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ABSTRACT

Under NASA Contract MAS 1-10917, Bell Aerospace was re-

sponsible for Improvements to the operational capabilities

of NASTRAN. The improvements included the development and

implementation of a number of new finite elements into the

existing NASTRAN element library and also the development

of a finite element heat transfer analysis capability.

The present report summarizes these additions to

NASTRAN.
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I. - INTRODUCTION

Under NASA Contract NAS 1-10917, Bell Aerospace Company

was responsible for improving the operational capabilities

of the NASA general purpose finite element analysis program

NASTRAN. The improvements under this activity were to be

conducted in two general and related areas . The first area

comprised the development and implementation of a number of

new finite elements into the existing NASTRAN element library.

The second major task was the development of a finite

element heat transfer analysis capability within the frame-

work of the present NASTRAN program structure. This therm-

al- analysis capability includes conduction, convection and

radiation and is capable of handling both steady-state and

transient analysis conditions . The development of the fin-

ite element heat transfer analysis capability was subcontracted

by Bell Aerospace to the MacNeal-Schwendler Corporation,

while the finite element development was performed by Bell

as the prime contractor .

The new finite elements and the heat transfer analysis

capabilities were developed, coded and checked out using

demonstration problems supplied by the NASTRAN System Man-

agement Office (NSMO) . Upon completion the elements were

delivered along with full documentation to NSMO for im-

plementation into NASTRAN. The documentation accompanying

each element and. the heat transfer capability consisted of

a full technical derivation which were prepared as new sec- .

tions of the NASTRAN Theoretical Manual. In addition, com-

plete updates to the NASTRAN User rs and Programmer's Manuals

were supplied documenting the many changes introduced through

the implementation of the improved analysis capabilities .



. The full derivations of all elements are presented in

the new sections of the Theoretical Manual . The purposes

of the present report is to summarize the new finite ele-

ments and heat transfer analysis capabilities in NASTRAN.

In addition to the six new structural elements coded

into NASTRAN, a number of other elements were developed to

various levels but were not coded. For these elements pre-

liminary drafts of the Theoretical Manual Entries were pre-

pared but these will not appear in the published Theoretical

Manual. Summaries of theoretical derivations of these ele-

ments are also included in the present report.



II . - SUMMARY OF IMPROVEMENTS TO NASTRAN

A. NEW ELEMENTS IN NASTRAN

(i) General Element

The general element is a structural stiffness .el-

ement connected to any number of degrees of freedom,

as specified by the user . In defining the form of the

externally generated data on the stiffness of the ele-

ment, two major options are provided.

(a.) The user supplies the deflection influence

coefficients (flexibility matrix) for the structure

supported in a non-redundant manner . The associated

matrix of the restrained rigid body modes may be in-

put or may be generated internally by the program.

One use of the general element is the representation

of part of a structure by means of externally measured,

data. Such data are more usually generated in the form

of flexibilities than direct stiffnesses .

( b) The stiffness matrix of the element may

be input directly. This stiffness matrix may be for

an unsupported body, containing all the rigid body modes,

or boundary conditions may already have been imposed

resulting in the deletion of some or all of the rigid,

body modes . In the latter case, the option is given

for automatic inflation of the stiffness matrix to

reintroduce the restrained rigid body terms, provided,

that the original support conditions did. not constitute

a redundant set of reactions .

The former capability of handling an input flex4-

ibility matrix was already resident in the NASTRAN

system. The ability to input and process a stiffness



matrix was developed as part of the current contract.

While the direct input and use of an externally gen- .

erated stiffness matrix is straightforward.,, the ability

to regenerate some or all of the suppressed rigid body

modes requires special considerations .

The matrix relating the constrained degrees of freedom

of the general element to a reference set of motions

at the origin of the basic coordinate system may be

rectangular and non-invertible . To overcome this dif-

ficulty the matrix is partitioned using a rank tech-

nique and inflated by addition of an identity matrix.

The appropriate columns of the inverted inflated ma-

trix are then used to generate the necessary rigid body

modes for the supported general element.

The other stages in the theoretical basis of the new

element follow the existing pattern for the flexibility

based general element .

(ii) Rigid. Body Element

The rigid element is a generalization of the multi-

point constraint capability resident in NASTRAN. The

element procedures automatically generate the coeffi-

cients which define the linear dependency of the linked

degrees of freedom instead, of their being supplied di-

rectly by the user.

The rigid element may be a one-, or three-dimensional

structural element with any number of grid points . At

these points, any or all degrees of freedom may be con-

nected to the remaining structure as specified by the

user . The only motions that the element is permitted



to have are six gross rigid, body degrees of freedom.

The element has the effect of providing automatic

coupling of a large number of component degrees of

freedom at various grid points and condensing these to

the six degrees of freedom associated with the motion

of the rigid, body. In the absence of boundary con-

straints the motion of the element will be fully de-

fined by the six degrees of freedom at a reference

point. This reference point may be either a struct-

ural grid point to which other elements are connected

or it may be an unconnected point of the interior of

the rigid element. For convenience in notation, the

reference point is always the first grid point defined

for the element .

Boundary constraints may be specified on any d.egrees

of freedom of the element . These may take the form

of either complete restraint or imposed, displace-

ments . Specification of redundant constraints is

permitted.. Checks are incorporated on the admissi-

bility of any set of imposed constraints to ensure no

violation of the rigid body kinematics occurs . If such

a violation is detected, execution of the program is

terminated with an appropriate message to the analyst.

In the presence of boundary restraints or imposed nodal

displacements, the resultant motion of the body is

then expressed in terms of a new set of natural degrees

of freedom which are automatically generated by the

element. The final motion of the body is specified in

the relevant output systems at the individual grid

points .

Under certain circumstances, a rigid, body may be

specified which possesses one or more unrestrained

degrees of kinematic freedom. Inclusion of these mo-

tions would, result in a singular stiffness matrix .



A check is included to detect this condition and elimin-

ate the unnecessary degrees of freedom from the rigid ele-
ment reference set . For the simplest case of a fully unre-

strained rigid body, the relationship between all components

of motions at all gridpoints and in reference set of six in-
dependent degrees of freedom at any reference point in the

system can be written directly from simple kinematics.

The introduction of considerations of boundary constraints

(either as complete restraints or as imposed displacements)

linking of the element to adjacent structure by less than six

degrees of freedom per gridpoint and the necessity for check-

ing a, possibly surplus unrestrained motions of the rigid body
considerably complicates the element relationships . All these

aspects are handled using rank elimination techniques .

The matrix of complete kinematic relationships between all
specified, motion (or potential motion) at gridpoints of the

rigid body and a basic set of orthogonal components of motion

at some reference point in the system is established.

By imposing rank determination techniques selectively on por-

tions of this matrix:

a) the presence of surplus degrees of freedom can be detected

through a complete uncoupling of one or more reference degrees

of freedom from all specified components of motion of the body.

The surplus degrees of freedom are then eliminated using single

.point constraints .

b) all degrees of freedom associated with the body mo-

tion are automatically partitioned into dependent and
independent sets. This partitioning reflects the pre-

scribed, boundary conditions and. ensures that all restrained.



motions are included, in the independent set . These

restraints can then be deleted using single point

constraints leaving a reduced set of ind.epend.ent

d.egrees of freedom which describes the residual mo-

tion of the restrained rigid element . A check is

also incorporated to ensure that any imposed dis-

placement system is admissible (i.e. does not

require violation of the rigid, body kinematics of

the system)

All necessary transformation relationships are re-

tained in order to present to the analyst the full

kinematic motion of the rigid, body at the output

stage.

(iii) Triangular and Trapezoidal Ring Elements

The formulation of the triangular and trapezoidal

cross-s-ection ring elements is derived from, and is

mathematically consistent with, the formulation

described in References 1 and 2. The ring elements

provide a powerful tool for the analysis of thick-

walled and. solid axisymmetric structures of finite

length. They may be used to idealize any axisym-

metric structure taking into account:

1. Arbitrary axial variations in geometry.

2. Axial variation in orientation of material

axes of orthotropy.

3 . Radial and. axial variations in material proper-

ties .

4. Asymmetric as well as axisymmetric loading

systems including pressure and temperature .

The discrete element technique was first applied to

the analysis of axisymmetric solids by Clough and

Rashid ^' . The formulation of the triangular cross-

section ring was extended by Wilson ' ' to include

7



nonaxisymmetric as well as axisymmetric loads .

Wilson's formulation for the asymmetric-case was ex-

tended in Reference 5 to include orthotropic material

properties with variable orientation axes . This ex-

tended development was utilized in the derivation of

the solid of revolution elements which were provided

the NASTRAN program during this study.

The triangular cross-section ring element possesses

three nodes and three degrees of freedom at each of

these nodes (radial,axial and circumferential dis-

placements) which accounts for a total of 9 degrees

of freedom for the element proper . The trapezoidal

cross-section ring element is defined by four nodes

possessing the same individual degrees of freedom

discussed above (totaling 12 element degrees of

freedom) .

Lumped and consistent mass matrices were developed

specifically for the triangular and trapezoidal cross-

section ring elements as were thermal load vectors for

both of the elements . The triangular and trapezoidal

cross-section ring elements were designed to accommo-

date grid point, pressure and gravity loadings pre-

viously existing in the NASTRAN program.

The basic restriction inherent in both elements is that

they remain structurally and materially axisymmetric .

Circumferential variation of element dimensions (thick-

nesses) or material properties is not permitted. Both

elements are formulated in a cylindrical, coordinate

system defined by radial (r) , axial (Z) and .circumfer-

ential' (0) coordinates . Utilizing this coordinate system

the radial, tangential and axial displacements' of a

point (r,Z, gf) located within the ring element can be

expressed as shown below .
8



•m.

2,40 =

Equation (1) characterizes the decomposition of the

displacement fields into orthogonal components. With

the assumption of structural axisymmetry, an uncoupling

"between harmonics of the element potential and kinetic

energy results. This condition is evidenced by the

particular example of the strain energy given in

Equation 2 below:
n\ '

The analysis of a three dimensional axisymmetric

structure using the triangular and trapezoidal ring

elements is thereby reduced to the solution of a series

of two dimensional problems. The resulting analysis

procedure is similar to one required by the conical

shell of revolution element previously existing in

NASTRAN. The existing analytical procedure was

therefore implemented in the insertion of the triangular

and trapezoidal ring elements into the NASTEAN program.

(iv) Triangular and Quadrilateral Plate Elements

Triangular and quadrilateral plate elements, based upon

these presented in Reference 1, were derived and imple-

mented into NASTRAN. These quadrilateral and triangular

elements are appropriate -for use in the analysis



of all types of shell structures, both planar and curved

Although the geometries of the two elements differ, the

basic procedures for the derivation of all element re-

lationships are essentially identical. Each element

is divided into triangular zones for which displace-

ment functions are assumed, for membrane and. flexural

behavior independently. Membrane displacements are

represented, by quadratic polynomials while cubic poly-

nomials are used, for the transverse displacements .

Through the enforcement of interzonal continuity con-

ditions, these assumed displacement functions are then

related to each other .

The use of this procedure results in consequent improve-

ment in the element accuracy over similar elements based

upon lower order polynomials . The use of independent

zonal, functions also ensures that the element relation-

ships are independent of the orientation or numbering

system of the element.

Under normal circumstances, degrees of freedom are de-

fined, at the corner points of the elements and. also at

the midpoints of the sides . The introduction of midside

degrees of freedom, which are consistent with the higher

order polynomials used, permits satisfaction of full

interelement compatibility, along the element boundaries .

At each corner .point, five degrees of freedom are

defined, corresponding to the three translational com-

ponents plus rotations about the local x- and y- axes.

Rotation about the Z-axis (normal to the plane of the

plate) is suppressed. At the midside gridpoints only

three degrees of freedom are defined. These are the

membrane displacements (u, v) and a rotation (e )

about the edge of the element. Since this latter ro-

tational degree of freedom is referenced only to the

10



edge of the element, some local convention must be

introduced to ensure continuity between adjacent ele-

ments . To achieve this, a local positive direction

is defined for each edge of an element from the lower

to the higher gridpoint number . The direction of

is then defined by a positive vector along each edge .

An option is also provided, to use the elements with the

midside degrees of freedom suppressed on any or all sides .

This suppression is accomplished by the analyst insert-

ing a zero in place of a gridpoint identification num-

ber on the element connection card. The result of this

action is to enforce a linear variation of membrane

displacements along the relevant edge.

In using the element, six degrees of freedom are norm-

ally allocated for each gridpoint. The analyst must

then impose boundary constraints to eliminate any un-

defined components . For example, when used, in the

flexural analysis of a planar structure, the normal

idsplacement w along with the second and third rota-

tion components must be eliminated at the midside points

through the use of single point constraints. The im-

position of such a w-restraint will not result in a

local dimple in the structure, since the cubic normal

displacement behavior is defined, only in terms of the

transverse displacements and rotations of the corners .

In the analysis of curved shells or non-planar struct-

ures, the suppression option should, be used on the d.e-

grees of freedom associated with the mid-points of all

edges between non-coplaner adjacent elements .

While both membrane and flexural action are represented, the

two behaviors are uncoupled within the element and can

.11



be generated separately. Distinct membrane and flex-

ural effective thicknesses are assumed constant over

the plane of the element.

In the thin plate and shell structures typically

modeled, by these elements, transverse shear d.efor-

mations.are negligibly small compared with those aris-

ing from membrane and flexural strains . Shear defor-

mations are normally only of significance in thick

plates and shells where the use of the present ele-

ments may be inappropriate . In addition, it has been

shown (Ref. 6) that the use of a direct displacement

approach in the derivation of element stiffness will

lead, to an erroneous representation of shear deform-

ability. In view of these considerations and the as-

sociated, numerical complexity, transverse shear defor-

mations are not included in these plate elements .

The formulation of the plate elements accommodates

full orthotropy of mechanical and physical material

properties . Orientation of the material axes is

user-specified. A linear generalized Hooke's Law is

used, for equations of state . Both plane stress and

plane strain options are available . For thermal load-

ing, the temperature is assumed constant over the sur-

face for membrane behavior and. linear through the

thickness for flexure . Temperature referenced ma-

terial properties are assumed constant over the element

Provision is also made for the use of work equivalent

normal pressure loading which is taken to be constant

over the surface of the elements.

The linear variation in strain within the element, per-

mitted by the assumed displacement functions leads to

similar stress variation. Advantage is taken of this

12



by generating the stress resultants at the corners

as well as at the center of the element .. Inplane

and normal; direct, shear, and. bending stress re-

sultants are included. The stress resultants can

be generated, with respect to any direction specified

by the user .

The same basic procedure is used, for the derivation

of both elements . First, the basic assumed displace-

.ment functions are defined followed by the appropri-

ate transformations between the various coordinate

systems are defined.. Using a potential energy ap-

proach the membrane and flexural contributions to

the element stiffness matrix are derived.,, along with

the differential stiffness matrix . The consistent

pressure load matrix is then calculated, followed

by both consistent and lumped, mass matrices . Finally,

the stress recovery matrices are presented.

While the derivations of the two elements are essen-

tially similar, some differences do occur due to the

differing basic geometrices . The shape of the quad-

rilateral element is defined, .by the coordinates of

the four corner points . The element is assumed to be

planar, but since the four corner points may not be

coplanar, the derivation of the characteristics of the

element is based upon an equivalent planar quadrilateral

This mean plane is defined by the line joining the mid-

points of opposing sides . The four corner points are

then all equidistant from this plane . The equivalent

quadrilateral is obtained, by projecting the corner

points directly onto the mean plane . The degree of non-

planarity is indicated to the analyst by a print-out

of the ratio of the distance of the individual corner

points from the mean plane to the average of the lengths

of the quadrilateral diagonals .

13



If the quadrilateral is non-planar, application of the

gridpoint forces derived for the membrane behavior of

the planar quadrilateral to the actual gridpoints will

result in a violation of moment equilibrium in the sys-

tem. To eliminate this problem, normal forces are in-

troduced at the corner points. These forces, which

have no influence on the membrane behavior of the quad-

rilateral, are automatically selected to restore the

moment equilibrium. In the derivation of the quadrila-

teral relationships, use is made of a common oblique

coordinate system for the definition of the assumed

displacement functions in the four constituent tri-

angular zones . The origin of this coordinate system

is located at the intersection of the quadrilateral

diagonals. It greatly simplifies many of the subse-

quent computations and is used throughout the element

formulation.

The shape of the triangular element is similarly de-

fined, by the coordinates of its three corner points .

Since three points uniquely define a plane, consid-

erations of warping encountered in the companion quad.-

rilateral element are absent .

The origin of the coordinate system used in the deri-

vation of the element is located at the centroid. of the

triangle . Since each zonal subtriangle is associated,

with a different apex angle, no common oblique coordin-

ate system can be defined for all zones, as was possible

in the quadrilateral. Hence, the complete derivation

is based upon the use of an orthogonal geometric coor-

dina.te system.



B . FINITE ELEMENT HEAT TRANSFER

The analogy between the mechanics and thermodynamics

of solid bodies has been exploited for the develop-

ment of a heat transfer analysis capability in NASTRAN

The heat transfer analysis in a. solid, continuum is dis-

cretized by the use of finite elements, a.s in the case

of structural analysis, reducing the problem to the

solution of a finite set of equilibrium equations in

which the unknowns are tempera.tures at a discrete grid-

points in the continuum . The general equation govern-

ing d.iscretized heat transfer can be written:

(Pj

|_U j

w

where _U j is a vector of gridpoint temperature

is a. vector of time-d.epend.ent applied
heat loads

is a vector of temperature-dependent non-
linear heat loads

is the conductivity matrix

is the thermal capacitance ma.trix

The use of these symbols assists in defining the analogy

between heat transfer and. structural analysis . The new

heat transfer analysis capability uses all the normal

analytical tools in NASTRAN provided for structural an-

alysis . The difference being that the matrices Cfc3;I&l,

and |_Nl are generated, from thermod.yna.mic rather than

structural properties . Gridpoints are used to locate

temperates, corresponding to displacements in structural

analyses . One major difference between thermal and

15



and structural analysis is that temperature is a

scalar quantity., whereas displacement is a

vector which ma.y have- six components. Thus, in heat

transfer analysis, only one degree-of -freedom is pro-

vided. per gridpoint .

The conductivity matrix, \J<G , and the heat capa-

city matrix, |_R̂  , are formed from "element properties,

just as in structural analysis . Volume heat conduc-

tion "elements " are analogous in many ways to struct-

ural elements and they even use the same connection

and property cards . In addition, a part of the heat

conduction matrix may be associated with surface heat

convection or radiation .

The components of the applied heat load vector,

are associated either with surface heat transfer or

with heat generated inside the volume heat conduction

elements . The vector of nonlinear heat load £N/

results from surface radiation, from temperature-de-

pendent surface convection, and from temperature-

dependent heat conductivity .

In the case of .linear static analysis, [Bj andj^j are

null, and. the governing equation is solved in the same

manner as in linear static structural analysis . The user

ha.s the option to employ both sigle and multipoint con-

straints and many other specialized features normally

associated with structural analysis. New solution tech-

niques are used in nonlinear static analysis and in

transient analysis .

The output of a NASTRAN heat transfer analysis includes

the temperature at gridpoints, the temperature gradients

and heat fluxes within volume heat conduction elements,

and. the heat flow into surface elements . The heat flow

16



into surface elements is further separated into com-

ponents due to user-prescribed flux, radiation, and.

convective heat flux.

The heat transfer analysis is performed using the same

volume heat conduction elements as are used for struc-

tural analysis . These elements are:

Heat Conduction Elements

Type Elements

Linear BAR, R0D, Ĉ NRjZfD, TUBE

Planar TRMEM, TRIA1A2, QDMEM,
QUAD1, QUAD2

Solid, of Revolution TRIARG,TRAPRG

Solid TETRA, WEDGE, HEXA1, HEXA2

Scalar elements, single point constraints, and. multipoint

constraints are also available for heat transfer analysis.

The same connection and property cards are used, for heat

transfer and. structural analysis . Linear elements have

a constant cross-sectional area. For the planar elements,

the heat conduction thickness is the membrane thickness .

Elements with bending properties, such as BAR and. TRIA1,

have been included, so that the user may use the same ele-

ments for the thermal and. structural analyses of a given

structure. The bending characteristics of the elements

do not enter into heat conduction problems. The trape-

zoidal solid, of revolution element, TRPRG, has been

generalized to accept general quadrilateral rings (i .e .

the top and bottom need, not be perpendicular to the Z-

axis) for heat conduction only.

17



The heat conduction elements are composed, of constant

gradient lines, triangles and tetrahed.ra. The quadri-

laterals a.re composed, of overlapping triangles, and.

the wed.ges and hexa,hed.ra are formed, from sub-tetra-

hedra in exactly the same way as for the structural

case .

Four types of surface heat transfer are provided for

both steady state and transient analysis . The types

are a prescribed heat flux, a convective heat flux due

to the difference between the surface temperature and

the local ambient temperature, radiation heat exchange,

and. a prescribed d.irected vector heat flux.from a dis-

tant radiating source. In.all cases the heat flux is

applied to .a surface element defined by gridpoints.

There are six distinct types of surface elements:

1. POINT, a flat disc defined by a single gridpoint.

2. LINE, a rectangle defined by two gridpoints.

3 • REV, a conical frustrum defined by two grid
circles .

4. AREA3, a triangle.

5- AREA4, a quadrilateral.

6. ELCYL, an elliptic cylinder defined by two
gridpoints . Its use is restricted to pre-
scribed vector heat flux.

C . NEW ELEMENTS NOT IMPLEMENTED INTO NASTRAN

(i) Nonprismatic Beam Element

a. General Remarks .

The nonprismatic beam element extends the capabilities

of the present NASTRAN rod and beam elements . An arbi-

trary polygonal shaped, cross section is considered., thus

providing for nonuniform beam properties and, secondly,

an arbitrary taper is allowed . Multiply connected cross

sections are considered by properly sequencing- the nod.es-

18



which define a cross section. An option was developed

to input all or some of the section properties of any

linearly tapered beam. Asymmetrical cross sections can

also be used, thereby permitting coupled bending and shear

deformations in the lateral planes . The only geometric

restriction is tha.t corresponding points on the end sec-

tions are to be connected by straight line segments .

Projections of these line segments onto the element

xy- and xz- planes have common vanishing points on the

x-axis in each pla.ne . This gives a quadratic varia-

tion of cross sectional area and a quartic variation

of area moments of inertia and product moments of in-

ertia. These are written in terms of reference station

properties .

The arbitrary cross section is defined by N nodes form-

ing an N sided polygon referenced to an arbitrary x,

y, z orthogonal axes system. The nodal coordinates

are used to determine the centroid of the reference

section which in turn defines the reference, x, y, z

axes of the beam element. The reference x-axis is the

loci of all cross section centroids . All element de-

formations are measured with respect to this axis system.

Circular cross sections are treated in like manner ex-

cept that nodal cross sectional coordinates are not

needed .

The stiffness matrix is a 12 x 12 matrix of coeffi-

cients expressing the transformation between the forces

and moments acting at the end points of the beam and the

degrees of freedom at these points . It is first derived

in a local (element) coordinate system, then transformed

to a basic system and includes taper effects, shear de-

formations, shear deformations, shear relief due to taper,

19



and the effects of an offset shear center . Bending

analyses are ba.sed on simple flexure theory wherein

plane sections through the beam, taken normal to the

beam axis, remain plane after the beam is .subjected,

to loading. No torsional stiffness matrix is derived

for the general cross-section element due to the vast

complexity attendant with such general shapes, how-

ever an option exists to input a torsional stiffness

constant . A torsional stiffness matrix is derived for

the circular cross-section element but warping -effects

have been neglected . .

Mass matrices for both element cross-sections were de-

rived wherein a mass-lumping procedure was used. Non-

structural mass and an offset center of gravity was

accounted for but cross-sectional rotary effects were

neglected. The mass matrices were also transformed to

a global system.

The existing NASTRAN capabilities to calculate stress

data and associated margins of safety are included in

the development of the subject element. In addition

the presently coded NASTRAN differential stiffness is

used. Additional element matrices include thermal load,

impressed displacement load and line load vectors .

It is imperative to note that the non-prismatic beam

element has all the characteristics of the presently

coded NASTRAN .bar and rod. elements and will reduce to

those elements for unit value of the taper ratios and

zero value of the shear center offset and mass center

offset.

b. Theoretical Basis

Severn (6) has shown that derivation of a stiffness

20



matrix including shear effects is erroneous when the

displacement method is used and that Plan's (7) method

based upon minimum complementary energy) yields the

correct results . His method is used to formulate the

stiffness matrix including shear deformation and shear

relief due to taper .

Analysis begins by expressing the stress distribution

l^f in terms of a set of coefficients I/?} as

follows :

OJ - [ P] (*]
where in this application [CTJ =• |_ Cf, fj . The terms in £P J

are functions of the coordinates and shear deformation

parameters .

Introduction of the strain-stress relations

(8)

permits expression of the strain energy as

L crj [ N/ J (or] cJV (3)J

or

L/& J CwJ (/sj

;(5)

where

[Hi-
The prescribed displacements U at the boundary, Ap, which

in the present application is a point, are given in terms

of the generalized, displacements ̂ tyj at the nodes in the

form

J
21



where in this instance f~LJ is an identity matrix.

The surface forces jSv can be expressed in terms

of the stresses{J5"j by use of

where terms in L»\J contain beam characteristics

such as ta.per ratio and inertia properties .

Use of the above permits the complementary energy

to be written as

The condition of minimum complementary energy is

invoked which yields

Substituting Equation (10) in Equation (4), one

obtains

17- J R . H r M ] [ H (ii)

or

(7)

TC -- -i L^Jttf lK/*} - L/SJ C f c l f y j (8)

(9)

Thus

- [

V - t LVJ L* J 1^1 (12)

where the desired element stiffness matrix is

CK] - E>3 C u3 TRl1" (13)
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(ii) Exact Shell of Revolution Element and. Ring
Stiffener

A theoretical formulation for an exact shell of revol-

ution element was developed along with an associated
ring stiffener . As was the case of the solid elements

of revolution, circumferential axisymmetry with respect

to material properties and geometry was assumed in order

that the mathematical problem be simplified . An analy-
sis procedure similar to that utilized in the conical

shell, triangular ring and trapezoidal ring elements was

proposed .

The formulation of the exact shell of revolution ele-

ment was based on previous formulations by Adelman et

al given in References 8 and 9 . The theoretica.l foun-
dation of this shell element is provided, by the thin

shell theories developed by Novozhilov, Reference 10,

and. Ambartsumyan, Reference 11.. Features of a typical

axisymmetric thin shell of revolution which the exact
shell of revolution element would be able to represent

are:

1) Meridional as well as circumferential curva-
ture of the shell,

2) layering of the shell,

3) accommodation of orthotropic material behavior
within each of the layers of the shell where

principal directions of orthotropy of the
layers are assumed, to lie in the meridional,

circumferential and normal directions of the
shell element,

4) meridional variation of the thickness of each

layer with consequent tapering of the shell

element as a whole,
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,5) accommodation of asymmetric mechanical and. ther-
mal loadings,

6) provision for the application of circumferent-

ial ring stiffeners to the shell structure,

7) provision for accounting for the existence of

branch points, branch shells and slope discon-
tinuities .

(iii) Multilayered Triangular and Quadrilateral Flat and.
Plate Elements

Stiffness and thermal force matrices were derived, for

multilayered flat triangle and quadrilateral pla.te finite

elements based on the displacement method . Engineering
plate theory founded on the Kirchhoff assumption was used.

The primary objective for the development of these finite

elements is to provide a general analysis capability for

laminated structures in which membrane-flexure coupling
is not negligible.

Many plate finite element formulations are available and

these could be readily extended, for application to analy-
sis of laminated structures . Therefore, the criteria

for selection of previously developed, element formula-

tions were engineering acceptability of analysis results
and computational simplicity. For simplicity, the ele-

ments developed, were limited to five local degrees of

freedom at each node point, three displacements and two

rotations .

In the derivation of the stiffness matrices for the tri-

angular plate, a linear displacement function was as-

sumed, for membrane behavior, while interconsistent cubics

were used in two triangular subzones to predict flexural

behavior . For the quadrilateral the corresponding assumed

displacement functions are quadric and cubic .



Based on these assumptions expressions for the stiff-

ness and thermal force matrices for the triangular

and quadrilateral elements were derived. These ex-

pressions included not only the membrane and flexur-

al contributions to the stiffness matrices but also

the membrane-flexural coupling terms. A procedure for

the inclusion of offset gridpoints was derived.

The differential stiffness for flat plate elements is

only a function of plate planform geometry and membrane

stress resultants . Therefore, the displacement func-

tions used to derive the differential stiffness matrices

need, not be consistent with those used to develop the

elastic stiffness matrices( 12). Consequently, the for-

mulations for the differential stiffness matrices for

the higher order triangular and quadrilateral plate

elements already contained in NASTRAN are valid and

can be used with the two multilayered plate elements in

conjunction with membrane stress resultants computed

therefor . The higher order plate elements in NASTRAN

contain midside degrees of freedom which must be elim-

inated for use in conjunction with the present element

by imposition of the suppress option detailed in the

derivation of these higher order elements .

It has been shown (13) that mass matrices for plate

elements which have been derived using displacement

functions which are not exactly consistent with the

displacement functions used in the stiffness matrix

derivations will still give good analytical results .

Therefore, the consistent mass matrices derived for

the higher order triangle and quadrilateral flat

plate elements in NASTRAN can be used for the present

elements without jeopardizing accuracy.
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