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ABSTRACT

In Paper XIX of this series a distorted wave approximation to the
T matrix for atom-symmetric top scattering was developed which is correct
to first order in the part of the interaction potential responsible for
transitions in the component of rotational angular momentum along the
symmetry axis of the top. A semiclassical expression for this T matrix

.is derived by assuming large values of orbital and rotational angular

momentum quantum numbers.
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In P#per XIX of this seriesl a distorted wave (DW) approximation to
the T matrix for the scattering of an atom by a symmetric top (ST) was
derived. The perturbing potential was taken to be that part of the
interaction potential responsible for transitions in the component of
angular momentum along the symmetry axis of the top. The T matrix was
expressed in terms of the generalized phase shift (GPS) solution to the
scattering of an atom by a Symmetfic top with a cylindrically Symmetric
potential. In.this paper a semiclassical approximation is develéped by
assuming large'orbital and rotational angular momentum quantum numbers
except for the angular momentum component along the symmetry axis. At
the total energy of interest this component remains small since it is

assumed that the moment of inertia about the symmetry axis is small.

I. DISTORTED WAVE T MATRIX

1

The interaction potential V(sL,S) can be expressed as

V(,S) = ) (an2y/2

1/2 . 2 .

whefe /v is ﬁhe distance between the atom and the ST center of mass; .S,
represents the three Euler angles which specify the orientation of the
principle axes of the ST with respect to a coordinate system whose =z
axié.is fixed along the direction between the atom and ST center of mass;
V£é6>z) is an expansion coefficient dependent oﬁ /T DQ(S)mO is the

usual representation coefficient of the three-dimensional rotation group.



This interaction potential can be partitioned into an isotropic part
V(L) given by

-1/2 '
Vo0 () (2)

V() = (8n?)
or a cylindrically symmetric part2 VO(/m,S) which is ‘adiabatic with
respect to the component of angular momentum along the symmetry axis and
is given by

Vo(/L,S) = % (8r?) ~/2(2£+ 1)1/2V20(/z,)D2(S)00‘ . (3)

For later use we also define the potentials VO(/t,S)' and Vm(/L,S)

.

Volae,8) = Vo(m,8) - V() 5 - ' (4)
1 1
vm(/z_,s) = % (snz)_/z(zz + 1)/2V2m(/(.)D2(S)mo . (5)

The ST eigenvalues &(Lv) are given by

2 2.,2 ’
Sy = BRU + 1), Ky [_;_ 1) )

= 21, 2 |1, 11

where £ 1is the rotational angular momentum quantum numbef'and Vv the
quantum number of the component of angular momentum along the ST symmetry
axis; I3 1is' the moment of inertia about the symmetry axis - and I; the

remaining moment. From Eq. (6) it can be seen that whem I3 << I, energy



conservation requires that the index Vv remains small. The channel wave

number k(&v) is defined in the usual way:
2 .
kK3(v) = ZBIE - E(w)] )

where E is the total energy and M is the reduced mass of the atom-ST
system. .
Solutions of the wave equation corresponding to differenﬁgparts-of

the interaction potential can be defined. First we have the isotropic

+ :
solutions w(—)(Aﬁvl/L) which are solutions of the radial equation

[ E%; - k(A;g 2 %%—V(r)_+ k2(£V>]W<%X(A£VI/L)1 = 0 (8)

with asymptotic form

lim w‘i?(klvlfb) = exp[iik(lv)/L] . (9)

JLr ®©

The isotropic phase shift n(AV) is defined by the solution of Eq. (8),

- YOAv|a) , which is finite for /T =0 :

JA+L A+l

Vol = s WV ol + oM e® ol
exb[Zin(AQv)]] ; L ~_;;f;; (10)

‘ . . v ""‘- - + L.
For later use it is convenient to define the quantities f(_)(AQvI/L)



/2 (=)

£ owlay = kv ™2y aav) (11)
ol = DY ke 2 P g exp 2inav)) . (12)
s o P ) 555

next define the GPS solutions P (k%v]/{,s) and Q (sz]/i,s)

of the scattering problem with interaction potential VO(fZ,S) . Letting
the single index Y represent the three indices A, %, v the GPS

quantitieé are solutions of the following equations:
) - - . +) ~
5% exp (10" (T, = —iu/ﬁszds'dS"vo(/z,s')F( ) §1A,8",8)

F® Glcst, s e 0™ Gla,sm - ¥ Glaust, s

exp[10'7) (F41,5M 11 a3

fgexp(iP(i)(vln,S)) = iu/aﬁszds'dS"\'r()(n.S')F‘”(y]n,s,s'>*

FP (v lrys™, s Y exp (i ) (v ,8™) - Fy 87,8 Yexp (2 ¢y ,5™) ]

(14)

' +y -
The quantities F(_)(Ylfi.,S,S") appearing in Eqs. (13) and (14) are

defined as

'F(i)(ﬂm,s,s”) = jz\-x(ﬂ/\]s)‘f(i)(ML\—).V()x(?IAls")* (15)



where N represents the three indices of A, &, L and

cGIAlsy = @)Y Cnlren + 1@+ e+ 012 Y e
aB
L2 2 LA XL L .
- - D (S)@’\_) B . ) (16)
~v o v-a)|0 -B B SL I -

The boundary conditions satisfied by the GPS solutiomns are

1n QT FlaLS) = 20 . (17)
S0 - i .

lim Q(+) (Y|#,S) = lim Q(_,)V(ﬂ ;8). (18)
M+ 0 S A

lim P(+)(y|/1,s) = =2n(y) (19)
M >0 : :

1im P0G = lim 2P y] L8 (20)
M+ 0 1> 0

. . . + ) 3 ’ ’ s
The quantities P(_)(Ylf(,s) and Q(_)(YI/(,S) are related as follows:

p( )(xzlex,s> = -Q( )(Al—vI/Y,{WOO}S{NOO}) (21)
where the notation {m00}S{m00} refers to a product of rotations.

From Eq.'(XIX—84) the DW T matrix for transitions from initial

states (A2v) to final states (ALV) when VvV # V is given-by3



Tgw(y|§) = (L gV (u/4ﬂh2)fd/1dedS'dS"Vv_G(/L,S).

16 (v|E),8'8) Fexp (=127 (v L5 - ¢ v]EaLst, 9"
exp[-12 P (v |, 1IFD () 2,5,5M Texp 110 G 4, 5™)]

O G r,s,5M texp 11087 Gl Ls™ ) (22)

where Vv_s(/L,S) is given by Eq. (5) and

G(i)(y|R|/(,s',s) = ) (—1)A'+2'[(2x +1)¢22 + 1) (2L + 1) (2L + 1) (2L’ +'1)11/2
LA
LL'L/\LL'L ) _ .
Z v T X A8 ET ([ A)x (RRV[A 12 'L]S) T . (23)
2% 2! '

In terms of this T matrix the total degeneracy averaged cross-section

I(AV]RV) is
== 43 (2% + 1) L+2+%,, L Y
I(Av]v) = a0 ? ;gi G (-1) lTchxzv]sz)]. .28

II. SEMICLASSICAL APPROXIMATION

The semiclassical approximation to T;w(yl§) is obtained by |

considering Eq. (22) for the case

AL >> (25)

(|
<1
<



_?'f<t>

For large values of XA and 2 Eq. (8) is solved by WKB techniques.

Under the conditions of Eq. (25) it can be shown that4

Al = £ DT a6 Gl E - 0 + ix P Flare - D1

(26)

(

+ - + - .
The quantities 6(_)(Y|/L) and ¥ ')(Yl/l) are defined as follows. With

—_ 3 1 2
cFlny = 1- By - O A e

-and ,fLo defined such that

C(w?l/_zo) =0
we have
o U AN VU
0 (YIfL) = _HR—)L '/fl /-('VZC(.?]/\LI)T (28)
e(')(?l/u) = ze(”(?l/zo) —e(”(?ln) . (29)
With

a@lry = - el

- 1laa’ (30)

we have



- kP iny - LGl 6D
OG0 = aP Gy P alo (32)

From Eq. (15A) of Appendix A we have the semiclassical expression for

the 3-j symbol:

o 1)1/2{_2 i Gfu} = PR o, 5 o 6
Substituting Eq. (33) intg Eq. (16) yields
x@lals = @2 @ M M @8 dhasn, g 5, 60
whe;e
) U = {350} (35)
vo= {037} (36)

When Egs..(26) and (34) are substituted into Eq. (15) the semiclassical

: (i) - " . ,4
expression for F (YI/L,S,S ) 1is obtained:

PO Glassm = DA st ROt (37)



with

E o x® Gl o (38)

)

(£)

=1

0 oG o (39)

The semiclassical expression for the 6-j coefficient appearing in

LL'L L' L L
22+ 1)1/2, _ } = RS e (40)
A XA A=A A=A AT-A

With the aid of Egqs. (26), (36) ‘and (40) the semiclassical expression for

Eq. (23) isS

G(i)(le]/L,S',S) is derived in Appendix B:

B ylin,she = DEE O Y2 e ® Gaua)
DM (usW)) 7 5., 6|5y . (41)
where R(i) and T(i) are given by Egs. (38) and (39) with Yy replacing
5.

. Equations (37) and (41) are substituted into Eq. (22) to obtain
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Tgw(vl?) = DM @YY L+ plf? (u/amh?) fdn [as Vo (2,8)

L S
DL(USW)g_z,x.'A £ () n) Yexp (-2 ¢y LR e Ty

-1

-1
£ iy ) Fexp (-2 (v | 2R s

Y 1EM Gl

exp (10 G4 LEP TPy - £ OG0 Y 107 FlALE TN 2

() (£)

Semiclassical expressions for the GPS solutions P and Q
appearing in Eq. (42) are obtained by substituting Eq. (37) into Egs.
(13) and (14) to give

-1 -1
e @@ Gl = @ amdi RS st

£ G0
g™ <?)/L>*exp<iq"*)(§)/n,s>> BPOF RN

-1 -
exp<1q‘ s R‘“’) RO T G® @y (43)

& e @@y, = (+)(1u/h2)v R Psr Py @ gy
£ o) rem 2P (vl L8 - 1P )y

— .._l - - _l .
* *
exp(iP(+) (v|n R R(+)ST(+)T(_ > ) (44)
¥ *
It is assumed that the product f(+)(Y]A_) f(i)(yl/;), is highly
oscillatory and terms containing it can be neglected in Eqs. (43) and (44)

which then become
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-1 -1 .
& ew@® Flans = @ amni (GRS T E® ) Dl 2
exp (10 7] 2,9)) . (45)
S ep@® a8 - (+)(1u/ﬁz)v x5 ¢y 2
exp (125 (v 1,8)) . | (46)

It is now an easy matter to intégrate Egs. (45) and (46) w1th boundary

conditions specified by Egs. (17) (20) to obtaln the sem1class1cal

) )

expressions for P and Q

‘ . . _ - ~! ’ . El L -1
(DGl = @ - @ 1£7 GRS T Haa
47
) = - 25 1o () mr a2 (oL
Qs = ) - A [T lAD T (AR ST Ya A"
. 4]
2l -1 -1
- At EP GlanTm L EY EW e (48)
. _
P ivls = o + e £V ol F ek DsrDanr
(49)
pOVynLsy = —an(y) (u/zﬁ?)f If(">(YI/L')IZV (ks yan
+ (u/ﬁz)f |f(+)(Y|/‘l )| 2 Vy A R() (+))d/7 50
With these e i () : *) i i
xpression for P and - Q the GPS quantities appearing

in Eq. (42) can be given explicitly as
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-1 1

P(+)(Y|/‘L,R(_) sty = Songy) + (u//ﬁz);((lf<-)(Y|/~c')lz\70(a',S)d/t'
(51)

) ® L T 27 () 2
PO (vlnLR ST ) = =) + WA £ (A [TV (At xsnan!

0
2 /1 +) 2=
+ WAEH [ 1A ] V(! 8)an' (52)
. |

oD FIAEPED) = @ - wmd] £ Gl F (A EsDaA
.- o

- @D €D Ga Ty 53
Q“><?|a,§“)sf(”> - @ - W] 5O Gl s
(54)
© where
x = {0 2(><(+)’(Y_I -’lo) ~xPla 0} (55)
v = {020 ¢y ) - 0 4| 0) (56)

Substituting Eqs. (51)~-(54) into Eq. (42) the semiclassical T matrix can

be written as

T D = Jan fast (a9 Ut G T AL YE A LS) (57)
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with
¥yln,) = kw2 [ (| a)exp 2iny)
= ED Gl )T asnan
0
n - .
= wmd 1EP A (0 aAn
0 :
+ M YO e aumn [ 157 ala 1 sdanT 68
and

(-t 12 (u/4mn?)

UEIF AL WV @i+t

i ' .
D (USW)Q,—E,X—K VV_G(/‘L,S) . (59)

If the terms in the product W(Yl/i,S)W(?]rL,S) containing the highly
oscillatory quantity w(i)in/t)w(i)(§|/1) are neglected we then have
after using Eq. (26)
- | MR o S
YA DY A LS = (1) [0(RRW] A ,S)exp(if " 7 (RAV]A) (X = A)
+ ix(') A |A) (@ - 2)) - Q(iisvla,s)exPcie(” (XTv] A) (X - A)

+ ix® Gl e - ) (60)

where
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ST ,8) = £70%] )P TTv) A ) exp (- GGp/A?)

1 — - *® -y - _
1P AT 2T (st + ;I;If( G| a1 (a,an
0 - '

o]

+ f |f“><m|fu>|Zvom',>'<s§>m'>> . (61)
o . '

Equations (57)-(61) give an appr;ximate T matrix for atom-ST
scattering which is first order in that part of the interaction potential
responsible for transitions in the component of angular momentum along the
symmetry axis and which is semiclassical in the orbital and rotational

angular momentum.
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APPENDIX A

With the definitions
n o= -2 (14)
m = y+ vV : , (24)

an explicit expression for the 3-j symbol is

vE = (-1)L+E+“ L+ ! - ! +'E';'Ly!‘}3'~
(L+2+7+1)!

UV -u-v
.‘-1/ N _ .
(L+m!@ -m! ZZ(—l)X L+ 2 +pu =31 =u+!
(2 - W+ W@ =TT+ )Y x (L—n—x)!(L+m—x_)!§x+n'—m)!x!
(34)

The factors in Eq. (3A) are rearranged to give

- 3 1
vEOE = (op)ltEH 51X [L+ )L - I+ miE - w7
VIRV IETEY) X L-n-)X)'@C+m=- I +n-mly!

_ L
%+ 2 -1)! R4 L+ - I@ L+~ )! 72
2+ Z + L+ 1)! @ -vIE + v)!

(44)

- 1
0 - u+ 0l - ut+ )7
(L -+ !

Under the conditions



16
2 > L,u (34)

2 > L,v : (64)

an approximétion to the 3-j symbol may be derived by using the fact that

~ N , (74)

for N much larger than k and 2 .

Using Eq. (7A) we obtain

(2+E-,L)!:|% _ 1 (84)
AL+ T+L+ 1) (Q_l_z)m,éI
o _ v Y
2+1L - IR+ L - 0! = LHu-
CriepegiGiste=et - @ o
1
e aE W - (104)
Substituting Eqs. (8A)~(10A) into Eq; (44) yields
22 L = X = i u
P _ LH+u 28 + 1)72 2 2 - n
22+ 1) uv—u—v] = D {ZK—nJ [2I+n) [ ) ]
1
P X i@ rmi@-mi@+mia - w1177 (T + )X (118)
X (L-n-! +m - I+ n-mtyl [
Since

2,2 > n (124)
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1 22 L = L
(28 + 1)72 ( A ] = (cplHH (5]

0V —u=v 2
Y
¥ [(@+n)!@-n)I@+m)!( -~ m)!]

§ R AP LS ¥ G Ay ¥ Cvary ¥ Fy (238)

From Eqs. (12.B-13) and (12.B-19) of Ref. 6.
' : 1

DEC{0 B 0y = (<P T (X ALt W@ - mICr mLIE - m)1]72

nm

X L-n-X!I@L+m-x!I(x+n-mly!

(cos2 % )L (tan § )Q‘m+2X .

5 (144)

Setting B = g in Eq. (14A) and then'co@paring'wi;h Eq. (13A) we obtain

1 2 2 L
+
(28 + 7% = (-nF ok DF({Q-E'Q})Q—E LY (154)
u v “H=vj . ‘ . 3
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APPENDIX B
From Eq. (34),
- * ' - I P
xOw ALt sy Givjae'e]s)™ = LM e s % L+ 1
L', L -
with U and W givén by Eqs.  (35) and (36). From Eq. (40),
y L L) (o L t* £ v)fuv L 1
Qr+ 172 QL+ 1)) _ = - - - -
LT oey(ax n 4-2" T8 L'-T) {x-2* X=X A'-X
(2B)
From Eq. (26),
Do) = P owla)em@d® o o any + 1P -0y .
(3B)
Substituting Egqs. (1B)-(3B) into Eq. (23) yields
£, e LFA+L = ¥ -1 _(2
M (yIf a,st,s = (DY L+ 172 et £ (y)a )
C T 1 T L' L 1L L' L L
LY TR o by + 1) o ) _
LL'A'R 2= 8- T-2'1IA-A" R-A AR
L' r () o () Lo
D ({7 00Jus'W{e 7001 gy _y 4 31 D USW v 7 500 - (4B)
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In obtaining Eq. (4B) we have used the property

eimo‘D’L(S)mnei“8 - Dg({aOO}S{BOO})mn : (5B)

Since

L' 94-% T-2"

D sy E L' L . }fr L 1L
P TN o 1)[ L J{ . ]
L

L * _ * L * -
D (USW)Q'—E’X—A' = D (USW)Q'—R,A—A' D (USW)Q—E,A—A (6B)

" we can write Eq. (4B) as

- 1 }
¢B y|Rlm,st,s) = DFME L+ 1yt f(i>(y|/L)DL(USW)z_§’X_A

(an2y~2 g‘z (2L + 1)DL'({X(i)OO}US'W{e(i)OO})Qv_Q Ao
L 1 | 1] B ’

L'k
D (USWgr_g 5 p (78)

Since the representation coefficients are complete Eq. (7B) reduces to
LA +2

- T 1 L
Dt asts = O ey 07 D glontweng g5,

6({x(i)oo}us'w{e(i)oo}lusw) . (8B)

The & function in Eq. (8B) can be rewritten as



s’ ooms'w&e(‘) oot \us® . = 1) OO}US'W{B( ot H18)
The rotation and W are such that
-1y 0010 % {0 o 0}
-1
wio O 0w = {00 0¥
(105)«(123) we rewrité Fq- (8B) 2a®

o e y
®) (y|FISS 7 (- Tt (oL + NG
) oys -

50 L& 01810 38

20

(10B)

(11B)

(128)

L *
(t) (‘Y\ /\)DL (USW) Q»—i ,i__x

(13B)
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