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SUMMARY 

Th i s  r e p o r t  p resen ts  a  methcd o f  o b t a i n i n g  v i b r a t i o n  des ign  loads  f o r  

components and b racke ts .  Dynamic M a g n i f i c a t i o n  Fac to r s  ( Q )  f rom 

a p p l i c a b l e  Saturn/Apol  l o  qua1 i f i c a t i o n ,  r e : i ab i  1 i t y  , and v i  b roacous t i c  

t e s t s  have been s t a t i s t i c a l l y  f o rmu la ted  i n t o  des ign  nomographs. 

These design nom~graphs have been developed f o r  d i f f e r e n t  component 

and b r a c k e t  types,  mounted on backup s t r u c t u r e  o r  r i g i d l y  mounted and 

e x c i t e d  by s i n u s o i d a l  o r  random i n p u t s .  T y p i c a l  nomcgrsphs a r e  shown 

below. 

RANDOM I NPUT NOMOGRAPH SINUSOIDAL INPUT NOMOGRAPH 

v i i i  



The cross-hatched 1 ines  i n  t h e  t a b l e  below show t h e  s p e c i f i c  areas f o r  

which data were a v a i l a b l e  f o r  deve lopmnt  o f  t h i s  s tudy.  

Tne data  i n  each o f  these areas were categgr ized i n t o  s t a t i s t i c a l  

samples o f  type o f  components and i n t o  weight  ranges de f i ned  by the  

s p e c i f i c  components. The data p o i n t s  o f  Q versus component and bracket  

resonant frequency were assernbl ed i n t o  these ca tegor ies  f o r  development 

o f  t h e  design nornographs. The l i m i t e d  data a v a i l a b l e  f o r  t h i s  s tudy 

requ i red  t h a t  s imi  1 a r  component and bracket  types be assembled together  

t o  o b t a i n  a s t a t i s t i c a l  meaningful sample s i ze .  

The design procedure i s  c a r r i e d  o u t  as f o l l o w s  ( r e f e r  t o  F iaure  1 

on page x ) .  

1.  S t a r t i n g  w i t h  a t r i a l  design, compute the  frequency o f  the  bracket1  

component system, fn. 



2 .  Selec t  the appropr ia te  nomograph f rom s e c t i o n  6.0 based on 

component wei g h t  , type o f  bracket ,  s' n :~soi  d a l  o r  random exc i  t a t i  on. 

3 .  Enter  the de;ign nomograph a t  t he  computed frequency; f o l l o w  a 

v e r t i c a l  l i n e  u n t i l  i t  i n t e r c e p t s  t h e  i n p u t  environment curve a t  

p o i n t  P ;  read the design l oad  DL or; t he  v e r t i c a l  scale.  

4 .  Using the  design l oad  obta ined from the  nomograph, s t r e n g t h  checi  

the  design and #,:date as requ i red .  

5. Compute 2 net:' resonant frequency and repeat  s teps 3 and 4 as 

requ i red  t o  o b t a i n  ?r acceptable design. 

CHECK DESIGN 

SRECT A P P R O P R I A T I  
\ 

COM WTE RESONANT NOMOGRAPH FROM \ 
SECT1 ON 6.0 

I 

FIGURE 1 DESIGN PROCEDURE 



The des i gn  nomographs were developed by s t a t i s t i c a l  techn iques  f r om  

a v a i l a b l e  da ta .  The dynami c  m a g n i f i c a t i o n  f a c t o r s  f o r  s i n u s o i d a l  and 

random i n p u t  were computed f r ~ m  t h e  t e s t  d a t a  as f o l l o w s :  

SINUSOIDAL EXCITATiOh 

- g~ - response acce le ra t . i on  g Q , - - -  
I i n p u t  a c c e l e r a t i o n  g  

RANDOM EXCITATION 

I, / response  power , 

Q R  7 /  s p e c t r a l  i n p u t  pcwer bens i  ty G'IHZ - 
2 s p e c t r a l  d e n s i t y  G /Hz 

These va lues  were c a l c u l a t e d  f o r  s p e c i f i c  components on  b r a c k e t s  and 

assembled i n t o  c a t e g c r i e s  p rev i ous1  y desc r i bed .  

S t a t i s t i c a l  ana1yse.s were c o n d u ~ t e d  on t i l e  d a t a  p o i n t s  assembled i n t o  

these  c a t e g o r i e s .  The p r i n c i p l e s  o f  1  i n e a r  r e g r e s s i o n  an+ c o r r e l  a t i o n  

ana lyses  were a p p l i e d  t o  t h e  d a t a  i n  each ca tego ry .  A 1 i n e a r  r e g r e s s i o n  

e q u a t i o n  o f  t h e  form 

Q i V )  = a +  b VARIABLE 

was uzed t o  f i t  a l i n e  t o  t h e  d a t a  s c a t t e r .  



Correlation analyses were used on the data to  measure the degree 

of association between the varisble of Q versus component and bracket 

resonant frequency and Q versus component weiaht. Model regression 

equations and correlation coefficients were calculated for each category. 

Categories showing less than 9.5 correlation were eliminated. 

Regression variance analyses were applied to each category t o  define 

confidence level 1 i m i  t s  for  the 1 inear regression 1 ines deveioped for 

the design qomograph categories. A confidence level of  95': was selected 

as the limit i n  this  study, This level was used to develop the design 

nomographs i n  this  report. 



SECTION 1 

INTRODUCTION 

1 .O GENERAL 

Th is  study provides a  s t a t i s t i c a l  de terminat ion  o f  component Oynami c  

Magn i f i ca t i on  Factors (Q) t h a t  can be used i n  t he  design o f  components 

and t h e i r  associated bracket ry  f o r  a  v i b r a t i o n  environment. The dynamic 

environments associ 3ted w i  t h  1  aunch veh i c les  such as Saturn and Space 

Shu t t l e  impose c r i t i c a l  design requirements on components and suppor t ing  

s t r u c t u r e .  

The design and v e r i f i c a t i o n  o f  components and support  s t r u c t u r e  t o  

w i ths tand  v i b r a t i o n  i s  a  c r i t i c a l  p a r t  9 f  the  design development phases 

o f  a  launch veh i c le .  Durino the  Saturn/Aool lo develooment program 

numerous v i b r a t i o n  and acoust ic  t e s t s  were conducted on f l i g h t  hardware 

and support  s t r u c t u r e  t o  demonstratz t he  adequacy o f  t he  design.  These 

tes.' were requ i red  t o  assure the  s t r u c t u r a l  and f u n c t i o n a l  i n t e g r i t y  o f  

t he  hardware when subjected t o  t h e  f l i g h t  environment. These t e s t s  

c o n s t i t u t e  t h e  v i b r a t i o n  data base used t o  del.elope t h i s  s tudy.  

I n  conduct ing t h i s  s tudy the v i b r a t i o n  data  ob ta ined du r ing  v i b r a t i o n  and 

acoust'r, l abo ra to ry  t e s t s ,  s t a l ' i  c  f i r i n p s  and f l  i yhts  were reviewed i n  

order  t o  determine Q f o r  s i g n i f i c a n t  paramet r ic  ca tegor ies .  The s i g n i  f i -  

cant  parametr ic  ca tegor ies  i nves t i  gated were t y ~ e  o f  t e s t ,  component, 

b racket ,  mounting techn iq  ~e and e x c i t a t i o n  source. Tilese ca tegor ies  were 

f u r t h e r  subdiv ided i n t ~  st i - -categor ies which were considered t o  be 

s i g n i f i c a n t  i n  p r e d i c t i  nc ; f o r  Space S h u t t l e  components ana associated 



1 .O (Conti  nued) 

bracketry.  The data s c a t t e r  f o r  each of these categor ies  was s t a t i s t i c a l l y  

evaluated by p r e d i c t i n g  the  mean Cj f o r  each category and c a l c u l a t i n g  the  

degree o f  c o r r e l a t i o n  o f  the data. 

Design nomgraphs f o r  each of  t h e  categor ies and sub-categories mentioned 

above were developed. S i  gni f i cant parameters necessary f o r  desi eni nq 

components and b rackc t r y  are out1 ined on each nomograph t o  assi s t  i n  

se lec t i on  o f  the  appropr ia te  nomograph. Design guide1 ines were a1 so 

provided t o  a s s i s t  i n  the  i n i t i a l  design o f  space veh ic le  components and 

bracket ry  . 



SECTION 2 

DYNAMIC PAGNI FICATION FACTOR 

2 .O GENERAL 

Mech~nica l  systems of the type discussed i n  t h i s  repor t  can be represented 

by e i t h e r  one o r  two degree of freedom systems. The equations o f  these 

systems are q u i t e  fami 1 i a r  and do no t  requi re  de ta i led  discussion. 

Ho~ever ,  i n  order t o  de f ine  Dynami c Magni f icat ion Factor (Q)  adequately, 

i t  i s  necessary t o  mathematical ly describe a s ing le  degree o f  freedom (SDF) 

inechanical system. 

2.1 DYNAMIC MAGNIFICATION FACTOR FOR SINGLE DEGREE OF FREEDOM SYSTEM 

The equation of pot ion fo r  a SDF system i s  no t  l i m i t e d  t o  these system:, 

since i n  normal mode theory the d i f f e r e n t i a l  equation o f  motion f o r  a 

s ing le  normal mode o f  a multidegree o f  freedoln system has the same form 

8s tha t  f o r  a SDF system. The s imp l i f i ed  mechanical model used i n  t h i s  

evaluat ion i s  shown i n  Figure 2-1 . 

FIGURE 2-1 SINGLE DEGREE OF FREEDOM (SDF) SYSTEM 

where 

m = mass ( lb-sec2/ in)  (Kg-sec2/m) 

c = viscous damping constant (1  b -sec l i  n) (Kg-seclm) 



(Continued) 

k = spring constant ( I  bslin) (kg/m) 

x = total displacement of  the mass ( m )  

s = displacement of the base 

y = x-s = relative motion of  the mass 

A base excitation system was chosen here because a majority of the 

component tes ts  conducted on Saturn vehicles used base motion. For 

mathematical consideration we will be concerned with restrained 

vibration motion of the base to a single base excitation direction. 

Only steady s ta te  solution of the equations for sinusoidal excitation 

i s  necessary for defining 3. The differential equation of potion for 

a SDF system i s :  

and i f  related i n  terms of relative motion 

The steady s ta te  solution of a mechanical system t o  sinusoidal input of  

the form s ( t )  = Fo sin b t ,  where Fo and - are the in i t i a l  force and 

forcing frequency, has the foll owing form: 

X - = 
Fo T sin ( ~ t  - a )  

and 
Y = Q sin (wt - 8 )  



2.1 (Continued) 

where T and Q are def ined as the  t ransmiss ib i  1  i t y  and dynamic 

magn i f i ca t i on  f a c t o r  respec t i ve l y .  These terms can be expressed i n  

t h e i r  fami 1  i a r  forms as 

1 - (2( w/*,)~ 
T = - F ( u 5 7 -  77 GnT 

and 

where 

: = f r a c t i o n  o f  c r i t i c a l  dampinq (c/ccritical 1 

u = undamped na tu ra l  frequency (radians/sec) n  

fn = /27 undamped na tu ra l  frequency i n  Hz 'Un 

I f  the t r a n s m i s s i b i l i t y  i n  equat ion 2-5 i s  ca l cu la ted  f o r  var ious values 

o f  damping ;, a maximum steady s t a t e  e x c i t a t i o n  w i l l  occur when the 

fo rc ing  frequency i s  equal t o  the  undamped na tu ra l  frequency (-/dn = 1 )  

Since t h i s  i s  t rue ,  we can express equat ion 2-6 as 

where 

gR = response acce le ra t i on  a t  fn (gpeak) 

g1 = i n p u t  acce le ra t i on  a t  fn (gpeak) 



2.1 (Continued) 

For a random e x c i t a t i o n  the  dynamic magni f i ca t ion  f a c t o r  can be 

expressed as the  square r o o t  of the  r a t i o  (Reference 1 ) .  

where 

GR = response power spec t ra l  dens i t y  a t  fn ( g 2 / ~ z )  

GI = i n p u t  power spec t ra l  dens i t y  a t  fn (g5/Hz) 

The value Q i s  o f t e n  e x ~ r e s s e d  as the  peak a m p l i f i c a t i o n  o r  q u a l i t y  

factor .  It i s  a l so  expressed as a measure o f  the sharpness o f  t he  

resonant peak o f  a SDF system. As shown i n  Figure 2-2, which has 

obtained from Reference 2, :.; i s  the  bandwidth o f  t he  resonant peak 

a t  t he  ha1 f-power p o i n t  ( i  e .  , a t  a value a f  R = Rmax 1 )  The damping 

o f  t h e  /stem can then be defined t o  a good apprcximat ion by 

f o r  values o f  damping s l ess  than 0.1. Froni t he  expressions f o r  a simple 

. ~ s c i l l a t ~ ,  v i  t h  s inuso ida l  e x c i t a t i o n  app l ied  a t  the base we have 

de\l*lc,ed the  expression f o r  QS and QR. These expressions w i l l  be used 

,r  t h i s  study t o  develop the  design nornographs. 



FIGURE 2-2 DAMPING I N  A SYSTEM AS A FUNCTION OF SHARPNESS AND WIDTE 
AT THE RESONANT FREQUENCY "n 
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SECTION 3 

DATA ACQUISITION AND EVALUATION 

3.0 GENERAL 

During the Saturn/Apol lo developmental program, numerous vibration and 

acoustic tes ts  were conducted to prove the adequacy of the f l ight  hardware 

and supporting structure. These t es t s  consisted of laboratory vibration 

and acoustic tes ts  condccted on specific vehicle components, components 

attached to a portion of support structure, and vibroacoustic tests 

conducted on portions of the vehicle structure. The results of these 

t es t s  were documented in qua1 if icat ion,  rel i  abil i t y  , acceptance and 

vibroacoustic t e s t  reports. A review of the documentatior l i s t ing of 

Reference 3 was i n i t i a l l y  made to determine the number of reports which 

were considered applicable to th is  study. Approximately 1,010 reports 

were considered as applicable to th is  study. An in i t i a l  screening of  

these reports was accomplished t o  eliminate those which were acceptable 

for use i n  this study. This fn i t ia l  screening of the documentation 

t i t l e s  was done t o  eliminate t e s t s  conducted on piece parts such as 

re1 ays, connectors, res is tors ,  e tc .  This screening process del eted 

approximateiy i i O  reports out of the  ! ,010 auai lab1 e reports. This 

j n i  t i?! evaluation of the adequacy of applicable reports produced 

approximately 900 reports as possible sources of vibration data necessary 

for determining Q.  In  addition, a review of the Qua1 i t y  and Reliability 

Laboratmy, S&E-qUAL-ATF, reports was a1 so conducted to supplement the 

reports obtained from Reference 3 .  A great majority of the reports 

stored there were available from the Reference 3 .  Therefore, only 
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I 
approximately 40 a d d i t i o n a l  r e p o r t s  were considered appl i cab1 e t o  t h i  s 

study. Documentation sources a t  Johnson Spacecraft Center i n  Houston, 

Texas, were reviewed as another p o t e n t i a l  source o f  appl i c a b l e  repo r t s .  

Th is  rev iew o f  c o n t r a c t o r  data and documentation produced th ree  app l i cab le  

repo r t s .  

The v i b r a t i o n  measurements l oca ted  on the  f l i g h t s  and s t a t i c  f i r i n g s  

o f  the  Saturn launch veh i c les  were reviewed f o r  poss ib le  cases where 

both i n p u t  and response data might  be obta ined f o r  components i n s t a l  l e d  

on brackets .  The major  o b j e c t i v e  o f  f l i g h t  and s t a t i c  f i r i n g  measuring 

programs was t o  determine t h e  v i b r a t i o n  i n p u t  t o  f l i g h t  hardware and not  

t h e  response o f  the  hardware. Therefore, no app l i cab le  data were 

avai  1 able. 

3.1 ACQUISITION OF SOURCE TEST DATA 

3.1 .1 RELIABILITY AND QUALIFICATION TEST DATA 

The major  c o n t r i b u t i n g  source t o  t he  e f f e c t u a l  complet ion o f  t h i s  study 

was the  r e s u l t s  o f  r e l i a b i l i t y  and qual i f i c a t i o n  t e s t s  conducted on 

the  S-IB, S-IV, and S-lC, S-11, S-IVB and I U  f l i g h t  hardware. t:owever, i t  

must be noted t h a t  most o f  the  r e l i a b i l i t y  and q u a l i f i c a t i o n  v i b r a t i o n  

t e s t  measuren~nts used d u r i n g  t e s t i n g  were n o t  analyzed. This seve re .y  

reduced the  number o f  data samples a v a i l a b l e  f o r  t h i s  study. Approxi- 

mately 94% o f  t h e  r e 1  i a b i l  i t y  and qual i f i c a t i o n  t e s t  r e p o r t s  reviewed 

conta ined no v i b r a t i o n  data which cou ld  be used t o  determine Q. 
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3.1.1 (Continued) 

O f  t h e  remaining 6%, approximately one-hal f  o f  these documents were 

the  r e s u l t s  o f  t e s t s  conducted on components which were n o t  considered 

t o  be rep resen ta t i ve  of convent ional  component and bracket  c o n f i g u r a t i o n .  

Those components i n c l  uded such i tems as components on i sol  a t o r s  , 

components on panels, and f u e l  f eed l i nes  w i t h  be l lows and expansion 

j o i n t s .  

The usable data acquired from t h e  r e l i a b i l  it] and qua1 i f i c a t i o n  t e s t s  

cons is ted  o f  21 data samples. The maximum compcnent response was 

recorded f o r  t h e  f i r s t  mode o f  the  component and bracket  f o r  

each o f  t h ree  mu tua l l y  perpend icu lar  axes (1 onai t u d i n a l  , r a d i a l  . and 

t a n g e n t i a l ) .  Th is  mode was considered as the  n a t u r a l  frequency o f  t he  

system. Add i t i ona l  peak response ampl i t u l e s  were recordea a t  var ious 

o t h e ~  modes i n  o rder  t o  be c e r t a i n  t h a t  t he  maximum Q would oe obta ined 

f o r  t he  component and bracket .  These response ampl i tudes were recorded 

fo r  both the  s inuoso ida l  and random e x c i t a t i o n  i n  t h e  f o r n ~  o f  

acce le ra t i on  ampl i tude (gpeak) versus frequency 2nd Power spec t ra l  

dens i t y  (g2/Hz) versus frequency, r e s p e c t i v e l y  . The i nput l e v e l  s  t o  

the  bracket  were a l s o  recorded f o r  t he  f rzquenc ies  es tab l i shed  by t h e  

response a c c e l e r c ~ c t e r .  The maxinuni $ vz laes f o r  tb,c n a t u r a l  f r c q u ~ r ~ c j  

o f  t h e  systems were ca l cu la ted  f rom equat ions 2-7 and 2-8 f o r  each 

ax i s  of e x c i t a t i o n .  These values a long w i t h  s i g n i f i c a n t  parameters 

associated w i t h  t he  component, b racket  and supoort  s t r u c t u r e  were recorded 



.. 
3.1.2 VIBROACOUSTIC TEST DATA 

Laboratory acoust ic  t e s t s  conducted dur ing  the  Saturn/Apol 1  o  program 

were reviewed f o r  app l i cab le  component and bracket  i n p u t  and response 

v i b r a t i o n  data. These t e s t s  I-svealcd t h a t  very few components had both 

i n p u t  and response measurements. A m a j o r i t y  of the components t h a t  

were instrumented were n o t  mounted on f l i g h t  b racket ry .  Only f i v e  

app l i cab le  data samples were obtained f o r  t h i s  study. The O values 

were ca l cu la ted  and the  s i g n i f i c a n t  parametr ic  i n fo rma t ion  r e l a t e d  t o  

the  component, bracket  and support ing s t r u c t u r e  were recorded.  

3.1.3 FLIGHT AND STATIC FIRING TEST DATA 

During the  developmental stages o f  the  Saturn program, f l i p h t  and 

s t a t i c  f i r i n g s  were heav i l y  instrumented w i t h  v i b r a t i o n  measurements. 

These measurements were normal ly  l oca ted  a t  t h e  i n p u t  t o  the  component 

and d i d  n o t  measure the  response. An eva lua t i on  was made o f  a l l  t he  

v i b r a t i o n  l oca t i ons  f o r  the  Saturn f l i g h t  veh ic les  and stage s t a t i c  

f i r i n g s  t o  determine those loca t i ons  which had i n p u t  and response 

v i b r a t i o n  data f c r  components on brackets.  Ne i the r  t e s t  program 

produced components and bracket  categor ies which cou ld  be used i n  t h i s  

study . 

3.2 EVALUATION OF THE SOURCE TEST DATA 

The source t e s t  data as descr ibed i n  Sect ion 3.1 represent  the  t o t a l  

accumulat ion o f  t e s t  data app l i cab le  t o  t h a  development o f  s p e c i f i c  

parametr ic  categor ies.  The t e s t  data f o r  var ious  components on brackets 



3.2 (Continued) 

cons i s ted  o f  21 data p o i n t s  ob ta ined f rom the e x c i t a t i o n  ca tegor ies  c f  

Q u a l i f i c a t i o n  and R e l i a b i l  i t y  Tests and f i v e  da ta  ~ o i n t s  from Vibro- 

acous t i c  Tests. These 26 data p o i n t s  were assembled i n t o  che ca tegor ies  

o u t l i n e d  i n  Sect ion  4.0 and c o n s t i t u t e  the  data base used i n  t h i s  s tudy.  



SECTION 4 

CEVELOPMEN'T OF DYNAMIC MAGNI FICATION 
FP.CTOR CATEGORIES FOR STAT1 ST I CAL ANLLY SES 

4.0 GENERAL 

The v i b r a t i o n  data  ob ta ined d u r i r ~ g  t h e  Sa tun i /Apo l l o  df :ve?o~m?nt program 

and descr ibed i n  the f l ow  c h a r t  o f  F igure  4-1 was ass d i n t o  

categor ies de f i ned  and descr ibed te low.  Thesz cateqor . ., , *? re :  

Type o f  Test  

Type o f  Companent 

Type o f  Bracket  

Type o f  Mountina 

Type o f  E x c i t a t i o n  Sgurce 

Type o f  Test  - Defined ur,aer t h i s  category ark  q ~ ~ a : i f i c a t i o n  and 

Re1 i a b i l i t y  and V i b r o l c o u s t i c  te;r < .  

Type o f  Components - These components as de f i ned  by t h e  data were valves,  

spheres, modules, so l  i d  r e t r o - r o c k e t  ~ ~ e t o r s  .- .d b a t t e r i e s .  

Type o f  Brackets - The brackets de f i ned  by t h e  data were sheet metal 

b r a c k c t ~ ,  ior;ed brackets,  m a c h i ~ e d  brackets and s t r u t s .  A1 1 br3ckots 

ussd i n  t h i s  s tudy were aluminum. 

Type c f  Mounting - The methods o f  mounting were de f i ned  as components on 

brackets mounted on backup s t r u c t u r e  and components on brackets  mounted 

r i g i d l y .  A l l  of t he  v ib roacous t i c  t e s t s  had backup s t r u c t u r e .  

Type o f  E x c i t a t i o n  Soilrce - Under t h i s  c a t e g o y  were s inuso ida l  and 

random sources. 
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4.0 (Continued) 

S t a t i s t i c a l l y  meaningful resu l  t s  were developed f o r  a1 uminum sheet metal 

brackets and alum'num strut:. Lack of a v a i l a b l e  data d i d  n o t  pe rm i t  

eva lua t i ng  o t h e r  bracket  types. 

The i npu t  and response v i b r a t i o n  data obta ined a t  t he  f i r s t  qode o f  

the  s p e c i f i c  component and bracket  were app l i ed  t o  equations 2-7 and 

2-8 t o  c a l c u l a t e  the  Q. These Q values as a  f u n c t i o n  of t h e  fundamental 

resonant frequency ( f i r s t  mode) of t h e  i n d i v i d u a l  components and brackets 

were assembled i n t o  the s p e c i f i c  ~ a t e g o r i e s  es tab l  i shed above. The 

component weights were recorded f o r  each component and bracket ,  a long 

w i t h  the  resonant frequency a n 3  C values i n  o rder  t o  develop t h e  design 

nomograph ca tegor ies  and comparison study ca tegor ies  descr ibed i n  t he  

f o l l o w i n g  sect ions.  

4.1 CATEGORIZATION OF GATA FOR DEVELOPMENT OF DESIGN NOMOGRAFHS 

The s p e c i f i c  data ca tegor ies  de f ined i n  Sect ion  4.0 were evaluated and 

reassembled i n t o  categor ies which cou ld  be used t o  develop design 

nomographs. Th is  reassembl i r lg  was necessary due t o  t h e  l ack  o f  s u f f i c i e n t  

data t o  develop a l l  of t he  ca tegc r i es  1  i s t e d  i n  t h a t  sec t i on .  The data  

were assembled i n t o  the categor ies defined below fo r  development o f  

design n;,iographs. 

I. Q u a l i f i c a t i o n  and R e l i a b i l i t y  Tests 

A. Components on Aluminum Sheet Metal Brackets Mounted on Backup 

S t ruc tu re  and  attache^ t o  V i b r a t i o n  Exc i  t s r  

B. Storage Spheres on Aluminum Sheet Metal Brackets Mounted on Backup 

S t ruc tu re  and 9t tached t o  V i b r a t i o n  E x c i t e r  
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C .  S o l i d  Retro-Rocket Motors on Aluminum Sheet Metal Brackets and 

S t r u t s  Mounted on Backup S t r u c t u r e  and Attached t o  V i b r a t i o n  

E x c i t e r  

D. Components on Aluminum S t r u t s  R i g i d l y  Mounted t o  V i b r a t i o n  

Exc i t e r  

11. Vibro-Acoustic Test  

A. Storage Spheres on Aluminum Sheet Metal Brackets Mounted on 

Backup S t ruc tu re  

The data p o i n t s  i n  these design nomograph ca tegor ies  were subdiv ided i n t o  

type of e x c i t a t i o n  source (s inuso ida l  o r  random). A f t e r  a thorough 

eva lua t i on  o f  the  data o o i n t s  i n  each o f  these ca tegor ies  l i s t e d  above, i t  

was determined t h a t  component and bracket  resonant frequency would be the  

v a r i a b l e  used t o  d e f i r e  Q. Th i s  v a r i a b l e  was chosen because most b racket  

designers op t im ize  t h e i r  designs based on the  n a t u r a l  frequency o f  t he  

system. These ca tegor ies  were a l so  d i v i d e d  i n t o  we ight  ranpes dependi ng 

upon component weights i n  each category. These ca tegor ies  as def ined were 

s t a t i s t i c a l l y  analyzed as out1 ined i n  Sect ion 5.0. 

4 . 2  CATEGORIZATION OF CATA FOR DEVELOPMENT OF COMPARISON STUDY 

In a d d i t i o n  t o  development o f  design nomographs, a s i g n i f i c a n t  p a r t  o f  t h i s  

s tudy was t o  d e f i n e  s i g n i f i c a n t  parameters which c o n t r i b u t e  t o  changes i n  

Q. The method chosen t o  d e f i n e  these parameters was a comparison study.  

The comparison study cons is ted  o f  comparing data  t rends f o r  racdom versus 

s inuso ida l  e x c i t a t i o n  and r i g i d l y  mounted versus backup-structure mounted 



4.2 (Continued) 

components on brackets.  I n i t i a l l y ,  i t  was decided t h a t  component and 

bracket  resonant frequency would be t h e  v a r i a b l e  used t o  d e f i n e  g ,  and 

t o  develop t h i s  p o r t i c n  o f  t h e  study.  However, nu comparison cou ld  be 

made between r i g i d l y  mounted and backup s t r u c t u r e  mounted components on 

brackets,  s ince a l l  o f  t h e  design nomograph ca tego r ies  were r e l a t e d  t o  

s p e c i f i c  types o f  components (see Sect ion  4 . I ) .  Using component weight  

as t h e  v a r i a b l e  d e f i n i n g  Q, a comparison cou ld  be made betiveen components 

and brackets mounted on backu? s t r u c t u r e  and r i g i d l y  rounted.  ?he 

comparison study ca tegor ies  developed using component wei gh t as t h e  

parameter t o  de f i ne  Q were: 

(1 )  Components on Aluminum Sheet Yetal Br3ckets Mounted on Backuo 

S t ruc tu re  Attached t o  V i b r a t i o n  E x c i t e r  

( 2 )  Components on Aluminum Sheet Metal Brackets R i g i d l y  Moucted t o  

V i b r a t i o n  E x c i t e r .  

The data assembled i n t o  the  ca tegor ies  de f ined i n  Sect ion  4.0 were 

reassembled i n t c  these ca tegor ies .  These compari son study ca tegor ies  

were subdiv ided i n t o  the  weight  ranges s p e c i f i e d  i n  Appendix B.  These 

categor ies were a l so  d i v i d e d  i n t o  s p e c i f i c  type o f  e x c i t a t i o n  source 

( s inuso ida l  and random) . 

As can be seen t h e  two ca tegor ies  l i s t e d  above a re  a  cons iderab le  r e d u c t i o n  

i n  e f f e c t i v e  ca tegor ies  when compared t o  those de f i ned  i n  Sec t i on  4.1. 

The number o f  data p o i n t s  a v a i l a b l e  f o r  t h i s  p o r t i o n  o f  the  study severely 

1 i m i  t e d  the  number o f  ca tegor ies  developed. When us ing  frequency as t h e  

va r i ab le  t o  de f i ne  Q, a l l  t h ree  or thogonal  axes o f  e x c i t a t i o n  were 
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assembled together  t o  g i v e  approximately 72 data p o i n t s .  However, using 

component weight  as the  v a r i a b l e  l i m i t e d  the  data  p o i n t s  t o  26. These 

26 data  po ints  i n  t h e  form o f  Q versus component weight were assembled 

i n t o  the  categories def ined  above f o r  s t a t i s t i c a l  analyses o u t l i n e d  i n  

Sect ion 5.0. 



SECTION 5 

STATISTICAL ANALYSES OF DYNAMIC MAGNl FICATION FACTOR CATEGORIES 

5 .O GENERAL 

S t a t i s t i c a l  analyses Nere conducted on the data po in ts  assembled i n t o  

tbe s p ~ c i f i c  categories presented i n  Secticns 4.1 a ~ d  4.2. The 

s t d t i s t i c a l  methods chosen t o  determine the best funct iona l  r e l a t i  onsni p 

between the var iab les o f  Q, (component weight and compcnent and bracket 

resonant frequency) are l inear  regression and co r re l a t i on  ana'rses . As 

spec i f i ed  i n  the Sections 4.1 and 4.2 the v i b ra t i on  data i n  the f o r v  o f  Q 

versus component and bracket resonant frequency and component weight were 

the re la ted  var iab les t o  be def ined by regression analyses. Corre la t ion 

analyses were used t o  measure the degree t o  which the d i t t e r e r ~ t  var iables 

are associated. 

5.1 REGRESS1 ON AND CORRELATION ANALYSES 

The p r i nc i p l es  of regression and co r re l a t i on  analyses are widely used 

s t a t i s t i c a l  techniques f o r  p red i c t i ng  o r  est imat ing parametric r e l a t i on -  

ships. I n  regression analyses these estimates o r  pred ic t ions requi re  

t ha t  a  funct ional  r e l a t i onsh ip  be found between two o r  more re la ted  var-  

iab les.  It i s  a lso  des i rab le  t o  know the s t rength o f  t h i s  re la t ionsh ip .  

Regression methods are used i n  t h i s  study t o  es tab l i sh  the best funct ional  

re la t ionsh ip  between sar iables.  Corre la t ion methods are used t o  measure 

the degree t o  which these var iab les are associated. These methods are 

we l l  known and w i l l  be b r i e f l y  explained i n  the fo l lowing paragraphs. 

The method o f  l e a s t  squares i s  the most common approach i n  f i t t i n g  a  

regression l i n e  t o  a  se t  o f  data. The suf f ic iency o f  the data populat ion 

k; 
,.7 , 

. I.. 

ta 
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5.1 (Continued) 

i n  each category i s  i n i t i a l l y  evaluated t o  determine i f  the re  i s  a 

s u f f i c i e n t  number o f  data p o i n t s  i n  a category. Less than three data 

p o i n t s  would n o t  be enough j u s t i f i c a t i o n  f o r  cons idera t ion  as a s i g n i f -  

i c a n t  category. As s p e c i f i e d  e a r l i e r  i n  t h i s  repo r t ,  Q wi  11 be t h e  

dependent va r iab le  which w i  11 be def ined i n d i v i d u a l  l y  by the  independent 

var iab les ,  component and bracket  resonant frequency and component weight .  

A mean Q as a func t i on  o f  frequency was ca l cu la ted  f o r  t he  component and 

bracket  resonant frequency range. Mean Q as a f u n c t i o n  o f  weight  was a l so  

ca l cu la ted  f o r  component weight  ranges o f  t he  categor ies developed f o r  t he  

comparison study.  Regression and c o r r e l a t i o n  analyses were performed on 

Q ( f )  and Q ( w )  over the  frequency and weight  ranges o f  i n t e r e s t .  It was 

determined t h a t  t he  equat ion t h a t  could de f i ne  Q f o r  development o f  desiqn 

nomographs would be a l i n e a r  regress ion equat ion o f  the  form 

Q ( f )  = a + b FREQUENCY 5-1 

and the  equat ion necessary f o r  development o f  t he  comparison study would be 

Q ( w )  = c + d WEIGHT 5-2 

where f and w are the component and bracket  resonant f requencies and 

component weight  respec t i ve l y .  I n  these equations, frequency and weight  

are the  independent va r iab les  wh i le ,  a and b, and c and d, a re  the  l e a s t  

square es t imators  o f  t h e  regress ion c o e f f i c i e n t s  . Model regress ion 

equations are  developed f o r  each s i g n i f i c a n t  category def ined and are 

presented i n  Appendices A and 0 .  



5.1 (Con t i  nued) 

Correlation analysis by i t s  nature i s  closely associated w i t h  the 

concepts of regression analyses. Correlation analyses can be used t o  

determine the degree of association between vari ablss i n  order to  define 

how well the regression equation f i t s  the data sets .  For the purpose of 

t h i s  report these values wi 11 be denoted as correlation coefficient ( r )  

and are expressed as 

- - 
where X and Y are defined as X = X - X and Y = Y - Y .  Here x i s  used to 

define the component weight and natural frequency and Y i s  the Q value. 

I n  equation 5-3, r will assume the sign of rXY and hence the same sign 

as b and d of equations 5-1 and 5-2. Further, r will assume a value 

between -1 - r - ; 1 , where -1 represents perfect negative linear 

association in the sample and +1 represents perfect positive association 

i n  the sample. A value of zero i s  interpreted to mean no 1 i near 

association between X and Y in the sample. The individual correlation 

coefficient for each data se t  i s  presented on the plots presented i n  

Appendices A and B. 



SECTION 6 

DEVELOPMENT OF DESIGN NOMOGRAPHS AND 
DESIGN GUIDELINES 

6.0 GENERAL 

The design o f  veh ic le  components (valves, spheres, re t ro- rocket  motors 

and modules) and secondary s t ruc tu re  (bracketry)  usua l ly  requ i re  

complex analysis procedures. I t  i s  therefore  important t o  supply t o  the 

design engineer a simp1 i f i e d  y e t  reasonably accurate method o f  developing 

optimum designs f o r  components and t h z i  r bracketry . The design nomographs 

which are developed i n  t h i s  sect ion have been developed t o  g ive the 

designer a s i m p l i f i e d  method o f  determining the maximum loads (Gpeak) f o r  

speci f i  c types o f  components mounted on brackets. The design nomograoh 

categories were s t a t i s t i c a l l y  analyzed by regression variance method t o  

def ine the 95% confidence l e v e l  Q. These confidence l e v e l s  are presented 

i n  Appendix A. The confidence leve l  trends were app l ied t o  we l l  known 

equations t o  determine the maximum loads (Gpeak) which are presented i n  

the design nornograqhs o f  Section 6.2. 

I n  add i t i on  t o  the design nomographs there are some design gu ide l ines 

which have been expressed as s p e c i f i c  concepts which can be app;'e3 i n  the 

design of new components and brackets. These guidel ines are l i s t e d  i n  

Section 6.3 o f  t h i s  repor t .  

6.1 DEVELOPMENT OF DESIGN NOMOGRAPHS 

I n  the past, numerous authors have sought t o  develop q u a n t i t a t i v e  v a l l ~ e s  

f o r  development o f  design fac to rs .  These design f a c t o r s  were expressed as 

constants w h i ~ h  could guarantee the 1 i f e  o f  a p a r t i c u l a r  component and 



6.1 (Continued) 

bracket. These quan t i t a t i ve  values were obtained from extensive 

v i b ra t i on  tes ts  and analyses cnnducted on s i m p l i f i e d  component and 

bracket combinations. However, these values are d i f f i c u l t  t o  def ine f o r  

complex components and brackets such as those which were used on the 

Saturn/Apollo vehic les and spacecraft.  With t h i s  i n  mind, major emphasis 

i n  t h i s  study was given t o  the development o f  v i b ra t i on  t e s t  data obtained 

dur ing the Saturn/Apollo program. Those data as def ined i n  the preceding 

sections have been formulated i n t o  mean Q as a func t ion  o f  component and 

bracket resonant frequency. The data are p l o t t e d  i n  Figures A-1 through 

A-9 i n  the form o f  mean l i n e a r  regression l i nes .  The model equations as 

denoted on the p l o t s  for  each category was fur ther  analyzed by Regression 

Variance methods def ined i n  Reference 4 .  This analysis method i s  used t o  

determine the confidence i n t e r v a l s  f o r  the regression coe f f i c i en t s  o f  

equation 5-1. The coe f f i c i en t s  are expressed as estimates i n  the l i n e a r  

regression equations presented on the f igu res .  These estimates which are 

expressed i n  equation 5-1 as coe f f i c i en t s  a and b are subject  t o  e r ro r .  

It i s  therefore necessary t o  determine w i t h  sore degree o f  confidence 

t h a t  the data po in ts  be below a def ined l i m i t .  The l i m i t s  o f  the r e s u l t i n g  

confidence i n t e r va l s  f o r  the estimated coe f f i c ien ts  defined i n the model 

regression equations expressed on these f igures are based on the Student 

"t" d i s t r i b u t i o n  of s t a t i s t i c a l  analyses. A confidence ieve l  o f  955 was 

selected as the l i m i t s  fo r  the coe f f i c i en t s .  The 95% confidence leve l  

band has been def ined as a p o s i t i v e  and negative excursion about the mean 

Q. For t h i s  study we are concerned w i t h  the  maximum Q as a func t ion  o f  

frequency and, therefore, on ly  the p o s i t i v e  excursion w i l l  be used t o  



6.1 (Continued) 

develop t h e  design nomographs i n  Sect ion 6.2. The c o r r e l a t i o n  c o e f f i c i e n t  

( r )  de f i ned  i n  Sect ion  5.1 was c a l c u l a t e d  f o r  each design nomoaraph 

category and i s  p rese t~ ted  on the p l o t s  o f  Appendix A as a  reference t o  

i n d i c a t e  how w e l l  the l i n e a r  regress ion  l i n e  f i t s  t he  data  s c a t t e r .  As 

can be seen, a l l  o f  the  c o r r e l a t i o n  c o e f f i c i e n t s  were above 0.50 b1';ich 

i n d i c a t e s  t h a t  t he  mean regress ion  l i n e  f i t s  the data s c a t t e r .  A c o r r e l a -  

t i o n  c o e f f i c i e n t  of zero would i n d i c a t e  no l i n e a r  assoc ia t i on  between the 

va r i ab les  used i n  the  regress ion  analyses. 

As can be r e a d i l y  seen i n  Figures A-1 through A-9, t h e  est imated t rends 

are  comparat ive ly f l a t  f o r  the  t o t a l  frequency range and, when comparing 

random and s inuso ida l  t rends,  very 1  i t t l e  d i f f e r e n c e  e x i  5 t s  between t he  

mean es t imated l e v e l s .  

6.2 APPLICATION OF DESIGN NOPOGRAPHS 

A nomograph as presented i n  t h i s  r e p ~ r t  i s  a g raph ica l  s o l u t i o n  i n  

c a r t e s i a n  coord ina tes  o f  t he  r e l a t i o n s h i p  among th ree  o r  more v a r i c h l e s .  

The va r i ab les  f o r  t h i s  s tndy are expressed on each design nomograph as 

t h e  p r e d i c t e d  o r  meac ed i n p u t  acce le ra t i on  o r  power spec t ra l  dens i t y ,  

frequency and Dynamic M a g n i f i c a t i o n  Factor  (Q) . Since both s inuso ida l  

and random e x c i t a t i o n  sources have been de f i ned  by nomographs, e i t h e r  i n p u t  

2 acce le ra t i on  G r m S  o r  power spec t ra l  dens i t y  ( G  /HZ) can be used t o  

o b t a i n  new component response a c c e l e r a t i o n  i n  Gpeak f o r  t h e  ca tegor ies  

and weight  ranoes de f i ned  on t h e  nomographs. The design nornographs are  

presented i n  F igures  6-1 through 6-9 a long w i t h  the necessary i n fo rma t ion  

requ i red  t o  s e l e c t  t h e  app rop r ia te  nomograph. The nomographs developed 
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f o r  the  s inuso ida l  e x c i t a t i o n  source were developed f rom equat ion  2-7. 

The random e x c i t a t i o n  source nomographs were developed f rom equat ions 

presented i n  Reference 1 .  I t  was determined t h a t  most designers r e q u i r e  

the  peak response a c c e l e r a t i o n  r a t h e r  than the  r o o t  mean square 

acce le ra t i on .  Therefore, equat ion  2-7 was mu1 t i p 1  i e d  by t h e  constant  

1.414 and the  equat ion presented i n  Reference 1  was m u l t i p l i e d  by the  

constant  2.2. Th i s  constant  has been s t a t e d  i n  numerous references 

as the 2.20 value o r  2.2 t imes the r o o t  mean square acce le ra t i on .  So 

t h i s  value i s  used t o  d e f i n e  a  1 i m i t i n g  random v i b r a t i o n  l e v e l ,  and s ta tes  

w i t h  97.5% confidence t h a t  t h e  equ iva len t  peak a c c e l e r a t i o n  o f  s i nuso ida l  

v i b r a t i o n  fa1 1s w i t h i n  t h i s  1  i m i t i n g  l e v e l .  The equat ion  necessary f o r  

de termin ing  t h e  new component response acce le ra t i on  i n  G peak i s  presented 

on each nomograph as a  re ference.  The nomographs developed f o r  the  

s inuso ida l  e x c i t a t i o n  are  p l o t t e d  f o r  incremental i npu ts  o f  5 ,  10, 15 

2  
Grms w h i l e  t h e  random e x c i t a t i o n  i s  0.1, 1  .O, 2.0, 5.0 and 10.0 G /HZ. 

By s e l e c t i n g  thc  appropr ia te  i n p u t  acce le ra t i on  o r  Dower spectra 1 dens i t y ,  

t he  component response acce le ra t i on  can be obta ined.  Th i s  response 

a c c e l e r a t i o ~  a long w i t h  component we iqht  can be bsed t o  de te rm i re  the  

maximum a l lowab le  s t r e s s  which cou ld  be used t o  design components and 

brackets.  

A rev iew o f  t h e  equdtions presented 0,; each design nomgra?h w i l l  revea l  

t h a t  t he  component response a c c e l e r a t i o n  . ~r s i  nusoi cia: i nput  w i  11 be 

p ropo r t i ona l  t o  t h e  increase i n  i c p u t  acce le ra t i on .  The component respgnse 

acce le ra t i on  f o r  a  randcn i n p u t  w i l l  be p r o p o r t i o n a l  t o  t he  square r o o t  

o f  the  i n p u t  power spec t ra l  dens i t y .  



6.2 (Con ti nued) 

The f o l l o w i n g  procedure should be used t o  determine the  maximum response 

acce le ra t i on  f o r  development o f  new v e h i c l e  component and bracket  designs.  

1. Se lec t  the  s p e c i f i c  t ype  o f  component and bracket  category 

des i red  from the in fo rmat ion  l oca ted  on Figures 6-1 through 6-9. 

2 .  Selec t ions  should be made based upon type o f  component, b racket  

and weight  range of i n t e r e s t .  

3. Se lec t  t h e  app rop r ia te  e x c i t a t i o n  source requ i red .  S i  nusoidal  

and random graphs are presented f o r  r o s t  o f  t h e  ca tegor ies  i n  

Figures 6-1 through 6-9. It i s  suggested t h a t ,  when making the  

s e l e c t i o n  betwezn s i  nusoidal  and random nomogra~hs , the nomoaraph 

g i v i n g  the  h ighest  component response be used. 

4 .  I f  the  p red i c ted  o r  measured i n p u t  acce le ra t i on  (Grm,! o r  power 

2 spec t ra l  dens i t y  (G /HZ)  i s  known along w i t h  component and 

bracket  resonant frequency, t h e  design nomgraphs can b? used, 

as shown on t h e  fo l l ow ing  page, t o  determine t h e  component 

response acce le ra t i on  (Gpfak) f o r  s i nuso i  dal o; random exc I t a t i o r  . 

I t  must be r e a l i z e d  t h a t  these acce le ra t i on  va! ues are representat1 ve 

o f  t h e  speci f i c  b racket  design f o r  compor.2nts on the  Saturn/Apol: o 

program and the  component response i s  1 i m i  t e d  by these s p e c i f i c  types o f  

designs. 

6.3 DESIGN GUIDELINES 

The r e p e t i t i v e  loads such as produced by v i b r a t i o n  and acous t i c  env i ron-  

ments are  t h e  major c o n t r i b u t i n g  f a c t o r s  i n  t he  design o f  ccmponents and 

brackets .  I n  o rde r  t o  adequately design components and brackets t o  these 
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FREQUENCY. HZ FREQUENCY, @ Z  

loads a  designer must have p r i o r  knowledge o f  t h e  parameters necessary 

t o  d e f i n e  these loads.  The var ious  d i f f e r m r e s  i n  loads, mater i  a l s ,  

s t resses and environments associated w i t h  the ope ra t i ona l  phases o f  a  

v e h ~ ~ l e  make i t  an almost inposs i  b? e task  t o  d e f i n e  these pararceters w i t h  

ar!y degree o f  re1  i a b i  1  i t y .  Design no~ograchs  presented i n  Sect ion 6 - 2  

were developed i n  o rde r  t o  p r e d i c t  w i  i h  good i e l i a h i l i  t y  t he  maximrim 

lridds f o r  desir jning new vehi c!e components ana t r a c k e t s  . These design 

nornographs can be more advar~~agzcus i f  yome design concepts cou ld  be 

def ined t o  a s s i s t  the design engineer i n  t he  i n i t i a l  design o f  a  new 

cornpcnent and c racket .  These concepts have been developed by numerous 

authors i n  t he  pas t  and are  prt...ented below as s p e c i f i c  design guides. 



FREQUENCY, HZ 

Gpeak ( k )  8 Q ( f )  x Grm(I) x 1.414 

WHERI : [ R )  - NEW COMPONEKT RESPONSE ACCELERAT;Ifv 

Q ( f )  - 95% CONFIDENCE LEVEL D Y 1 t l W ! C  "AGN: F I C A Y I O f i  
FACTOR AS A F U N C l i O N  OF F P E r J L i N C i  

GmS( I ) - PREDICTED OR MEASUaED INPLlT ACCELtRAT;CN (G,,, : 

F IGURE 6-1: V I B R A T I O K  TEST  DESIGN NOMOGRAPH FOR CQMPONEVTS ON SHEET 
METAL 8 M C K E T S  EXPOSED TO SINUSOID,1L E X C I T A T I O N ,  WEIGHING 



FRECUENCY. HZ 
G p a t ( R )  a 2 . 2 - j - / 2  T Q x fo x PSD(I) 

W E R E  : Gpeak( R J  - NEU C O H P 3 E N T  PESFGhSi ACCELERjrTiOS 
iGcedk) 

Q - 9S'i rO)tFIDEF(CE LEVEL D Y N W I C  M G N : F I U T I W  
FACTOR 

fo - RESONAN: FKEQ'JENCY OF NEW COEPONENT AND 
BRACKET. HZ 

PSD(1)  - PREDICTED OR PEiSURED I?4PJT POWER SPECTRAL 
DENS I TY ( G:: n: j 

FIGLRE 6-2: ViBRATIO!i TEST 9ESIGt; "r"9GRAPH FOR rOHJ0NE"IS OY SUEET 
METAL BRACKETS ELPOSED TO RA:iDOM E X C I T A T I O N ,  5r'EIGHING 
15 - 4  TO 47 POUNDS 



FREQUENCY, HZ 

Gpeak(R) = Q ( f )  x Grrm(I)  x 1.414 

 ERE: Gpeat(R) - NEW COMPONENT RESPONSE ACCELERATION ( G p e a k )  

l(f) - 95% CONFIDENCE LFVEL DYNAMIC PAGNI F I C A T I O N  
FACTOR AS A FUNCTION OF FREQUENCY 

G,,(I) - PREDICTED OR MEASURED INPUT ACCELERATION (G,,) 

FIGURE 6-3: V I B R A T I O N  TEST  DESIGN NOMOGRAPH FOR COMPONENTS 0F.I SHEET 
METAL BRACKETS EXPOSED TO S I N U S O I D A L  E X C I T A T I O N ,  WEIGHING 
15.4 TO 47 POUNDS 
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FRLOUENCY. HZ 

speak(a) * 2 . 2 4 * / 2  x 0 x fo x P S D ( I ~  

WERE: Gpeak(R) - NEW CDIPONENT RESPONSE ACCELErUfIOW (Gpeak)  

Q - 951 UNFIDENCE LEVEL 3YNAWIC W I F I U T I O W  FACTOR 

fo - RESOWANT FREOULNCI OF NEW COWOWENT An0 BRACKET, HZ 

KD(1) - PREDICTED OR C Z M U E D  INPUT POWER SPECTRAI DENSITY (@/HZ) 

FIGURE 6-4: V I B R A T I O N  TEST  3 E S I G N  NOMOGRAPH FCR STORAGE SPFERES ON SHEET 
METAL BRACKETS EXPCSED TO RAWDOM E X C I T A T I O N ,  WEIGHING 4.7 
TO 116.2 POUNDS 



FREQUENCY, HZ 
Gpal(R) = Q(f) x G m ( I )  x 1.414 

Gpeal;(R) - NEW COMPONENT RESPONSE ACCELERATION (Gpeak) 

Q( f )  - 95% CONFIDENCE LEVEL SYNAMIC KAGNI F I C A T I O N  
FACTOR AS A FUNCTION OF FREQUENCY 

Grms(I) - PREDICTED OR MEASliRED I N P b T  ACCELERATION (G,) 

F IGURE 6-5: V I B R A T I O N  TEST  DESIGN NOMOGRAPH FOR STORAGE SPHERES ON SHEET 
METAL BRACKETS EXPOSED TO S I N U S O I D A L  E X C I T A T I O N ,  WEIGHING 
4 .7  TO 116.2 POUNDS 



FREQUENCY, HZ 

G ~ . ~ ( R )  = Z . ~ ~ ; I Z  x a x ro x PSD(I) 

WHERE: Gpeat (R) - NEW COWONENT RESPONSE ACCELERATION (Gpeak) 

Q - 95% CONFIDENCE LEVEL DYNACIIC CIAGNIFICATION 
FACT OR 

fo - RESONANT FREQUENCY OF NEW COMPONENT AN0 
BRACKET, HZ 

PSD(1) - PREDICTED OR REMURED INPUT POWER SPECTRAL 
M N S I T Y  ( 6 2 1 ~ 2 )  

FIGURE 6-6: VIBRATION TEST DESIGN NOMOGRAPH FOR SOL1 D RETRO-ROCKET MOTORS 
ON SHEET METAL BRArKETS AhD STRUTS, EXF .5ED TO RANDOM 
EXCITATION,  WE1GH;kG 382 POUNDS 



Gprk(R) = Q(f )  x G m ( I )  x 1.414 

WERE: Gpeak(R) - NEW COIIPOIENT RESPONSE ACCELEP4TION (Gpeak) 

Q(f)  - 952 CONFIDENCE LEVEL OYHAnIC MAGNIFICATION 
FACTOR AS A FUNCTION OF FREQUENCY 

Gm(I )  - PREDICTED OR MEASURED INPUT ACCELERATION (G,) 

FIGURE 6-7: VIBRATION TEST DESIGN NOROGRAPH FOR SOLID RETRO-R0:KET PCT3RS 
ON SHEET METAL SRACKETS A N D  STR!ITS, EXPOSED Tr SINUSO!DAL 
EXCITATION, WEIGHING 382 POUNDS 



FREQUENCY, HZ 
GPak(R) s 2 . 2 4 7 ~ 1 2  x Q x f0 x P S D ( 1 )  

W E R E  : Gpeak ( R)  - NEW COMPONENT RESPONSE ACCELERATION (Gpedk) 

Q - 95% CONFIDENCE LEVEL DYNAMIC MAGNIFICATION 
FACTOR 

RESONANT FREQUENCY OF NEW COMPONENT 
BRACKET, HZ 

AND 

P S D ( 1 )  - PREDICTED OR MEASURED INPUT POWER SPECTRAL 
DENSITY ( G ~ / H Z )  

FIGURE 6-8: VIBRATION TEST DESIGN NOPOGRAPH FOR COMPONENTS ON STRUTS 
EXPOSED TO RANDOM EXCITATION, WEIGHING 229 TO 360 POUNDS 



FREQUENCY, HZ 
G R  = 2.27/ . /2 x 9 x fo x PSD(1) 

H E N :  Gpeak(R) - NEW COMPONENT RESPONSE ACCELERATION (Gpeak) 

9 - 95% CONFIDENCE LEVEL DYNAMIC MAGNlFlCATlON 
FACTOR 

- RESONANT FREQUENCY OF NEW COMPONENT AND 
'0 slucar. HZ 

PSD(1) - PREDICTED CiQ MASURE0 INPUT POYER SPECTRAL 
OENSITY (q;:. M Z )  

FIGURE 6-9: VIBRO-ACOUSTIZ ZZ IGN NOYOGRAPHS FOR STOPAGE SPVERES ON 
SHEET METAL 0 -  ZTS, WEIGHING 186 POUNDS 



6.3 (Continued) 

1. The design should be simple. 

2. The design should prov ide f o r  mu1 t i p l e  load paths. 

3. Special design cons idera t ion should be given t o  components 

w i t h  tens ion loaded f i t t i n g s .  

4.  Factor of sa fe ty  should be app l ied t o  stresses around holes.  

5 .  Labaratory t e s t  should be conducted on newly designed j o i n t s .  

6. Mater ia ls  w i t h  l o n g i t u d i n a l  g r a i n  d i r e c t i o n  should be u t i  1  i zed  

i n  design. 

7. Generous f i l l e t s  and r a d i i  should be provided.  

8. Break a1 1 sharp edges. 

9. P ro tec t  a i l  pa r t s  from corrosion.  

10. Desigr, 5 t r u c t u r a l  reinforcements t o  g i ve  a  gradudl r a t h e r  than 

3brupt change i n  cross sect ion.  

11. Design ?a r t s  f o r  minimum mismatch on i n s t a l l a t i o n ;  t h i s  w i l l  

r e s u l t  i n  'iower preload t e n s i l e  s t r a i n s .  

1 2 .  Select. component and bracket  c o n f i g u r a t i ~ r l  w i t h  h igh s t r u c t u r a l  

damping . 
13. Oorimize bracket  and component resonail: frequencies cons ider ing 

both serv ice  environmenr and equipment f r a g i  1 i ty .  

14. Reduce the number o f  coupled resonances between corponent and 

s t r u c t u r a l  ; ssemblj. 

15. Mismatch i->:.dances o f  rnodnted i t e m  on i t s  brack2t .  

16. When s e l e c t i n g  the r i g h t  rnaterfal , ccnsider the i x t ,  st rength  

al lowables, h c . ~  :.:?ll i t  can be fabr ica ted,  and environmental 

ef fect ; .  



6.3 (Continued) 

17.  For optimum forming o f  components, consider f ab r i ca t i on  . 
techniques . 

18. Select welding techniques i n  which there i s  some re1 i a b i l i  t y  i n  

reproducing po in t  strengths.  

These design gu:dos are representat ive o f  a se lec t i ve  l i s t  o f  guides 

t ha t  could be used i n  conjunct ion w i t h  the design nomographs. The resu l t s  

of apply ing these design nomographs and design guide1 ines t o  the design 

of new vehic le  components and brackets should be an e f f i c i e n t  design, 

w i t h  weight savinas, law cost design, long service l i f e ,  good r e i i a b i l i t y  

and an easy method of f ab r i ca t i on  o f  the component and bra-bet.  
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SECTION 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.0 COIICLUS IONS AND RECOMMENDAT IONS 

The nomographs t h a t  were developed he re in  are  t h e  r e s u l t s  of an 

exhaust ive study o f  t h e  vdr ious  v i b r a t i o n  and acoust ic  t e s t s  conducted 

du r ing  t h e  Saturn/Apol;o prcgram. A t o t a l  o f  1,010 d i f f e r e n t  t e s t  

repo r t s  were reviewed, y i e l d i n g  72 useable Q f a c t o r  data p o i n t s .  

Th is  number o f  data p o i n t s  l i m i t e d  the  t o t a l  number o f  ca tego r ies  

developed and reduced t h e  number o f  design nomographs presented i n  

t h i s  r e p o r t .  I n  conclusion,  the r e s u l t s  presented i r i  t he  form o f  

design nomographs o f  s p e c i f i c  component and bracket  ca tegor ies  

represents an e f f e c t i v e  method o f  de termin ing  t h e  response o f  components 

due t o  a p r e d i c t e d  o r  measured i n p u t  a c c e i e r a t i o ~ i ,  It i s  recommended 

t h a t ,  when us ing  the  design nomographs o f  t h i s  r e p o r t ,  one must 

remember t h a t  these new component response acce le ra t i ons  are bes t  

est imates based on s p e c i f i c  Saturn/Apol l  o component and bracket  design 

and should be used accord ing ly .  
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APPENDIA A 

This  appendix provides t h e  r e s u l t s  o f  t h e  regress ion ,  c o r r e l a t i o n  and 

regress ion  v a r i  ance analyses conducted on the  data  ca tegor ies  assembled 

f o r  development o f  design nomographs, The data p o i n t s  o f  Q v e r s l s  

component and bracket  resonant frequency were assernbl ed i P Lo the  categor i es 

l i s t e d  i n  Sect ion  4.1 and s t a t i s t i c a l l y  analyzed as out1;ned i n  Sect ion 

5.1. The r e s u l t s  of t h e  s t a t i s t i c a l  analyses are presented i n  Fiqurbt.s 

A-1 through A-9 as mean and 954 confidence l e v e l  regress ion  l i n e s .  On 

each f i g u r e  are the model reg ress ion  equations and c o r r e l a t i o n  c o e f f i c i e n t s  

f o r  de f i n ing  t h e  ca tegor ies .  These f i g u r e s  were used i n  Sect ion  6.0 t o  

develop the  design nomographs. 
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The ob jec t i \ res  O F  ch i s  appendix are  t c  per form 3 comparisun study between 

s i  gni  f i;a~: t i;arameters and t o  determine what parameters a f f e c t  t h e  

Dynamic Yagnif i c i t i c n   fact.^^. (Q) o f  csaponents on brackets .  The most 

s i  g ~ i  f i  cdnt  p a r a w t e r s  were determi r ~ d  t c  be component weight  , component 

and bracket  resonant frequency, type oC e x c i t a t i o n  (random and s i  nusoidal  ) 

and mount'ing 'zcbr ique ( r i g i d l y  mou.?ted o r  backup s t r u c t u r e  mounted). 

The f i r s t  t w o  parameters, component weight  and component and bracket  

resonant frequency, were determined t o  be the  most s i g n i f i c a n t .  These 

parameters as d iscussed i n  Sections 4.1 and 4.2 were t h e  major  va r i ab les  

chosen t o  debe!oc t h e  design nornographs i n  Sect ion  6 .2  and t h e  comparison 

study i n  t h i s  appendix. The remaining two parameters, type o f  e x c i t a t i o n  

and type o f  mounting techniques, w i l l  be s tud ied  by comparing random 

versus s i  nusoi da l  t e s t i n a  and r i g i d l y  mounted versus backup s t r u c t u r e  

mounted components and brackets, r e s p e c t i v e l y .  The data i n  the  form o f  

Q versus component weight  were assembled i n  ca tegor ies  l i s t e d  i n  Sect ion  

4.2. These ca tegor ies  are: 

1. Components on Aluminum Sheet Metal Brackets Mounted on Backup 

S t r u c t u r e  Attached t o  V i  b r a t i o n  E x c i t e r .  

2. Components on Aluminum Sheet Metal Brackets R i g i d l y  Mounted t o  

V i b r a t i o n  E x c i t e r .  

The data were assembled i n t o  types o f  e x c i t a t i o n  ca tegor ies  es tab l  ished 

e a r l i e r  and a l s o  i n t o  weight  ranaes f o r  t h e  ca tego r ies  1 i s t e d  above. I t  

was determined tha t ,  due t o  t he  l i m i t e d  amounts o f  da t i i  po in t s ,  i t  would be 

necessary t o  assemble the  data p o i n t s  ( Q  versus component we ight )  i n t o  



weight ranges i n  order t o  comDare estimated trends. The data po in ts  f o r  

the spec i f i c  type o f  exc i t a t i on  and category above were subdivided t o  

weight ranges of 2 t o  7 ,  15.4 t o  47. and 68 t o  382 pounds and s t a t i s t i c a l l y  

analyzed as ou t l i ned  i n  Section 5.1. The resu l t s  o f  the s t a t i s t i c a l  

analyses i n  the form o f  1 inear  regression l i n e s  are shown i n  Figurgs B-1 

through B-6. As can be seen, the mean Q decresed w i t h  increase i n  

frequency fo r  random and s i  nusoidal exc i ta t ion .  This decreasing trend 

was a lso evident f o r  the t o t a l  component weight range o f  2 to  382 pounds 

as shown i n  Figures 8-7 and B-8. I n  the low weight range, the change i n  

component weight does not  s i g n i f i c a n t l y  a f f e c t  Q f o r  e i t h e r  random o r  

s inusoidal  exc i t a t i on  source. A comparison o f  the mean regression 1 ines 

f o r  the exc i t a t i on  sources i n  the weight range o f  2 t o  7 pounds shows 

s i m i l a r  amplitudes and trends. This would ind ica te  t h a t  t e s t i n g  o f  very 

small components t o  e i t h e r  random o r  sinusoidal e x c i t a t i o n  sources has no 

effect on the response charac te r i s t i cs .  Also t h i s  would ind ica te  tha t  tne  

component bracket design was such t ha t  i t  1 i m i  ted the component response 

charac te r i s t i cs  extremely we l l  . I t  must be assumed throughout t h i s  study 

t h a t  each t e s t  produces the same damage on a second-order system. The 

mean trends i n  the weight ranges o f  15.4 t o  47 pounds and 68 t o  382 pounds 

are shown i n  Figures B-3 and 8-4. No analogy could be drawn between 

d i f ferent  exc i t a t i on  sources due t o  the lack  o f  data. 

A comparison was made between components on brackets mounted t o  backup 

s t ruc tu re  (Figure 8-1) and components on brackets r i g i d l y  mounted t o  

v i b ra t i on  exc i t e r  (Figure 8-6). This comparison showed considerable 

d i f ference i n  Q f o r  the weight range o f  2 t o  7 pounds. The components on 



brackets which were mounted r i g i d l y  t o  v i b r a t i o n  e x c i t e r  experienced a 

Q o f  3 t imes g rea te r  than those experienced by components on brackets  

mounted t o  backup s t r u c t u r e .  For components on brackets  mounted r i g i d l y  

t o  v i b r a t i o n  e x c i t e r ,  g rea t  pains are taken t o  r e s t r i c t  t he  v i b r a t i o n  

motion o f  the  shaker and f i x t u r e  t o  a s i n g l e  d i r e c t i o n  and t o  make the  

t e s t  f i x t u r e  as massive as poss ib le  t o  e l i m i n a t e  any cross axes 

sensi t i v f  t y  and f i x t u r e  c o n t r i  bu t iucs  to  t h e  resonant behavior  o f  t he  

component and bracket .  The a d d i t i o n  o f  a backup s t r u c t u r e  w i l l  change 

the  i n t e r f a c e  c h a r a c t e r i s t i c s  between t h e  component b racket  and backup 

s t r u c t u r e  and w i l l  l i m i t  t he  response as can be seen when comparing Figures 

B-1 and B-6. It can be concluded based on t h e  l i m i t e d  data obta ined t h a t  

t h e  s inuso ida l  t e s t  o f  components on brackets r i g i d l y  mounted t o  v i b r a t i o n  

e x c i t e r  represents a more severe t e c t  f o r  components weighing from 2 t o  

7 pounds. Due t o  l a c k  o f  data f o r  components on brackets  i n  t h e  we ight  

range above 7 pounds, no comparison cou ld  be m d e  between these parameters. 

It i s  an t i c i pa ted ,  however, t h a t  t e s t s  conducted on components mounted 

r i g i d l y  t o  v i b r a t i o n  e x c i t e r  f o r  any component weight  does expose the  

component t o  a more severe environment. 

The mean r e g r e s ~ i o n  1 ines f o r  components i n  the  we ight  range o f  15.4 t o  

47 pounds are  presented i n  F igure  8-3 f o r  components on sheet metal b rackets  

mounted t o  backup s t r u c t u r e  and t e s t e d  t o  a random environment. Unfor- 

t una te l y ,  no o t h e r  category f o r  e i t h e r  s inuso ida l  o r  random e x c i t a t i o n  

sources cou ld  be developed due t o  l a c k  o f  da ta  p o i n t s .  However, i t  should 

be noted t h a t  i n  t h i s  weight  range t h e  mean Q values a r e  approximately 

tw i ce  as h i g h  as t h e  Q values recorded f o r  t h e  we ight  range o f  2 t o  7 



pounds. The brackets i n  t h i s  weight range (15.4 t o  47 pounds) were 

jpparent ly no t  1 imi  t i n g  the response acce lerat ion as e f f e c t i v e l y  as they 

do i n  o ther  weight ranges. This could be due t o  the p a r t i c u l a r  bracket 

design f o r  t . ~ i s  weight range. 

I n  the much higher weight range o f  68 t o  382 pounds, as shown i n  Figures 

8-4 and 8-5 f o r  random and sinusoidal  exc i ta t ion ,  the mean Q values were 

r e l a t i v e l y  constant f o r  the t o t a l  weight range. The comp~ra t i ve l y  low Q 

values of approximately 4.5 are comparable t o  those reco-ded f o r  

components cons is t ing o f  heavy spheres and s o l i d  rocket motors on very 

i n t r i c a t e  bracketry.  It would appear t ha t  the complex bracket design 

cont r ibuted t o  the low Q obtained f o r  t h i s  weight range. 

I n  conclusion, based upon the mean regression trends presented, sinusoidal 

exc i t a t i on  exposed the component t o  a higher acce lerat ion a t  the component 

and bracket resonant frequency. A1 so, the 1 i near regress ion  analyses 

conducted on components on brackets mounted r i g i d l y  t o  the v i b ra t i on  

e x c i t e r  represented a mors severe environment than components on brackets 

mounted on backup s t ructure.  
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