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A THEORY FOR SCATTERING BY DENSITY FLUCTUATIONS

BASED ON THREE-WAVE INTERACTION

by
K. J. Barker and F..W. Crawford

Institute for Plasma Research
Stanford University
Stanford, California

ABSTRACT

The theory of scattering by charged particle density fluctuations

of a plasma is developed for the case or zero magnetic field. The

source current is derived on the basis of, first, a three-wave interaction

between the incident and scattered electromagnetic waves and one electro-

static plasma wave (either Langmuir or ion-acoustic), and second, a

synchronous interaction between the same two electromagnetic waves and

the discrete components of the charged particle fluctuations. Previous

work is generalized by no longer making the assumption that the frequency

of the electromagnetic waves is large compared to the plasma frequency.

The general result is then applied to incoherent scatter, and to scatter

by strongly driven plasma waves. An expansion is carried out for each

of those cases to determine the lower order corrections to the usual

high frequency scattering formulas.



Introduction

The scattering of electromagnetic waves by density fluctuations has

been a topic of general interest for many years. The first derivations,

given by Booker [1955],and Villars and Weisskopf [19553,were based on

the idea that density fluctuations give rise to dipole-moment density

fluctuations which in turn cause the familiar far-field electric dipole

radiation. Most studies since then on scattering use the same basic

idea. Rosenbluth and Weisskopf [1962] used a technique based on a far-

field expansion of Maxwell's equations,and a source current consisting of

a summation over discrete plasma particles. Birmingham et al. [1965],

although not specifically addressing themselves to the far-field problem,

showed that this scattering formula must be corrected by a factor equal

to the refractive index of the scattered wave.

When the density fluctuations are excited by the random motion of

charged particles, the scattering is referred to as incoherent scatter.

The study of incoherent scattering of electromagnetic waves by a plasma

has been given by a number of authors. Dougherty and Farley [i960],

Salpeter [1960], and Fejer [1960] independently calculated the cross-section

for random thermal fluctuations of the electron density. Hagfors [1961]

extended the theory to include a static magnetic field. Rosenbluth and

Rostoker [1962] generalized the theory to take into account departure from

thermal equilibrium. The subject of scattering by density variations, and in

particular, incoherent scattering, is thoroughly reviewed by Bekefi [1966].

To our knowledge, all of the previous work has been based on the

high-frequency assumption, i.e. that the incident and scattered electro-

magnetic waves are much higher in frequency than the plasma frequency.



In this paper we generalize this previous work by dispensing with this

assumption and derive a result which is valid for all frequencies. Of

course, we still must assume that we are not so close to a resonance that

we must include multiple scattering effects.

The source currents responsible for the scattering are determined on

the basis of two types of interaction, one depending on collective effects

and one on discrete particle effects. These two effects arise, in turn,

from the fact that the charged particle distribution function may be resolved

into two components. One is the spatially averaged part associated with

plasma waves and collective effects, and the second is the spatially

rapidly fluctuating component which vanishes when averaged over the

macroscopic volume. It arises from the discrete motion of the particles

and is basically a thermal fluctuation phenomenon.

The mechanism for the collective source current is basically no

more than a three-wave plasma interaction between the incident and scattered

electromagnetic waves on one hand, and a scattering electrostatic plasma

wave on the other hand. The plasma wave may be either a Langmuir or ion-

acoustic wave. A schematic of the process is shown in Figs. 1 and 2. In

Fig. 1, the incoming wave (co ,k ) mixes with the electrostatic plasma wave

(co ,k ) to produce a scattered electromagnetic wave (CD = co + o> , k = It + k )
y ~~y Ci p 7 ""Q! ~p 7

In the second version of the process, shown in Fig. 2, the incoming

electromagnetic wave (CD k ) decays into an electrostatic plasma wave
P ~"P

(cu ,lc ) and a scattered electromagnetic wave (CD =CD - CD k = k -k)
77 a p y> -a ~p -y''

A synchronism diagram showing the dispersion curves of the interacting

waves and the synchronism parallelogram for the conditions CD = CD ± CDu P 7

k = k ± k corresponding to Figs. 1 and 2, respectively, is shown in—a ~~f, j
Figs. J and k for the case where the electrostatic wave is a Langmuir wave

and an ion-acoustic wave, respectively



The mechanism for the source current arising from discrete particle

effects is an interaction between the electromagnetic waves again, and

the synchronous Fourier component of the fluctuating discrete component

of the electron velocity distribution function. This source current is

responsible for scattering by unscreened electrons, i.e. scattering which

does not involve collective effects between the particles.

Our general mathematical approach is as follows. The far field is

first determined in terms of an asymptotic expansion of Maxwell's equation

(Lighthill, I960). The effects of the two synchronous interactions

mentioned above are then evaluated by solving the Vlasov equation to second

order, and using the result to calculate the second order source

currents. Once the source currents are evaluated, the far field and

scattered power are determined in terms of products of certain fluctuating

quantities. If the spectrum of the density fluctuations is known, the

scattered power is determined by substituting the expressions for these

products and carrying out the required mathematical manipulations.

In the case of incoherent scatter,where the density fluctuations are

not externally driven, but are excited solely by the random motion of the

plasma particles, it is possible to carry the problem forward to a final

solution. In this paper we obtain expressions for the product of the

fluctuating quantities under this assumption, and obtain a closed form

solution for the incoherent scatter in terms of the unperturbed particle

velocity distribution functions.

Since the resulting expression for the scattered power is somewhat

involved, an expansion in inverse powers of the frequency of the

incident electromagnetic waves is carried out to gain greater insight into

the meaning of the results,and to provide a link with the results of previous

workers.
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The general theory is also applied to the case where the plasma

waves are so strongly driven by an external source that one can neglect

the effects of the random motions of the charged particles. Expansions

are again derived for a high frequency incident electromagnetic wave.

The results in this paper are based on the assumption that the

static magnetic field is zero^ that the charged particle velocity

distribution parameters are isotropic in velocity space^ and that the

medium is homogeneous.



Theory for Scattering in Terms of Current Sources

In this section we consider the scattering in general,without

specifying the current sources responsible. Our system is described

by Maxwell's equations,

(2)

and the Vlasov equation,

|| + (v • V)f + 1) (E + v X B) • |i = 0 , , (3)

where JS and E are the electric and magnetic fields, .B is the

magnetic induction, .J and JT are the first and second order current

densities, f is the electron velocity distribution function, _v is the

velocity, and T] is the electron charge-to-mass ratio.

Taking the Fourier transform of Eqs. (l) and (2),and then combining ,

yields the relation

2 p i / /•-[ > (o}\
— fk /k • £ \ - IE E "I = - E + -rr1— <P ' + JV '} . W
2 ~a\~o; a) crcc ~~a ^̂ Q \~a ~a '
a

The first order current is given by

•̂ ct = 'b e^ot= la) ̂p ̂a, }
Oi

where

Equation (4) then becomes

-e E + -— J , (7)2 ~a\-a -a a a a -^a 01 en -*a *
a



where

Taking the dot product of this equation with respect to k gives

k . E =-a

Substitution in Eq. (7)̂  and solution for E } yields—a.

c a

7

where

(v\\
(11)

a>
k (a, ) a -S e

1/2 (12)v y ^ '



Determination of Far-field Power Flux Density

We now determine the electric fields in the far-field zone,by

taking the inverse Fourier transform,and then apply essentially an

asymptotic expansion technique [Lighthill, I960], The inverse transform

of Eq. (10) is given by

a a a

If we replace <3 by its spatial transform, we obtain

Jk -(r-r')]

cTcTa k̂ -k̂ cD ) " «. «- a

(U)

Since £ » r^ , the integral over k can be evaluated in the form

exp[-ik -(r-r')] 2n2exP[-ik (03,) | r-r' |-a —- .,, a a—_—_ die _ ,
k2-k2(co ) ^ |r-x'l

G a a (15)

where je^ = r/r . Finally, the integration over r_ yields

) t-jk (0) ).r]
, (16)

where k (fiu ) = k (a> )e . From Eq. (2), the corresponding magnetic field is
~\JC \*Xt \Ju \JL ̂ Ĵ/

given by

.2 exp[j<oat-jl^(a>a) •£]

(17)

8



The time-averaged power flow is given by

T/2

= lim

T - CO

| I dt Re E(r,t) X H*(r,t),

-T/2

(18)

therefore

)= lim

T -.

T/2 <=

-T?f ['2T(2ir) / /
-T/2-7-'

dt do) d03 Re<a a
a a' (a> )-k'(a>')].r}r a ~-a a ~

0̂ a a

V) X "a ("y

If T is very large, we may take the limit
T/2

and Eq. (19) becomes

i
P(r)= lim 3i

/exp[j(oJa-â )

-T/2

dt =

> ,k -(CD )x[
a'-cr a/ L

(19)

(20)

3 ) x G/a> ,k (CD )| - (21 )or ~ â ~av a;

Upon substitution of Eqs. (ll) and (12), and simplification, we obtain

finally

P(.r) = lim -

T - <x
k (d> )) |

2
e do) . (22)â -o;v ay/ ' —r a

0

An extra factor of 2 has appeared in Eq. (22) because the integration is

carried out over positive frequencies only.



In what follows, it will prove more convenient to write

Eq0 (22) in its differential form

1/2 ,,2 „

where C2 is the solid angle into which Wave a is scattered and V is

the scattering volume.

10



Solution of Vlasov Equation

In the previous section, we derived an expression for the scattered

power as a function of the source current j[ . In this section, we
(JC

determine the latter quantity. In our derivation, we assume an isotropic

unperturbed electron velocity distribution function, and the absence of a

static magnetic field. The Fourier transform of Eq. (j) has the form

CD

of

6(k -k,,-k )6(a) -axwa ~* ~e' v a 6

where f~ is the unperturbed electron velocity distribution, and the

subscripts a, 6, and e refer to waves with frequency-wavenumber pairs

(<u _.k ) , (ox,_k ), and (<£> ^k ) } respectively. Since the incoming wave

is plane and monochromatic, it has a spectrum of the form

E = (2>r)4 E 6(a>-ffl ) 6(k-k ) , (25)
P P T5

and Eq. (24) becomes

5f

j( VV^ V
6,6

where 6,e in the summation run over the values

6 = P , e = 7 , (27)

6 = 7 , e = P , (28)

and 7 refers to the wave for which the synchronism conditions

0) = 03 + U>
a p 7 >

(29)
k = k + k ,
~a °p "̂ 7 '

hold.

11



We may solve Eq. (26) iteratively. The first order solution is

given by

a ~ &a - k^ . v uae >

where f is the fluctuating part of the solution [Kadomtsev, 1965] ,

which vanishes when averaged over the macroscopic volume, and satisfies

the equations

(0) -k -v)f = 0 • (3l)v a ~a — ua ' v^ '

V̂ ^̂ â â V̂V̂ ô ' (32)

Substituting in Eq. (26);we obtain the second order solution

(33)

a-^a- 6,6

12



Second Order Source Currents

The first order currents, obtained by substitution of Eq. (30)

into the expression m

J^ -el f^ 'v dv , (3k)~~fy j (y **-* * »-̂  ̂ "'

—oo

need not be considered further, since the contribution from the first

term on the RHS of Eq. ('JO) has already been accounted for by Eq. (5);

the second term does not contain E as a factor, and therefore does^wo y

not contribute to the scattering.

Substituting Eq. (33) into the expression

r& = e If̂ ' v dv

gives a second order current

j(2) o j(_2) + /2)

where



Source Current from Collective Effects

We will concentrate first on evaluating .J , the source current

due to collective effects. A partial integration reduces this to
f

(K+vXBj.k
v r-\, f-i *̂ T- **"-n * **-«̂ V

(o> -k -v)v a —a. ~

v. +
E,,+vXBA~0 -Q

co -k -va ̂ a ~
dv . (39)

A second partial integration,followed by expansion of the summation

according to Eqs. (27) and (28),yields

•p (E +vXB ) -k
P«-i- *""t*Q *•"• *•—Q •"—y'V

f~ dv<
'"̂'Z (<» -£ -Z)2

2 E -k (E^+vXBD)-k E XB 'k

CD -k • V / x7 ~y ~ (CD -k 'v
cc ~a ~

(E -k )(E +vXB )

-k 'v)

(CD-k -vX̂ -l̂ .7 "7

E X B,

— a — ' ^ y

k -E
"

(CD -k
7 ~7 a -a —'

E 2(k -E ) (k -E ) (k -E )E
"̂ o *̂R Â J **̂  CK *™*"fi '"̂y+ e L—̂ -̂ + ^—'p ' '̂ "l*" P

(CD -k -v) (CD -k «v)(co -k -v)^ (CD -k -V)(CD -k -v)v a -~a ~y v p ~p -* a ~a ~ p ~p -* a •*« •*•

In obtaining this equation, we have used the relations

k -E = 0-a "-a B = 0y ^^0 Aio v y -£*v ̂ y

which follow from the transverse and longitudinal character of the

linearized electromagnetic and electrostatic waves, respectively.



We will find it more convenient to write Eq. (39) in the form

k X k X~

O 00

T! eE E k /•

/ V ( v )
s

where

(k .k )[(co -k -v)(e .k ) + (k «k )(e -v)] [(k -k
~a ^7 p -ft ~ . p ""-or v-xi! ~g v~g "• ~a ~

)-(e -k )(k -k )]v7 v~ - "

-k .vo -k -v)a "12 -' v 7 -7 -̂
u -k «v) a> (cu -k -v)a ~a ~y pv 7 -7 ~y

OL u -k -v)
B **vf) ••»•*

^^J

JSoCe.-v).]. Ck ( e - k ) - e (k -k )]

(GO -k .v) co (to -k -v)
^ a -*a ***' ^ y "*7 "

co (co -k 'v)(co -k -v)
Q * /"V ?"*rf"Y **^ * *V • .̂.fw -s^-*
P vA \X> / /

(cu -k -v)'
7 "7 **

(to -k -v)(e .k ) + (k «k )(e -v)v B HB - ~B ~o: v~-a ~e/v-^g ~x

co (oo -k -v)'px a -a—'

-k *\r)e + (e «v^) k

o> (a) -k -v)
B OI "*Oi **"

(k -k ) 2(e 'k )(k -k )v (e^.k ) k
^~a.-~v' ^~-Q —a'^—QL y "-& ~-OL —>

+ K ' +
-k -v)
a -a —

-ka
-k -v) (to -k -v)(co -k -v)"^p ~ v a ~a ~ x p -^p ~

We know from the synchronism conditions [Eqs. (29)3 that

(co -k -v) = (a* -k -v) - (oo -k *v) .v ^ x; v ^ —' \ - ~ ~ . ' -

k X k x k = k X k x ( k + k ) = 0 .~-a ~a ~a ~a ~a ^- ~'/ (45)

Substituting these into Eq. (kj), and collecting terms, yields



05

V (y) = k X k
2

CD k
P 7

05 -k .V)
7 ~7

a(V\^ (VV(j$cA+ a^ ^ „ + 2 ^Q^7 ^7
(05 -k -v)'

Ct ~<X "^

> -k, -v)
7 ~7 *"

(k -k )(k -v)en*"**f'V ~u"J|y *-*^-Q -»—*«wQ

-{ *• ^ " :— + 2

(a> -k -v)v a -o: ~

Og *k )z ^^v"-^ )(^o*z)-K C§o'-£)k

'v)k^.i—,

a-k -v) 1 05 -k -v) (05 -k *v) (05 -k «v) (05 -k -v) (05 -k -v)% ~; k ^ -^ ^ a *a ~; v ~p -K-; ^ a -a -^' v -p ~'

16



Source Current from Discrete Particle Effects

The source current due to discrete particle effects is obtained in

the same manner as the source current from collective effects. We

expand the summation in Eq. (j8), using only the term corresponding

to Eq, (27); this is the only term which is dependent on the incoming

electromagnetic wave, and therefore represents scattering. We obtain

A partial integration reduces this to the form

E + v X B (E + v X B >k~ ~ ~ W - ~ ~
03 -k .Va -a ~ (03 -k -v)v a ~ '

2 ~

Here again we find it more useful to write this as

k X k X ,T2'
~a —a

(]e E f

5 /a -L
f dv V (v)
uye u

where

V (v)= k X k X 03
~ux~' —a ~a a

B
-k «v)(e 'k
- ~M- -

03(03 -k^ a -* 03 (03 -k *vYv a --a ~y

(UT)

(50)



Scattering Formula:

We are now in a position to obtain the final scattering formula.

Substituting Eqs. (42) and (̂ 9) into Eq. (23) gives the equation

> T)E k
7 7

(51)

+ j/f dv y (v)
M ttj*,f+ .—— *•—11 •̂̂ *ta*

Since the incoming flux is given by

and the classical electron radius by

P P
rQ = e /(kit eQmc ) ,

the scattering formula can simply be written as

(52)

(53)

= lira

•, /,-, ' oo oor \ i r /"
pj h E/7 ke(v)dv Vs(v)+ j^f
H i •/ m

dvV(v)l2.
'*-'1 •

Expanding the squared term gives the equation

-2 Re jTlk /f0e(v)d

\ oo

'v V (v)l 'I I If (v)* E V*(v)dv)
/ \J I U^e 7j ~uW ~/

OD

+ / dv dv ' f f (v) f* (v ' j lv ( v ) - V * ( v ' ) >
y ~ "*" |_ U7e uye "** I ~ni -^- ~u •*- I '

)

(55)

18



This equation is the general scattering formula we have sought to
I 12derive. If one knows the spectrum corresponding to E I , f* E , and
7
l ' u7e 7 »

f* \ > and tne unperturbed velocity distributions then the scattered1 uye'
power is determined.



Incoherent Scatter

We will now take up the case of incoherent scatter, where it is possible

to evaluate Eq. (55) explicitly. In this case the assumption that the

charged particle motions are random allows one to evaluate the products

of the fluctuating quantities in the equation. In the appendix we show

that these products are given by

lim — f (v)f* (v') = 2jt6(v-v')6(aJ -k -'v)f_ (v) (56)
TV uje uye — • -- ~ j ~^y — Oe • '

TV — > co

lim - f* (V)E =
 jre,3 fA (v)6(o> -k -v) (57)

TV uyew/ 7 e e k Oew/ v 7 -^y — ' ' ^ ' '
u

CO

00

lim .2- E \
2 = ^ [/ dv fn v 6 03 -k -v + / dvfn. v 6(0) -k -v)] .TV ' 7' 2l |2 2 / ~ Oê ~' 7 -7 -' / - Oiv~y v 7 -7 ~-; '

TV -̂  oo eo'V l̂̂ 00 »̂ -I
(58)

Substituting these expressions,and integrating over v_ , reduces Eq. (55)

to the form

vl/2\ / f- °

—I V!<L' L*) /eo/ i,̂ ) ̂  ^ /PX k L
= 2r2 S V l-^l ^r!^ ' L*) I / f (v)6(oi -k • v)dv +/ f^ . (v )6(o> -k -v)dv

0 P \ e
Q / ^ Wl "1 / Oe 7 ~7 • - ' " - . / 01^^7-7^-

+ 2 Re 1^- L2 +L | , (59)

where

0

•%•

dv fn (v)6(o) -k -V)V (v)-V (v) . (62)~ ~ ~ —•/-^x~' - "~Oe
/ . /

20



Because of the delta function and Eq. (hk), we can replace the

factor ("3 -k -jv) by(tt> -k -v;)in the definitions for L^ and L . Carrying
u. Q; p ~p d 3

this out, along with the application of Eq. (̂ 5) ,yields the simpler equations

00

—CO

CO

f0e(v)6(oy.yv) ̂(v) , (63)

(e "k )v-(e -v)k (k -k )(e -v)v7 "
Equation (59), along with the definition given by Eqs. (46), (60), (63-65),

is our final result describing scattering by random density fluctuations.

21



High Frequency Expansion for Incoherent Scatter

Equation (59) is a final result in the sense that it specifies

completely the scattered power once the unperturbed velocity distribution

functions are known. It will be useful, however, to expand this equation in

powers of I/CD , in order to interpret the meaning of the result,and to

compare with previous work.

Let us first expand L in Eq. (60) to second order in CD
—1 £

yields, upon application of Eq. (4̂ ),the relation

-1

CD
a k̂ (k -k ) ](e ' v )k k (e 'k )v

K. A K. A --v ~a a

k2

7

(CD -k -v)2

o \ o
> k CD (CD -k -v)
P 7 P 7 "7

((•%%£ )z~(e *z)k \
CD I

P /

-"- p '"— '
CD (CD -k -v)

P 7 ~T

k -v 0) -k 'v
--6 - y ~y ~

1 ' CD CD

P P ,

+ e +
(k -k )(e -v)vv- ~ - / v ~ — /—

CD

If we substitute into this equation the vector identity

v = -^ [k (k -v) - k X k X v] .
~ 2 ^7 ' "^ ~7 '~*k

and collect terms, we obtain

CD

V (v) = k X k X e +^
r 2[CD^-

V
CD

P 7

+ terms in (k X k X v) .
V~ - ^

Finally, substituting into Eq . (60) gives the result

This

(66)

(67)

(68)

22



L =
-i

k X ko e ~a --a
P 7

(k -k )(e -k ) /CD \2

^CH ~~Q —6 "tX I 7-1
T I m I k

LI \ f n f ~-*v
t \ R / /

(69)

where

(k -k )(e -k )~̂a -p̂ -'-ff -cr(CD N
.Ji1
0) j

^

GO

1^ f
"" eo y

'Q^' ~ (70)

is the charged particle susceptibility. In obtaining this result we have

ignored the terms in V (v) containing (]& X k X v,) , since these give

p
rise to terms of order (v /c) ,and higher,when dealing with isotropic

electron velocity distribution functions.

-1
Let us now expand L in Eq. (6j>). To second order in to we obtain

"-

3v f_ (
— Oev—

rx I
o -k -v) -= k X k X < e +•y -««y ~' /n -w~v ~rv 1-—o0)

(k
v- (71)

We again expand _v according to Eq. ignore the component perpendi-

cular to k . This yields, after replacing (k «v) by to the result
~~7 7 ~~ 7

(to \
-2 k
V"0

X k X
f^,\ Uo-^d^'ko)^

00/
(72)

A similar procedure for ^ yields the expression



Hsr) Q L v - X - k v X .£J!|JU.X.]£~ *
\ P/ ^

e + 2l
/05 x

c( e -k )(k •
(_L\ ~g ~g/wa
\03 I 1+
V P' k

-k )k
- ""

00

•/ nOev • x 7
• v_) djv . (73)

We now substitute the expressions for LI. and I. into Eq. (59)

to obtain

1/2

30305^ - V (k X k X e ) '<

"̂
(k

k X k XI e + 2~a -a ~
-k )(e *k

P ~P ~

|x |-2 Re x e* + |e | f. (v)6(co -k • v)dv + |x
ey ey 7 / // Oe ~ 7 ~^7 "*" "" ' 'v)dv•*^/ -^

2 ( k X k X k )
(k «k )(e '~

O5

CO

Rex / f« . (v )6 (a ) -k -v)dvv=- x - ~' ~7 -7

00

Using the identities

Re(*e7~y ' f-
-co

e = 1 + X + X.7 67 ^17 '

.x + |x | 2=|l+X. |2,7 67 ' ey1 ' 17' >

(75)

(76)

and rearranging,gives the final form for the expanded incoherent

scattering formula as



(77)

(e -k
. _ v~e -tr , «

2k^
a

(e -k )2(k -k )2 CD2
~- ~y v- -7

2 U^ k*
a. 7

+ 2

03

f
7

(-S )2(k 'k )2

a 7 CJD

When the frequency of the incident electromagnetic wave,

CD becomes very large compared to CD and CD ,the high frequency inco-
P 7 P

herent scattering formula [Bekefi, 1966] ,

a
&g2

00

f, I2(
I'̂ ir1 J

•v)djv (78)

f̂ .(v)6(cD -k -v)dv
Oi 7 ̂ 7 ~- •"J

(e "k )v" ~1 -

a

is retrieved. In the case of backscatter, where (£ft'
k ) = 0 , Eq. (77)

reduces to the even simpler form

CD -k -v)dv
7 "7 * '

(79)



Scattering in Case of Strongly Driven Plasma Waves

In the case where the coherent waves are so strongly driven by an

external source that the random fluctuations of the charged particles can

be ignored, we may ignore the terms involving f in Eq. (55), and

the scattering is then given simplyL by

00/f_ (v)V (v)dvnc>x'»=!'-~'cx'~» •»•Oe
.. .lira

IE |
TV

(80)

XV

As in the case of incoherent scatter, it is useful to determine the

behavior for a high frequency incident wave. Substituting Eqs. (60) and

(69) into this formula reduces it to the form

a

2 Re

"S

it

1/2 .2 2
** Crt

a\
CD J ey 1 -

(e -k )
v— —

2 4k k
L a y

lira

TV-* °°

|E .

TV

a
,2

p k
k k
a 7

CD

(81)

If we let CD -• » and note that

n
C k E
ey y y

(82)

we obtain the standard high frequency formula [gekefi, 1966] given by

Cv-^2
1 ~ 2

a

lim

TV - oo

n__L

TV (83)

The (e /e ) 7 correction to Eq. (8j), contained in Eq. (go), was previously
a p

derived by Birmingham et al. [1965! by a different method.
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Summary

A general theory for scattering of electromagnetic waves by density

fluctuations in a plasma has been carried out. The general scattering

formula is given by Eqs. (55), (̂ 6), and (50). Its application to incoherent

scatter is given by Eqs. (59), (̂ 6), (60), (63-65), and to scatter by

strongly driven plasma waves by Eqs. (̂ 46) and (80). The theory generalizes

previous high-frequency theories in that it is valid for all frequencies

of the incident and scattered electromagnetic waves. It does assume,

however, a zero magnetic field, isotropic unperturbed charged particle

velocity distribution functions, and the absence of multiple scattering.

An expansion for both incoherent scatter and scattering by strongly

driven plasma waves in inverse powers of the frequency, (& , of the
P

incident electromagnetic wave has been carried out [Eqs. (77) antj (81)

respectively]. These expansions show that two types of lower order

corrections must be applied to the high frequency theory as the incident

electromagnetic wave frequency approaches the plasma frequency. The

P
first type of correction is of order ((£ AO ) , and must be applied

P p

irrespective of the value of the difference frequency, tu , between

p
the electromagnetic waves. The second correction is of order (to /03 ) }

and is clearly of importance only for scattering by the Langmuir waves.

These lower order corrections disappear for the case of backscatter.

As the frequency, oy , of the electromagnetic wave comes closer to

(£> , then of course it is necessary to use the full theory [Eqs. (59) j

, (60), and (63-65), or Eqs. (146) and (80)]. It is important to note

that the full theory has non-vanishing higher order corrections for the

backscatter case, even though the lower order corrections mentioned in

the previous paragraph disappear.
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Appendix

In this section will be derived the expressions for the space-time

averages given in Eqs. (56-58). Our first step is to derive a relation

for the averages in terms of the ensemble average of the Fourier components.

According to Parseval's theorem, the average of the product of two variables^

A(J:, t) and B(JT, t), is given by

00

A(.r,t)B(r;,t) = lira - \ — / A B* do> dk . (A.l)
(23t) TV * y y y -~y3

TV - <=° V ' -co
(2it) TV

The ensemble average, on the other hand, is given by

CO

1 /
< A ( r , t ) B ( r , t ) > = o / do) d<D , dk dk /<A B />exp[j(o) -o> ,

""*""' *-"—.7 ' ' / \ O / *V *V ***-»y '̂"V *V *V *V *V '

(2it) -̂ '

(A.2)

All of the cases studied in this paper have the property that

-k ,

<A B*,> = C (AB*)6(o> -0) ,)6(k -k /) - ,
77 7 7 7 "7 "7 (A-3)

and therefore
oo

±-f
^)8 /co

<A(r_ , t )B( r , t )> = ^ / dCD djc C
(at)d - ^ 7 7 7

Equating the two averages given by Eqs. (A.l) and (A.4) yields the desired

relation

l_ _j_ (A.5)

7 7 ( o_. \ ̂  7
XV -* °° * '

Equation (32) shows that
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Substituting this into Eq. (A.5.),with A and B equal to f (v_) and f (y'),

respectively, yields Eq. (56) immediately.

In order to prove Eqs. (57) an^ (58), we will need to use the

linearized Poisson equation

6 k E = -^777 eQ

00 00

/
f (v)dv 4- / f .(v)d
uye ~ — / U7iv~ • (A.7)

If we multiply this equation by f* '(v'), take the ensemble average,

and assume that the ion and electron motions are uncorrelated, we obtain

(A.8)k <f , (v')E >= •*£7 7 U7 e 7 £„

00

//
<f / (v')f (v)>dv .
U7 e

Substituting Eq. (32) shows that

*
C [E f (v)] =v f_ (v)6(o) - k .v) •7 ue e«e k Oev^ v 7 ~y ~
' 077 ' '

(A.9)

Substituting this result into Eq. (A.5), with A and B equal to E and

#
f } respectively, yields .Eq. (57).

If we multiply Eq. (A. 7) by its complex conjugate, and take the

ensemble average,we obtain

<E E*,> •=
77 k k /e^e e ,77 077

00/
—00

00

<f (v)f /(v')>dv dv' + / <f . (v)f . (v'))dvdv'~ ~- ~- ~ ~" ~ -~ *~

(A.10)
Substituting Eq. (32) allows us to determine C (EE: ). If this is in turn

substituted into Eq. (A.5),with A and B equal to E, we obtain Eq. (58).
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FIG. 1. Mixing of an incoming transverse wave (k )

and an electrostatic wave (k ) to produce a

scattered transverse wave (k ) .

FIG. 2. Decay of an incoming transverse wave (k )

into an electrostatic wave (k ) and a scattered

transverse wave (k ).



EM WAVE

LANGMUIR WAVE

FIG. 3. Synchronism diagram for the interaction of two transverse

waves and a Langmuir wave.
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EM WAVE

ION-ACOUSTIC WAVE

FIG. k-. Synchronism diagram for the interaction of two transverse

waves and an ion-acoustic wave.
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