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COMPUTER PROGRAM FOR DETERMINING ROTATIONAL LINE INTENSITY FACTORS
FOR DIATOMIC MOLECULES
Ellis E. Whiting

Ames Research Center
SUMMARY

A Fortran IV computer program, that provides a new research tool for
determining reliable rotational line intensity factors (also known as H&nl-
London factors), for most electric and magnetic dipole allowed diatomic tran-
sitions, is described in detail. This "users' manual" includes instructions
for preparing the input data, a program listing, detailed flow charts, and
three sample cases. The program is applicable to spin-allowed dipole transi-
tions with either or both states intermediate between Hund's case (a) and
Hund's case (b) coupling and to spin-forbidden dipole transitions with either
or both states intermediate between Hund's case (c¢) and Hund's case (b) cou-
pling. It is not applicable to quadrupole transitions or to transitions
involving an electronic state approximated by Hund's case (d) coupling.

INTRODUCTION

This paper describes a comprehensive computer program for the determina-
tion of rotational line intensity factors (also known as Honl-London factors)
of diatomic molecules. The program is based on the theory of the intensity of
rotational lines in diatomic molecular spectra presented in references 1 and 2.

The first analytic formulas for the rotational line intensity factors of
diatomic molecules were derived by H. Honl and F. London (ref. 3) in 1925 for
the simple singlet-singlet electronic transitions. Since that time satisfac-
tory general formulas for the intensity factors of singlet, doublet, and
triplet transitions have been developed. (See ref. 1 for a brief history of
the development of analytic intensity factors.)

The availability of realistic intensity factors for all spin-allowed or
spin-forbidden transitions is highly desirable.! However, the algebraic dif-
ficulties associated with deriving general formulas for intensity factors, .
when the multiplicity is four or greater, make it unlikely that tractable
formulas will be derived for them in the foreseeable future. Therefore, the
provision of numerically determined intensity factors appears to be the only
practical and acceptable alternative.

For spin-allowed transitions AS = 0, AA = 0, *1, and Zi++zi For
spin-forbidden transitions AQ = 0, +1 and at least one of the spin-allowed
conditions is violated.



The computer program described is a new research tool for determining
reliable intensity factors for most electric and magnetic dipole-allowed
diatomic transitions by numerical methods. It is applicable to spin-allowed
dipole transitions with either or both states intermediate between Hund's
case (a) and Hund's case (b) coupling and to spin-forbidden dipole transitions

with either or both states intermediate between Hund's case (c¢) and Hund's
" case (b) coupling. The program is not applicable to quadrupole transitions or
to transitions involving an electronic state approximated by Hund's case (d).

This paper is intended to provide an adequate users' manual for the com-
puter program. Therefore, it includes a brief summary of the theory, a dis-
cussion of several important program operations, three sample cases, detailed
flow charts, and a complete program listing liberally amnotated.

The author would like to acknowledge the invaluable discussions with
Dr. J. T. Hougen during the course of this work and the cheerful assistance of
Cheryl Whiting in proofreading the detailed flow charts.

THEORY

The theory of rotational line intensity factors is derived from first
principles, and in great detail, in reference 1. That derivation will not be
duplicated here. However, in order to understand many of the definitions and
operations used in the computer program, the user must be familiar with cer-
tain key concepts in the derivation. Therefore, the following abbreviated
discussion of the theory is included to provide the minimal information needed
to use the program with some degree of confidence.

Many of the terms used in the theory are defined in flgure 1, a typical
energy level diagram of an electronic transition from a 31 to a 3% electronic
state. The electronic spin-splitting and A-doubling, shown in the central
portion of the figure, are greatly exaggerated. The figure illustrates the
well-known fact that there are (25 + 1) electronic substates for sigma elec-
tronic states and 2(25 + 1) electronic substates for nonsigma electronic
states. The number of substates for both cases can be written in a unified
fashion as (2 - 60 A)(ZS + 1), using the Kronecker delta symbol.

3

The structure of each electronic substate is composed of a series of
vibrational levels each containing many rotational J-levels. Further, each
rotational J-level can be split by a magnetic field into (2J + 1) Zeeman
states.

The basic spectral elements are Zeeman components produced by transitions
between Zeeman states. The sum of all Zeeman components between two J-levels
-is a rotational line. This definition of a rotational line is identical to
that of an atomic line (ref. 4, p. 237) and provides a natural bridge between
atomic and molecular theory. It is also essential for the description of the
theory in terms of basis functions discussed later. According to this defi-
nition of a rotational line, a A-doublet is composed of two rotational lines.



However, in the literature a rotational line is frequently defined to include
both components of a A-doublet (ref. 5 and 6 for example). This difference
provides one of the important sources of confusion in the theory of diatomic
spectra.

A vibrational band is the composite of all rotational lines occurring
between vibrational levels v' and v' in all electronic substates. Figure 1
shows only that part of a vibrational band formed between two substates.

A band system is the composite of all rotational lines between two electronic
states. Thus, a band system in molecular spectra is equivalent to a very
extensive atomic multiplet in atomic spectra.

The effect of nuclear spin is not explicitly included in the analysis.
However, in nearly all cases, the nuclear spin and the resultant angular
momentum without nuclear spin commute. Thus, the nuclear hyperfine line com-
ponents can be obtained from the rotational line intensities by the methods
of angular momentum theory summarized in reference 4. '

The theory of rotational line intensities is closely dependent on the
various angular momentum operators and the way they couple to form their
resultant. The vector model coupling diagrams for Hund's cases (a), (b), and
(c) coupling and their appropriate selection rules are shown in figure 2. In
this discussion, Hund's case (a) basis functions are used for spin-allowed
transitions and Hund's case (c) basis functions are used for spin-forbidden
transitions.

The starting point for all discussions of spectral intensities is
Einstein's phenomenological equation for spontaneous emission in either an
atomic line or a molecular rotational line (ref. 7); that is

Eprgn = Dphv g el g
where
E 1 g the emitted power/unit volume, W m~3
Ny the population density of the J' rotational level, m-3
hVJan the energy of each photon emitted, W s
AJ|Jn the spontaneous emission transition rate per particle, also called

the Einstein 4 coefficient, s”1

In reference 8 Dirac derived the Einstein A coefficient in terms of an
expansion in the electric and magnetic moments within an atom or a molecule.
The strongest term in the expansion, if it is nonzero, is that due to the
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where
wUM' the wave function of the upper Zeeman state M
wLM" the wave function of the lower Zeeman state M
2 the electric dipole moment operator in the laboratory coordinate
system, Cm
€0 the permittivity of a vacuum, 8.854x10-12¢23-1p~1
SJ'Ju the line strength, defined in reference 4
With equation (3), equation (1), for the power emitted in a line by

spontaneous emission, can be written

z _ 161T3\):}|Jn SJIJ"

AN A PR Al (4)

e, (27" + 1)

The advantage of using equation (4) instead of equation (1) is that the line
strength Sjy' s is symmetrical in the upper and lower states. Thus, the line
strength is the same in emission and absorption (see ref. 4, p. 98).

In order to make further analytic progress in the theory of diatomic
molecules, the Born-Oppenheimer approximation is introduced (see ref. 9).
This approximation assumes that the total wave function can be written as a
product of an electronic wave function and a vibrational-rotational wave
function. Further, Pauling and Wilson (ref. 10) have shown that the
vibrational-rotational wave function can also be approximated by a product of
vibrational and rotational wave functions. On the basis of these approxima-
tions, it is shown in reference 1 that the line strength for isotropic radia-
‘tion can be written

<SJ'J"> = qvvvnl<"pu|Reale>l 2 (5)

2The derivation given herein and the computer program are based on the
electric dipole moment. However, the results can also be applied to magnetic
dipole transitions (see p. 19).
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where

qy the vibrational Franck-Condon factor, dimensionless

Re the electronic transition moment, C m

a - the rotational matrix element including the summation over M' and M,
dimensionless

wU’wL ths'e;igtsgnic-rotational wave functions for the rotational levels

Re = -/—5 (px + ipy)

for perpendicular transitions, that is, those for which AQ = %I.

for parallel transitions, that is, those for which AQ = 0, where Pys Py and
pz are the components of ? in the molecular coordinate system. ¥

The matrix brackets applied to Sjijn in equation (5) indicate that in
diatomic spectra there may be several rotational lines in the same vibrational
band with the same values of J' and J'" (see fig. 1). Further, the symbolism
correctly implies that the strength of the lines can be found by regular
matrix operations.

, In general, it is not possible to write simple expressions for the matrix
elements of <Rza> between the wave functions yy and yz. Therefore, the
solution proceeds in three major steps. First the wave functions are expanded
in terms of a complete set of simplified basis functions ¢ (see ref. 2); next
the <Rga> matrix is expressed in terms of the basis functions; and finally
the <Rg,o> basis matrix is transformed to the wave functions.

The transformation from the <Rga> basis matrix to the <Rpa> matrix
between wave functions is given by the unitary transformations that symmetrize

the basis functions Tgy, and that diagonalize the Hamiltonian matrix between
symmetrized basis functions Tdiag- Thus,

<“’u|Re°‘|"’L> = T1}1<°U|Re°‘|q’L>TL (6)
where
¢ = [ASE> |0 >

is the product of an electronic and a rotational basis function with @ = A + I
and T = Téydeiag‘



The electronic transition moments R, are usually determined by comparison
of theory with experimental data; they are, therefore, carried in the present
analysis as unknown parameters. To calculate realistic line intensities the
user must know these parameters.

The rotational matrix elements, a, are related to the direction cosine
transformation, which expresses the components of the dipole moment operator
in the laboratory coordinate system in terms of its components in the molec-
ular coordinate system. The matrix elements of the direction cosines are
expressed in terms of the rotational quantum numbers in reference 11, and
these are used in reference 1 to give the expressions for o (valid for
isotropic radiation) listed in table 1.

The general selection rules AJ = 0, *1 and AQ = 0, *1 are explicitly
indicated in table 1. Separate matrices for the P-, @-, and R-branches are
formed, depending on the value of AJ. The specific matrix elements for each
case are given by the expressions in the appropriate column of table 1.

An example <R,a> basis matrix for a spin-forbidden 21 « “:* transition
is shown in table 2. The rows of the matrix are designated by the final state
basis functions and the columns by the initial state basis functions. The
number of independent matrix elements can be reduced because symmetric matrix
elements are related. Symmetric matrix elements are those that interchange
when the signs of both A and I are changed in both the upper and lower elec-
tronic states (Relal and Reloalo in table 2, for example).

i~

The relationship between the symmetric matrix elements is determined by
the phase factors that occur naturally in the quantum mechanical description
of the problem. For phase conventions consistent with those chosen by Condon
and Shortley in reference 4 and by Hougen in reference 2 (eq. 2-31), the
following "symmetry rules' are derived in reference 1:

1. All the transition moments are real or all are pure imaginary and,
for all practical purposes, they can always be chosen to be real.

2. All of the symmetric matrix elements in any given matrix are either
equal to or the negatives of each other.

3. The symmetry in the P- and R-branch matrices is always opposite to
the symmetry in the @-branch matrix.

4, The symmetric matrix elements in the @-branch matrix can always be
chosen to be equal, except for the following two cases when they must be
chosen to be negatives:

+ + . R
ITer” transitions with AS = 0, 2, etc.

1, 3, etc.

=
et transitions with AS

As an illustration of these rules, table 2 is recast in table 3, as it would
appear for a P-branch matrix.



In the case of spin-allowed transitions, the additional selection rule
AL = 0 applies to R, between electronic basis functions. This additional
restriction reduces the number of nonzero matrix elements in the <R a> basis
matrix for spin-allowed transitions to those along the diagonal, where
AQ = AA, as Q@ = A + I,

Furthermore, for spin-allowed transitions it can be shown (see ref. 2)
that the absolute values of all of the nonzero electronic transition moments
R, are equal. Thus, for spin-allowed transitions, R, can always be factored
out of the <R o> basis matrix, and the line strength (eq. (5)) can be
written as

<85> = qypekilry Loy lalo, > 1 %)
1y BTy > (8)

and the matrix elements of <JJ-Ju > , which are the rotational line inten-
sity factors or Honl-London factors, only involve the transformed rotational
matrix elements «; that is,

Sy > = 11,0y lalo, >, | 9
| <wylals, >1° (10)

For spin-forbidden transitions it is not possible, in general, to sepa-
rate the electronic and rotational parts of the problem. For these cases
reference 1 shows that the transformed < Rgpa > matrix elements can be

written
wylralv, > = <Re1a1 PRt > 11

where E; is the transformed rotational matrix element associated with Re .
1
Equation (11) illustrates the property that for spin-forbidden transi-
tions the matrix elements of < Rpo > cannot, in general, be separated into
rotational and nonrotational factors. However, if one of the transition

moments (denoted by R, Z) is factored out of the < Rgo> matrix, the expres-

sion for the rotational line strength is similar to that for spin-allowed
transitions; that is, )

2 _ —_ —
| <SJ'J"> = qV'V"ReZ|< pa?: + oaj + T(xk + o o >|2 (12)



where

R R R
e; e e
TR TR TR
l 1 l

The factors o, 1, etc., are called intensity parameters. The squares of the
matrix elements in equation (12) are called the rotational line intensity fac-
tors and are defined as

<<3J&,J"::> | < P, + caJ + 70+ - > | (13)

If equations (12) and (13) are combined, the rotational line strength for
spin-forbidden transitions can be written in the same form as spin-allowed
transitions (eq. (8)); that is,

<SJ'J"> = qV'V"R:Z<'JJ'J"> (14)

The sum of the intensity factors for a given value of J' or J" is:

1. Spin-allowed transition

z,{],J.,(J) =(2-6§ (25 + 1)(2J + 1) (15)

0, (A'+A"))
where § =1if a=>b and = 0 if a # b.
a,b
2. For each transition moment in spin-forbidden transitions

z{,,J,,(J) =Cc@J+1) (16)

where C = 1 if the transition moment occurs only once in the < Rga > basis
matrix and ¢ = 2 if the transition moment occurs twice in the < Fya > basis
matrix. The only transition moments that occur only once in any < Rga >
basis matrix are those for the @' = 0 to Q" = 0 transition of I<«»I transitions
of odd multiplicity. This tran51t10n moment is nonzero for Li«>r® transitions
with AS = 0, 2, etc. and for I*<>:¥ transitions with AS = 1, 3, etc. The
theory is explained in more detail in references 1 and 2.

AUXILIARY PROGRAMMING CONCEPTS AND DETAILS

The major concepts involved in the program are illustrated by the concep-
tual flow chart shown in table 4. In brief, the computer solution proceeds in
the following logical steps.



1. Set up the upper and lower Hamiltonian matrices for each value of J'
and J".

2. Symmetrize and diagonalize the upper and lower state Hamiltonians.

3. Set up the relevant rotational matrix for each pair of rotational
levels J' and J".

4. Transform the rotational matrices with the same transformations that
transformed the upper and lower state Hamiltonians.

A complete listing of the computer program is given in appendix A. The
listing is liberally annotated, and if it is read in conjunction with the
flow charts in appendix B, it should be nearly self-explanatory. In any com-
plicated computer program, however, there are always a few programming details
for which the logic is not immediately obvious. The following topics are
included to give the reader some insight into the more obscure details.

Initial State to Final State Notation

The computer program was organized at its inception to describe the tran-
sitions from the initial state (columns of the matrices) to the final state
(rows of the matrices). Unfortunately, this choice complicates the logic
necessary to print correct titles for the calculated results. However, the
program works, and the substantial changes necessary to switch to the more
standard notation, which describes the rows of the matrices with the upper
state and the columns of the matrices with the lower state, does not seem jus-
tifiable at this time. Further, the rows and columns of all basis matrices
are ordered from top to bottom and from left to right in terms of the basis
functions |ASID>|QJ D> as follows:

[+A S +SD[A+S T >, [+h § +8-1D>|A+8-1d> , + « « , |[+A 5§ -§D|r-5 T D>,
[0 S +SD[-M+S D>, [-A 5 +5-1D|-A+8-1 I >, + « « , |-A 8§ -5D|-A-5 T >
Absorption and/or Emission

The intensity factors can be calculated for either absorption (in terms
of J"") or emission (in terms of J'). The accepted standard notation for rota-
tional lines is always J'". However, since in quantitative calculations
involving line emission it is usually more convenient to denote intensity
factors by J', this flexibility was provided in the program logic.

Hamiltonian Matrix
Hamiltonian or energy operator matrices are set up for each value of J in

both the initial and final electronic states. That is, the energy levels of
all rotational levels with the same value of J, in a given vibrational level



and electronic state, are collected into a single matrix. In general, when
J 2 A + 5, the Hamiltonian matrix contains (2 - &35 5} (25 + 1) rows and col-
umns. However, if A # 0 the two submatrices for +A and -A are mirror images.
An example case is shown in table 5 for a 2l electronic state. As there are
no off diagonal terms between +A and -A, these two submatrices do not inter-
act. It is therefore only necessary to operate on one of these submatrices,
and, when needed, the full operator matrix can easily be constructed.

The two operations performed on the Hamiltonian matrix between basis
functions are those that symmetrize the basis functions and that diagonalize
the Hamiltonian matrix between symmetrized basis functions. The Hamiltonian
matrices between basis functions and between symmetrized basis functions are
identical for nonsigma electronic states. The unitary transformations that
transform the Hamiltonian matrix to symmetrized basis functions for 3¢ and “t
electronic states are shown in figure 3. The generalization to any multi-
plicity is straightforward.

The diagonalization of the Hamiltonian is performed by the EIGEN subrou-
tine, which finds Tg;,, for symmetrical, real matrices. This subroutine is a
slightly modified form of the EIGEN subroutine described in the IBM System 360
Scientific Subroutine Package, document H20-0205.

In this program we are concerned only with determining the rotational
intensity factors and do not solve explicitly for the energies of the rota-
tional levels. Therefore, to a very good order of approximation, it is only
necessary to include in the Hamiltonian the major energy interaction terms.
For nonsigma states only the first-order spin-orbit interaction term, AAI, is
included. For sigma states, the first-order spin-orbit interaction term is
zero; therefore, both the second-order spin-orbit term and the spin-spin
interaction term are included. Both terms produce a similar effect and are
lumped together as AE, the energy separation between spin states extrapolated
to J = 0 (see appendix C). If 4 (or AE) is negative the state is an inverted
state.

The unitary transformation matrix that diagonalizes the Hamiltonian is
not affected by a constant value along the diagonal of the Hamiltonian matrix
or by a constant times every matrix element. Therefore, as we do not need the
rotational energies themselves, constant or J-dependent only terms along the
diagonal are removed from the Hamiltonian and all matrix elements are divided
by BhZ2.

General expressions for the Hamiltonian matrix elements are given in
reference 2. However, on the basis of the above discussion, only the follow-
ing terms are included in the computer program.

1. Nonsigma states

H(K,K) = -02 - £2 + YAL (17)
HK,K+1) = -[(J - 2)(F + 2 + 1)(S - £)(S + £ + 1)]}/2 (18)
H(K+1,K) = H(K,K+1) (19)
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2. Sigma states

H(K,K) = -Q2 - £2 + AE/B (20)
H(K,K+1) and H(K+1,K) same as above

where Y = A/B, and K specifies the row and column indices with (1,1) as the
upper left matrix element.

After the Hamiltonian matrix is diagonalized, the largest energy level
is in the upper left matrix element and the smallest is in the lower right
matrix element. This organization specifies the final form of Tdiag and,
hence, determines the order in which the branch lines occur in the intensity
factor matrices. In order to understand this point, it is necessary to know
how the rotational levels and the branches are designated.

Designation of Rotational Levels

In the standard notational scheme, the rotational levels of diatomic
molecules are designated by two parameters in addition to J: (a) the rota-
tional quantum number ¥, exclusive of spin and (b) the spin substate
F1s #25 « « ., Fpg41. The designation of rotational levels by ¥ is most
appropriate for Hund's case (b) coupling, where N is a valid quantum number.
However, there is a one-to-one correspondence between the rotational levels in
Hund's case (b) and any other coupling case, so that a value of N can always
be assigned.

The designations of N and F for the spin substates, when J > A + S, are
related as follows:

F = J

1 =N+ S or N=oJg -8 \
F2 = J=N+5-1 or N=dJ-5+1

L] ] L] (21)
FZS+1 = J =N -5 or N=dJd4+ 8

From these equations it is clear that for the group of F; levels with the
same value of J, F; corresponds to the lﬁwes value of NV and Fyg,q corresponds
to the largest value of W. Because N , the difference between these
N values is due to the difference in rotational energey, K. Thus, for the
group of F; levels with the same value of J, the rotational energy increases
from Fl’ the lowest energy level, to F25+1, the highest energy level.

In nonsigma electronic states (A # 0), the assignment of Q, where
= A + I, to the F; levels depends on whether the electronic state is regular
or inverted. In regular states the smallest value of @ is associated with the
lowest energy level (i.e., F ) In inverted states the opposite assccia-
tion is made. Therefore, the assignment of W, F,, and J to the rotational

11



levels of nonsigma electronic states can be made in the following empirical
fashion.

1. For J 2 A + S and for rotational levels with the same value of J, Fy
is assigned to the lowest energy level, F, to the next higher energy level,
etc.

2. The value of Q@ is assigned to each F. substate based on whether the
electronic state is regular or inverted.

3. The rotational quantum number J is assigned sequentially from the
lowest rotational level in each F substate, where the minimum value of
J is |al.

4, IV is assigned as specified in equations (21) with the restriction
that ¥ > A.

The steps outlined above are applied to the rotational levels of a I
electronic state in figure 4. The value of ¥ is shown to the left of each
row, and the value of J is shown on the line representing the rotational
level. The separations of the energy levels are not drawn to any physical
scale, but they do indicate that for a given value of J, the energy increases
with increasing N.

A study of figure 4 shows that, for either regular or inverted "I elec-
tronic states, there are only two rotational levels with J = 1/2 and only
three rotational levels with J = 3/2. The full multiplicity is therefore not
developed until J > A + S. Also, note that the N designation of the lower
rotational levels in regular states is not given. The empirical scheme breaks
down for these levels. To find the appropriate value of N, when J < A + S,
one must operate on the wave function with ¥2. The substate designation, F.,
is established for J > A + S and is extended to low J levels as described
above.

Much of the discussion above for nonsigma states also holds for sigma
states (A = 0), but the designation of the rotational levels with ¥, F;, and
J is the same in both regular and inverted states. The assignment for a
35 electronic state is illustrated in figure 5. The concept of 9 used for
nonsigma states is not valid for sigma states and is not shown.

A study of figure 5 shows that there is only one rotational level with
= 0 and that it fits naturally into an assignment of F;. This assignment of
J = 0 agrees with that shown by Herzberg (ref. 12, p. 223) and also is compat-
ible with Hougen's assignment of Fy and F, to the J = 1/2 levels of YI states
(ref. 13) However, Tatum and Watson (re} 14) chose to assign the J = 0
level of 3% states to F; for regular states and to F, for inverted states.

12



Designation of Branches

The standard scheme used to designate the branches in each vibrational
band, is based on using letters to indicate the changes in J and ¥ occurring
during the transition and on including the F; assignment of the upper and
lower substates. The assignment of letters to indicate the values of AJ and
AV is summarized in figure 6. The selection rules for dipole radiation limits
AJ to 0 or +1. The branch designation scheme is illustrated in figure 7. If
AN = AJ, the upper letter is not included and if F, = F\, only one subscript
number is included (i.e., RRZZ = R, in fig. 7). ¢ ¢ :

The energy change during a transition is usually more closely associated
with AN than with AJ. Therefore, the form of the branch is also primarily
controlled by AN. Hence, the RQ32 branch is called the R-form @-branch; that
is, even though it is a @-branch (AJ = 0), it usually has the form or appear-
ance of an R-branch as AN = +1.

The proper designation of the branches can be determined by forming
matrices of the branches for fixed values of J', J", and AJ. These matrices
are illustrated in figure 8 for a spin-allowed “H++&Z transition and in fig-
ure 9 for a spin-forbidden 2m<>" transition. The rows of the matrices are
labeled by the Fé assignments for a given value of J' and similarly the col-
umns by Fg for a given value of J".

The designation scheme illustrated in figure 9, for the branches of spin-
forbidden transitions, is not universally applied. For example, in refer-
ence 15 Kovidcs designates the F; levels in the 2l electronic state in 2I«"1
transitions as F, and F3 sublevels rather than F, and F,, as shown in fig-
ure 9. The designations F; and F, for the 21 state, however, are consistent
with the recommendation made by Mulliken (ref. 16), and it seems desirable to
retain this designation for all types of transitions.

The physical characteristics of rotational lines, such as their wave-
lengths and their intensity factors, are not, of course, dependent on the
notation used. Therefore, the designation of branches can be altered to suit
personal preference by making appropriate substitutions in the branch symbols.
This option also applies to the designation of the J = 0 rotational level in
37 states mentioned previously. However, standard designation schemes are
very desirable.

The Rotational Matrices

The rotational matrices, in terms of the basis functions, are constructed
from the matrix elements given in table 1. In the case of spin-allowed tran-
sitions, the electronic transition moments are factored out of the <Rga2>
basis matrix (see eq. (7)), and all the matrix elements are transformed simul-
taneously. Further, for spin-allowed transitions the rotational matrix
elements are determined individually, rather than by the symmetry rules given
on page 6. Also, for spin-allowed transitions the rotational line intensity
factors are unchanged when the symmetrizing transformation is neglected and
when only the +A submatrix is explicitly considered if A > 0,
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In the case of spin-forbidden transitions, each rotational matrix element
and its symmetrical counterpart are associated with a specific independent
transition moment. Thus, each pair of symmetric matrix elements must be
transformed separately by both the symmetrizing and diagonalizing transforma-
tions (see eq. (6)). Because only two matrix elements are involved in each
transformation, the symmetrizing transformation in the program is performed
algebraically rather than by the complete unitary transformation.

Each matrix element in the transformed rotational matrices is associated
with a particular branch, based only upon its location within the matrix (see
figs. 8 and 9). However, for transitions involving nonsigma electronic
states, two submatrices occur and the usual branch designation scheme,
described previously, does not at first appear adequate. However, if we print
only one line intensity factor for each A-doublet in X<-Y transitions (X and Y
represent any nonsigma electronic states), and if we combine the two sub-
matrices in I<+>X transitions prior to printing the results, the designation
scheme described in the previous section is adequate.

For spin-allowed transitions, the above simplification was introduced
indirectly by including only the <a> basis matrix elements from the +A
submatrix and by neglecting the symmetrizing transformation. Thus, for spin-
allowed transitions, all the required matrix elements occur in the upper left
submatrix. For I<+>[l transitions, however, A-doubling does not occur and, as
only one submatrix of the electronic state is included, the matrix elements
must be multiplied by v2.

For spin-forbidden transitions the situation is slightly more complicated.
For example, transformed rotational matrices for 3% + 3X transitions are illus-
trated in figure 10. The X in these matrices represents the only possible
nonzero matrix element and the F; designates the rows and columns assigned as
discussed on page 11. Clearly, in either of these matrices if the elements
of the lower submatrix are added to the elements of the upper submatrix with
the same values of F; and Fﬁ, we will always add a nonzero to a zero value or
vice versa. Furthermore, the resultant upper submatrix will contain matrix
elements for all the branches. The discussion of 3X > 3% transitions is simi-
lar except that left and right submatrices replace upper and lower submatrices.
The generalization to any multiplicity is straightforward.

For 3x«+3Y transitions (neither electronic state is a sigma state), the
transformed rotational matrices are illustrated in figure 11. The two matrix
elements for each A-doublet occur in symmetrical locations with respect to the
center of the matrix. As we print only one component of a A-doublet, we can
always place the required matrix elements in the upper left submatrix by add-
ing the elements in the lower left submatrix to the elements in the upper left
submatrix with the same values of F% and Fg.

Therefore, for all cases the transformed rotational matrix elements are
organized into the upper left submatrix for printing. For spin-allowed tran-
sitions these matrix elements are squared before being printed to form the
rotational line intensity factors, or Honl-London factors. For spin-forbidden
transitions these matrix elements are the E% values shown in equation (13) and
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they must be printed without being squared. Before the output is printed,
however, when J < A + S, the matrix elements frequently need to be shifted to
ensure proper labeling.

Shifting of Rotational Matrix Elements When J < A + S

At the conclusion of the transformation operations discussed in the pre-
vious section, the transformed rotational matrix elements are located in the
upper leftmost portion of the matrix. The output section of the program
prints branch headings corresponding to the location of each matrix element in
the fully developed matrix. However, when J < A + S, the matrix is not fully
developed and the matrix elements may not be in the proper positions to cor-
respond to the headings that are printed. In these cases the matrix elements
are shifted before being stored in the SAVE array. The SAVE array is used for
temporary storage, before printing, and is discussed later,

The reason for shifting the matrix elements and the logic employed for
shifting is indicated in figure 12. This figure shows the J = 1 rotational
levels in the +A submatrix of the Hamiltonian matrix for a 7 electronic
state. :

The F-level designations of the rows and columns of a fully developed I
matrix (i.e., J 2 A + S = 4) are shown in figure 12(a). As discussed on
page 11, the highest energy level (F,) is in the upper left matrix element.
The program is written so that the three energy levels for J = 1 (E;, E,, and
E)) naturally occur in the upper leftmost portion of the matrix, which corres-
ponds to the F,, F,, and Fy levels. However, if we determine the proper
designations of the J = 1 rotational levels, we see that in a regular elec-
tronic state these levels should be designated F,, F3, and F,, and in an
inverted electronic state, they should be designated Fg, Fg, and F,. Thus, to
correspond to the designations of the fully developed matrix, the matrix ele-
ments must be shifted three spaces for a regular electronic state and one
space for an inverted electronic state. These shifts are indicated by the
heavy lines in figure 12(a). ’ :

The shifting of the rotational matrix elements when J < A + S is as

. follows: The columns are shifted by the shift necessary in the initial state
Hamiltonian matrix and the rows are shifted by the shift necessary in the
final state Hamiltonian matrix. Generalization of the logic described above
to other electronic states is tedious but straightforward.

Designation of Transition Moments in Spin-Forbidden Transitions

The discussion leading to equation (11) shows that several independent
transition moments may be present in spin-forbidden transitions. Each of -
these transition moments is explicitly identified in the computer program, but
the designation scheme, contrary to the matrix operations, must be specified
in terms of upper and lower states. The designation scheme used for this pur-
pose is illustrated in table 6. - . .

15



Table 6 shows the <Eyo> basis matrix for the @-branches of a 2ty
transition. The symmetry rules given on page 6 have been used to equate the
symmetrical matrix elements. As noted above, the rows of the matrix refer to
the upper (21) electronic state and the columns to the lower (“II) electronic
state. The opposite choice could have been made, but the choice made corres-
ponds to conventional matrix nomenclature. If, instead, the rows of the
matrix are designated by the final electronic state and the columns by the
initial electronic state, as in the program matrix operations, the same tran-
sition moment may have one designation in absorption and a different one in
‘emission. This situation is, of course, not acceptable. Thus, the logic in
the program at this point is rather complicated.

The matrix elements of the <Ry,a> matrix in the basis functions and,
hence, the transition moments R, are designated with two single digit numbers.
The first number specifies the upper electronic substate and the second number
specifies the lower electronic substate on which the transition moment oper-
ates (i.e., Re(upper, lower)).

In terms of upper and lower electronic substates, the columns of the

< Rga > matrix are numbered from 1, beginning with the rightmost column if

A" = 0 and with the rightmost column in the left half of the matrix if A" # 0,
as in table 6. Note the circled numbers at the top of the columns in the left
half of the <R, o> matrix in table 6. Similarly, the rows of the <R a>
matrix are numbered from 1 upward, beginning at the bottom row if A' = 0. If
A' # 0, the rows are numbered from 1 upward in the top half of the matrix,
beginning at the dividing point, and from -1 downward in the lower half of the
matrix. Note the circled numbers at the left of the rows in table 6.

The rotational line intensity factors of the two lines forming a
A-doublet in spin-forbidden transitions are not equal if the line strengths
contain at least one <Hya> matrix element between basis functions with oppo-
site signs on A' and A" (i.e., <:iA'|Rea|¥A":>) and at least one matrix ele-
ment with the same signs on A' and A". The <:iA'|Rea|$A":> matrix elements
of nonsigma to nonsigma spin-forbidden transitions are indicated in the desig-
nation scheme by a negative number in the upper (i.e., first) index location
of the transition moment. There are three such matrix elements in table 6:
Re(-l,Z), Re(-l,l), and Re(-z,l).

The P-branch matrix of a 45 <«sbz” transition, shown in table 7, has five
independent transition moments.

SAVE, ITRANI, ITRANF, NTRANR, NTRANQ, and NTRANP Matrices

The rotational line intensity factors (Honl-London factors) for spin-
allowed transitions and the transformed rotational matrix elements for spin-
forbidden transitions are stored in the SAVE array until the calculation is
complete. The SAVE array is three-dimensional and can be viewed conveniently,
as shown in figure 13. The three dimensions correspond to (1) the number of
independent transition moments in the transition (maximum of nine), (2) the
number of branches in a vibrational band (maximum of 150, there are
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147 branches in spin-allowed septet-septet transitions), and (3) the number of
rotational lines in each branch included in the calculation (maximum of 200).
In the dimension for storing branches, the R-branches are stored in the first
50 locations, the @-branches in the second 50, and the P-branches in the last
50. Any dimensions of the SAVE array can be changed to any desired value,
limited only by the size of the computer memory.

In the case of spin-forbidden transitions, the designations of the inde-
pendent transition moments must also be stored. These correspond to each
occupied row in the short dimension of the SAVE array for each value of J.

The upper substate (or first) designation of the transition moments in the

< Rgo > basis matrix is stored in the ITRANI array and the lower substate (or

second) designation is stored in the ITRANF array. The number of independent

transition moments for each value of J in the R-, §-, and P-branches is stored
in the NTRANR, NTRANQ, and NTRANP arrays.

Input Data and Sample Cases

This section is intended to give the user a general picture of the ease
of operation, broad generality, and potential applications of the computer
program.

The data needed to initiate a calculation are:

1. The resultant spin S of each state.

2. The A value of each state.

3. The * symmetry for I states.

4. The spin-orbit and/or spin-spin parameters (see appendix C).

5. The values of Jhi and Jhax’

n

6. The type of calculation (i.e., emission or absorption).
The format for the data input cards is illustrated in table 8.

The computer output format is demonstrated by partial listings of the
printed output for three sample cases in tables 9, 10, and 11. The sample
case in table 9 is a spin-allowed 3p+ 5 31 transition; that in table 10 is a
spin-forbidden 31 <« 5~ transition; and that in table 11 is a spin-forbidden
21 « “I transition. The information in the tables is discussed below.

The heading at the top of table 9 indicates that it is an allowed
35* > 31 transition. The energy separation of the upper (L) state AE/B is
specified as -10; therefore, it is an inverted state. The spin-orbit coupling
(Y = A/B) of the lower (NI) state is specified as 100; therefore, it is a
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regular state. The paragraph in the heading refers to the lack of a univer-
sally accepted convention for designating the low J levels of I states (i.e.,
J < 1 in this case). As noted on page 12, for this case the J = 0 rotational
level in the I state is designated as an F3 level. :

The values tabulated for each branch are the rotational line intensity
factors (also called Honl-London factors) from Jpiy = 0 to Jpy,, = 4 as speci-
fied in the input data. The column titled SUM is the sum of all Hénl-London
factors prlnted for a given value of J and for the F level designation
repeated in the column headings. Therefore, SUM contains all Honl-London fac-
tors in the R-, ¢-, and P-branches from a given J level. Each value of SUM is
printed three times, once in each RF-, -, and P-subsection. In table 9, for
example, the first (upper level) F designation is repeated in the column head-
ings because it is an emission calculation. Therefore, for J = 2 and for the
F] rotational level, SUM is given by

SUM = R1 + QR12 + PR13 + Q1 + P12 + 0Q13 + Pl + OP12 + NP13

This value of SUM is printed in the appropriate place in the SUM column for
the R-, @-, and P-branches. The Honl-London factors printed are for individ-
ual rotational lines. Therefore, if A-doubling occurs in the spectrum,  the
value printed is for only one component. Thus, the value of SUM, which is
only the sum of the Honl-London factors printed, is (2J + 1) for I«+>I and
for nonsigma to nonsigma transitions, and 2(2J + 1) for <=1 or N<>I

transitions.

Two spin-forbidden sample cases are included in tables 10 and 11 to
illustrate results with and without A-doubling in the spectrum. The informa-
tion printed in the headings for these cases is similar to that described for
table 9 except that table 11 also contains a comment about A-doubling. The
primary differences from the printout for the spin-allowed cases are in the
tabulations. Normally, in spin-forbidden transitions there will be more than
one independent transition moment, and the transformed rotatlonal matrix ele-
ments must be printed for each of them.

The values tabulated for each branch are the transformed rotational
matrix elements, o;. The intensity factors are formed from these numbers as
shown in equation (13), which is repeated here for convenience:

<JJ1_J|'> = |<OE7: + O'a.j + Ta_k +-....>l2

where p, 0, T, etc., are the intensity parameters defined following equa-
tion (12). .

The PARTIAL SUM listed for the forbidden transitions is the sum of the
squares of the o; values printed in the row to the right of the transition
moment designation. The total sum for each transition moment is found by add-
ing the partial sums from all branches containing that transition moment.
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Lambda doubling occurs in the spectrum of the sample case given in
table 11. However, the strengths of the two lines composing the A-doublets
are not equal in all branches because three of the transition moments occur
between basis functions with opposite signs on A' and A" (see page 16). These
transition moments are designated by R, (-2,1), Rp (-1,1), and R, (-1,2) in
table 11. The intensity factor for the A-component not shown in the computer
printout is obtained by changing the sign of these G; terms in equation (13).
In general, when A-doubling occurs in spin-forbidden transitions, the inten-
sity factor for the A-component not shown is obtained by changing the sign of
all a; values whose associated transition moment designation contains a
negative number. o v

The three sample cases discussed in this section illustrate the informa-
tion that is calculated by the computer and printed for both spin-allowed and
spin-forbidden transitions. The following subsection discusses the range of
input parameters possible and thereby indicates the comprehensive nature of
the program.

Limitations and Capabilities of the Computer Program

Two types of limitations of the computer program need to be discussed:
(a) real limitations, for which the computer program does not apply; and
(b) practical limitations, such as matrix size, that can easily be altered.

The most important real limitation of the program is the neglect of
interactions that decouple the orbital angular momentum L from the inter-
nuclear axis so that the intensity factors for the p-complexes, applicable to
Hund's case (d) coupling, cannot be determined. Another important real limit
of the program is that it is only valid for diatomic molecules and for elec-
tric and magnetic dipole transitions. In fact, the computer program is writ-
ten for electric dipole transitions but the results also apply to magnetic
dipole transitions. However, because the parity selection rule for magnetic
dipole radiation is *«>*, whereas for electric dipole radiation it is #+>%,
2*<>I* magnetic dipole transitions must be specified as r*«>I* transitions and
vice versa.

There are no important practical limitations to the computer program.
For example, in nonsigma electronic states, only spin-orbit interactions are
included in the Hamiltonian, and in sigma electronic states, only the combin-
ation of spin-spin and second-order spin-orbit interactions are included (see
appendix C). However, only if precise wavelengths are desired would a more
accurate Hamiltonian be necessary. The remaining practical limitations
actually establish the capabilities of the program. Thus, the computer pro-
gram is capable of determining intensity factors over the broad range of con-
ditions listed below.

1. Maximum spin quantum number of three (i.e., maximum multiplicity of
seven).

2. Maximum of 200 rotation levels in one computer run,
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3. Spin-allowed transitions with any degree of coupling between Hund's
case (a) and case (b).

4, Spin-forbidden transitions with any degree of coupling between
Hund's case (c) and case (b).

5. Maximum of nine independent transition moments permitted in spin-
forbidden transitions.

The maximum multiplicity, the number of rotational levels in a single computer
run, and the number of independent transition moments permitted are actually
only limited by the memory size of the computer. Clearly, the capabilities

of the program are very extensive and permit the calculation of exact inten-
sity factors for most of the experimentally observed diatomic transitions.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, April 26, 1973
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APPENDIX A

LISTING OF COMPUTER PROGRAM

THIS PROGRAN COMPUTES INTENSITY FACTORS FOR ALLDWED
TRANSITIONS (HONL-LONDON FACTORS}, AND THE SQUARE ROOT
OF THE ROTATIONAL INTENSITY FACTORS FOR FORBIDDEN TRANSITIONS.

MAIN PROGRAM

DIMENSION TITLEL(14),TITLE2(12),TITLE3(6),TITLEA(4),TITLES(S),
1 TITLE6{4) ,HEAD2(7+742),
2 HEADL{T)y ALPHAL19,2)

COMMON /CSOLVE/JFsJMIN, JMAX,ST,SF,LAMI,LANF,
SIGN1,ALLOW,EMISON,STGSIG, IJ, IMAXT, IMAXF,
NTRANR (2001, NTRANQ(200) NTRANP{200),
ITRANI (30,2001 , ITRANF(30,200),
SAVE(9,150,200),Y1{3),YF(3)

S WN -

DOUBLE PRECISION Sl,SF.LAHI;LAHF.VK.VF.JI,JF.JHIN'JHAX.SlGﬁl'SUN
LOGICAL ALLOW,SIGSIG,HALF,EMISON

REAL J

DATA ABSDRB/IHA/Z

OATA TITLE1/4HSING,4HLET ,4HDOUB,4HLET ,4HTRIP,&4HLET , 4HQUAR,
1 . &HTET 4HQUINISHTET ,4HSEXT,4HET ,4HSEPT,4HET /

DATA TITLE2/4H SI1+4HGMA ,4H PI,4H v4H  DE,4HLTA
1 4H  PH.4H1 v4H  GA,4HMMA ,4H OT,4HHER /

DATA TITLE3/4HEMIS,4HSION,4HN 214HABSO, 4HRPTI4HON /
DATA TITLEA/4HINIT,4HIAL ,4HFINA,&HL /
DATA TITLES/4HREGU,4HLAR +4HMINVE,&HRTED,4H 14H /
DATA TITLE6/4HE. U,4HPPER,4NHE. L,&HOWER/

DATA HEAD2
72H1 42H12,2H13,2H16,2H1S,2H16,2H17,
2HZ1,2H2 12H23,2H24, 2H25,2H26,2H2T,
2H31,2H32,2H3 ,2H34,2H35,2H36,2H37,
2HO1,2H42,2H43, 2He 4 2H45 ¢ 2HA, 2HAT,
2H51,2H52,2H53,2H54 4 2H5 ,2H56,2H57,
2HE1 1 2H6212H63, 2H6G » 2HBS , 2HE 42HET,
2HTL2H72,2HT3,2HT 44 2HTS , 2H76, 2HT
2H1 ,2H21,2H31,2HéeL, 2H51, 2H61 ,2HT1,
2H1242H2 o 2H32,2H42, 2H52, 2H62 4 2HT2,
2H13,2H23,2H3 42H43,2H53, 2H63,2HT3,
ZH14,2H264,2H34, 2HE 4 2H5 4, 2Hb4 ,2HT4,
2H15,2H25 ¢ 2H35 4 2H45, 2H5 4 2H65, 2HTS
2H1692H26 1 2H36,2H4b 4 2HS5 6, 2H6 42HT6,
2H1T 4 2H2T 1 2H3T, 2H4T, 2H5T 4 ZH6T 4 2HT 7

MPWN=OR~N NS WN

DATA ALPHA/1HZ ¢ 1HY ; 1HX¢1HWy LHV, 1HU s 1HT 4 LHS ¢ 1HR ¢ 1HQ,
1 1HP» 1HOy 1HNg LHMy 1HL y 1HK ¢ 1HJ » LHI y LHH, 1HH,
2 LHI y LHJ s 1HK s LHL y LHM, 1HN, 1HO 1HP y 1HQy 1HR o
3 1HS s 1HT 4 1HUy LHV s 1HW ¢ LHX 9 RHY 4 1HZ/

DATA BLANK/1H /4y R/1HR/y Q/1HQ/, P/1HP/
READ IN NEW CASE.

READ(5+501) SI,LAMI,SIGNI. YI(1),VYI{2),YI(3)
READ(5,501} SF,LAMF,SIGNFy YF(L1),YF{2),YF(3)
READ(5+502) JMIN,JMAX

READ(5,503) TYP

INITIALIZE LARGE SAVE ARRAY.

DO 15 1=1,200
DO 15 L=1,150
DO 15 K=1,9
SAVE(K,L,1)=0.0

INITIALIZE TRANSITION MOMENT ARRAYS.

DO 17 I=1,200
NTRANR(I)=0
NTRANQ(1)=0
NTRANP(11=0
00 17 L=1,30
ITRANI(L,1)=0
ITRANF{L,1)=0

IS THIS AN EMISSION CALCULATION?

EMISON=.TRUE.
IF(TYPE.EQ.ABSORB) EMISON=.FALSE.

IF JMAX IS NOT INPUT, SET JMAX TO JMIN+#100.
IFf JMAX-JMIN IS GREATER THAN 199 SET JMAX TO JMIN+199.

IF{JMAX.EQ.0.000) JMAX=JMIN+100.00
DELJ=SJMAX-JMIN
IF{DELJ.GT.199.1} JMAX=JMIN#199.000
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IS THIS A SIGMA TO SIGMA TRANSITION?

SIGSIG=.TRUE.
TF(LAMLGT. .1 0RJLANF..GT. 1) SlGSIGz.FAtSE.

IS THIS AN ALLOWED TRANSITION?
IF(lSI-SF).NE..ODD.OR.DABS(LAHI-LAHF).G*.I.IDO) GO TO 20
IF{SIGSIG.AND.SIGNILNE.SIGNF) GO TO 20

THIS IS AN ALLOWED TRANSITION.

ALLOW=.TRUE.
IMAXI=2.%SI+¢1.1
TMAXF=IMAX]

GO0 1O 30

THIS 1S A FORBIDDEN TRANSITION.

ALLOWS.FALSE.
IMAXT=2,%51+1.1
IMAXF=2,#SF+1.1

SET SIGN OF SYMMERTRIC MATRIX ELEMENTS IN THE O BRANCH MATRIX.

SIGN1=+1.000
IF{.NOT.S1GSIG) GO TO 30
IDELS=DABSISF-S1)+.1

1=1

IF(SIGNI.NE.SIGNF} 1=0
SIGNL=(-1)1%*([OELS+I}

IS SPIN HALF INTEGER OR WHOLE INTEGER?

1S=Sl+.1

$1=1S

HALF=.TRUE.

IF({DABS(SI-51).LT,.100) HALF=,FALSE.

JMIN AND JMAX MUST BE HALF INTEGER OR WHOLE INTEGER IN
ACCORD WITH THE SPIN.

JTEST=JMINY.1D0

J=JTEST

IF{HALF) GO TO 35 °

IF(DABS{JMIN-J) .GT..1) JHIN’JH!N#O 500

GO 70O 37

IF(DABS (JMIN-J) .LT..1) JHIN-JHINOO.SDO

JTEST=JMAX+.10D0

J=JTEST :
IF(HALF) GO TO 39 g -
IF(DABS{JMAX=~J) +GT.. 1) JHAX-JHAX00 500° ’

GO TO 40

1F(DABS (SMAX=-J) L T..1) JMAX=JMAX+0.SDO

FIND MINIMUM VALUES FOR J1 ANOD JF AND
ADJUST JMIN 1F NECESSARY.

JI=LAM]I-SI

IF(J1.GE.0.0DO) GO TO 45
J1=0.000

TE(HALF) J1=0.500
IF((JII=IMIN) .GT.al) JMIN=JI

JE=LAMF-SF
{F{JIF.GE.0.0D0) GO TO 50
JF=0.,000

IF(HALF) JF=0.500

IF(JIMIN-JF} 55465,60

TF{(JMIN-JF).LT.-1.100) JMIN=JF-1,0D0
GO TO 65

IF{(JMIN=JF) .GT+ 1.1D0) JF=JHIN-1.0DO
CALL SOLVE

PRINT HEADING

WRITE(64600)

IFCALLOW) GO TO 70
WRITE{(6,601)

Ga 1Q 75

WRI1TE16,602)
ILAMI=LAMI+.1
IFCILAMILGY.5) ILAMI=S
ILAMF=LANF+.1
IF{ILAMF.GT.5) ILAHF=5
INDEX=4

IF{EMTSON) INDEX=I
12=INDEX+2

INDEX2=5
IF{LAMI.LT..100.AND.SI.LT..6D0) GO TO 77
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IF(SI1.LT..100) GO TO 77

INDEX2=1

IF(YI(1).LT.0.0D0) INDEX2=3

INDEX3=5

TF(LAMF.LT..1D0.AND.SF.LT..6D0} GO TO 80
IF{SF.LT,..1D0) GO TO 80

INDEX3=1

IF(YF(1}.LT.0.0D00) INDEX3a3

WRITE{64603) TITLES(INDEX2),TITLES(INDEX2+1),TITLEL(2®#IMAXI~1),
1 TITLEL{2%IMAXT) yTITLE2(2¢ILAMI+L},TITLEZ(2¢ILAMI*2),SIGNI,

2 TITLESCINDEX3},TITLES{INDEX3+1),TITLEL(2#IMAXF-1),

3 TITLEL(2%IMAXF) 4TITLE2{2*ILAMF#1),TITLE2(2*ILAMF+2),SIGNF,

4 (VITLE3(1),I=INDEX,12)

IF(IMAXI.EQ.1) GO TO 85

IF(ILAMI.EQ.O0) GO TO 82

WRITE(6+604) TITLE4(L),TITLE4(2)},YI(1}
GO TO 85

IF(S1.LT..900} GO TC 85

1§=SI

11=1

IF(HALF) I1=2

WRITE(6,611) TITLE4(L),TITLE4(2},YI(L)

IF(S1.LT.1.9D0) GO TO 85
12=1
IF(S1.6T.2.,6D0} 12132

00 84 I=1,12
1321+1
WRITE(6,612) I3,YI(I+1)

IFLIMAXF.EQ.1) GO TO 90

IFIILAMF.EQ.O0) GO YO 87

WRITEU6,604) TITLE4(3),TITLE4(4),YFI1)
GO 10 90

IF(SF.LT..9D0} GO TO 90

1S=SF

11=1

TF{HALF) I1=2

WRITE(69611) TITLE4(3},TITLEAL4),YF(1)

IF{(SF.1LT.1.900} GQ TC 90
12=1
IF{SF.GT.2.6D0} 1222

DG 89 I=1,12
13=1+1
WRITEL6,612) 13,YF(I+1}

IF(LAMI.LT..1DO.AND.S1.GT..600) GO TO 95
IFILAMF.GT+.1D0.0R.SF.LT4.6D0) GG TO 100
WRITELS4613)

IF(LAMILLT,.1D0.0R.LAMF.LT..100} GO TO 120
IF(ALLOW) GO TO 110

WRITE(6,614)
GG TO 120

WRITE(64615)

INDEX=3
TF{EMISON) INDEX=1
WRITE(6,4605) TITLESG(INDEX),TITLES(INDEX+1)

PRINT DATA

IF(EMISON) 11I=1

IS THIS AN ALLOWED TRANSITION?
IF(ALLOW) GO YO 190

THIS IS A FORBIDODEN TRANSITION.

IDELS=0

DELS=SI-SF
IF{ABS(DELS).LT..1} GO TO 124
IF(DELS.GT.0.) GO TO 122
1DELS=-1

TF(DELSeLT.~1.1) [DELS=-2

GO TO 124

IDELS=1

IF{DELS.GT.1. 1) IDELS=2

PRINT R BRANCHES.

00 140 K=l, IMAXI

DO 125 =1, IMAXF
N1=9+IDELS-(K-1}+lI-1)e2%(11-1}
HEADL(1}=ALPHA(NL,I1}

23
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IFIHEADLI(T).EQ.R) HEAD1(I)=BLANK
CONTINUE
WRITE(6,606) (HEADL(I) R¢HEAD2(IsXy11), 121, IMAXF}

00 140 1I=1,14
DEL J=1-1
JaJMIN¢DELJ
WRITE(6,607)

KO=(K-1)*7

K1=X0+1

K2=K0+IMAXF

K3=NTRANRLI)D

DO 130 NTRAN=21,K3

SUN=0.0D0

00 128 KK=K1,K2

SUM=SUM+SAVE INTRAN,KK, 1) %2

WRITE(69608) J,SUM, ITRANFINTRAN,1), ITRANI(NTRAN,I1},
{SAVE(NTRAN,KK 1) ,XK3K1,K2)

CONTINUE
PRINT Q BRANCHES.

DO 160 K=1,IMAX]

DG 145 1=1,IMAXF

N1=10+IDELS-{K-1)+(1-1)

HEAOL (T)=ALPHAINL,II)

IF(HEADL(1}.EQ.Q} HEADL{I}=BLANK

CONTINUE

WRITE{6,606) (HEADL(I)QsHEAD2( I,K,11),1=1,IMAXF)

00 160 I=1,1J
DELJ=I~1
J=JMINSDELY
WRITE(6,607)

KO=504(K~1)%7

K1=K0+1

* K2=KO+I MAXF

K3=NTRANQ(I)

D0 150 NTRAN=1,K3

SUM=0,0D0

DO 148 KK=K1,K2

SUM= SUM+SAVE {NTRAN,KK, 1) %82

WRITE(6,608) J,SUM, ITRANF (NTRAN#10,1), ITRANTINTRAN#10,1),

1 {SAVE(NTRANKK, I} KK=K1,K2)

CONTINVE
PRINT P BRANCHES.

00 180 K=1,IMAXI

00 165 [=1,IMAXF

Nl=11+IDELS=(K=1}+([-1)=~-2%(11~1)
HEADL(1)=ALPHAINL,11)

IFUHEADLI 1) .EQ.P) HEAD1{1)=BLANK

CONTINUE

WRITE(6,606) (HEADL(I},P,HEAD2(I+K,11),In1,IMAXF)

00 180 I=1,1J4
DELJ=1-1
J=JMIN+DELY
WRITE(6+607)

K0=100¢(K~-1187

Kl=KQ+l

K2=KO0+I MAXF

K3=NTRANP (1)

DO 170 NTRAN=1,K3

SUM=0.000

D0 168 KK=K1,K2

SUMaSUM#SAVE (NTRAN,KK, 1) #&2

WRITE(69608) JySUMy ITRANF (NTRAN¢20,1)ITRANI(NTRAN#®20,1),
{SAVEINTRAN XK, 1) 1 KKPK1,K2)

CONTINUE

END OF CASEy READ IN NEXT CASE.
GO TO 10

THIS IS AN ALLOWED TRANSITION,.
PRINT R BRANCHES.

DO 210 K=1,IMAXI

D0 195 =1, IMAXF
N1=9={K-1)#(1-1}+2%([]~1)
HEADL{I1)=ALPHA(N1,11)
IF(HEADL(X).EQ.R} HEADL(1)=BLANK
CONY INUE

WRITE{64609) (HEADLII),R,HEAD2( 14K, 11),1al,IMAXF)

00 210 I=1,14
DELJ=1-1
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J=JMIN¢DELY
SUM=0.000

KO={X-1}*T7

K1=KQ+1

K2=KO+IMAXI

DO 200 KK=Kl,K2

K3=KK+50

K&=KK+100

SUM=SUM#SAVE(L JKKoT)+#SAVE(L4K3, [}4SAVE(L,Ké,1)

WRITE(S,610) JoSUMs ISAVEL1KKsI)4KKaKE4K2)
IF(((1/5)%5-1).EQ.0} WRITE(6,607)

CONT INUE
PRINT Q BRANCHES.

DO 230 K=1, [MAXI]

00 215 (=1, [MAXF

N1=10-{K=1)+([-1)

HEADL{ I )=ALPHAINL,II1}

IF(HEAD1(1).EQ.Q) HEAD1{1)=BLANK

CONTINUE

WRITE(69609) (HEADL(1),Q,HEAD2(I+Ko11),1=1,IMAXF)

00 230 I=1,1J
DELJ=1~1
J=JMIN+DELYS
SUM=0.000

KO=504(K~1}*7

KlsKO+l

K2=KO+IMAX1

DO 220 KK=K1,K2

K3=KK-50

K4=KK+50

SUM=SUM$SAVE{ L ¢KKs TI#SAVEIL ¢K3, 1) 4SAVE(L,K&,1)}

WRITEL6+9610) J9SUM, {SAVETL JKK 1) 9KK=K1,K2)
IFLL{I/51%5-11.EQ.0) WNRITE64607)

CONTINUE
PRINT P BRANCHES

00 250 K=1,IMAXI

DC 235 [I=1, IMAXF

Ni=ll-{K-1)+(I-1)=2#%{11-1)

HEADL(I)=ALPHA(N1,11}

IF(HEADL(I).EQ.P) HEADL{I)=BLANK

CONTINUE

WRITE(6,609) (HEADL(I)sP,HEAD2{ 1Ky 110 1=l IMAXF)

D0 250 I=1,1J
OELJ=1-1
JeJMINSDELY
SUM=0.000

KO=100¢{K-1)%7

K1=KO+1

K2=KO+IMAXT

00 240 KK=K1,K2

K3=KK~-100

K4=2KK=50

SUM= SUM#SAVE( L1 sKK s T)+#SAVE(L ¢K3, 1) +SAVE{Ll K&y 1)

WRITEL6,610) JsSUM,{SAVE(],KKyI),KKsK1,K2)
IF{((I/5)%5-1).EQ.0) WRITEl6,607)

CONTINUE

END OF CASE, READ IN NEXT CASE.
GO TO 10

READ FORMAT STATEMENTS.

FORMAT(F3.1,2X,F2.0+2X,A1,3E10.0)
FORMAT(2F5.1)
FORMAT (AL}

WRITE FORMAT STATEMENTS.

FORMAT(1H1,52X s 26HINTENSITY FACTOR PROGRAMME,/ -

1 45X, 41HNASA-AMES/CRESS/E E WHITING AUGUST 1972,/777)
FORMAT{32X,43HSQUARE ROOT DF ROTATIONAL INTENSITY FACTORS, -

1 18H FOR THE FORBIDDEN,//)

FORMAT (48X, 35HHONL-LONDON FACTORS FOR THE ALLOWED,/}
FORMAT(27Xs 204, 1X,%A% Al 4H TO ,2A4,1Xy4A44A2,15H TRANSITION IN ,344//)
FORMAT(35X,2A44THSTATE SPIN-ORBIT COUPLING CONSTANT = A/8 = ¥ = ,FBg.3)
FORMAT(// 443%X,29H) VALUE IS FOR THE INITIAL (I,2A4,8H) STATE.)
FORMAT{//+16X, THPARTIAL 93Xy LOHTRANSITION, 710X o 1HJ» TX9 IHSUM » 6X s 5HMOMENT ( 7T{ TX, AL ¢ AL 4 A2,4X))
FORMAT(10X)

FORMAT(TX4OPFS5a 19FL1e6s5X)1240H,yy11,1X,7(3X,1PEL12.5})
FORMAT(//10Xo 1HI s TXs3HSUM 22X T{TX,A1,A1,A2,4X)//)
FORMATE7X,0PF5,14F11.6,713X,1PEL2.50)

FORMAT{35X,2A444THSTATE ENERGY SEPARATION = DELTA E(1}/8 = ,Fg.3)
FORMAT{TS5X, BHOELTA E(¢1146H)/8 = ,FB.3) .

25
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613 FORMAT{//27X%,58HIN SIGMA STATES WHEN J<S, THE F DESIGNATION FOR THE LEVELS,
1 727X, 53HNITH THE SAME VALUE OF J ARE ASSIGNED AS 2S+1 FOR THE,
2 /27X sS1HHIGHEST ENERGY LEVEL, 25 FOR THE NEXT HIGHEST, ETC.)

[

614 FORMAT{//27X,59HLAMBDA DOUBLING OCCURS IN THE SPECTRUM, BUT THE SQUARE ROOT,
17H OF THE INTENSITY/27X,40HFACTORS FOR ONLY ONE LINE OF EACH LAMBDA,
40H DOUBLET IS PRINTED. THE VALUES FOR THE/27X,12HOTHER LAMBDA,

58H COMPONENTS ARE FOUND BY CHANGING THE SIGN OF THE NUMBERS
1LHPRINTED, IF/27X,42HTHE TRANSITION MOMENT DESIGNATION CONTAINS,

14H A MINUS SIGN.)

615 FORMAT(//27X,59HLAMBDA DOUBLING OCCURS IN THE SPECTRUM, BUT THE HONL-LONDON,
214 FACTORS FOR ONLY ONE/27X,39HLINE OF EACH LAMBDA DOUBLET IS PRINTED.
39H THE HONL-LONDON FACTORS FOR THE OTHER/27X,17THLAMBDA COMPONENTS,
14H ARE THE SAME.)

AU TN N

N -

END
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SUBROUTINE SOLVE

THIS PROGRAM:

1-DEVELOPES THE ROTATIONAL HAMILTONIAN.

2-CALLS EIGEN TO GET THE EIGEN VECTORS OF THE HAMILTONIAN.

3-DEVCLOPES THE ROTATIONAL MATRIX.

4~TRANSFORMS THE ROTATIONAL MATRIX.

5-STORES, IN THE LARGE SAVE ARRAY, HONL-LONDON FACTORS
FOR ALLOWED TRANSITIONS AND THE SQUARE RGOOT OF
ROTATIONAL INTENSITY FACTORS FOR FORBIDDEN TRANSITIONS.

DIMENSION T(14,14),TI(16,14},TFLILe,14),TF2(14,14),A014,14),
1 Cl14414) HET7),SYHIT,T)

CCMMON /CSOLVE/ JF o JMIN, JMAX,ST,5FLAMI,LANF,
SIGNL+ALLOW,EMISON,SIGSEG,1J,IMAXI, IMAXF,
NTRANR{200), NTRANQ{200) s NTRANP {200},
ITRANI (30,2000, I TRANF{30,200),
SAVE(9,150,200),YI(3},YF{3}

S WN -

CCOMMON/CEIGEN/HHI28) 4 TT(29),N

DOUBLE PRECISION AyDELJ,JMINyJMAX )y d1¢JF,Y(3),YI,YFsLAM,LAMI,
1 LAMFS,SIsSFeHyHHyW,HOLD+TT,T,TFI,TFL,TF2,0MEGA,DHEGAL,C,

2 OMEGAF,ETEKsSUM,FACTOR,SIGNsSIGN1,SIGN2,S128,SYM,

3¢l

LOGICAL ALLOW,EMISON,SIGSIG,FIRST

REAL INITAL
DATA R/1HR/, Q/1HQ/, P/1HP/, FINAL/1HF/, INITAL/LHI/
INTEGER SAVEl,SAVE2,SAVE3,SAVE4,SAVES,5AVES

INITIALIZE MATRICES.
AND SET FLAG FOR FIRST COMPUTATION.

00 10 1Is1,14

D0 10 K=li,14

TI{K,1)=0.000

TFL{K,1)=0.000

TF2(K,[}=0.000

C(K,1)=0.0D0

A{K,1}=0.000

FIRST=.TRUE.

SAVE3=0

NSAVE=0 -

START PRIMARY CALCULATION AT THIS PLOINT.

THE INTENSITY FACTORS ARE CALCULATED IN

TERMS OF THE INIVIAL VALUE OF J, 1E. IN TERMS OF
J-LOWER FOR ABSORPTION AND IN TERMS DF

J-UPPER FOR EMISSION, -

00 900 14=1,200
DELJ=IJ~1
JI=JMIN+DELYJ

SET VALUES FOR INITIAL LEVEL CALCULATION.

J=J1
LAM=LAM]
$=51
IMAX=IMAXT
STATE=INITAL
DO 15 [=1,3
Y(Il=YI(1)
GO TO 30

SET VALUES FOR FINAL LEVEL CALCULATION.

J=JF

LAM=L ANF
S=SF
IMAX=IMAXF
STATE=FINAL
DO 25 1=1,3
YiI)=YF(1)

INITIALIZE HAMILTONIAN AND TRANSFORMATION MATRICES.

DD 35 I=1,7
00 35 K=1,7
H{K,y1)=0.000
DD 40 I1=]1,14
DO 40 K=1,1%
TiX,1}=0.0D0
00 45 I=1,28
HH(1}=0.000
DC 47 I=1469
TT(1)=0.000

THE HAMILTONIAN MATRIX IS REDUCED AT LOW J VALUES.

SET INDECIES DEFINING WHICH ROWS AND CDLUMNS HAVE NDN-ZERGQ ELEMENT

OMEGA=LAM+S
IFU(J+.1).LT.OMEGA} GO TO 50

27



HAMILTONIAN 1S FULLY DEVELOPED.

noo

11=1
12=1MAX
GO TO 110

HAMILTONIAN IS REDUCED.

waoo
<

TEST=0MEGA

DO 60 I=1,IMAX

Ti=1+1

TEST=TEST-1.0

IF{(J+.1) .GT.TEST) GO FO 70

CONTINUE

I1=1MAX :
GO 1O 80

o
<

o

IF(J.GT..1} GO TO 100

THERE IS ONLY DNE ELEMENT IN THE HAMILTONIAN.
SET TRANSFORMATION MATRIX.

o

12=11

VOBOOCAO O

0~

Ttlyl)= {=1)%e]l
Ne
GO TOD 240

THERE MAY BE MORE THAN ONE ELEMENT IN THE
HAMILTONTAN MATRIX.

e akaXaXal
Q
o

1222,%J¢.1
12=11+12
IF(I2.GT . IHAX) 12=IMAX

IS THERE MDRE THAN ONE ELEMENT IN THE
HAMILTONIAN MATRIX? .

IF(12.EQ.11) GO TO 90

THERE IS MORE THAN ONE ELEMENT IN THE
HAMILTONIAN MATRIX. SET SIZE OF MATRIX.

[ XakakaladaRatakal
-
o

N=12-11+1

DEVELOP UPPER HALF OF SYMMETRICAL HAMILTONIAN MATRIX.
JUJ#L} AND S{Sel) TERNS IN THE DIAGONAL ELEMENTS ARE NOT INCLUDED.

[sXaXa¥al

K=0
132]12-1
D0 120 I=I1,13
K=Kel
El=1 .
H{KyK+1)=-DSQRT{{ J~OMEGA+E] }$ (J¢OMEGA-E1+1 .0D0)*FI*(2.0D0%S-EI+1.000}}
H{K+1l,K)aH(K,K+]1)
120 HI{K yK) =~ {OMEGA-EI+1.D0)**2-(S-Ef+1,D0)%*2

El=12
K=K+1
HiK,K) =-{DMEGA-EI+1,D0)**2-(S-E1+1.D0)®e2

IS THIS A SIGMA STATE?

[2XaXa)

K=0

IF{LAM.LT..100) GO TO 140

THIS 1S5 NOT A SIGMA STATE.
INCLUDE SPIN-ORBIT INTERACTION (Y=A/B).

anoo

D0 130 I=11,12
K=K+l
E£l=1
130 HIK K} =H(K,K)+Y{ L) *LAMZ(S~E[+1.D0)
GO TO 152

c THIS IS5 A SIGMA STATE.
c INCLUDE SPIN-ORBIT + SPIN-SPIN ENERGY SEPERATIONS {DELTA E/B).

140 00 150 I=11,12
K=K+1

GO TOU152,152,14614142,163,144,145), IMAX

141 1F(1.€Q.2} GO YO 150
13=]1
GO TO 14¢

C

1642 IF(I.EQ.2,0R.1.EQ.3} GD TO 150
13=1
GO YO 146

143 IF(1.EQ.3) GO TO 150
13=2
IF{1.€Q.2.0R.1.EQe%) 13=]1
GO TO 146
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145

155

160

190
200

w
w

ano » ononoNn
o

JFI1.EQ.3.0R.1.£0.4) GO TO 150
1322

IF(1.EQ.2.0R.1.EQ.5) 13=1

GO TO 146

IF{1.EQ.4) GO TO 150

13=3

IF{1.NE.1.0R.I.NE.7) 1322
IFI1.EQ.3.0R.1.EQ.5) I3=1

HIKKI=H(K K} +Y(13)
CONTINUE

IS SYMMETRIZING MATRIX NECESSARY?
NEEDED FOR NON-SINGLET SIGMA STATES IN FORBIODEN TRANSITIONS.

IFCALLOW.OR.LAM.GT.41.0R.5.LT..1) GO TO 225
CONSTRUCT SYMMETRIZING MATRIX.

IFIN.EQ.NSAVE) GO TO 180
NSAVE=N

D0 155 [al,7

DO 155 K=1,7
SYM{1,K}=0,000

C1s.707106781D0
K=0

K=K+1

KKsN+1-K

IF(K.EQ.KK} GO TO 170
SYMIK,K}=aCl
SYMIKK4K)=C1
SYM(K,KK)=C1
SYMIKK,KK}=-C1l

IF{(KK~K}.GT.1} GO TO 160
GO TO 180

SYM(K,K)=1.,000
SYMMETRIZE HAMILTONIAN MATRIX [F REQUIRED.

DO 200 I=1,N
00 200 K=1,N
C(K,1)=0.0D0
00 190 KK=14N
CIKy I nC Ky I)#HIK KKISSYH(KK, T}

© CONTINUE

DG 220 I=1,N

00 220 K=1,N

H{K,1)=0,000

00 210 KK=1,N

HIK o 1) =H(K, 1) #SYMIK,KK)#C (KK, 1)
CONTINUE

TRANSFORM UPPER HALF DF SYMMETRICAL HAMILTONIAN INTO A ONE-DIMENSIONAL
ARRAY, HH TO BE COMPATIBLE WITH E1GENFUNCTION SUBROUTINE.

KX=0

DO 230 I=1,N
00 230 K=1,1
KK=KK+]
HH{KK)=H{K, 1}

CALL SUBROUTINE TO FIND THE EIGENFUNCTIONS OF

THE HAMILTONIAN MATRIX AY JACOBI-VON NEUMAN METHOD.
EIGENFUNCTIONS ARE ORDERED IN A ONE-DIMENSIONAL ARRAY, TT WITH
THE LARGEST EIGENVALUE FIRST, ETC.

CALL EIGEN

EXPAND THE ONE-DIMENSIONAL ARRAY, TT INTO THE TWO-DIMENSIONAL
TRANSFORMATION MATRIX,T THAT OlAGONALIZES THE HAMILTONIAN.
ENSURE CONSISTANT PHASE OF THE EIGENFUNCTIONS BY MAKING

THE FIRST ELEMENT IN EACH COLUMN NEGATIVE.

KK=0

DO 235 I=1,N

C1=1.000

IF{TTIKK+1).GT. O.) C1l=-1,00D0
DO 235 Ks=1,N

KK=KK+1

T(KyI)=C1#TT{KK)

IF THIS 1S A FORBIDDEN TRANSITION AND IF
THIS STATE IS NOT A SIGMA STATE, EXPAND THE
TRANSFORMATION MATRIX TO ALLOW FOR LAMBDA DOUBLING.

NN=N

IF{ALLOW.OR. LAM.LT..1) GO TO 2560
EXPAND THE TRANSFORMATION MATRIX.

NN=2*N
I1=NN+1

29
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D0 250 1=1,N
DO 250 K=1,N
K3=11-K

13=11-1
TIK3,13)=T(K, 1)

TRANSFER T MATRIX INTO INITIAL (TI} OR FINAL (TF}
MATRiX. SET FLAGS AND INDECIES FOR PROPER BRANCHES
PRELIMINARY TO DEVELOPING THE ROTATIONAL MATRIX.

1S THIS THE INITIAL OR THE FINAL STATE?
IFISTATE.EQ.FINAL) GO TO 280

THIS IS THE INITIAL STATE.
TRANSFER THE T MATRIX INTO THE TI MATRIX.
SET INDECIES FOR INITIAL STATE.

DQ 270 I=1,NN
DO 270 K=1,NN
TICL,KI3T(I,K)

111=11
112=12
N1=N

IF THIS IS THE FIRSTY TIME THRU OR IF ¥THE Q BRANCHES
HAVE NOT BEEN COMPUTED, GO DIRECTLY TO THE FINAL STATE.

IF(FIRST} GO TO 20
IF{BRANCH.NZ.Q) GO TD 300

GO 1O 330

THIS IS THE FINAL STATZ.
ARE CONDITIONS SET FOR Q BRANCHES?

IF(DABS{JI-JF).GT..1} GO TO 310

CONDITIONS ARE SET FOR Q BRANCHES.
INVERT T MATRIX AND PUT INTO TF1 MATRIX.

00 290 I=1,NN
DO 290 K=1,NN
TFL(14K)=T(K, )

SAVE INDICIES DENDTING SIZE OF HAMILTONIAN AND
WHICH ELEMENTS ARE FILLED. .

SAVEL=I1
SAVE2=12
SAVE3=N
FIRST=.FALSE.

INCREASE FINAL STATE ROTATIONAL QUANTUM NUMBER
BY 1 AND COMPUTE THE NEW FINAL STATE.

JF=JF+1.0D0
GO TO 20

THIS 1S EITHER A P OR AN R BRANCH.

NORMALLY JF WILL BE GREATER THAN JI AT THIS POINT,
HOWEVER s THE FIRST TIME THRU JI MAY BE GREATER.
IF(JF.GT.JI) GO TO 350

FIRST TIME THRU. INVERT T MATRIX AND PUT INTO TF1
MATRIX AND SET INDICIES.

D0 320 I=1,NN
DO 320 K=1,NN
TELUESKI=T(Ky1}
IFl=11

1F2=12

NF=N

IF THIS IS AN EMISSION CALCULATION, WE ARE READY
TO COMPUTE R BRANCHES. IF ABSORTION, P BRANCHES.

IF(EMISON) GO TO0 370

THIS IS A P BRANCH CALCULATION.

BRANCH=P

SET INDEX FOR SAVING P BRANCHES IN THE LA?GE~SAVE ARRAY.
IK=100

SIGN2=-1,0D0

60 YO 350

INVERT T MATRIX, PUT INTO TF2 MATRIX AND SET ;NDICIES;
DO 360 I=1,NN

0GC 360 K=1,ANN
TE2{1,K)=T(K, 1)
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1F1=11
1F2=12
NF=N

If THIS IS AN EMISSION CALCULATION, WE ARE READY
TO COMPUTE P BRANCHES. If ABSDRPTION, R BRANCHES.

IFLEMISON) GO TO 340
THIS IS AN R BRANCH CALCULATION,
BRANCH=R

SET INDEX FOR SAVING Q BRANCHES IN THE LARGE SAVE ARRAY.

IK=0
SIGN2=-1.000
GO TO 330

THIS IS A Q BRANCH CALCULATION.

BRANCH=Q
1K=50
SIGN2=+1.000

DEVELOP ROTATIONAL MATRIX.
SET INDICIES AND SIGN OF LAMBDA.

1=0

El=112
NII=N1
NFF=NF
NTRAN=Q
SIGN=1.000

IF(ALLOW.OR.LAMF.LT..1) GO IO 400
SIGN=-1.000
NFF=24NF

SET INDICIES AND OMEGA FOR THE INITIAL STATE,
COLUMNS OF THE MATRIX.

1=1+1

EI1=EI-1.0D0
CMEGAI=LAMI+S1-El
II=NI-1+1

k=0

EK=1F2

SET INDICIES AND OMEGA FOP THE FINAL STATE,
ROWS OF THE MATRIX.

K=K+1
EK=EK=-1.000
KK=NFF-K+1

IF{SIGN.LT.0.} EK=I(KK-K-1)1/2
OMEGAF=SIGN*LAMF+SF-EK

FIND DELTA OMEGA AND DCLTA LAMBDA.

DELO=0MEGAF-OMEGATL
DELL=LAMF-LAMI

FOR ALLOWED TRANSITIONS DELTA OMEGA MUST EQUAL DELTA LAMBDA.

IF(.NOT.ALLOK) 6O TO 415
£ (ABS{DELO-DELL).GT..1) GO TO 510

WHAT TYPE OF BRANCH?

IF{BRANCH.S0.Q} GO TO 470
IF{(JF-J1).GT. .1} GO TO 440

P BRANCH IN lBSCRP+lON ar
R BRANCH IN EMISSION.

1IF{J1.LT..1) GO TO 810

IF{ ABS{DELO).LTV..11GD TO 430
IF(DELD.GT.0.) GO TO 420

IF( DELO.LT.-1.1)GD TO 510

A(KK, T1)=-DSQRTI{JI+OMEGAI ) *(JI1+0MEGALI-1.0D0)/(2.0D0%J71))
GO TO 500

IFIDELO.GT.1.1} GO VO 520

A(KKyITY=DSQRT{{JI-OMEGAT )*(JI-DMEGAI-1.0D0)/(2.0D0%J1))
GD TO 500

ALKK, 11)=0DSQRT{ (JI+OMEGAT) & (J1-OMEGAT) ZJT)
60 T6 500 ) .

R ARANCH IN ABSORPTION OR
P BRANCH IN EMISSION.

31
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440 IF( ABS(DELD).LT..1)1GD TO 460
TF{CELD.GT.0.) GO TO 450
IF( DELO.LT.-1.1)G0 TO 510

c
ALKKs11)=DSQRT((JI-OMEGAI+1.0001%(JI-DMEGAI+2.0D0}/12.0D0*(J1+1.000)))
GO 10 500 .

c

450 1F( DELO.GT.1.1) GO TO 520

c
A(KKy11)=-DSORT L{JT+OMEGAI+1 .0DO)*{JI+OMEGATI+2.000}/(2.0D0%(J1+1.000}))
GC TO 500

<

460 A{KK,I11=DSQRTU(JI+OMEGAT 41,000} *(Ji-0OMEGAT+1.0DD)/{J1+1.0D0))
GO TO 500

[+

[ Q BRANCH IN ABSORPTION OR EMISSION.

C

470 IF(JI.LT..1) GO TO 810
IF( ABS(DELOJ.LT..1) GO TO 4S0
IF(DELO.GT.0.} GO TD 480
IF{ DELO.LT.-1l.1) GO TO 510

A(KKyI1)=DSQRT{(JI+OMEGAT) *(JI-OMEGAI+1.0D0)*(2.0D0*JT+1,000)
1 /{2.0D0%JI*(J1+1.000))}
GO 10 500

480 IF( DELO.GT.1.1) GO TO 520
A{KKyFT)=DSQRT((JI-DMEGAT) ${JI+OMEGAI+1.0D0}*(2.0D0%J1+1.000)

1 /42,0005 J1*(J1+1.000)})
GO TO 500

o
[~

AUKK,I1)=0OMEGAI*DSQRT((2.000%JI+1.000}/(JI*(JI+1.000)})

IF THIS 1S AN ALLOWED TRANSITION LOOP BACK UNTIL ALL
ELEMENTS ARE IN THE ROTATIONAL MATRIX. IF THIS IS

A FORBIDDEN TRANSITEON, FIND THE SYMMETRICAL ROTATIONAL
MATRIX ELEMENT AND TRANSFORM THEM TOGETHER.

o
o

IF(.NOT.ALLOW) GO TO 540

-
o

IF(K.LT.NF} GO TO 410
IF{K.GT.NF) GO TO 525

~N
-1

1F{SIGN.GT..0) GO TO 530

1S FORBIDDEN BRANCH COMPLETED?

OO0V VMOVMOOCAOO RN

TFILAMI.GT..1.0R. {I+1}.LT.I1} GO VO 522
IF(1.EQ.1I1) GO TO 810

522 SIGNs+1.0D0
EK=]F2
GO T0 410
C
525 IF{K.LY.NFF} GO TOD %10

[
530 IF{1.EQ.NI} GO TO 535
IF(ALLOW) GO TO 395

1S FORBIDDEN BRANCH COMPLETED?

aon

TF(LAMTILGT o1 0R{T#1},LT.I1) GO TO 395
GO T10.810

IF THIS IS AN ALLOWED TRANSITION, MUST NOW TRANSFORM
THE ROTATIONAL MATRIX. IF THIS IS A FORBIDDEN
TRANSITION, THIS BRANCH IS COMPLETZ.

wonNnooo

w
n

IFUALLOW) GO TO 580
GO T0 810

THIS 1S A FORBIDDEN TRANSITION. FIND THE SYMETRICAL

ELEMENT WITH PROPER PHASE FACTORS. CHECK SIGMA TO SIGMA

TRANSITION FOR EXISTENCE DF TRANSITION MOMENT WHEN 80TH

OMEGAS EQUAL ZERO. -
40 IF(SIGSIG) GO TO 560

TF(LAMI.LT..1) GO TO 565

INITIAL STATE IS NOT A SIGMA STATE.

A00 owonnoon

NIf=22N1
13=N1+]1
GO TO 567

THIS IS A SIGMA TD SIGMA TRANSEITION.
ARE BOTH OMEGAS FQUAL TO 1ERO?

60 IF{DABS{OMEGAI) .LT..1.AND.DABSIOMEGAF}.LT..1} GO TO 570
AT LEAST ONE OMEGA IS UNEQUAL TQO ZER(, SET SYMMETRICAL ELEMENT.

e Ya B XaXaXalsl

1321
A(Ky13)sSIGNL*STGN2*A(KK,11)

o
oo
~n
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575

576
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577
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578
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610
620

GO Y0 571

BOTH OMEGAS ARE ZEROD.
THERE 1S NO SYMMETRICAL ELEMENT.
FOR THE TRANSITICN MOMENT TO EXIST SIGNL MUST BE NEGATIVE,

IF(SIGNL.LT.0.)} GO TO 580

THE TRANSITION MOMENT CORRESPONDING TN THIS MATRIX
ELEMENT DOES NOT EXIST. W& CAN ALLOW FOR THIS BY
SETTING THE MATRIX FLEVMENT EQUAL TO Z&RO. ALSO THIS
BRANCH IS COMPLETE.

A(XK,11)=0,0D0
GO TO 8l0

TRANSFORM THE ROTATIONAL MATRIX.
SYMMETRIZE FORBICDEN TRANSETIONS.

IF(K.EQ.KK) GO TO 576
IF(13.EQ.1I) GD TO 575
1F{X.GT.KK) GD TD 573
IF{13.G67.11) GO TO 572

HH{1)=A(K,13)*%0.5D0
HH{2)=0,000
HH{3)=0,000

HH{4) =A{KK,I1)%0,500
GO YO 578

HH(1)20.000
HH{2)=-A(K,13}%0.500
HH(3)=A(KK,11)%0.500
HH{4}=0.0D0

GO TO 578

IFLI3,6GT.11) GO TO 574
HH(1)=0.000

HH{2) =A(KK,I1}%0.500
HH{3}=-A(K,13)%0.500
HH{4)=0.0D0

G0 1O 578

HH(1)=A(KK,[1)%0,.500
HH(2)=0.000
HH(3)=0,000

HH{4) =A(K,13)%0.5D0
GO TO 578

HH(1)=A(K,13)%0.707106781D0
HH({2)=A(KK,13)*0.70710678100
HH(3)=0.000

HH(4)=0.0D0

GG 70 578

IF{13.67.11} GO TO 577
HH{1)8A{K,13)*0.70710678100
HH{2)=A(K,11)#0.707106781D0
HH(3)=0.000

HH(4)=0.000

GD 10 578

HH(1)=A(K,I1)*0.70710678100
HH(2)=-A(K,13)%0.70710678100
HH{3)=0.000

HH{4)=0.000

A(K I3)=HHILY+HH{2) +HH{3) +HHI4)
A(KK, T11sHH{1)-HH{2)~HRH{3)+HH(4)
1F(K.EQ.KK.OR.I3.EQ.1I) GO TO 580
A(K ITI=HH{1)-HH(2) +HH{3)-HH(4}
A(KKyI31=HH{1)¢HH{2) -HH(3)-HH (4}

MULTIPLY ON THE RIGHT AY Ti,

00 600 Il=1,NI1

DO 600 K1=1,NFF

CIK1,11)=0.0D0 .
DO 590 12=1,NI1
CUKL,I1)=CeKL,I1)+A(K]1,12)*TE(12,11)

CONTINUE

MULTIPLY ON THE LEFT BY TF
IF{BRANCH.EQ.Q.OR.{JF=-JI}.LT.cl) GO TO 530

FOR P BRANCHES IN EMISSION AND R BRANCHES IN
ABSORPTION MULTIPLY ON LEFT BY TF2.

00 620 1l=1,NII
DO 620 Kl=1,4NFF
A(K1,11)=0.000
00 610 [2=1,NFF
A(KL,T1)=A(KL, T1)+TF2{KL1,12)%C112,11)
CONTINUE
GO TD 655

33
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FOR O BRANCHES AND FOR P BRANCHES IN ABSORPTION
AND R BRANCHES IN EMISSION MULTIPLY ON LEFT BY TFl.

DO 650 11=1,NI1

A(K1,11)=0.0D0
DO 640 [2=1,NFF
A(K1,11}=A(KL1,IL)+TFLIKL,I2)%C(12,11)}
CONTINUE

FOR ALLOWED TRANSITIDONS LAMBDA DOUBLING WAS NOT INCLUDED. THEREFORE, THE
MATRIX ELEMENTS FOR SIGMA-P] TRANSITIONS MUST BE HULTIPL(EO BY THE SQUARE
RCOT OF 2.

FOR FORBIDDEN TRANSITIONS:
IF ONLY THE INITIAL STATE 1S A SIGMA STATE, THE RESULTS
IN THE UPPER AND LOWER HALVES OF THE MATRIX MUST BE COMBINED.
IF ONLY THE FINAL STATE IS A SIGMA STATE, THE RESULTS IN
THE LEFT AND RIGHT HALVES OF THE MATRIX HUST BE COMBINED.

IF NEITHER STATE IS A SIGMA STATE, THE RESULTS .
ARE EITHER IN THE UPPER-LEFT AND LOWER-RIGHT OUADRANYS, OR IN

THE UPPER=-RIGHT AND LOWER-LEFT QUADRANTS. THEREFORE, WE CAN ALWAYS GET

ONE LAMBDA COMPONZNT BY ADDING THE MATRIX ELEMENTS IN THE UPPER-LEFT
AND LOWEP-LEFT QUADRANTS (ONE OF WHICH IS ZERO). THE OTHER LAMBDA
COMPONENT CAN BE FOUND BY SIMPLY CHANGING THE SIGN OF ALL TERMS
WHOSE TRANSITION MOMENT 1S DESIGNATED WITH A MINUS SIGN IN THE

FIRST LOCATION, IE (-XyY}.

IF{SIGSIG) GO TO 666
IF{.NOT.ALLOW) GO TO 662
IF{LAMI.GT..1D0.AND.LAMF.GT..100) GO TO 666

C1=1.414213562D0

DO 660 K3=1,NF

D0 660 I3=1,NI
A(K3,131=CL*A{K3,13}
GO 10 666

IF(LAMF.LT..100} GO TO 664
DC 663 13=1,NI

D0 663 K3=1,NF

K&=NFF+1-K3
AlK3,13)=AIK3,13)+AIK&,I3)
GO TO 666

B0 665 13=1,NI

D0 665 K3=1,NF

T4=NIT#1~13
A(K3,131=A(K3,13)+A(K3,14)

FOR STATES OTHER THAN SIGMA STATES, IF THE HAMILTONIAN

IS NOT FULLY DEVELOPED (SMALL J VALUES) THEN THE ELEMENTS
IN THE TRANSFORMED ROTATIONAL MATRIX ARE SHIFTED TO
ENABLE PROPER LABELING DURING OUTPUT,

NDEL1=0
IF(LAMT.LY..1.0R.II1.EQ.1) GO TO 655

DETERMINE COLUMN SHIFT.

NDELI=111-1
IF(YI{I).LT.0.000) NDELI=IMAXJ~II1-NT+1
IF(NDELI.LE.O) GO TO 695

SHIFT COLUMNS

D0 690 K1=1,NF
D0 £70 Il=1.NI
12=N1+1-11
13s124NDELE
AtK1,13)=A(KL,12}

CO 680 11=1,NDELI
AlK1,11)=0.0D00

CONTINUE
.
NDELF=0
IF(LAMF.LT..1.,0R.IF1.EN.1) GO TO 735

DETERMINE ROW SHIFT.

NDELF=IFi-1
IF{YF(1).LT.0.0N0) NDELF=IMAXF-1F1-NF+l
IF(NDELF.LE.0} GO TOD 735

SHIFT ROWS.

DO 730 11=1,IMAXI
DO 710 Kl=1,NF
12=NF+1-K1
13=]2+NDELF
AlI3,I10=A(12,11)

00 720 K1=1,NDELF
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A{K1,11)=0.000
CONT ENUE

STORE THE TRANSFORMED ROTATIONAL MATRIX ELEMENTS
AND INITIALIZE THE A MATRIX FOR A NEW CALCULATION.

K4=NDELF+NF+1
T14=NDELI+NI+1
K5=IMAXF-NDELF-NF
15=1MAXI~NDEL I-N1

IS THIS AN ALLOWED TRANSITION?
IF{.NOT.ALLOW} GO TO 760

THIS IS AN ALLOWED TRANSITION.
STORE THE SQUARE OF THE A MATRIX ELEMENTS.
THESE ARE THE HONL-LONDON FACTORS FOR A SINGLE LAMBDA COMPONENT.

DO 755 I1=1,Ni

16=14-11

DO 750 K1=1,NF
K7={15+11~11%T+]K+K5+K1
K&6=K4—K1
SAVELL,KT7,1J)=A1KE,16)%22
CONTINUE

DO 757 11=1,14

DO 757 Kl=lsl4
Al(K1,11)=0.000

GO TO 810

THIS IS A FORBIDDEN TRANSITION.
RECORD THE NUMBER OF ELECTRONIC TRANSITION
MOMENTS AND THEIR DESIGNATIONS.

NTRAN=NTRAN+1

1€=E1+.1

KE=EX+.1

K6=NTRAN+IK/S
ITRANT (K6, 1J)=IMAXI-1E

IF{LAMF.LT..1) GO TO 780
IF{SIGN.LT.0.} GO TO 770

FTRANF (K6 1J)3K-NF+IMAXF-1F2
GD TO 790

ITRANF{K6,1J) =K~ IMAXF+IF1-2
GO 70 790

ITRANF{K6,1J} =1 MAXF-KE
IS THIS AN EMISSION CALCULATION?
IF({.NOTLEMISON) GO TO 799

THIS (S AN EMISSION CALCULATION. ADJUST DESIGNATION
OF THE TRANSITICN MOMENT TO CORRESPOND TO ABSORPTION.

Kl=+1

IF(SIGSIGY GO TO 794
IF(LAMF.LT..1) GO TO 792
IF(LAMI.LT..1} GO TO 791

IF{SIGN.LT.0.) Kl=-1
GO 10 798

1IF(SIGN.GT.0.} GO TO 736

T1=ITRANT (K614}
ITRANI{KE ,IJ}=~1TRANF(K6,1J)
TTRANF(K6,1J)=IMAXI+1-11

GO TO 799

IF{OMEGAF.LT.-.1) GO TO 796

11=ITRANF(K&6,1J)
ITRANFIKS6y1J)=—ITRANI (K6 ,1J)
ITRANI(KS, 14} s IMAXF+1-11

GO 10 799

IF{OMEGAF.GT..1) GO TO 798
I11=ITRANF{K&6,1J)
TTRANF(K6,1J)=K1*ITRANI (K& ,1J)
ITRANI{K6+1J)=K1511

GO TO 799

T1=1TRANI(K641J)
ITRANIIKG,TJ)=TMAXF+1~ITRANF(K&6,1J)
ITRANF(K6,1J)=IMAXI+1~11

SAVE A MATRIX ELEMENTS.

DC 800 1i=1,NI

35



€O 800 Kl=1,NF
K7={15+11-1}%T+]KeKS+K1

K&=Ke~KL
1€=14~11
800 SAVE(NTRAN(KT,13)=A(K6,16)
c
DO 805 fl=1,14
00 805 Kl=1,14
805 A{K1,11)=0.0D0
c
GO0 10 510
C
c A SET OF BRANCHES HAS BEEN COMPUTED.
4 STORE NUMBER OF ELECTRONIC TRANSITIONS MOMENTS
[ IN COMPUTATION JUST FINISHED AND SET FLAGS,
[+ IDICIES, ETC APPROPRIATE FOR NEXT SET OF BRANCHES,
c
810 IF(BRANCHJ.NE.Q) GO TO 820
C
c A SET OF Q BRANCHES MAVE BEEN COMPUTED.
[ NEXT STEP IS TO INCREASE JI AND COMPUTE A4 NEW INITIAL STATE.
c
NTRANQ(fJ)=NTRAN
GO TO 890
[
820 IF{BRANCH.SQ.P) GO TO 830
C
C A SET OF R BRANCHES HAVE BEEN COMPUTED.
c
NTRANR(IJ)aNTRAN
TF{EMISON) GO TO 840
GC TO 860
<
[+ A SET OF P BRANCHES HAVE BEEN COMPUTED.
[+
830 NTRANP (I J)=NTRAN
IFLEMISON) GO TO 860
[+
[ REPLACE TFI MATRIX WITH TF2 MATRIX BEFORE INCREASING JF
C AND COMPUTING NEW FINAL STATE,
C
840 K&=SAVE3

IF(.NOT,ALLOW.ANDLLAMF ,GT .o 1) K4=2#SAVE]
€C B850 11=1,Ké
DO 850 Kl=1,K4

850 TFLIKL,I1)=TF2U{K1,1I1)

JF3JF+1,.000
GO TO 20

IS THIS THE FIRST CALCULATION?

a:
o

IF(FIRST) GO TO 870

THIS [S NOT THE FIRST CALCULATION. SAVE INDICIES
AND COMPUTE Q BRANCHES NEXT,

¥R XX e Na¥al

SAVE4=1Fl
SAVES=IF2
SAVE6=NF
IF1=SAVEL
1F2aSAVE2
NF=SAVE3
SAVE1=SAVE4
SAVE2=SAVES
SAVE3sSAVES
GO0 70 380

THIS IS THE FIRST CALCULATION. SAVE IMDICIES AND
TF2 MATRIX AND COMPUTE NEW INITIAL STATE,

ano0o

70 FIRST=,FALSE.
SAVEl=]Fl
SAVE2=1F2
SAVE3=NF

00 880 I1=1,NFF

D0 880 K1l=1,NFF
880 TFL(KL,I1)=TF2{K1l,I1}
C

C WCULD NEXT VALUE OF J] BE GPEATER THAN JMAX?
g90 TF(LIMAX=JI) L T..S) GO TO 910

g END OF B1G 0D LOOP

EOO CONTINUE

132200
910 RETURN
END
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SUBROUTINE EIGEN

PURPOSE
COMPUTE EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC
MATRIX

USAGE

DESCRIPTION OF PARAMETERS
A - ORIGINAL MATRIX (SYMMETRIC), DESTROYED IN COMPUTATION.
RESULTANT EIGENVALUES ARE DEVELOPED IN DIAGONAL OF
MATRIX A IN DESCENDING OROER.
R = RESULTANT MATRIX OF EIGENVECTORS {STORED COLUMNWISE,
IN SAME SEQUZNCE AS EIGENVALUES)
N - ORDER OF MATRICES A AND R

REMARKS
ORIGINAL MATRIX A MUST BE REAL SYMMETRIC (STORAGE MODE=1)
MATRIX A CANNDT BE IN THE SAME LOCATION AS MATRIX R

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
NONE

METHOD
DTAGONALIZATION METHOD ORIGINATED 8Y JACOBI AND ADAPTED
BY VON NEUMANN FOR LARGE COMPUTERS AS FOUND IN "MATHEMATICAL
METHOOS FOR DIGITAL COMPUTERS', EOITED BY A. RALSTON AND
H.S. WILFy, JOHN WILEY AND SONS, NEW YORK, 1962, CHAPTER 7

4eeasuceseessasecatcsscsettsscassstestcetsetottacstsatrannotnatPe

SUBROUTINE EIGEN
COMMON/CEIGEN/ZA(28),R(49) 4N

DOUBLE PRECISION A R,ANORM,ANRMX,THR¢XsYSINX,SINX2,CO5X,
1

€0OSX2, SINCS yRANGE
GENERATE IDENTITY MATRIX

RANGE=1.00~12
1Q=-N

DO 20 J=14N
1Q=1Q+N

DO 20 1=1,N
1J=10+]
R{14)=0.0D0
IF{1-J) 20+15,20
R{1J1=1.0D0
CONTINUE

COMPUTE INITJAL AND FINAL NORMS (ANORM AND ANORMX)

ANCRM=0,0D0

00 35 [=1,N

D0 35 J=1,4N

IF(l-4) 30,35,30
1A=l+(J*J-0)/2
ANGRM=ANDRM+A{1A)*A(1A)
CONT INUE

IFLANORM) 165,165,440
ANORM=DSQRT (2.000%ANIRM)
ANRMX =ANORM&RANGE/FLDAT(N}

INITIALIZE INDICATORS AND COMPUTE THRESHOLD, THR

IND=0

THR=ANORM
THR=THR/FLOAT{N)
L=1

Malel

COMPUTE SIN AND COS

MO={M2M=M)/2

LO=(L*L-L)}/2

LM=L+MQ

IF({DABS{A(LM})I-THR) 130,65,65
IND=1

Li=L+LO

MM=NM+MQ

X=0.500%(A(LL}-A(MM))
Y=-A{LM}/DSORT (ACLMI*A{LMI+X*X]}
IF{X) T70,75,75

Y==Y
SINX=Y/DSORT(2.000%(1.000+(DSQRT{1.000-Y+Y)}))
SINX2=SINX®SINX
COSX=DSQRY(1.0D0-SINX2)
COSX2=COSX#COSX

SINCS =SINXeCOSX

ROTATE L AND M COLUMNS

ILQ=N*(L~1)
IMQsN®*({M-1)

DO 125 I=1,N
1Q=(1%1-1)/2
IF(I-L) 80,120,80
IF(I-M) 85,120,90

37
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185

TM=T+M0

Gh TO S5

1M=M+10Q

IFtI-L) 100,105,105

IL=1+1L0

GO TO 110

IL=Le1Q
X=AUIL)*COSX-A{IM)*SINX
A(IM)=ALIL)*S INX+ACIM)*COSX
A{IL)=X

ILR=ILO+Y

IMR=TMQ+1 - .

X=R ({LR)*COSX-R{IMR)I*SINX
RUIMRI=ROTILRI*SINX+R({ IMR }%COSX
RUILR)=X

CONTINUE
X=2,000*A(LM)*SINCS
Y=A(LL}I*COSX2+A (MM} *SINX2-X
X=A(LLI®SINX2+A{MM) *COSX2+X
A(LM=(ALLL}-A{MM) ) *SINCS+AILM)*{COSX2-SINX2)
A{LLYsY

ATMM) =X

TESYS FOR COMPLETION
TESY FOR # = LAST COLUMN

IF{M=N] 135,140,135
M=M+] - .
GO TD 60

TEST FOR L = SECOND FROM LAST COLUMN

TF{L-{N=-1)) 145,150,145
L=L+1t

GO0 70 55

IFLIND-1) 160,155,160
IND=0

G0 T0 50

COMPARE THRESHOLD WITH FINAL NORM
IF(THR-ANRMX) 165,165,545
SORT EIGENVALUES AND EIGENVECTORS

10=-N

00 185 1=1,N
I1Q=1Q+N
LL=IslI*1-1)/2 ’ e .
JQ=N*{1-2)

00 185 J=I,N
JQ=JO+N

MM=J+ (J*J-J)/2
IFLA(LL)-A{MM)) 170,185,185
X=A(LL)
ALLL)=A(MM)
A{MM) =X

00 180 K=1,N
ILR=1Q+K
TMR=JQ+K
X=R{ILR)
ROILR)I=R(IMR)
RUIMR) =X
CONTINUE
RETURN

END



APPENDIX B

DETAILED FLOW CHARTS OF COMPUTER PROGRAM

PERTINENT BRANCHING SYMBOLS

~°
OR P _

BRANCHING ON SAME PAGE

—y
TO PAGE

OR  [[Ppd

FROM PAGE

* BRANCHING BETWE EN PAGES

39



SLALSIGNLYI),Y1(2),YT(3}
SF AF SIGNF YF{1L,YF(2),YF(D

SIGSIG = .FALSE.

ALLOW = .TRUE.
DAAXT = 25814 1.3
IMAXF = [MAX]

SIGN1 = (- {IDELS ¢ 1}

JTEST=JMIN + 1
J = JTEST

40

BAINMAX
TYPE

-

1

]

1

'

L

r

1

1

i

1

' B
[ ]
1oy [ mRaniL -0 1
vy ITRANF(L.D =0 |
| SIS R S L

| USRS Y |

AN = JMIN +

JTEST = JMAX + .}
J=JTEST

| sax - muaxes |

L

JMIN = JF - 1.0

&5
CALL SOLVE

PRINT HEADINGS
PRINT DATA

-: JF = JMIN - 1.0 I



SUBROUTINE SOLVE

FIRST = TRUE,

e 1 F
A=Al A AF 2
S =Sl S« e — |
AX = IMAXI DMAX = IMAXF
STATE » INITAL STATE = FINAL FROM PAGE
430R &6

[ —oTn—s*T-'J_“l
yvs[ o - vim i

[P N S

TEST = OMEGA

PR |

| S —

110 e f zonax | [ 1211 |e—

F
Ne[2-1141

LIRIEYS
N=}

TO PAGE 42

HIK.K+1} =
HIK#1,K) =

B
]
|
1
]
]
]
]

T oo donm -1

001,
1 3

TOPAGE 42

TO PAGE 42

41
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FROM PAGE
Ll

FROM PAGE 41 FROM PAGE 41

B=1
N ¥
148

HIK.K} = HUK,K} + Y(I3)

Rk Y

20 ¥K=11

1
b KK = KK+1 :
I 30| HHIKK] = HK.]) |

1
1
(SR S

SYMIRK K} =C
SYM{K,KK) =C1
SYMIKK KK) = -C1

TO PAGE 43




FROM PAGE 42

roZIRRTCEIAII

VT Too20 TN

T
- JF.GT 0

[*vb

TO PAGE
41

Fi=n
IF2=12
NF =N

SAVE} =11
SAVEZ =12
SAVE3=N
FIRST = FALSE.

—b' JF = JF+1

SAVEA = IF1
SAVES = 1F2
SAVEB = NF

BRANCH = Q I 0 TF1 = SAVEY 870
1K = 50 1F2 = SAVE2 4-«
SIGN2=41.0 | NF = SAVE3
SAVE? = SAVE4 FROM PAGE
45

SAVE3 = SAVES

1=+
E1= El-1.
OMEGAI = AL+ST -€1
11 = NI-i+1
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APPENDIX C
INTERACTION TERMS INCLUDED IN HAMILTONIAN MATRIX

In nonsigma states the spin-orbit interaction is of first order and is
usually the dominant interaction. In sigma states the spin-orbit interaction
is very small and, in fact, is on the same order as the spin-spin interactions.
Therefore, nonsigma and sigma e€lectronic states are discussed separately.

NONSIGMA ELECTRONIC STATES

The diagonal elements, H(Z,2), of the Hamiltonian metrix in terms of the
basis functions for nonsigma electronic states, are given by

H(z 1) _ ' 2 2

- = BJ(J + 1) - BQi + BS(S + 1) - Bzi + AAiziA (C
where A is the spin-orbit coupling constant. The result is the same for both
lambda substates; therefore, for thls discussion A can be considered positive.
Equation (Cl) can be written

H(Z,T) _ ) 2 _ 2

YR J(J + 1) + S(S + 1) (A + Zi) Zi + YA;i . (C2)
where Y = A/B, or as

M = J(J + 1) + 5(5 + 1) - A% zzj + (¥ - 205, (€3)

The criterion for regular or inverted electronic states is specified by
the sign of 4 or Y; that is, if A > 0, the state is regular, and if 4 < 0, the
state is inverted.

SIGMA ELECTRONIC STATES

The spin-orbit interaction of sigma electronic states is of second order
and 4 = 0. Therefore, the spin-orbit and spin-spin interactions are of the
same order and both should be considered. Both of these interactions depend
on the IZI, and their combined effect 1s included in the following analysis.

The diagonal elements of the Hamiltonian matrix in terms of the basis
functions for sigma electronic states can be written

AE,
=J( + 1) + 5(S+ 1) - 255 ¢ =5 (C4)

H(Z,7)
Bﬁz
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where AE; is the separation of the spin substates for ¥ = 0 caused by spin-
spin and second-order spin-orbit interactions. Figure 14 illustrates this
separation and indicates the degeneracy of the rotational levels with the same
value of N and |z|. The number of energy separations is obviously related to
the spin multiplicity. There are, for example, zero energy separations for
singlet and doublet states, one for triplet and quartet states, two for quar-
tet and sextet states, etc.

The values of AE; in equation (C4) are found by extrapolating the energy
separations shown in figure 14, to ¥ = 0. The reference level for AE; is
usually chosen to be the matrix element(s) with the lowest value of [I].

Whether a sigma electronic state is a regular or an inverted state is

determined by the sign of AE. If AE > 0, the state is regular, and if AE < 0,
the state is inverted.
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TABLE 1.— ROTATIONAL MATRIX ELEMENTS

[The nonvanishing matrix elements <Q'J'|a|QJ>, where <a> = f (J',J)g(J'Q';J,R).
The factors for a given matrix element are taken from different rows of the
same column of this table. The choice of columns depends on the value of J'-J.

In all cases, the first factor is taken from row one and the second factor from
Tow two or three.]

R Branch Q Branch P Branch
Foctor ' d+l J'=d J'=d-i
-1/2 -1/2 -1/2
£W, ) [a0+n]) ™" [a0tu+n1/(2041)]) | [44]
: 172 172
W'y 0; Q) 2[(u++n(Jd-a+)] 20 2[+ - Q)]
et ue) | Fleuraenwrara)’? [ 2urasan)? | taws oo za-n)?

TABLE 2.— <Rea> BASIS MATRIX FOR A SPIN-FORBIDDEN 2m « “z* TRANSITION

= ~ ] =~
42+ - =
L IRAREA —?N m?m
N I g
N IS RO RN
2 = 0l —foy [ '
n —— '2|N '2|N l":lN miN
Vet il o +
caszkeviN\| e | o | o | &
L1/3 )
Q33K391  [Rey @ |Rep2
R VAN
|'2' -3 |<§J l RE3u3 Re4a4 Re505
L1y/.1 )
<—| 53 |<‘§J I Reeae Re7a7 REBQB
L_L|/3 )
Cig-313 Reg® [Regi0

TABLE 3.— <Reoz> P-BRANCH BASIS MATRIX FOR A SPIN-FORBIDDEN 21 « “z* TRANSITION

4z+ o - '-(_’\
Gl s —low | mjen
Eo -V A R RN
A -
NEIESEIES
2 = ol =l 1 1
I = i i | e | el
ns'zKa v ool
L1l/3 )
Q53131 Re, a1 |Repa2

<||§ - lz |<12 Jll Re3@3 [Res04 |Ress

R [ [l es

¢is-LI-341 Repaz| R, a
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TABLE 4.— SIMPLIFIED FLOW CHART OF COMPUTER PROGRAM

input:
(1) Initial state parameters
(2) Final state parameters
(3) Jmin 0nd Jmox
{4) Emission or absorption

»

>

h 4

Hamiltonian maotrix:

(1) Set up

{2) Symmetrize

(3) Diagonalize

(4) Save transformation matrices

No

Rotational matrix:
(1) Set up
{2) Symmetrize
(3) Transform

Forbidden transitions

Store transformed rotat-
ional matrix elements and
code for transition moments.

v

Test if all transition moments

have been included.

Allowed transitions

Square transformed rotat-
ional matrix elements to get
Héni~ L ondon factors.

v

Store Honl-London factors.

J=dJd+! 4J¢Jm°‘

4

Test if Jis equal to Imeax.

J=J
v max

Output:

Honl - London factors
or intensity factors.
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TABLE 5.— A DIAGRAMMATIC REPRESENTATION OF THE ELECTRONIC-ROTATIONAL
HAMILTONIAN FOR A 21 ELECTRONIC STATE IN TERMS OF BASIS
FUNCTIONS <AST |<J |

BN ENEY
G| mn =l i\‘ n!N
=~ =[5 2
2 = 5| F
<Aszkadl
<l—£ %K% d Hyy | Hiz
(3-31G | [ Hie | Ha2
- (351639 Hap | Hiz
<'§I%|<'%J| Hiz | Hy

TABLE 6.— (Rea> BASIS MATRIX FOR THE Q-BRANCHES OF A 2I«—*I TRANSITION

2 ol 0 - P =l 2N
NI I R e R
s Thka | \]@X@E@™O™ T | T | T | =
CHKBI® [ b aans] |
GO e i i i e
e By D A i) e
GEI@ e I e v e




TABLE 7.— <Rea> BASIS MATRIX FOR THE P-BRANCHES OF A 4g*es4z- TRANSITION

4s- 4 N e
e N R i S
~ ™ o= x| =
dg* i AN AN ~ley mley
e MmN —leNy [ 1
P L R L
<n s ska @o|®@o|®@o|®o
TR 1) |Rell 2)
33 elh ell,
©3RH® | auy |xan2
i “Re2.0) |-Rel2,2)|Re(3,2)
©*33G-1® xa(2,)) |x al2,2)|x a(3,2)
3 /L “Rel3, 21Re(2, 2! |Rel2, 1)
©'3-3¢39-1@ xa(3,2)|x al2,2)|x a2,
3 3 3, Rell, 2} [Re(,1)
©'3-3lC 3010 xall,2)|xall,)

TABLE 8.— DESCRIPTION OF INPUT CARDS FOR PROGRAM

Card Number of
Columns | Format Content cards per Comments
number
case
| 1-3 F3.1 | Spin 2 The first card contains
6-7 F20 1A the information for the
10 Al + or -, i.e. symbol for initiol state and the
I states second card contains
11-20 [ EI0.0 |Y for nonsigma states. the information for the
AE(1)/B for £ states. final state.

21-30 | E10.0 |AE(2)/B for £ stated:
31-40 | EI0.0 |AE(3)/B for £ stated:
*as needed

2 -5 | F5.1 | Imin ]
6-10 | F5.1 | Jmax

3 i Al A for absorption. | It is recommended
Anything for emission. that ABSORPTION or
EMISSION alwoys be
used.




TABLE 9.— COMPUTER PRINTOUT FOR SAMPLE CASE 1

HIONL-LONDON FACTORS FOR THE ALLOWED

INVERTED TRIPLET SIGMA + YO REGULAR TRIPLET el TRANSITION IN EMISSION

TNITIAL STATE ENERGY SEPARATION = DELTA E(1)/B = -10.000
FINAL STATE SPIN-JRBIT COUPLING CANSTANT = A/B = Y = 100.000

IN SIGMA STATES WHEN J3<S, THE F DESIGNATINN FOR THE LEVELS
WITH THE SAME VALUE OF J ARE ASSIGNED 4S5 2S+1 FOP THFE
HIGHEST ENERGY LEVEL, 2S FOR THE MNFXT HIGHEST, ETC.

J VALUE IS FOR THE INMITIAL (1E. UPPER) STATE,

J SUM R OR12 PR13

0.0 0.000000 0.00000 0.00000 0.00000

1.0 5.999999 9.52267€-01 0.00000 0.00000

7.0 9.996997 1.34584F 00 °,770B8E-02 0.00000

3.0 12.999997 1.70604E 09 3.11386F-01 2.58351E-01
4.0 17.999998 2.05673E 00 6.09323F-01 5.28%805-01
J SUM SR21 R2 OrR23

0.0 0.000000 0.00000 0.00000 0.00000

1.0 5.999999 1.00000E 00 0.00000 0.00000

2.0 9.999998 1.49940E 00 5.96281F-04 0.00000

3.0 132.999997 1.99679E 00 44.34552£-02 3.22196£-01

4.0 17.999998 2.49098E 00 1.28119E-02 7.45205%-01
J SUM TR21 SR32 )

0.0 2.000000 0.00000 0.00000 0.00000

1.0 5.999999 4.7722QF-02 0.00000 0.00000

2.0 9.299999 1.53860E-01 9.024915-01 0.00000

3.0 13.999999 2.94775E-0% 1.68551% 00 7.72769E-02

4.0 17.999998 4.47505E-01 2.37440% 00 2.296£1E-01
J suM 43} PQ12 nerz

0.0 0.000000 0.00000 0.00000 0.00000

1.0 5.999999 1.445968 00 25636%-01 0.00000

2.0 9.599997 2.2€561F 00 £.360225-01 1.42615% 00
3.0 13.699997 3.08029¢ 00 1.17937F 00 2.25773E 00
4.0 17.999998 2.86202€ 09 1.95697¢ 00 2.84%6E OO0

3 SuM RO2? Q2 PQ22
0.0 0.000000 0.00000 0.00000 0.00000
1.0 €.%99999 1.49940F 00 5.99281F-04 0.00000
2.0 ©.999998 2.49¢¢7E Q0 8.594625-02 1.64£310% 00
3.0 12.999997 3.48453E 00 2.617865-02 2.90295E 00
4.0 17.99996A 4.46575E 00 6.70398F~02 4.,01721€ 00
J SUM SQ31 L2022 02
0.0 ?.000000 0.00000 0.00000. 0.00000
1.0 5.99999% 5,46360F-02 2.873765 00 0.00000
?.0 ©.999999 2.06€18€-01 4.45094F 00 2.45525€-01
3.0 12.9%9999 4.351€69€-01 5.78893F no 6.75173E-01
4.0 17.999998 6.912150-01 6.97250F 00 1.22663F 00
J SuM P1 ar12 NP13
0.0 0.000000 0.00000 0. 00000 0.00000
1.0 5.909999 4.94876F-01 1.63153F-01 2.B1E00E 00
2.0 9.999997 9.51723€-01 4.95369E-01 2.849675 00
3.0 13.999997 1.27756€ 00 9.313115-01 2.89796F 00
4.0 17.999998 1.79069¢ 00 1.41583F 00 2.96918€ 00
J SUM QP21 P2 op23
0.0 0.000000 0.00000 0.00000 0.00000
1.0 5.99%9999 4.98181F-01 5.69398E-02 2.99¢12E 00
2.0 9.999998 9.93554E-01 1.78887€-02 3.32189€ 00
3.0 12.999997 1.43495€ 00 2,909418-02 2,72596E 00
4.0 17.999998 1.67123F 00 «16605E-02 4.15711E 00
J SUM RP31 oP32 L)
0.0 2.000000 7.99041E-04 1.99920£ 00 0.00000
1.0 54999999 9.2380BE-03 2.83136E 00 1.83268F-01
2.0 9.999999 €.95066E-02 3.48773E 00 4.90331E-01
3.0 13.999999 1.45440E~01 4.03135€ 00 8.66373E-01
4.0 17.999998 2.49970F-01 4.51507E 00 1.27925E 00



TABLE 10.— PARTIAL PRINTOUT FOR SAMPLE CASE 2

SQUARE ROOT OF ROTATIDNAL INTEMSITY FACT2RS FOR THME FI9BIODEY

REGULAR OQUINTET SIGMA - 7O INVLRTED TRIPLET Pl TRANSTTIONM TN £RSIRPTION
INITIAL STATE ENFRGY SEPARATION = DELTA £(31)/8 = s.000
DELTA E(Z)/R 10.009
FINAL STATE SPIN-DABIY CCUPLING CONSTANT = a/R = Yy = -E0.000
IN SIGMA STAYES WHEN J<S, TRE F DESIGNATIDN FOR THE LEVELS
WITH THE SAME VALUE OF J ARFE ASSIGNED AS 2S+i FQP THE
HIGHEST ENERGY LEVEL, ?S FOR THFE NEXT HIGHFST, ETC.
J VALUE IS FOR THE INITIAL (IE, LOWER) STATE,
PARTIAL TRANSTTIGN
J4 Sum MOMENT SRi TR21 URY
0.0 0.000000 =242 0,00000 0.00000 0.02039
0.0 0.000000 -1,3 9.00000 0.00000 0.00000
1.0 0.000000 -3,2 9. 00000 0.000060 0.0n000
1.0 0.000000 ~2.2 0. 00000 0.99000 0.00000
1.0 0,000000 -1+2 0.03000 0.00000 0.00000
1.0 0.000000 1.2 0. 00000 0.00000 0.00000
1.0 0.000000 —243 0.00000 0.00000 0.00000
1.0 0,000000 =1.3 2.00000 0.0000n 0.00000
2.0 0.117959 -3,1 =2.42282E-01 -2.826925-02 -1.647549€-03
2.0 0.022592 -2,1 Le24445£~02 -1,5234¢€6-03 -1.4R931F-02
2.0 1.423921 ~242 -1.1802ZF 00 -2.921790-02 -4,C5269E-03
2.0 1.139137 =22 -8.78636E-02 1.0%363F 00 1.036E9E-01
2.0 0.427077 ~1,2 2,525565-03 -£.33814E-02 6.50502E-91
2.0 0.427177 1,2 -2.52556E-03 6.33814F~02 -6.505028-01
2.0 2.0081°0 -2,3 ~l.15660E-01 1.40%560F 00 1,27407F-01
2.0 3.0122%6 -1.3 -5+ 70656E-03 1.68208f-01 -1,77740F 09
3.0 0.278747 -3,1 -5.24757E-01 -5.79885€E-02 -2.7€¢012F-03
3.0 0.069687 =21 ?7.900z2E-02 -2.5N222E-01
3.0 1.691597 =3.,2 -1.29271E 00 -1.42852£-01
3.0 1.691598 -242 -1.62891F-01 1.2R258€ 00
3.0 0.676639 -1.2 5.650655-03 -1.023416-01 £.16171F-01
3.0 0.676629 1.2 -5.4609%F~-03 1.02341¢-01 -R.1&6)T1E-OL
3.0 2.279954 =242 -1.658%0E-01 1.4B90LF 00 1.87819€-01
3.0 3.647928 ~1.3 -1.2£799%5-02 2.37526E-0) -1.8¢507€ 00
4.0 0.432154 -3,1 -6.512310-01 -8.94542E-02 ~7.0#950E-03
4.0 0.122673 -241 4%.78245E-02 -3.44040£-0) -5.31151F-02
4.0 1.5644692 -3,2 -1.2R147€ 00 ~1.8€761F-01 +L9C69E-02
4.0 2.222507 =22 -2.02945E-01 1.45964F CO 5368F-01
4.0 0.92606¢5 =1.2 S.66142€~03 =1.45509E-01 1199F-01
4.0 0.926045 142 -2,66142E-03 1.45509F~01 -2.51109F-n1
4.0 2.604501 =2+3 -2.196%94F-01 1.58010€ 0N 2.42967€-01
4.0 4.340835 -1+3 =2.0917¢£-02 2.150326E-01 -2.05941E 00
PARTIAL TRANSITION
J SUM MOMENT Q12 SRz TR22
0.0 0.000000 -2,3 0.00000 0.00000 0.00000
0.0 0.000000 =1.2 0.00000 0.90000 0.20000
1.0 0.000000 -3,2 0. 00000 0.00000 0.00000
1.0 0.000000 -2.2 0. 00000 0.00000 0.00000
1.0 0.000000 -1.2 2. 00300 0.00000 %.00000
1.0 0.000000 1.2 0.00000 0.00000 0.00000
1.0 0.000000 =243 0.00000 0.00000 0.00000
1.0 0.000000 -1,.3 0.00000 0.00000 0.00000
2.0 0.936696 -3.1 9.64528E-01 7.96612E~02 4.01695E-023
2.0 0.187339 -2,1 -3.56316E-02 4.29311F-01 +1€681E~02
2.0 1.459941 -342 1.20417€ 00 ©.94524E-02 5.01484F-03
2.0 1.167952 -2.2 8.89680E-02 -1.07194F 00 -1.04789E-01
2.0 0.437983 -1,2 ~2.5%730E-03 6.41780E-02 -6.5F678E-0}%
2.0 0.437983 1.2 ~2.55730F-03 6.52780E-02 ~6.58678E-01
2.0 0.000000 —2.2 8.00000 0.00000 0.00000
2.0 0.000000 =143 0.00000 0.00000 0.00000
3.0 1.618215 -3, 1.256436E 00 1.26719€-01 ©.05972F-03
3.0 0.404554 =241 -5,23787E-02 6.27225€-01 7.51162E-02
3.0 1.727227 -3,2 1.3062¢€E 00 1.44348F-01 9.35991€-03
2.0 1.727228 =742 1.44388%-01 -1.29602E 00 =1.63475€6-01
3.0 0.690892 -1.2 -5.51820€-03 1.024126-00 ~8.267226-01
3.0 0.690892 1.2 -5.51820E-03 1.02413€-01 -8.26722E-01
3.0 0.000000 =243 0.00000 0.00000 0.00000
3.0 0.000000 =143 0.00000 0.00000 0.00000
4.0 2.223528 -3.1 1.47719F 00 2.02910€-01 1,60260F-02
4.0 0.635294 =21 ~1.08502€~01 7.80388E-01 1.204BYE-01
4.0 1.976469 =3,2 1.39271€ 00 1.91305€E-0" 1.51189E-02
4.0 2.258820 -2+2 2.04596E-01 -1.47151€ 00 ~2.271B2E-01
4.0 0.941176 -1.2 -9.74003E£-03 1.46692E-0] -9.5L802RF -0
4.0 0.941176 1.2 ~9,74002€-03 1.66692F-01 -©.58928E-01
4.0 0.000000 -2,3 9.01000 0.00000 0.00000
4.0 0.000000 -1.3 2.00000 0.00000 0.00000



TABLE 11.— PARTIAL PRINTOUT FOR SAMPLE CASE 3

SOUARE ROOT OF ROTATIOMAL INTENSITY FACTORS FOR THF FOPRINDEN

REGULAR OUARTET L3 TO REGULAR DOUBLET PI TRANSITION IN APSNRPTECN
INITTAL STATE SPIN-ORBIT COUPLING CONSTANT = A/R = ¥ = 50.000
FINAL STATE SPIN-ORBIT COUPLING CONSTANT = A/R = ¥ = 0.000

t ANBDA DOUBLING OCCURS IN THE SPECTPUM, BUT THE SQUARE RDOT OF THE INTFNSITY
FACTORS FOR ONLY ONE LINE OF EACH LAMBDA DJUBLET IS PRINTED., THE VALUES Fo2 THE
OTHFR LAMBDA COMPONENTS ARE FOUND BY CHANGING THE SIGN OF THF NUMRERS PPINTED, IF
THE TRANSITION MOMENMT DESIGNATION CONTAINS A MINUS SIGH.

J VALUE IS FOR THE INITIAL (YE. LOWER) STATE.

PARTIAL TRANSITINN

J SUM MOMENT SR1 TR2?
0.5 1.997786 -2.1 -1.22407E 00 =7.06716E-01
0.5 1.331859 ~1.1 -5.77031€-01 9.96447€-01
0.5 0.665929 1.1 ~4,0B8022E-01 7.06716F-01
0.5 0.000727 -1.2 ~1435756E~-02 2.251376-02
0.5 0,001474 1.2 1.91989E-02 =3.32534E-02
0.5 0.002212 242 ~4,07269€-02 =2,35137F-02
1.5 2.389426 -241 ~-1.26212E 00 -8,92455€-01
1.5 2.3896426 =1,1 -8.92455E-01 1.26212€ 00
1.5 1.194714 1.1 -6.310615-01 8.92455E-01
1.5 0.005280 -142 -4,19504E-02 S.03268E-02
1.5 0.010559 1.2 5.92268E-02 -8.,39009F-02
1.5 0.010559 242 -8.3900LE-02 -5.93268E-07
1.5 N.000002 1.3 B8.37081F~04 -1.,i8381E-03
1.5 0.000008 2,3 2.26762E5-03 1.67416£-02
2.5 ?2.829018 -241 -1.32971F 00 -1.02999F 00
2.5 3.394822 =1.1 -1.12830% 00 l1l.45662% 00
2.5 1.697411 1.1 -T.9732RE-01 1.02999E 00
2.5 0.016820 =1.2 ~7.94204€-02 1.02F31F-01
2.5 0.033641 1.2 1.1231P-01 -1,45001F-01
2.5 0.028034 242 -1.32367€-01 -1.02521€-01
2.5 0.000027 1.3 2,16374F-02 ~4.084376-03
2.5 0.000089 2,2 7.45700F-03 5.776175-02
7.5 0.000000 2+6 6.31961E-05 4,89515€-05
3.5 3.275557 -2,1 -1.40190€ 00 -1.14465F 00
3.5 40367409 -1.1 -1.32173€ 00 1.51878E 00
3.5 2.18370% 141 -9.34602F-0! 1.14465E 00
3.5 0.028289 -1,2 ~1423757€-01 1.51570€E-01
3.5 0.076578 1,2 1.75018€-01 =2.14353E-0)
3.5 0.057424 2.2 ~1.85625F-01 =1.51570F~01
3.5 0.000136 1,3 7.37¢0£F-03 -9,03378E-02
3.5 0.000408 2.3 1.56470F-02 1.27757€-02
3.5 0.000000 244 2.6447CE-04 2.15942E-04
4.5 3.716023 -2,1 -1.47230% 00 -1.24432F 00
4.5 5.308606 -141 1.648725€ 00 1.75974E 00
4.5 2.654303 1.1 -i.05165€ Q0 1.24432E 00
4.5 0.072285 -1,2 -1.73547¢-01 2,05344E-0
4.5 0.144570 »2 2.65433€-01 -2.%0400E-0Y
4.5 0.101199 ?e2 -2.4296€€-01 -2.05344F-01
4.5 0.00n454 1.2 1.374635€-02 =1.62655E-02
4.5 0.001270 242 2.72176E-02 2.70029F-02
4.5 0.000001 244 6,87642E-04 f.81164E-06
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Figure 1.— Typical energy level diagram of a I = * X electronic transition.

(a) Hund's case (a) coupling (b) Hund's case (b) coupling (¢) Hund's case(c) coupling
AS=0 AS=0 AQ =0, *
AT =0 AN =0, %I Ad =0, %I
AA=0, | AA=0, *
AJ =0, %I AJ =0, %I

Figure 2.— Vector coupling diagrams and selection rules for Hund’s cases (a), (b), and (¢).
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Figure 3.— Unitary transformations that transform the Hamiltonian matrix from basis functions
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to symmetrized basis functions for 3 and * X electronic states.

= F Fa F3 Fgq
-1/2 /2 3/2 5/2
6 J=I5/2 13/2 1I/2 9/2
5 13/2 11/2 9/2 1/2
4 11/2 9/2 7/2 5/2
3 9/2 7/2 5/2
2 7/2. 5/2 3/2
I S/2  3/2
/2 1/2
1/

(a) Regular electronic state

F, Fp Fz Fg4
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/2 9/2 1/2 5/2
9/2 1/2 5/2 3/2
7/2. 5/2 3/2 Y2
5/2  3/2 /2

(b) Inverted electronic state

Figure 4.— Designation of the rotational levels for a 41l electronic state.
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Figure 5.— Designation of the rotational levels for a 3T electronic state.
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Figure 7.— Illustration of branch designation.
42 42 42
F4“ F 1} F 1] Flll F4" F [1] F2ll F 1] F4" F3“ F2|l F|II
F4' | Pa |Qr43|Rry(SPy, Qs {RQ43/5042 T4, R4 {SR43| TR42[VRy
ag F3' |OPa,| P3 |QPp[RPy, Paag| Q3 [RQzp|SQz, QR34| R3 [SR32|TR3)
F2' [NP24|OP23| P2 |QP,, 10Q24/PQ23| Q2 |Raz PR24|QRpz| Ry [SRz
F\' [MP4|NPi3|OP12| Py Na4|%Qz|Paz| @ ORi4 PRIz |QRI2| R,
(a) P-Branches (b) Q-Branches (¢) R-Branches
Ad=J"-J"=-] AJ=0 AJ =+

Figure 8.— Branch designation scheme for spin-allowed *Il <> #X transitions.

59




PQo4| Q23 | RQ2 [SQy

Fi' |NPia|OPi3| Pi2 | 9Py

(a) P -Branches
A=~

Oqu|Faiz | Q2 |Ra

PR4|9R 3| Ri2 [ SRy

(b) Q-Branches
AJ =0

(¢) R-Branches
AJ = +|

Figure 9.— Branch designation scheme for spin-forbidden 2I1 <= *II transitions.

3% 3%

Fs Fp F Fs Fp Fy
Fz] X | o | X Fsl o | x | ©
Fal X | O | X Fal O] X | O
Fi | X 0 X Fi 0 X 0

3x 3%

Fi 1 O X 0 Fi | X 0 X
Fo] O X 0 Fol X 0 X
Fz| O X 0 Fag| X 0 X

(a)

(b)

Figure 10.— Possible nonzero matrix elements in the transformed rotational matrix ofa 3% = 3X

transition; X any nonsigma electronic state.
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Falx | x| x|olo]|o Fslo oo | x| x| x
F2l x x| xlojofo F2lo oo | x| X |X
Fil x| x|{x]olo]|o Fitolo|o | x| x| x
Fiflo]Jo o | x| x|X Fil x | x| x|jol]oqo
Fo2lolo o | x| x|x Fa2l x | x| x|o|o]o
Fslo|lo|o| x| x| x Fagl x | x| x|o|lo]o

(a) (b)

Figure 11.— Possible nonzero matrix elements in the transformed matrix of a 3X - 3Y transition;
X and Y any nonsigma electronic states.

(@) + A Hamiltonian submatrix for the J=1 rotational levels of a ’Melectronic state

Fl Fo F3 F4 F5 Fg F7 Fl Fp F3 Fq Fg5 Fg Fy
Q=-2 -1 0 |1 2 3 4 Q=4 3 2 | 0 - -2
N=7 J=10 9 8 7 6 5 4 J=I0 9 8 7 6 35 4
6 2 8 7 6 5 4 9 8 7 6 5 4 3
5 87 6 5 4 3 8 7 6 5 4 3 2
4 7 6 5 4 3 r 6 5 4 3 2
3 654 3 2 6 5 4 3 2 LEs
2 5 4 3 2 5 4 3 2 LE
I 4 3 2 IE3 4 3 2 g
3 2 g o
2 LEO
(b) DesignofiFCJn of the rotational levels (c) Designation of the rotational levels
for a reqular electronic state. for an inverted electronic state.

Figure 12.— Shifting of the / = 1 matrix elements of a "Il electronic state so that the position of
the elements in the matrix correspond to the designations for the fully developed matrix.

61



2
Number of 3
independent 4

L1

fransition °e °e tee
moments 7 i
8 il
9
I 2345 30 51 52 9354 55 100 101 102103 104 105 150
R-branches Q-branches | P-branches |
Number of branches
Figure 13.— Sketch of the SAVE (9, 150, 200) array.
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Figure 14.— Illustration of spin splitting in sigma electronic states.
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