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ABSTRACT

We show that the electron streams that give rise to

Type III solar radio bursts are stable and will not be decele-

rated while propagating out of the solar corona. The stabili-

zation mechanism depends on the parametric oscillating two-stream

instability. Radiation is produced near the fundamental and second

harmonic of the local electron plasma frequency. Estimates of the

emission at the second harmonic indicate that the wave spectra

created by the oscillating two-stream instability can account for

the observed intensities of Type III bursts.



I. , Introduction

Sporadic Type III solar radio bursts are caused by particle

streams accelerated in the vicinity of a chromospheric flare. These

energetic particles propagate through the solar corona at a constant

velocity between 0.3 - 0.6 c, and excite radiation at the fundamental

and second harmonic of the local electron plasma frequency, co
e

Recent observations at 1 AU using data from the radiometer and particle

experiments on the IMP-6 satellite (Alvarez, Haddock, and Lin 1972;

Lin 1973) demonstrate that the particle streams consist primarily of

electrons with energies in the range 1-100 keV.

The interaction of such streams with the background coronal

plasma produces unstable electrostatic waves with frequency near the

electron plasma frequency and phase velocity near the beam velocity

(Sturrock 1964; Kaplan and Tsytovich 1968; Zheleznyakov and Zaitsev

1970b; Smith and Fung 1971). According to current views, these electro-

static waves are subsequently transformed into electromagnetic radiation

at 0) by scattering from ion density fluctuations, and at 2w by

scattering from each other. A review of the observations and theory can

be found in Smith (1970).

While the above qualitative picture is generally accepted,

quantitative estimates of the radiation spectrum and intensity require

a more precise nonlinear theory of the interaction of the beam with the

plasma. To estimate the electromagnetic radiation and the spectrum emitted

in Type III bursts, a knowledge of the plasma wave energy spectrum before

transformation is required. This in turn depends on whether the beam is

decelerated to form a plateau in velocity space, or whether instead non-

linear effects cut off the plateau formation at an early stage and sta-

bilize the beam.
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Kaplan and Tsytovich (1968) calculated the effect of induced

nonlinear scattering of the plasma waves by thermal fluctuations, and

concluded that this scattering was fast enough to stabilize the beam

before the formation of a plateau. However, as Zheleznyakov and Zaitsev

(1970a) correctly pointed out, the calculation of the scattering time

by Kaplan and Tsytovich was inaccurate. Zheleznyakov and Zaitsev cal-

culated the correct time for the development of this nonlinear process

and concluded that it was longer than the characteristic time for quasi-

linear deformation. Therefore, in contrast to the conclusion reached

by Kaplan and Tsytovich, stabilization does not occur. In subsequent

publications, Zheleznyakov and Zaitsev (1970b) and Zaitsev, Mityakov

and Rapoport (1972) calculated the power emitted in Type III bursts,

based on the hypothesis that nonlinear effects do not stabilize the beam.

Smith and Fung (1971) also considered the question of whether

beam-induced plasma waves could be scattered by polarization clouds of

ions to stabilize the beam. They concluded that this mechanism could

not stabilize electron streams in the solar corona.

One of the most striking features of Type III bursts, however,

is that the source region propagates at almost constant velocity from the

inner corona to nearly 1 AU (Fainberg, Evans, and Stone 1972). In this

paper we demonstrate that a nonlinear mechanism does exist that will pre-

vent the deceleration of the electron stream. The mechanism that we

consider is the "oscillating two-stream instability" (Nishikawa 1968a,b;

Sanmartin 1970). This instability is driven by the fields generated

through the beam-plasma instability, and transfers the energy in these

fields to regions of phase space where the fields do not interact reso-

nantly with the electron stream. The result is to prevent deceleration

of the stream by its self-generated fields.
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In the next section, we discuss the theory of the oscillating

two-stream instability. In Section III, we calculate the conditions

under which this nonlinear process can prevent plateau formation. In the

last section, we use these results to estimate the power emitted in Type

III bursts. However, we defer to a later paper a detailed consideration

of the frequency spectrum and its temporal evolution.

II. The Oscillating Two-stream Instability

This instability has been discussed recently in the literature

as an efficient mechanism for coupling energy from high-phase-velocity

oscillations into shorter-wavelength oscillations which readily transfer

energy to the ambient coronal plasma. A detailed mathematical treatment

based on the fluid equations can be found in Nishikawa (1968a,b); an ana-

lysis based on the Vlasov-Maxwell equations has been given by Sanmartin

(1970).

To our knowledge this instability has not yet been discussed

with respect to astrophysical plasmas, so we present here a brief but

self-contained derivation of the dispersion relation based on simple

physical arguments and refer the mathematically interested reader to the

original references.

Consider a plasma in the presence of a long-wavelength high-

frequency field

E = E cos (u) t + k x)
o o o

such that the phase velocity of the wave to /k » V , the thermal
o o e

velocity of the plasma.

In the absence of this oscillating field, the normal electro-

static mode of-the plasma is the electron plasma oscillation with



2,2%
wavenumber k and angular frequency w = U ) (l+3k A ) , and

the ion acoustic wave with the same wavenumber and with frequency

? 2 ̂
0) = kC /(I + k to)z . (In the unperturbed plasma with equal ion and
A S U

electron temperatures, this mode is heavily damped and cannot properly

be considered a normal mode.) Here the ion sound speed C = [ (y KT +s e e
> 2 J'

y.KT^/M]2 ; the Debye length AD S (KTe/4Titie e )
z ; e is the unit

(positive) electronic charge; K is Boltzmann's constant; n , T ,

and T. are respectively the electron density, electron temperature and

ion temperature of the coronal plasma; y and y. are the adiabatic

2 2
indices of the electrons and ions; co = 4ime /m ; and m , M are

e

the electron and ion masses, respectively. These normal modes obey the

equations

3 3 2
—;r n, + V.. T:— n +0) n, =0,- 2 ek 1 3t ek ek ek
ot

(1)

9 9 2—7 n + v0 -r— n + w. n., = 0~2 ik 2 8t ik A ik

where n . , n., are the spatially-Fourier-analyzed electron and ion

density fluctuations with wave number k , and V , V? are the total

damping rates (collisional and collisionless) of these fluctuations

respectively. The presence of an external force due to a long wave-

length field oscillating at a frequency w ^ co couples these two

modes. For simplicity in calculating the coupling forces we assume

k = 0 . (The extension to finite k is straightforward and does not

influence our conclusions for the cases of interest here.)

The coupling force can be derived by simple arguments. Let

n.(x) , n (x) be the ion and electron density fluctuations. The driving
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field tends to displace the electrons relative to the ions. This driver

now produces high frequency charge fluctuations with a frequency w

Then, because n - n. , we have

3n. -8n. eE eE cos u t
f i A a . o . , 0 0on = -r— Ax = —r— —r- cos 0) t = \kn ^ ,
e dx dx 2 o ik 2mu) . m uo o

where we have used a Fourier space transform to replace 3/9x by ik .

The electron equation now becomes

^.2 » 0 ikn., eE cos to to d .2 ik o o ,„,— T n, + V, -r— n , +w, n. = - . (2)
9 2 ek 1 3t ek ek ek m

 v

The coupling force on the ions is due to the gradient of the electric

field pressure,

a (Eo cos V+ E(x)

where E(x) is the self -consistent electric field. Using Poisson's

equation, we have

2
9 (E cos 00 t + E(x))

- -eE 6n cos w t- -dx Sir o e o

2
The term E (x) is neglected. The equation for the ion acoustic fluc-

tuations becomes

nik + nik = M T [eEo 6ne(x) COS

at
ikn , eE cos w t
_ek__o - o

M
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The coupled equations (2) and (3) describe the instability.

To derive the dispersion relation for the system, we Fourier transform

equations (2) and (3) in time according to

da. .

and obtain the system

(w -w

(4)

= 0

where (fl*k , njk) = keEo/2 (1/m • 1/M) . We see that n±k(u) couples

with nek(w + uo) , and nek(a> + UQ) couples with n±k(u) and

n±k(w + 2uo) .

We then obtain the (infinite) system of equations

e\ f\

' Wek + iv
1(

w-w
0

)]nek(a)~a)o) + Ifieknik(w~2a3o)

(5)

)2 - w2 + iv (amu )]n . (amo ) = 0CK ± o ek o

We shall be interested in Re u ̂  to «w and thus neglect n,,, (oH-2w )
A o e ik — o
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as being off-resonant. This closes the infinite set (5), and the disper-

sion relation for the resonant normal modes of the coupled system is given

by the secular equation

2 2co - to, + iv.toA 2 -in1 - ifl'
ik

ik

Iffek
o 2

(to-u ) -co , +ivn (co-to )o ek 1 o

ifl'ek
2 2- co

= 0 (6)

Assuming that to - to , , and that the damping rates v ,V0 are small,
O 6iC 1 ^

we may approximate

.2 2
(co + co ) - 1 0 + iv (co + co ) - + 2u , (co + 6) + ico v, ,

O 6K. _L O GK O -L

where 6 - co - co , is the "frequency mismatch" between the driver and the_u to ek

electron normal mode.

The secular equation (6) becomes simply

2 2 2

(co2 + icov2 - co
2) [(co + ivl}

2 - 62] +
ek

(7)

We now write co = co + i V, where to and Y are. real. In ther f r

present analysis, y > 0 implies instability, which is reflected in the

growth of ion acoustic waves at frequency co and electron plasma oscilla-

tions at co + co . From (7) we see that we may have Y > 0 under the

following conditions:

(i) 6 < 0 , cor = 0 (i.e., y » "r) ;

(ii) 6 > 0 , co 1 0
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Case (ii) is the resonant three-wave interaction of the high-frequency

driver with two lower-frequency normal modes, known as the "decay in-

stability" (Tsytovich 1970, Davidson 1972). We shall be concerned with

case (i) , because in the case of Type III bursts the driver wave is simply

the beam-excited plasma wave with w - w . , and therefore 6 = to - to .o e o ek

=0) - to , < 0 . From Eq. (7), with 6 < 0 , we outline below the basice eK.

features of the instability.

There is a threshold amplitude for the instability to occur,

which is found by setting w = y= 0 in Eq. (7) and minimizing with res-

pect to 6 . The result is

Sir n KT ~ w .e e ek
(8)

2 2where we have used the fact that k X_ « 1 and have assumed that T - T.D e i

Notice that v represents the total electron damping and, for

the case of a Maxwellian plasma, can be written as

Vc+f-r
.%

where v is the electron-ion collision frequency.

The growth rate for fields well above threshold is given by

1/3 1/3 , *2 X1/3

where we have maximized yiv with respect to 6 and neglected v, , V_
J.K ' 1 2.

and w. compared with YH, •
A XJC

Equation (10) describes the growth rate of the oscillating

two-stream instability at very early times. We shall also be interested



in the radiation produced after the plasma has reached a quasi-steady

state and is near marginal stability. The growth rate then becomes

(11)

The electron plasma waves produced as a result of the oscillating

two-stream instability have much lower phase velocities than the driver ,

wave. This can be seen from the energy and momentum conservation conditions

2 2for the waves, plus the usual restriction that k X « 1 . Denoting the

driver, electron and ion waves by (to , k ) , (to . ,k ), and (w ,k.) ,o o eJ£ e r ie
the conservation relations are to - w + to and k - k..+ k . Notingo r e o i e &

that to = w , * to , k - V, /V X^ , to . - u , k = aX_ ,
o ek e o b e D e k e e Do e

to«Yn « w , k . = k -k - - k , with a = .1 - .2 and V, = 20 V ,r ' I k e ' l o e e b e '

we find that the phase velocity of the growing wave is of order to /k - 5-10 V ,

while the phase velocity of the driver is to /k - 20 V . Notice that the

excited ion waves appear only as solutions of the nonlinear dielectric

constant and disappear in the absence of the driving field.

Because of. the above interaction, the energy of the stream-excited

plasma waves is transferred to a region of velocity space where these waves

do not interact resonantly with the stream particles. We stress, however,

that the energy transfer is not direct; the nonresonant waves are induced

through the driven bulk motion of the electrons relative to the ions, and

are not in random phase with the driver. Thus, the energy and momentum

relations above need only be satisfied as approximations. In the non-

resonant region of velocity space, the induced plasma waves can be Landau-

damped by the ambient plasma, creating energetic tails in the ambient

electron distribution. Some of the consequences of this tail formation
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with respect to the Type III radiation will be examined in Section III

below.

Before closing this section, we point out that the above theory,

including such consequences as tail formation, has been confirmed by a

series of computer simulations following both electrons and ions in their

self-consistent orbits (Kruer and Dawson 1970, 1972; Kainer, Dawson, and

Coffey 1972).

III. Nonlinear Effects on the Beam-Plasma Interaction.

We examine next the collisionless relaxation of an electron beam

propagating in the solar corona under the following assumptions:

(i) the interaction is one dimensional, i.e. all the plasma

waves in the system propagate in the direction of the

.beam.

(ii) the excitation of the plasma waves is considered under con-

ditions that the beam particles can resonate with waves

in a finite range of wave number k . This implies the

usual restriction

1/3

(12)

for the validity of a quasilinear description, where AV,

is the velocity spread in the beam and n, is the density

of the beam,

(iii) The system is homogeneous.

For a discussion of these assumptions, see Smith (1970).

Under these assumptions the evolution of the beam will be described

by the well-known set of quasilinear equations
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3Fb(v,t)

9tT~

oo
,,22 r

D(v,t) = -10V dk 6(0) - kv) £ ,(t) (15)^ j eK otc
o

2

where &,(f) is the spectral energy density |E, | /Sir at the wavenumber
K.- iC

k . A detailed discussion of the above system of equations can be found in

Davidson (1972) . We give here only the features relevant to the problem

under consideration. The unstable waves will have frequency OJ and will

be generated only in regions where YouCt) > 0 > which corresponds to phase

velocities in the region (Fig. 1)

V, - AV, < V < V. . (17)
b b p b

At each instant of time half of the directed energy of the beam

goes into electrostatic waves, and half into flattening the beam, i.e.,

dk ̂ (t) * nbmVb AVb(t) . (18)

The beam will flatten as in Fig. 2 within a time of the order (n /n, )w ,

after which all wave generation by the beam will cease, and the beam

spread AV, - V, . Applying quasilinear theory to the case

of the Type III bursts we find that the electron beam decelerates without
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a distance of VJO km. Kaplan and Tsytovich (1968) and Smith and Fung

(1971) discussed the possibility that induced nonlinear scattering of plasma

waves out of the beam direction would stabilize the beam. This process

was shown to be inadequate for electron beams (Zheleznyakov and Zaitsev

I970a, Smith and Fung 1971).

Let us examine now the nonlinear effects introduced by the

oscillating two-stream instability. As the unstable waves grow in the

region resonant with the beam, the background plasma sees at time t a

field oscillating with frequency to ^ to and amplitude E (t) . When this

field exceeds the threshold field given by Eq. (8), the oscillating two-

stream instability starts pumping wave energy out of the mode k , into

plasma oscillations with lower phase velocity (Fig. 3) and zero frequency

(i.e., purely growing) ion density fluctuations. This effect removes plasma

waves from resonance with the beam, and may cut off formation of the plateau.

This will occur if the growth time of the new waves becomes shorter than the

generation time of the resonant waves.

We can now calculate the conditions necessary for stabilizing the

beam against quasilinear diffusion. Our calculation is similar to that of

Tsytovitch and Shapiro (1965), and the reader is referred to that reference

for more details. The procedure is straightforward. One finds an approxi-

mate solution to the coupled equations for the beam-plasma and oscillating

two-stream instabilities. This solution permits an estimate of the variation

of the beam distribution function 6F, .
b

The beam distribution function evolves according to Eqs. (13)

and (15). In the resonant region, the evolution of the field energy is

described by
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where <^L is the field energy excited in the nonresonant region by

the oscillating two-stream instability. In the nonresonant region the

field energy & is given by

Nk
•§r = 2Y ik (20)

Although we are interested in the early stages in the develop-

ment of the instabilities, we will use Eq. (11) for Y-,, • This is because
J.K.

the growth rate at marginal stability is smaller than that given by Eq.

2 2
(10) well above threshold. In Eq. (11) we neglect E compared with E

[The validity of this assumption can be confirmed from the computer simu-

lations of Kainer, Dawson and Coffey (1972)]. The resulting set of equa-

tions (13), (15), (19) and (20) have the identical form to those solved

by Tsytovich and Shapiro (1965). Consequently, the variation of F is

given by

- 0) (21)

where fcvj(t=Q) is the initial energy density of the waves in the non-

resonant region and y = y(k) = Y2k/Ylk •

The beam will stabilize against plateau formation if

3v

which implies that

« 1 (22)

Because the logarithmic dependence is very weak, we can replace it with
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an upper bound, namely,

= 30 ,

2 8 ~3
where V = KT /m and we have used (V, /V ) - 20, n - 10 cm , and

e e be e
Q

a) -"10 . Therefore, we may approximate (22) by
e

y < 0.03 . (23)

Because u depends only on n^/n and A V, /V, we can find the value ofbe b b

AV, /V, necessary for stabilization as a function of n, /n . From Eq.

(16) we find that .

2
In order to find Y-iu > we use Eq. (11) and replace E /Sir by the value

2
n, m V AV, as given by Eq. (18). If we also assume that w^ » V^/2 ,

then

v, AV(n, v v, nv
ic-^v (25)

e
and

,2
V 2

- « .03 . (26)

"This constitutes an extremely conservative estimate, because the instability

threshold can be easily exceeded and the more appropriate growth rate will be

that given by Eq. (10). In that case the beam is stable as long as
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AV / TT _ \ 2/7

b ' ~~' c " ' (27)

Q "I f\

In Fig. 4, using V = 5 x 10 cm/s, V - 10 cm/s, we have plotted

AV,/V as a function of *k/n > assuming that equality holds in Eq. (27).

From Fig. 4 we can see that only if the ratio of the beam-to-

-4
plasma density is much larger than 10 is the oscillating two-stream

instability not capable of stabilizing the beam against formation of a

quasilinear plateau. However, for .smaller density ratios the quasilinear

velocity diffusion of the beam will cease early in the process and plasma

wave energy will be concentrated in the regions of phase space shown in

Fig. 3.

IV. Discussion

A detailed calculation of the radiation spectra produced by the

oscillating two-stream instability will be presented in a future publication.

Here we simply demonstrate that the observed power can be accounted for by

this theory. For brevity we concentrate on the 2w radiation but similar

considerations also apply to radiation at the fundamental.

As described previously, the oscillating two stream instability

will create symmetric [i.e., £L(k, w ) &&„(-*., U) )] oscillation spectra

in the non-resonant region (Fig. 3), predominantly in the direction of the

beam. These electrostatic oscillations can collide head-on with each

other and radiate a transverse wave at 2w (Fig. 5). The process is

greatly enhanced by the fact that the electrostatic spectrum is an even

function of the phase velocity. In contrast, the linear beam-plasma in-

stability creates an asymmetric longitudinal spectrum, with phase

velocities in the direction of the beam velocity. Subsequent emission at the
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second harmonic requires intermediate scattering to produce plasma waves

with phase velocities antiparallel to the beam (Smith 1970).

The energy density of plasma waves, W , produced by the oscil-

lating two-stream instability will be determined by the mechanism that

stabilizes it. In the discussion below we consider two possibilities.

The first is that the oscillating two-stream instability stabilizes at

field energy densities close to the threshold given by eq. (8). At thresh-

old, Ylk given by Eq. (11) is near zero and the system is stable. The

second possibility for stabilization arises because early in the develop-

ment of the oscillating two-stream instability the electric fields are

well above threshold. These plasma waves will be Landau-damped by particles

in the thermal plasma. This results in the formation of suprathermal tails,

which have been observed in the computer experiments of Kainer, Dawson,

and Coffey (1972). The instability will stabilize when the Landau damping

due to the tails becomes equal to or larger than the growth due to the oscil-

lating two-stream instability. A third possibility, which we shall not

consider further, is that resonance broadening effects characteristic of

strong turbulence can lead to stabilization. An analysis of the discussion

by Bezzerides and Weinstock (1972) indicates that one must extract a large

portion of the beam energy in order for resonance broadening to be important.

We do not find it necessary to do this and, consequently,-shall not consider

effects of strong turbulence any further.

In general, regardless of the details of the stabilization mechanism

for the oscillating two-stream instability, the electromagnetic radiation

emitted at 2w is given by (Sturrock, Ball and Baldwin 1965)

J(k_,u) * 2u> ) = 2 3m c
jdk

,2

1- 2 2 (28)
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where the radiated wave number is given by k ^ /3 0) /c and is much

smaller than the excited electrostatic wave numbers. Therefore Eq.

(28) can be written as

4/3 TT2 e2 2 2 2 /•
J(kT , OJ ̂  2we) = 2—3— V cos e sin 6 dk <̂ (k) ̂ j(-k) - (29)

me - J

One can estimate the emission by taking the spectrum to be almost one

dimensional with a peak at the wavenumber with the maximum growth rate,
_i

k.. = ak_ , where a « 1 and lc_ = X^ . Using ^.T(-k) - <AT(k) andM D D D N N

noting that

W = dk ^XT(k) , (30)
J - N

Eq. (29) gives

J(kT , 0) * 20) ) 4/3 ^ e" kT W2 .2 fl 2 flT e = j—^— —r sin 0 cos 6
mz c

5 , V2 (31)
2 2

sin 6 cos 6 .
e e - e

3/37r/Ve\ / W \ VT= I — J I —^r~ I n KT wa ' c / V n KT / ee* e '

The flux at the Earth is

2ir
F £

V , f J(kn, , 2w }~\rad ^ £'
2 2wR L e -1

2
cm sec Hz ster

where V , is the radiating volume and R the distance of the sourcerad

from the Earth. We have assumed that there is no damping of the radiation.

7 ~3 8 —1Using as typical parameters n « 8 x l O c m , w ' V 5 x l O s ,
c 6

V ^ 5 x 108 cm s'1 , T ^ 2 x 106 R . V 'v 1028 cm3 , R ̂  2 x 1013 cm,
6 6 1T3CL

a ̂  .1 , and defining
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W

n KT
e e

-9 2 W
we find F ̂  2 x 10 X at the 80 MHz level.

m Hz '

We should emphasize that we use these parameters only for illustrative

purposes. A later, more detailed analysis will include a range of para-

meters extending from less than a solar radius to 1 A.U.

Observations give F ̂  10~ -10 W/m Hz . Therefore in order

-6 -4to account for the observed flux we need X ̂  10 - 10 . Because

—3 —2iLmVAVj/n KT ^ 10 - 10 , only a small energy transfer is required

to account for the observed power level. Therefore, it does not appear

difficult to stabilize electron beams against quasi-linear diffusion, and

at the same time to produce sufficient radiation to account for the observed

Type III burst intensities.

The determination of the value of X and the details of the radiation

spectrum depend on the detailed nonlinear stabilization mechanism of the os-

cillating two-stream instability, which will be discussed in a future publication.

However some further estimates are possible. If electrostatic fluctuations

with X "V 10 -10 exist in the non resonance part of the spectrum, higher-

energy electrons in the ambient thermal distribution will interact with them

via Landau damping and form long suprathermal tails. The time scale for this

interaction is determined by the diffusion coefficient and is approximately

given at the 80 MHz level by

V2 A V
T. * -f- * , Ph ^ 5 x 10~8 X'1 s

a D aw XV ,e ph
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where AV , ̂  V , is the range of phase velocities over which the oscil-pn ph

lating two-stream instability is unstable. Therefore for values of

- 6 - 4
X ̂  10 -10 the plasma can form non-Maxwellian tails within times

shorter than 1 millisecond. One then finds the marginally

stable situation shown in Fig. 6. Marginal stability analysis (Papadopoulos

and Pongratz 1973) shows that the tails have a velocity dependence ̂  v ,

with n ̂  1-3 . The existence of the tails will stabilize the oscillating

two-stream instability, while the enhanced electrostatic fields in the region of

the tails will prevent the re-development of the beam-plasma instability. In this waj

the role of the beam will be to form and sustain these power law tails in

the coronal plasma,accompanied by an enhanced level of electrostatic fluc-

tuations .

The level of fluctuations will be determined by the maximum of

either the non-thermal equilibrium level due to the long-tails, or the

level of fields in the non-resonant region necessary to prevent the beam

plasma interaction from resuming. The value of X due to non-thermal tails is

Xo

where A is the level of thermal noise. The approximate equality results

from the formation of a high temperature Maxwellian tail. However, a power

law such as results from marginal stability analysis will produce an even

greater enhancement. The value A to prevent the beam-plasma instability

from resuming is given by

A, = u E2/87rn KT1 H e e
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where y = Y^i/Y-M. from E(ls' (24) and C11) and E is given by Eq. (8)

with V.. now determined by the tails. The value of A = max (A , A ) .

Notice that the value of A ^10 which is of the order required to

explain the observations.

Similar considerations can be applied with respect to radiation

at u .

V. Summary

We have demonstrated that the oscillating two-stream instability,

induced by the fields created from the interaction of the electron stream

with the coronal plasma, can stabilize the beam against quasilinear dif-

fusion. This interaction creates a marginally stable situation in which the

beam propagates essentially unaffected while sustaining in the ambient

plasma suprathermal tails and suprathermal enhanced plasma oscillations.

These oscillations can then scatter from ambient density fluctuations,

and from each other, producing the observed radio emission at the plasma

frequency and its second harmonic.

We have enjoyed stimulating discussions with Professor D.A.

Tidman and with Drs. R.G. Stone, J. Fainberg, and D.F. Smith.

This work has been partially supported by NASA Grant

NGL 21-002-005.
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FOOTNOTE

One may easily verify that for the parameters under consideration,

the condition for a monochromatic pump spectrum

6a)/Yl * If 6K(t)/Yl < 1

is easily satisfied within a couple of growth times of the beam-plasma

instability.
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FIGURE CAPTIONS

1. Region of unstable wave generation in the beam plasma interaction.

2. Final form of the electron distribution function predicted by quasi-

linear theory. Unstable wave generation has ceased.

3. Band of phase velocities excited by the oscillating two-stream in-

stability.

4. Stability criterion of an electron beam as a function of Av, /V, and
b b

8 10Vn , using V = 5 x 10 cm/s and V. = 10 cm/s.e e b

5. Scattering of two electrostatic plasma waves at frequency U) radiating

an electromagnetic wave at frequency 2u .

6. Final form of the electron distribution function predicted by the para-

metric oscillating two-stream instability. Enhanced emission continues.
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