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ELASTIC BUCKLING ANALYSIS FOR COMPOSITE
STIFFENED PANELS AND OTHER
STRUCTURES SUBJECTED TO BIAXIAL INPLANE LOADS

by
A, V. Viswanathan and M, Tamekuni

The Boeing Commercial Airplane Company
Seattle, Washington

1.0 SUMMARY

An exact linear analysis method is presented for nredictina
buckling of structures with arbitrary uniform cross section,
The structure is idealized as an assemblage of laminated nlate-
strip elements, curved and planar, and beam elements, ELlement
edges normal to the longitudinal axes are assumed to be simnly
supported., Arbitrary boundary conditions may be specified on
any external longitudinal edge of plate-strip elements., The
structure or selected elements may be loaded in any desired
combination of inplane transverse compression or tension side
load and axial compression load.

The analysis simultaneously considers all possible modes
of instability and is applicable for the buckling of laminated
composite structures, Numerical results from the associated
computer program "BUCLASP2", Ref. 9, are presented. Predicting
a previously unknown buck11ng mode shape for a zee-stiffened
panel demonstrates the generality of this method., The results
for some conceptually-advanced structural nanels, Fig. 5
illustrate some applications of the curved nlate-strin elements.
The higher buckling load predicted for the formed zee section,
using the curved element to idealize the corners, illustrates
the significance of ignoring the corner radius. The results
also confirm the experimentally observed superioritvy of bonded
over riveted connections and show for the example considered,
the beneficial effects of offsets between elements or bucklinq
strength, The numerical results correlate well with the results
of previous analysis methods.
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2.0 SYMBOLS
length of the structure
extensional stiffnesses 1, j = 1, 2, 6 equation (A.7)
cross-sectional area of beam element
developed width of plate-strip element

stiffnesses (1, j = 1, 2, 6) associated with coupling
between bending and extension, equation (A.8)

diagonal matrix of longitudinal variables, equation (B.24)

biaxial stiffness of plate-strip elements, equations
(B.61) and (B.62)

displacement vector of elements
elements of the diagonal matrix D , equation (C.3)

displacement vector of total structure, equations (B.56)
to (B.58)

diagonal matrix, equation (C.1) and (C.3)

bending stiffnesses (i, j = 1, 2, 6) equation (A.9)
Young's modulii of orthotropic material

force vector of elements

biaxial flexibilities of plate-strip element, equations
(B.63) and (B.64)

jth Galerkin multiplier, equation (E.15)

shear modulii of orthotropic material

distance to the kth lamina from the reference plane
polar moment of intertia of beam element, equation (A.21)
moments of inertia of beam element

torsion constant for beam element

diagonal matrices spring constants
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spring constants

coefficients defining displacements, equations (E.9)
to (E.14) :

total, elastic and geometric stiffness matrix,
respectively, equation (B.56) and (B.57)

coefficients of characteristic equation (B.7)
coefficients of characteristic equation (D.6)

number of laminas
unit lower triangular matrix

displacement ratio coefficients, equations (B.9) and (D.8)
1inear differential operators, equation (E.4)

half-wave number, equation (B.3)

moment resultants, equation (A.6)
torque on the beam element

moment resultant, equation (B.2)
circumferential wave number

stress resultants, equation (A.5)
apnlied inplane loads

effective stress resultant in y-direction, equation (B,2)
buckling displacement parameters, equations (B.3) and
(D.1) to (D.3)

axial load in beam element induced by buckling,
equation (A,32)

minimum buckling load of the structure for a chosen m
value
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buckling load of plate-strip elements, when the longi-
tudinal (x) sides are completely restrained.

current trial value of the external loads in the
iteration process

upper bound to the buckling load of the structure
applied axial load in beam

lateral shears on the beam element equation (A.29) and
(A.31)

orthotropic material constants (i, j =1, 2, 6),
equation (A.4)

effective transverse shear parallel to z-axis in plate-
strip elements, equations (B.2) and (B.25)

reference plane radius of the curved plate-strip element

elements of coefficient matrix R, equation (B.5)

stiffness matrices for plate-strip elements

stiffness matrix for beam element

reduced stiffness matrices for plate-strip element,
equations (B.46) and (B.49), respectively

stiffness matrix of total structure

thickness of kth layer of a laminate
transformation matrices

effective inplane shear in plate-strip elements,
equation (B.2)

displacements at the reference plane of plate-strip
element and at the shear center of beam element



change in strain energy

buckling displacement coefficient for beam element,
equation (B.50)

buckling displacement coefficients for plate-strip
element, equation (B.3)

change in potential energy of the applied loads
buckling displacement coefficients, equation (E.7)

orthogonal coordinates, figures (A.1) and (A.2)

matrices for plate-strip elements defined in equations
(B.22) and (B.29) respectively

matrices for plate-strip element defined in equations
(B.34) and (B.35) respectively.

matrix for beam element defined in equation (B.51)
plate-strip element offsets, figure 19

distances measured parallel to the y and 2z axes,
respectively, from the shear center of the beam element
to its neutral axis

buckling displacement coefficients, equation (E.7)

buckling displacement parameters, equations (B.3) and
(B.50)

buckling displacement parameters, equations (D.1) to
(D.4)

shearing strain

warping constant of beam element

normal strains

angle subtended at its center of curvature by the
plate-strip element, figure 19
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Subscripts
AD

b
BC

root count numbers, equation (C.2)

rotation or twist
beam twist coefficient, equation (B.50)

change in curvatures

proportionality factor, equation (B.57)

Poisson's ratio

total potential

normal stresses
shear stress
transformation angles, equations (B.31) to (B.33)

angle between Yo axis and the chord of plate-strip
element, figure 19

quantities along the side AD of plate-strip element
quantities related beam element

quantities along the side BC of plate-strip element
quantities related to global axes

index corresponding to characteristic roots

index for element numbers

layer index

index for number of terms

quantities with offset effects

A subscript preceded by a comma indicates partial differentation with
respect to the subscript.



Superscripts

k layer index

T matrix transpose

° quantities in the reference plane of plate-strip element
+ quantities along the side y = + %-of plate-strip element

- quantities along the side y = - %-of plate-strip element



3.0 INTRODUCTION

Continuing efforts at increasing the strength-to-weight ratio of
aerospace and missile structures have led to novel concepts in design and to
use of new materials. Keeping in pace with this trend, a method is pre-
sented here for the buckling analysis of structures like stiffened panels,
under biaxial loads.

A unified linear buckling analysis for flat stiffened panels under
uniaxial compression is given in Ref. 1. Therein the panels are idealized
as an assemblage of a series of linked flat plate-strip elements and beam
elements, of uniform cross section, the individual elements extending over
the full length of the panel. The edges of each element normal to the
"longitudinal axis are simply supported with no restriction on the axial
(warping) displacements. The beam elements are used to idealize lips or
beads in structural sections, or any local reinforcement, in the form of
'a Tumped area of material. The unified buckling analysis makes no a priori
assumption of the buckling mode, except that the half-wavelength of buckling
is the same in all the elements of the stiffened panel. The analysis yields
the lowest buckling load and the corresponding mode shape irrespective of
the type of buckling. The accuracy and the generality of the method are
illustrated by the results presented in Refs. 1 and 2.

In aerospace structures, panels with curved parts, Ref. 3, are often
used. Figure 1 shows some typical examples. Though the curved parts
can in the 1imit be idealized as a series of flat plate-strips, computa-
tionally it is not economical to do so. It is better to idealize them using
curved plate-strip elements as in the present analysis. These circular
cylindrical strip elements have constant curvature with zero Gaussian
curvature. A variety of linear theory equations involving various degrees
of approximations and resulting limitations are available in the literature, e.g.
Refs. 4 and 5, for thin cylindrical shells. Since the present analysis which
covers all modes of buckling does not restrict the range of radius-to-length
ratio of the curved plate-strip elements, the proper choice of the equations
becomes significant. Further, as discussed later, the stiffness matrix of
the curved plate-strip elements, derived from these equations, must be
symmetric. Thus, to suit the requirements of the present buckling analysis,
the necessary equations and the consistent boundary conditions are developed
using variational methods. These equations are based on the geometry of
shell deformations given in Ref. 6. The inplane external loading is uniform
and biaxial. The equations degenerate to those of the flat plate-strip
element, in the limiting case of zero curvature

The curved and flat plate-strip elements are in general laminated. For
each lamina, the stress-strain equations used in the analysis assume ortho-
" tropy with respect to the axes of the stiffened plate. This is exact for
fiber reinforced composites when the fiber directions in each lamina are



either along the plate axis or orthogonal to it. This assumption of ortho-
tropy is a good approximation for balanced composites with many plies. For
such practical structures, this assumption reduces the analysis complexity
considerably and is not considered to be unduly restrictive.

Elementary theory of bending and torsion is used for the beam elements.
The external loading on them is uniform and axial. The physical properties
of laminated beams are calculated in an approximate manner.

The analysis considers offsets between elements and effects of arbitrary
elastic restraints along any external longitudinal side (i.e., not connected
to other elements) of the flat or curved plate-strip elements.

In Ref. 1, the buckling criteria is derived in determinantal form by
enforcing separately the compatibility of buckling displacements and the
equilibrium of the corresponding forces along the inter-element junction
lines, expressed in terms of the displacement amplitude coefficients. The
resulting buckling determinant is unsymmetric and the method of repetitive
determinant evaluation, incrementing the load in steps, is the only recourse
to obtain the buckling load. Unless the load is incremented in sufficiently
small steps, one is apt to miss the lowest buckling load, and the method
will unknowingly yield the buckling load corresponding to a higher mode.
Thus, the major drawbacks of the method are the difficulty in defining the
magnitude of the load step for a particular problem, and the considerable
increase in computation time associated with the reduction in step size.
These are overcome in the present analysis by reformulating the buckling
criteria of Ref. 1. For each element making up the stiffened panel, a
symmetric stiffness matrix is derived relating the forces to the corresponding
displacements along its inter-element junction lines. The symmetric overall
stiffness matrix of the stiffened panel, which is obtained by suitably
merging the individual element stiffness matrices, corresponds to the un-
symmetric "buckling determinant” of Ref. 1, and is considerably smaller in
size. The symmetry, enables the use of the algorithm described in Ref. 7,
to isolate with certainty and in relatively fewer load iterations, the
lowest buckling load. A primary requirement of this algorithm is an upper
bound for the panel buckling load, resulting from completely restraining
all the inter-element junction lines. Such a bounding value is obtained
here, by applying the Galerkin method, Ref., 8, for each strip element.

The elements of the stiffness matrix are transcendental functions of
the external loadings and the half-wave length of buckling. For each
assumed half-wave length {or integer number of longitudinal half-waves in
the stiffened panel), the lowest level of applied loads at which the
determinant of the overall stiffness matrix vanishes is the buckling load.
The lowest of these loads is then the critical load for the panel. The
buckling mode shape is obtained from the eigenvector solution of the
stiffness matrix at the critical load. Detailed discussions on the use-
fulness of the buckling mode shape plots, in achieving efficient design of
stiffened plates is discussed and illustrated in Refs. 1 and 2.
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The buckling analysis is applicable to any structure of uniform cross
section which can be idealized as an assemblage of the different types of
elements described earlier. The intersecting angle between elements is
arbitrary. The structure may be loaded in any desired combination of trans-
verse load in the plane of selected plate-strip elements and axial load.
The stiffened panel, flat and curved, under biaxial inplane loading is a
particular case of such structure. In these panels, it is reasonable to
assume that the side load normal to the axis of the stiffeners is carried
entirely by the plate-strip elements covering the skin.

The basic assumptions governing the analysis are:
(a) The material is linearly elastic.
(b) Each lamina is orthotropic.

(c) The Kirchhoff-Love hypothesis is used for the deformation across
the thickness.

(d) Effects of pre-buckling deformations are ignored. Thus, at
buckling each plate-strip element, whether flat or curved, is in
general, in a state of uniform biaxial inplane loading. Each
beam element is under uniform axial load.

{e) The edges of each element along x = 0 and x = a, Figures 16 and 17,
are simply supported in the classical sense.

The computer program "BUCLASP2", Ref. 9, based on the present
analysis is written for the CDC 6600 computer.



4.0 RESULTS

The details of the buckling analysis are given in the Appendices.
The analysis is general and has the capability to analyze laminated
composite structures. For these structures, lack of other published data
makes it very difficult to correlate in detail the numerical results.
Thus, the results presented below while verifying the analysis, do not
relfect its full capabilities.

The results are categorized into (a) "prior results", referring to the
results quoted in Refs. 1 and 2, and (b) further results.

A1l results were obtained using the associated computer program
“BUCLASP2" Ref., 9.

4.1 Prior Results

Refs. 1 and 2 give the buckling results for a variety of structures
assembled from flat plate-strip elements and beam elements only. The com-
puter program "BUCLASP2" yielded identical results, thus confirming the
very good correlations obtained earlier for structures of this type.
Interested readers are referred to the above references,

4.2 Further Results

The results aiven below are mainly for structures incorporating circular
arc components idealized as curved plate-strip elements,

(i) [sotropic and fiber reinforced cylindrical shells,--In Appendix A, for
the reasons discussed therein, the basic equations for the curved plate-strip
element are derived from the variational principles. Figure 2 shows the
results from Donnell's equations superposed on the curves of Figure 11.4

of Ref. 10. The well-known deficiency of Donnell's equations for small
circumferential wave numbers is apparent. The results from the present
analysis shown as discrete points on the curves, show that the equations of
Appendix A yield the desired Euler mode results for long cylinders and
local buckling results for short cylinders. The cylinders are idealized

in the present analysis as an assemblage of at least two curved plate-
strip elements, each covering one half of the cylinder (180 degrees).

The geometry and the material properties of a series of aluminum cylinders
overwound with boron-epoxy layers are shown in Figure 3. The cylinders
are all identical except for the difference in wrap angle of the boron
filaments. The data is taken from Ref. 11, wherein the buckling of these
cylinders under axial compression is studied. For the boron-epoxy layers the
modulus E]] is in the direction of the cylinder axis and E22 in the perpen-

dicular direction.

11
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Figure 3 also shows the results from Ref. 11 based on Donnell's
theory and the results from the present analysis. For the latter, two
sets of results are quoted. The first set is the result of suppressing the
underlined terms in equations (A.1) and (A.13) to (A.22). This, in effect,
reduces these equations to those of Donnell's theory. The second set is
the result of retaining all the terms in the above equations. The cir-
cumferential wave number from the present analysis corresponding to each
buckling load is determined from the mode shape plot. The first of these
sets of results are almost identical to those from Ref, 11, The second set
of results from the "complete” analysis of the present method are generally
lower, the difference being 3 to 4% for the higher fiber angles. It is noticed
that for the fiber angle of 90° the latter result has the minimum buckling
load at m =1 compared to m = 2 for Donnell's theory. Though not quoted
here, the results from the present "complete"” analysis correlated excellently
gi?h %Se results obtained from Timoshenko's cylindrical shell equations,
ef.

(i1) Advanced structural panels --Figure 4 shows some of the panels
currently being developed under NASA Contract NAS1-10749, "Design and Testing
of Advanced Structural Panels.”! An isolated portion of each of panels 1 to
5 and the whole of panel 6, with the indicated boundary conditions, were
analyzed. In Figure 5 the results of the present analysis are presented

as the plot of buckling load versus half-wavelength of buckling (2). Also

shown are the buckling mode shapes for selected half-wave 1engths? Results
for panels 1 to 5 obtained using the computer program "BOSOR3", Ref, 12, based
on the analysis of Ref. 13, are also shown for comparison.

(iii) Laminated curved plates under biaxial loads.--A two-layered plate,
shown in Figure 6, with all edges simply supported is chosen to verify the
results of the present analysis for biaxially loaded plates. The above
boundary conditions enable a closed form solution to be obtained by applying
the displacement functions used inRef. 10 for "axial compression of curved
sheet panels.” The results from such a solution is given in Figure 7, in
the form of an interaction curve. The results of the present analysis are
superposed on this curve. The above correlation procedure is adopted in the

! Work performed by The Boeing Company, Aerospace Group, P. 0. Box 3999,
Seattle, Washington 98124,



absence of published results for such biaxially loaded plates. The present
analysis can be readily used to generate interaction curves similar to
Figure 7, not only for plates with arbitrary conditions along sides AB

and BC, but also for structures like stiffened panels.

(iv) Curved stiffened panel under biaxial loads.--The arbitrarily chosen
panel shown in Figure 8 is idealized using the curved plate-strip elements
for the skin, flat plate-strip elements for the integral stiffeners and
beam elements for the local reinforcement on the skin between stiffeners.
Keeping the transverse inplane load sz constant for this example, the

buckling analysis yields the critical value of the axial load and the corres-

ponding strain. The results together with the buckling mode shape are
shown in Figure 9. From such data, interaction curves for buckling
of biaxially loaded panels can be readily derived.

(v) Panel with zee stiffeners. --Figure 10 shows a panel with zee stiffeners.,

The results of the present buckling analysis reveals an interesting and
hitherto unknown mode shape. The buckling mode has a characteristic half-
wavelength across the panel width, involving multi-stiffeners. Classical
buckling analyses run the risk of missing such modes because of their
simplified assumptions regarding mode shapes.

15



5.0 DISCUSSION

Some observations of particular interest resulting from the preliminary
numerical study of the buckling analysis are discussed here. These also
serve to bring out some of the features of the analysis.

5.1 Buckling of Formed Sections

Section 4 i1llustrates the general applications of the curved plate-strip
elements. The present example considers the effect of using curved plate-
strip elements to idealize the corners of formed structural sections. Figure

11 shows a formed titanium zee section. Also shown are two different ways
of idealizing this structure. The first idealization uses flat plate-strip
elements only in the manner of Ref, 14. Each element extends to the inter-
section of the flat parts of the zee section. The second idealization uses
the curved plate-strip elements for the corners, intuitively a better repre-
sentation of the formed zee section.

The results of the local buckling study under uniaxial compressive loads
are shown in Figure 12, It is seen that the use of curved plate-strip
elements to model the corners, yields a 19% increase in minimum buckling
stress. This results from the higher stiffness of the curved corners in
comparison to the first idealization using only flat plate-strip elements.

In either idealizations the minimum buckling stress occurs at the same m
value of three and the buckling mode shapes are seen to be similar.

5.2 Effects of Offsets

The analysis developed considers the effect of offsets between
elements. Such effects, though sometimes not included, Ref, 14, can
be significant as seen from the example given here. Figure 13 shows a
hat-stiffened titanium panel locally reinforced with boron fiber comnosi te.
The idealization of the panel is shown by the line through the mid-plane
of each plate-strip element and clearly defines the offsets where present.
Results of the buckling analysis, taking into account the offsets and also
ignoring them, are given in the same figure. They show that for this
particular example the offsets increase the buckling load by approximately
15%. The mode shape, though not given here, corresponded to long panel Euler
buckling. Thus, the observed increase in buckling load results from higher
effective moment of inertia of the panel when offsets are considered.

1h



5.3 Bonded and Riveted Connections

In structures such as stiffened panels, reported tests, Ref., 15, have
indicated marked influence of stiffener attachment method on the buckling
load. In the present analysis, it is possible to differentiate between
bonded and riveted connections by the madelling technique given in Ref. 2.

Figure 14 shows a zee stiffened panel. The bonded and riveted modelling
are shown by lines drawn through the mid-plane of each plate-strip element.
The rivet is assumed to be at the midpoint of the attached flange. The
analytical resuits shown indicate that for this 2xample the bonding increases
the buckling load by 22.5". Test results of Ref. 15 show the observed
increase in buckling load to he 17% for zee stiffened panels. The riveted
modelling is only an approximation to the discrete rivets since it results
in a continuous, rigid connection along the rivet line. A somewhat similar
modelling has been successfully demcnstrated in Ref, 16. The riveted
modelling used here does not restrain the displacements of the heel of the
stiffener relative to the skin. A better modeiling might be to introduce an
additional node in the skin inter-connected to the node at the heel of the
stiffener,

5.4 Typical Problems with Coincident Roots

The phenomenon of coincident roots and its significance are discussed
in Appendix C. This phenomenon occurs in the example of the long, square
tube and the thin-walled cylinder shown in Figure 15. The initial ideali-
zations used for these exampies are also shown.

As stated in Appendix C, at buckling N 1n equation (C.2)
changes from zero to one. However, in spite of pursuing the load iteration
to the single precision accuracy of the COC 6500 computer, it was possible
to isoiate only a zero to two change in the n value. The results show
that the corresponding buckling lcad s in good agreement with the classical
solutions. The zero to two change in 1 value is explained by the fact that
these structures have orthogonal buckling modes with coincident buckling
loads as shown in Figure 15.d. Narmally, it will not be necessary to pursue
this phenomenon futher. If for ¢ome reason it is essential to study the
orthogonal modes, this cen be easily done by the modelling procedure dis-
cussed below. This aveios recourse to special numerical techniques available
for such cases, Refs, 17 3and 18,

The method aims at separating the coincident buckling loads within
engineering accuracy by introducing a very small "error" in the modelling,
as shown for the square tube. The results indicate that this minute "kink"
in the geometry is of no engineering significance. However, it avoids
the coincident buckling loads by making them distinct as seen from the change
in n value. It is possible that a "kink" smaller than that shown would
have sufficed. This conclusion is drawn from the procedure followed for the

15



thin walled cylinder. In this case for the "second" idealization the nodal
data defining the extremities of each element were calculated using the
standard four-figure trigorometrical table. The limited accuracy of this is
sufficient to introduce "kinks" at the nodes, thereby enabling the coincident
buckling loads to be separated. The corresponding buckling modes are readily

obtained.

16



6.0 CONCLUDING REMARKS

An exact elastic buckling analysis within the limitations of the linear
theory, applicable to any structure of arbitrary uniform cross section, has
been presented. The structure is idealized as an assemblage of laminated
curved plate-strip elements, laminated flat plate-strip elements and beam
elements, each element extending the entire length of the structure. The
idealizaticn permits differentiating between bonded and riveted connections.
The analysis considers the effect of offsets between olements. The structure
may be loaded in any desired combination of transverse side load (in the
plane of selected plate-strip elements) and axial load. Stiffened panels,
flat and curved, under biaxial inplane loading are typical of such structures.

The theory is general and no assumption is made regarding the buckling
mode. The structure is free to take the buckled shape corresponding to
minimum energy conditions consistent with prescribed constraints along any
external side of plate-strip elements. The eigenvector sclution is used to
determine the buckled mode shape. The capability of simultaneously con-
sidering all buckling modes, coupled with the ability to predict
buckling of laminated composite structures, represents a significant advance
in the state-of-the-art of buckling analysis.

Numerical results correlated well with the results of previous analysis
methods for those cases where the latter are applicable. An interesting
and previously unknown buckling mode shape for zee stiffened panels has been
presented. This result is an indication of the above mentioned generality
of the theory.

The buckle mode shape plot resulting from the cigeavector solution, is
a valuable tool to design efficient buckling critical structures. Correlation
for biaxially loaded stiffened panels, including panels using laminated
composites, is desirable, There is a dearth ot published test data for such
structures,
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APPENDIX A
BASIC EQUATIONS

This appendix summarizes the basic equations used later in Appendix B

for the buckling analysis. Some of these equations, though readily available
in the literature, are repeated here for easy reference. Since the buckling
analysis of Appendix B covers all possible modes of buckling, particular
care is exercised in the choice of these equations. This is particularly true in
regard to the laminated curved plate equations. The widely used Donnell-type
approximations have known limitations, Refs. 4 and 5. For example, these
equations do not yield the Euler loads for long cylinders. Further, as will
be seen later, the present linear buckling analysis is based on the stiffness
matrix formulation, derived from the basic equations. The necessary sym-
metry condition of these matrices is dependent on the terms retained in

the equations, as discussed in Ref. 19, For these reasons, the equations for
the laminated curved plate are derived below from variational principles.

A1 Laminated Curved and Flat Plates

The equations developed here are for the laminated curved plate. They
degenerate to those of the laminated flat plate when the curvature becomes
zero (infinite radius).

Figure 16 shows the geometry and sign conventions for the curved
laminate. The x, v and z axes are assumed ~oincident with the fiber axes
1, 2 and 3. The mid-plane of the laminate is chosen as the reference plane.
The strains and curvature changes in this plane, in terms of its displacements
u, v and w are, Ref, 6:

Ex = u’x
[]
W
€ =v, -=%
R
y oy (4.1)
[+
Y - 4
Xy Us v’x
KO
x © 7 Wax
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The radius R 1is measured from the reference plane to the center of
curvature and is positive when in the positive direction of the z-axis,
as in Figure 16, Equation (A.1) reduces to the Donnell- type assumptions
when the underlined terms are dropped.

The strains in any plane at distance z from the reference plane are
by the Kirchhoff-Love hypothesis:

( A o ) [ °° )
€x €x Kx
o ° A.2)
\ P x4 € p <K p (
€, y [+ y
‘Y - K -]
LY"YJ L XY L Y

The stress-strain equations for an orthotropic lamina are, Ref., 20:

r 3 r 3
e ———
o k K gk o .
X 11 12 X
Kkl kK . k
1% (° [ D2 % O 1€y ¢ (A.3)
k K
cxy 0 0 066 Y;y
\. y — — . y
where the superscript k identifies the lamina number and
U* = Eqq/(1-v,95)
szk = Byl (1-953Y45)
(A.4)
k = = ' -
Q10" = Yy /(1=Vp1Vy5) = V5 Ejp/ (1-139,)
K
%6 = G2
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Combining equations (A.1) to (A.3) and integrating over the thickness
of the laminate, the stress resultants N and the moment resultants M in
the reference plane are:

r 3 e —r 0 e un TaE R
N1t STIIPREC N | L9 Byv Bz O |I%,
I Ny 4= Az A 0 He, b+ |Bp By 0 Uk oA (A.5)
Ny 0o 0 Al 00 Bl
\. y - aemd . y. i - \. y
r N d —!rO\ pr— ""roﬁ
M Biy Bz 0 [§Ex Dyp Dy O Bk,
T M20° B2 B2 O PN& ¢ * P2 D2 O R% ¢ (MO
M o o sy’ o o o ]lx°
L 12 _ Y L S

The A, B and D coefficient matrices define the overall extensional,
coupling and bending stiffnesses, respectively, of the laminate, in relation
to the chosen reference plane (here, the mid-plane). The elements of these
matrices are, Ref. 20:

4 k

k=1
B,. = & f Q..K (ho +h) .t
577k Yis M Tk (A.8)

£
= l k 2 2

Dij =3 k=1 %y (e * Bage M + hQ) 8 (A.9)
(i, j =1, 2,86)

where hk and hk+] are the distances to the upper and lower surfaces,
respectively, of the kth lamina. When the orthotropic axes of any lamina
differs from the laminate axes, appropriate transformed values of QU.k are

to be used in equations (A.7) to (A.9). The details are given in Ref, 20.
This causes the A, B, and D matrices in equations (A.5) and (A.6) to be
fully populated, by the presence of subscript '16' and '26' elements. In

practical structures these elements are of relatively small magnitude and

may be ignored. This simplification, while considerably reducing the com-
plexity of the analysis, is not thought to be unduly restrictive.



The total change in potential, m, of the laminated plate is:

Tt * we (A.10)
where, the change in strain energy is
1 ab o o y,° KP o o
US = 7'J;[(N11€& +N22§y +N]2 Xy +Mn x+M22Ky+M12KXy)dXdy (A.11)

and the change in the potential energy of the biaxial loads ﬁi] and Néz
causing buckling is

2

W= -(EN [u, +:(u, 2+v, 2+w, 2)7 dxd
e .U LU T ey TV, TWay \

a
-ffﬂ‘zz [(V’y - %3%{<V.y-%)2 + (w,y%)2 + u,s}] dxdy (A.12)

The above expression for we reflects the possibility of significant
inplane buckling displacements in any of the strip elements making up the

panel. Though the effect of the termsffﬁ}] u,i dx dy and [ [ ﬂ22 u,s dx dy
are negligible, they are retained, as observed in Ref, 19, to ensure the
symmetry of the stiffness matrix for the laminated plate-strips, derived

in Appendix B,

The "stability equations" of the biaxially loaded laminated plate-strip
are derived here using variational principles, in a manner similar to that
in Refs. 21 and 22. Effects of the pre-buckling deformations are ignored.
Ihe resulting .equations are:

N.

N 22 Yoyy T

11,x * N]Z,y - NH] Usyx ~ 0 (A.13)

1w

Nogy * M2 =R Moy * 2 M5 00 = Nyq Vayy

N 2 1
- N22 (V,yy - ﬁ-w, y - -'-Q-z- V) =0 (A.]4)
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1
M 12,09 T R Ng2 - Ny wayy

+ 2M

Ml],xx * 22,vy

-Néz (%-v,y + LW -<iz w) =0 (A.15)

The variational procedure also yields consistent boundary conditions.
These are, along any side of the plate-strip y = constant:

W= 0orMy +2M, - Ny, (-,‘% * W, ) =0 (A.16)
(W, j,ﬂ)_ =0 or My, = 0 (A.17)
v=0o0r Ny - Wy (v, - R =0 (A.18)
u=20or N]2 - Néz Uy, = 0 (A.19)

and along any edge x = constant:

w=0or M]],x + 2M]2,y - N}] w, =0 (A.20)
w, =0or M]] = 0 (A.21)
v=20orN, - Fil_fia =0 (A.22)
u=OorN”—M=O (A.23)

Equations (A.13) to (A.23) reduce to Donnell-type equations for thin
cylindrical shells, on dropping the underlined terms.

A.2 Laminated Beams

Concentrated local reinforcements, like beads or lips in stiffeners,
corner fillets in extruded sections, any beam type boron reinforcements,
etc., are idealized in the buckling analysis as beam elements. In all
cases, the basic quantities involved are the gross beam properties of the
element. Approximate equations to evaluate these properties, for the more
common beam types, namely, the laminated rectangular and the laminated

- circular beam elements, are given here. Figure 17 shows the geometry and
sign conventions. C 1is the point of intersection of the neutral axis and
the beam cross section. Thus, for a uniform axial strain the corresponding

" resultant load passes through C. O is the shear center. A complex
analysis, beyond the scope of the present panel buckling analysis, is
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necessary to locate the shear center of the laminated rectangular beam.
Considering the envisaged applications of the beam type elements in panels,
negligible error will result in assuming that the shear center 0 of the
laminated rectangular beam coincides with the geometric center. This is,
however, exact for the laminated circular beam. Any beam element is idealized
as a line in the longitudinal (x) direction through its shear center 0.

The basic material properties involved are the individual lamina con-
stants, E”k and 623k for the kth lamina. The gross beam properties

E]]Iyy, Elllzz’ and E]]Ab are calculated from
4

- k -k
EjF=Z EyF (A.24)
k=1
. . k k
where Fthdenotes Iyy' Izz or Ab. The moments of inertia Iyy and IZz
of the k= lamina, are about the beam principal axes.
J
Also, 61 =5 gkik (A.25)
p k=1 p
k th

Where 0" is the compressive stress in the k= 1lamina due to the external
axial load FL, the axial strain being the same in all laminas. The polar
moment of inertia ka is about the shear center, 0.

The overall torsional property GZ3J of the laminated circular beam element
is
4

J= I 6Kk (A.26)

6
k=1 23

23

This equation is not suitable for the laminated rectangular beam element,
since, each lamina deforms with a different eccentricity to the shear
center of the overall beam section. In the absence of an exact expression,
the following approximate equation is used:

2 k , k

L Gy3 A,
J =[-k=l 3 (A.27)

I A

k=1 °

Ga3
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Similarly,

'
Kk, k
ZEn A
E;; T= r (A.28)
11 i K
A
k=1 O

JO and I‘O are the St. Venant torsion constant and the warping constant,
respectively, based on the overall section geometry of the laminated
rectangular beam.

Eaquations for the various physical properties involved in equations
(A.24) to (A.28), are to be found in Refs. 23, 24 and 25,

Using the theory of torsion and flexure, Ref. 10, the equations for
the beam element under axial compressive load Fb are:

4 2 2
d'w dw d-0 g
q =E,1 —+P — +Py (A.29)
Z 11 Tyy dx4 b de b’m dxz
dN& 4 2 2
d' 0 _ d"0 d°w
= g, [ =5+ (g1, - G,,d) + Py —%
dx 11 de p 23 dxz b’ m dx
2
-F 2 4¥ (A.30)
b "m de
4 2 2
d'v d°v _ 5 d°0
q, = E I +F - P b4 (A-3])
y 11 “zz dxz b dxz b “m dxz
® o d (A.32)
dx 11 b de

Y and z, are the distances measured parallel to the principal axes y and

z, respectiveiy, from the shear center 0 to the neutral axis C of the
beam element. The distances are positive in the positive directions of

the axis. The displacements u, v and w and the twist 6 are positive in the
directions shown in figure 17,



APPENDIX B
BUCKLING ANALYSIS

The equations derived in Appendix A are now used in developing a buckling

analysis applicable to any structure of uniform cross section which can be
readily assembled from the element types discussed earlier. The inter-
secting angle between elements is arbitrary. Simply supported conditions
with no restriction on the axial (warping) displacements u, are assumed
along the edges x = 0 and x = a of each element, (figures 16 and 17),
so that the variables in the equations can be separated. It is possible to
specify arbitrary elastic restraint conditions along any external longi-
tudinal side ( y = constant) of flat or curved plate-strip elements.

Effects of pre-buckling deformations and any initial imperfections are
ignored. Thus,atbuckling each plate-strip element, whether flat or curved,
is in a state of uniform biaxial loading of ﬁ}] and sz. The beam elements

are in a state of uniform compression corresponding to P,. These element

loadings determined from considerations of strain compatibility between
elements in general, vary from element to element. Typical application
of the biaxial loading case is to stiffened panels. For such structures
the analysis assumes that the inplane loading normal to the stiffener axis
is carried entirely by the plate-strip elements corresponding to the skin.

The structure is assumed to buckle into integer number of half-waves
in the longitudinal (x) direction, the number being the same in all elements.
Laterally, the structure is free to take the buckled shape corresponding to
minimum energy conditions consistent with the constraints along any external
side. The buckling load is defined as the lowest load level that causes
any plate element to initiate a buckling deformation before others do (local
mode; or causes several elements to have simultaneous deformation (general
mode ).

The chosen buckling displacement functions for each element type re-
present an exact solution. For the plate-strip elements, these functions
are substituted in equations (A.13) to (A.15), resulting in a characteristic
polynomial equation. At any chosen load level, the roots of this polynomial
are used in obtaining the stiffness matrix of the element, relating the
buckling displacements and the corresponding forces along the inter-element
junction lines. A corresponding stiffness matrix is derived for the beam
element. The element stiffness matrices are merged to form the stiffness
matrix of the total structure. The buckling load is evaluated from this
total stiffness matrix by an iteration procedure based on an algorithm
analogous to the use of Sturm sequence property, Ref, 17, The algorithm uses an
upper-bound to the buckling load of the structure obtained by considering
all inter-element junction lines to be completely restrained. The buckling
loads for a series of buckling half-wave numbers in the longitudinal (x)
direction are investigated. The lowest of these loads is the critical load
for the structure. The corresponding mode shape is then obtained from the
eigenvector solution.
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B.1 Stiffness of Curved and Flat Plate-Strip Elements

Equations are now derived for the stiffnesses relating the displacements
due to buckling and the corresponding forces along the sides y = 1_%- of the
laminated curved plate-strip element, under biaxial loads ﬁ}l and ﬁéZ'

These equations degenerate to those of the laminated flat plate-strip element,
in the limit of the curvature becoming zero (infinite radius).

The displacements involved are:

w, (8 =w, +-%), v and u. (B.1)

y
The corresponding forces are:

6 = QZ - N22 (w'y + %‘)

(where Q2 = M22,y + 2M12,x)

M= Mo (B.2)
N = - W

N=Nyy - Npp (Vs - )

and T = N12 - sz u,y

respectively, as seen from equations (A,16) to (A.19).

Choosing the mid-nlane as the reference plane, the assumed buckling
displacement functions are:

8 Bs
L Wy e Vsin a

w:
i=]
a = mux/a
8 B;
_ i
v = i§1 V,i e sin «o (5.3)
8 B By = Pymy/a
u= % U, e ! cosa

Py (i =1, 2, ...8) are the roots of the characteristic equation,
discussed later.



The above functions are chosen to satisfy ab initio the simply sup-
ported boundary conditions defined by:

w=M,=vs= (N]]- N}] u.x) =0 (B.4)

along the edges x = 0 and x =a, At any particular level of external
loads N]] and sz, on substituting a typical term of the displacement

functions and equations (A.1), (A.5) and (A.6) into the curved plate
equations (A.13) to (A.15), yields:

-
Ry Rz TRy | [y
Ry; Ry, TRy A =0 (B.5)
R R TR .
| Ry 32 33_| =P
where
_ m 2 Pj.2 = m2 = ,Pi2
Riypy = = A Q7 +Age 7+ Ny ()7 - Ny ()
R = (AL+A) . MEY) - 1 (s s28 )01y @
12 = (Ap*hee) - (RFT) - g (By,*2Bee) (37) (F

A
s r (M3 m P2 M2 om
Ryz = By ()7 = (B*280) () () "2 @

R,y = - R

21"~ Ryp
p D D p.
Roz = Agp ()% = A6 (D) + § (Bog- I + g (FF - 28, G1Y?
& m2 Piy2 _ 1 (B.6)
*Hy @2 -, {Gh - 27}
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: A p
. m2 Pi Pi,3 22 Pi
Ro3 = (B12428g6) Q)7 () - Bpp ()7 - 5 h+ & 2 2 )
v 22 23 z (D,+4D) ‘) (2P + W, 2- al
R ‘7 12" %66 22 2. '3
TR
R31 = -Ry3
(B.6)
R32 = Ry3
28
N my 4 m2 Pi2 i\4 12 my2
R3z3 = Dyy @) = (2014400 ) ()7 () + D,y (FH)” - 7, @
2B p. A D,
22 Pi2 . "2 = m2 1 1 P2
el R A IRl T Dol A oL
A e n ‘a2 22177 '3 2332
On expanding the determinant of the matrix [R] in equation (B.5), a
characteristic polynomial is obtained as:
= 8.,v _6 4 - 2, -
Kg Py~ * Kgpy” + Kypy” + Ky py + Ky = 0 (B.7)

The above equation thus yields eight values of Pis which are real or

complex conjugates. Four of these roots are the negatives of the other
four.

Also, from equation (B.5):

U, = TL,. W

j 21 i
(B.8)
Vi= Ly W
where
- R,.R
Ry3 Ry1 ~ Ryg Ry
Ly = % (B.9)

21 N2 = Rap Ryy



RZZ-R R

Rip - Ry R

L.=;l3
2i 21

12
1

(B.9)
(i=1,2,...8)

After substituting equation (B.8) and the p; values from equation (B.7)
in equation (B.3), the displacements given by equation (B.1) are:

8 By

w= L e W, sin o (B.10)
i=1
8 mp .

- hL Bi :

6 = i§] { 'R TTLli } e Ni sin o (B.11)
8 Bj

v= Y nL]i e wi sin a (8.12)
i=]
8 B;

u= Y TTLZi e wi Cos « (B.13)

Similarly, substituting equation (A.1) in equations (A.5) and (A.6), the
forces defined by equation (B.2) corresponding to the above displacements
are:

A 8 p' p 3
_ m 3 iy2 3
Q= i’:',[‘ e DGy + 5, {20, - D 4

o

m2 Pi, 3 {pi3 3, P12, 1o
ro, @ Aoy LG e g B

P (B.14)
- 2866{(§) (51) 3 Ly; + (-';1)2 3 LH}

m2 Pi, 3 a3 m2
tangs { @F GHt L @ !

- Py m B4 :
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. 8 p
= - Ul 2 i 2 _1
M X [ by @ Ly 7By {GD Ly -k

P P 2
*+ Dy, (-’i-;‘-)2 "t . D,y { (;;i-)2 "2 (;i) Ly —,}—} ] (B.15)

Bj ,
e Wi sin o

J P 2
e, @ e { G e Gh L i (8.16)

., 8 p
r=.L [Ase { G Ly P @y 2
P, 2
g { G @ L2 @, L) (5.17)

_ Ps B;
-N22 (-%) LZi nz ] e ! wi cos o

Putting y = i.%—in B; of equation (B.3), equations (B.10) to (B.17)

yield the displacements due to buckling and the corresponding forces along
the two sides of the laminated curved plate-strip element, Figure 18 shows
their positive directions., It is pointed out that all quantities are mid
plane values, chosen here as the reference plane, and are with respect to
the local axes system. The above displacements and forces are functions of

—d

the axial half-wave length of buckling (%) and the biaxial loading, N]] and
N
22°

In idealizing a structure of uniform cross section as an assembly of
element types discussed in Appendix A, offsets between elements
necessitates an appropriate offset transformation. Also, the intersecting
angle between elements being arbitrary, it is convenient to transform all



displacements and forces to common global axes. These two transformations
are now considered.

Figure 19 shows the offsets to S of the side B of the plate-strip
element AB. Axes system Xes Y and zg at S are chosen parallel to the

local axes at B. Offsets at the side A are considered in a similar manner.
The offsets are defined by the distances Yo and z, measured along the

local y and 2z axes, respectively, from the side of the plate-strip element
in the reference plane. The offsets are positive when they are in the
positive directions of the local axes. The displacements of equations (B.10)
to (B.13) on transformation to the axes through S, become:

We =Wty (B.18)
0 =0 (B.19)
Ve =V - 2,0 (B.20)
Ug = U= 2Zg W o= Y, V'Z. (B.21)

The above equations represent a rigid body transfer when the under-
Tined temms in equation (B.21) are dropped. Physically, these underlined
terms signify that there is no relative slippage between B and S along
the x-axis. Substituting for w, @, v and u from equations (B.10) to
(B.13), the equations (B.18) to (B.21) are written in matrix form as:

d. = CiX; W, (B.22)
where
rws\ (w]“
b .
ds'..- 4 . b 3 wi=4 4 (8.23)
s »
\ USJ \ w8 y
C; = fSina, sin @, sin a, cos q) (B.24)
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Xy is a 4 x 8 matrix whose elements are functions of geometric and material
properties of the curved plate-strip element, the Py values and the axial

half-wave length of buckling (%).

The forces in equations (B.14) to (B.17) when transferred to the axes
system through S, become:

0 =0Q-25T,, (B.25)
ﬁs =M+ y0Q- ZN (B.26)
N = N - Yo Ty (B.27)
To=T (B.28)

The underlined terms in the above equations are similar to those in
equation (B.21). Substituting for Q, M, N and T from equations (B.14)
to (B.17), the above equations are written as:

fs = C]X2 wi (B.29)
rA
st
'Ms
where fs = 4 7 (B.30)
N
s
[ T,

In the force vector fs above, a negative sign is used with Ms in order

to reverse the direction of the moment as given by equation (B.26). As
will be apparent later, this facilitates the use of a common coordinate
transformation matrix for all the element types included in the present
analysis. The vector wi and the diagonal matric C] are defined in

equations (B.23) and (B.24). X, is a 4 x 8 matrix similar to the X
matrix discussed previously..



Figure 19 shows arbitrarily chosen global axes Xes Yg and Zc. Also

shown are positive directions of the global displacements and forces, sub-
scripted G. Since the axes system X Y and z at any offset point is
?

parallel to the local axes system along the corresponding side, (A or B),
the transformation angle to the global axes at A is:

=0 - &
and at B,
0. =y + & (B.32)
B z :

The angle is measured positive in the clockwise direction, from the
global axes. For a flat plate-trip element Pp = ¢B =Y.

~

A matrix T0 for coordinate transformation through angle ¢, is

defined as:
-Ebs¢ 0 sino 6-
- 0 1 0 0
T, (8.33)
-sino 0 cos ¢ 0
0 0 0 1
Superscripts - and + are used hereafter to denote the two sides

of the curved plate-strip element identified by the values of
y = --% and y = 4-%;, respectively, in ﬁi of equations (B.3). The dis

placements and forces along these two sides, on using equations (B.22) and
(B.29) and on transformation to the global axes, become:

(4. ] 7ot o | (e, 71 )

d.-

G 3 A | ] ] -

G | B 1 1
\ y - o e -l \ y

R ad - [ - r 3

f." 2 | -

<‘i‘r B L 2 1% X, W (B.35)
+ - -y = IR AW = C . B.

ka, 0 l Ty Cy XZ-LiJ 2 "4 "
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where C2

TA and 75 are the coordinate transformation matrices obtained from
equation (B.33) for angles ¢, of equation (B.31) and ¢p of equation
(B.32), respectively. The negative sign associated w1th TA in equation
(B.35) is a consequence of the sign convention for forces in the Tocal axes
system, The 8 x 8 matrices X3 and X4 are self-explanatory.

The axial (x) distributions of the above buckling displacements and
the corresponding forces are trigonometric functions (sin or cos) of «

(= Egi) as seen from the C2 matrix. The beam elements also have

jdentical distributions, as will be seen in sub-section B.2. This is due to
the need for the number of axial (x) half-waves of buckling, m, to be
identical in all elements making up the structure. Hence the C2 matrix

can be separated out and readily dropped from further consideration.

Substituting for Hi from equation (B.34) into equation (B.35), the
stiffness matrix [s] of the laminated curved plate-strip element is

obtained from:
|: :] (B.36)

1 512
where [s] = = X4 (X3) (B.37)
s s
21 22
T
and s,y = 4, (B.38)

[s] is symmetric and defines the global relationship between the buckling
displacements and the corresponding forces along the sides y = - % and
y =+ %- of the curved plate-strip element, taking into account any offsets.

The elements of this matrix are transcendental functions of the half-
wave length of buckling (%) and the applied loads N}] and Néz



In the structures for which the present buckling analysis is applicable,
some of the individual plate-strip elements have specified boundary conditions
(e.g9., simply supported, clamped, free, etc,) along an external longitudinal
(x) side, not connected to other elements. Such conditions are treated here
in a general manner as elastic restraints (specified as spring constants) to
freedoms corresponding to displacements w, 0, v and u. A diagonal matrix
ko is defined as

= Iy
ko kw, kgs kv, kMJ (B.39)

where kw’ kg, kv and ku are the spring constants in the directions of the

subscripted displacements, with reference to the local axes system x, y and

z. If there is complet:z freedom in one direction, the corresponding spring
stiffness is zero. Similarly, if there is complete restraint in one direction
the corresponding spring stiffness is theoretically infinite. In numerical
computations, a sufficiently large number is used for infinite spring stiff-
ness to avoid numerical problems.

Consider the side of the curved plate-strip element along B (y = + %)

in figure 19 being elastically restrained bv the specified spring stiffness
of equation (B.39). These are transformed to the global axes system as:

vz = -1
kG = TB k0 (TB) (B.40)
+ + o+
Then, fG = - kG dG (B.41)
Also, from equations (B.36) and (B.37)
+ - +
fo =Sy do Sy, de (B.42)
Combining the above two equations
-1
+ + -
dG = - (522 + kG ) So1 dG (B.43)
Equations (B.36) and (B.37) also yield:
£ =5, d. +s,,d.} (B.44)
G 11 “G 12 "G *
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Substituting equation (B.43), in the above:
fo = sp 9 (B.45)

where the 4x4 reduced stiffness matrix SA for the curved plate-strip
element, relating the forces and displacements along the side A (y = - Q),

2
with the side B (y = + gJ elastically restrained, is given by:
.1
Sp S TSt (Spp v k) sy (B.46)
When the side A is elastically restrained instead of the side B,
the equations derived in an analogous manner are:
S =Tk (F))
kG TA ko (TA) (B.47)
+ +
fo = Sg dg (B.48)
_ -y-1
Sg = Sz = Sy (St kg ) sy, (B.49)

In equations (B.45) and (B.48) the axial (x) distributions of the
displacments and forces are separated out, for reasons discussed earlier,

In the 1imit as the radius R, the above equations for the curved
plate-strip element degenerate to those of a flat plate-strip element. In
the latter case, some further simplifications aiding in numerical solution
are possible, when the elements of the coupling matrix [B] in equations
(A.5) and (A.6) are identically zero.

Laminated flat plates with mid-plane symmetry and isotropic flat plates
are typical examples of such cases. The simplifications are outlined in
Appendix D,

B.2 Stiffness of Beam Elements
The assumed buckling displacement functions for the beam element are:

w = wb sin o

0=§ sin a (B.50)



v = Vb sin o
(B.50)
u = Ub cos «

where o = mmx

as in equation (B.3). The ahove functions are chosen to satisfy
the simply supported boundary conditions at the ends x = 0 and x = a.

On substituting the above displacement functions in eaquations (A.29) to

(A.32), the corresponding forces in the beam element under axial compression
pe are:

fb = X5 db (B.S])
where
rqz ) (1w )
M
fo= | & ;o dy = 6 (B.52)
4 } 4 3
qy v
dP
il u
L(1X J L J
a]] a]2 0 0
257 23 0
X. = (B.53)
5 a 0
33
SYM a44
h— o
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ay = By Iy (m - Py (5 )2

mme
32 * b Y (3_)

- - mmy2

2,5, r( ) - ((rlp - G23 J) (5~) (B.54)
_ mmy 2

a3 = + Pz ()
= mmd4 = mm2

333 © E]l Izz (a ) - P (a )

mm, 2
a4 = By Ay (F)

The above displacements and forces are defined with respect to the local
axes x, y and z through the shear center 0. Their positive directions
are shown in Figure 17.c., For reasons discussed in subsection B.1 for the
plate-strip elements, it is possible to separate out the axial distribution
of these displacements and forces and eliminate it from further consideration.

An offset tranformation identical to that for the plate-strip element,
equations (B.18) to (B.21) and (B.25) to (B.28), can be readily done. However,
it is not pursued here as the offsets in plate-strip elements would suffice
for the idealization of the types of structures considered.

Let the angle, measured positive in the clockwise direction, from the
global axes to the local beam element axes be Py- Then using the coordinate
transformation matrix Tb from equation (B.33), for the angle ¢» the beam
element forces are tranformed to the global axes as:

fio=T

bG b bG

(B.55)

or be = sb dbG

where S is the beam element stiffness matrix (4x4). The elements of this
matrix are functions of F', the axial compressive load in the beam element,
and the axial half—wavelength of buckling (—J



B.3 Buckling Formulation

The equations developed thus far are now applied in formulating the

buckling criterion for an arbitrary structure of uniform cross-section.
The structure shown in Figure 20 is chosen as the example. The longitudinal

(x) sides along G and H are arbitrarily restrained. This structure is
readily idealized as an assemblage of:

(a) curved plate-strip elements - 2, 3 and 9
(b) flat plate-strip elements - 1, 4, 5, 7, 8 and 11
(c) beam elements - 6 and 10

In the figure, the element numbers are shown circled. The broken line is
drawn through the mid-plane of the plate-strip elements. The extremities
of each plate-strip element and the shear center of each beam type element
are marked with "dots." Xgr Yg and z, are the chosen global axes; X

coinciding with the axis of the structure. y and z are the local axes in
each element. The local x axis, (not shown in the figure) is parallel to
Xq The idealization of the structure, as indicated above, also defines

any offsets between elements. It is possible to differentiate between bonded
and riveted connections, Ref, 9 gives details of the idealization procedure
for any structure.

Subsections B.1 and B.2 give the equations for the stiffness matrices
of individual elements, with respect to the global axes system. These are:

(i) equations (B.45) and B.48) for the reduced stiffness matrix
of plate-strip elements with specified boundary conditions along
one external longitudinal (x) side

(i1) equation (B.36) for the stiffness matrix of any other plate-
strip element

(ii1) equation (B.55) for the stiffness matrix of beam elements,

I% is obvious that to evaluate the above stiffnesses, it is necessary
to know the loadings on each element corresponding to any chosen level of
total external load on the structure. These element loadings are dictated
by considerations of strain compatibility between elements and as shown in
subsection B.4, in general, vary from element to element.

The above element matrices are merged appropriately to form the stiff-

ness matrix of the totai structure. The merging process is identical to
that in the direct stiffness method of finite element analysis,
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where the buckling formulation is
K.D=20 (B.56)
or

(Ko + A Kg) .D=20 (B.57)

Ko is the usual elastic stiffness matrix, Kg is the geometric stiffness
matrix and D is the buckling displacement vector.

The corresponding equation for the analysis presented here is:
S.D=0 (B.58)

where the merged symmetric matrix S 1is similar to K 1in equation

(B.56). However, S 1is not separable in the form of equation (B.57)
because of the manner in which the stiffness matrix of each element is
derived from the exact analytical displacement solutions. D is now the
vector representing the global buckling displacements of inter-element
junction lines. As already indicated in subsections B.1 and B.2, the axial
(x) distribution of the displacements and forces has been separated out.
Hence, the vector D has implied values of sin « and cos a= 1, It is oh-
vious that equation (B.58) signifies the equilibrium of the structure in an
adjacent deflected (buckled) position, while satisfying all the boundary
conditons and inter-element conditions. A non-trivial solution to this
equation is obtained when the matrix S has a zero determinant, i.e.,

Is] =0 (B.59)

The elements of S are transcendental functions of the external
loadings and the axial {x) half-wavelength of buckling(a). Thus the above

equation does not correspond to the standard a)gebraic"éigenvalue problem.

For any chosen number of axial half-waves m, the lowest level of
external loading at which equation (B.59) is satisfied, is the buckling Toad
of the structure. This load is determined by the iteration procedure dis-
cussed in Appendix C. A series of m values are investigated and the the
lowest of all buckling loads then gives the critical load of the structure.
The corresponding vector D in equation (B.58), giving the inter-element
junction line displacements, is then obtained by Wielandt's method of
inverse iteration, Ref. 17. The convergence of this method is good but is
dependent on the accuracy of the solution to equation (B.59).

The distribution of the buckling displacements across the width of each
plate-strip element is calculated from equation (B.3). The necessary wi

values for each element are obtained by back-substituting into equation



(B.34) the corresponding dG' and dG+ values from the eigenvector D, The
Ui and Vi values follow from equation (B.8). For the beam elements, the

eivenvector D directly gives the global buckling displacements at the shear
center. These can be readily transformed back to the local axes system.

The w and v buckling displacements of each element are of prime
interest. A plot showing these displacements across the cross section of the
structure identifies the weak (buckled) elements and thereby indicates
whether the buckling is local or general. Such plots give a valuable insight
into the buckling mechanism and may be used in achieving efficient design
of structures as illustrated in Refs. 1 and 2 for stiffened panels.

The classical buckling analysis usually makes assumptions regarding
individual buckling modes, like Euler mode, torsional mode, local mode, etc.
As shown in Ref. 2 such simplifying assumptions could sometimes lead to the
possibility of missing the lowest buckling load. Apart from the need for
the number of buckling half-waves, m, in the longitudinal (x) direction, to
be the same in all elements of the structure, the present analysis makes
no other assumptions regarding the buckle mode,

B.4 Element Loadings for a Specified Load in the Structure

The buckling analysis requires the knowledge of the distribution of the
total load on the structure between the various elements. This is determined
from considerations of strain compatibility between elements. As a con-
sequence of ignoring the pre-buckling deformations, at buckling each element
in the structure is under uniform load conditions. Thus, each plate-strip
element is, in general, under uniform biaxial loading N}](j) and N22(j)

and the beam element under uniform axial load 5§(k)’ (i) and (k) referring
to the element numbers.

For plate-strip elements, noting that there are no applied moments,
equations (A.5) and (A.6) are combined to give:

N-[A-B8 @) 8¢ (B.60)

or in the expanded form

R B.61
Nyp = Gy 5 Y gy € (B.61)

Nop = Cia Ex* 0 & (B.62)
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The coefficients C}], EHZ and féz are self-evident. On inverting, the above

equations yield:

€

x PNyt PNy (B.63)
€y =Fip Ny + Fpp Ny (B.64)

The coefficients Fll’ 12 and F 9p are readily derived.

For a laminated beam e]ement with k Tlayers, the axial load corres-
ponding to an axial strain E is given by

Py = & ) Ep A (B.65)

The above equations are used in the strain compatibility considerations,
The method is discussed below with reference to the stiffened panel in

Figure 21. The numbers in parenthesis are the element numbers.,

(i) Biaxial loading with constant inplane transverse load along the panel
sides.-The panel has a specified transverse loading of sz(]) along the

external side of element (1). This remains constant as the axial load on
the panel is increased. From statics it is evident that N22(j) for any

plate-strip element (j) on the skin is identical to N22(1) For element
(1), at a chosen value of N]](]) and the specified sz(]), the corresponding
straini: (1) follows from equatlon (B.63). At any level of axial load in
the pane1 the axial strain € ° x (1) in any element is made identical to

x(l) . Thus, applying equat10n (B.63) to any plate-strip element (j),

s 1 -
M T g Frag) V) (5..66)

11(3)

Lo



In the above equation ﬂ22(j) is obviously zero for those plate-strip

elements in the panel not carrying any side load. Equation (B.65) gives
the axial load in the beam elements corresponding to the strain ex(])

Thus, for any chosen N]](1) and a specified constant value of sz(]).

the corresponding loadings in all elements are known. The total load in the

structure in either direction can be easily calculated.

(i1) Blaxtal loading with constant axial strain.--The sggc1f1ed axial
strain €° (1) is the same for all elements in the panel (EX(J) (]))

and remains constant. For a chosen value of sz( )(by statics NZZ(J)

NéZ(]) for all plate-strip elements on the skin) Equation (B.62) gives
— 1 = = —
€%, . = —— - . ° .
v 7 e - Y €x(j] (B.67)
22(J)

The axial loading N]](j) in all plate-strip elements follows from equation
(B.61) and the loads in the beam elements from equation (B.65).

(iii)Biaxial loading with constant total axial load.--Initially, ﬁéz(j) is
zero and for a specified value of W]](]) equation (B.63) gives

&M = fum Wy (B.68)

The axial loading ﬁ}]( in all other plate-strip elements at this strain

J)
value is:
F N
Ty gLl 5.6
J
The axial load in beam elements follows from equation (B.65). The total

axial load defined by the axial loads in all elements determined as above
is kept constant at all levels of inplane transverse loading.

(iv) Biaxial loading at constant biaxial load ratio.--A biaxial load ratio
defined by Nll(ll/MZZ(j) is specified and remains constant. Thus, at a

chosen value of N]‘(]) the corresponding value of N 2(]) is known.
Equation (B.63) q1ves the corresponding axial straine? (1) which is the
same in all elements x(j) = Ex(]))‘ Also, the above calculated Néz(]) is

the same in all plate-strip elements on the skin, Then from equation (B.63)
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- 1 el
R E) = E:m‘ 12(3) F‘zz(;ﬂ (6.70)
()

As before the corresponding axial load in each beam element is calculated
from equation (B.65)



APPENDIX C

SOME SOLUTION METHODS ANC NUMERICAL PHENOMENA
OF PARTICULAR INTEREST

This appendix summarizes some of the numerical solution methods used
in the buckling analysis presented in Section 5 as well as interesting
numberical phenomena observed.

C.1 Buckling Load Evaluation

Equation (B.57), for the buckling load evaluation, represents a
general non-linear eigenvalue problem, for the reasons mentioned in sub-
section B.3. Recourse to an iterative procedure:is necessary to determine
the Towest buckling load for a particular number m of axial (x) half-wave
lengths, The often-used method of determinant plotting risks missing the
lowest root and may also be time-consuming. Because of the symmetry of the
matrix S, the algorithm outlined below enables the lowest root (buckling
load) to be determined with certainty in fewer iterations. The principle
of the algorithm is analogous to methods based on the Sturm sequence property,
Ref. 17, for standard algebraic eigenvalue problems.

Assume that all inter-element junction lines are completely restrained
against the degrees of freedom represented by the vector D in equation
(B.58). Each element making up the structure can thus be considered as
isolated with clamped boundary conditions along these restrained lines.
Specified boundary conditions along any external longitudinal (x) side of
plate-strip elements are kept unchanged. For the chosen value of m, it is
possible to determine a buckling load Pr for each element isolated as above.

Let Ptrial be the current, trial value of the external load in the
iteration process and let 0 be the total number of Pr values lower
than Ptrial' The imposed restraints along the inter-element junction lines

are now released, one by one. Using the principles stated in Ref. 26 for
the vibration frequencies of linearly elastic structures, it can be shown
that the removal of each restraint either increases 1 by one or leaves

it unchanged. The alternatives are decided from the decomposition of the
symmetric matrix S, (using a modified Gaussian elimination method without
row interchanges) into

_ T
S=LD,L (c.1)
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where Do is a diagonal matrix, L is a unit lower triangular matrix and LT

is the transpose of L. A negative element in Do signifies that the release

of restraint to the freedom represented by the corresponding element in the
vector D of equation (B.58) increases M by one. If it is positive,

o remains unchanged.

Let g be the number of negative elements (also called sign count) in

DO and n be the number of roots of equation (B.57) below the value

P Then, the principle of the algorithm used for buckling load evaluation

trial’
is basically:

The lowest buckling load Pm for the chosen m corresponds to the
value of Ptria]

from zero to one. The algorithm is described in detail in Ref. 7. In the
presence of coincident roots, it is obviously not possible to isolate a
load at which n changes from zero to one. This is further discussed in
sub-section C.3. From the above discussion it is seen that a reliable
method of calculating Pr is crucial to the success of the algorithm,
Also, Pm cannot exceed Pu’ the smallest of the Pr values. Pu is thus
an upper bound to Pm. For any chosen m value there is a corresponding

(determined to the desired accuracy), at which n changes

upper bound load Pu. The method used to calculate the Pr values and
hence Pu’ is discussed in Appendix E. Ensuring Ptria] to be always less
than Pu results in M, being zero. The smallest root (buckling load Pm)
of equation (B.59) is then the lowest value of Pirial (determined to the
desired accuracy), at which Mg changes from zero to one. If for some

particular reason one is interested in a specific higher root, it is obvious
that it is readily determined by finding the value of Ptria] at which

the corresponding change occurs in o It is seen from equation (C.1) that

SI= 1Dyl = d

C.3
;i (C.3)

since

i = I o=,



C.2 Open Structures With Repeated Substructures

Open structures with repeated substructures are exemplified by stiffened
panels, with repetition in regard to the stiffeners (substructure) and their
spacing, as shown in Figure 22. A1l repeated substructures are identical.
The boundary conditions along the two sides of the panel are arbitrary.

There is no restriction on the type of substructures and they may be multiply
connected. The symmetric matrix S 1in equation (B.58) for such "open
structures" is banded and has a typical block structure as shown in Figure 23.
Each block marked CR represents one repeated substructure. In flat stiffened
panels every repeated substructure is identically oriented with respect to
the global axes. All repeat blocks CR are, thus identical in every respect.
However, in curved stiffened panels with constant curvature, (of the type
shown in Figure 1.f), the orientation of each substructure with respect to
the global axes increments by a constant angle from substructure to sub-
structure. In such cases the repeat blocks have identical dimensions only,
while the elements of one are readily obtained from the elements of the

other using a transformation matrix.

Stiffened cylinders, even though they have repeated substructures
(stiffeners), do not come under the purview of "open structures." The matrix
S for these "closed structures" is no longer banded, as the first and the
last elements making up the structure are inter-connected.

The above discussed characteristics of open structures (with repeated
sub-structures) is madeuse of in the method,Refs. 27 and 28, for calculating Py

the number of negative elements in the diagonal matrix Do of equation

(C.1). With reference to Figure 23, physical considerations dictate that
(M-N) columns of the CR matrices overlap. The elimination procedure used
is illustrated in Figure 24, Starting with block CS, the elements below
the first IR diagonal elements are eliminated (step 1 of Figure 24). The
product of the first IR diagonal elements comprises the first IR terms in
equation (C.3). The first IR rows and columns are discarded after this
product is computed. The remaining rectangular block C52 is moved into the

upper left-hand corner, and the first CR block is brought into position as
shown in step 2 of Figure 24. This step is completed after the elements
below the first N diagonal elements of the composite matrix are annihilated
and the product of these diagonal terms included in the running product of
equation (C.3). The procedure continues in the manner shown in Figure 24,
It differs from the usual elimination procedure only in that information is
discarded from the working array when it is no longer needed, and new
information is brought into this array only when needed to continue the
process. This scheme minimizes the computer core storage requirements. The
number of repeat blocks, while mathematically arbitrary, will be limited in
practice by the accumulation of rounding errors.
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C.3 Coincident Roots

In shell buckling problems the method of determinant plotting is often
used. The buckling load is identified by the sign reversal in the deter-
minant value. In certain cases the phenomenon of'kissing’'determinant! has
been observed. The determinant value decreases rapidly to a near zero value,
within numerical limits, and then increases again without going through a sign
reversal, This occurs in spite of using extremely small load intervals. This
phenomenon is caused by coincident roots and can entail the possibility of
missing the lowest buckling load, unless special precautions are taken. The
significance of the coincident roots in regard to the buckling analysis
presented in Appendix B, is discussed below. The algorithm based on equation
(C.2) defines the buckling load as that value of Ptria] (determined to the

desired accuracy) at which n (or g when the upper bound load Pu is

used) changes from zero to one. Whenever equation (B.57) has coincident
roots it is not possible to isolate such a value of Ptria]' This is brought

out by the examples of the thin-walled cylinder and the long square tube
discussed in sub-section 5.4. In spite of pursuing the load iteration

to the single precision accuracy of the CDC 6600 computer, these cases did
not reveal a zero to one, but only a zero to two change in 7m value. A
closer look at the structures shows the possibility of buckling modes with
coincident buckling loads, the corresponding eigenvectors D in equation
(B.58) for these modes being mutually orthogonal., Thus, this change in the

n value reflects the existence of the coincident roots. For such cases, the
algorithm outlined in subsection C.1 still yields the smallest root of
equation (B.59), with certainty. The eigenvector solution method used yields
one of the modes. However, it is possible to evaluate the orthogonal vectors
using special numerical techniques, Refs. 17 and 18, For the class of
structures for which the present analysis is intended, such techniques are
not warranted from an engineering point of view. The coincident roots can

be separated into distinct ones by introducing a small "error" (change in

the modelling of the structure), with insignificant effect on the basic
structural characteristics or results. This is illustrated in subsection 5.4,

C.4 Complex Conjugate p, Roots

It is seen from subsection B.1 that the complex roots P; of the character-
istic equation (B.7) appear in pairs which are complex conjugates. The use

1 This was brought to the attention of the authors by Dr. M. F. Card,
Structures Division, NASA, Langley Research Center, Hampton, Virginia 23365.
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of such a pair of p; values in equations (B.10) to (B.17) results in a
complex conjugate pair of columns in the matrices x] and X2 of equations
(B.22) and (B.29).

For each Py value there is obviously a corresponding element in
the vector W, of equations (B.22), (B.29), (B.34) and (B.35). Further,
it can be shown that the elements of wi corresponding to a complex con-
jugate pair of Pj» are themselves complex conjugates.

Thus, if a typical complex conjugate pair of elements in X] or X2

are (c + id) and (c - id), with the corresponding elements in the vector
W; being (r + is) and (r-- is), the result of multiplying them out is seen

to be a real number. It follows that the matrices X] and X2 can be
manipulated to contain only real numbers, with a corresponding change in

the elements of the vector wi. This simplification is used in the numerical

solution.
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APPENDIX D

FLAT PLATE-STRIP ELEMENTS WITH ZERO BENDING-STRETCHING COUPLING

For flat plate-strip elements, the simplifications given below aid the
numerical solution when the elements of the coupling matrix [B] in equations
(A.5) and (A.6) are identically zero.

The buckling displacements are assumed as (cf. equation (B.3))

4 .
W= 9, Nieﬁh sin « (D.1)
i=1
4
v= 3 Ve sina (0.2)
i=1
4
u = 2: U.eBZi COS «
j=1 ! (D.3)
T
where 3]1 = pW; Y
Pui™y
BZi a
o= m
a

Pwi and Pui are the roots of two separate characteristic equations, as shown below.

With By = 822 = B]2 = Bgg = 0, the equations (A.13) and (A.14) are

uncoupled from equation (A.15). This is seen from equation (B.6) where
substituting the above values and dropping the terms involving the radius' R,
results in R.l3 = R23 = R3] = R32 =0, In R]], R]Z' RZ]’ and R22 of equation
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(B.6), Py is replaced with Pui and in R33, Py is replaced with Py
Due to this uncoupling, equation (B.5) is written as:

=0 (D.4)

and R33 ”i =0 (D.5)

The determinant of the coefficient matrix in equation (D.4) yields the
characteristic polynominal:

N
KuaPui * KyoPui * Ky = 0 (D.6)

The four Py roots from this equation are used in equations (D.2) and

(D.3) for the inplane displacements v and u, respectively. Also, from

equation (D.4),

Vi =Ly U (D.7)

where

R R

Lo, = = z -
TR TRy

(i=1,2,3,4)

A second characteristic polynomial resulting from equation (D.5) is,

Ry3 =0 (D.9)

R33 is a fourth order polynomial in Pui* containing even powers of Pui
The four p . roots of equation (D.9) are used in equation (D.1) for the

out-of-plane displacement w.

|
|
|
|
§
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The roots p,; and p,; from equations (D.6) and (D.9), respectively,

are always real or complex conjugates. Using these roots, equations corres-
ponding to those of (B.10) to (B.17) are written as:

- i Bli .
= e W sina (p.10)

i=]
4 7w . By

0= 3 -——Vaﬂe " W, sin o (D.11)
i=1
4 .

v= ) Las eBZ] U, sin « (D.12)
=y 3 i
4 3,

u= 2, e 21 U; cos « (D.13)
i=1

a - é& D (@)2 (pwi>n3 D (pwi)31r3 + 4D m_z (pwi) .3
& Pelz) 5T - 0 66 (3) ‘&

- P, s By
- T, (—ﬂ)n] ce 1 Wy sina  (D,14)

2
A 4 2 2 P, 2 B s
H= Y [012 (ﬂ) ™S - D, (-‘—’l> i } e 1 Iy sin « (D.15)

. e U. sin a (D.16)
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4 R - P, s Bos
? = 2: [A66 {(%?)1r+ (E)L31 n}- sz (—%l)n] v e 21 Ui CoS « (D.17)
i=]

Putting y = i_%-in BH and Bpy of equations (D.1) to (D.3) equations

(D.10) to (D.17) yield the buckling displacements and the corresponding forces
along the two sides of the flat plate-strip element, when the coupling between
bending and stretching is absent.

The subsequent analysis is identical to that in sub-section B.,1, Because

of the uncoupling between inplane and out-of-plane displacements, the vector .
wi in equations (B.22), (B.29), (B.34) and (B.35) becomes [w]...w4, U]...U4] .
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APPEHDIX E

UPPER BOUND LOAD Pu

For a chosen m value, a load Pr (for each element making up the

structure) is defined in Appendix C as the buckling load of the element

when the sides corresponding to the inter-element junction lines are completely
restrained. Specified boundary conditions along any external longitudinal

(x) side of plate-strip elements are kept unchanged. The smallest of the

Pr values is then the upper bound load Pu for the structure. Thus, for

each value of m there is a corresponding upper bound load Pu' As a

consequence of the beam element axis always coinciding with an inter-element
junction line, the above mentioned restraints make it possible to safely
ignore these elements from upper bound considerations. Thus, further

discussions are 1imited to plate-strip elements only. Two basic cases con-
sidered are:

(1) plate-strip elements clamped along both. longitudinal (x) sides;

(2) plate-strip elements clamped along one longitudinal (x) side
and with arbitrary restraint conditions along the other side.
The latter side corresponds to an external longitudinal (x)
side of the structure. It is obvious that when the arbitrary
restraints correspond to clamped conditions, such plate-strip
elements fall under the category (1) above.

B.1 Plate-Strip Elements with Both Sides Clamped

The analysis given below, for the buckling load P. of curved plate-
strip elements degenerate to the case of flat p]ate-strgp elements in the
1imit of curvature becoming zero (infinite radius). The onset of buckling

in the plate-strip elements with clamped sides is characterized by predomi-
nantly out-of-plane displacements. Hence, the basic equations (A.1) and
(A.13) to (A.23) are further simplified by dropping the underlined terms.

This reduces the numerical complexity and the resulting equations are accurate
enough for the upper bound calculations.

As outlined below, the three stability equations (A.13) to (A.16) are
uncoupled by the use of the inverse operator, in the manner of Ref. 29 and
as further illustrated in Ref. 30. After substituting equations (A.1), (A.5)

and (A.6), the above equations are written in terms of buckling displacements
u, v and w, as:

Sk



I]u *Lyv+lw=0 (E.1)
Izu + [4v + [5w =0 (E.2)
E3u +'[5v + Eﬁw =0 (E.3)
where
Ly = A]] ( )’xx * A66 ( )’yy
L, = (A"Z + A66) ( )Qxy
L., = -[B () + (By, + 2B..) () ik () ]
11 PXXX 12 66 ’Xyy R ’X
L4 N A22 ( )’yy * A66 ( )’xx
Tg=-| (B, +20,) (), +5, () +£\—23() | €
5 12 66 XXy 22 'yyy R ’y '
LG = D11 ( )’xxxx * (2012 * 4066) ( )’xxyy + D22 ( )’yyyy
B 2B A
12 22 22
+2T()’XX+T()’yy+-};—_\V

+ N]] ( ),Xx + N22 ( )’yy
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The f} are linear differential operators and are cummutative. Thus, from

equations (E.1) and (E.2) the displacements u and v are expressed in terms
of w, as:

A suitable out-of-plane buckling displacement function, satisfying the conditions
of zero deflection and zero slope along the sides is:

w=sina 2, i (cos yy = cos y,.) (E.7)
n=1
where
- (n + 1)my
v, - {@_Bjﬂ] md oy, s lﬂ__ﬁw_/_] (£.8)

The operations indicated on the right side of equations (E.5) and (E.6)
result in:

(L3L4 - L2L5) W = COSa 2; U (k1n €os yqp ~ Ky, cOS y2n) (E.9)
(L]L5 - L2L3) w=sina 2; W (k3n sin yy. = kg, sin yZn) (E.10)

Expressions for the coefficients k]n to k4n though not given here, may

be readily derived. From the form of the right sides of the above equations,
suitable functions for u and v displacements are chosen as:

u = cosa [E:Hn (k5n cos yj. - kg, €os y2n) (E.1T)
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v=sina [ 3N (ks siny, = Ko siny, )] (E.12)

where the coefficients k5n to k8n are yet to be determined. Using these

equations, the operations indicated by the left side of equations (E.5) and
(E.6) yield:

— 2 —
BLZ) - L]L4]u = COS « [z:Hn(kgnksn cos yyn = kyonKen €05 ¥Yp,)] (E.13)

-2 = | . .
[(Lz) - L]L4]v = sin « [Z:Hn(k]]nk7n sin yy, = k]2nk8n sin y2n)] (E.14)

The coefficients kgn to k12n may be readily derived. The yet undetermined

coefficients k to k n are solved for, by substituting equations (E.9),

n
(E.10), (E.13) and (E.14) in equations (E.5) and (E.6). The functions for

the compatible displacements u and v are thus defined in terms of w.
They satisfy equations (E.1) and (E.2). The amplitude constants Nn are

the only unknowns.

The displacement_functions_are now substituted in equation (E.3) where
the external loading N,] and N22 appear in the gperator Lﬁ. The

resulting equation is solved for the buckling load using the Galerkin
method, Ref. 8. The Galerkin multiplier used is:

Gj = sin « [%os ii_:T;lIX._ cos Si_iglbll} (E.15)

Following the method of Ref., 29 results in an infinite set of homogeneous
linear equations involving the unknown amplitude constants wn. As shown

therein, these equations are separable into two subsets, one containing only
odd values of n and the other containing only even values of n. The
buckling load P, is obtained from the coefficient matrices of these subsets
of equations using standard linear eigenvalue solution techniques. The
solution by the Galerkin method is known to converge rapidly as the number

of terms n vretained in the displacement functions is increased. The details
of the metnod outlined above, for determining the buckling load Pr of

plate-strip elements with both sides clamped, are easily worked out following
the procedure of Ref. 28.
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Along the two longitudinal (x) sides of the plate-strip elements,
the displacement functions of equations (E.7), (E.11) and E.12) satisfy the
boundary conditions.

= 0 (E.16)

This shows that there is no restraint to the freedom corresponding to u
displacement. As discussed previously, the required clamped conditions along
the two sides of the plate-strip elements correspond to complete restraint

to all the four degrees of freedom along inter-element junction lines. However,
the Pr values for the boundary conditions in equation (E.16) is satisfactory

for the purposes of estimating the upper bound load Pu.

E.2 Plate-Strip Elements With One Side Clamped and
Other Side Arbitrarily Supported

Plate-strip elements with arbitrary restraint conditions along one
external longitudinal (x) side and with clamped conditions along the
other side corresponding to an inter-element junction line are now considered.
In this case, the choice of buckling displacement function satisfying all
boundary conditions, becomes difficult. Thus the method of sub-section E.1
cannot be directly used to determine the buckling load P_ of such plate-
strip elements. r

Consider the plate-strip element ABCD shown in Figure 18. Using
local co-ordinates only (i.e., ¢s and ¢p given by equations (5.31) and
{B.32) are zero), equations similar to (B.36) and (B.37) are readily derived
as:

(E.17)

Assume that the side AB has arbitrary restraints specified by the spring
stiffness matrix k, identical to k, in equation (B.39). The clamped

conditions along the side BC corresponds to a similar spring stiffness
matrix kgs whose elements are theoretically infinite. The buckling

equation for the plate-strip element is then:
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a) |51t k) sy dap
- =0 (E.18)

fecl  IS21 (syp + kg)| {dpc

Since the side BC is completely restrained, the above equation reduces to:
g 1 2
[Sll + kA] (dAD$ =0 (E.19)

The buckling load Pr of the plate-strip element under consideration then
corresponds to the smallest root of the determinantal equation:

l(s]] + kA)I = 0 | (E.20)

Equation (E.20) being identical to equation (B.59), the algorithm outlined
in Appendix C is readily applicable. An upper bound load to the solution
of equation (E.20) is obtained by using the Galerkin method discussed in
sub-section E. 1,

E.3 Upper Bound Load Pu

For each plate-strip element in the structure under consideration and
for a chosen m value, a buckling load Pr is evaluated applying the

methods discussed in sub-sections E.1 and E,2., The smallest of the Pr

values is then the upper bound load P Each value of m has a corresponding

upper bound load., u’
Initially the procedure described might appear rather tedious. However,
in actual structures it will not be necessary to evaluate Pr values for all

plate-strip elements. Some elements can be eliminated from consideration due
to their repetition in the structure, while others can be eliminated because
of physical considerations.
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APPENDIX F
CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS

The International System of Units (SI) was adopted by the Eleventh
General Conference on Weights and Measures, Paris, October 1960, in Resolution
No. 12. (See ref. 31.) Conversion factors for the units used herein are
given in the following tables:

. . U.S. Customary |[Conversion ST Unit
Physical quantity Unit factor (*%)
(*)
Area ...vuieevnenennnns inl 6.452 x 10~% square meters (m2)
FOrce .ovviviiinnnnenns kip = 1000 1bf |4.448 x 103 newtons (N)
Length ...covvvnnrnnnn. in. 2.54 x 107° meters (m)
Moduli and stress ..... ksi = 1000 1bf/]6.895 x 106 newtons per square
in2 meter (N/mZ)
Stress resultant ...... 1bf/in. 175.1 new%ons)per meter
N/m

® Multiply value given in U.S. Customary Unit by conversion factor
to obtain equivalent value in SI Unit.

** Prefixes to indicate multiple of units are as follows:

Prefix Multiple
mi11i (m) 1073
centi(c) 1072
kilo(k) 10°
giga(G) 109
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Figure 1.—Panels With Curved Parts
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Figure 2.—Buckling of Isetropic Cylinders




Boron-epoxy (h/e)

Aluminum (al.)

66

ta; = 0.05 inches
ty/e = 0.05 inches
Radius,R = 9.95 inches
Length = 7.0 inches
MATERIAL PROPERTIES
Aluminum: Ejy= Egp = 10.5 x 108 1bs/in?
Gy = 4.04 x 108 1os/in?
Vig = 0.3
Boron Epoxy-
Eqg x 1076 | E5y x 1076 v Gyp x 1076
Ibs/in? | 1ns/in? 12 lbs/in?
0 30.250 2,030 0.346 0.525
15 23.800 1.800 1.179 2,339
30 1.762 1.608 1.85%5 5.967
45 1.877 1.971 0.884 1.782
60 1.608 1.762 0.343 9.967
15 1.900 23.800 0.094 2,339
80 2,030 30.250 0.023 0.525
(Note: Eqq is the modulus in the direction of cylinder axis)

Figure 3.—Fiber Reinforced Cylindrical Shells(1 of 2)



RESU

Ref. 22
Minimum
Buckling
F —
iber Angle Load Ny
in/in

Present Analysis*

Present Analysis

0
15
30
45
60
15
80

4881
9144
9625
6418
9933
5183
4883

Minimum Minimum
0 Buckllpg - Buckllpg -
Load Nyy Load Ny
ib/in Ib/in
9 4884 9 4853 9
5 9145 5 9137 5
3 9631 3 2624 3
0 6418 0 6414 0
7 5955 7 5696 7
) 9183 1 4950 )
9 4883 9 4734 9
(m=1)

* Buckling load,when the underlined terms in equations (4.1) and (4.13)
to (4.23) are suppressed

** n,the circumferential wave number determined from the buckling mode
shape plot

Figure 3.—Fiber Reinforced Cylindrical Shells (2 of 2)
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Material Properties: Ej1 = Egp = 10.3 x 108 1os/in2

619 = 3.87 x 108 [ns /in?
\)12 = 0.33
AC.| \.82 A.C.*
W - o
t=.032"

Panel 1: R=1,36"; @ =82.5°
Panel 22 R=1,20;, @ =85°

Panel 3: R=1,36"; @ = 82.5°
Panel 4 R=1.20"; o= 85°

s g\ 8"
. ° N S. c‘**
J:g" 2.820" "103

1212
R

wh o

1.018 m t-.028"
Ny
Panel 5: @y =97.92°% o =93.02°; 6=107.2°
¥ A C. Antisymmetric boundary conditions
** 5. C. Symmetric boundary conditions

t=.020"
m R - + lm‘/f' L. 0a0"(2t)
t~<——~f;—4ni' | 4 ’r
1ag\ 1 e-1.00"
N\

1.10
Panel 6

Figure 4.—Advanced Structural Panels
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1100
1000

900

ﬁll critical
Ins/in 100
600
500

400

1800
1500
1400
_ 1300
Niq critical
1200
Ibs/in
1100
1000
900

800

9 10 15 20 25 30
Hal f wave length, (a/m), inches

] | 1 ] )

35

°r

1
3 10 19 20 29 30
Hal f-wave length, (a/m), inches

Figure 5.— Results for Advanced Structursl Panels (1 of 2)

A Present
analysis
® BOSOR 3
Panel 1
- —= Panel 2

A Present
analysis
® BOSOR 3
Panel 3
—~—-—=Panel 4
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1600 ¢~
1400 -
Nyy critical
Panel 5
1200
[bs/in
1000} A Present analysis
® BOSOR 3
goo L
L i 1 1 ]
0 5 10 15 20

Half wave length, (a/m), inches

80
10

60

11 critical
ksi 30

40

30

Panel ©

0 L | Nl | | | | | L
a 4 8 12 16 20 24 28 32 35 40
Half wave length, (a/m), inches

Figure 5.—Results for Advanced Structural Panels (2 of 2)



All edges simply supported

Mean radius = 10 inches
Mid-plane chord length = 10 inches
=1 = 0.05 inches
Material Properties
E” X ]Uus 522 X 10-6 G]z X 10-6
o9 2 VIZ
los/in los/in tos/in?
Layer 1 10.5 10.5 4,04 0.3
Layer 2 30.2% 2.03 0.525 0.346

Figure 6.—Biaxially Loaded Laminated Curved Plate

1.0
@® Present Analysis
2T
(N32)9
0
0 N” 1.0
T

Buckling loads (Ibs/in) for individual

(Nyy)y o (Ngp)p — ‘
unidirectional loading

Figure 7.—Results for Biaxially Loaded Laminated Curved Plate (All Edges Simply Supported)
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T

25.45" - o 0.13”:d<'

Panel Length =17.1 inches

Vs

- 0.21

---------------------
------------------------------------------------
.....................................

Material Properties

Eyp = B3 = 10.2 x 108 jbs/inZ
619 = 3.92 x 106 jpszin?

b »
\)]2 = 0.3 2.1%

Panel sides are simply supported

0.884” 0,997

Resul ts

Minimum Buckling Stress (m=1)

60,700 Ibs/in?
5.957 x 10-3 in/in

Buckliing Mode Snape

Buckling Strain

Figure 10.—Zee Stiffened Panel
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IR R S v

II_»
E:J L J ] L] '-i“ 05 05"
ORON

Panel length = 40 inches —>| 75%}€— 20 Layers

—{ 1.10" e—

Material Properties

E” X ]0-6 Ezz X IU-B GIZ X IO-B V12
Material
lps/in2 Ips/in? loszind
;—.‘===I
Titanium 16.4 16.4 6.2 0.3
Boron Fiber
Composite 29.117 2.341 0.75 0.2467

(a) Panel Geometry and Material Properties

-

(Lines represent

. B 0ff-Set Nodes
the mid-planes)

(b) Idealization Showing Offsets

Panel Buckling Load (lbs) Buckling Strain x 103 (in/in)

m

With Offsets | Without Offsets | With Offsets | Without Offsets
1 64520 55770 1.7035 1.4726
2 209800 183100 5.5403 48339

(c) Resuits

Figure 13.—Effect of Offsets—Hat Stiffened Panel
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2.4

5( ‘1- -1- )ffi:?-:i:f-éz R

N
§
Q
No. of stiffeners = 6 \
Panel length = 16.0 inches 3
N
. . §\\\\\\\\\\\
Material Properties —
Eyy = E22 = 10.0 x 106 |DS/in2 0.524"
By9 = 3.85 x 108 fps/in?
V12 =0.3
(a) Panel Geometry and Material Properties
[ £
> v
(Lines drawn are
through mid-planes)
(b) Bonded Stiffener {¢) Riveted Stiffener

RESULTS FOR MINIMUM BUCKLING STRESS

Bonded Panel
ogr = 49,800 Ibs/in?
m = 12

Riveted Panel

38,043 1bs/in?
9

Ocr
m

Figure 14.—Bonded and Riveted Connections—Zee Stiffened Panel



Material Properties

Eyy=Ep2=10.0 x 108 |bs/in

I G  =3.85 x 108 1ns/in?
R=14,99"
- ; Vi2 =0.3 .
Length =100.0 inches Length = 60.0 inches
(a) Square Tube (b) Thin Walled Cylinder

I_ _] ___..___

(c) Initial Idealization (Coincident Roots)

(d) Orthogonal Buckling Modes With Coincident Buckling Loads

Figure 15.~Problems lllustrating Coincident Roots (1 of 2)
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i’. 002"

—’>YG ~)—yG
2 |
6 \
Zg
(e) Second dealization {(No Coincident Roots)
EXAMPLE SQUARE TUBE THIN WALLED CYLINDER
Buckling Load Change in Buckling Load Change in
IDEALTZATION Ny Caszimy | ™| n Vvalue Ny, CGoszim| ™| n Value
%W
Initial 41.0 1 D to 2 159.2 4 0 to 2
Second 41.0 1 0 to 1 159.2 4 0 to !
Classical 41,1 1 -— 159.2 4 —
Result
(f) Results

Figure 15.—Problems Illustrating Coincident Roots (2 of 2)



REFERENCE PLANE

FIRST
LAMINA

Figure 16.—Laminate Plate—Strip Element
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(a) Laminated Bectangular Beam

Vymi‘_

b4

~, LAYER No. k

0,C

C — NEUTRAL AXIS 3
0 — SHEAR CENTER

{h) Laminated Circular Beam
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(c) Sign Conversions

Figure 17.—Beam Elements



Figure 18.—Displacements and Forces Due to Buckling Along Sides of the Plate-Strip Element

Figure 19.—-0ffsets and Global Axes for Plate-Strip Element
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Figure 20.—1dealization of an Arbitrary Structure

Figure 21.—7yzi~2! Stiffened Panel
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This substructure is
repeated as required

Figure 22.—Example of Open Structure With Repeated Substructures

__________________ _7
CS I
KxL |
I
| Nx M }
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Collumns CR N M II
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| AN |
I ( |
{ CR NB-2) :
| NxM
I
| c
I PxQ
] L
IC |<—-———
Columns

Total number of blocks = NB

Figure 23,~Stiffness Matrix ““S” for Open Structures With Repeated Substructures
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CS, cs,
o1 cs, cn§”
T 0 1)
(1) " CR%
CR | ——==
1 ! i i
b { CR(Z) |
STEP 1 | |
I e el
STEP 2
(N j=1
\ cnzs CR;
: R, cl 1!
(2) (i)
| 1 | |
] |
e e e e J J
STEP 3 STEP )
(j=4,5 .. NB-3)
N ZNB-a)l
CRZ
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0
| . |
. | FINAL STEP
|

L--- -J

STEP (NB-1)

Figure 24.—Elimination Procedure

NASA-Langley, 1973 —— 32
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