR 
0 MEASURED FORWARD SHEAR 
A PREDICTED FORWARD SHEAR 

0.5 I .o I .5- 

RATIO OF MAXIMUM WIDTH OR 
LENGTH OF SHEAR ZONE TO 

AVERAGE TRACK WIDTH 

Fig, 7-2. Wheel load vs. predicted and measured dimension of s o i l  wedge. 
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where r = radius  of wheel, 8, = wheel-soil contact  angle  (see Fig. 7-1). 

Fig. 7-2 suggests t h a t  t he  width of t h e  moving s o i l  wedge can be approximated 

by 1 . 4  w, where w is  the  t r ack  width. Then, the  mass of s o i l  can be expressed 

as 

m = PSVS 
S 

(7-4) 

where p 

Acceleration of Moving S o i l  

= s o i l  mass dens i ty  and V = s o i l  volume. 
S S 

Acceleration of t he  moving s o i l  weGge is re l a t ed  t o  i t s  Velocity. 

Velocity of the  s o i l  wedge is ,  i n  turn ,  r e l a t ed  t o  the  ve loc i ty  of t he  

wheel, which i s  known. It is ,  therefore ,  of i n t e r e s t  t o  express the  s o i l  

acce le ra t ion  i n  terms of the  ve loc i ty  of the wheel. 

Maximum s o i l  acce le ra t ion  as a funct ion of average s o i l  ve loc i ty :  

Since motion of the  s o i l  wedge starts from rest and s tops  a f t e r  t he  

r o l l i n g  wheel has passed, the  i n i t i a l  and f i n a l  s o i l  v e l o c i t i e s  are known 

t o  be zero. Somewhere i n  between, t he  ve loc i ty  of the  shearing s o i l  reaches 

a maximum. Fig,  7-4 shows experimentally determined d is tance ,  ve loc i ty ,  

and acce lera t ion  r e l a t ionsh ips  f o r  shearing s o i l  wedges. The p l o t s  were 

made from f i lms taken of r o l l i n g  spheres.  

Yuma sand ca re fu l ly  prepared t o  des i red  d e n s i t i e s  i n  l a r g e  s o i l  cars a t  

Some 200 spheres were r o l l e d  on 

the  U. S. Army Waterways Experiment S ta t ion  (WES) (Hovland and Mitchel l ,  

1971), and i n  some cases i t  w a s  poss ib le  t o  determine the  motion of s o i l  

wedges. 

The re la t ionships  shown i n  Fig. 7-4 can be approxhated  theo re t i ca l ly  

by various assumed funct ions a s  l i s t e d  i n  Table 7-1 and p lo t t ed  i n  Fig. 7-5. 

The indicated acce lera t ions ,  a - v e l o c i t i e s ,  vs; and d is tances ,  x are 

derived from the assumed funct ion by s implepdi f fe ren t ia t ion  and in tegra t ion .  

S ’  S ’  
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Table 7-1 

Functions Approximating Motion of Soil Wedge 

t 
Assumed Function w 

Linear acceleration I 

Sinusoidal velocity 

v = Blsin (B2+Bst) 
S 

a = constant 
S 

Sinusoidal acceleration 

I 

a = a sin(Bit+Bn) max 

Resulting Expressions 
V t a  a = 6 (1-2 F) - 

s ts 

ts 9 

t2 1 I t  
tS 

S 

v 6 - ( 1 - ~ ) ~  t t 
a S 

= - - ( T - - - )  3 ts a S 

V t a cos [IT (1- e l  - 
S tS 

7T2 a = - -  
S 2 

v = - IT sin [m (1 - r>l t V a 
S 

S 2 

t t 
S x = 2 [COS[TT(l - r)J + 13 va 

S 
S 

v = 4 V a t  t 
S 

S 

t v = (1 - cos ( 2 7 r r ) )  va 
S 

S 
L 
S x = (t-- 

S 27F 
S 

Naximum 
acceleration 

V 
a 6- 

tS 

V a 4 . 9  - 
tS 

V 
a 4- 

V a 6.28 - 
ts 
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In Table 7-1, va = average soil velocity, t 

B1, B z ,  and 3 3  are integration constants. 

= time in which soil moves, and 
S 

By comparing the experimental curves (Fig 7-4) and the theoretical 

curves (Fig. 7-5), and the values of maximum acceleration listed in Table 

7-1, the following conclusions can be made: 

1. Since a small difference in the distance vs. time curve (Fig. 7-5) 

can lead to a drastic difference in the acceleration curve, it is 

difficult to interpret the exact acceleration function from an 

experimentally measured distance vs. time curve. 

2. Since the maximum accelerations for the various functions (Table 

7-1, Fig. 7-5) only vary from 4 va/t to 6.28 va/ts, it is not 

necessary to know the exact acceleration function, for a first 
S 

approximation. 

3. The curves in Fig. 7-4 show greatest resemblance to the step 

acceleration and sinusoidal velocity functions in Fig. 7-5 for 

which a = 4 va/ts and 4 . 9  va/ts, respectively. max 
In the following development, a = 5 va/t will be used. Deviations max S 

from this value will then be within -+ 20% of the range of functions 

considered. 

Average soil velocity as a function of wheel velocity: 

Fig. 7-1 indicates that in the time the wheel moves from 2 to 3 ,  the 

soil wedge (midpoint of a2c2) moves approximately 1/6 that distance in the 

same direction. Therefore, the average soil velocity is 

V v = -  
a 6 

where v = velocity of the wheel parallel to the slope. The maximum soil 

acceleration may then be expressed as 

(7-5) 

5 v  
S 6 t  
a = - -  

S 
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1 Identification I Experimental 

To have a useful expression for a it is necessary to eliminate t from 
S S 

equation (7-6). Observations of wheel-soil interaction show that the soil 

at al, Fig. 7-1, begins to move before the wheel reaches position 1. With 

Theoretical 

the very limited experimental data available on this problem, it will be 

assumed that the soil moves in the time the wheel moves twice the distance 

from position 1 to 3 in Fig. 7-1. Then we can say that t = 8 r/v, and s T  

t Soil car Slope Sphere V S 

Diam. (cm/sec) (sec) 
(em) 

0 

1 20 12 19 .25 

4 25 25 27 .085 

4 35 25 106 .085 
L 

5 v2 a = - - -  
S 6 BTr 

(em/ sec2 

67 

320 

1060 

(7-7) 

(cm/sec 2, (cm/ sec2) 

63 51 

265 102 

1040 , 1675 - 

It is now possible to compare experimental maximum soil accelerations 

shown in Fig. 7-4 and theoretical values determined using equations (7-6) 

and (7-7). This comparison is shown in Table 7-2. 

Table 7-2 

Comparison Between Experimental and Theoretical Accelerations 

In Table 7-2, the theoretical accelerations computed using equation (7-6) and 

experimental values for t compare well. The theoretical accelerations 

computed using equation (7-7) and the assumed value €or t 
S 

compare less well. 
v s  

Soil Inertia Resistance to a Rolling Wheel 

Combining equations (7-4) and (7-7) gives 

0.58pswd2 v2 
- *p- 

RI - tan03 BTr 
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This i n e r t i a  fo rce  can be expressed as force  per  u n i t  area of wheel t o  s o i l  

contac t ,  analogous t o  u n i t  bearing capac i ty ,  by d iv id ing  by t h e  contac t  

area, 8 r w ,  T 

0.58 p, d 2  2 - 
41 - t an9 3 (7-9) 

A convenient dimensionless expression r e s u l t s  by d iv id ing  both s i d e s  by p 

and s u b s t i t u t i n g  f o r  d, equations (7-2) and (7-3) 

gw S 

o r  

where 

1.77)2 v 2  - 41 ( 1  + 0.002 - 
pSw + 13.8 tan!, wg 

1.77) 2 
( 1  + 0.002 

= 13.8 t a n i s  

(7-10) 

(7-11) 

A s  an a i d  i n  so lv ing  equation (7-11), values of B are presented i n  Fig. 7-6. 

A s  a approaches 9, 83 approaches zero and B approaches i n f i n i t y .  Since such 

values of 6 are unreasonable, Fig. 7-6 is  considered v a l i d  f o r  a < C$I - 5" 

only; i .e.,  t he  s o l i d  po r t ion  of t he  curves only. 

SCHURING'S ANALYSIS 

It i s  a l s o  poss ib l e  t o  study t h e  e f f e c t s  of i n e r t i a  forces  by consider- 

ing  t h e  f l o t a t i o n  provided a moving wheel by s o i l  i n e r t i a  and s o i l  s t a t i c  

forces  (bearing capacity).  It is  t o  be noted t h a t  while t h e  volume of t h e  

s o i l  wedge i s  n 0 t . a  func t ion  of cohesion (previous sec t ion ) ,  bearing 

capacity i s  a func t ion  of both cohesion and f r i c t i o n .  Thus, a t  t h i s  po in t  

cohesion, c ,  is introduced. 

Schuring (1968) s tud ied  i n e r t i a  fo rces  by moving p l a t e s  a t  var ious  
1 



91 

3.0 

2.5 

2 .o 

.5 

I .o 

0.5 

0 
0 

SLOPE ANGLE a=30° \  

\ 1 ///// 

lo 
e 

I I I I 
IO 20 30 

c$, DEGREES 

40 50 

Fig. 7-6. Values of 6 f o r  use i n  equation (7-11). 
- - 

&! 



92 

velocities and inclined at Yarious angles to a bed of soft clay. 

his results as shown in Fig. 7-7. 

Moody diagram in fluid mechanics; the ratio plotted on the vertical axis 

is similar to the drag coefficient and the ratio plotted on the horizontal 

axis corresponds to Reynolds number. Schuring concluded that: 

He plotted 

This plot is analogous to the familiar 

1. For ordinary vehicular speeds, inertia effects are likely to be 

insignificantly small. 

2. "For special applications, such as dynamic testing and aircraft 

landing, inertia of accelerated soil may be the most important 

factor. " 

Wheel velocities which lead to either insignificant or significant 

(static range and dynamic range, respectively) inertia forces can be 

conveniently separated by plotting data as shown in Fig. 7-7. 

static range, where inertia forces are negligible, data plot along a 45" 

line. In the dynamic range, where inertia forces predominate, data 

In the 

become asymptotic to the horizontal axis. Thus, this approach places 

bounds on velocities for which inertia forces can be neglected and for 

which they predominate. 

This ingenious approach appears to have two shortcomings, which Schuring 

also recognized. First, although the method is good for separating - 
negligible and predominating inertia forces, it does not provide a basis 

for predicting performance for specific conditions, particularly in the 

transition range. Further, data for a c - 4 soil cannot be accounted for. 

(4 represents an additional parameter, and the frictional force is further 

complicated by being a function of the normal force (see Schuring, 1968)). 

The theoretical analysis presented earlier in this paper attempts to 

overcome the first shortcoming. A concept f equivalent cohesion pre- 

sented below attempts to overcome the second shortcoming. 
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EQUIVALENT COHESION 

While a general  r e l a t ionsh ip  between cohesion, c, and f r i c t i o n ,  4, 

is  not possible  (c  and $ being independent s o i l  parameters), i t  i s  always 

poss ib le  t o  express t h e  total  e f f e c t  of the two by one s t rength  parameter 

f o r  any one type of problem. S o i l  r e s i s t ance  t o  a r o l l i n g  wheel can be 

considered a bearing capaci ty  type of problem. ( I t  has been demonstrated 

t h a t  bearing capaci ty  theory can be used a s  a b a s i s  f o r  analyzing s o i l  

resistance t o  f r e e l y  r o l l i n g  spher ica l  wheels and spheres (see Chapter 5 

and Hovland and Mitchel l ,  1971). It i s  believed t h a t  phenomenologically 

bearing capacity theory can provide the  bas i s  f o r  analyzing s o i l  r e s i s t ance  

of r o l l i n g  wheels i n  general) .  Thus, f o r  t h i s  s p e c i f i c  problem, an 

equivalent cohesion is  developed below. 

The general  bearing capacity equation (5-7), was adapted t o  the  r o l l i n g  

sphere problem (Hovland and Mitchel l ,  1971) 

C z = 0.188 N + 1.1 - N + 0.55 ; N 
W S  YS ws c s  qs 

where 

q = s o i l  bearing capaci ty  

N y 3  Nc,  N = bearing capaci ty  f ac to r s  (Meyerhof, 1951) 
4 

N 0.25 N 
YS Y 

Ncs 0.50 Ne 

N = N tan$ + 1 qs  cs  

z = sinkage 

pSg ys = s o i l  u n i t  weight = 

I f  a s o i l  (x) is t o  give the  same res i s t ance  as a s o i l  (11, 

") 
") 

[.188N + 1.1 (e) Ncs 

[ .188N + 1.1 (e) Ncs 

w Y s  x YS 

W Y S  1 YS 

- 

(7-12) 

(7-13) 
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Rearranging equation (7-13) and s u b s t i t u t i n g  N = 0.25 N Ncs = 0.5 Nc, 
YS Y' 

and N 
q s  

C 

C 
X 

1 

I 

In t h i s  

and Ysx 

l e t t i n g  

C e - 
w?fS 

where N_ 

- - Ncs tan4 + 1 leads t o  an expression f o r  cx/cl 

N 
( N Y l  - Nyx)] + 3 (7-14) 

N 
= 2 [k (.)(a tan@, - tan@x 

NCX Ncx c 2 w Ncx 
1 

equation geometrical parameters are held constant (wx = w1 = w), 

I= y. A c-@ s o i l  can be t r e a t e d  as an equivalent ce soil by 
= YSl 

$x i n  equation (7-14) equal zero 

N N 
= [it tan4 -+- - + 0.085 

cx 
(7-15) 

and N 
C l  Y1 

are determined f o r  @ = $1 ,  and Ncx is determined f o r  4 =  0. 

Using equivalent cohesion as determined from equation (7-15), experi- 

mental da t a  f o r  any c - 4 s o i l  can be analyzed on t h e  type of p l o t  shown in  

Fig. 7-7. Comparing theory and experimental d a t a  on t h i s  type of p l o t  has 

c e r t a i n  important implications,  which are discussed subsequently. 

DISCUSSION 

Theory Compared with Schuring's Data 

To compare p red ic t ions  of t h e  t h e o r e t i c a l  ana lys i s  presented i n  t h i s  

paper with Schuring's da ta ,  load-soil  i n t e r a c t i o n  must be expressed f o r  

comparable geometries. 

p l a t e  are i l l u s t r a t e d  i n  Fig. 7-8. The geometries are comparable, and 

The geometries of a r o l l i n g  wheel and Schuring's 

t h e  wheel geometry is defined, i f  t he  length and o r i e n t a t i o n  of t he  chord- 

length f o r  a wheel-soil contact is t h e  aame as t h e  length,  R, and the 

o r i en ta t ion  of the  p l a t e .  
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HEEL PLATE 

Fig. 7-8. Comparable geometries f o r  wheel and plate. 
- - __ - 
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The axes of Fig. 7-7 can now be expressed in terms of developed theory 

using equation (7-11) and Fig. 7-8: 

R * (q + ql) 
= Y--, Bcosa', and lift 

inertia force p s R V  QI 

inertia force - V2PS 91 - - = -  
C Bce cohesion force 

where a' = inclination of plate; R = length of plate in the plane of the 

paper, equal to the chord distance of BT; and R = lift, equal to the vertical 

component of the total bearing capacity. 

these axes 

(7-12), assuming a' = slope angle in determining the bearing capacity 

factors (Meyerhof, 1951), and ce is computed from equation (7-15). 

Y 
In working out the parameters of 

is computed from equation (7-ll), q is computed from equation 91 

Ordinates and abscissas were computed as described above for the soil 

His experimental curves are compared with conditions of Schuring's tests. 

theoretical predictions, curves A and A ' ,  in Fig. 7-9. While for Schuring's 

experimental curves, the separation in the static range is caused by a 

change in cohesion, c, the separation for the theoretical curves A and A' 

is primarily caused by the change in a' from 15" to 30". Schuring's data 

for c = 165 psf (8.1 kN/m2) are very close to the theoretical curves. For 

'the data for c = 35 psf (1.7 W/m2), the experimental ordinate is more than 

twice the theoretical ordinate for high velocities, Since the mechanisms 

of soil shear under a rolling wheel (theoretical analysis) and a bulldozing 

place (Schuring's data) are somewhat different, a close agreement for this 

comparison should not be expected. 

The influence of changes in soil parameters on inertia forces is also 

illustrated in Fig. 7-9. If $1 is increased from zero to l o " ,  20" and 30°, 

*In Schuring's analysis, = area of plate (verbal communication with Mr. 
Schuring). 
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keeping all other soil parameters in curve A constant, c increases from e 

165 psf to 250, 420, and 780 psf (8.1 kN/m2 to 12.2, 20.6, and 38.2 kN/m2) 

respectively, and we obtain curves B, C, and D. Therefore, in the dynamic 

range, curves A, B, C, and D separate with an increase in 4. If, instead, CI 

is increased, keeping (91 = 0, curve A remains unchanged. This behavior is 

consistent with plasticity theory, which predicts that the volume of a 

soil wedge is a function of $ but is not a function of c. 

Theory Compared with Data from Rolling Sphere Tests 

An experimental comparison can also be made for spheres rolled on 

Yuma sand (Hovland and Mitchell, 1971). In this case, experimental values 

for the ordinates and abscissas for the type of plot shown in Fig. 7-7 are 

most conveniently determined as R/ (p,R2v2) and (psv2)/ce, respectively. 

Dynamic equilibrium of a freely rolling sphere (Hovland and Mitchell, 1971) 

(see also Fig. 4-1 and equation (4-5)) shows that 

1/2 + cos2a] 
2 

R = w[(sina - g 
where R = vertical force or lift, W = sphere weight, and a = sphere 

acceleration. Since W, a, and a are known, R can be calculated from 

equation (7-16). 

and Mitchell, 1971), where w = track width. 

ordinates and abscissas are determined as B(q + qI)/qI) and q,/(8ce), 

where q is computed from equation (7-11)# q is computed from equation 

(7-12), and ce is computed from equation (7-15). Note that for a freely 

rolling sphere, the forces are vertical as determined, and the cosa 

correction of the ordinate values is not necessary. 

type of data compared and Fig. 7-10 shows the comparison- 

The sphere-soil contact area is R 2  = 0.393 w2 (Hovland 

Theoretical values for the 

I 

Table 7-3 lists the 

(7-16) 
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Table 7-3 

Data f o r  Spheres Rolled on Yuma Sand 

If Figs. 7-9 and 7-10 are compared, i t  w i l l  be noted t h a t  t h e  d a t a  f o r  

Yuma sand (32" < 4 < 42")are approximately averaged by Schuring's c = 165 

psf  (8.1 kN/rn2) l i n e ,  f o r  which 4 = 0. This suggests  that ,  i n  t h e  s ta t ic  

range,data p lo t t ed  i n  terme of ce tend t o  converge t o  a narrow zone. 

While i t  has been argued t h a t  a change i n  cohesion has a minor e f f e c t ,  

curves A and C i n  Fig. 7-10 suggest t h a t  a change i n  w/D can have a much 

l a r g e r  e f f e c t .  However, t h e  curve@ i n  Fig. 7-10 provide only a general  

comparison between theory and experimental data. Note thaf  while 

t h e  curves were determined €or an average w/D, f o r  t h e  experimental 

data ,  w/D changed from d a t a  poin t  t o  d a t a  poin t .  

A more d i r e c t  comparison is  shown i n  Fig. 7-11, where the a c t u a l  w/D 

r a t i o  f o r  each point  was used i n  computing t h e  t h e o r e t i c a l  values. I n  

general ,  t he  comparison is good. The da ta  i n  both Figs.  7-10 and 7-11 

p a r t i c u l a r l y  f o r  c a r s  1, &and 3 show a r e l a t i v e l y  l a r g e  amount of scatter. 

Most of t h e  da ta  f o r  t h e  spheres ro l l ed  on moist, dense Yuma sand (car 4) 

l i e  approximately 20% below t h e  45" l i n e .  
B 
Most of t h e  d a t a  f o r  t h e  spheres 
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Flg. 7-11. Comparison between theoretical and experimental  va lues  
of l i f t  to inertia force r a t i o .  
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ro l l ed  on moist, loose  Yuma sand (cars  5,6,7) l i e  approximately 20% above 

t h e  45" l i n e .  

Since f o r  the s o i l  conditions of these tests (Table 7-3) f3 varies 

approximately from 0.75 t o  1.25 (Fig. 7-6) with an average va lue  of 1.00, 

the relative cont r ibu t ion  due t o  s o i l  i n e r t i a  is approximately t h e  inverse  

of t he  value of t h e  axes i n  Fig. 7-11. That i s ,  f o r  R/(psAv2) = 1, 10,  

and 100, i n e r t i a  contr ibut ion t o  t o t a l  s o i l  resistance is  approximately loo%, 
10% and 1% respect ively.  

comparison i s  i n d i r e c t  evidence f o r  t he  a p p l i c a b i l i t y  of bearing capaci ty  

theory i n  wheel-soil i n t e rac t ion .  

10 i n  Fig. 7-11, s o i l  i n e r t i a  forces  were s ign i f i can t .  This f a c t  i s  not  

c l e a r l y  revealed i n  Fig. 7-10, where the  da ta  e s s e n t i a l l y  p lo t  along a 

s t r a i g h t  45" l i n e  with no ind ica t ion  of bending i n t o  the t r a n s i t i o n  range. 

Therefore, t o  t he  r i g h t  of R/(p,Av2) = 10, t he  

For a l l  da t a  t o  the  l e f t  of R/(pSAv2) = 

For low values of the  absc issa  i n  Fig. 7-11, the  d a t a  tend t o  be above 

the  45" l i n e .  Although the d a t a a r e l i m i t e d ,  t h i s  suggests t h a t  f o r  these  

r o l l i n g  spheres,  the  theory underestimated t h e  i n e r t i a  e f f e c t s  by perhaps 

50%. 

Value of Theory t o  Experimental Work 

While the  agreement between theory and experimental da t a  is genera l ly  

good, although very preliminary,  i t  is equally important that f3 can be 

determined experimentally. 

very l a rge ,  (q + q ) / q  approaches one, and the  value of the  ord ina te  

( f o r  example i n  Fig. 7-10) approaches 8 .  

A t  high v e l o c i t i e s  (100 mi/hr.) ,  as qI becomes 

I I 

It w i l l  be reca l led  t h a t  t he  assumptions used i n  developing equation 

Therefore, as experimental d a t a  on 8 (7-11) are a l l  incorporated i n t o  6. 

become ava i l ab le  f o r  var ious s o i l s ,  the  assumptions can be checked and 

b e t t e r  ana lys i s  w i l l  be possible .  
5 
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The expression f o r  8 used i n  equation (7-11) can be generalized as 

(7-17) 

where Vs = volume of s o i l ,  and $, is  a funct ion o r  coe f f i c i en t  r e l a t i n g  the 

V2 acce le ra t ion  of t h e  moving s o i l  t o  t he  ve loc i ty  of t h e  wheel (as = $a G). 

The only unknowns i n  aquation (7-17) are V and $a. Therefore, experimentally 

determining f3 is  a way of backcalculating V $ . 
one (see equation (7-7)), experimentally determining is a way of back- 

S 

Since $ may be c lose  t o  s a  a 

ca lcu la t ing  the  volume of moving s o i l .  

Examp 1 es 

To i l l u s t r a t e  the  p r a c t i c a l  implicat ions of t he  theo re t i ca l  ana lys i s ,  

consider f i r s t  a Cessna 150 attempting a landing on a s o f t  playa o r  marsh. 

If  the  gross weight of t h e  a i rp l ane  is assumed t o  be 1600 lb .  (7300 N) , a t  

what ve loc i ty  w i l l  severe  and immobilizing sinkage of t h e  wheels begin? 

what ve loc i ty  w i l l  the  wheel loads exceed the  t o t a l  l i f t ? )  Fig. 7-12 shows 

(At 

the  ve loc i ty  a t  which t h e  wheels begin t o  s ink  severely into the s o i l ,  t he  

t o t a l  l i f t ,  and t h e  l i f t  provided by s o i l  i n e r t i a  forces  as a percentage 

of t o t a l  l i f t .  (So i l  and wheel condi t ions are indicated i n  Fig. 7-12.) 

The curve shown is  computed i n  accordance with presented theory, and no 

experimental da ta  are ava i l ab le  a t  t h i s  t i m e  f o r  comparison. 

Consider now the  i n e r t i a l  contr ibut ion t o  l i f t  of t h e  Lunar Roving 

Vehicle (LRV) operated on the  sur face  of the moon. 

t heo re t i ca l  ana lys i s  are shown i n  Fig. 7-13. 

indicated.)  

Estimates by the  

(Soi l  condi t ions are as 

I n e r t i a  forces  are shown t o  be s ignif ican ' t  a t  low v e l o c i t i e s .  

Note t h a t ,  on the  moon, s o i l  forces  which are dependent on gravi ty  are 

reduced by 1/6; therefore ,  the  cont r ibu t ions  due t o  i n e r t i a  and cohesion 

are r e l a t i v e l y  s i x  t i m e s  more important. 
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CONDITIONS: 

w = f ' ,  l. = 5 . 7 " ,  z : 2" 

0 = IO0 

C 

ys = IOopcf = 16.0 k N / m 3  

= S O O p s f  = 24.5 kN/mg 

V E L O C I T Y ,  v ,  Km/hr  

0 20 40 60 80 I O 0  I20 
I500 

SOFT LANDING 

1000 

WHEEL LOAD 

VELOCITY AT WHICH 
SINKAGE WILL BEGIN 

- - - - -  

500 

(RIGID WHEEL, SOIL AT SHEAR) 

0 20 40 60 80 
0 

VELOCITY,  v ,  mi /hr .  

Fig. 7-12. Relarive importance of soil inertia forces for a light 
airplane landing on a soft: clayey soil. 
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Fig. 7-13. Relative importance of soil inertia forces for the Lunar 
Roving Vehicle operated on the surface of the moon. 
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While 

t h e  s t a t i c  

i n  t h e  f i r s t  example (Fig. 7-12) t h e  wheel load i s  higher than 

bearing capacity,  t h e  wheel load f o r  t h e  Lunar Roving Vehicle 

(appr. 35 l b  = 160 N on t h e  moon) i s  much less than t h e  s ta t ic  bearing 

capacity (appr. 118 l b  = 540 l-4 on the  moon). Therefore, not a l l  t h e  s o i l  

wi th in  t h e  s o i l  wedge defined by theory moves. The relative amount of 

s o i l  t h a t  moves can, however, be  estimated. 

Radial pressure,  0 ,  a t  a wheel-soil contac t  is propor t iona l  t o  t h e  

r e s i s t ance  t o  shear  t h a t  is  mobilized along a shear surface.  Resistance 

to  shear  is proportional t o  the  normal pressure  along t h e  shear surface.  

The normal pressure  a t  any poin t  along t h e  shear sur face  (see Fig. 7-1) can 

be estimated by adding t h e  pressure  due t o  wheel load and t h e  pressure  due 

t o  s o i l  weight. 

theory of pressure  beneath a uniform load on an  e l a s t i c  half-space.) 

Assuming t h a t  f o r  an increment of deformation, x,  of t h e  s o i l  a t  t h e  

(The pressure  due t o  the  wheel load can be estimated from 

wheel-soil contact,  shear stresses are mobilized along a r e l a t ed  por t ion  

of the  shear su r face ,  w e  can estimate and p l o t  r e s u l t i n g  r a d i a l  p ressure ,  

0,  vs. displacement, x. Such a p l o t  suggests t h a t  t h e  r a t i o  of displace- 

\ 

ment, x,  to  displacement f o r  f u l l  mobilization of shear stresses along 

the  shear sur face ,  x max ' 
0 t o  bearing capacity,  q,  squared. That is, 

can be considered propor t iona l  t o  t h e  r a t i o  of 

-a  X (3' 
X 

maX 

Therefore, f o r  the  LRV wheel-soil i n t e rac t ion ,  t h e  magnitude of s o i l  

i n e r t i a  forces ,  which a r e  proportional t o  the amount of moving soil, are 

reduced by iipprox.lmately (35/118)' (l/ll). 'l'hirJ leads t o  the datlhed 

(7-18) 

l i n e  i n  Fig. 7-13. 
P 
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The above example also clearly Allustrates that the performance of 

a deformable wheel operating below soil bearing capacity i s  a different 

and a more complex problem than a rigid wheel, and Fig. 7-13 is intended 

as an example and a rough estimate only. Note that while for a rigid 

wheel, equilibrium is achieved by appropriate sinkage into the soil, for 

a deformable wheel, equilibrium is achieved mainly by appropriate flexure 

of the tire. 

Based on the dashed curve in Fig. 7-13, soil inertia forces are 

likely to contribute from 10 to 20 percent of the total lift to the Lunar 

Roving Vehicle. 

CONCLUSIONS 

A theory has been presented from which inertia forces of moving soil, 

influencing the motion of a rolling wheel, can be estimated. The theory 

is compared with previous experimental analysis and experimental data from 

rolling spheres. These comparisons indicate that the theoretical pre- 

dictions are reasonable, and that predictions specifically of the magnitude 

of inertial effects are within 50% of the measured values. These inertial 

effects are computed from equation (7-11) 

where qI = pressure due to inertia of moving soil (acting in the same 

direction as static bearing capacity, q ) ,  ps = mass deniity of soil, 

g = acceleration of gravity, w = track width, v = velocity of wheel, and 

f3 is a function of soil friction angle, 4, and slope angle, a. Values 

of B are given in Fig. 7-6. 

A csoncept of equivalent cohesion is introduced, which allows data for 
t 
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and c - 4 soil to be plotted and analyzed as shown in 'Pigs. 7-7, 7-9, and 

7-10. The main advantage of this type o f  plot is that 8 can be determined 

experimentally from tests at high wheel velocities (100 m/hr = 161 km/hr). 

Since a11 assumptions necessary in developing equation (7-11) are incor- 

porated in B, refinements in values of B can be made as additional 
experimental data become available. 

The studies presented show that soil inertia forces can be important 

(5 to 50% of total soil reaction) at even moderate wheel velocities. 
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CHAPTER 8 .  WHEEL-SOIL INTERACTXON ANALYSXS 

A summary of the relationships derived in the prevboas ch#~ptet*s 

is given below. These relationships are related to: 

1. Sinkage of a wheel 

2. 

3. Mobilization of shear stresses at the wheel-soil contact 

4. Soil inertia effects 

The derivations are all based on the assumption that the wheel- 

Pull that can be developed from a wheel 

soil interaction is two-dimensional in the sense that relevant inter- 

action between soil particles and the wheel is all in the plane of 

rolling of the wheel. 

fundamental observations: 

The presented relationships were based on two 

1. The line of action of the resultant of radial stresses approxi- 

mately bisects the wheel-soil contact angle, BT, for all values 

of slip, s. 

2. For developing general wheel-soil interaction theory, all 

parameters operating at the wheel-soil interface are functions 

of slip and position. 

a point, 2) the shear stress surface, and 3) the performance 

This led to concepts such as 1) slip at 

surface (to be presented). The general problem requires that 

all functional relationships be visualized in some three- 

dimensional way. 

Summary of Basic Relationshipa 

For a rigid cylindrical wheel operating in any eoll, sinkage can be 

related to the towed force by 
3 
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-1 - Nx = t a n  E0.4 cos (1-2 :) J 
N 

Y 
(5-4) 

where z = sinkage, D = wheel diameter, Nx = motion r e s i s t ance ,  and 

N = vertical component of N associated with motion r e s i s t ance  (Fig. 4-10). Y 
Sinkage can be estimated, using bearing capacity theory, from equation 

(5-8) or  equation (5-9) by noting t h a t  t h e  t o t a l  bearing capacity,  Q ,  must 

equal, N ,  giving 

S N + s [(cfq' tan$) Nc + q' ]  (5-8) 
N ysw 

q = - = -  A 2 Y Y  cq 

where 4 =  

q'  =: 

N =  

A =  

w =  

- - 
YE3 

c =  

@ =  

Sinkage can a l s o  

un i t  bearing capacity 

z Ys/2 or surcharge 

r e s u l t a n t  of r a d i a l  stresses 

wheel-soil contact area = €$rw 

wheel width 

s o i l  u n i t  weight 

s o i l  cohesion 

s o i l  f r i c t i o n  angle 

shape f a c t o r s  which can be determined from equations 

(5-10) and (5-11) 

bearing capacity f a c t o r s  which can be determined from 

Figures 5-7 and 5-8, using 0 = Meyerhof ' s  6; N 

be estimated from 

using procedures out l ined  by Bekker (1969), and tak ing  i n t o  account 

experience gained from t he  ush of these  procedures. 
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Pul l ,  P, negat ive or pos i t i ve ,  can be determined from a fo rce  polygon 

(Fig. 4-10) o r  from the following equat ions 

For a s o i l  with both cohesion and f r i c t i o n ,  where the wheel-soil cohesion 

c > 0, and the wheel-soil f r i c t i o n  angle 6 > 0, a 

For a pure sand (c  = 0), a 

or 

For a pure c lay  (6 = 0)  , 

For a towed wheel i n  any s o i l ,  

(4-20) 

(3-34) 

(4-21) 

(4-22) 

(4-23) 



113 

The towed force can also be analyzed from 

(>) = taneN (4-31) 

Soil inertia forces influencing the wheel can be evaluated from 

(7-11) 

where B can be estimated from Fig. 7-6. 

In the above equations, 6 and ca are functions of position, 0 ,  

and slip, s ,  but the subscripts were omitted to shorten the expressions. 

(The use of 6 and c and the mobilization of shear stresses are discussed 

in detail in Chapter 6.) 

equal, can be determined from Fig. 3-7. The terms in the above 

equations are defined as follows: 

a 
The ratios F/r and r;/rf, which turn out to be 

= wheel-soil cohesion ‘a 

g = acceleration of gravity 

P = pull (negative or positve) for any slip 

qI = soil inertia pressure 

r = radius of wheel # 

- = radius to line of action of F (vectorial) r 

rf 

r; 

v 

= moment arm to dR (see Fig. 3-1) 

= moment arm to R (see Fig. 3-1) 

= translational velocity of wheel 

W = wheel load 

B 

d = wheel-soil friction angle 

= abbreviation used in solving equation (7-111, see Fig.  7-6 

8 = angle identifying any positioniat the wheel soil contact 
(see Fig. 3-1) 
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8, = angle  t o  t h e  l i n e  of ac t ion  of the r e s u l t a n t  of r a d i a l  (normal) 
stresses 

O8 = r a d i a l  stress a t  the wheel-soil contack 

= s o i l  mass dens i ty  
PS 

ANALYSIS PROCEDURE 

Suppose that we are t o  determine performance of a wheel in  a given 

s o i l  a t  a p a r t i c u l a r  state of s l i p  of the  wheel. 

of t h e  force  polygon (Fig. 4-10), two separa te  procedures may be considered: 

In solving a l l  forces  

1) sinkage known, 2) sinkage unknown. These cases w i l l  be  described i n  

d e t a i l  below, The written out l ine follows the block diagram and 

graphical  so lu t ions  i n  Figs. 8-1 and 8-2. 

Sinkage Known (Fig. 8-1) 

Given: Wheel load 

Procedure: 

1. 

2. 

3.  

4. 

5. 

Determine wheel-soil s t r eng th  parameters, 6 and ca, as a 

funct ion of displacement from 3 ring-shear tests, as shown i n  

Fig. 6-5. 

Selec t  the appropriate  strength parameters, 6 and car f o r  des i red  

s l i p ,  using Fig. 6-4 and the  test data.  

N’ Compute 8 from equation (5-3), and draw t o  scale W and 6 N 
Assume a value of N and compute P using equations (4-18) and 

(4-19). 

p a r a l l e l  t o  the BN 

Draw P perpendicular t o  the 8 l ine ,  and draw N N 
line, from F. 

Compare F and N t o  the 

must reach the  l i n e  of 

from the  top of W. I f  

value was used. 

required closure.  The r e s u l t a n t  of F and N 

ac t ion  a t  P ,  which is a hor izonta l  l ine  drawn 

t h e  force  polygon does not  c lose ,  a wrong N 
P 
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Select 

"2'3: ~ 

Compute 

~ 

4: 

f I 

5,6 : 

. 
Determines 

torque 
7 :  all forces ond 

~ 

P 

W 

Fig. 8-1. Solution of the wheel-soil interaction 
force polygon for known sinkage. 
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6 .  Select a new N and compute F; continue steps 4, 5 and 6 

until the force polygon closes. 

7.  Closure of the force polygon determines the pull, P, and all 

other forces associated with the force polygon. 

these forces are known, the required torque, or torque 

Once all 

associated with F,can also be determined. 

Weakest Link: 

The weakest link or step in the above procedure is probably 

that of relating soil parameters to slip (Fig. 6-4). This requires 

further research. 

Sinkage Unknown (Fig. 8-2) 

Given: Wheel load 

Procedure: 

1. 

2. 

3. 

4. 

5 .  

6 .  

7. 

Determine soil strength parameters, 4 and c, and/or coefficients 

associated with equations (5-5) or (5-6). 

Compute q vs. \ 
(5-5) or (5-61, using also equation (5-3). 

Assume a value of N giving a value for $. Draw to scale W and 8 

Determine wheel-soil strength parameters, 6 and ca, as a f&ction 

of displacement from 3 ring-shear tests, as shown inFig. 6-5. 

Select the appropriate strength parameters, 6 and ca, for 

desired slip, using Fig. 6-4 and the test data. 

Compute F using equation (4-18) and (4-19), 'and draw F perpendi- 

cular to the % 
Compare F and N with the required closure. 

from equations (5-8) or (5-9) or equations 

N' 

line Draw N parallel to the ON. line, from F. 

P 
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I ,  2: 

3: 

4,5,6: 

9: 

I I 

N,, =N J. Closure 

Determines 
all forces, torque 
and sinkage. 

Fig. 8-2. Solution of the wheel-soil inte3action 
force polygon for unknown sinkage. 
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8. I f  t he  force  polygon does not c lose,  select a new N, compute 

a new F, and continue s t e p s  3, 6, 7, and 8 u n t i l  appropriate  

c losure  is  achieved. 

Closure of t h e  force  polygon determines a l l  the forces  9. 

cons is ten t  with the  computed sinkage and wheel-soil contact  

angles.  Again, the torque, T, associated with F can now be 

determined. 

FTeakest Link: 

The weakest l i n k  or  s t ep  in  the  above procedure (sinkage 

unknown) is probably t h a t  of es t imat ing sinkage ( s tep  2) ,  e i t h e r  

using bearing capaci ty  theory o r  equations (5-5) o r  (5-6). This 

requi res  fu r the r  research. I n  addi t ion ,  s t e p  5 ,  which relates s o i l  

parameters t o  s l i p  (Fig. 6 - 4 ) ,  requi res  fu r the r  research. 

COMPARISONS 

It has not  been possible  t o  compare pred ic t ions  based on t h e  

procedures out l ined above d i r e c t l y  w i t h  experimental data ,  because 

t h e  type of displacement dependent wheel-soil s t r eng th  parameters 

(Fig. 6-5) required have not  been found i n  t h e  l i t e r a t u r e .  It  is 

possible ,  however, t o  snake some general  comparisons. 

A common expression f o r  developed p u l l  (Bekker ,  1969) is 

(8-1) % P = H -  

H = Ac 4- Wtan4 
\ 

where H 5 t r a c t i o n  developed by t he  wheel, I$, 5 motion res i s tance ,  k 

sinkage coe f f i c i en t ,  and the  exponent x var i e s  between 1 and 2. 

a 
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- Consider the simple case of a pure sand with 6 = 45", k = k = 3 ,  $ 
and a wheel with w = 

Based on theory 

5 and D = 20. Equation (8-1) then reduces to 

presented in this report, the same simple case can 

be studied using equation (4-21). 

above, and assuming r/r = 1, equation (4-21) reduces to 

For the same soil conditions used 

p2 = z(wcoseN - PsinBN)2 - w2 (8-3) 

While equation (8-2) is a function of the width of the wheel, 

equation (8-3) is just an equilibrium solution of forces in the plane of 

rolling. Equation (8-3) incorporates also the case of an undeformable 

surface, such as may be the case with a rail. Note that in t h i s  case 

BN = 0 ,  and equation (8-3) reduces to P/W = 1. 

for 6 = 4 5 " .  

This is obviously correct 

For a deformable surface, such as a soil, €IN is a function of W. 

Assume for the sake of this comparison that 8 

0 to 20 degrees as W increases from 0 to 300. On this basis, equations 

(8-2) and (8-3) are compared in Fig. 8-3. A s  shown, the two theories lead 

increases linearly from N 

to similar P vs. W relationships for this simple case. In the use of 

equation (&2), the trick is to select the proper x. In the use of equation 

(8-3) ,  the trick is to select the proper ON. 

The influence of the uncertainty in selecting 8 was also evaluated N 

by solving equation (8-3) for ON 2 one standard deviation, based on data in 

Figs. 4-5 to 4-9. The range suggested by these solutions is shown by the 

cross-hatched area in Fig. 8-3. The same range can also be defined by 

x = 1.87 and x = 1.91. 

between 1.87 and 1.91 by curve-fitting techniques, this range represents 

While it may be difficult to even distinguish 

# 
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-,x = 1.87 

x = 2  
I I I 

0 100 200 300 400 

Fig. 8-3. Comparison between equations (8-2) and (8-3) 
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approximately 68% of the da ta  shown i n  Figs. 4-5 t o  4-9. The p o t e n t i a l  

value of presented theory, r a the r  than theory based on an exponential  

equation, i s  therefore  demonstrated. 

bracketed by BN r a the r  than x. 

Solutions can be more accurately 

Consideration of p u l l  as a funct ion of both s l i p ,  s,  and pos i t i on ,  0 ,  

suggest a performance sur face  as i l l u s t r a t e d  i n  Fig. 8-4. 

da ta  by Leflaive,  1967, demonstrates experimentally the  same type of sur face ,  

Reanalysis of 

as shown in  Fig. 8-5. There i s  a separa te  P vs. s re la t ionship  f o r  each 

value of W, Therefore, P/W by i t s e l f ,  although very frequent ly  given i n  

the  l i t e r a t u r e ,  may not be a very meaningful dimensionless parameter. 

It  i s  a l s o  poss ib le  t o  p red ic t  a performance sur face  from theory 

presented i n  t h i s  report .  Such a sur face  (Fig. 8-6) w a s  computed on the 

bas is  of Leflaive 's  wheel and sinkage da ta ,  and Figs. 6-4 and 6-5. 

t o  be  noted t h a t  Figs. 8-5 and 8-6 are not comparable; a comparable 

theo re t i ca l  p red ic t ion  could only be made using s o i l  s t r eng th  parameter 

re la t ionships  based on ac tua l  t e s t i n g  ins tead  of Fig. 6-5. Fig. 8-6 

It is  

i l l u s t r a t e s ,  however, t he  general  and realist ic na ture  of t h e  predict ion.  

Also, t he  performance sur face  of Fig. 8-6 suggests a more p l a s t i c  s o i l  than 

t h a t  of Fig. 8-5, where the re  is e s s e n t i a l l y  no increase  i n  pu l l ,  P, beyond 

s = + .15. 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

Approximate and general  so lu t ions  have been developed f o r  a r i g i d  cy l ind r i ca l  

wheel operat ing i n  s o i l .  

sented earlier i n  t h i s  chapter. The so lu t ions  dea l  with 

A deta i led  summary of these developments w a s  pre- 

1. Sinkage of a wheel 

2. Pul l  t h a t  can be developed from a &heel 
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+P 

+ S  

-P 

F i g .  8-4.  Performance surface; pull as a function of wheel load and slip. 
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Fig. 8-5. Performance surface, rigid wheel data, 
Leflaive (1967) r 
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Fig. 8-6. Predicted performance surface. 
ap 
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3. Mobilization of shear stresses at the wheel-soil contact 

4. Soil inertia effects 

The solutions are primarily the result of simple considerations of statics 

and dynamics. 

and theoretical predictions are likely go be within 15% of the correct value. 

The error associated with the solutions can be evaluated, 

For each of the four phenomena listed above, the developments suggest 

how prediction of wheel-soil interaction can be improved, and these items 

are discussed below. 

Recommendations 

Sinkage of a wheel: 

Sinkage, as computed from equation (5-7), is subject to typical 

limitations of bearing capacity theory. 

problem requires an exact solution as opposed to an upper or lower bound, 

Because the wheel-soil interaction 

if bearing capacity theory is to be used, it must be tailored specifically 

to fit the problem. This is possible, as was demonstrated by modifying 

the bearing capacity equation to the case of rigid spherical wheels (Fig. 

5-3, 5-4, and 5-5). The intermediate cases (3)  and ( 4 )  in Fig. 5-6a, 

require further research. 

Tests should be conducted where soil conditions are controlled, and 

careful measurements are made of wheel-soil contact angles, el, e2, BT, 

and 8 as these are influenced by the state of slip of the wheel. Then N 
the measured wheel load and pull or towed force can be compared to predic- 

tions by the bearing capacity equation, and more realistic shape factors 

and correction factors to the bearing capacity factors-can be developed. 

The observation that the line of action of the resultant of radial 

stresses approximately bisects the wheel-soil contact angle for all values 

of slip, which is substantiated by data in Figs. 4-5 and 4-6, clearly 
1 



12 6 

suggest t h a t  t h e  mobilization of shear stresses along the wheel-soil 

contac t ,  and the  mobilization of r a d i a l  stresses, are associated with two 

sepa ra t e  mechanisms. It is believed t h a t  t h e  r e s u l t a n t  of r a d i a l  stresses, 

N, should be r e l a t e d  t o  bearing capac i ty  f o r  a l l  values of s l i p .  

P u l l  t h a t  can be developed from a wheel: 

Further,  while much da ta  has been accumulated on performance para- 

meters, much less d e t a i l e d  da t a  is  ava i l ab le  on wheel-soil contact angles.  

Since it has been demonstrated that,knowing BN, t h e  wheel-soil i n t e r a c t i o n  

problem becomes determinate, ca re fu l  da t a  on 0 should be co l lec ted .  With 

the  da t a  presented i n  Figs. 4-5 through 4 - 9 ,  it  i s  probable t h a t  about 68% 

N 

of pred ic t ions  of p u l l  w i l l  be within approximately 15% of the  c o r r e c t  

value. Improved data,  adequate t o  sepa ra t e  out va r i ab le s  associated 

with t h e  states of t h e  wheel and t h e  soi1,should reduce t h e  e r r o r  t o  an 

acceptable value i n  probably a l l  cases. 

Mobilization of shear stresses a t  t h e  wheel-soil contact:  

Further t h e o r e t i c a l  contemplation should be f i r s t  undertaken t o  relate 

s o i l  test displacements t o  s l i p  a t  a poin t ,  sO, as w a s  attempted i n  Fig. 6-4 .  

This could lead t o  a general  and rigorous r e l a t ionsh ip .  Contemporaneously, 

shear stress sur faces  (Fig. 6-5) should be p lo t t ed  from experimental d a t a  

whenever poss ib le  t o  f u r t h e r  our understanding of t h e  genera l  problem: 

S o i l  i n e r t i a  e f f e c t s :  

The developments i n  Chapter 7 ,  and p a r t i c u l a r l y  Figs. 7-9  and 7-10, show 

t h a t  13 i n  equation (7-11) 

V2 13- q t  
p S p  wg 
-t 

can be experimentally determined. Since a l l  assumptions necessary i n  de- 

veloping equation (7-11) are incorporated 19 8,  our dependence on these  
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assumptions need only be temporary. Tests conducted by running a wheeZ 

at relatively high velocity on a soil, and measuring the lift provided 

the wheel by the soil, w i l l  allow determination of 13 for desired soil 

conditions from the type of plots shown in Figs. 7-9 and 7-10. 
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LIST OF SYMBOLS 

A 

A1A2 
a 

a 

a max 

B1B2B3 
b 

S 

C 

C a 

e C 

c1 
C 
X 

D 

DR 

DT 

d 

e 

F 

Fa 

FX 

F 
Y 

I 

wheel-soil contact area 

A1 A2 - 0 

linear acceleration of wheel 

linear acceleration of soil 

maximum acceleration of soil 

integration constants 

width of footing in the bearing capacity equation 

soil cohesion 

wheel-to-soil cohesion or adhesion 

equivalent cohesion 

cohesion of soil (1) 

cohesion of soil (x) 

wheel diameter 

distance revolved 

distance traveled 

dimension defining triangle base proportional ta  d 

dimension of cone (active Rankine zone) underneath wheel 

0 

base of natural logarithm 

vectorial sum of shear stresses at wheel-soil contact 

algebraic sum of shear stresses at wheel-soil contact 

x component of F 

y component of F 

acceleration of gravity 

traction developed by wheel,  equation (8-1) 

mass moment of inertia of wheel 
1 



i 

C 
k 

k 

R 
cp 

m 

m 
S 

N N N  
Y c q  

Nys’ NcS’ Nqs 

N 

NX 

N 

P 
Y 

s l i p  = 1 - DT/DR 
cohesion parameter i n  equation (5-Sa) 

f r i c t i o n  parameter i n  equation (5-Sa) 

l eng th  of wheel-soil contact i n  d i r e c t i o n  of motiop 

m a s s  of wheel 

m a s s  of s o i l  set i n  motion by wheel 

Meyerhof (1951) bearing capacity f a c t o r s  

bearing capacity f a c t o r s  f o r  r o l l i n g  spheres 

v e c t o r i a l  sum of normal stresses a t  wheel-soil contac t  

x component of N (motion res i s tance)  

y component of N 

p u l l  developed by t h e  wheel (negative o r  pos i t i ve )  

towed fo rce  

Q t o t a l  bearing capacity 

4 u n i t  bearing capacity 

pT 

u n i t  r e s i s t ance  due t o  soil i n e r t i a  41 

q1 surcharge pressure  

R v e c t o r i a l  sum of a l l  stresses a t  t h e  wheel-soil contact 

Ra 

Rb 
RI 
R 

R 

r 

X 

Y 

r e 

f r 

r f e  

rl f 

a lgeb ra i c  sum of a l l  stresses a t  t h e  wheel-soil contac t  

motion r e s i s t ance ,  equation (8-1) 

soil i n e r t i a  fo rce  

x component of R 

y component of R 

wheel radius 

wheel e f f e c t i v e  radius 

moment a r m  t o  any dR, bu t  r 

moment arm t o  any dR from wheel 5enter  

moment arm t o  R from wheel center  

# f (8 )  f 



t r 

r 

r 

r 

W 

z - 

S 

'e 
s s s  
Y C ¶  

T 

t 

tS 

tt 

tW 

U 

vS 

V 

V a 
V 
S 

CIX 

PIC 

V 

V 

PIX 
V 

W 

W 

x, Y, 

X 
S 

X 
W 

Y 

radius of shear ring test, chapter 5 

radius of wheel, chapter 6 

wheel radius as a function of z 

radius, or distance from wheel center, t o  actiqq Q$ F 

slip = (DR - DT)/(DR + DT) 
slip, s ,  as a function of 8 

shape factors used in bearing capacity theory. 

input torque 

time 

time of soil movement 

time increment for ring shear test 

time increment for wheel 

angular acceleration of wheel 

volume of moving soil 

linear velocity of wheel 

average soil veJ.Qc#ty 

velocity of soil 

velocity of wheel center w.r.t, x 

velocity of point p w.r.t. c 

velocity of p w.r.t. coordinate syscw, xa  i%kcd #m 9941 

wheel load or weight 

- 

track width 

coordinates 

distance of soil displacement 

distance of wheel displacement 

vertical distance to instantaneous center o f  rotatgon 

z sinkage 
I 
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a 

a' 

B 

6, 

6 

et3 

YS 

rr 

e 

eT 
e 

et 

e 

n 

W 

e2 

e; 

e; 
CP 

4 

41 

4x 

+a 

JI 

slope angle 

inclination of plate 

abbreviation used ;La solving equation (7~1) 

angle defining Meyerhof's free surface, 

wheel-soil frlction angle 

6 as a function of 8 and s 

unit weight of soil 

unit weight of sphere or rock 

angle 

angle 

total 

angle 

identifying any position af the whseL-eq13, contact 

defining the line of action of F 

wheel-soil contact angle 

to the line of action of the resubtant Qf normal (radial) 
stresses 

contact angle aseoclated with ring 8he4r taeE, c3gpter 6 

contact angle associated with whed., chapfer 6 

wheel-soil contact angle forward of vertical ceqterline 

wheel-soil contact angle rear of vertical centerline 

angle of intersection of slope and uppeq epd OP passiye Rankine 
zone 

angle of intersection of slqpe gnd sheer surfpee 

angle defining the direct$on 04 any dR in a c - (0 sojl 

soil friction angle, or angle of shearing resistance 

friction qngle of ssil (1) 

friction angle of soil (x) 

angle defining frictional resistanoe at wheel-soil cpntact 

function or coefficient relating soil accelergtion 09 wheel 
velocity 

I 
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PS 

U 

%z 

E 
W 

t E 

At 

Aw 

'lZt 

W A2 

w 

soil mass density 

radial pressure at wheel-soil contact 

as a function of 8 and direction perpencH,cular t o  the pager, 8 

shear stress at the wheel-soil contact 

shear stress as a function of 9 and z 

soil strain associated with wheel 

soil strain associated with a ring daear test 

soil displacement associated with a rlng shear tegt 

soil displacement: associated with wheel 

depth of soil strained in the ring shear test  

depth of soil strained by wheel. 

angular velocity of  wheel 


