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COMPUTER PROGRAM FOR DETERMINING ROTATIONAL LINE INTENSITY FACTORS

FOR DIATOMIC MOLECULES

Ellis E. Whiting

Ames Research Center

SUMMARY

A Fortran IV computer program, that provides a new research tool for
determining reliable rotational line intensity factors (also known as Honl-
London factors), for most electric and magnetic dipole allowed diatomic tran-
sitions, is described in detail. This "users' manual" includes instructions
for preparing the input data, a program listing, detailed flow charts, and
three sample cases. The program is applicable to spin-allowed dipole transi-
tions with either or both states intermediate between Hund's case (a) and
Hund's case (b) coupling and to spin-forbidden dipole transitions with either
or both states intermediate between Hund's case (c) and Hund's case (b) cou-
pling. It is not applicable to quadrupole transitions or to transitions
involving an electronic state approximated by Hund's case (d) coupling.

INTRODUCTION

This paper describes a comprehensive computer program for the determina-
tion of rotational line intensity factors (also known as Hb'nl-London factors)
of diatomic molecules. The program is based on the theory of the intensity of
rotational lines in diatomic molecular spectra presented in references 1 and 2.

The first analytic formulas for the rotational line intensity factors of
diatomic molecules were derived by H. Honl and F. London (ref. 3) in 1925 for
the simple singlet-singlet electronic transitions. Since that time satisfac-
tory general formulas for the intensity factors of singlet, doublet, and
triplet transitions have been developed. (See ref. 1 for a brief history of
the development of analytic intensity factors.)

The availability of realistic intensity factors for all spin-allowed or
spin-forbidden transitions is highly desirable.1 However, the algebraic dif-
ficulties associated with deriving general formulas for intensity factors,
when the multiplicity is four or greater, make it unlikely that tractable
formulas will be derived for them in the foreseeable future. Therefore, the
provision of numerically determined intensity factors appears to be the only
practical and acceptable alternative.

*For spin-allowed transitions AS = 0, AA = 0, ±1, and E •«-»•£". For
spin-forbidden transitions Aft = 0, ±1 and at least one of the spin-allowed
conditions is violated.



The computer program described is a new research tool for determining
reliable intensity factors for most electric and magnetic dipole-allowed
diatomic transitions by numerical methods. It is applicable to spin-allowed
dipole transitions with either or both states intermediate between Hund's
case (a) and Hund's case (b) coupling and to spin-forbidden dipole transitions
with either or both states intermediate between Hund's case (c) and Hund's
case (b) coupling. The program is not applicable to quadrupole transitions or
to transitions involving an electronic state approximated by Hund's case (d).

This paper is intended to provide an adequate users' manual for the com-
puter program. Therefore, it includes a brief summary of the theory, a dis-
cussion of several important program operations, three sample cases, detailed
flow charts, and a complete program listing liberally annotated.

The author would like to acknowledge the invaluable discussions with
Dr. J. T. Hougen during the course of this work and the cheerful assistance of
Cheryl Whiting in proofreading the detailed flow charts.

THEORY

The theory of rotational line intensity factors is derived from first
principles, and in great detail, in reference 1. That derivation will not be
duplicated here. However, in order to understand many of the definitions and
operations used in the computer program, the user must be familiar with cer-
tain key concepts in the derivation. Therefore, the following abbreviated
discussion of the theory is included to provide the minimal information needed
to use the program with some degree of confidence.

Many of the terms used in the theory are defined in figure 1, a typical
energy level diagram of an electronic transition from a 3n to a 3Z electronic
state. The electronic spin-splitting and A-doubling, shown in the central
portion of the figure, are greatly exaggerated. The figure illustrates the
well-known fact that there are (25 + 1) electronic substates for sigma elec-
tronic states and 2(2-5 + 1) electronic substates for nonsigma electronic
states. The number of substates for both cases can be written in a unified
fashion as (2-6 A)(2S' + 1), using the Kronecker delta symbol.0, A

The structure of each electronic substate is composed of a series of
vibrational levels each containing many rotational J-levels. Further, each
rotational J-level can be split by a magnetic field into (2J + 1) Zeeman
states.

The basic spectral elements are Zeeman components produced by transitions
between Zeeman states. The sum of all Zeeman components between two J-levels
•is a rotational line. This definition of a rotational line is identical to
that of an atomic line (ref. 4, p. 237) and provides a natural bridge between
atomic and molecular theory. It is also essential for the description of the
theory in terms of basis functions discussed later. According to this defi-
nition of a rotational line, a A-doublet is composed of two rotational lines.



However, in the literature a rotational line is frequently defined to include
both components of a A-doublet (ref. 5 and 6 for example). This difference
provides one of the important sources of confusion in the theory of diatomic
spectra.

A vibrational band is the composite of all rotational lines occurring
between vibrational levels v1 and v" in all electronic substates. Figure 1
shows only that part of a vibrational band formed between two substates.
A band system is the composite of all rotational lines between two electronic
states. Thus, a band system in molecular spectra is equivalent to a very
extensive atomic multiplet in atomic spectra.

The effect of nuclear spin is not explicitly included in the analysis.
However, in nearly all cases, the nuclear spin and the resultant angular
momentum without nuclear spin commute. Thus, the nuclear hyperfine line com-
ponents can be obtained from the rotational line intensities by the methods
of angular momentum theory summarized in reference 4.

The theory of rotational line intensities is closely dependent on the
various angular momentum operators and the way they couple to form their
resultant. The vector model coupling diagrams for Hund's cases (a), (b), and
(c) coupling and their appropriate selection rules are shown in figure 2. In
this discussion, Hund's case (a) basis functions are used for spin-allowed
transitions and Hund's case (c) basis functions are used for spin-forbidden
transitions.

The starting point for all discussions of spectral intensities is
Einstein's phenomenological equation for spontaneous emission in either an
atomic line or a molecular rotational line (ref. 7); that is

Er\ Tn = NTihvTi T"4Ti T"
eJ d eJ el el el d

where

Ejij" tne emitted power/unit volume, W m~3

ĵ-i the population density of the J* rotational level, m~3

1n\> i ii the energy of each photon emitted, W s

Ĵ'j" t^ie spontaneous emission transition rate per particle, also called
the Einstein A coefficient, s"1

In reference 8 Dirac derived the Einstein A coefficient in terms of an
expansion in the electric and magnetic moments within an atom or a molecule.
The strongest term in the expansion, if it is nonzero, is that due to the



electric2 dipole moment, P; that is,

AT,T,, = =-Z— > > — ^ (2)
7 7 (2J' + 1)

3 3 M" M'
16ir vri rit S ,^ ii

J J J J (3)

23 (2J1 + 1)
>*s

where

ifj , the wave function of the upper Zeeman state M

fyr,ji the wave function of the lower Zeeman state M

P the electric dipole moment operator in the laboratory coordinate
system, C m

e0 the permittivity of a vacuum, 8.854xlO~12C2J~1m~1

5,i Tn the line strength, defined in reference 4
e/ v

With equation (3), equation (1), for the power emitted in a line by
spontaneous emission, can be written

3 *t
16ir v,i Tn 5,i ,"

(4)

The advantage of using equation (4) instead of equation (1) is that the line
strength Sj'j" ^s symmetrical in the upper and lower states. Thus, the line
strength is the same in emission and absorption (see ref. 4, p. 98).

In order to make further analytic progress in the theory of diatomic
molecules, the Born-Oppenheimer approximation is introduced (see ref. 9).
This approximation assumes that the total wave function can be written as a
product of an electronic wave function and a vibrational-rotational wave
function. Further, Pauling and Wilson (ref. 10) have shown that the
vibrational-rotational wave function can also be approximated by a product of
vibrational and rotational wave functions. On the basis of these approxima-
tions, it is shown in reference 1 that the line strength for isotropic radia-
tion can be written

(5)

2The derivation given herein and the computer program are based on the
electric dipole moment. However, the results can also be applied to magnetic
dipole transitions (see p. 19).



where

q , ,, the vibrational Franck-Condon factor, dimensionless

R the electronic transition moment, C m
&

a - the rotational matrix element including the summation over M' and Af1,
dimensionless

tyj,,tyr the electronic-rotational wave functions for the rotational levels
«7' and «7"

"e ' 77 *. * *»>

for perpendicular transitions, that is, those for which Aft = ±1.

for parallel transitions, that is, those for which Aft = 0, where p , p , and
p are the components of P in the molecular coordinate system. "&

The matrix brackets applied to Sj-ij" in equation (5) indicate that in
diatomic spectra there may be several rotational lines in the same vibrational
band with the same values of J"' and J" (see fig. 1). Further, the symbolism
correctly implies that the strength of the lines can be found by regular
matrix operations.

In general, it is not possible to write simple expressions for the matrix
elements of <Rea> between the wave functions tyj/ and i|>£. Therefore, the
solution proceeds in three major steps. First the wave functions are expanded
in terms of a complete set of simplified basis functions $ (see ref. 2); next
the <Rea> matrix is expressed in terms of the basis functions; and finally
the <JfiUa> basis matrix is transformed to the wave functions.

The transformation from the <.Rea> basis matrix to the <#ea> matrix
between wave functions is given by the unitary transformations that symmetrize
the basis functions TSym and that diagonalize the Hamiltonian matrix between
symmetrized basis functions T^ia. Thus,

C6)

where

$ = |A£T>|ftJ>

is the product of an electronic and a rotational basis function with ft = A + 2



The electronic transition moments Ee are usually determined by comparison
of theory with experimental data; they are, therefore, carried in the present
analysis as unknown parameters. To calculate realistic line intensities the
user must know these parameters.

The rotational matrix elements, a, are related to the direction cosine
transformation, which expresses the components of the dipole moment operator
in the laboratory coordinate system in terms of its components in the molec-
ular coordinate system. The matrix elements of the direction cosines are
expressed in terms of the rotational quantum numbers in reference 11, and
these are used in reference 1 to give the expressions for a (valid for
isotropic radiation) listed in table 1.

The general selection rules A«7 = 0, ±1 and Aft = 0, ±1 are explicitly
indicated in table 1. Separate matrices for the P-, Q-, and ̂ -branches are
formed, depending on the value of AJ". The specific matrix elements for each
case are given by the expressions in the appropriate column of table 1.

An example <#ea> basis matrix for a spin-forbidden
 2n •*- ^Z* transition

is shown in table 2. The rows of the matrix are designated by the final state
basis functions and the columns by the initial state basis functions. The
number of independent matrix elements can be reduced because symmetric matrix
elements are related. Symmetric matrix elements are those that interchange
when the signs of both A and Z are changed in both the upper and lower elec-
tronic states (Re a^ and Ee ot10 in table 2, for example).

1 1 0 £ .

The relationship between the symmetric matrix elements is determined by
the phase factors that occur naturally in the quantum mechanical description
of the problem. For phase conventions consistent with those chosen by Condon
and Shortley in reference 4 and by Hougen in reference 2 (eq. 2-31), the
following "symmetry rules" are derived in reference 1:

1. All the transition moments are real or all are pure imaginary and,
for all practical purposes, they can always be chosen to be real.

2. All of the symmetric matrix elements in any given matrix are either
equal to or the negatives of each other.

3. The symmetry in the P- and fl-branch matrices is always opposite to
the symmetry in the ^-branch matrix.

4. The symmetric matrix elements in the Q-branch matrix can always be
chosen to be equal, except for the following two cases when they must be
chosen to be negatives:

£"•«-»•£" transitions with AS = 0, 2, etc.

£"•<-»•£+ transitions with AS = 1, 3, etc.

As an illustration of these rules, table 2 is recast in table 3, as it would
appear for a P-branch matrix.



In the case of spin-allowed transitions, the additional selection rule
A£ = 0 applies to Be between electronic basis functions. This additional
restriction reduces the number of nonzero matrix elements in the <fle<x> basis
matrix for spin-allowed transitions to those along the diagonal, where
An = AA, as ft = A + E.

Furthermore, for spin-allowed transitions it can be shown (see ref . 2)
that the absolute values of all of the nonzero electronic transition moments
Ee are equal. Thus, for spin-allowed transitions, Ee can always be factored
out of the <Rea> basis matrix, and the line strength (eq. (

5)) can be
written as

and the matrix elements of <<Jjij" > , which are the rotational line inten-
sity factors or Honl- London factors, only involve the transformed rotational
matrix elements a; that is,

C9)

(10)

For spin- forbidden transitions it is not possible, in general, to sepa-
rate the electronic and rotational parts of the problem. For these cases
reference 1 shows that the transformed < Pea > matrix elements can be
written

a+ Ra2 + • • • > (11)
1 i e2 '

where a", is the transformed rotational matrix element associated with R

^ ^Equation (11) illustrates the property that for spin-forbidden transi-
tions the matrix elements of < Rea > cannot, in general, be separated into
rotational and nonrotational factors. However, if one of the transition
moments (denoted by Re ) is factored out of the <Rea> matrix, the expres-

L-
sion for the rotational line strength is similar to that for spin-allowed
transitions; that is,



where
R R Re . e . S,

p " JT1 • a = F^ ' T = — > etc'
el el el

The factors o, T, etc., are called intensity parameters. The squares of the
matrix elements in equation (12) are called the rotational line intensity fac
tors and are defined as

If equations (12) and (13) are combined, the rotational line strength for
spin-forbidden transitions can be written in the same form as spin-allowed
transitions (eq. (8)); that is,

The sum of the intensity factors for a given value of J"' or J" is:

1. Spin-allowed transition

= (2 - «0>(A,+A,,))(25 + 1)(2J + 1) (15)

where 8 , = 1 if a - b and = 0 if a ̂  fc.a3b

2. For each transition moment in spin-forbidden transitions

= C(2J + 1) (16)

where C = 1 if the transition moment occurs only once in the < Rea. > basis
matrix and C = 2 if the transition moment occurs twice in the < Rea > basis
matrix. The only transition moments that occur only once in any < Rea >
basis matrix are those for the ft' = 0 to ft" = 0 transition of £-<->-E transitions
of odd multiplicity. This transition moment is nonzero for E~-<-»-£~ transitions
with AS = 0, 2, etc. and for E1-̂ -!"1" transitions with AS = 1, 3, etc. The
theory is explained in more detail in references 1 and 2.

AUXILIARY PROGRAMMING CONCEPTS AND DETAILS

The major concepts involved in the program are illustrated by the concep-
tual flow chart shown in table 4. In brief, the computer solution proceeds in
the following logical steps.



1. Set up the upper and lower Hamiltonian matrices for each value of J"'
and J".

2. Symmetrize and diagonalize the upper and lower state Hamiltonians.

3. Set up the relevant rotational matrix for each pair of rotational
levels J' and J".

4. Transform the rotational matrices with the same transformations that
transformed the upper and lower state Hamiltonians.

A complete listing of the computer program is given in appendix A. The
listing is liberally annotated, and if it is read in conjunction with the
flow charts in appendix B, it should be nearly self-explanatory. In any com-
plicated computer program, however, there are always a few programming details
for which the logic is not immediately obvious. The following topics are
included to give the reader some insight into the more obscure details.

Initial State to Final State Notation

The computer program was organized at its inception to describe the tran-
sitions from the initial state (columns of the matrices) to the final state
(rows of the matrices) . Unfortunately, this choice complicates the logic
necessary to print correct titles for the calculated results. However, the
program works, and the substantial changes necessary to switch to the more
standard notation, which describes the rows of the matrices with the upper
state and the columns of the matrices with the lower state, does not seem jus-
tifiable at this time. Further, the rows and columns of all basis matrices
are ordered from top to bottom and from left to right in terms of the basis
functions |A5E>|JW> as follows:

I+A S +5>|A+5 J > , I+A S +S-1> | A+S-1 J> , • • • , |+A S -S > | A-5 J >,

| -A S +S>|-A+S J>, | -A S +5-l>|-A+5-l J>, • • • , | -A S -S > | -A-S J >

Absorption and/ or Emission

The intensity factors can be calculated for either absorption (in terms
of J") or emission (in terms of J"'). The accepted standard notation for rota-
tional lines is always J". However, since in quantitative calculations
involving line emission it is usually more convenient to denote intensity
factors by J' , this flexibility was provided in the program logic.

Hamiltonian Matrix

Hamiltonian or energy operator matrices are set up for each value of J in
both the initial and final electronic states. That is, the energy levels of
all rotational levels with the same value of J, in a given vibrational level



and electronic state, are collected into a single matrix. In general, when
3 > A + S, the Hamiltonian matrix contains (2 - 60 /y) (2S + 1) rows and col-
umns. However, if A ̂  0 the two submatrices for +A and -A are mirror images.
An example case is shown in table 5 for a 2JI electronic state. As there are
no off diagonal terms between +A and -A, these two submatrices do not inter-
act. It is therefore only necessary to operate on one of these submatrices,
and, when needed, the full operator matrix can easily be constructed.

The two operations performed on the Hamiltonian matrix between basis
functions are those that symmetrize the basis functions and that diagonalize
the Hamiltonian matrix between symmetrized basis functions. The Hamiltonian
matrices between basis functions and between symmetrized basis functions are
identical for nonsigma electronic states. The unitary transformations that
transform the Hamiltonian matrix to symmetrized basis functions for 3Z and ̂ E
electronic states are shown in figure 3. The generalization to any multi-
plicity is straightforward.

The diagonal!zation of the Hamiltonian is performed by the EIGEN subrou-
tine, which finds T̂ iag f°r symmetrical, real matrices. This subroutine is a
slightly modified form of the EIGEN subroutine described in the IBM System 360
Scientific Subroutine Package, document H20-0205.

In this program we are concerned only with determining the rotational
intensity factors and do not solve explicitly for the energies of the rota-
tional levels. Therefore, to a very good order of approximation, it is only
necessary to include in the Hamiltonian the major energy interaction terms.
For nonsigma states only the first-order spin-orbit interaction term, 4A£, is
included. For sigma states, the first-order spin-orbit interaction term is
zero; therefore, both the second-order spin-orbit term and the spin-spin
interaction term are included. Both terms produce a similar effect and are
lumped together as A£, the energy separation between spin states extrapolated
to J = 0 (see appendix C). If A (or Aff) is negative the state is an inverted
state.

The unitary transformation matrix that diagonalizes the Hamiltonian is
not affected by a constant value along the diagonal of the Hamiltonian matrix
or by a constant times every matrix element. Therefore, as we do not need the
rotational energies themselves, constant or J-dependent only terms along the
diagonal are removed from the Hamiltonian and all matrix elements are divided
by Bfi2.

General expressions for the Hamiltonian matrix elements are given in
reference 2. However, on the basis of the above discussion, only the follow-
ing terms are included in the computer program.

1. Nonsigma states

H(K,K) = -ft2 - I2 + JAZ (17)

= -[(J - B)(J + ft + !)(£ - E)(S + £ + I)]1/2 (18)

= H(X,X+1) (19)

10



2. Sigma states

-ft2 - E2 + A£/B (20)

and H(K+l,K) same as above

where Y = A/B, and K specifies the row and column indices with (1,1) as the
upper left matrix element.

After the Hamiltonian matrix is diagonalized, the largest energy level
is in the upper left matrix element and the smallest is in the lower right
matrix element. This organization specifies the final form of T̂ ag and,
hence, determines the order in which the branch lines occur in the intensity
factor matrices. In order to understand this point, it is necessary to know
how the rotational levels and the branches are designated.

Designation of Rotational Levels

In the standard notational scheme, the rotational levels of diatomic
molecules are designated by two parameters in addition to J: (a) the rota-
tional quantum number N, exclusive of spin and (b) the spin substate
F±, F2> . . . , F2S+1" The designation of rotational levels by N is most
appropriate for Hund's case (b) coupling, where N is a valid quantum number.
However, there is a one-to-one correspondence between the rotational levels in
Hund's case (b) and any other coupling case, so that a value of N can always
be assigned.

The designations of N and F. for the spin substates, when J > A + S, are
related as follows: ^

F => J = N + S or N = J - S

or N = J - S + 1

N - S or N = J + S

(21)

From these equations it is clear that for the group of F^ levels with the
same value of J, F± corresponds to the lowest value of N and F2S+1 corresponds
to the largest value of N. Because N = A + R, the difference between these
N values is due to the difference in rotational energey, R. Thus, for the
group of F£ levels with the same value of J, the rotational energy increases
from f, the lowest energy level, to ̂ o *ne highest energy level.

In nonsigma electronic states (A t 0), the assignment of n, where
n = A + E, to the F£ levels depends on whether the electronic state is regular
or inverted. In regular states the smallest value of fi is associated with the
lowest energy level (i.e., Fj) . In inverted states the opposite associa-
tion is made. Therefore, the assignment of N, F., and J to the rotational

Is
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levels of nonsigma electronic states can be made in the following empirical
fashion.

1. For J > A + S and for rotational levels with the same value of J, F-.
is assigned to the lowest energy level, F2 to the next higher energy level,
etc.

2. The value of ft is assigned to each F. substate based on whether the
electronic state is regular or inverted. ^

3. The rotational quantum number J is assigned sequentially from the
lowest rotational level in each F. substate, where the minimum value of
J is |n|. ^

4. N is assigned as specified in equations (21) with the restriction
that N > A.

The steps outlined above are applied to the rotational levels of a ̂ n
electronic state in figure 4. The value of N is shown to the left of each
row, and the value of J is shown on the line representing the rotational
level. The separations of the energy levels are not drawn to any physical
scale, but they do indicate that for a given value of J', the energy increases
with increasing N.

A study of figure 4 shows that, for either regular or inverted ^n elec-
tronic states, there are only two rotational levels with J = 1/2 and only
three rotational levels with J = 3/2. The full multiplicity is therefore not
developed until J > A + S. Also, note that the N designation of the lower
rotational levels in regular states is not given. The empirical scheme breaks
down for these levels. To find the appropriate value of N, when J < A + S,
one must operate on the wave function with N2. The substate designation, F.,
is established for J > A + S and is extended to low J levels as described
above.

Much of the discussion above for nonsigma states also holds for sigma
states (A = 0), but the designation of the rotational levels with N, F^, and
J is the same in both regular and inverted states. The assignment for a
3Z electronic state is illustrated in figure 5. The concept of ft used for
nonsigma states is not valid for sigma states and is not shown.

A study of figure 5 shows that there is only one rotational level with
J = 0 and that it fits naturally into an assignment of F3. This assignment of
J = 0 agrees with that shown by Herzberg (ref. 12, p. 223) and also is compat-
ible with Hougen's assignment of F3 and K to the J = 1/2 levels of ^E states
(ref. 13). However, Tatum and Watson (ref. 14) chose to assign the J = 0
level of 3£ states to FI for regular states and to F3 for inverted states.

12



Designation of Branches

The standard scheme used to designate the branches in each vibrational
band, is based on using letters to indicate the changes in J and N occurring
during the transition and on including the F^ assignment of the upper and
lower substates. The assignment of letters to indicate the values of bJ and
AW is summarized in figure 6. The selection rules for dipole radiation limits
AJ to 0 or ±1. The branch designation scheme is illustrated in figure 7. If
Aff = AJ, the upper letter is not included and if F\ = F1!, only one subscript
number is included (i.e., ̂ ?22

 = ^2 *n ^-8- ?) •

The energy change during a transition is usually more closely associated
with M than with AJ. Therefore, the form of the branch is also primarily
controlled by &N. Hence, the ̂ £32 branch is called the .R-form Q-branch; that
is, even though it is a 6-branch (AJ =0), it usually has the form or appear-
ance of an R-branch as A# = +1.

The proper designation of the branches can be determined by forming
matrices of the branches for fixed values of J', J". and AJ". These matrices
are illustrated in figure 8 for a spin-allowed tfn-«->-^E transition and in fig-
ure 9 for a spin-forbidden 2lH-»-ltH transition. The rows of the matrices are
labeled by the F| assignments for a given value of J' and similarly the col-
umns by F1.' for a given value of J".

is

The designation scheme illustrated in figure 9, for the branches of spin-
forbidden transitions, is not universally applied. For example, in refer-
ence 15 Kovacs designates the F^ levels in the 2n electronic state in 2n-«->ltn
transitions as F2 and F3 sublevels rather than F1 and F2, as shown in fig-
ure 9. The designations Fj and F2 for the

 2H state, however, are consistent
with the recommendation made by Mulliken (ref. 16), and it seems desirable to
retain this designation for all types of transitions.

The physical characteristics of rotational lines, such as their wave-
lengths and their intensity factors, are not, of course, dependent on the
notation used. Therefore, the designation of branches can be altered to suit
personal preference by making appropriate substitutions in the branch symbols.
This option also applies to the designation of the J = 0 rotational level in
3E states mentioned previously. However, standard designation schemes are
very desirable.

The Rotational Matrices

The rotational matrices, in terms of the basis functions, are constructed
from the matrix elements given in table 1. In the case of spin-allowed tran-
sitions, the electronic transition moments are factored out of the </?ea>
basis matrix (see eq. (7)), and all the matrix elements are transformed simul-
taneously. Further, for spin-allowed transitions the rotational matrix
elements are determined individually, rather than by the symmetry rules given
on page 6. Also, for spin-allowed transitions the rotational line intensity
factors are unchanged when the symmetrizing transformation is neglected and
when only the +A submatrix is explicitly considered if A > 0.

13



In the case of spin-forbidden transitions, each rotational matrix element
and its symmetrical counterpart are associated with a specific independent
transition moment. Thus, each pair of symmetric matrix elements must be
transformed separately by both the symmetrizing and diagonalizing transforma-
tions (see eq. (6)). Because only two matrix elements are involved in each
transformation, the symmetrizing transformation in the program is performed
algebraically rather than by the complete unitary transformation.

Each matrix element in the transformed rotational matrices is associated
with a particular, branch, based only upon its location within the matrix (see
figs. 8 and 9). However, for transitions involving nonsigma electronic
states, two submatrices occur and the usual branch designation scheme,
described previously, does not at first appear adequate. However, if we print
only one line intensity factor for each A-doublet in X++Y transitions (X and ¥
represent any nonsigma electronic states), and if we combine the two sub-
matrices in T.+-+X transitions prior to printing the results, the designation
scheme described in the previous section is adequate.

For spin-allowed transitions, the above simplification was introduced
indirectly by including only the <a> basis matrix elements from the +A
submatrix and by neglecting the symmetrizing transformation. Thus, for spin-
allowed transitions, all the required matrix elements occur in the upper left
submatrix. For Z++JI transitions, however, A-doubling does not occur and, as
only one submatrix of the electronic state is included, the matrix elements
must be multiplied by /2\

For spin-forbidden transitions the situation is slightly more complicated.
For example, transformed rotational matrices for 3£ -»• 3Z transitions are illus-
trated in figure 10. The X in these matrices represents the only possible
nonzero matrix element and the F^ designates the rows and columns assigned as
discussed on page 11. Clearly, in either of these matrices if the elements
of the lower submatrix are added to the elements of the upper submatrix with
the same values of F^ and F^, we will always add a nonzero to a zero value or
vice versa. Furthermore, the resultant upper submatrix will contain matrix
elements for all the branches. The discussion of 3X -> 3£ transitions is simi-
lar except that left and right submatrices replace upper and lower submatrices.
The generalization to any multiplicity is straightforward.

For 3J*->3J transitions (neither electronic state is a sigma state), the
transformed rotational matrices are illustrated in figure 11. The two matrix
elements for each A-doublet occur in symmetrical locations with respect to the
center of the matrix. As we print only one component of a A-doublet, we can
always place the required matrix elements in the upper left submatrix by add-
ing the elements in the lower left submatrix to the elements in the upper left
submatrix with the same values of F\ and f1.'.

^ ^
Therefore, for all cases the transformed rotational matrix elements are

organized into the upper left submatrix for printing. For spin-allowed tran-
sitions these matrix elements are squared before being printed to form the
rotational line intensity factors, or Hbnl-London factors. For spin-forbidden
transitions these matrix elements are the a", values shown in equation (13) and

"Z'
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they must be printed without being squared. Before the output is printed,
however, when J < A + S, the matrix elements frequently need to be shifted to
ensure proper labeling.

Shifting of Rotational Matrix Elements When J < A + S

At the conclusion of the transformation operations discussed in the pre-
vious section, the transformed rotational matrix elements are located in the
upper leftmost portion of the matrix. The output section of the program
prints branch headings corresponding to the location of each matrix element in
the fully developed matrix. However, when J < A + S, the matrix is not fully
developed and the matrix elements may not be in the proper positions to cor-
respond to the headings that are printed. In these cases the matrix elements
are shifted before being stored in the SAVE array. The SAVE array is used for
temporary storage, before printing, and is discussed later.

The reason for shifting the matrix elements and the logic employed for
shifting is indicated in figure 12. This figure shows the J = 1 rotational
levels in the +A submatrix of the Hamiltonian matrix for a 7n electronic
state.

The F-level designations of the rows and columns of a fully developed 7n
matrix (i.e., J > A + S = 4) are shown in figure 12(a). As discussed on
page 11, the highest energy level (F7) is in the upper left matrix element.
The program is written so that the three energy levels for J = 1 (£3, E2, and
ffj) naturally occur in the upper leftmost portion of the matrix, which corres-
ponds to the Fj, F6, and F5 levels. However, if we determine the proper
designations of the J = 1 rotational levels, we see that in a regular elec-
tronic state these levels should be designated F^, F3, and F2, and in an
inverted electronic state, they should be designated F6, F5, and F4. Thus, to
correspond to the designations of the fully developed matrix, the matrix ele-
ments must be shifted three spaces for a regular electronic state and one
space for an inverted electronic state. These shifts are indicated by the
heavy lines in figure 12(a).

The shifting of the rotational matrix elements when J < A + S is as
follows: The columns are shifted by the shift necessary in the initial state
Hamiltonian matrix and the rows are shifted by the shift necessary in the
final state Hamiltonian matrix. Generalization of the logic described above
to other electronic states is tedious but straightforward.

Designation of Transition Moments in Spin-Forbidden Transitions

The discussion leading to equation (11) shows that several independent
transition moments may be present in spin-forbidden transitions. Each of
these transition moments is explicitly identified in the computer program, but
the designation scheme, contrary to the matrix operations, must be specified
in terms of upper and lower states. The designation scheme used for this pur-
pose is illustrated in table 6.
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Table 6 shows the <Rea> basis matrix for the ̂ -branches of a 2n-*-»-'tII
transition. The symmetry rules given on page 6 have been used to equate the
symmetrical matrix elements. As noted above, the rows of the matrix refer to
the upper (2n) electronic state and the columns to the lower (**!!) electronic
state. The opposite choice could have been made, but the choice made corres-
ponds to conventional matrix nomenclature. If, instead, the rows of the
matrix are designated by the final electronic state and the columns by the
initial electronic state, as in the program matrix operations, the same tran-
sition moment may have one designation in absorption and a different one in
emission. This situation is, of course, not acceptable. Thus, the logic in
the program at this point is rather complicated.

The matrix elements of the <flga> matrix in the basis functions and,
hence, the transition moments Re are designated with two single digit numbers.
The first number specifies the upper electronic substate and the second number
specifies the lower electronic substate on which the transition moment oper-
ates (i.e., R (upper, lower)).

&

In terms of upper and lower electronic substates, the columns of the
< Rea > matrix are numbered from 1, beginning with the rightmost column if
A" = 0 and with the rightmost column in the left half of the matrix if A" ̂  0,
as in table 6. Note the circled numbers at the top of the columns in the left
half of the <Pea> matrix in table 6. Similarly, the rows of the <Reu>
matrix are numbered from 1 upward, beginning at the bottom row if A' = 0. If
A1 ^ 0, the rows are numbered from 1 upward in the top half of the matrix,
beginning at the dividing point, and from -1 downward in the lower half of the
matrix. Note the circled numbers at the left of the rows in table 6.

The rotational line intensity factors of the two lines forming a
A-doublet in spin-forbidden transitions are not equal if the line strengths
contain at least one <flea> matrix element between basis functions with oppo-
site signs on A' and A" (i.e., <±A" \Rea\

:ft{"'>') and at least one matrix ele-
ment with the same signs on A1 and A". The <±A' |f?ea|?A"> matrix elements
of nonsigma to nonsigma spin-forbidden transitions are indicated in the desig-
nation scheme by a negative number in the upper (i.e., first) index location
of the transition moment. There are three such matrix elements in table 6:
R (-1,2), fl (-1,1), and P (-2,1).
& & &

The P-branch matrix of a ^E -t-̂ z" transition, shown in table 7, has five
independent transition moments.

SAVE, ITRANI, ITRANF, NTRANR, NTRANQ, and NTRANP Matrices

The rotational line intensity factors (Honl-London factors) for spin-
allowed transitions and the transformed rotational matrix elements for spin-
forbidden transitions are stored in the SAVE array until the calculation is
complete. The SAVE array is three-dimensional and can be viewed conveniently,
as shown in figure 13. The three dimensions correspond to (1) the number of
independent transition moments in the transition (maximum of nine) , (2) the
number of branches in a vibrational band (maximum of 150, there are
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147 branches in spin-allowed septet-septet transitions), and (3) the number of
rotational lines in each branch included in the calculation (maximum of 200).
In the dimension for storing branches, the .̂ -branches are stored in the first
50 locations, the S-branches in the second 50, and the P-branches in the last
50. Any dimensions of the SAVE array can be changed to any desired value,
limited only by the size of the computer memory.

In the case of spin-forbidden transitions, the designations of the inde-
pendent transition moments must also be stored. These correspond to each
occupied row in the short dimension of the SAVE array for each value of J.
The upper substate (or first) designation of the transition moments in the
< Eea > basis matrix is stored in the ITRANI array and the lower substate (or
second) designation is stored in the ITRANF array. The number of independent
transition moments for each value of J in the E-, Q-, and P-branches is stored
in the NTRANR, NTRANQ, and NTRANP arrays.

Input Data and Sample Cases

This section is intended to give the user a general picture of the ease
of operation, broad generality, and potential applications of the computer
program.

The data needed to initiate a calculation are:

1. The resultant spin S of each state.

2. The A value of each state.

3. The ± symmetry for I states.

4. The spin-orbit and/or spin-spin parameters (see appendix C).

5. The values of J . and Jrmn max

6. The type of calculation (i.e., emission or absorption).

The format for the data input cards is illustrated in table 8.

The computer output format is demonstrated by partial listings of the
printed output for three sample cases in tables 9, 10, and 11. The sample
case in table 9 is a spin-allowed 3E+ -> 3II transition; that in table 10 is a
spin-forbidden 3H •*- 5E~ transition; and that in table 11 is a spin-forbidden
2n •*- **n transition. The information in the tables is discussed below.

The heading at the top of table 9 indicates that it is an allowed
3£+ •*• 3n transition. The energy separation of the upper (E) state A£/B is
specified as -10; therefore, it is an inverted state. The spin-orbit coupling
(Y = A/B") of the lower (II) state is specified as 100; therefore, it is a
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regular state. The paragraph in the heading refers to the lack of a univer-
sally accepted convention for designating the low J levels of £ states (i.e.,
J < 1 in this case) . As noted on page 12, for this case the J = 0 rotational
level in the £ state is designated as an F, level.

The values tabulated for each branch are the rotational line intensity
factors (also called Hbnl-London factors) from Jrnin = 0 to Jmax = 4 as speci-
fied, in the input data. The column titled SUM is the sum of all Hbnl-London
factors printed for a given value of J and for the F level designation
repeated in the column headings. Therefore, SUM contains all Honl-London fac-
tors in the R- , Q-, and P-branches from a given J level. Each value of SUM is
printed three times, once in each R- , Q-, and P-subsection. In table 9, for
example, the first (upper level) F designation is repeated in the column head-
ings because it is an emission calculation. Therefore, for J = 2 and for the
FI rotational level, SUM is given by

SUM = Rl + QR12 + PE13 + Ql + PQ12 + OQ13 + PI + OP12 + NP13

This value of SUM is printed in the appropriate place in the SUM column for
the R- , Q- , and P-branches. The Hb'nl-London factors printed are for individ-
ual rotational lines. Therefore, if A-doubling occurs in the spectrum, the
value printed is for only one component. Thus, the value of SUM, which is
only the sum of the Honl-London factors printed, is (2J + 1) for £•«-»•£ and
for nonsigma to nonsigma transitions, and 2(2<J + 1) for E«-Hl or IH-*£
transitions.

Two spin- forbidden sample cases are included in tables 10 and 11 to
illustrate results with and without A-doubling in the spectrum. The informa-
tion printed in the headings for these cases is similar to that described for
table 9 except that table 11 also contains a comment about A-doubling. The
primary differences from the printout for the spin-allowed cases are in the
tabulations. Normally, in spin-forbidden transitions there will be more than
one independent transition moment, and the transformed rotational matrix ele-
ments must be printed for each of them.

The values tabulated for each branch are the transformed rotational
matrix elements, <X£. The intensity factors are formed from these numbers as
shown in equation (13), which is repeated here for convenience:

where p, a, T, etc., are the intensity parameters defined following equa-
tion (12).

The PARTIAL^ SUM listed for the forbidden transitions is the sum of the
squares of the cx£ values printed in the row to the right of the transition
moment designation. The total sum for each transition moment is found by add
ing the partial sums from all branches containing that transition moment.
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Lambda doubling occurs in the spectrum of the sample case given in
table 11. However, the strengths of the two lines composing the A-doublets
are not equal in all branches because three of the transition moments occur
between basis functions with opposite signs on A' and A" (see page 16). These
transition moments are designated by Re(-2,l'), fle(-l,l), and Re (-1,2) in
table 11. The intensity factor for the A-component not shown in the computer
printout is obtained by changing the sign of these cT^ terms in equation (13).
In general, when A-doubling occurs in spin-forbidden transitions, the inten-
sity factor for the A-component not shown is obtained by changing the sign of
all o> values whose associated transition moment designation contains a
negative number.

The three sample cases discussed in this section illustrate the informa-
tion that is calculated by the computer and printed for both spin-allowed and
spin-forbidden transitions. The following subsection discusses the range of
input parameters possible and thereby indicates the comprehensive nature of
the program.

Limitations and Capabilities of the Computer Program

Two types of limitations of the computer program need to be discussed:
(a) real limitations, for which the computer program does not apply; and
(b) practical limitations, such as matrix size, that can easily be altered.

The most important real limitation of the program is the neglect of
interactions that decouple the orbital angular momentum L from the inter-
nuclear axis so that the intensity factors for the p-complexes, applicable to
Hund's case (d) coupling, cannot be determined. Another important real limit
of the program is that it is only valid for diatomic molecules and for elec-
tric and magnetic dipole transitions. In fact, the computer program is writ-
ten for electric dipole transitions but the results also apply to magnetic
dipole transitions. However, because the parity selection rule for magnetic
dipole radiation is ±̂ -*±, whereas for electric dipole radiation it is ±-<->-+,
E1-*-̂ ^7 magnetic dipole transitions must be specified as E1-*-̂ 1 transitions and
vice versa.

There are no important practical limitations to the computer program.
For example, in nonsigma electronic states, only spin-orbit interactions are
included in the Hamiltonian, and in sigma electronic states, only the combin-
ation of spin-spin and second-order spin-orbit interactions are included (see
appendix C). However, only if precise wavelengths are desired would a more
accurate Hamiltonian be necessary. The remaining practical limitations
actually establish the capabilities of the program. Thus, the computer pro-
gram is capable of determining intensity factors over the broad range of con-
ditions listed below.

1. Maximum spin quantum number of three (i.e., maximum multiplicity of
seven).

2. Maximum of 200 rotation levels in one computer run.
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3. Spin-allowed transitions with any degree of coupling between Hund's
case (a) and case (b).

4. Spin-forbidden transitions with any degree of coupling between
Hund's case (c) and case (b).

5. Maximum of nine independent transition moments permitted in spin-
forbidden transitions.

The maximum multiplicity, the number of rotational levels in a single computer
run, and the number of independent transition moments permitted are actually
only limited by the memory size of the computer. Clearly, the capabilities
of the program are very extensive and permit the calculation of exact inten-
sity factors for most of the experimentally observed diatomic transitions.

Ames Research Center
National Aeronautics and Space Administration

Moffett Field, Calif., 94035, April 26, 1973
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APPENDIX A

LISTING OF COMPUTER PROGRAM

C THIS PROGRAM COMPUTES INTENSITY FACTORS FOR ALLOWED
C TRANSITIONS IHONL-LONOON FACTORS), AND THE SQUARE ROOT
C OF THE ROTATIONAL INTENSITY FACTORS FOR FORBIDDEN TRANSITIONS.
C
C MAIN PROGRAM
C

DIMENSION TITLE1 114), TIJLE21121 ,TITLE3( 6), TITLE4IM, TITLES C6>,
1 TITLE6(4),HEAD2<7,7,2>,
2 HEAD1I7),ALPHA(19,2)

C
COMMON /CSOLVE/JFiJMIN.JMAX.SI.SF.LAHl.LAMF,

1 SIGN1,ALLOW.EMI SON,SIGSIG.IJ.IMAXI.IMAXF,
2 NTRANR(200I,NTRANQ(200),NTRANPI200>,
3 ITRANI(30,200).ITRANFC30,2001,
4 SAVE(9,150,2001,YH3I,YF(3I

C
DOUBLE PRECISION SI,SF,LAMI.LAMF.YI,YF,JI,JF,JMIN,JMAX,SIGN1,SUM

C
LOGICAL ALLOW,SIGSIG,HALF,EMISON

C
REAL J

C
DATA ABSORB/1HA/

C
DATA TITLE1/4HSING.4HLET .4HDOUB.4HLET ,4HTRIP,4HLET ,4HQUAR,

1 4HTET ,4HQUIN,4HTET .4HSEXT.4HET ,4HSEPT,4HET /
C

DATA TITLE2/4H SI.4HGMA ,4N PI.4H ,4H DE.4HLTA ,
1 4H PH.4HI ,4H GA,4HMHA ,4H OT.4HHER /

C
DATA TITLE3/tHEMIS,4HSION,4N ,*HABSO,*HRPTI,*HON /

C
DATA TITLEW4HINIT.4HIAL ,4HFINA,4HL /

C
DATA TITLE5MHREGU,4HLAR ,4HINVE<*HRTED,*H ,<.H /

C
DATA TITLE6MHE. U.4HPPER ,*HE. Li^HOHER/

C
DATA HEAD2

1 /2H1 ,2H12,2H13,2H14,2H15,2H16,2H17,
2 2H2U2H2 ,2H23,2H24, 2H25, 2H26,2H27,
3 2H31,2H32,2H3 ,2M34,2H35,2H36,2H37,
4 2H41,2H42,2H43,2H4 ,2H45,2H46,2H47,
5 2H51,2H52,2H53,2H5',,2H5 , 2H56,2H57,
6 2H6It2H62.2H63.2H64.2H6S.2H6 ,2H67,
7 2H71.2H72,2HT3,2H74,2H7SI2H76,2H7 ,
8 2H1 ,2H21,2H31,2H4l,2H51,2H61,2H71,
9 2H12.2H2 i2H32,2H42,2H52,2H62,2H72.
1 2H13,2H23,2H3 ,2H43,2H53.2H63.2H73.
2 2H14.2H24.2H34.2H4 ,2H54.2H64.2H74,
3 2HlS.2H25t2H35.2H45.2H5 ,2H65.2H75,
4 2H16,2H26i2H36,2H46,2H56,2H6 ,2H76,
5 2Hl7,2H27,2H37.2H47,2H57t2H67,2H7 /

C
DATA ALPHA/1HZ.1HY,IHXtlHHtLHVtlHUtlHTtIHStIHRtlHQ,
1 1MP,1HO,1HN,1HH,1HL,1HK,IHJ,LHI,1HH,1HH,
2 1HI,IHJ,1HK,1HL,1HH,1HN,1HO,1HP,1HQ,1HR,
3 IHS.IHT.IHU.IHV.IHU.IHX.IHV.IHZ/

C
DATA BLANK/1H /, R/1HR/, 0/1HQ/, P/1HP/

C
C READ IN NEW CASE.
C
10 READ(5.501) SI,LAHI,SIGNI, VIIII,YI(21,YI13)

REAO(5,501) SF.LAMF.SIGNF, YF(1I,YF(2),YF(3)
REAOI5.502) JHIN.JHAX
REAOI5.503) TYPE

C
C INITIALIZE LARGE SAVE ARRAY.
C

DO 15 1=1,200
DO 15 1-1,150
DO 15 K'1,9

15 SAVEIK.L.II-D.O
C
C INITIALIZE TRANSITION MOMENT ARRAYS.
C

DO 17 I«l,200
NTRANRID'O
NTRANOIII-O
NTRANPIII=0
00 17 L>1,30
ITRANKL, I)=0

17 ITRANFIL.I1-0
C
C IS THIS AN EMISSION CALCULATION?
C

EHISON-.TRUE.
IF(TYPE.EO.ABSORB) EMISON=.FALSE.

C
C IF JHAX IS NOT INPUT, SET JMAX TO JHINMOO.
C IF JMAX-JHIN IS GREATER THAN 199 SET JHAX TO JHINM99.
C

IF (JMAX. EO.0.000 I JHAX-JHINHOO.OO
OELJ=JMAX-JMIN
IFIDELJ.CT.199.il JHAX>JMIN»199.000
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C IS THIS 4 SIGMA TO SIGMA TRANSITION?
C

SIGS1G=.TRUE.
1FILAHI.GT..I.OR.LAKF.GT..1I S1GSIG*. FALSE.

C
C IS THIS AN ALLOWED TRANSITION?
C . . . .

IFKSI-SFI.NE..000.OR.OABS1LAHI-IAHFI.GT.1.1001 GO TO 20
C

IFISIGSIG.AND.SIGNI.NE.SIGNF) GO TO 20
C
C THIS IS AN ALLOWED TRANSITION.
C

ALLOW-.TRUE.
[HAXI=2.*Sl»l.l
IMAXF^INAXI
GO TO 30

C
C THIS IS A FORBIDDEN TRANSITION.
C
20 AILCW.FALSE.

IMAXI*2.*Sl*l.l
IMAXF=2.«SF»1.1

C
C SET SIGN OF SYHMERTRIC MATRIX ELEMENTS IN THE 0 BRANCH MATRIX.
C

SIGN1-+1.000
IF(.NOT.SIGSIG) GO TO 30
IOELS=DABSISF-SI)».1
I»l
IFISIGNI.NE.SIGNF) 1=0
S1GN1»(-1)««(lOELStlI

C
C IS SPIN HALF INTEGER OR WHOLE INTEGER?
C
30 IS-SH.l

S1»IS
HALF=»-TRUE.
IF(OABS(SI-S1).LT..100) HALF-.FALSE.

C
C JMN AND JMAX MUST BE HALF INTEGER OR WHOLE INTEGER IN
C ACCORD WITH THE SPIN.
C

JTEST=JMIN*.1DO
J»JTEST
IF(HALF) GO TO 35 '
IFtDABSIJMIN-JI-GT..1I JMIN»JHIN»0.5DO
GO TO 37

35 [F(OA6S(JMIN-JI-LT..1) JMIN»JMIN»0.5DO
37 JTEST-JMAX».100

J-JTEST
IF(HALF) GO TO 39
IF(OABS(JMAX-JI.GT..11 JNAX-JHAXHJ.500
GO TO 40

39 ]F(DABS(J«AX-JI.IT..1I JHAX=JMAX«0.500
C
C FIND MINIMUM VALUES FOR Jl AND JF AND
C ADJUST JMIN IF NECESSARY.
C
«0 JI=LAMI-SI

IFIJI.GE.O.ODOI GO TO 45
JI»O.ODO
IF(HALF) Jl=0.500

45 1F((JI-JM1NI.GI..1) JHIN-JI
C

JF=LAHF-SF
1FIJF.GE.0.0001 GO TO 50
JF=0.000
IF(HALF) JF-0.500

C
50 IF(JMIN-JF) 55,65,60
C
55 IFdJMIN-JFI.LT.-1.1001 JMI N= JF-l.ODO

GO TO 65
C
60 1F((JMIN-JF).GT. 1.100) JF»JHIN-1.000
C
65 CALL SOLVE
C
C PRINT HEADING
C

WRITE(6,600)
C

IF(ALLOW) GO TO 70
HRITE(6,601)
GO TO 75

70 WRITE 16,602)
75 ILAMI»LAHI+.l

IFIILAHI.GT.5) ILAMI=5
1LAHF=LAMF*.1
IF1ILAHF.GT.5) ILAMF=5
INDEX=4
IF(EHISON) INDEX-1
I2=INDEX*2

C
1NDEX2=5
IFILAMI.LT..IOO.ANO.SI.LT..600) GO TO 77
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IFCSI.LT..100I GO TO 77
INDEXZ'l
IFCYim.LT. 0.000) INDEX2-3

77 INDEX3=5
IFILAMF.LT.. 100. AND. SF.LT. .6001 GO TO 80
IFISF.LT..100I GO TO 80
INDEX3=1
IFIYFI1 I. LT. 0.0001 INDEX3»3

C
80 WRITE (6, 603 1 TITLES! INOEX2) .TITLES! INOEX2»1 1 , TITLE II 2*IMAXI-1 1 ,

1 TITLE1(2«IMAXI>,TITLE2<2*ILAMI»U,TITLE2I2«H.AMI»2I,SIGNI,
2 TITLE5<INDEX3) ITITLE5(INDEX3»1),TITLEU2»IMAXF-1>,
3 TITLE1(2«IHAXF),TITLE2I2»ILAMF»1),TITLE2(2«ILAHF»2I,SIGNF,
4 (TITLE3(II,I=INOEX,I2I

C
1F(IH«XI.E9.1I GO TO 85
IFIILAMI.EO.O) GO TO 82
URITE(6,604) TITLE*! II ,T ITLE4<2 I ,YI ( 1 1
GO TO 85

C
82 IFISI.LT..900) GO TO 85

13 = 31
11 = 1
IFIH4LFI 11=2
yRITE 16,611) TITLE4(1I,T1TLE4I2>,YI(II

C
IFISI.LT. 1.900) GO TO 85
12=1
IF(SI.GT.2.6DO> 12-2

C
00 84 1=1,12
13=1*1

84 «RITE(6,612) I3,YI(Itl)
C
85 IFC IHAXF.EO.l) GO TO 90

IFIILANF.EQ.O) GO TO 87
W R I T E (6, 604 1 TIUE4I3) , T I T L E 4 C 4 I ,YFI 1 1
GO TO 90

C
87 IFI SF.LT.. 9001 GO TO 90 •

IS-SF
IU1
IFIHALF) 11=2
WRirE(6,611l TITLE4l3l ,TITLE4(4),rF( l l

C . . .

IFISF.LT. 1.9001 GO TO 90
12=1
IF:SF.GT.2.600) 12=2

C
DO 89 1=1,12
13=1+1

89 NRITE(6,612) I3.YFII+1I
C
90 IFILAH1.LT..1DO.AND.SI.GT..600) GO TO 95

IFILAMF.GT.. 100. OR. SF.LT. .6DOI GO TO 100
95 WRITE<6,613)
C
100 IFILAHI.LT..1DO.OR.LAHF.LT..100) GO TO 120

1FIALLOUI GO TO 110
C

WRITEI6.614)
GO TO 120

C
110 URITE(6,615)
C
120 1NDEX=3

IF(EHISON) INDEX=1
HRITEI6,605I TITLE6IINOEX),TITLE6(1NDEX»1I

C
C PRINT DATA
C

II»2
IF(EHISON) II-l

C
C IS THIS AN ALLOWED TRANSITION?
C

IFIALLOWI GO TO 190
C
C THIS IS A FORBIDDEN TRANSITION.
C

IDELS=0
DELS»SI-SF
IFUBSIDELSI.LT..1) GO TO 124
IFIOELS.GT.O.I GO TO 122

IF(OELS.LT.-l.l) IOELS=-2
GO TO 124

122 IDELS=1
IFIOELS.GT.l.ll IDELS=2

C
C PRINT R BRANCHES.
C
124 00 140 K'l, IHAXI

DO 125 I»1,IMAXF

HEA01(I)=ALPHA(N1,II)
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IFIHEADKII.EO.RI KEAD1 1 1 ) "BLANK
125 CONTINUE

W R I T E (6, 6061 (HEAOK II,R,HEA02( I,K, III ,I-1,IHAXFI
C

DO 140 1=1, IJ
DELJ-I-1
J'JMIN'DELJ
HRITEI6.607I

C
KO=(K-1I«7
K1=KO+1
K2«KO»INAXF
K3*NTRANR(II
00 130 NTRAN*1,K3
SUN-O.ODO
00 128 KK-KI.K2

126 SUH*SUH»SAVE<NTRAN,KK,II*«2
130 WRITEI6.608) J.SUH, ITRANFINTRAN, II , ITRANI (NTRAN, I >,

C
140 C O N T I N U E
C
C PRINT 0 BRANCHES.
C

DO 160 K-l. IHAXI
DO 1*5 1-1, IHAXF
N1*10»IOELS-(K-1I«(I-1>
HEA01 1 1 )-ALPHA(M ,11)
IFIHEADU II.EQ.OI HEAOK ! I -BLANK

145 CONTINUE
WRITEI6.606I (HEAD1I I ) ,Q,HEAD2( I,K, II I , I-l, INAXF I

C
00 160 I-l.IJ
DELJ=I-1
JoJHlN^DELJ
«RITEC6,607)

C
KO=50+(K-1I*7
K1=KO*1

K3-NTRANQIII
DO 150 NTRANal,K3
SUH»O.ODO
DO 148 KK-K1.K2

148 SUN»SUH»SAVE(NT»AN,KK,I l««2
150 HRITE(6,608I J, SUM, I TRANF (NTRAN'IO, 1 1 , ITRAN I (NTRAN* 10, 1 ) ,

1 (SAVEINTRAN.KK.I I,KK=K1,K2I
C
160 CONTINUE
C
C PRINT P BRANCHES.
C

00 180 K»1,IMAXI
00 165 I-l.IMAXF

HEAD1(II»ALPHA(N1,III
IFIHEAD1I II.EO.P) HEAOK Il-BLANK

165 CONTINUE
KRITEI6.606) (HEAD1 ( 1 1 , P.HEAD2I I , K , II > , I -1 , IHAXF I

C
00 160 I-l.IJ
DELJ=I-1
J=JMIN»OELJ
HRITEI6.607)

C
KO»100»(K-1I*7
K1»KO*1
K2=KO*I«AXF
K3-NTRANPII)
DO 170 NT«AN-1,K3
SUH-0.000
00 168 KK=K1,K2

168 SUH=SUN»SAVE(NTRAN,KK,I )««2
170 yRITE(6,608l J.SUH, ITRANF (NTRAN>20, I ), ITRANI INTRAN'20, I ),

1 I S A V E ( N T H A N , K K , I ) , K K o K l t K 2 )
C
180 CONTINUE
C
C END OF CASEi READ IN NEXT CASE.
C

GO TO 10
C
C THIS IS AN ALLOWED TRANSITION.
C
C PRINT R BRANCHES.
C
190 DO 210 K.I, I. MAX I

00 195 I=1,IMAXF
N1=9-1K-1)K I-l)>2«( 11-11
HEAD1(II*ALPHA(N1,II)
IFIHEA01III.EQ.R) HEA01I I )°BLANK

195 CONTINUE
WRITE 1 6, 609) (HEAD1 1 1 1 .R.HEA02I I ,K, II) , I«l . IHAXF I

C
00 210 I-li IJ
O E L J = I - 1

24



J«JMIN4-OELJ
SUM=O.ODO

c
KO-IK-1)«7
K1«KO*1
K2»KO«IHAXI
DO 200 KK-KI.K2
K3=KK»50
K**KK»100

200 SUM»SUM»SAVE<1.KK,II»SAVEI1,K3,I)»SAVE(1,K+,1)
WRITE(6,6101 J,SUM,(SAVEU,KK,II,KK»Kl,K2)

I F<« 1/51*5-1 I.EO.O) WRITE I 6,6071
C
210 CONTINUE
C
C PRINT Q BRANCHES.
C

DO 230 K-I.IMAXI
DO 215 I'l.lMAXF
N1«10-(K-1I»U-1I
HEADllII'ALPHAfNl.III
IFIHEADK Il.EQ.ai HEADli 11 "BLANK

215 CONTINUE
WRITE (6,6091 (HEAOH I 1,0,HEAD2( I , K , III , I-l.IMAXFI

C
00 230 I-l.IJ
DELJ-I-1
J*JMIN+DELJ
SUM'0.000

C
KO»50»IK-1I*7
K1"KO*1
K2-KO«IMAXI
DO 220 KK-K1.K2
K3=KK-50
K4=KK+50

220 SUM«SUH»SAVE( l iKKt I I»SAVE( l iK3 , r ) «SAVE(UK4 , I )
WRITE (6.610) JiSUH,(SAVEIl,K».,l),KH«Kl,H2)

IFI((I/5I«5-II.EQ.O) URITEI6.607I
C
230 CONTINUE
C
C PRINT P BRANCHES
C

DO 250 K-1.1HAXI
00 235 I«1,IHAXF
N1.11-(K-1I»(I-1I-2»III-1I
HEA01(I)=ALPHA(N1,III
IFIHEADK I).EQ.P) HEADK I I'BLANK

235 CONTINUE
WRITE 16,6091 (HEADKI),P,HEA02( I,K,III,I'l,IHAXFI

C
00 250 I-l.IJ
DELJ=I-1
J.J«IN»OELJ
SUM«O.ODO

C
KO=100»IK-1)»7
K1>KO»1
K2«KO»IHAXI
DO 2+0 KK»Kl,K2
K3°KK-100
K4«KK-50

2+0 SUH-SUH«SAVEIliKK,I)*SAVEIl,K3,I)«SAVE(l.K+lI)
WRITE(6.610) J.SUH,(5AVE(1,KK,II,KK»K1,K2I

IF(I 11/51*5-1I.EQ.O) WRITE 16,607)
C
250 CONTINUE
C
C END OF CASE, READ IN NEXT CASE.
C

GO TO 10
C
C READ FORMAT STATEMENTS.
C
501 FORMAT(F3.1,2X,F2.0,2X,A1,3E10.01
502 FORMAT(2F5.1I
503 FORMAT(Al)
C
C WRITE FORMAT STATEMENTS.
C
600 FORMAT(1H1,52X,26HINTENSITY FACTOR PROGRAMME,/

1 *5X,41HNASA-ANES/CRESS/E E WHITING AUGUST 1972,///)
601 FORMAT!32X,43HSOUARE ROOT OF ROTATIONAL INTENSITY FACTORS,

1 1BH FOR THE FORBIDDEN,//I
602 FORMAT(+BX,35HHONL-LONOON FACTORS FOR THE ALLOWED,/)
603 FORMATI27X,2A+,1X,+A+,A1,4H TO ,2A+,1X.4A+,Al,15H TRANSITION IN ,3At//>
604 FORMATI35X,2A4,47HSTATE SPIN-ORBIT COUPLING CONSTANT « A/B » » - ,F8.3I
605 FORMAT!//,43X,29HJ VALUE IS FOR THE INITIAL (I,2A4,8HI STATE.)
606 FORMAT(//,16X,7HPARTIAL,3X,10HTRANSITION,/10X,1HJ,7X,3HSUH,6X,6HMOMENT,7I7X,A1,A1,A2,«X)I
607 FORMAT 110X1
60B FORHAT(7X,OPF5.1,F11.6,5X,I2,1H,,I1,1X,7I3X,1PE12.5II
609 FORMATI//10X,1HJ,7X,3HSUM,2X,7(7X,A1,A1,A2,«XI//I
610 FOR«ATnx,OPF5.1,FU.6,7m,lPE12.5»
611 FORMAT(35X,2A4,+7HSTATE ENERGY SEPARATION • DELTA E(l)/6 » ,F8.3I
612 FORMAT(75X,eHDELTA E(,I1,6H)/B - ,FB.3)
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613 FORMATI//27X,5BHIN SIGMA STATES WHEN J<S, THE F DESIGNATION FOR THE LEVELS,
1 /27X.53HHITH THE SAME VALUE OF J ARE ASSIGNED AS 2Stl FOR THE,
2 /27X.51HHIGHEST ENERGY LEVEL, 2S FOR THE NEXT HIGHEST, ETC.I

C
614 FORMAT(//27X,59HLAHBOA DOUBLING OCCURS IN THE SPECTRUM, BUT THE SQUARE ROOT,

1 17H OF THE INTENSITY/27X,*OHFACTORS FOR ONLY ONE LINE OF EACH LAMBDA,
2 «OH DOUBLET IS PRINTED. THE VALUES FOR THE/27X.12HOTHER LAMBDA,
3 58H COMPONENTS ARE FOUND BY CHANGING THE SIGN OF THE NUMBERS ,
* 11HPP.INTED, IF/27X.42HTHE TRANSITION MOMENT DESIGNATION CONTAINS,
5 1*H A MINUS SIGN.)

615 FORHATI//27X,59HLAMBDA DOUBLING OCCURS IN THE SPECTRUM, BUT THE HONL-LONDON,
1 21H FACTORS FOR ONLY ONE/27X.39HLINE OF EACH LAMBDA DOUBLET IS PRINTED.
2 39H THE HONL-LONOOM FACTORS FOR THE OTHER/27X,17HLAMSDA COMPONENTS,
3 14H ARE THE SAME.)
END

26



SUBROUTINE SOLVE
C
C THIS PROGRAM:
C 1-DEVELDPES THE ROTATIONAL HAMILTOHIAN.
C 2-CALLS EIGEN TO GET THE EIGEN VECTORS OF THE HAMILTONIAN.
C 3-OEVELOPES THE ROTATIONAL MATRIX.
C 4-TRANSFCRMS THE ROTATIONAL MATRIX.
C 5-STORES, IN THE LAIGE SAVE ARRAY, HQNL-LONOON FACTORS
C FOR ALLOWED TRANSITIONS AND THE SOUARE ROOT OF
C ROTATIONAL INTENSITY FACTORS FOR FORBIDDEN TRANSITIONS.
C

DIMENSION T(14,14),TI<14,14>,TF1I14,14>,TF2<14,14),AI14,14),
1 C(14il«liH(7t7)tSYHI7t7)

C
COMMON /CSOLVE/JF,JMIN,JHAX,SI,SF,LAHI,LAMF,
1 SIGN1,ALLOW,EMISON,S1GSIG,IJ, I MAX 1,1HAXF,
2 NTRANR(200),NTRANO(200>,NTRANP{200),
3 ITRANI(30,200),ITR«NF<30,2001,
4 SAVEI9,150,2001,YIOIiYFO)

C
COMHON/CEIGEN/HHI28).TTC49I,N

C
DOUBLE PRECISION A.OELJ,JMIN,JMAX,J,JI ,JF,Y(3I ,YI ,YF,LAM,LAMI,

1 LAMF,S,SI*SF,H,HH,W t HOLD,TT,T,T I ,TF1,TF2,OKEGA,OHEGAI f C,
2 OMEGAF,EI,EK,SUM,FACTOR,SIGN,SIGN1,SIGN2,SIZ£,SYM,
3 Cl
LOGICAL ALLOH,EMI SON,SIGSIG,FIRST

C
REAL INITAL

C
DATA R/1HR/, 0/1HO/, P/1HP/, FINAL/IMF/, INITAL/1HI/

C
INTEGER SAVE1,SAVE2,SAVE3,SAVE4,SAVES,SAVE6

C
C INITIALIZE MATRICES.
C AND SET FLAG FOR FIRST COMPUTATION.
C

00 10 1*1,14
00 10 K-1,14
TI1K,11*0.000
TF1IK,11=0.000
TF2IK,11=0.000
C(K,II=O.ODO

10 A{K,I>=O.ODO
FIRSTe.TRUE.
SAVE3*0
NSAVE-0

C
C START PRIMARY CALCULATION AT THIS POINT.
C THE INTENSITY FACTORS ARE CALCULATED IN
C TERMS OF THE INITIAL VALUE OF J, IE. IN TERMS OF
C J-LOHER FOR ABSORPTION AND IN TERMS OF
C J-UPPER FOR EMISSION.
C

DO SOO U = l,200
DELJ=IJ-1
JI=JMINtDELJ

C
C SET VALUES FOR INITIAL LEVEL CALCULATION.
C

J = JI
LAM*LAMI
S = SI
IMAX*IMAXI
STATE-INITAL
00 15 1=1,3

15 Y(II°YI(I>
GO TO 30

C
C SET VALUES FOR FINAL LEVEL CALCULATION.
C
20 J=JF

LAM=LAMF
S = SF
IMAX»IMAXF
STATE-FINAL
DO 25 1-1,3

25 Ydl-YFUl
C
C INITIALIZE HAMILTONIAN ANO TRANSFORMATION MATRICES.
C
30 DO 35 I«1,7

00 35 K-1,7
35 H(K,I)-0.000

DD 40 1-1,14
00 40 K-1,14

40 TIK.II-O.ODO
00 45 1-1,23

45 HH(I1«0.000
DC 47 1-1,49

47 TTIIl-O.OOO
C
C THE HAMILTONIAN MATRIX IS REDUCED AT LOW J VALUES.
C SET INDECIES DEFINING WHICH ROMS ANO COLUMNS HAVE NON-ZERO ELEMENT
C

OMEGA-LAM+S
IF((J».11.LT.OMEGAI GO TO 50
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c
C HAMILTONIAN IS FULLY DEVELOPED.
C

11 = 1
I2MHAX
GO TO 110

C
C HAHILTONIAN IS REDUCED.
C
50 T£ST=OMEGA

00 60 I'l.IMAX
11=1*1
IEST-TEST-1.0
IFUJ».1).GT.TEST) GO TO 70

60 CONTINUE
I1=IMAX
GO TO 80

C
70 IFIJ.CT..1) GO TO 100
C
C THERE IS ONLY ONE ELEMENT IN THE HAMILTONIAN.
C SET TRANSFORMATION MATRIX.
C
80 I2«I1
C
90 TCI,II- C-ll«*Il

N«l
GO TO 240

C
C THERE MAY BE MORE THAN ONE ELEMENT IN THE
C HAMILTONIAN MATRIX.
C
100 I2»2.»J*.l

12=11*12
IFtI2.GT.IHAX) 12-IMAX

C
C IS THERE MORE THAN ONE ELEMENT IN THE
C HAMILTONIAN MATRIX?
C
110 IFCI2.EO.il) GO TO 90
C
C THERE IS MORE THAN ONE ELEMENT IN THE
C HAHILTONIAN MATRIX. SET SIZE OF MATRIX.
C

N=I2-I1»1
C
C DEVELOP UPPER HALF OF SYMMETRICAL HAHILTONIAN MATRIX.
C J(J*L) AND SCS*1) TERNS IN THE DIAGONAL ELEMENTS ARE NOT INCLUDED.
C

K=0
13=12-1
DO 120 1=11,13
K=K»1
EI = I
HfK,K«l)=-OSORT«J-OMEGA*EI»CJ*OMEGA-Em.OOO)*EI*l2.0DO*S-EI*1.000»
H(K*1,K)=HIK,K*1I

120 HCK,K)=-COMEGA-EI*1.DOI««2-(S-EI»1.DO>««2
C

EI-I2
K=K+1
HtR.K) =-IOM£&A-EI*l.DO>*«2-(S-El*l.DO>«»2

C
C IS THIS A SIGMA STATE?
C

K°0
IFILAM.LT..1DO) GO TO 140

C
C THIS IS NOT A SIGMA STATE.
C INCLUDE SPIN-ORBIT INTERACTION CY=A/B).
C

DO 130 1=11,12
K=K*1
EI«I

130 HCK,K)>HCK,K)*Y<1)<LAM*(S-EI*1.DO)
GO TO 152

C
C THIS IS A SIGMA STATE.
C INCLUDE SPIN-ORBIT * SPIN-SPIN ENERGY SEPERATIONS CDELTA E/BI.
C
140 DO 150 1=11,12

K=Ktl
C

GO TOC152,152,141,142,143,144,145), IMAX
C
141 1FII.EQ.2I GO TO 150

13-1
GO TO 146

C
142 IFII.E0.2.0R.I.E0.3) GO TO 150

13-1
GO TO 146

C
143 IFCI.E0.3) GO TO 150

13=2
IF(I.Ea.2.0R.I.E0.4) 13=1
GO TO 146
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14* IFII.E0.3.0R.I.e0.4> GO TO ISO
13-2
IFII.E0.2.0R.I.E0.5) 13=1
GO TO 146

145 IFII.E0.4I GO TO 150
13-3
IFII.NE.1.0R.I.NE.7I 13-2
IF[I.EQ.3.0R.I.E0.5) 13=1

C
146 H(K,K)»H(K,KI*Y(131
150 CONTINUE
C
C IS SYMMETRIZING MATRIX NECESSARY?
C NEEDED FOR NON-SINGLET SIGMA STATES IN FORBIDDEN TRANSITIONS.
C
152 IF(ALLOW.OR.LAM.GT..1.0R.S.LT..1> GO TO 225
C
C CONSTRUCT SYMMETRIZING MATRIX.
C

IFIN.EO.NSAVE) GO TO 180
NSAVE-N
00 155 1-1,7
00 155 K-1,7

155 SYHII,K)-0.000
C

C1-.T07106781DO
K-0

C
160 K«K+1

KK-N»1-K
IFIK.EQ.KK) GO TO 170
SYM(K,KI»C1
SYMIKK,K)'C1
SYH(K,KK)=C1
SYMIKK,KK)--C1

C
IFUKK-KI.GT.ll GO TO 160
GO TO 180

C
170 SYM(K,K)-1.000
C
C SYMMETRIZE HAMILTONIAN MATRIX IF REQUIRED.
C
180 DO 200 I-liN

DO 200 K-ltN
C(K,I)-O.ODO
00 190 KK-l.N

190 CIK,I)«C(K»II*H(K,KK)*SYM(KK,U
200 ' CONTINUE
C

DO 220 1 = 1,N
DO 220 K-l.N
H(K,11 = 0.000
00 210 KK-l.N

210 HIK,I)«H(K,II*SYM(K,KKI*C(KK,I)
220 CONTINUE
C
C TRANSFORM UPPER HALF OF SYMMETRICAL HAMILTONIAN INTO A ONE-DIMENSIONAL
C ARRAY, HH TO BE COMPATIBLE KITH E1GENFUNCTION SUBROUTINE.
C
225 KK=0

DO 230 I-l.N
00 230 KM, I
KK«KK»1

230 HH(KK)-H(K,I>
C
C CALL SUBROUTINE TO FIND THE ElGENFUNCTIONS OF
C THE HAMILTONIAN MATRIX BY JACOBI-VON NEUMAN METHOD.
C EIGENFUNCTIONS ARE ORDERED IN A ONE-DIMENSIONAL ARRAY, TT KITH
C THE LARGEST EIGENVALUE FIRST, ETC.
C

CALL F.IGEN
C
C EXPAND THE ONE-OIMENSIDNAL ARRAY, TT INTO THE TUO-OIHENSIONAL
C TRANSFORMATION MATRIX,T THAT OIAGONALIZES THE HAMILTONIAN.
C ENSURE CONSISTANT PHASE OF THE EIGENFUNCTIONS BY MAKING
C THE FISST ELEMENT IN EACH COLUMN NEGATIVE.
C

KK-0
DO 235 1 = 1,N
Cl-l.ODO
IFUTIKK»1).GT. 0.) Cl — l.ODO
DO 235 K'l.N
KK-KK«1

235 T<K,I1=C1«TT(KKI
C
C If THIS IS A FORBIDDEN TRANSITION AND IF
C THIS STATE IS NOT A SIGMA STATE, EXPAND THE
C TRANSFORMATION MATRIX TO ALLOW FOR LAMBDA DOUBLING.
C
240 NN-N

IFIALLOU.OR. LAH.LT..1I GO TO 260
C
C EXPAND THE TRANSFORMATION MATRIX.
C

NN»2«N
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00 250 1=1,N
DO 250 K = 1,N
K3=Il-K
13=11-1

250 T(K3,I3)=T<K,II
C
C TRANSFER T MATRIX INTO INITIAL (Til OR FINAL (TFI
C MATRIX. SET FLAGS AND 1NDECIES FOR PROPER BRANCHES
C PRELIMINARY TO DEVELOPING THE ROTATIONAL MATRIX.
C
C IS THIS THE INITIAL OR THE FINAL STATE?
C
260 IFISTATE.EO.FINAL! GO TO 280
C
C THIS IS THE INITIAL STATE.
C TRANSFER THE T MATRIX INTO THE TI MATRIX.
C SET INDECIES FOR INITIAL STATE.
C

00 270 1=1,NN
DO 270 K=l,NN

270 TKI,KI*T(I,KI
C

111=11
112=12
N1=N

C
C IF THIS IS THE FIRST TIME THRU OR IF THE 0 BRANCHES
C HAVE NOT BEEN COMPUTED, GO DIRECTLY TO THE FINAL STATE.
C

IFIFIRSTI GO TO 20
IFIBRANCH.NE.O) GO TO 300

C
C THIS IS THE FINAL STATS.
C ARE CONDITIONS SET FOR 0 BRANCHES?
C
280 IF(OABS{ JI-JFI.GT..H GO TO 310
C
C CONDITIONS ARE SET FOR 0 BRANCHES.
C INVERT T MATRIX AND PUT INTO TFI MATRIX.
C

DO 290 I=1,NN
00 290 K*1,NN

290 TFKItK)-T(KiI)
C
C SAVE INOICIES DENOTING SIZE OF HAHILTONIAN AND
C KHICH ELEMENTS ARE FILLED.
C

SAVEI=I1
SAVE2=I2
SAVE3=N
FIRST".FALSE.

C
C INCREASE FINAL STATE ROTATIONAL QUANTUM NUMBER
C BY 1 AND COMPUTE THE NEW FINAL STATE.
C
300 JF=JF+1.000

GO TO 20 • •
C
C THIS IS EITHER A P OR AN R BRANCH.
C NORMALLY JF HILL BE GREATER THAN JI AT THIS POINT.
C HOWEVER, THE FIRST TIME THRU JI HAV BE GREATER.
C
310 IfUF.GI.JU GO TO 350
C
C FIRST TIME THRU. INVERT T MATRIX AND PUT INTO TFI
C MATRIX AND SET INDICIES.
C

Do 320 1=1,NN
00 320 K=1,NN

320 TFllI.KI-TIKil)
C

IF1=I1
!F2=IZ
NF=N

C
C IF THIS IS AN EMISSION CALCULATION, HE ARE READY
C TO COMPUTE R BRANCHES. IF ABSORTION, P BRANCHES.
C
330 I F I E M I S O N I GO TO 370
C
C THIS IS A P BRANCH CALCULATION.
C
3«0 BRANCH'P
C
C SET INDEX FOR SAVING P BRANCHES IN THE LARGE- SAVE ARRAY.
C

IK'100
SIGN2»-1.0DO
GO TO 390

C
C INVERT T MATRIX, PUT INTO TF2 MATRIX AND SET INDICIES.
C
350 DO 360 1*1,NN

OC 360 K=1,NN
360 TF2(I,KI=T(K,II
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IF2=I2
NF=N

C
C IF THIS IS AN EMISSION CALCULATION, WE ARE READ*
C TO COMPUTE P BRANCHES. IF ABSORPTION, R BRANCHES.
C

IF(EMISON) GO TO 340
C
C THIS IS AN R BRANCH CALCULATION.
C
370 BRANCH=R
C
C SET INDEX FOR SAVING 0 BRANCHES IN THE LARGE SAVE ARRAY.
C

IK«0
SIGN2 — l.ODO
GO TO 390

C
C THIS IS A 0 BRANCH CALCULATION.
C
380 BRANCH=0

IK=50
SIGN2=*1.0DO

C
C DEVELOP KOTAT10NAL MATRIX.
C
C SE-T INDICIES AND SIGN OF LAMBDA.
C
390 1=0

El=II2
NII=NI
NFF=NF
NTRAN=0
SIGN=1.0DO

C . .
395 1F(ALLOW.OR.LAMF.LT..1> GO TO 4.00

SIGN— 1.000
NFF=2»NF

C
C SET INOICIES AND OMEGA FOR THE INITIAL STATE,
C COLUMNS OF THE MATRIX.
C
400 1 = 1*1

EI=EI-1.0DO
OMEGAI=LAMI»SI-E1

K=0
EK=!F2

C
C SET INDICIES AND OMEGA FOP. THE FINAL STATE,
C ROWS Of THE MATRIX,
C
410 K=K»1

EK=EK-1.0CO
KK-NFF-K*!
IFIS1GN.LT.O.I EK=(KK-K-U/2
OMEGAF.SIGN«LANF»SF-EK

C
C
C

C
C
C

C
C
C
415

C
C
C
C

FIND DELTA OMEGA AND

DELO=OMEGAF-OMEGAI
DELL-LAHF-LAM!

OcLTA LAMBDA.

FOR ALLOWED TRANSITIONS DELTA OMEGA MUST EQUAL DELTA LAMBDA.

IF(. NOT. ALLOW! GO TO
IFIABSIDELO-DELLI.GT.

WHAT TYPE OF BRANCH?

IF<BRANCH.£0.01 GO TO
IF( (JF-JI I.GT. .11 GO

415
.11 GO TO 510

470
TO 4«0

P BRANCH IN ABSORPTION OR
R BRANCH IN EMISSION.

IFIJI.LT..1) GO TO 910
IF( 4BSIDELOI-LT..1ICO TO 430
IFIOELD.GT.O.) GO TO 420
IF( DELO.LT.-1.1)00 TO 510

C
A<KK,III=-DSgRTI< JI*OMEGAI)«( JUOMEGAI - l.ODOI/l 2.0DO*J 11 I
GO TO 500

C
42:0 IFIOELO.GT.1.1) GO TO 520
C

A<KK,II)=DSQRT((JI-OMEGAII*IJI-OMEGAI-1.0DOI/I2.0DO*JI>>
GO TO 500

C
430 A(KK,II]=OSORT((JI»OMEGAII«(JI-OMEGAI)/JII

GO TO 500
C
C R BRANCH IN ABSORPTION OR
C P BRANCH IN EMISSION.
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c
440 IF! ABSIDELOI.LT..1IGO TO 460

IFIOELO.GT.O.) GO TO 450
IFI OELO.Lt.-l.lICO TO 510

C
AIKK,II>*DSaRTIIJI-OMEGAI»1.0DOI*IJI-OMEGAI»2.0DO>/l2.0DO«IJI»l.OOO>»
GO TO 500

C
450 IFI OELO.GT.1.1) GO TO 520
C

A(KK,IIIc-DSORTI<JUOMEGA!*l.ODO)*(JI+OMEGAI»2.0DO>/(2.0DO*(.ll»1.0DO»>
GO TO 500

C
460 AIKK.I1 I=DSQ»T( ( J!»OHEGal H.OOO)«(JI-OHEGAI»1.00D)/( JU1.0DOI)

GO TO 500
C
C 0 BRANCH IN ABSORPTION OR EMISSION.
C
470 IFIJI.LT..1) GO TO 610

IFI ABSIDELOI.LT..II GO TO 490
IFIOELO.GT.O.I GO TO 480
IF( OELO.LT.-l.l) GO TO 510

C
A(KK,II)»DSQRT(IJI»OMEGAI>*(JI-OMEGAI*1.0DO)*(2.0DO*.mi.ODO)

1 712.ODO*JI*IJI»1.000)1)
GO TO 500

C
480 IFI OELO.GT.1.1) GO TO 520
C

A(KK,II)=OSQ«T( (JI-OMEGAI)*(JI»OHEG4I»1.0DO]«(2.0DO«JIH.OOO)
1 /I2.000*JI*IJI»1.0001)1
GO TO 500

C
490 «(KK,II >-OHEGAI*DSORTU2.0DO«JI»1.0DO>/( JI«CJI»1.000» I
C
C IF THIS IS AN ALLOWED TRANSITION LOOP BACK UNTIL ALL
C ELEMENTS ARE IN THE ROTATIONAL MATRIX. IF THIS IS
C A FORBIDDEN TRANSITION, FIND THE SYMMETRICAL ROTATIONAL
C MATRIX ELEMENT AND TRANSFORM THEM TOGETHER.
C
500 IFI.NOT.ALLOW) GO TO 540
C
510 IFIK.LT.NF) GO TO 410

IFIK.GT.NFI GO TO 525
C
520 1F(SIGN.GT..O) GO TO 530
C
C IS FORBIDDEN BRANCH COMPLETED?
C

IFILAMI.GT..1.0R.II»1).LT.I1) GO TO 522
IFII.EO.III GO TO 810

C
522 SIGN..1.ODD

EK-IF2
GO TO 410

C
525 IF(K.LT.NFF) GO TO 410
C
530 IFU.EQ.NI) GO TO 535

IFIALLOU) GO TO 395
C
C IS FORBIDDEN BRANCH COMPLETED?
C

1FILAMI.GT..I.OR.IItll.LT.il) GO TO 395
GO TO.810

C
C IF THIS IS AN ALLOWED TRANSITION, MUST NOW TRANSFORM
C THE ROTATIONAL MATRIX. IF THIS IS A FORBIDDEN
C TRANSITION, THIS BRANCH IS COMPLETE.
C
535 IFIALLOWI GO TO 580

GO TO 810
C
C THIS IS A FORBIDDEN TRANSITION. FIND THE SYMETRICAL
C ELEMENT WITH PROPER PHASE FACTORS. CHECK SIGMA TO SIGMA
C TRANSITION FOR EXISTENCE OF TRANSITION MOMENT WHEN BOTH
C OMEGAS EOUAL ZERO.
C
540 IFISIGSIG) GO TO 560
C

IFILAMI.LT..1) GO TO 565
C
C INITIAL STATE IS NOT A SIGMA STATE.
C

NII'2*NI
I3=N1H
GO TO 567

C
C THIS IS A SIGMA TO SIGMA TRANSITION.
C ARE BOTH OMEGAS EOUAL TO ZERO?
C
560 IFIDABSIGMEGAI).LT..l.ANO.OABSIOMEGAF).LT..l) GO TO 570
C
C AT LEAST ONE OMEGA IS UNEQUAL TO ZERO, SET SYMMETRICAL ELEMENT.
C
565 I 33 I
567 A(K,I3)»SIGN1*SIGN2*AIKK,II>
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c
C BOTH OMEGAS ARE ZERO.
C THERE IS NO SYMMETRICAL ELEMENT.
C FOR THE TRANSITION MOMENT TO EXIST SIGN1 MUST BE NEGATIVE.
C
570 IFISIGN1.LT.O.) GO TO 580
C
C THE TRANSITION MOMENT CORRESPONDING TO THIS MATRIX
C ELEMENT DOES NOT EXIST. HE CAN ALLOW FOR THIS BY
C SETTING THE MATRIX ELEMENT EOUAL TO ZERO. ALSO THIS
C BRANCH IS COMPLETE.
C

A(KK,II)-O.ODO
GO TO 810

C
C TRANSFORM THE ROTATIONAL MATRIX.
C
C SYMMETRIZE FORBIDDEN TRANSITIONS.
C
571 IFIK.EO.KKI GO TO 576

IFII3.EO.II) GO TO 575
IFIK.GT.KKI GO TO 573
IFU3.GT.il) GO TO 572

C
HH(1I*A(K,13X0.500
HH<2)*0.000
HH(3)*O.ODO
HHI4I-AIKK,111*0.500
GO TO 578

C
572 HH(1)-O.ODO

HH(2I°-A(K,131*0.500
HH(3)»A(KK,II)*0.5DO
HHI4I-O.ODO
GO TO 578

C
573 IFII3.GT.II) GO TO 574

HHIl>=0.000
HH(2)«A(KK,111*0.500
HHC31="A(K,131*0.500
HH(4)°O.ODO
GO TO 578

C
574 HHIU'AIKK,111*0.500

HH(2)=O.ODO
HHI3I'0.000
HH(4)*A(K,131*0.5DO
GO TO 578

C
575 HH(1>=A(K,131*0.70710678100

HH(2)=A(KK,I3)»0.70710678100
HHI3I=0.000
HHI4I-O.ODO
GO TO 578

C
576 mi3.GT.Ill GO TO 577

HHU)>A<K, 131*0.70710678100
HH(2)«A(KtlI)*0.707106781DO
HH(3)«9.0DO
HH(<i) =0.000
GO TO 578

C
577 HHID'AIK,111*0.70710678100

HH(2)=-A(K,131*0.70710678100
HHOIaQ.ODO
HH(4)«0.000

C
578 AIK,I3)«HH(1)*HH(21»HH(3I»HH(4I

A IKK.IItaHHI11-HH(2)-HH(3)*HH(4)
IFIK.EO.KK.OR.13.EQ.nl GO TO 580
A1K,1II=HH(1)-HH(2)«HHI3I-HH(4)
A(KK,I3I=HH(1)»HH(2)-HHI3I-HH(4I

C
C MULTIPLY ON THE RIGHT BY Tt.
C
580 00 600 II.1,Nil

DO 600 K1*1,NFF
CIK1,111=0.000

DO 590 12-1,Nil
590 C(K1,I1)-C(K1,I1)«AIK1,I2)*TI(I2,I1)
600 CONTINUE
C
C MULTIPLY ON THE LEFT BY TF
C

IF(BPANCH.EO.O.OR.(JF-JII.LT..1I GO TO 530
C
C FOR P BRANCHES IN EMISSION AND R BRANCHES IN
C ABSORPTION MULTIPLY ON LEFT BY TF2.
C

00 620 II-1.Nil
00 620 Kl-l.NFF
AIK1,111=0.000

DO 610 12-1,NFF
610 A(Kl,m-A(Kl,ll> + rF2IKl,I2)*CII2,m
620 CONTINUE

GO TO 655
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c
C FOR 0 BRUNCHES AND FOR P BRANCHES IN ABSORPTION
C AND R BRANCHES IN EMISSION MULTIPLY ON LEFT B1 TF1.
C
630 DO 650 11 = 1,Nil

CO 650 Kl=l,NFF
A(K1,I1)=O.ODO
00 640 12=1,NFF

640 A(K1,I1)=A(K1,I1)»TF1(IU,I2>«C<12,I1>
650 CONTINUE
C
C FOR ALLOWED TRANSITIONS LAMBDA DOUBLING WAS NOT INCLUDED. THEREFORE, THE
C MATRIX ELEMENTS FOR SIGMA-PI TRANSITIONS MUST BE MULTIPLIED Br THE SOU4R6
C ROOT OF 2.
C
C FOR FORBIDDEN TRANSITIONS;
C IF ONLY THE INITIAL STATE IS A SIGMA STATE, THE RESULTS
C IN THE UPPER AND L3WER HALVES OF THE MATRIX MUST BE COMBINED.
C IF ONLY THE FINAL STATE IS A SIGMA STATE, THE RESULTS IN
C THE LEFT AND RIGHT HALVES OF THE MATRIX MUST BE COMBINED.
C
C IF NEITHER STATE IS A SIGMA STATE, THE RESULTS
C ARE EITHER IN THE UPPER-LEFT AND LOWER-RIGHT QUADRANTS, OR IN
C THE UPPER-RIGHT AND LOWER-LEFT QUADRANTS. THEREFORE, WE CAN ALWAYS GET
C ONE LAMBDA COMPONENT BY ADDING THE MATRIX ELEMENTS IN THE UPPER-LEPT
C AND LOWEP-LEFT QUADRANTS I ONE (IF WHICH IS ZERO]. THE OTHER LAMBDA
C COMPONENT CAN BE FOUND BY SIMPLY CHANGING THE SIGN OF ALL TERMS
C WHOSE TRANSITION MOMENT IS DESIGNATED WITH A MINUS SIGN IN THE
C FIRST LOCATION, IE I-X,Y).
C
655 IF(SIGSIG) GO TO 666

IF(.NOT.ALLOW) GO TO 662
IFUAMI.GT..LDO.AND.LAMF.GT..1DO) GO TO 666

C
Cl=l.41421356200
DO 660 K3=1,NF
00 660 13=1,NI

660 A(K3,I3)=C1*A(K3,I3)
GO TO 666

C
662 IFILAHF.LT..100I GO TO 664

DO 663 13=1,NI
00 663 K3=1,NF
K4=NFF»1-K3

663 AIK3,I3)=AIK3,I3)*AIK4,I3)
GO TO 666

C
664 CO 665 13=1,NI

CO 665 K3=1,NF
I4=NII*1-I3

665 A(K3,I3I=A(K3,I3)*A<K3,14)
C
C FOR STATES OTHER THAN SIGMA STATES, IF THE HAMILTONIAN
C IS NOT FULLY DEVELOPED (SMALL J VALUES) THEN THE ELEMENTS
C IN THE TRANSFORMED ROTATIONAL MATRIX ARE SHIFTED TO
C ENABLE PROPER LABELING DURING OUTPUT.
C
666 NDELI"0

IFILAMI.LT..1.CR.IIl.EQ.il GO TO 695
C
C DETERMINE COLUMN SHIFT.
C

NDELI=II1-1
IFIYHII.LT.O.ODOI NOEL 1 = 1 MAX I-! 11-NIU
IFINDELI.LE.OI GO TO 695

C
C SHIFT COLUMNS
C

DO 690 Klel.NF
DO 670 11=1,NI
I2=N1»1-I1
I3«I2tNOELI

670 A(K1, I3)=AIK1, I2 I
C

CO 680 Il-liNDELI
590 AIK1,111=0.ODD
C
690 CONTINUE
C
695 NDELF=0

IF(LAMF.LT..1.0R.IF1.EQ.I) GO TO 735
C
C DETERMINE ROW SHIFT.
C

NOELFMF1-1
IF(YFII I.IT.0.0001 NOELF=IMAXF-IF1-NF»I
IFCNDELF.LE.O) GO TO 735

C
C SHIFT ROWS.
C

DO 730 !l«l,IMAXt
DO 710 K1=1,NF
I2=NFH-K1
H=I2»NDELF

710 A ( I 3 , I 1 ) = A ( I 2 , I 1 )
C

DO 720 K1=1,NDELF
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720 A(K1,111=0.000
C
730 CONTINUE
C
C STORE THE TRANSFORMED ROTATIONAL MATRIX ELEMENTS
C AND INITIALIZE THE A MATRIX FOR A NEW CALCULATION.
C
735 K4=NOELF»NF»1

I4=NDELI+NI*1
K5=IM«XF-NDELF-NF
I5=1MAXI-NDEL1-NI

C
C IS THIS AN ALLOWED TRANSITION?
C

IFI.NOT.ALLOWI GO TO 760
C
C THIS IS AN ALLOWED TRANSITION.
C STORE THE SQUARE OF TH5 A MATRIX ELEMENTS.
C THESE ARE THE HONL-LONDON FACTORS FOR A SINGLE LAMBDA COMPONENT.
C

DO 755 11=1,NI
16=14-11
DO 750 K1=1,NF
K7*(I5HI-1I»7*IK*K5»K1
K6=K4-K1

750 SAVEI1,K7,IJI=AIK6,16I*«2
755 CONTINUE

DO 757 11=1,14
DO 757 Kl=l,14

757 AIK1,111=0.000
C

GO TO 810
C
C THIS IS A FORBIDDEN TRANSITION.
C RECORD THE NUMBER OF ELECTRONIC TRANSITION
C MOMENTS AND THcIR DESIGNATIONS.
C
760 NTRAN=NTRAN*1

IE=EI».l
KE=EK*.l
K6=NTRAN»IK/5
ITRANI(K6,IJ)=IMAXI-Ic

C
IFILAMF.LT..1I GO TO 780
IF(SIGN.LT.O.I GO TO 770

C
ITRANF(K6,IJI=*K-NF*IMAXF-IF2
GO TO 790

C
770 ITRANF(K6,IJI*K-IMAXF*IFl-2

GO TO 790
C
780 ITRANF1K6»IJ)=IMAXF-KE
C
C IS THIS AN EMISSION CALCULATION?
C
790 IF(.NOT.EMISON) GO TO 799
C
C THIS IS AN EMISSION CALCULATION. ADJUST DESIGNATION
C OF THE TRANSITION MOMENT TO CORRESPOND TO ABSORPTION.
C

Kl=»l
I F I S I G S I G I GO TO 794
IFILAMF.LT..1I GO TO 792
IFUAMI.LT..1I GO TO 791

C
IFISIGN.LT.O.I Kl=-l
GO TO 796

C
791 IFISIGN.GT.O.) GO TO 796
C

Il = ITRANI(K6,m
ITRANI<K6,U>=- ITRANFIK6 , IJ>
ITRANF(K6,IJ)=IHAXI»1-I1
GO TO 799

C
792 IFIOMEGAF.LT.-.II GO TO 796
C

I1=ITRANF(K6,IJI
ITRANF(K6 , I J )= - ITRANI (K6 ,U )
ITRANI (K6 ,U )a IMAXF + l-Il
GO TO 799

C
794 IFIOMEGAF.GT..1I GO TO 798
C
796 I1=ITRANF(K6,IJI

ITRANF(K6, IJ)=K1«ITRANMK6, IJ I
I ITRANI IK6, IJJ=K1«I I
, GO TO 799
' C
1798 I1=ITRANI(K6,IJ>

ITRANUK6,IJ) = IMAXF»1- ITRANF(K6, IJ>
! ITRANFIK6,IJI=IMAXI»1-I1
1 C
JC SAVE A MATRIX ELEMENTS.
|C
'799 DC 800 I1«1,NI
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CO 300 KIM ,NF
K7=U5»I1-1I*7»IK»K5*K1
K6=K4-K1
I6M4-11

800 SAVE(NTRAN,KT,IJ)=A(K6,I6I
C

DO 805 11=1,14
00 805 Kl»l,14

805 ACKl.Ill'O.ODO
C

GO TO 510
C
C 4 SET OF BRANCHES HAS BEEN COMPUTED.
C STORE NUMBER OF ELECTRONIC TRANSITIONS MOMENTS
C IN COMPUTATION JUST FINISHED AND SET FLAGSi
C 10ICIES, ETC APPROPRIATE FOR NEXT SET OF BRANCHES.
C
BIO IF(BRANCH.NE.O) GO TO 920
C
C A SET OF 0 BRANCHES HAVE BEEN COMPUTED.
C NEXT STEP IS TO INCREASE JI AND COMPUTE A NEK INITIAL STATE.
C

NTRANOIIJ)*NTRAN
GO TO 390

C
820 IF(BRANCH.EO.P) GO TO 830
C
C A SET OF R BRANCHES HAVE BEEN COMPUTED.
C

NTRANRIIJMNTRAN
IF(EMISON) GO TO 840
GO TO 860

C
C A SET OF P BRANCHES HAVE BEEN COMPUTED.
C
630 NTRANPIIJI=NTRAN

IFIEMISON) GO TO 860
C
C REPLACE TFI M A T R I X WITH TF2 MATRIX BEFOSE INCREASING JF
C AND COMPUTING NEW FINAL STATE.
C
840 K4=SAVE3

IF(.NOT.ALLOW.ANO.LAMF.GT..1> K4*2*SAVE3
CO 850 11«1,K4
DO 850 K1»1,K4

850 TF1(K1,11)»TF2<K1,I1I
C

JF=JF*1.0DO
GO TO 20

C
C IS THIS THE FIRST CALCULATION?
C
860 I F C F I R S T I GO TO 870
C
C THIS IS NOT THE FIRST CALCULATION. SAVE INDICIES
C AND COMPUTE 0 BRANCHES NEXT.
C

SAVE*"IF1
SAVE5MF2
SAVE6»NF
IF1-SAVE1
IF2»SAVE2
NF=SAVE3
SAVE1»SAVE4
SAVE2-SAVE5
SAVE3°SAVc6
GO TO 380

C
C THIS IS THE FIRST CALCULATION. SAVt INDICIES AND
C TF2 MATRIX AND COMPUTE NEW INITIAL STATt.
C
d70 FIRST=.FALSE.

SAVE1«IF1
SAVE2-IF2
SAVE3=NF

C
DC 880 11=1,NFF
DO 680 K1=1,NFF

880 TF1(K1,I1I-TF2IK1,I1)
C
C WCULD NEXT VALUE OF JI BE GPEATER THAN JMAX?
C
890 IFIIJMAX-JII.IT..9I GO TO 910
C
C END OF 816 DO LOOP
C
900 CONTINUE
C

IJ»200
910 RETURN

END
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C SUBROUTINE EIGEN
C
C PURPOSE
C COMPUTE EIGENVALUES AND EIGENVECTORS OF A REAL SYMMETRIC
C MATRIX
C
C USAGE
C
C DESCRIPTION Of PARAMETERS
C A - ORIGINAL MATRIX (SYMMETRIC!, DESTROYED IN COMPUTATION.
C RESULTANT EIGENVALUES ARE DEVELOPED IN DIAGONAL OF
C MATRIX A IN DESCENDING ORDER.
C R - RESULTANT MATRIX OF EIGENVECTORS (STORED COLUMNWISE,
C IN SAME SEQUENCE AS EIGENVALUES)
C N - ORDER OF MATRICES A AND R
C
C REMARKS
C ORIGINAL MATRIX A MUST BE REAL SYMMETRIC (STORAGE MODE-ll
C MATRIX A CANNOT BE IN THE SAME LOCATION AS MATRIX R
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C NONE
C
C METHOD
C DIAGONALIZATION METHOD ORIGINATED BY JACOBI AND ADAPTED
C BY VON NEUMANN FOR LARGE COMPUTERS AS FOUND IN 'MATHEMATICAL
C METHODS FOR DIGITAL COMPUTERS', EDITED BY A. RALSTON AND
C H.S. WILF, JOHN UUEV AND SONS, NEW YORK, 1962, CHAPTER 7
C
C
C

SUBROUTINE EIGEN
COMMON/CEIGEN/A(28),R(49),N

C
DOUBLE PRECISION A,R,ANORH,ANRMX,THR,X,Y,SINX.S1NX2,COSX,

1 CQSX2,SIHCS,RANGE
C
C GENERATE IDENTITY MATRIX
C
5 RANGE-1.00-12

10 IO=-N
00 20 J°1,N
IQ=IO»N
00 20 I-1,N
IJ»IO»I
R(IJ)=O.ODO
IF(I-J) 20,15,20

15 R(IJ]=1.0DO
20 CONTINUE

C
C COMPUTE INITIAL AND FINAL NORMS (ANORM AND ANORMX)
C

25 ANORM=O.ODO
00 35 1 = 1.N
DO 35 J'l.N
IF(I-J) 30,35,30

30 IA=I»(J*J-JI/2
ANGRH=ANORM»A(IA)»A(IAI

35 CONTINUE
IFIANORM) 165,165,40

40 ANORM=DSORT(2.000«AN3RMI
ANRMX»ANORM«RANGE/FLOAT(Nl

C
C INITIALIZE INDICATORS AND COMPUTE THRESHOLD, THR
C

IND'O
THRaANORM

45 THR=THR/FLOAT(NI
50 L=l
55 «»L»1

C
C COMPUTE SIN AND COS
C

60 HO*(M*M-M)/2
LO»(L*L-L)/2
LM=L»MO

62 IFIDABS(A(LM»-THR) 130,65,65
65 INO-1

LL«L»LO
MN»M+MQ
X>0.5DO*<A<LL>-A(HMI)

63 Y>-A(LMI/OSORT(AILM)*A(LM)»X*X)
IFIXI 70,75,75

70 Y=-Y
75 SINX"Y/nSORT(2.000*11.ODOKDSOSTI1,000-Y*Y)11 I

SINX2"SINX«SINX
78 COSX=OSORT(1.0DO-SINX2I

COSX2-COSX«COSX
SINCS =SINX«COSX

C
C ROTATE L AND M COLUMNS
C

ILO"N«(L-II
1MO"N»(M-1)
DO 125 1=1,H
10-11*1-11/2
IF(I-L) 30,120,80

80 IFII-MI 85,120,10
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OP. TO <!5
90 1M=M*IO
95 IFI1-LI 100,105,105

100 IL=I+LO
GO TO 110

105 IL=L»!0
110 X=A(1LI«COSX-AI IMI*SINX

A U M J = A ( I L ) « S I N X » A ( I M > « C O S X
A ( U ) « X

120 1LR=ILO*I
IMH=IHO»I • • " •
X -R ( ILR)*COSX-R( IMR>*SINX
R(IMRI=R(ILRI«SINX»R( IMRKCOSX
R ( I L R I = X

125 CONTINUE
X=2.000*AILM)tSlNCS
V=A(IL)«COSX2*A(MMI«S1NX2-X
X=A(LL>*SINX2-* -AIHH)*COSX2>X
A(LMI>IA{LLI-AIHM))*SINCS*AILH)*(C05X2-SINX2)
KLLI'Y
AIKM1-X

C
C TESTS FOR COMPLETION
C
C TESt FOR H « LAST COLUKM ;
C

130 IFIH-NI 135,1401135
135 H=M»1

GO TO 60
C
C TEST FOR L - SECOND FROM LAST COLUMN •
C

140 IF(L-IN-ll) 145,150.145
145 L=L»1

GO TO 55
150 IFIINO-ll 160,155,160
155 1NO=0

GO TO 50
C
C COMPARE THRESHOLD WITH FINAL NORM
C

160 IF(THR-ANRMX1 165,165,45
C
C SORT EIGENVALUES AND EIGENVECTORS
C

165 IO=-N
00 165 1=1, N

DO 185 J-I.N
JO=JO»N
M«=J»(J«J-JI/2
IFUILLl-AIMMI) 170,165,185

170 X=A(LL1
A ( L L ) = A ( M M }
A1M«I=>X

175 00 180 K=1,N
ILR=IQ»K
IKR=JQ<-K
X = R I I L R )
RIILRI-RIIMRI

180 R(I .1R)=X
185 CONTINUE

R E T U R N
END
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APPENDIX B

DETAILED FLOW CHARTS OF COMPUTER PROGRAM

PERTINENT BRANCHING SYMBOLS

OR

BRANCHING ON SAME PAGE

TO PAGE

OR

FROM PAGE

BRANCHING BETWEEN PAGES
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r SF,AF,SIGNF.YF(1(,YF(2l,YFI31
WDUUAX
TYPE

DO 15
DO 15

DO IS'

1- 1.200

L- 1.150 '

"iT-Tfl 1 '
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SUBROUTINE SOLVE
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FROM PAGE 41
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! |32t( TFllI.KI-TIK.il |

j-jgU 1 I

IO_320-tV.TNN~~l I i jaol VFl^Ki-TIKlTn \ \

miI.W-TIK.II | ! ! I !~ - IT ' I !

>

1^

SAVE1 - 11
SAVE: * n
SAVE3 - N
FIRST -.FALSE.

\ •

1

BRANCH - R
1K-0

SIGNS- -1.0

BRANCH - P
IK -100

SIGNJ--1.0

| $-
1-0

Nil - NI

SIGN - 1.0
[ f'TRAN - g

BRANCH - Q

SIGN2-41.0

380

SAVE4-IF1
SAVES IF 2
SAVE6 NF

IF1 SAVE1

NF SAVE3
SAVil SAVE4

SAVE; SAVES
SAVE3 SAVE6
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HHID-
HHI2J • AI
MH (31-0.
HHI41-Q.

IHI1I- AlKK,nt< 1/7

IHI2J-0.

IHI3I-0.

IH(4)-AIKJ3). 1/3

HH11) • AIK.I3) • 1/2
KM |7)-a
KH131-0.
HHI4)-A(KK.m* 1/2

HHI21--AIKJ3) • 1/2

HH(1I-A(K.I3J.>/2V2
HH|2)-A(KK43)'s/7>5
HH13I-0.
HH(4) - a

[ AUCl.nl-0,0 |

P *" DO 640*^ ~H • 1 ji FF ""]

| lAIX1.n)-A|KU1)* I

."I TFUKi,12|.CU;.l»| |

•- —--f — J

650 [ CONTINUE [

—-—¥----

I A(K,n) • HH(11-HH[2»*HHI3>-HH(4)
AIKK.13I - HHH)tHHI2)-HHI3l-HH(4l

_pO_60p

DO 600
.'I'jfl.
:i • IJ<FF~

CIKUU-O.O I
DO 590^ 12-^ .Nil

C(K1.^)-C{K1,I1) *

COO | CONTINUE j

•--^-oo-esoi

630

~K)~ ~tWF 1

T

r -^
DO 620 J 11 - 1,NH

| AIK1J

,al°[ TF2IK1~ia • C1I2J1IJ

L"--^"-;-
620 [ CONTINUE \

00665

ooeS 1
B-1.N1 "I r D0663~

V-VTF--; r ---»-«'

F |F

<^>|F

+'
1 C,-V? 1

-LJ LJ: LJ. .ij
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APPENDIX C

INTERACTION TERMS INCLUDED IN HAMILTONIAN MATRIX

In nonsigma states the spin-orbit interaction is of first order and is
usually the dominant interaction. In sigma states the spin-orbit interaction
is very small and, in fact, is on the same order as the spin-spin interactions,
Therefore, nonsigma and sigma electronic states are discussed separately.

NONSIGMA ELECTRONIC STATES

The diagonal elements, #(£,i), of the Hamiltonian matrix in terms of the
basis functions for nonsigma electronic states, are given by

BS(S (Cl)

where A is the spin-orbit coupling constant. The result is the same for both
lambda substates; therefore, for this discussion A. can be considered positive.
Equation (Cl) can be written

S(S - (A

where Y = A/B, or as

- Z? (C2)

- A2 - 2Z? (C3)

The criterion for regular or inverted electronic states is specified by
the sign of A or Y; that is, if A > 0, the state is regular, and if A < 0, the
state is inverted.

SIGMA ELECTRONIC STATES

The spin-orbit interaction of sigma electronic states is of second order
and A = 0. Therefore, the spin-orbit and spin-spin interactions are of the
same order and both should be considered. Both of these interactions depend
on the |z|, and their combined effect is included in the following analysis.

The diagonal elements of the Hamiltonian matrix in terms of the basis
functions for sigma electronic states can be written
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where AE^ is the separation of the spin substates for N = 0 caused by spin-
spin and second-order spin-orbit interactions. Figure 14 illustrates this
separation and indicates the degeneracy of the rotational levels with the same
value of N and |z|. The number of energy separations is obviously related to
the spin multiplicity. There are, for example, zero energy separations for
singlet and doublet states, one for triplet and quartet states, two for quar-
tet and sextet states, etc.

The values of A£"̂  in equation (C4) are found by extrapolating the energy
separations shown in figure 14, to N = 0. The reference level for Afî  is
usually chosen to be the matrix element(s) with the lowest value of |z[.

Whether a sigma electronic state is a regular or an inverted state is
determined by the sign of A£. If A# > 0, the state is regular, and if A# < 0,
the state is inverted.
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TABLE 1.- ROTATIONAL MATRIX ELEMENTS

[The nonvanishing matrix elements <fiV'|a|fiJ>, where <a> = / (J* ,e7)<7(J'n' ;J,ft).
The factors for a given matrix element are taken from different rows of the
same column of this table. The choice of columns depends on the value of J'-J.
In all cases, the first factor is taken from row one and the second factor from
row two or three.]

Factor

f (J', J)

g(J', ft; Jil)

g(j', Jl±l ; JI1)

R Branch
J' = J + l

r 1-1/2
[4(J + I)J

r i1/2

2[(J + il + l)(J-JH-l)J

?[2(J±n-H)(J±il + 2)]'

Q Branch
j' = J

r 1-1/2
[4J(J-H) / (2J+I)J

2J1

[2( J + fl)(J±n+l)]l/2

P Branch
J'- J-l

r 1-1/2
[4J]

r ll/22[(j + n)(j-n)J

±[2(j + n)(j + n-i)]l/2

TABLE 2.-<ff a> BASIS MATRIX FOR A SPIN-FORBIDDEN 2R <- 4E+ TRANSITION
e

w

XX

-IN

ro|t\J
-i-
o

e-,a7

;-7i K-f J
Re9

a9 Reloa|0

TABLE 3.-<ff a>P-BRANCH BASIS MATRIX FOR A SPIN-FORBIDDEN 2E TRANSITION

2n rojoj

O

XX
~-o
-Iro

IOIOJ
+
O

XX

-leu

roicvj

"b

R e i a ,
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TABLE 4.- SIMPLIFIED FLOW CHART OF COMPUTER PROGRAM

Input:
1I) Initial state parameters
(2) Final state parameters
(3) Jmin and Jmox
(4) Emission or absorption

Hamiltonian matrix:
(1) Set up
(2) Symmetrize
(3) Diagonalize
(4) Save transformation matrices

Rotational matrix:
1I) Set up
(2) Symmetrize
(3) Transform

Allowed transitions

Store transformed rotat-
ional matrix elements and
code for transition moments.

No Test if all transition moments
have been included.

Square transformed rotat-
ional matrix elements to get
Hani- London factors.

i

Store Hdnl - London factors.

Output:
Hbnl - London factors
or intensity factors.



TABLE 5.- A DIAGRAMMATIC REPRESENTATION OF THE ELECTRONIC-ROTATIONAL
HAMILTONIAN FOR A 2n ELECTRONIC STATE IN TERMS OF BASIS
FUNCTIONS <A£r£|<fie71

—ICO
—|CJ

, I I 1/31 1/3 ll
2 l\2 Jl

-
2 2 H|2 122

OH KM

TABLE 6.-<fl a> BASIS MATRIX FOR THE ^-BRANCHES OF A
&

TRANSITION

/\

/\
COI CO

/\

/\

/\
-3

—ICO

roloo

\IO|CO

rolcvj

rolco

/\
-|CJ

rOICO

/\

Re(2,4)
xa(2,4)

Re(2,3)
xa(2,3)

Re(2,2)
xa(2,2)

Re(-2,D
xa(-2,l)

Re(l,3)
xa(l,3)

R e ( l ,2)
xa(l ,2)

Re(-l,D Re(-l,2)
xa(-l ,2)

Re(-l,2)
xa(-l,2)

Red,D Red, 2)
xa( l ,2)

Re( 1 , 3)
xa(l ,3)

Re(-2,l)
xa(-2,l)

Re(2,2)
xa(2,2)

Re(2,3)
xa(2,3)

Re(2,4)
xa(2,4)



TABLE 7.-<R ot> BASIS MATRIX FOR THE P-BRANCHES OF A
&

- TRANSITION

XX
~5

—icy
XX
-|OJ
rO|C\J

\ i

-ReO, 0
xa(l,0

-Red. 2)
xa(l,2)

-Re(2,D
xcr(2,0

-Re(2,2)
xa(2,2)

Re(3,2)
xa(3,2)

-ReB,2)

xa(3,2)

Re(2,2)
xa(2,2)

Re(2, 1)
xa(2,l)

Red, 2)
xa(l,2)

Red.D

TABLE 8.- DESCRIPTION OF INPUT CARDS FOR PROGRAM

Cnrrtl*ur u
number

1

2

3

Columns

1-3

6-7

10

11-20

21-30

31-40

1-5

6-10

1

Format

F3.I

F2.0

Al

EIO.O

EIO.O

EIO.O

F5.I

F5.I

Al

Content

Spin

A

+ or-; i.e. symbol for
Z states

Y for nonsigma states.
AEID/B for Z states.

AE(2)/BforZ states*

AE(3)/8forS states*
*as needed

Jmin

Jmax

A for absorption.
Anything for emission.

Number of
cards per

case

2

1

1

Comments

The first card contains
the information for the

initial state and the
second card contains
the information for the

final state.

It is recommended
that ABSORPTION or

EMISSION always be
used.
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TABLE 9.- COMPUTER PRINTOUT FOR SAMPLE CASE 1

INVERTED TRIPLET

HflNL-LONDClN FACTORS FC1R THE ALLOHEO

SIGMA *- TO REGULAR T R I P L E T PI TRANSIT ION tH EMISSION

INITIAL S T A T E ENERGY S E P A R A T I O N = DELTA E ( ! ) /B = -10.000
FIN»L S T A T E SPIN-ORBIT COUPLING CONSTANT = A/B - t - 100.000

IN SIGMA S T S T E S WHEN J<S, THE F DESIGNATION FOR THE LEVELS
MITH THE SAKE VALUE OF J ARE ASSIGNFD »S 2SH FP° THF
HIGHEST ENERGY LEVELi 2S FOR THE 'IFXT HIGHEST, ETC.

J VSLUE .IS FOP. THr INITIAL (IE. UPPER) ST1TF.

J
0.0
!.0
?.o
3.0
4.0

J
0.0
1.0
?.o
3.0
'.0

J
0.0
1 .0
2.0
3.0
4.0

J
0.0
1.0
7.0
3.0
4.0

J
0.0
1.0
?.o
3.0
4.0

J
0.0
1.0
?.o
3.0
4.0

J
0.0
1.0
?.o
3.0
4.0

J
0.0
1.0
2.0
3.0
4.0

J
0.0
1.0
2.0
3.0
4.0

SUM
0.000000
5.999999
9.999997
13.999997
1 7.999998

SUM
0.000000
5.999999
9.999998
13.999997
17.999995

SUM
2. 000000
5.999999
9.999999
13.999999
17.999998

SUM
0.000000
5.999999
9.999997
13.999997
17.999998

SUM
0.000000
5.999999
9.999995
13.999997
17.999991

SUM
7.000000
5.999999
9.999999
1?. 9999°9
17.999998

SUM
0.000000
5.999999
9.999997
13.999997
17.999998

SUM
0.000000
5.999999
9.999998
13.999997
17.999998

SUM
7.000000
5.999999
9.999999
13.999999
17.999998

Rl
0.00000
9.52267F.-01
1.34594F 00
1.70604E 00
2.056736 00

SR21
0.00000
1.000006 00
I.49940E 00
1.99679E 00
2.49098E 00

TR31
0.00000
4.77330F-02
1.S3B60E-01
2.94775E-01
4.47505E— 01

01
0.00000
1.44596E 00
2.29541F 00
3.080J9E 00
3.84303E 00

R021

0.00000
1.49940E 00
2.49497E 00
3.48453E 00
4.46575E 00

S031
0.00000
5.46360E-0?
2.09S18E-01
4.35169E-01
6.91215F.-0;

PI
0.00000
4.94976F-0!
9.51723E-01
1.37756E 00
1.79069C 00

OP21
0.00000
4.98181E-01
9.93554E-01
1.43495E 00
1.97123E 00

RP31
7.99041E-04
9.23EOBE-03
5.95046E-0?
1.45440E-01
2.49970F-0!

OR12
0.00000
0.00000
9.770B8F-02
3.113B6F-01
6.09323F-01

R2
0.00000
0.00000
5.99281F-04
4.34552E-0?
1.38119F-02

SR32
0.00000
0.00000
9.02491^-01
1.685516 00
2. 37̂ 40= 00

P012
0.00000
1.25636"=-01
5.390?25-01
1.179371= 00
! .95697E 00

02
0.00000
5.99281F-04
8.59462r-0?
2.91786F-02
6.70398F-02

P.03?
0.00000,
2.87376E 00
4.45094F 00
5.788935 00
6.97250F 00

C1P12
0.00000
1.63153"=-01
4.95369F.-01
9.313115-01
1.415B3F 00

P2
0.00000
5.69398F.-03
1.788B7E-02
3.90941T-02
7.-.6605F-02

OP32
1.999206 00
2.83136E 00
3.48773E 00
4.03135E 00
4.515076 00

PR! 3
0.00000
0.00000
0.00000
2.58351E-01
5.28560E-01

OP23
0.00000
0.00000
0.00000
3.?2!96E-01
7.45205E-01

P3
0.00000
O.OOGOO
0.00000
7.72769E-02
2.??4̂ !E-01

no? 3
0.00000
0.00000
l.«6!5^ 00
2.25773E 00
2.e"=66E OC

P023
0.00000
0.00000
1.64310E 00
2.902956 00
4.01771E 00

03
0.00000
0.00000
2.45525E-01
6.7CI73E-01
1.236%3F 00

NP13
0.00000
2.B1EOOF 00
2.e4?67F 00
2.89796E 00
2.94918E 00

OP23
0.00000
2.996.12E 00
3.32189E 00
3.72596E 00
*. 157116 00

P3
0.00000
1.83268F-01
4.90331E-01
8.66373E-01
1.27925E 00



TABLE 10.- PARTIAL PRINTOUT FOR SAMPLE CASE 2

SQUARE ROOT OF ROTATIDNAL INTF»SITr "=«CTCRS FOR THE F3"B!ODE'-!

REGULAR QUINTET SIGMA - TO INVLPTF.O TRIPLE' PI TRANSITION IV t

INITIAL STATE F.NFPGY SEPARATION = DELTA EO1/P = 5.000
DELTA El?)/? = 10.001

FINAL STATE SPIN-ORBIT COUPLING CONSTANT = A/6 - Y = -50.000

IN SIGKA STATES WHEN J<S, THE F OESIGNATION FOP. THE LEVELS
WITH THE SAME VALUE OF J ARE ASSIGNED IS 2S»i FOP THE
HIGHEST ENERGY LEVEL, 7S FOR THE NEXT HIGHEST, ETC.

J VALUF IS FDR THE INITIAL (IE. LOWER! STATE.

J

0.0
0.0

1.0
1.0
1.0
1.0
1.0
1.0

2.0
?..o
2.0
2.0
2.0
2.0
2.0
2.0

3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0

4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0

J

0.0
0.0

1.0
1.0
1.0
1.0
1.0
1.0

2.0
2.0
2.0
2.0
2.0
2.0
2.0
2.0

3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0

.0

.6

.0

.0

.0

.0

.0

.0

PARTIAL
SUM

0.000000
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.117959
0.023592
1.42'3921
1.139137
0.427! 77
0.427177
2.008190
3.012286

0.278747
0.069687
1.691597
1.691598
0.676639
0.676639
2.279954
3.6479C8

0.432154
0.123473
1.944692
2.222507
0.926045
0.926045
2.604501
4.340835

PARTIAL
SUM

0.000000
0.000000

0.000000
0.000000
0.000000
0.000000
0.000000
0.000000

0.936696
0.187339
1 .459941
1.167952
0.437983
0.437983
0.000000
0.000000

1 .618215
0.404554
1.727227
1.727228
0.690892
0.690892
0.000000
0.000000

2.223528
0.635294
1.076469
7. 258820
0.941176
0.941176
0.000000
0.000000

TRANSITION
MOMENT

-2,?
-1 ,3

-3,2
-2.2
-1,2
1,2

-2,3
-! ,3

-3.1
-2,1
-3.2
-?.,2
-1,2
1,2

-2,3
-1.3

-3.1
-2,1
-3.2
-2,2
-1.2
1 ,2

-2,?
-1.3

-3,1
-2,1
-3,2
-2.2
-1,2
1.2

-2,3
-1.3

SRI

0.00000
0.00000

0.00000
0.00000
0.00000
0. 00000
0.00000
3.00000

-3.4Z2P3E-01
1.26445E-02

-l.iS°2?F 00
-8.78636E-02
'.5J556E-03

-2.52556F-03
-I.16660F-01
-6.70659F.-03

-5. 247576-01
7. 900226-02

-1.29271E 00
-1.42891F-01
5.'. 6099F.-03

-5.46099E-03
-l.65890F.-01
-1.26799E-02

-6.5!23!C-01
'4.783«E-02

-1.3H147E 00
-2.02945E-01
o. 66142F-03
-9.6614?E-03
-2.19694F-01
-2.09i76F.-02

TR2!.

0.00000
0.00000

0.00000
0.00000
0.00000
0.00000
0.00000
0.0000"

-2.83692F-0?
-l.f-23<t<=E-01
-9. S2179E-02
1.05363E 00

-6.33814E-02
6.33B14F-02
1.40560F 00
1.68308F-01

-5.798S5F-02
-2.60322F-01
-1.4J85ZE-01
1.2B258E 00

-1.02341F-01
1.02341F-0!
U4B901F 00
2.37626E-0!

-8.94542E-02
-3.44040C-0)
-1.89761F-0!
1.45964F 00

- 1 .'45509E-01
1.45509E-0!
I.P6010F 00
3.15036E-01

UR?'

0.00000
0.00000

o.onooo
0.00000
0.00000
0.00000
0.00000
0.00000

-!.4->549F-03
-j .48931F-02
-4.95269E-03
1.03469E-01
6.50502f-01
-6.50502E-01
'..37407F-0!

-1.7J740E 00

-3.7fO! 2F-03
-3.2E362E-32
-9.J62B7E-03
1.61780F-01
6.16171F-01

-R.16J71E-01
1.87819E-01

-1.8°507F 00

-7.0*959E-03
-5.33151F-02
-!.40ot9E-02
2.25348F-01
9. - M ogp-ol

-9.51 199 F-01
2.439*76-01
-2.05941E 00

TRANSITION
MOMENT

-2,3
-1.3

-3,2
-2,2
-1.2
1 ,2

-2,3
-! ,3

-3,1
-2.1
-3,2
-2,2
-1 ,2
1,2

-2,3
-1 ,3

-3.1
-2,1
-3,2
-7.2
-1.2
1.2

-2,3
-1.3

-3,1
-2,1
-3,2
-2,2
-1.2
1,2

-2,3
-1.3

"'.2

0.00000
0.00000

0.00000
0.00000
0. 00300
0.00000
0.00000
0.00000

9.64538E-01
-3.56316E-02
1.204I7E 00
8.89680E-02

-2.5=730E-03
-2.55730F-03
0.00000
0.00000

l.?6436E 00
-6.93787E-02
1..30626E 00
1.44388E-01

-5.51820E-03
-5.51820E-03
0.00000
0.00000

1.47719F 00
-1..08503E-01
1.39271E 00
2.04596E-01

-9.74003E-03
-9.7'.003E-03
0.00000
D. 00000

SRZ

0.00000
0.00000

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

7.96612E-02
4.29311E-01
9.94524E-02
-1.07194E 00
6.41780E-03
6.41790E-02
0.00000
0.00000

1.39719E-0!
6.27275F-01
1.44348F-01

-1.29602E 00
1.03413E-0!
1.03413E-01
0.00000
0.00000

2.02910E-01
7.90388E-0!
1.91305E-0'.

-1.47151E 00
1.46693E-0]
1.46693F-01
0.00000
0.00000

TR32

0.00000
0.00000

0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

4.01695.E-03
4.!C681E-0?
5.01494F-03
-1.04789F-01
-6.5F678F-01
-6.5B678E-01
0.00000
0.00000

9.05972F-03
7.91162E-D2
9.35991E-03

-1.63475E-01
-8.24722F-01
-8.2472JE-0'.
0.00000
0.00000

1.60360F-02
1.204B1E-01
1.51189E-02

-2.271B2E-01
-°.5893RF-01
-9.5»933E-0:
0.00000
0.00000



TABLE 11.- PARTIAL PRINTOUT FOR SAMPLE CASE 3

SQUARE ROOT OF ROTATIONAL INTENSITY FACTORS FOR THF FO»910DE1

REGULAR OUHRTET TO REGULAR DOUBLET PI T R A N S I T I O N IN APSf">PTI!}N

INITIAL S T A T E SPIN-ORBIT COUPLING CONSTANT = A/E
FINAL S T A T E SPIN-ORBIT COUPLING CONSTANT = A/f l

50.000
0.000

LAMBDA DOUBLING OCCURS IN THE SPECTRUM, BUT THE SOUA'E ROOT OF THE INTENSITY
F A C T O R S FOR ONLY ONE LINE OF EACH LAMBDA D3UBLET IS PRINTED. T-IE VALUE?, FC» THE
OTHFR LAMBDA COMPONENTS ARE FOUND BY CHANGING THE SIGN OF THF NU1BEP.S PRINTED, IF
THE TRANSITION MOMENT DESIGNATION CONTAINS » MINUS SIGN.

J VALUE IS FOR THE INITIAL (IE. L O W E R ) S T A T E .

J

0.5
0.5
0.5
0.5
0.5
0.5

1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5

2.5
?.5
2.5
2.5
2.5
2.5
7.5
?.5
'.5

3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5
3.5

4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5
4.5

PARTIAL
SUM

1.9?7786
1.331859
0.665929
0.000737
0.001474
0.002212

2.389426
2.3B9426
1.194714
0.005280
0.010559
0.010559
0.000002
0.000008

7.829018
3.394822
1.697411
0.016S70
0.033641
0.028034
0.000027
0.000089
0.000000

3.J75557
4.367409
7.183704
0.038289
0.076578
0.057434
0.000136
0.000405
0.000000

3.716023
5.30860*.
2.654303
0.072285
0.144570
0.101199
0.000454
0.001270
0.000001

TRANSITION
MOMENT

-2.1
-1.1
1.1

-1.2
1.2
2,2

-2,1
-1,1
1.1

-1.2
1.2
2.2
1.3
2,3

-2.1
-1.1
1.1

-1.2
1.2
2,2
1,3
2,3
2,4

-2,1
-1 ,1
I .1

-1 ,2
1,2
2,2
1,3
2.3
7,4

-2,1
-1.1
1.1

-1,2
1.2
7,2
1 .3
2,3
2,4

SRI

-1.22407E 00
-5.77031E-01
-4.08022E-01
-1.35756E-02
!..91969E-02
-4.07269E-02

-1.26212E 00
-8.92455E-01
-6.310S1C— 01
-4.19504E-02
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Figure 1.— Typical energy level diagram of a II -» 3S electronic transition.
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Figure 2.— Vector coupling diagrams and selection rules for Hund's cases (a), (b), and (c).
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Figure 3.— Unitary transformations that transform the Hamiltonian matrix from basis functions
to symmetrized basis functions for 32 and 42 electronic states.
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Figure 4.— Designation of the rotational levels for a 4I1 electronic state.
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Figure 5.— Designation of the rotational levels for a 3S electronic state.
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Figure 9.— Branch designation scheme for spin-forbidden 2FI •«->• 4FI transitions.
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Figure 10.— Possible nonzero matrix elements in the transformed rotational matrix of a 32 ->• 3X
transition; X any nonsigma electronic state.
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Figure 11.— Possible nonzero matrix elements in the transformed matrix of a 3X -> 3 Y transition;
X and Y any nonsigma electronic states.
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Figure 12.— Shifting of the J = 1 matrix elements of a 7II electronic state so that the position of
the elements in the matrix correspond to the designations for the fully developed matrix.
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