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ELASTIC BUCKLING ANALYSIS FOR C O M P O S I T E  

STIFFENED PANELS AND OTHER 

STRUCTURES SUBJECTED T O  BIAXIAL INPLANE LOADS 

b y  

A. V, V i s w a n a t h a n  and 14. Tamekuni 

The Boeing Commercial A i rp l ane  Company 
Seatt le,  Washington 

1.0 SuLtIMARY 

An e x a c t  l i n e a r  a n a l y s i s  method i s  p r e s e n t e d  f o r  n r c d i c t i n c r  
b u c k l i n g  o f  s t r u c t u r e s  w i t h  a r b i t r a r y  u n i f o r m  c r o s s  s e c t i o n .  
The s t r u c t u r e  i s  i d e a l i z e d  as an assemblage o f  l a m i n a t e d  n l a t e -  
s t r i p  e l e m e n t s ,  c u r v e d  and p l a n a r ,  and beam e l e m e n t s .  E l e m e n t  
edges n o r m a l  t o  t h e  l o n g i t u d i n a l  axes a r e  assumed t o  be  s i m n l y  
s u p p o r t e d ,  A r b i t r a r y  b o u n d a r y  c o n d i t i o n s  may b e  s p e c i f i e d  on 
any e x t e r n a l  l o n g i t u d i n a l  edge o f  p l a t e - s t r i p  e l e m e n t s ,  The 
s t ructure o r  selected elements may be loaded i n  any desired 
c o m b i n a t i o n  of  i n p l a n e  t r a n s v e r s e  c o m p r e s s i o n  o r  t e n s i o n  s i d e  
l o a d  and a x i a l  c o m p r e s s i o n  l o a d .  

The a n a l y s i s  s i m u l t a n e o u s l y  c o n s i d e r s  a l l  p o s s i b l e  modes 
o f  i n s t a b i l i t y  and i s  a p p l i c a b l e  f o r  t h e  b u c k l i n g  o f  l a m i n a t e d  
c o m p o s i t e  s t r u c t u r e s ,  lJumer ica1 r e s u l t s  f r o m  t h e  a s s o c i a t e d  
computer program ".BUCLASP2", Ref , 9, are presented. Predic t ing 
a p r e v i o u s l y  unknown b u c k l i n g  mode shape f o r  a z e e - s t i f f e n e d  
p a n e l  d e m o n s t r a t e s  t h e  q e n e r a l i t y  o f  t h i s  method. The r e s u l t s  
f o r  some c o n c e p t u a l l y - a d v a n c e d  s t r u c t u r a l  n a n e l s ,  Fig. 5 
i l l u s t r a t e  some a p p l i c a t i o n s  o f  t h e  c u r v e d  n l a t e - s t r i n  e l e m e n t s .  
The h i g h e r  b u c k l i n g  l o a d  o r e d i c t e d  f o r  t h e  fo rmed  zee s e c t i o n ,  
u s i n q  t h e  c u r v e d  e l e m e n t  t o  i d e a l i z e  t h e  c o r n e r s ,  i l l u s t r a t e s  
t h e  s i g n i f i c a n c e  o f  i g n o r i n g  t h e  c o r n e r  r a d i u s .  The r e s u l t s  
a l s o  c o n f i r m  t h e  e x p e r i m e n t a l l y  o b s e r v e d  s u p e r i o r i  t v  o f  bonded 
o v e r  r i v e t e d  c o n n e c t i o n s  and show f o r  t h e  examp le  c o n s i d e r e d ,  
t h e  b e n e f i c i a l  e f f e c t s  o f  o f f s e t s  be tween  e l e m e n t s  o r  b u c k l i n g  
s t r e n g t h .  The n u m e r i c a l  r e s u l t s  c o r r e l a t e  w e l l  w i t h  t h e  r e s u l t s  
o f  p r e v i o u s  a n a l y s i s  methods. 
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2.0 SYMBOLS 

length of the s t ruc tu re  

extensional st i f fnesses i, 3 = 1, 2, 6 equation (A.7) 

cross- sect ional  area of beam element 

developed width of p l a t e - s t r i p  element 

s t i f fnesses  (i, j - 1, 2, 6) associated w i t h  coupling 
between bending and extension, equation (A.8) 

diagonal m a t r i x  o f  longi tud ina l  variables , equation (8.24) 

b i a x i a l  st i f fness of p l a t e - s t r i p  elements, equations 
(B.61) and (B.62) 

displacement vector o f  elements 

elements of the diagonal mat r ix  Do, equation (c .3)  

displacement vector of t o t a l  Structure, equations (8.56) 
t o  (B.58) 

diagonal matrfx, equation (C.1) and (C.3) 

bending stiffnesses (is j - 1, 2, 6)  equation (A.9) 

Young's moduli i  of o r tho t rop i c  mater ia l  

force vector of elements 

b i a x i a l  f l e x i b i l i t i e s  of p l a t e - s t r i p  element, equations 
(B.63) and (B.64) 
th 5 Galerkin m u l t i p l i e r ,  equation (E.15) 

shear moduli i of or thot rop i  c mater ia l  

distance t o  the kth lamina from the reference plane 

po la r  moment of i n t e r t f a  of beam element, equation (A.21) 

m m n t s  of i n e r t i a  of beam element 

t o r s i  on cons tan t for  beam e 1 emen t 

diagonal matrices spr ing constants 
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spr ing constants 

coef f i c ien ts  de f in ing  displacements , equations (E.9) 
t o  (E.14) 

t o t a l ,  e l a s t i c  and geometric s t i f fness  matrix, 
respectively, equation (8.56) and (B.57) 

coeff ic ients of cha rac te r i s t i c  equation (8.7) 

coeff ic ients of cha rac te r i s t i c  equation (0.6) 

number of 1 ami nas 

u n i t  lower t r i angu la r  matri  x 

displacement r a t i o  coef f i c ien ts ,  equations (B.9) and (D.8) 

l i n e a r  d i f f e r e n t i a l  operators equation (E.4) 

half-wave number, equation (B.3)  

moment 

torque 

mmen t 

resul tants + equation (A.6) 

on the beam element 

resul tant ,  equation (B.2) 

c i  rcumferenti a1 wave number 

stress resul tants I equation (A.5) 

apbl i ed i npl ane 1 oads 

e f f e c t i v e  stress resu l tan t  i n  y-direct ion,  equation (B.2) 

buckl ing displacement parameters, equations (8.3) and 
(D.1) t o  (0.3) 

ax ia l  load i n  beam element induced by buckling, 
equation (A.32) 

minimum buckl ing load o f  the s t ruc tu re  fo r  a chosen m 
vat ue 
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buckl ing load o f  p la te -s t r i p  elements , when the long i -  
tud ina l  (x)  sides are conpletely restrained, 

current  t r i a l  value of the external  loads i n  the 
i t e r a t i  on process 

upper bound t o  the buckl ing load o f  the s t ruc tu re  

appl ied ax ia l  load i n  beam 

l a t e r a l  shears on the beam element equation (A.29) and 
(A.31) 

or tho t rop ic  mater ia l  constants ( i ,  j = 1, 2, 6), 
equation (A.4) 

e f f e c t i v e  transverse shear p a r a l l e l  t o  z-axis i n  p la te-  
s t r i p  elements, equations (8.2) and (B.25) 

reference plane radius o f  the curved p l a t e - s t r i p  element 

elements o f  c o e f f i c i e n t  matr ix  R, equation (8.5) 

s t i f f n e s s  matrices fo r  p l a t e - s t r i p  elements 

s t i f f n e s s  matr ix  f o r  beam element 

reduced s t i f fness  matrices f o r  p la te -s t r i p  element, 
equations (5.46) and (5.49), respect ively 

st i f fness matr ix  o f  t o t a l  s t ruc tu re  

thickness o f  kth layer  o f  a laminate 

transformation matrices 

e f f e c t i v e  inplane shear i n  p la te -s t r i p  elements, 
equation (B.2) 

displacements a t  the reference plane o f  p l a t e - s t r i p  
element and a t  the shear center o f  beam element 
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change in strain energy 

buckling displacement coefficient for beam element, 
equation (8.50) 

buck1 inq displacement coefficients for plate-s t r ip  
element, equation (8.3) 

change in potential energy of the applied loads 

buckling displacement coefficients, equation (E.7) 

orthogonal coordinates figures (A . l )  and (A.2) 

matrices for plate-strip elements defined in equations 
( ~ . 2 2 )  and (B.29) respectively 

matrices fo r  alate-strip element defined i n  equations 
(B.34) and (8.35) respectively. 

matrix for beam element defined i n  equation (B.51) 

plate-strip element offsets, figure 19 

distances measured parallel t o  the y and t axes, 
respectively, from the shear center of the beam element 
to  i t s  neutral axis 

buckling displacement coefficfents equation (E.7) 

buckling displacement parameters, equations (D.3) and 
(B.50) 

b u c k l i n g  displacement parameters, equations (0.1 ) t o  
(D.4) 

shearing strain 

warping constant of beam element 

normal o trai ns 

angle subtended a t  i t s  center of curvature by the 
plate-strip element, figure 19 
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Subs c r i  p t s  

AD 

b 

BC 

G 

n 

E 

roo t  count numbers, equation (C.2) 

r o t a t i o n  o r  t w i s t  

beam t w i s t  coeff icient, equation (8.50) 

change i n  curvatures 

p ropor t fona l i t y  factor, equation (B.57) 

Poisson's r a t i o  

t o t a l  po ten t i a l  

normal stresses 

shear stress 

transformation angles, equations (B.31) t o  (8.33) 

angle between yG axis and the chord of p l a t e - s t r i p  
element, f i gu re  19 

quan t i t i es  along the side AD of p l a t e - s t r i p  element 

quanti t i e s  re la ted  beam element 

quan t i t i es  along the side BC of p l a t e - s t r i p  element 

quant i t ies  re la ted t o  global axes 

index corresponding t o  cha rac te r i s t i c  roots 

index for  element numbers 

1 ayer i ndex 

index for  number o f  terms 

quanti  t i e s  w i t h  o f f se t  ef fects 

A subscr ipt  preceded by a comma indicates p a r t i a l  d i f fe ren ta t ion  w i th  
respect t o  the subscript.  
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Supers cri p ts 

k 

T 

0 

+ 

1 ayer index 

matrix transpose 

quantities in the reference plane o f  plate-strip element 

quantities along the side y = +- of plate-strip element 

quantities along the side y = - 2 o f  plate-strip element 

b 

b 

7 



3.0 INTRODUCTION 

Continuing e f f o r t s  a t  increasing the strength-to-weight r a t i o  o f  
aerospace and m iss i l e  structures have l e d  t o  novel concepts i n  design and t o  
use of new materials. Keeping i n  pace w i t h  t h i s  trend, a method i s  pre- 
sented here f o r  the buckl ing analysis of structures l i k e  s t i f f e n e d  panels, 
under b i a x i a l  loads. 

un iax ia l  compression i s  given i n  Ref. 1. Therein the panels are idea l fzed  
as an assemblage o f  a ser ies o f  l i nked  f l a t  p l a t e - s t r i p  elements and beam 
elements, of uniform cross section, the i n d i  v i  dual elements extending over 
the f u l l  length o f  the panel. The edges o f  each element normal t o  the 

' l ong i tud ina l  axis are simply supported w i th  no r e s t r i c t i o n  on the ax ia l  
(warping) displacements. The beam elements are used t o  i dea l i ze  l i p s  o r  
beads i n  s t ruc tu ra l  sections, o r  any loca l  reinforcement, i n  the form of 

' a  lumped area o f  mater ia l ,  
assumption o f  the buckl ing mode, except t h a t  the half-wavelength o f  buckl ing 
i s  the'same i n  a l l  the elements o f  the s t i f f e n e d  panel. The analysis y ie lds  
the lowest buckl ing load and the corresponding mode shape i r respec t i ve  of 
the type o f  buckling. 
i l l u s t r a t e d  by the resu l t s  presented i n  Refs. 1 and 2. 

A u n i f i e d  l i n e a r  buckl ing analysis for  f l a t  s t i f f e n e d  panels cinder 

The u n i f i e d  buckl ing analysis makes no a p r i o r i  

?he accuracy and the genera l i t y  o f  the method are 

I n  aerospace structures,  panels w i t h  curved parts, Ref. 3, are often 
used. Figure 1 shows some t yp i ca l  examples. Though the curved parts 
can i n  the l i m i t  be idea l i zed  as a series o f  f l a t  p la te -s t r i ps ,  computa- 
t i o n a l l y  i t  i s  not economical t o  do so. 
curved p l a t e - s t r i p  elements as i n  the present analysis. These c i r c u l a r  
c y l i n d r i c a l  s t r i p  elements have constant curvature w i th  zero Gaussian 
curvature. A va r ie t y  o f  1 inear theory equations invo lv ing  various degrees 
of approximations and r e s u l t i n g  l i m i t a t i o n s  are avai lable i n  the literature, e.g. 
Refs. 4 and 5, f o r  t h i n  c y l i n d r i c a l  shel ls.  Since the present analysis which 
covers a l l  modes of buckl ing does not r e s t r i c t  the range o f  radius-to-length 
r a t i o  of the curved p l a t e - s t r i p  elements, the proper choice o f  the equations 
becomes s i g n i f i c a n t .  
the curved p l a t e - s t r i p  elements, derived from these equations, must be 
symnetric. Thus, t o  s u i t  the requirements o f  the present buckl ing analysis, 
the necessary equations and the consistent boundary condi t ions are develooed 
using var ia t ional  methods. These equations are based on the geometry of 
s h e l l  deformations given i n  Ref. 6. The inplane external loading i s  uniform 
and b i a x i a l .  
element, i n  the l i m i t i n g  case o f  zero curvature 

I t  i s  b e t t e r  t o  i dea l i ze  them using 

Further, as discussed l a t e r ,  the st i f fness mat r ix  of 

The equations degenerate t o  those o f  the f l a t  p l a t e - s t r i p  

The curved and f l a t  p l a t e - s t r i p  elements are i n  general laminated. For 
each lamina, the s t ress -s t ra in  equations used i n  the analysis assume ortho- 

f i b e r  reinforced composites when the f i b e r  d i rect ions i n  each lamina are 
' tropy w i th  respect t o  the axes o f  the s t i f f e n e d  p la te.  This i s  exact for  

8 



e i t h e r  along the p l a t e  axis o r  orthogonal t o  it. This assumption of ortho- 
tropy i s  a good approximation f o r  balanced composites w i t h  many p l i e s .  For 
such p rac t i ca l  structures , t h i s  assumption reduces the analysis complexity 
considerably and i s  not considered t o  be unduly r e s t r i c t i v e .  

The external loading on them i s  uniform and ax ia l .  The physical propert ies 
of laminated beams are calculated i n  an approximate manner. 

e l a s t i c  res t ra in t s  along any external longi tud ina l  side (i .e. , not connected 
t o  other elements) o f  the f l a t  o r  curved p l a t e - s t r i p  elements. 

Elementary theory o f  bending and tors ion i s  used f o r  the beam elements. 

The analysis considers o f f se ts  between elements and effects of a r b i t r a r y  

I n  Ref. 1, the buckl ing c r i t e r i a  i s  derived i n  determinantal form by 
enforcing separately the compa t ib i l i t y  o f  buckl ing displacements and the 
equi l i b r i u m  of the corresponding forces along the i nter-element junc t ion  
l ines,  expressed i n  t e r m  of the displacement amplitude coef f ic ients .  The 
resu l t i ng  buckl ing determinant i s  unsymmetric and the method of r e p e t i t i v e  
determinant evaluation, incrementing the load I n  steps, i s  the only recourse 
t o  obtain the buckl ing load. Unless the load i s  incremented i n  s u f f i c i e n t l y  
small steps, one i s  apt t o  miss  the lowest buckl ing load, and the method 
w i l l  unknowingly y i e l d  the buckl ing load corresponding t o  a higher mode. 
Thus, the major drawbacks o f  the method are the d i f f i c u l t y  i n  defining the 
magnitude o f  the load step f o r  a p a r t i c u l a r  problem, and the considerable 
increase i n  computation t i m e  associated w i t h  the reduction i n  step s i ze .  
These are overcome i n  the present analysis by reformulating the buckl ing 
c r i t e r i a  o f  Ref. 1. For each element making UD the s t i f fened panel, a 
symnetric s t i f f n e s s  m a t r i x  i s  derived r e l a t i n g  the forces t a  the corresponding 
displacements along i t s  inter-element junc t ion  l ines.  The symnetric ove ra l l  
st i f fness m a t r i x  o f  the s t i f f e n e d  panel, which i s  obtained by su i tab l y  
merging the ind iv idual  element s t i f f n e s s  matrices, corresponds t o  the un- 
symnetric "buckl ing determinant" o f  Ref. 1, and i s  considerably smaller i n  
s ize .  The symmetry, enables the use of the algori thm described i n  Ref. 7, 
t o  i s o l a t e  w i t h  ce r ta in t y  and i n  r e l a t i v e l y  fewer load i t e ra t i ons ,  the 
lowest buckl ing load. A primary requirement o f  t h i s  algori thm i s  an upper 
bound f o r  the panel buckl ing load, resu l t i ng  from completely res t ra in ing  
a l l  the inter-element junc t ion  l ines .  Such a bounding value i s  obtained 
here, by applying the Galerkin method, Ref. 3, for  each s t r i p  element. 

I 

The elements o f  the s t i f fness matr ix are transcendental functions of 
the external loadings and the half-wave length o f  buckling. 
assumed half-wave length (or integer number o f  lonqi tud ina l  half-waves i n  
the s t i f f e n e d  panel), the lowest  leve l  o f  appl ied loads a t  which the 
determinant o f  the ove ra l l  st i f fness matr ix vanishes i s  the buckl ing load. 
The lowest o f  these loads i s  then the c r i t i c a l  load fo r  the panel. The 
buckl ing mode shape i s  obtained from the eigenvector so lu t i on  of the 
s t i f fness matr ix a t  the c r i t i c a l  load. Detai led discussions on the use- 
fulness o f  the buckl ing mode shape p lo ts ,  i n  achieving e f f i c i e n t  design o f  
s t i f f ened  plates i s  discussed and i l l u s t r a t e d  i n  Refs. 1 and 2. 

For each 
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The buckl ing analysis i s  appl icable t o  any s t ruc tu re  of uniform cross 
sect ion which can be i dea l i zed  as an assemblage o f  the d i f f e ren t  types of 
elements described e a r l i e r .  The in te rsec t i ng  angle between elements i s  
a rb i t ra ry .  
verse load i n  the plane of selected p l a t e - s t r i p  elements and a x i a l  load. 
The s t i f fened panel, f l a t  and curved, under b i a x i a l  inplane loading i s  a 
p a r t i c u l a r  case o f  such structure.  I n  these panels, i t  i s  reasonable t o  
assume t h a t  the s ide load normal t o  the axis o f  the s t i f f e n e r s  i s  ca r r i ed  
e n t i r e l y  by the p l a t e - s t r i p  elements covering the skin. 

The s t ruc tu re  may be loaded i n  any desired combination of trans- 

The basic assumptions governing the analysis are: 

(a) The mater ia l  i s  l i n e a r l y  e las t i c .  

(b) Each lamina i s  orthotropic.  

(c)  The Kirchhoff- love hypothesis i s  used f o r  the deformation across 
the thickness. 

( d )  Effects  o f  pre-buckling deformations are  ignored. Thus, a t  
buckl ing each p l a t e - s t r i p  element, whether f l a t  or curved, i s  i n  
general, i n  a s ta te  o f  uniform b i a x i a l  iriplane loading. Each 
beam element i s  under uniform a x i a l  load. 

(e) The edges of each element along x = 0 and x = a, Figures 16 and 17, 
are simply supported i n  the c lass ica l  sense. 

analysis i s  written f o r  the CDC 6600 computer. 
The computer program "BUCLASPZ", Ref. 9, based on the present 
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4.0  RESULTS 

The de ta i l s  of the buckling analysis a re  g i v e n  i n  the Appendices. 
The analysis is general and has the capabi l i ty  t o  analyze laminated 
composite s t ructures .  For these s t ructures  , lack of other pub1 ished data 
makes i t  very d i f f i c u l t  t o  cor re la te  in de ta i l  the numerical resul ts .  
T h u s ,  the r e su l t s  presented below while verifying the analysis ,  do not 
r e l f ec t  i t s  fu l l  capabi l i t i es .  

resul ts  quoted i n  Refs. I and  2,  and  ( b )  fu r ther  resu l t s .  
The resu l t s  are  categorized into ( a )  "pr ior  resu l t s" ,  referr ing to  the 

A 1  1 resul ts  were obtained using the associated computer program 
"BUCLASPZ" Ref. 9. 

4 .1  Prior Results 

Refs. 1 and 2 g i v e  the buckling resu l t s  for  a variety of s t ructures  
assembled from f l a t  p l a t e - s t r ip  elements and beam elements only, 
puter program "BUCLASPZ" yielded identical  r e su l t s ,  thus confirming the 
very good correlat ions obtained e a r l i e r  for  s t ructures  o f  t h i s  type. 
Interested readers a re  referred t o  the above references. 

The com- 

4.2 Further Results 

The resul ts  o i  ven below are mainly f o r  s t ructures  incorporating c i r cu la r  
arc  components idealized as curved p la te -s t r ip  elements. 

( i )  
the reasons discussed therein,  the basic equations for  the curved p l a t e - s t r ip  
element are derived from the variational pr inciples ,  Figure 2 shows the 
resul ts  from Donne1 1 's  equations superposed on the curves of Figure 11.4 
of Ref. 10. The wel l -known deficiency o f  Oonnell's equations f o r  small 
circumferential wave numbers i s  apparent. The results from the present 
analysis shown as discre te  points on the curves, show t h a t  the equations of 
Appendix A yield the desired Euler mode resu l t s  for long cylinders and 
local buckling resu l t s  f o r  short  cylinders. The cylinders are idealized 
in the present analysis as an assemblage of a t  l ea s t  two curved plate- 
strip elements, each covering one half of the cylinder (180 degrees). 

overwound w i t h  boron-epoxy layers a re  shown i n  Figure 3. The cylinders 
are a l l  identical  except fo r  the difference i n  wrap angle o f  the boron 
f i l a m n t s .  The data is taken from Ref. 11, wherein the buckling o f  these 
cylinders under axial compression is studied. 
modulus E l l  i s  in the direction of the cylinder axis and E22 i n  the perpen- 
di cular direction. 

b o t r o p i c  and  f i b e r  reinforced cylindrical  shells,--In Appendix A, for  

The geometry and the material properties of a s e r i e s  of aluminum cylinders 

For the boron-epoxy layers the 
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Figure 3 also shows the results from Ref. 11 based on Donnell's 
theory and the results from the present analvsis. 
sets of results are quoted. The f i r s t  set is  the result of suppressing the 
underlined term i n  equations ( A . 1 )  and (A.13) t o  (A.22). T h i s ,  i n  effect, 
reduces these equations to  those of Donnell's theory. The second set is  
the result of retaining all the terms i n  the above equations. The cir-  
cumferential wave number from the present analysis corresponding t o  each 
buckl ing load i s  determined from the mode shape p l o t .  
sets of results are almost identical t o  those from Ref. 11. The second set  
of results from the "complete" analysis of the present method are generally 
lower, the difference being 3 t o  4% f o r  the higher fiber angles. 
t h a t  for the fiber angle of 90" the latter result has the minimum b u c k l i n g  
load a t  m = 1 compared t o  m = 2 for Donnell's theory. Though not quoted 
here, the results from the present "complete" analysis correlated excellently 

Ref. 10 

For the la t ter ,  two 

The f i r s t  of these 

I t  i s  noticed 

' with the results obtained from Timoshenko's cylindrical shell equations, 

' ( i i )  Advanced structural Wnels - --Figure 4 shows some of  the panels 
currently beinq developed under NASA Contract NAS1-10749. "Desisn and Testinq 
of Advanced Structural'Panels."l 
5 and the whole of panel 6 ,  w i t h  the indicated boundary conditions, were 
analyzed, I n  Figure 5 the results of the present analysis are resented 

Also 
m 

shown are the b u c k l i n g  mode shapes for selected half-wave lengths. Results 
fo r  panels 1 t o  5 obtained using the computer program "BOSOR3", Ref. 12, based 
on the analysis of Ref. 13, are also shown for comparison. 

An isolated portion of each O F  panels 1 to- 

as the p l o t  of b u c k l i n g  load  versus half-wavelength of b u c k l i n g  (-). c 

( i i i )  Laminated curved plates-under b i a x i a l  -Î - loads.--A two-layered plate, 
shown in Figure 6 ,  with a l l  edFes s imply  supported i s  chosen t o  verify the 

results of the present analysis for b i a x i a l l y  loaded plates. 
boundary conditions enable a closed form so lu t ion  to  be obtained by applying 
the displacement functions used inRef. 10 for "ax ia l  compression o f  curved 
sheet panels." The results from such a solution is given i n  Figure 7,  i n  
the form of an interaction curve. The results o f  the present analysis are 
superposed on this curve. The above correlation procedure i s  adopted i n  the 

The above 

1 Work performed by The Boeing Company, Aerospace Group, P .  0. Box 3999, 
Seattle, Washington 981 2 4 ,  
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absence of published results for  such biaxially loaded plates. The present 
analysis can be readily used t o  generate interaction curves similar to  
Figure 7 ,  n o t  only f o r  plates w i t h  a r b i t r a r y  conditions along sides AB 
and BC, b u t  also for structures like stiffened panels. 

( i v )  Curved stiffened panel under biaxial loads .--The a rb i  t rar i  ly chosen 
panel shown in Figure 8 is  idealized using the curved plate-strip elements 
for  the skin, f l a t  plate-strip elements for the integral stiffeners and 
beam elements for  the local  reinforcement on the skin between stiffeners. 
Keeping the transverse inplane load  Nz2 constant for this example, the 
buckling analysis yields the critical value of the axial load and the corres- 
ponding strain. The results together w i t h  the b u c k l i n g  mode shape are 
shown i n  Figure 9. 
of biaxially loaded panels can be readily derived. 

( v )  
The r p s n s m p r e s e n t  buykl  i n g  analysis reveals an interesting and 
hitherto unknown mode shape. 
wavelength across the panel w i d t h ,  i n v o l v i n g  multi-stiffeners. Classical 
bucklinq analyses run the risk o f  missing such modes because of their 
simplified assumptions regarding mode shapes. 

- 

Frm such d a t a ,  interaction curves for b u c k l i n g  

Panel w i t h  zee stiffeners, --Figure 10 shows a panel with zee stiffeners., 

The buckling mode has a characteristic h a l f -  



5.9 DISCUSSION 

Some observations of par t icu lar  i n t e re s t  result ing from the preliminary 
numerical study of the buckling analysis are discussed here. These also 
serve to  bring out some of the features of the analysis.  

5.1 Buckling of Fornicd Sections 

Section 4 i l l u s t r a t e s  the general applications of the curved p la te -s t r ip  
elements. 
s tr ip elements to  ideal ize  the corners of formed s t ruc tura l  sections.  Figure 

Also shown are two d i f fe ren t  ways 
of idealizing this s t ruc ture .  The f i r s t  idealization uses f l a t  p la te -s t r ip  
elements only i n  the manner o f  Ref. 14. Each element extends to  the in te r -  
section o f  the f l a t  parts o f  the zee section. The second idealization uses 
the curved o la te -s t r ip  elements fo r  the corners, in tu i t ive ly  a be t t e r  repre- 
sentation of the formed zee section. 

The present example considers the e f f e c t  of using curved plate-  

11  shows a formed t i t a n i u m  tee  sect ion.  

The resu l t s  of the local buckling study under u n i a x i a l  compressive loads 
a re  shown i n  Figure 12. 
elements to  model the corners, yields a 19% increase i n  m i n i m u m  bucklinq 
s t r e s s .  T h i s  resul ts  from the higher s t i f f n e s s  o f  the curved corners i n  
comparison to the f i r s t  ideal izat ion u s i n g  only f l a t  a l a t e - s t r iP  elements. 
I n  either ideal izat ions the m i n i m u m  buckling s t r e s s  occurs a t  the same m 
value of three and the buckling mode shapes are seen to he s imilar .  

I t  i s  seen tha t  the use o f  curved p l a t e - s t r ip  

5.2 Effects of  Offsets 

The analysis developed considers the e f f ec t  o f  offse ts  between 
elements. Such e f f ec t s ,  t h o u g h  sorietinies not included, Ref. 14, can 
be s ign i f icant  as seen from the example given here. 
hat-s t i f fened titanium panel locally reinforced w i t h  boron f i b e r  comnosi te .  
The ideal izat ion of the panel i s  shown by the l ine  through the mid-plane 
of each p l a t e - s t r ip  element and c lear ly  defines the of fse t s  where present. 
Results of the buckling analysis,  t a k i n g  i n t o  account the of fse t s  and  a lso 
ignoring them, are given i n  the same figure.  
par t icu lar  example the o f f se t s  increase the buckling load by approximately 
15%. The mode shape, though not given here, corresoonded t o  long panel Euler 
buckling. 
e f fec t ive  moment of i ne r t i a  of the panel when o f fse t s  are  considered. 

Figure 13 shows a 

They show t h a t  f o r  t h i s  

T h u s ,  the observed increase i n  buckling load results from higher 
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5 - 3  Don& G and Ri veted Connections 

I n  s t ructures  such as s t i f fened  ~nfiels,  reported tests, Ref. 15, have 
indicated marked influence o f  s t i f f e n e r  a t tachlent  method on the buckling 
load. 
bonded and riveted connections by the v~idel l ing technique given in Ref. 2. 

I n  the ~reseott artalysis, i t  i s  possible to differentiate between 

a re 
The 

increase 
modelling 
i n  a cont 
model 1 i n g  
model 1 ing  
s t i f f e n e r  
addi tiona 

Figure 14 shows cl aee s t i f fened  panel. 'The bonded and riveted modelling 
shown by l ines  drawn t l . m u g h  the mid-plane of  each p la te -s t r ip  element. 
r i ve t  is assunaed t o  be a t  the midpoint of  tf;e :jtt.ached flange. The 

analytical  ~ e s u l t s  ahown indicate t h a t  fo r  th i s  aua.mwle the bonding increases 
the buckling load by 2 2 . 5 ' .  Test results of  Ref, 15 show the observed 

n bucklincg I O A ~  ea he 17f cor zee stiffened panels. The r iveted 
i s  only an d : ~ p ~ , ~ " a t i ~ t i  t a  the d i s c w t e  r ive ts  since i t  resu l t s  
IIUOUS,  r i g i d  c w i v c t i o n  along the P i v e t  l ine .  A somewhat s imilar  
has been successfu1:y ~ e ~ ~ ~ ~ ~ ~ ~ t ~ ~  i n  Ref, 16. The riveted 
used here does n o t  restrain the displacements o f  the heel of the 
re la t ive  t o  the s h i n .  
node i n  the s k i n  inter-cmnected t o  the node a t  the heel of the 

A better m d e i l i n g  m i g h t  be to  introduce an 

s t i f f ene r .  

The phenomenon o E  coir ic i I lmt  rootc and i?..s 5 iqnificance are  discussed 
i n  Appendix C .  This phcrr:ml'j.ltir? occurs i n  the exarnple of  the long ,  square 
t u b e  and  t h e  thio-walled c y !  i l l t l t 7 i *  shown i n  Figure 15. The i n i t i a l  idea l i -  
zations used fo r  these examples are a l s o  shown, 

As stated i n  Appendix C, dt buckling rl I O  equation (C.2) 
changes from zero to one. However, in s p i t e  o f  pursuing the load i t e r a t ion  
t o  the s ingle  precision accuracy of the CCC 6660 computer, i t  was possible 
t o  i so la te  on ly  a zero t o  two change i n  the t i  value. The resu l t s  show 
t h a t  the corresponding buckling loa2  i s  'n goad ag remen t  w i t h  the classical  
solutions.  The zero t o  two change i n  r? value  i s  explained by the f a c t  t h a t  
these s t ructures  have s r tbagonal  Gluckl irig modes w i t h  coincident buck1 ing 
loads as shown i n  Fiqt i r~  75.d, Yormlly,  i t  will  not be necessary t o  pursue 
this  phenomenon fu ther ,  If f o r  smt? reason i t  i s  essent ia l  to  study the 
orthogonal modes, th i s  c w  be e a s i l y  done by the modelling procedure dis-  
cussed below. This av5105 recour6e to  special numerical techniques available 
for such cases, Refs. 17  snc! 18. 

The method aims a 2  separating the caincident buckling loads within 
engineering accuracy by introducing a very small "error" i n  the modelling, 
as shown fo r  the g q u a r c  tube. The resul ts  irldicate t h a t  this minute "kink" 
i n  the geometry i s  of no engineering ssgnificance. However, i t  avoids 
the coincident buckling loads by making them d i s t inc t  as seen from the change 
i n  I) value. I t  i s  possible that  a " k i n k "  smaller than t h a t  shown would 
have sufficed. This canclusion i s  drawn from the procedure followed fo r  the 



th in wal led cyl inder.  
data de f in ing  the ext remi t ies of each element were calculated using the 
standard four- f igure trigoRometrica1 table.  The l i m i t e d  accuracy of t h i s  i s  
s u f f i c i e n t  t o  introduce "kinks" a t  the nodes, thereby enabling the coincident 
buckl i ng  loads t o  be separated. The correspondi vg buckl i n g  modes are readi l y  
obtained. 

I n  t h i s  case for  the "second" i dea l i za t i on  the nodal 
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6 .0  CONCLUDING REMARKS 

An exact e l a s t i c  buckl ing analysis w i t h i n  the l i m i t a t i o n s  o f  the l i n e a r  
theory, appl icable t o  any s t ruc tu re  of a r b i t r a r y  uniform cross section, has 
been presented. The s t ruc tu re  i s  idea l i zed  as an assemblage o f  laminated 
curved p l a t e - s t r i p  elements, laminated f l a t  D l a t e - s t r i p  elements and beam 
elements, each element extending the e n t i r e  length o f  the s t ructure.  The 
i d e a l i z a t i c n  permits d i f f e ren t i a t i ng  between bonded and r i v e t e d  connections. 
The analysis considers the e f f e c t  o f  o f f s e t s  between elements. The s t ruc tu re  
may be loaded i n  any desired combination o f  transverse side load ( i n  the 
plane of selected p l a t e - s t r i p  r*’iementn) and a x i a l  load. Stiffened panels, 
f l a t  and curved, under b i a x i a l  ioplane l o a d i n g  are t yp i ca l  o f  such structures.  

The theory i s  general d n d  no assumption i s  made regarding the buckl ing 8 

mode, The s t ruc tu re  i s  free t o  take the buckled shape corresponding t o  
minimum energy condi t ions consistent lrri t h  prescribed constraints along any 
external  s ide of p la te -s t r iD  c l e m n t s ,  The eigenvector so lu t ion  i s  used t o  
determine the buckled mode rhaoe .  
s ider ing a l l  buck l ing modes, coupled w i t h  the a b i l i t y  t o  p r e d i c t  
buckl ing o f  laminated composi te  structures 
i n  the state-of- the-art  of buckl ing analysis. 

The c a p a b i l i t y  o f  simultaneously con- 

represents a s i g n i f i c a n t  advance 

Numerical r e r u l  t s  correlated well w i t h  the rr?sultr o f  previous analysis 
methods f o r  those cases where t h e  l d t t e r  are apol i tdb le.  
and previously unknown buckl ing node s h a p e  f o r  zee ; t i f fened panels has been 
presented. This r e s u l t  is  an i n d i c a t i m  o f  the above mentioned genera l i ty  
of the theory. 

An i n t e r e s t i n g  

The buckle mode shape p l o t  resu t t inq  From the ci>;?nvector so lut ion,  i s  
a valuable too l  t o  design e f f i c i e n t  buckl ing cr iz ic i i l  structures.  Corre la t ion 
f o r  b i a x i a l l y  loaded s t i f f e n e d  pdne ls ,  including panets using laminated 
composites, i s  desirable. 
structures.  

There i s  J dearti; c t  prrblished t e s t  data f o r  such 



APPEtlDIX A 
BASIC EQUATIONS 

This appendix summarizes the basic equations used l a t e r  i n  Appendix 13 
fo r  the buck l ing analysis. Sorne o f  these equations, though read i l y  ava i lab le  
i n  the l i t e r a t u r e ,  are repeated here f o r  easy reference. 
analysis of Appendix f3 covers a l l  possible modes o f  buckling, p a r t i c u l a r  
care i s  exercised i n  the choice o f  these equations. T h i s  i s  p a r t i c u l a r l y  t rue  i n  

regard t o  the laminated curved p l a t e  equations, The widely used Donnell-type 
approximations have known l im i ta t i ons ,  Refs. 4 and 5. For example, these 
equations do not y i e l d  the Euler loads for  long cyl inders.  
be seen l a t e r ,  the present l i n e a r  buck l ing analysis i s  based on the s t i f fness 
inatr ix formulation, derived from the bas ic  equations. The necessary sym- 
metry condi t ion o f  these matrices i s  dependent on the terms reta ined in 
the equations, as discussed i n  Ref. 19. For these reasons, the equations f o r  
the laminated curved p la te  are derived below from va r ia t i ona l  p r i nc ip les .  

Since the buck l ing 

Further, as w i l l  

The equatians developed here a r e  for  the larnirlated curved p l a t e .  They 
degenerate t o  those o f  the laminated f l a t  p l a t e  when  the  curvature becomes 
zero ( i n f i n i t e  radius).  

Figure 16 shows the geometry and s ign  conventions fo r  the curved 
laminate. The x ,  ?/ and L a m i  are assumed r lnincident w i t h  the f i b e r  axes 
1, 2 and 3. 
The s t ra ins  and curvature changes i n  t h i s  plane, i n  terms of  i t s  displacements 
u, v and w are, Ref, 6: 

The mid-plane of the laminate i s  chmen as the reference plane. 

0 

0 W 
y - K  E: = v, 

Y ( 4 . 1 )  
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The radius R i s  measured from the reference plane t o  the center o f  
curvature and i s  p o s i t i v e  when i n  the p o s i t i v e  d i r e c t i o n  o f  the z-axis, 
as i n  Figure 16. Equation (A.1)  reduces t o  the Donnell- type assumptions 

when the underl ined terms are dropped. 

by the Kirchhoff-Love hypothesis: 
The s t ra ins  i n  any plane a t  distance z from the reference plane are 

The s t ress-s t ra in  equations f o r  an or tho t rop ic  lamina are, Ref. 20: 

where the 

k 

k 
Q12 

Q22 

0 

superscript k i d e n t i f i e s  the lamina number and 

(A.3) 



Combining equations (A . l )  t o  (A.3) 
o f  the laminate, the stress resu l tan ts  
the reference plane are: 

Al 2 

*22 

0 

2 

822 

0 

and in teg ra t i ng  over the thickness 
N and the moment resul tants  M i n  

B1 2 

B22 

0 

Dl 2 

O22 

0 

(A.5) 

The A, 5 and D c o e f f i c i e n t  matrices define the ove ra l l  extensional, 
coupling and bending r t i f fnesses ,  respect ively,  of  the laminate, i n  r e l a t i o n  
t o  the chosen reference pfane (here, the mid-plane). 
matrices are, Ref, 20: 

The elements o f  these 

k I 

Aij = k=l c oij tk M.7) 

where hk and hk+l are the distances t o  the upper and lower surfaces, 
respect ively,  o f  the k t h  lamina. When the or tho t rop ic  axes of any lamina 
d i f fe rs  from the laminate axes, appropriate transformed values of Qijk are 
t o  be used i n  equations (A.7) t o  (A.9). The de ta i l s  are given i n  R e f .  20. 
This causes the A, B, and 0 matrices i n  equations (A.5) and (A.6) t o  be 
f u l l y  populated, by the presence of subscr ip t  '16' and '26 '  elements. I n  
p rac t i ca l  s t ructures these elements are o f  r e l a t i v e l y  small magnitude and 
may be ignored. This s imp l i f i ca t i on ,  whi le  considerably reducing the com- 
p l e x i t y  o f  the analysis, i s  n o t  thought t o  be unduly r e s t r i c t i v e .  

. 

. 



The t o t a l  change i n  potent ia l ,  TI, o f  the laminated p l a t e  i s :  

TI= us + we (A. 10) 

where, the change i n  s t r a i n  energy i s  
a b  0 0 E" +N E +N Y +M ;+M Ko+M K ')dxdy ( A . 1 1 )  1 

"s = 2 {pll x 22 y 12 Xy 11 x 22 y 12 xy 

and the  change i n  the po ten t i a l  energy o f  the b i a x i a l  loads Kll and Kz2 
causing buckl ing i s  

(A. 1 2 )  

The above expression f o r  We r e f l e c t s  the p o s s i b i l i t y  o f  s i g n i f i c a n t  

inplane buckl ing displacements i n  any o f  the s t r i p  elements making up the 
panel. Though the e f f e c t  o f  the terms/JKll u,: dx dy and J J  fl,, u , ~  dx d y  

are neg l ig ib le ,  they are retained, as observed i n  Ref. 19, t o  e n s u r e  t h e  
symnetry o f  the s t i f f n e s s  matr ix f o r  the laminated o la te -s t r l ps ,  derived 
i n  A p p e n d i x  B. 

are derived here using va r ia t i ona l  p r inc ip les ,  i n  a manner s i m i l a r  t o  t h a t  
i n  Refs. 21 and 22. Ef fects  o f  the pre-buckling deformations are ignored. 
I he resu l t i ng  equations are: 

2 

The " s t a b i l i t y  equations" o f  the b i a x i a l l y  loaded laminated p l a t e - s t r i p  

2 - I  v ) = O  - N22 (vpyy - R W '  y 
- 

( A . 1 3 )  

(A.14) 
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- 
Mll ,xx + "22,yy +. 2M12,xy + if N22 - w9xx 

(A.15) 

The var ia t iona l  procedure also y ie lds  consistent boundary condit ions. 
These are, along any s ide o f  the p l a t e - s t r i p  y = constant: 

V - - 554 (K + WWy) = 0 w = 0 o r  MZ2 S Y  +. 2M12,x 
I_ 

V (w,, + K) = 0 o r  M22 = 0 - 
W - 

v = 0 o r  N2? - N2* (v,- -) = 0 

u = 0 o r  N12 - Kzz  by = 0 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

and along any edge x = constant: 

w , ~  = 0 o r  Mll = 0 (A.21) 

v = 0 o r  N12 - K,, v,x = 0 (A.22) 

u = 0 o r  Nll - w,, uBx  = 0 (A.23) 

Equations (A.13) t o  (A.23) reduce t o  Donnell-type equations fo r  t h i n  
c y l i n d r i c a l  shel ls ,  on dropping the underl ined terms. 

A.2 Laminated Beams 

Concentrated loca l  reinforcements, l i k e  beads o r  l i p s  i n  s t i f feners ,  
corner f i  1 l e t s  i n  extruded sections, any beam type boron reinforcements, 
etc,, are idea l i zed  i n  the buckl ing analysis as beam elements. I n  a l l  
cases, the basic quant i t ies  involved are the gross beam propert ies o f  the 
element. Approximate equations t o  evaluate these propert ies,  for the more 
common beam types, namely, the laminated rectangular and the laminated 

Figure 17 shows the geometry and 
s ign conventions. C i s  the po in t  o f  in te rsec t ion  o f  the neutra l  axis and 
the beam cross section. Thus, f o r  a uniform ax ia l  s t r a i n  the corresponding 
resu l tan t  load passes through C .  0 i s  the shear center. A complex 
analysis, beyond the scope of the present panel buckl ing analysis, i s  

* c i r c u l a r  beam elements, are given here. 
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necessary t o  locate the shear center o f  the laminated rectangular beam. 
Considering the envisaged appl icat ions o f  the beam type elements i n  panels, 
n e g l i g i b l e  e r r o r  w i l l  r e s u l t  i n  assuming t h a t  the shear center 0 of the 
laminated rectangular beam coincides w i t h  the geometric center. This i s ,  
however, exact f o r  the laminated c i r c u l a r  beam. Any beam element i s  idea l i zed  
as a l i n e  i n  the longi tud ina l  (x )  d i rec t i on  through i t s  shear center 0. 

The basic mater ia l  propert ies involved are the i nd i v idua l  lamina con- 

and 623 k for  the kth lamina. The gross beam propert ies k stants, Ell 

El1Iyy, EllIzz, and EllAb are calculated from 

Fk 
I 

= (A.24) 

k and Izz k 
YY 

where F denotes iyy, I,, o r  Ab. The moments o f  i n e r t i a  I 
of the kth lamina, a r e  about the beam p r i n c i p a l  axes. 

I k k  
k=l  P 

Also, 0 I = i (A.25) 

k Where 5 i s  the compressive stress i n  the kth lamina due t o  the external 
ax ia l  load Fb, the ax ia l  s t r a i n  being the same i n  a l l  laminas. The po la r  
moment of i n e r t i a  I i s  about the shear center, 0. 

P 

The overa l l  tors ional  property 6235 of the laminated c i r c u l a r  beam element 
i s  

Jk 
I 

‘23’ = k = l  ‘23 (A.26) 

This equation i s  no t  su i tab le  f o r  the laminated rectangular beam element, 
since, each lamina deforms w i t h  a d i f f e r e n t  e c c e n t r i c i t y  t o  the shear 
center of the ove ra l l  beam section. 
the fol lowing gpproximate equation i s  used; 

I n  the absence of an exact expression, 

‘23 k A k  b 

‘23’ =t;’ k ) ’0 
Ab k=1 

(A.27) 
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Simi lar ly ,  

(A. 28) 

Jo and r0 are  the S t .  Venant to rs ion  constant and the warping constant, 
respect ively,  based on the overa l l  sect ion geometry of the laminated 
rectangular beam. 

Eauations f o r  the various physical propert ies involved i n  equations 

Ufing the theory o f  to rs ion  and f lexure,  Ref. 10, the equations for 

(A.24) t o  (A.28), are t o  be found i n  Refs. 23, 24 and 25. 

the beam element under ax ia l  compressive load pb are: 

d4w d w  2 d28 
qz 'yy z + ' b  2 dx +'bYm 2 

2 d w  
dx = 2 23 z dx2 

4 2 
dN5( r d e + ( q , - ~  J ) ~ ~ + F ~ ~ , . , , -  

d2v - 'b 'm 2 

d2u dP 
dx b dx2 A -  - =  - 

(A. 29) 

(A. 30) 

(A.31) 

(A.32) 

y and z, are the distances measured pa ra l l e l  t o  the p r inc ipa l  axes y and 
t ,  respect ively,  from the shear center 0 t o  the neutra l  axis C o f  the 
beam element. 
the axis. The displacements u s  v and w and the t w i s t  8 are pos i t i ve  i n  the 
d i rect ions shown i n  figure 17. 

m 

The distances are pos i t i ve  i n  the pos i t i ve  d i rect ions o f  
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APPENDIX 6 

BUCKLING ANALYSIS 

an 
The equations derived i n  Appendix A are now used i n  developing a buckl i n g  

l y s i s  appl icable t o  any s t ructure o f  uniform cross sect ion which c n be 
read i l y  assembled from the element types discussed ea r l i e r .  The i n t e r -  
sect ing angle between elements i s  arb i  trary. Simply supported condit ions 
w i th  no r e s t r i c t i o n  on the ax ia l  (warping) displacements u s  are assumed 
along the edges x = 0 and x = a o f  each element, ( f igures  16 and 1 7 ) ,  
so t h a t  the variables i n  the equations can be separated. It i s  possible t o  
speci fy a r b i t r a r y  e l a s t i c  r e s t r a i n t  condit ions along any external  longi -  
tud ina l  s ide ( y = constant) o f  f l a t  o r  curved p l a t e - s t r i p  elements, 

Effects o f  pre-buckling deformations and any i n i t i a l  imperfections are 
ignored. Thus, a t  buckl ing each p l a t e - s t r i p  element, whether f l a t  o r  curved, 
i s  i n  a s ta te  o f  uniform b i a x i a l  loading o f  Kll and wzz. The beam elements 
are i n  a s ta te  o f  uniform compression corresponding t o  Pb. These element 
loadings determined from considerations o f  s t r a i n  compat ib i l i t y  between 
elements i n  general, vary from element t o  element. Typical appl icat ion 
of the b i a x i a l  loading case i s  t o  s t i f f ened  panels. 
the analysis assumes tha t  the inplane loading normal t o  the s t i f fener  axis 
i s  car r ied  e n t i r e l y  by the p l a t e - s t r i p  elements corresponding t o  the skin. 

The s t ructure i s  assumed t o  buckle i n t o  in teger  number of half-waves 
i n  the longi tud ina l  
Latera l ly ,  the s t ructure i s  f ree  t o  take the buckled shape corresponding t o  
minimum energy condit ions consistent w i th  the constraints along any external  
side. 
any p la te  element t o  i n i t i a t e  a buckl ing deformation before others do ( loca l  
mode) o r  causes several elements t o  have simultaneous deformation (general 
mode). 

For such structures 

(x )  d i rect ion,  the number being the same i n  a l l  elements. 

The buckl ing load i s  defined as the lowest load level  t h a t  causes 

The chosen buckl ing displacement functions f o r  each element type re- 
For the p l a t e - s t r i p  elements, these functions present an exact solut ion.  

are subst i tu ted i n  equations (A.13)  t o  (A.15), resu l t i ng  i n  a charac ter is t i c  
polynomial equation. A t  any chosen load level ,  the roots o f  t h i s  polynomial 
are used i n  obtaining the s t i f f ness  matr ix  o f  the element, r e l a t i n g  the 
buckl ing displacements and the corresponding forces along the inter-element 
junct ion l ines.  A corresponding s t i f f ness  matr ix  i s  derived fo r  the beam 
e lemnt .  The element s t i f f ness  matrices are merged t o  form the st i f fness 
matr ix  o f  the t o t a l  structure.  The buckl ing load i s  evaluated from t h i s  
t o t a l  s t i f f ness  matr ix  by an i t e r a t i o n  procedure based on an algor i thm 
analogous t o  the use of Sturm sequence property, Ref. 17. The algor i thm uses an 
upper-bound t o  the buckl i n g  load o f  the s t ructure obtained by considering 
a l l  inter-element junc t ion  l i nes  t o  be completely restrained. 
loads f o r  a ser ies o f  buckl ing half-wave numbers i n  the longi tud ina l  (x )  
d i rec t ion  are investigated. 
f o r  the structure.  
eigenvector solut ion.  

The buckl ing 

The lowest o f  these loads i s  the c r i t i c a l  load 
The corresponding mode shape i s  then obtained from the 
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6.1 S t i f fness  o f  Curved and F l a t  P la te-Str ip  Elements 

Equations are now derived f o r  the st i f fnesses r e l a t i n g  the displacements 
b due t o  buckl ing and the corresponding forces along the sides y = +-F of the 

laminated curved p la te -s t r i p  element, under b i a x i a l  loads Kl 
These equations degenerate t o  those o f  the laminated f l a t  p la te -s t r i p  element, 
i n  the l i m i t  o f  the curvature becoming zero ( i n f i n i t e  radius). 

and K22. 

The displacements involved are: 

w ,  ( 8 = w , ~  + a) ,  v and u. V 

The corresponding forces are: 

respect ively,  as seen from equations (A.1G) t o  (A.19). 

Choosing the mid-nlane as the reference plane, the assumed buckl ing 
displacement func t i  ons are: 

pi 8 

i = l  
w = E wi e s i n  cy 

8 Pi  Pi v y l a  
u = c ui 3 cos cy 

i -1 

pi 
discussed la te r .  

( i  = 1 , 2, . . .8) are the roots o f  the charac ter is t i c  equation, 
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The above functions are chosen t o  sa t i s f y  ab i n i t i o  the simply sup- 
ported boundary condit ions defined by: 

w Mll v = (Nll- Kll uIX) = 0 @*4) 

along the edges x = 0 and x * a. A t  any p a r t i c u l a r  leve l  o f  external  
loads Rll and Nz2, on subs t i t u t i ng  a t yp i ca l  t e rm o f  the displacement 
functions and equations (A.l), (A.5) and (A.6) i n t o  the curved p l a t e  
equations (A.13) t o  (A.15), y ie lds:  

where 
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R32 = R23 

On expanding the determinant o f  the mat r ix  [R] i n  equation (B.5), a 
characteristic polynomial i s  obtained as: 

(B. 7 )  

The above equation thus yields eight values of p i ,  which are real or 
complex conjugates, 
four. 

Four o f  these roots are the negatives o f  the other 

Also, from equation (B.5): 

ui = nL2i wi 

where 

R23 R1l - R13 R21 
21 R12 - R22 R l l  L l i  R 
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( 4  = 1 ,  2 ,  ... 8) 
A f t e r  subs t i tu t ing  equation (B.8) and the pi values from equation (5.7) 

i n  equation (B.3), the displacements given by equation ( B . l )  are: 

8 P i  
w = C e wi s i n  cy 

i = l  

8 P i  v = nLli e Wi sin a 
i f 1  

Pi 8 

i - 1  
u = TILZi e Wi cos (Y 

(B, 10) 

(B.11) 

(6.12) 

(6.13) 

Simi lar ly ,  subs t i tu t ing  equation (A.1) i n  equations (A.5) and (A.6), the 
forces defined by equation (B.2) corresponding t o  the above displacements 
are: 

(5.14) 



4 e Wi s i n  LY 

(B.17) 

b 
Put t ing y = t~ i n  Pi o f  equation (B.3), equations (B.10) t o  (B.17) 

y i e l d  the displacements due t o  buck l ing and the corresponding forces along 
the two sides o f  the laminated curved p l a t e - s t r i p  element. Figure 18 shows 
t h e i r  pos i t i ve  d i rect ions.  It i s  pointed ou t  t h a t  a l l  quant i t ies  are mid 
plane values, chosen here as the reference plane, and are w i t h  respect t o  
the l oca l  axes system. The above displacements and forces a r e  functions of 
the a x i a l  half-wave length of buck l ing (i) and the b i a x i a l  loading, Nll and 

I n  i d e a l i z i n g  a s t ruc tu re  o f  uniform cross sect ion as an assembly of 
element types discussed i n  Appendix A, o f f se ts  between elements 
necessitates an appropriate o f fse t .  transformation. Also, the i n te rsec t i ng  
angle between elements being a rb i t ra ry ,  i t  i s  convenient t o  transform a l l  



displacements and forces t o  c o m n  global axes. 
are now cons4 dered. 

These two transformations 

Figure 19 shows the o f f se ts  t o  S o f  the s ide l3 o f  the l a t e - s t r i p  
element AB. Axes system xs, ys and zs a t  S are chosen para1 e e l  t o  the 
loca l  axes a t  B. Offsets a t  the s ide A are considered i n  a s i m i l a r  manner. 
The o f f se ts  are def ined by the distances yo and to measured along the 

loca l  y and t axes, respect ively,  from the s ide  o f  the p l a t e - s t r i p  element 
i n  the reference plane. 
pos i t i ve  d i rec t ions  o f  the l oca l  axes. The displacenients o f  equations (B.10) 
t o  (13.13) on transformation t o  the axes through 

The o f f se ts  are p o s i t i v e  when they are i n  the 

S, become: 

es = e (B.19) 

vs = v - zoo (5.20) 

V ” x - yo r l l .  us = u - to -- (B.21) 

The above equations represent a r i g i d  body t rans fe r  when the under- 
l i n e d  terms i n  equation (13.21) are dropped. Physical ly,  these underlined 
terms s ign i f y  tha t  there i s  no r e l a t i v e  slippage between B and S along 
the x-axis. Subs t i tu t ing  f o r  w, 8,  v and u 
(5.13), the equations (13.18) t o  (6.21) are w r i t t e n  i n  mat r ix  form as: 

from equations (B.10) t o  

dS = CIXl Wi (8.22) 

where 

ds = (B.23) 

C1 = G i n  CY, s i n  a, s i n  a ,  cos CJ (6.24) 



X i s  a 4 x 8 mat r ix  whose elements are functions of geometric and mater ia l  
phoperties o f  the curved p l a t e - s t r i p  element, the pi values and the ax ia l  
half-wave length o f  buck l ing (i). 
system through S, become: 

The forces i n  equations (13.14) t o  (B.17) when t ransferred t o  the axes 

* 
Ms * M + yoQ - z0N 
N s = N - y  T 
A 

0 'x  
A 

Ts = T 

(8.25) 

(B.26) 

(B.27) 

(Bo 28) 

fhe underlined t e r m  i n  the above equations are s i m i l a r  t o  those i n  
equation (B.21). Subst i tu t ing f o r  Q, C1, r.1 and T from equations (B.14) 
t o  (B.17), the above equations are w r i t t e n  as: 

fs - c,x2 wi 

- where fs - 

4 
A 

-MS 

NS 

TS 

A 

A 

(B.29) 

(13.30) 

I n  the force vector fs above, a negative s ign i s  used w i t h  MS i n  order 
t o  reverse the d i rec t i on  of the moment as given by equation (B.26). As 

w i l l  be apparent l a t e r ,  t h i s  f a c i l i t a t e s  the use o f  a common coordinate 
transformation mat r ix  f o r  a l l  the element types included i n  the present 
analysis. The vector Wi and the diagonal matr ic  C1 are defined i n  
equations (C.23) and (B.24). X 2  i s  a 4 x 8 matr ix  s i m i l a r  t o  the X1 
matr ix  discussed previously. 
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Figure 19 shows a r b i t r a r i l y  chosen global axes xG, yG and zG. Also 
shown are  positive directions of the global displacements and forces,  sub- 
scrdpted G. Since the axes system xs ys and zs a t  any o f f se t  point is 
paral le l  t o  the local axes system along the corresponding side, (A o r  B ) ,  
the transformation angle to  the global axes a t  A is: 

9 

and a t  B, 

(B.31) 

(8.32) 

The angle is  measured posi t ive i n  the clockwise direct ion,  from the 

A matrix To for  coordinate transformation through angle 9, i s  

global axes. For a f l a t  p la te - t r ip  element 'bA = P B  = $. 

defined as: 

- 
T 

.I 

0 sin 9 0 

1 0 0 

-sin 0 0 cos 8 0 

1 0 0 - 
(B.33) 

Superscripts - and + are used hereaf ter  to denote the two sides 
of the curved p l a t e - s t r ip  element ident i f ied by the values of 
y = - 4 and y = + :, respectively,  i n  0 o f  equations (C.3). The d i s  
placenients and forces along these two s ides ,  on us ing  equations (B.22) and 
(8.29) and on transforniation t o  the global axes, become: 

i 

(8.34) 

(B. 35) 
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N 

TA and yB are the coordinate transformation matrices obtained from 

equation (B.33) for angles @A of equation (8.31) and @B of equation 
(8.321, respectively. The negative s ign  associated w i t h  ?A i n  equation 
(B.35) is  a consequence of the s i g n  convention for forces i n  the local axes 
system. The 8 x 8 matrices X 3  and X4 are self-explanatory. 

The a x i a l  (x )  d i s t r i b u t i o n s  of the above buckl ing displacements and 
the corresponding forces are tr igonometric functions ( s i n  o r  cos) o f  CY 

identical distributions, as will be seen i n  sub-section B.2. This i s  due to 
the need fo r  the number of ax ia l  (x )  half-waves o f  buckling, m, t o  be 
i d e n t i c a l  i n  a l l  elements making up the structure.  Hence the C2 m a t r i x  

can be separated out and r e a d i l y  dropped from f u r t h e r  consideration. 

(= %) as seen from the C2 matrix. The beam elements also have a 

S u b s t i t u t i n g  for  !>Ii from equation (B.34) i n t o  equation (B.35), the 
st i f fness m a t r i x  [s] of  the laminated curved p l a t e - s t r i p  element i s  
obtained from: 

where [s] 

= [. 

T and s21 = s , ~  

(B.36) 

(B.37) 

(B.38) 

[s] i s  symnetric and defines the global re la t i onsh ip  between the buckl ing 

displacements and the corresponding forces along the sides y = - 
Y ' + F  of the curved p l a t e - s t r i p  element, tak ing  i n t o  account any offsets. 

wave length o f  buckl ing (:) and the applied loads vl, and Kz2. 

b and 

The elements o f  t h i s  mat r ix  are transcendental functions of the hal f -  
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I n  the structures f o r  which the present buckling analysis i s  applicable, 
some of the individual plate-strip elements have specified boundary conditions 
(e.g.  simply supported, clamped, free, etc.) along an external longitudinal 
( x )  side, not connected t o  other elements, Such conditions are treated here 
in a general manner as elastic restraints (specified as spring constants) t o  
freedoms corresponding to displacements w,  e ,  v and u. A diagonal matrix 
ko i s  defined as 

where kw, k,, k V  and ku are the spring constants in the directions of the 
subscripted displacements, w i t h  reference t o  the local axes system x B  y and 
z. I f  there is  completz freedom i n  one direction, the corresponding spring 
stiffness i s  zero. 
the corresponding spring stiffness is  theoretically infinite. In numerical 
comutations, a su f f i c i en t ly  large number i s  used for  infinite spring s t i f f -  
ness t o  avoid numerical problems, 

Similarly, i f  there is complete restraint in one direction 

b Consider the side of the curved plate-strip element along B (y = + 7)  
i n  fiqure 19 being elastically restrained by the specified spring stiffness 
of equation (B.39). These are transformed t o  t h e  g l o h a l  axes system as: 

+ -  kG = TB ko (FBI-' 
+ + t  Then, fG = - kG dG 

Also, from equations (n.36) and (B.37) 

- 
sZ1 dG + s Z 2  d< 

Combining the above two equations 
- 1  

Equations (0.36) and (B.37) also yield: 

(B.40) 

(B.41) 

(B.42) 

(0.43) 

(B.44) 
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Subst i tu t ing equation 

where the 4x4 reduced 
element, r e l a t i n g  the 
w i th  the s ide 

When the 
the equations 

(B.43), i n  the above: 

(B.45) 

s t i f fness  matr ix  sA fo r  the curved p la te -s t r i p  
forces and displacements along the s ide A (y  = - F), b 

+ !)) e l a s t i c a l l y  restrained, i s  given by: 

- 1  
(8.46) 

side A i s  e l a s t i c a l l y  rest ra ined instead o f  the s ide B, 
derived i n  an analogous manner are: 

ko (TA)ol (B.47) 

dG+ (B.40) 

(G.4c)) 

+ '  
- S12 (s22 + kG 0 521 

In equations (B.45) and (B.48) the axial  ( x )  dis t r ibu t ions  o f  the 
displacments and forces are separated out, f o r  reasons discussed e a r l i e r .  

I n  the l i m l t  as the radius R+-, the above equations fo r  the curved 
p la te -s t r i p  element degenerate t o  those of a f l a t  p l a t e - s t r i p  element. I n  
the l a t t e r  case, some fur ther  s imp l i f i ca t ions  a id ing i n  numerical so lu t ion  
are possible, when the elements of the coupling matr ix  [B] i n  equations 
(A.5) and (A.6) a r e  ident ica l ly  zero. 

Laminated f l a t  p lates w i th  mid-plane symmetry and i so t rop i c  f l a t  p la tes 
are typ ica l  examples o f  such cases. 
Appendix D. 

The s impl i f icat ions are ou t l ined  i n  

B.2 St i f fness  of  Beam Elements 

The assumed buckl ing displacement functions for  the beam element are: 
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(€3.50) 

where Q = - mx as i n  equation (0 .3) .  

the simply supported boundary conditions a t  t h e  ends 

On substi t u t i n g  the above displacement functions i n  equations (A.29) t o  
(A.321, the corresponding forces i n  the beam element under axial compression 
pb’ are: 

The above functions are chosen t o  satisf-y a 
x = 0 and x = a. 

where 

- 
x5 - 

al  2 

a22 

0 

‘23 

a33 

(€3.51 ) 

(B.52) 

(B.53) 
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A a44 b 

(8.54) 

The above displacements and forces are defined w i th  respect t o  the loca l  
axes x, y and z through the shear center 0. Their  pos i t i ve  d i rec t ions  
are shown i n  Figure 17.c For reasons discussed i n  subsection B.l f o r  the 
p l a t e - s t r i p  elements, i t  i s  possible t o  separate ou t  the ax ia l  d i s t r i b u t i o n  
o f  these displacements and forces and e l iminate i t  f r o m  f u r t h e r  consideration. 

An o f f s e t  tranformation i d e n t i c a l  t o  t h a t  f o r  the p l a t e - s t r i p  element, 
equations (B.18) t o  (B.21) and (8.25) t o  (B.28), can be r e a d i l y  done. tlowever, 
i t  i s  no t  pursued here as the o f f se ts  i n  p l a t e - s t r i p  elements would suf f ice 
fo r  the i dea l i za t i on  of the types of s t ructures considered. 

global  axes t o  the loca l  beam element axes be pb. 
transformation mat r ix  ?b from equation (B.33), f o r  the angle $b, the beam 
element forces are tranformed t o  the global axes as: 

L e t  the angle, measured p o s i t i v e  i n  the clockwise d i rec t ion ,  from the 
Then using the coordinate 

= $ :  X - T -1 
fbG b 5 b dbG 

(B.55) 

where Sb i s  the beam element s t i f f n e s s  mat r ix  (4x4). 
mat r i x  are funct ions o f  Pb, the a x i a l  compressive load i n  the beam element, 

and the ax ia l  half-wavelength o f  buck l ing ($. 

The elements of t h i s  



f3.3 B u c k l i n g  Formulation 

The equations developed t h u s  f a r  are now applied in formulating the 
buckling cri  terian fo r  an a r b i t r a r y  structure of uniform cross-section. 
The structure shown in Figure 20 i s  chosen as the example. 
( x )  sides along G and H are arbitrarily restrained. This structure i s  
readi ly  ideal Ined as an assemblage of :  

The longitudinal 

( a )  curved plate-strip elenrents - 2 ,  3 and 9 

( b )  f l a t  plate-strip elements - 1 ,  4 ,  5, 7,  8 aad 11 

( c )  beam elements .. 6 and  10 

I n  the figure, the element numbers are shown circled.  The broken line i s  
drawn throlrah the mid-plane of  the plate-strip elements. The extremities 
o f  each plate-strip element and the shear center of each beam type element 
are marked w i t h  " d o t s . "  xG, yG and zG are the chosen global axes; xG 

csinciddng w i t h  t h e  a x f s  o f  the structure. y and z a r e  the local axes in 
each element. T h e  local x a x i s p  (not  shown i n  the figure) i s  paral le l  t o  

any offsets between elements. 
and riveted connections, 
for any 5 tructure. 

The idealization o f  the structure, as indicated above, also defines XG 
I t  i s  possible to differentiate between bonded 

Ref. 3 gives details of  the  idealization procedure 

Subsections B . l  and  B.2 g ive  the equdtions for the stiffness matrices 
of i n d i v i d u a l  elements, w i t h  respect t o  the global axes system. These are: 

(i) equations (B.45) and U.48) for the reduced stiffness matrix 
of plate-strip elements w i t h  specified boundary conditions along 
one external longitudinal ( x )  side 

( i i )  equation (B.36) "or the stiffness mat r ix  of  any other plate- 
s t r ip  element 

( i i i )  equation (3.55) for the stiffness matrix of beam elements. 

I t  is  obvious t h a t  to  evaluate the above stiffnesses, i t  i s  necessary 
t o  know the loadings on each ele  nt corresponding to  any chosen level of 
t o t a l  external load on the structure. These element loadings are dictated 
by considerations of strain compatibility between elements and as shown in 
subsection 8.4, i n  general, vary from element t o  element. 

ness mat r ix  of the totai structure. The merging process i s  identical to  
t h a t  i n  the direct stiffness method of finite element analysis, 

The above element matrices are merged appropriately t o  form the s t i f f -  
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where the buck l ing formulat ion i s  

K . D = O  (0.56) 

o r  

+ A K )  . D = O  
(KO 9 

(B.57) 

KO i s  the usual e l a s t i c  s t i f f n e s s  matrix, K i s  the geometric s t i f fness  
matr ix  and D i s  the buck l ing displacement vector. 

9 

The corresponding equation f o r  the analysis presented here i s :  

S . D = O  (B. 58) 

where the merged symnetric m a t r i x  S i s  s i m i l a r  t o  K i n  equation 
(B.56). tlowever, S i s  not  separable i n  the form o f  equation (B.57) 
because of the manner i n  which the s t i f f n e s s  matr ix  o f  each element i s  
derived f r o m  the exact ana ly t i ca l  displacement solut ions.  D i s  now the 
vector representing the global buck l ing displacements o f  inter-element 
junc t ion  l ines .  As already ind icated i n  subsections B . l  and 6.2, the ax ia l  
( x )  d i s t r i b u t i o n  o f  the displacements and forces has been separated out. 
Hence, the vector D has impl ied values o f  s i n  CY and cos 01 = 1. I t  i s  oh- 
vious t h a t  equation (B.58) s ign i f ies  the equ i l ib r ium o f  the s t ruc tu re  i n  an 
adjacent def lected (buckled) pos i t ion ,  whi l e  s a t i s f y i n g  a1 1 the boundary 
conditons and inter-element condit ions. A n o n - t r i v i a l  so lu t i on  t o  this 
equation i s  obtained when the m a t r i x  S has a zero determinant, i .e.,  

I S ]  = o  (0.59) 

The elements o f  S are transcendental functions o f  the external  
loadings and the a x i a l  ( x )  half-wavelength o f  buck1 ing (a). 
equation does not  correspond t o  the standard algebraic eigenvalue problem. 

Thus thelabove 
m 

For any chosen number o f  ax ia l  half-waves m, the lowest leve l  o f  
external  loading a t  which equation (8.59) i s  sa t i s f ied ,  i s  the buckl ing load 
o f  the s t ructure.  This load i s  determined by the i t e r a t i o n  procedure d is -  
cussed i n  Appendix c. A ser ies o f  m values are invest igated and the the 
lowest o f  a l l  buck l ing loads then gives the c r i t i c a l  load o f  the s t ructure.  
The corresponding vector D i n  equation (B.58), g i v ing  the inter-element 
junc t ion  l i n e  displacements, i s  then obtained by Wielandt's method of 
inverse i t e ra t i on ,  Ref. 17. 
dependent on the accuracy o f  the so lu t ion  t o  equation (B.59). 

The convergence o f  t h i s  method i s  good but i s  

The d i s t r i b u t i o n  o f  the buck l ing displacements across the width o f  each 
p la te -s t r i p  elenient i s  ca lcu lated from equation (B.3). The necessary Wi 

values f o r  each element are obtained by back-subst i tut ing i n t o  equation 



- i- 
(B.34) the corresponding dG and dG values from the eigenvector 0. The 
Ui and Vi values fol low from equation (B.8). 

eivenvector D d i r e c t l y  gives the global buckl ing displacements a t  the shear 
center. 

in te res t .  
s t ruc tu re  i d e n t i f i e s  the weak (buckled) elements and thereby ind icates 
whether the buckl ing i s  local or general. 
i n t o  the buckl ing mechanism and may be used i n  achieving e f f i c i e n t  design 
of s t ructures as i l l u s t r a t e d  i n  Refs. 1 and 2 f o r  5 t i f f ened  panels. 

For the beam elements, the 

These can be read i l y  transformed back t o  the l oca l  axes system. 

The w and v buck l ing displacements o f  each element are of prime 
A p l o t  show-ing these displacements across the cross sect ion of the 

Such p lo t s  give a valuable i n s i g h t  

The c lass ica l  buckl ing analysis usual ly  makes assumptions regarding 
ind iv idua l  buckl ing modes, like Euler mode, to rs iona l  mode, l oca l  mode, etc.  
As shown i n  Ref.  2 such s imp l i f y ing  assumptions could sometimes lead t o  the 
p o s s i b i l i t y  o f  missing the lawest buck l ing load. 
the n u h e r  of buckl ing half-waves, m, i n  the longi tud ina l  ( x )  d i rect ion,  t o  
be the same i n  a l l  elements o f  the s t ructure,  the present analysis makes 
no other assumptions regarding the buckle mode. 

Apart from the need fo r  

~ . 4  Element L.oadings f a r  a Speci f fed Load i n  the Structure 

The buckl ing analysis requires the knowledge of the d i s t r i b u t i o n  of the 
t o t a l  load on the s t ruc tu re  between the various elements. This i s  determined 
from considerations o f  s t r a i n  csmpat ib i l i  ty between e le  nts.  
sequence of ignor ing the pm-buckl ing deformations % a t  buck l ing each element 
i n  the s t ruc tu re  i s  under uniform laad condit ions. 
element i s ,  i n  generalP under uniform b i a x i a l  l ~ a d ~ ~ ~  fT II(J) and N ~ 2 ( j )  
and the beam element under uniform a x i a l  laad P 
t o  the element numbers, 

As a con- 

"Thus, each p l a t e - s t r i p  

(j) and (k)  r e f e r r i n g  m ) '  

For p l a t e - s t r i p  elements, n o t i n g  that, there are no appl ied moments, 
equations (A.5) and ( A . G )  art. c o n h i w d  t a  give: 

o r  i n  the expanded form 

(B.60) 

(8.61 ) 

(B. 62) 
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where 

A =  9 

D 

; E= 
B22 B 1 ~  

B1 1 

B1 2 
D 

The coefficients if,,, Cl2 and Tz2 are self-evident. On inverting, the above 
equations yield: 

- 
go Y = F12 Wll  + r2* N 2 2  (B.64) 

The coefficients T,,, r12 and Fz2 are readily derived. 

For a laminated beam element w i t h  k layers, the ax ia l  load corres- 
ponding t o  an ax ia l  strain cxo is given by 

(B.65) 

The above equations are used i n  the strain comatibi l i  t y  considerations. 
The method i s  discussed below w i t h  reference t o  the stiffened panel i n  
Figure 21. The numbers i n  parenthesis are the element numbers. 

( i )  Biaxial loading w i t h  constant inplane transverse load along the panel - sides.-'he panel has a specified transverse loading of N22(1)  along the 
external side o f  element (1). 
the panel is increased. From statics i t  i s  evident t h a t  N 2 2 ( j )  for  any 
plate-strip element ( j )  on the s k i n  i s  identical to  N22(1). 
(1 ) , a t  a chosen value of N 
strain e follows from equation (8.63). A t  any level o f  axial load i n  

i n  any element is made identical t o  the panel the axial strain Ex" (1) 

exil) Thus,  applying equation (B.63) t o  any plate-strip element (j), 

T h i s  remains constant as the axial load on 

For element 
and the specified N,, (, the corresponding 

11 (1 1 
x (1) 

(B.66) 

42 



I n  the above equation N22(j) i s  obviously zero fo r  those p l a t e - s t r i p  
elements i n  the panel not carry ing any side load. Equation (B.65) gives 
the ax ia l  load i n  the beam elements corresponding t o  the s t r a i n  E'  

Thus, f o r  any chosen 
the corresponding loadings i n  a l l  elements are known. 
s t ruc tu re  i n  e i t h e r  d i rec t i on  can be eas i l y  calculated. 

s t r a i n  Fa 
and remains constant. For a chosen value o f  w - 22(  11 

4 1  1- 
22(1)' and a spec i f ied  constant value o f  

11(1) 
The t o t a l  load i n  the 

( i i )  Biax ia l  1oadinLwi t h  constant ax ia l  strain-*--The seec i f ied  ax ia l  i s  the-sam-fFa<Iements i n  the panel ( E o  - ." 
x ( j )  -_ x ( d  X( l1 

(by s t a t i c s  N22( j )  - 
for  a l l  p l a t e - s t r i p  elements on the sk in )  Equation (B.62) gives N22(1) 

(B.67) 

i n  a l l  p la te -s t r i p  elements fo l lows from equation W j )  The a x i a l  loading 
(B.Gl) and the loads i n  the beam elenients from equation (B.65). 

(ii i)@.,axial- loading w i A ~  constant t o t a l  a x i a l  l o f i . - - I n i t i a l l y ,  2 2 ( j )  is 
equation (B.63) gives 1W) zero and f o r  a speci f ied value o f  w 

- 
€ O  x(1) = Fll(l) %(1)  (B.68) 

i n  a l l  other p l a t e - s t r i p  elements a t  t h i s  s t r a i n  
W j )  The ax ia l  loading 

value i s :  

(B.69) 

The ax ia l  load i n  beam elements follows from equation (l3.65). 
ax ia l  load defined by the ax ia l  loads i n  a l l  elements determined as above 
i s  kept constant a t  a l l  leve ls  o f  inplane transverse loading. 

The total 

( i v )  B iax ia l  loading -.- ---- a t  constant b i a x i a l  load ratio.--A b i a x i a l  load r a t i o  
defi nea by N, '1 (Q /V* *  ( j  ) 

the corresponding value o f  f$2(1 i s  known. chosen value o f  I4 
Equation (B.63) gives the corresponding ax ia l  s t r a i n  zo 
same i n  a l l  elements = Ti" ). Also, the above ca lcu lated m 
the same i n  a l l  p l a t e - s t r i p  elements on the skin. 

i s  spec i f ied  and remains constant. Thus, a t  a 

W)  
which i s  the 

X W '  

4 1  1 22(1)  is 
Then from equation (B.63) 

43 



As before the corresponding axial  load i n  each beam element i s  calculated 
from equation (8.65) 
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APPENDIX C 

SOME SOLUTION METHODS AND NUMERICAL PHENOMENA 
OF PARTICULAR INTEREST 

This appendix summarizes some o f  the numerical so lu t i on  methods used 
i n  the buck l ing analysis presented i n  Section 5 as we l l  as i n te res t i ng  
numberi cal  phenomena observed. 

C . l  Buckling Load Evaluation 

Equation (B.57), f o r  the buckl ing load evaluation, represents a 
general non- l inear eigenvalue problem, fo r  the reasons mentioned i n  sub- 
sect ion B.3. Recourse t o  an i t e r a t i v e  procedure! i s  necessary t o  determine 
the lowest buck l ing load fo r  a p a r t i c u l a r  number m o f  ax ia l  ( x )  half-wave 
lengths. The often-used method o f  determinant p l o t t i n g  r i s k s  missing the 
lowest roo t  and may also be time-consuming. 
matr ix  S, the a lgor i thm out l ined  below enables the lowest roo t  (buckl ing 
load) t o  be determined w i t h  ce r ta in t y  i n  fewer i t e ra t i ons .  The p r i n c i p l e  
of the algor i thm i s  analogous t o  methods based on the Sturm sequence property, 
Ref. 17, f o r  standard algebraic eigenvalue problems. 

Assume tha t  a1 1 inter-element junc t ion  l i nes  are completely rest ra ined 
against the degrees of  freedom represented by the vector D i n  equation 
(B.58). Each element making up the s t ruc tu re  can thus be considered as 
iso la ted  w i t h  clamped boundary condi t ions along these rest ra ined l ines .  
Speci f ied boundary conditions along any external  longi tud ina l  ( x )  s ide o f  
p l a t e - s t r i p  elements are kept unchanged. For the chosen value of in, i t  i s  
possible t o  determine a buck l ing load Pr f o r  each element i so la ted  as above. 

Because of the symmetry o f  the 

be the current,  t r i a l  value o f  the external  load i n  the Let ' t r i a l  
i t e r a t i o n  process and l e t  q o  

than Ptrial. 

be the t o t a l  n u h e r  o f  Pr values lower 
The imposed res t ra in t s  along the inter-element junc t ion  l i nes  

are now released, one by one. Using the p r inc ip les  s tated i n  Ref. 26 for  
the v ib ra t i on  frequencies o f  l i n e a r l y  e l a s t i c  structures,  i t  can be shown 
tha t  the removal of each r e s t r a i n t  e i t h e r  increases q o  by one o r  
i t  unchanged. The a l te rna t ives  are decided from the decomposition 
symmetric matr ix  S, (using a modified Gaussian e l im ina t ion  method 
row interchanqes) i n t o  

1 eaves 
o f  the 
wi thout  

( C . 1 )  
S = L D o L  T 
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T 
where Do i s  a diagonal matrix, L i s  a u n i t  lower t r i angu la r  matr ix  and L 
i s  the transpose of L, A negative element i n  Do 
o f  r e s t r a i n t  t o  the freedom represented by the corresponding element i n  the 
vector D o f  equation (B.58) increases v o  by one. If i t  i s  pos i t i ve ,  

s ign i f i es  tha t  the release 

remains unchanged 
770 

L e t  v s  be the number o f  negative elements (a lso ca l l ed  s ign count) i n  
Do and II 

. ' t r i a l  
i s  bas ica l l y :  

be the number o f  roots o f  equation (B.57) below the value 
Then, the p r i n c i p l e  o f  the algor i thm used for buckl ing load evaluat ion 

v = v o + v  S 

The lowest buck l ing load Pm f o r  the chosen m corresponds t o  the 
value o f  Ptrial (determined t o  the desired accuracy), a t  which 71 changes 
from zero t o  one. The algor i thm i s  described i n  d e t a i l  i n  Ref. 7. I n  the 
presence o f  coincident roots, i t  i s  obviously not-  possible t o  i s o l a t e  a 
load a t  which v changes from zero t o  one. This i s  fur ther  discussed i n  
sub-section C.3. From the above discussion i t  i s  seen t h a t  a r e l i a b l e  
method o f  ca lcu la t ing  i s  c ruc ia l  t o  the success of the algori thm. 
Also, Pm cannot exceed Pu, the smallest o f  the Pr values. Pu i s  thus 
an upper bound t o  Pm. For any chosen m value there i s  a corresponding 
upper bound load Pu. The method used t o  ca lcu late the Pr values and 
hence P,, i s  discussed i n  Appendix E. Ensuring Ptrial t o  be always less 

than Pu resu l ts  ins,  being zero. The smal lest  r o o t  (buckl ing load Pm) 
o f  equation (B.59) i s  then the lowest value o f  Ptrial (determined t o  the 

desired accuracy), a t  which q S  

p a r t i c u l a r  reason one i s  in te res ted  i n  a spec i f i c  h igher root,  i t  i s  obvious 
t h a t  i t  i s  read i l y  determined by f i nd ing  the value o f  Ptrial 
the corresponding change occurs i n  

qo. 
I t  i s  seen f rom equation (C.1) t ha t  

Pr 

changes from zero t o  one. If for  some 

a t  which 

s ince 

I L I  = ILTl = 1. 
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C.2 Open Structures With Repeated Substructures 

Open st ructures w i t h  repeated substructures are exempl i f ied by s t i f fened 
panels, w i t h  r e p e t i t i o n  i n  regard t o  the s t i f f e n e r s  (substructure) and t h e i r  
spacing, as shown i n  Figure 22, 
The boundary condi t ions along the two sides o f  the panel are a rb i t ra ry .  
There i s  no r e s t r i c t i o n  on the type o f  substructures and they may be mu l t i p l y  
connected. The symmetric matr ix  S i n  equation (B,58) f o r  such "open 
structures" i s  banded and has a t yp i ca l  block s t ruc tu re  as shown i n  Figure 23. 
Each block marked CR represents one repeated substructure, I n  f l a t  s t i f fened 
panels every repeated substructure i s  i d e n t i c a l l y  orliented with respect t o  
the global  axes. A11 repeat blocks CR are, thus i den t i ca l  i n  every respect, 
However, i n  curved s t i f f e n e d  panels wi th  constant curvature, ( o f  the type 
shown i n  Figure l . f ) ,  the or ien ta t ion  of each substructure w i th  respect t o  
the global axes increments by a constant angle from sobstructure t o  sub- 
s t ructure.  I n  such cases the repeat blocks have iden t i ca l  dimensions only, 
whi le  the elements of one a r e  read i l y  obtained from the elements o f  the 
other using a transformation matr ix.  

A l l  repeated substructures are ident ica l .  

Stiffened cyl inders,  even though they have repeated substructures 
(s t i f feners) ,  do not  come under the purview o f  "open structures."  The m a t r i x  
S f o r  these "closed s t ructures"  i s  no longer banded, as the f i r s t  and the 

l a s t  elements making up the s t ruc tu re  are inter-connected. 

The above discussed charac ter is t i cs  o f  open s t ructures (wi th  repeated 
sub-structures) i s  madeuse o f  i n  the method,Refs. 27 and Z C ,  f o r  ca lcu la t ing  q o ,  

the number of negative elements i n  the diagonal matr ix  Do o f  equation 
(C. 1 1. 1Ji t h  reference t o  Figure 23, physi ca l  cons i i ferat i  ons d i  c ta te  t h a t  
(M-N) columns of the CR matrices overlap. The e l im ina t ion  procedure used 
i s  i l l u s t r a t e d  i n  Figure 24. 
the f i r s t  I R  diagonal elements are el iminated (step 1 o f  Figure 24). The 
product o f  the f i r s t  I R  diagonal elements comprises the f i r s t  I R  terms i n  
equation (C,3). 
product i s  computed. 
upper left-hand corner, and the f i r s t  CR block i s  brought i n t o  pos i t i on  as 
shown i n  step 2 of Figure 24. 
below the f i r s t  M diagonal elements o f  the composite matr ix  are annih i la ted 
and the product o f  these diagonal terms included i n  the running product of 
equation (C.3). The procedure continues i n  the manner shown i n  Figure 24. 
I t  d i f fers  from the usual e l im ina t ion  procedure only i n  tha t  informat ion i s  
discarded from the working array when i t  i s  no longer needed, and new 
information i s  brought i n t o  t h i s  array only when needed t o  continue the 
process. This scheme minimizes the computer core storage requirements. The 
number of repeat blocks, wh i le  mathematically a rb i t ra ry ,  w i  11 be l i m i t e d  i n  
p rac t ice  by the accumulation o f  rounding errors.  

S tar t ing  w i t h  block CS, the elements below 

The f i r s t  I R  rows and columns are discarded a f t e r  t h i s  
The remaining rectangular block CS2 i s  moved i n t o  the 

This step i s  completed a f t e r  the elements 
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C.3 Coincident Roots 

I n  s h e l l  buckl ing problems the method o f  determinant p l o t t i n g  i s  often 
used. The buck l ing load i s  i d e n t i f i e d  by the sigv, reversal  i n  the deter- 
minant value. 
been observed, The determinant value decreases rap id l y  t o  a near zero value, 
w i t h i n  numerical l i m i t s ,  and then increases again wi thout going through a s ign 
reversal. This occurs i n  sp i te  o f  using extremely small load in te rva ls .  This 
phenomenon i s  caused by coincident roots and can e n t a i l  the p o s s i b i l i t y  of 
missing the lowest buck l ing load, unless special  precautions are taken. The 
s ign i f icance o f  the coincident roots i n  regard t o  the buckl ing analysis 
presented i n  Appendix B, i s  discussed below. The algor i thm based on equation 
(C.2) defines the buckl ing load as t h a t  value o f  Ptrial (determined t o  the 
desired accuracy) a t  which 77 (o r  77 when the upper bound load Pu i s  
used) changes from zero t o  one. Whenever equation (B.57) has coincident 
roots i t  i s  not  possible t o  i s o l a t e  such a value o f  Ptrial. This i s  brought 
out by the examples of the th in-wal led cy l inder  and the long square tube 
disqussed i n  sub-section 5.4. 
t o  the s ing le  prec is ion accuracy of the CDC 6600 conputer, these cases d i d  
n o t  reveal a zero t o  one, but  only a zero t o  two change i n  v value. A 
c loser  look a t  the s t ructures shows the p o s s i b i l i t y  o f  buckl ing modes with 
coincident buckl ing loads, the corresponding eigenvectors D i n  equation 
(B.58) for  these modes being mutual ly orthogonal. 

a lgor i thm out l ined  i n  subsection C.1 s t i l l  y i e l d s  the smallest r o o t  o f  
equation (B.59), w i t h  cer ta in ty .  
one o f  the modes. 
using special numerical techniques, Refs. 17 and 18. For the c lass o f  
s t ructures for  which the present analysis i s  intended, such techniques are 
no t  warranted from an engineering po in t  o f  view. The coincident roots can 
be separated i n t o  d i s t i n c t  ones by in t roducing a small "e r ro r "  (change i n  
the modell ing o f  the s t ructure) ,  w i th  i n s i g n i f i c a n t  e f f e c t  on the basic 
s t ruc tu ra l  charac ter is t i cs  o r  resul ts .  This i s  i l l u s t r a t e d  i n  subsection 5.4. 

I n  ce r ta in  cases the phenomenon o f  k4ssing"determinant' has 

I n  s p i t e  o f  pursuing the load i t e r a t i o n  

Thus, t h i s  change i n  the 
rl value re f lec ts  the existence o f  the coincident roots.  For such cases, the 

The eigenvector so lu t ion  method used y ie lds  
However, i t  i s  possible t o  evaluate the orthogonal vectors 

C.4 Complex Conjugate pi Roots 

It i s  seen from subsection B.1 t h a t  the complex roots pi o f  the character- 
i s t i c  equation (B.7) appear i n  pa i r s  which are complex conjugates. The use 

1 This was brought t o  the a t ten t i on  o f  the authors by D r .  M. F. Card, 
Structures Div is ion,  NASA, Langley Research Center, Hampton, V i rg in ia  23365. 
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of such a p a i r  of pi values i n  equations (B. lO) t o  (B.17) resu l t s  i n  a 
complex conjugate p a i r  of columns i n  the matrices X1 and X2 o f  equations 
(B.22) and (B.29). 

For each pi value there i s  obviously a corresponding element i n  
the vector IJi o f  equations (B.22), (B.29), (B.34) and (B.35). Further, 

i t  can be shown t h a t  the elements o f  
jugate p r i  r o f  pi, are themselves complex con jugates. 

Wi corresponding t o  a complex con- 

Thus, i f  a t yp i ca l  complex conjugate p a i r  o f  elements i n  X, o r  X2 

are (c + i d )  and (c - i d ) ,  w i th  the corresponding elements i n  the vector 
Wi being (r + i s )  and ( r ~ -  i s ) ,  the r e s u l t  o f  mu l t i p l y ing  them out  i s  seen 

t o  be a real number. It fo l lows t h a t  the matrices X1 and X2 can be 
manipulated t o  contain on ly  rea l  numbers, w i th  a corresponding change i n  
the elements o f  the vector 
sol u t i  on. Wi. This s i m p l i f i c a t i o n  i s  used i n  the numerical 
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APPEHDIX D 

FLAT PLATE-STRIP ELEMENTS WITH ZERO BENDING-STRETCHING COUPLING 

For f l a t  p l a t e - s t r i p  elements, the s imp l i f i ca t i ons  given below a i d  the 
numerical so lu t ion  when the elements o f  the coupling matr ix  [B] i n  equations 
(A -5 )  and (A.6) are i d e n t i c a l l y  zero. 

The buckl ing displacements are assumed as (c f .  equation ( B . 3 ) )  

4 

i =1 
\J .eP l i  s i n a  

1 
w = 

4 

i=l 
v =  V.eP2i s i n a  

3 

4 

i=l 
u =  U.eP2i cos a 

1 (D.3) 

- P,i"Y 
whe rcf Pli - - a 

and Pui are the roots  o f  two separate cha rac te r i s t i c  equations, as shown below. 'v,i 

With 811 = BZ2 = B12 = BS6 = 0, the  equations (A.13) and (A.14) are 

uncoupled from equation (A.15). This i s  seen from equation (B.6) where 
subs t i t u t i ng  the above values and dropping the terms invo lv ing  the radius R, 
resu l ts  i n  Ri3 = R23 = R31 = R32 = 0. I n  R l l ,  R12, RZ1 ,  and RZ2 of equation 
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(B.6), pi is replaced w i t h  pui and i n  R33, p .  i s  replaced w i t h  pwi. 
Due t o  this uncoupling, equation (B.5) is  written as: 

1 

and R 3 3  \ I i  = 0 

The deterniinant of the coef f ic ien t  matr ix  i n  equation (D.4) y ie lds  the 
charac te r i s t ic  polynominal : 

The four 
(D.3) for  
equation 

roots from t h i s  equation are used in equations (D.2) and Pui 
the inplane displacements v and u ,  respectively. Also, from 

(D.4) 

vi - - L3i u i  

where 

(i = 1 ,  2 ,  3, 4)  

A second charac te r i s t ic  polynomial result ing from equation (D.5) i s ,  

RS3 = 0 (D.9) 

R33 i s  a fourth order polynomial i n  P , ~ ,  containing even powers of 
The four pwi 
out-of-pl ane a i  splacement w. 

pwi. 
roots of equation (D.9) a re  used i n  equation (D.l) for  the 



The roots pui and p from equations (0.6) and (D.9), respectively, 
Using these roots, equations corres- 

w i  
a re  always real or  complex conjugates. 
ponding t o  those o f  (B.10) t o  (B.17) a re  written as: 

4 

i =1 
v = L3i eP2i u. 1 sin cy 

4 

i = l  
u = eP2i u .  cos cy 1 

(0.10) 

(D.11) 

(D.12) 

(D.13) 

A 4  - 
rj = [-Al2 ($) n + AZ2 ($) L3i - uz2 i = l  



Put t ing y = 2~ b i n  Pli and PZi 
(D . lO)  t o  (D.17) y i e l d  the buckl ing displacements and the corresponding forces 
along the two sides o f  the f l a t  p l a t e - s t r i p  element, when the coupling between 
bending and s t re tch ing  i s  absent. 

o f  equations ( D . l )  t o  (D.3) equations 

The subsequent analysis i s  i den t i ca l  t o  t h a t  i n  sub-section B.1, Because 
of the uncoupling between inplane and out-of-plane displacements, the vector .,. 
Wi i n  equations (B.22), (B.291, (B.34) and (B.35)  becomes [ W  ,... W,, U1...U4] . 

53 



APPEIJDIX E 

UPPER BOUND LOAD Pu 

For a chosen m value, a load Pr ( f o r  each element making up the 
s t ruc tu re)  i s  defined i n  Appendix C as the buckl ing load o f  the element 
when the sides corresponding t o  the inter-element junc t ion  l i nes  are completely 
restrained. Specified boundary conditions along any external  long i tud ina l  
( x )  s ide of p l a t e - s t r i p  elements are kept unchanged. The smallest of the 
Pr values i s  then the upper bound load Pu f o r  the structure.  Thus, f o r  
each value o f  m there i s  a corresponding upper bound load Pu. As a 

consequence o f  the beam element axis always co inc id ing w i t h  an inter-element 
junc t ion  l i ne ,  the above mentioned res t ra in t s  make i t  possible t o  safely 
ignore these elements from upper bound considerations. 
discussions are l i m i t e d  t o  p l a t e - s t r i p  elements only. 
sidered' are: 

Thus, fur ther  
Two basic cases con- 

(1 )  p l a t e - s t r i p  elements clamped along both, long i tud ina l  ( x )  sides; 

( 2 )  p l a t e - s t r i p  elements clamped along one longi tud ina l  ( x )  s ide 
and w i t h  a r b i t r a r y  r e s t r a i n t  condi t ions along the other side. 
The l a t t e r  s ide corresponds t o  an external  long i tud ina l  ( x )  
s ide o f  the s t ructure.  It is obvious tha t  when the a r b i t r a r y  
res t ra in t s  correspond t o  clamped conditions, such p l a t e - s t r i p  
elements f a l l  under the category (1) above. 

B . l  Pla te-St r ip  Elements w i th  Both Sides Clamped 

The analysis given below, f o r  the buckl ing load P o f  curved p la te -  

The onset of buck l ing 
s t r i p  elements degener t e  t o  the case o f  f l a t  p la te -s t r rp  elements i n  the 
l i m i t  of curvature becoming zero ( i n f i n i t e  radius).  
i n  the p l a t e - s t r i p  elements wi th  clamped sides i s  characterized by predomi- 
nant ly  out-of-plane displacements, Hence, the basic equations (A.l)  and 
(A.13) t o  (A.23) are fu r ther  s i m p l i f i e d  by dropping the underlined terms. 
This reduces the numerical complexity and the r e s u l t i n g  equations are accurate 
enough fo r  the upper bound calculat ions.  

As ou t l i ned  below, the three s t a b i l i t y  equations (8.13) t o  (A.16) are 
uncoupled by the use o f  the inverse operator, i n  the manner o f  Ref. 29 and 
as fu r the r  i l l u s t r a t e d  i n  Ref. 30. A f t e r  subs t i t u t i ng  equations (A.l), (17.5) 
and (A.6), the above equations are w r i t t e n  i n  terms o f  buckl ing displacements 
u, v and w, as: 
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The ri 
equations (E.l) and (E.2) the displacements u and v are expressed i n  terns 
of w, as: 

are l i n e a r  d i f f e r e n t i a l  operatars and are cummutative. Thus, from 

A su i  tab le out-of-plane buckl ing displacement funct ion,  s a t i s f y i n g  the condit ions 
o f  zero de f lec t ion  and zero slope along the sides i s :  

00 

w = s i n a  C din (cos yln - cos yzn) 
n= 7 

where 

The operations ind icated on the r i g h t  s ide of  ecluations (E.5) and (E.6) 
r e s u l t  in :  

1 _ _  
(i3i4 - L,L~) w = COW c \in (kin COS y l n  - kZn COS yZn) 

[ n  

(E.7) 

(E.9) 

(E.10) 

Expressions for  the coe f f i c i en ts  kln t o  kqn though no t  given here, may 

be read i l y  derived. 
su i tab le  functions f o r  u and v displacements are chosen as: 

From the form o f  the r i g h t  sides o f  the above equations, 

(E.11) 
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v = sin a [xIJn(k7n sin y ln  - kgn sin yZn)]  (E.  12) 

where the coefficients k5n t o  kBn are yet to  be determined. Using these 
equations, the operations indicated by the le f t  side of equations (E.5) and 
(E.6) yield: 

(E.13) 

The coefficients kgn t o  k l Z n  may be readily derived. The yet undetermined 
coefficients kfjn t o  kgn are solved for, by substituting equations (E.9), 
(E.10), (E.13) and (E.14) in equations (E.5) and  (E.6). The functions for 
the compatible displacements u and v are thus defined in t e r n  of w. 
They satisfy equations ( E . l )  and (E.2). The amplitude constants W are 
the only unknowns. 

n 

The displacement functions are now substituted in equation 
the external loading q,, and Tz2 appear in the operator i6. 
resulting equation is solved fo r  the b u c k l i n g  load using the Ga 
method, Ref. 8. The Galerkin multiplier used is: 

+ 1). 

(E.3) where 
The 

erkin 

(E.15) 

Following the method o f  Ref. 29 results in an infinite set of homogeneous 
linear equations i n v o l v i n g  the unknown amplitude constants W n .  As shown 
therein, these equations are separable into two subsets, one containing only 
odd values of n and the other conta in ing  only even values of n. The 
buckling load 
of equations using standard linear eigenvalue, solution techniques. The 
solut ion by the Galerkin method i s  known t o  converge rapidly as the number 
of terms n retained in the displacement functions is  increased. The details 
of the metnod outlined above, for  determining the buckling load P r  of 
plate-strip elements with both sides clamped, are easily worked out following 
the procedure of Ref, 28, 

P,, i s  obtained from the coefficient matrices of these subsets 
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Along the two long i tud ina l  (x)  sides o f  the p l a t e - s t r i p  elements, 
the displacement funct ions o f  equations (E.7), ( E . l l )  and E.12) s a t i s f y  the 
boundary condit ions. 

This shows t h a t  there i s  no r e s t r a i n t  t o  the freedom 
displacement. As discussed previously, the required 
the two sides o f  the D la te -s t r io  elements corresDond 

corresponding t o  u 
clamped condi t ions along 
t o  complete r e s t r a i n t  

t o  a l l  the four degrees of freedom along inter-element junc t ion  l ines .  
the 
f o r  the purooses o f  est imat ing the upper bound load 

However, 
Pr values fo r  the boundary condi t ions i n  equation (E.16) i s  sa t i s fac to ry  

Pu. 

E.2 P la te-Str ip  Elements I l i t h  One Side Clamped and 
Other S i  de Arbi t r a r i  l y  Supported 

P la te -s t r i p  elements w i th  a r b i t r a r y  r e s t r a i n t  condi t ions along one 
external  long i tud ina l  ( x )  s ide and w i t h  clamped condi t ions along the 
other  s ide corresponding t o  an inter-element junc t ion  l i n e  are now considered. 
In t h i s  case, the choice o f  buck l ing displacement funct ion sa t i s f y ing  a l l  
boundary conditions, becomes d i f f i c u l t ,  Thus the method of  sub-section E. l  
cannot be d i r e c t l y  used t o  determine the buck l ing load Pr of such p l a t e -  
s tri p elements. 

Consider the p l a t e - s t r i p  element ABCD shown i n  Figure 18. Using 
loca l  co-ordinates only  ( i .e.*  g p  and Q R  qiven by equations (5.31) and 
(B.32) are zero), equations s i m i l a r  t o  (13.36) and (B.37) are read i l y  derived 
as: 

(E.17) 

Assume tha t  the s ide  AB has a r b i t r a r y  res t ra in t s  spec i f ied  by the spr ing 
s t i f fness matr ix  kA i den t i ca l  t o  ko i n  equation (B.39). The clamped 
condi t ions along the s ide 6C corresponds t o  a s i m i l a r  spr ing s t i f fness 
matr ix  kB, whose elements are theo re t i ca l l y  i n f i n i t e .  The buck l ing 
equation f o r  the p l a t e - s t r i p  element i s  then: 
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(E.18) 

Since the side BC i s  completely restrained, the above equation reduces to: 

+ k ]  Id "11 A I AD\  (E.19) 

The buckling load Pr of the plate-strio element under consideration then 
corresponds t o  the smallest root of the determinantal equation: 

Equation (E.20) being identical t o  equation (B.59), the algorithm outlined 
i n  Appendix C i s  readily applicable. 
of equation (E.20) i s  obtained by using the Galerkin method discussed in 
sub-section E.1. 

An upper bound load t o  the solution 

E.3 Upper Bound Load Pu 

For each plate-strip element i n  the structure under consideration and 
for a chosen rn value, a buckling load Pr  is  evaluated applying the 
methods discussed in sub-sections E.l and E.2. The smallest of the P r  
values is then the upper bound load Pu. Each value of m has a corresponding 
upper bound load. 

Initially the procedure described might appear rather tedious. However, 
i n  actual structures i t  will not be necessary t o  evaluate P r  values for a l l  
plate-strip elements. Some elements can be eliminated from consideration due 
to  their repetition in the structure, while others can be eliminated because 
of phys i cal consi derati ons , 
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APPENDIX F 

CONVERSION OF U.S. CUSTOMARY UNITS TO SI UNITS 

The International System of Units (SI )  was adopted by the Eleventh 
General Conference on Weights and Measures, Paris, October 1960, in Resolution 
No. 12. (See ref. 31.) Conversion factors fo r  the units used herein are 
given in the following tables: 

Physical quantity 

Area .................. 
Force ................. 
Length ................ 
Moduli and stress ..... 

Stress resultant ...... 

U . S Customary 
Unit 

2 in 

kip = 1000 lbf 

i n .  

ksi = 1000 lbf/ 
in* 

lbf/in. 

square meters 

newtons per meter 

Multiply value given i n  U.S. Customary Unit by conversion factor 
t o  obtain equivalent value in SI  Unit. 

** Prefixes t o  indicate multiple of units are as follows: 
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Figure 3.-Fiber Reinforced Cylindrical Shells (2 of 2) 
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Figure 4.-Advanced Structural Panels 
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Panel length = 40 inches 

(a) Panel Geometry and Material Properties 

( L i n e s  r e p r e s e n t  
the  mid-pI a n e s )  

(b) Idealization Showing Offsets 

4 O f f - S e t  Nodes 

(c) Results 

Figure 13.-Effect of !Offsets-Hat Stiffened Panel 
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Figure 15.-Problems Illustrating Coincident Roots (1 of 2) 
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Figure 15.-Problems illustrating Coincident Roots (2 of 2) 



Figure 16.-Laminate Plate-Strip Element 
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Figure l7.-Beam Elements 
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Figure lI.-Oisplacements and Forces D u e  to Buckling Along Sides of the Plate-Strip Element 

I Figure 19.-Offsets and Global Axes for Plate-Strip Element 
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Figure 20.-ldealization of an Arbitrary Structure 

Figure 2l.--Ty;!:4 Stiffened Panel 
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+ 
T h i s  s u b s t r u c t u r e  is 
r e p e a t e d  as requ i r e d  

+ 

Figure 22.-Example of Open Structure With Repeated Substructures 

T o t a l  number o f  b l o c k s  = NB 
----I I C  I-- G o  1 umns 

Figure 23.-Stiffnes Matrix "S" for Open Structures With Rspeated Substructures 
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