
STATISTICAL EVALUATION
OF TIME SERIES

ANALYSIS TECHNIQUES

Prepared for:
NASA JOHNSON

SPACECRAFT CENTER
Under Contract

NAS 912902

(NASA-CR-134011) STATISTICAL EVALUATION
OF TIIE SERIES ANALYSIS TECHNIQUES
(Behavioral Technology Consultants,

Silver) 47 p HC $4.50 CSCL 06P

N73-30995

Unclas
G3/04 14602

Prepared by:
Vernon A. Benignus

BEHAVIORAL



TABLE OF CONTENTS

Page

INTRODUCTION

PURPOSE

PROCEDURES

General Spectrum Model . . .
Multiple Variable Prediction .
A Realization of the Multiple Method
Monte Carlo Runs
Period and Frequency Domains . .
Criteria of Performance ..... .

Criterion For Acceptance of a Peak . . . . .
A Method of Detecting Some Forms of Program Failure
Too Few or Many Peaks . . . . . . . . .
Multiple Correlation as a Criterion of Fit . .
Other Attempted Improvements . . . . . . ..
Period vs Frequency Domain . . . . . . . ..
Other Performance Characteristics . . . . .
Comparison to FFT . . . . . . . . . . ..
Amplitude Estimates . . . . . . . . . .
A New Program . . . . . . . . . . . .

CONCLUSION . . . . . . . . . . . . . .

APPENDICES

1. Listing of Program and Documentation of Use . .
2. Three Examples of Use of SPECT . . . . .

/

VOLUME II

15
. . . 18

... .23

. . . 24
* . . . 30

. . . 34
... 36
... 36

. . . 38
38

. . . . 43

44
. 45

1

2

2

RESULTS

2
4
9

10
12
13

15

. . . . . . . .

. . . . . . . .



LIST OF FIGURES

FIGURE PAGE

I Approximate Main Lobe Shape of a Spectrum Window . ... 5

II Normalized Plots of Probability of Periods . .... . 17

IiI Probability Distributions of Period Lengths . .. .. 20
(corrected and uncorrected)

IV Probability Distributions of Period Lengths . .... 22

V Period Discrimination at Various Levels of SNR . . .. 26

VI Multiple Squared Correlation as a Function of SNR and Number
of Periods . . . . . . . . . . . 29

VII Average Windows for the FFT and the NASA Multivariate
Program . . . . . . . . . . . . 37

VIII Distribution of Peak Amplitudes for Various Levels of SNR . 39

//



INTRODUCTION

It is frequently desirable to detect small changes or shifts

of frequency in circadian biological rhythms, especially where

there has been some alteration in extrinsic factors which might

influence such rhythms. One of the more useful methods employed

to analyze biological data for the detection and quantification

of circadian rhythms is some form of spectrum analysis (Frazier,

Rummel, and Lipscomb, 1968). In standard forms of spectrum

analysis, it is possible to resolve or discriminate between two

sinusoidal frequencies separated by Af where

Af 1 [1]

T

and T is the length of time of the time series record being

analyzed (Bendat and Piersol, 1966). Among the many problems in

biological data acquisition, one of them is that of obtaining

records of long duration. This implies that for most circadian

rhythm work Af, the resolution of the analysis program, will be

quite large, due to short time series records. This report is

an evaluation of and an improvement upon a spectrum analysis

model which achieves finer resolution than Af = 1/T by the use

of multiple least squares prediction models.
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PURPOSE

The specific purposes of this study were: (1) To further

evaluate a model for spectrum analysis, using a multiple re-

gression model, developed by Rummel (1971) and previously tested

in a preliminary way (Benignus, 1972); (2) To attempt various

modifications and improvements upon this model; and (3) To write

an improved program for this model. These objectives have been

met and the performance of the analysis model has been documented

and compared to the more standard FFT (Fast Fourier Transform) by

use of Monte Carlo techniques.

PROCEDURES

General Spectrum Model

The general model for a time series as expressed in the fre-

quency domain is

J
f(t) = K + E [ajsin(wjt) + bjcos (wjt)], [2]

j=l

(Bendat and Piersol, 1966), where w = 2rf, j is the frequency index,

O<j<J and k is the D. C. component of the mean of the data. The

usual approach to the spectrum analysis of f(t) is analogous to
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discrete Fourier analysis where the coefficients in 2 are esti-

mated by

T
aj = Z [f(t)sin(wjt)] [3]

t=O

T
bj = [f(t)cos(w.t)] , [4]

t=O j

where the carat indicates an estimate. It may be shown that equa-

tions 3 and 4 are univariate least squares estimates derived from

standard regression theory. These estimates of "real" and "imagin-

ary" amplitude (aj and bj, respectively) are usually combined

to yield

j = a2+ bj , [5]

the estimated power in frequency power in frequency band j or

Aj = / a.2  + 2 [6]

the estimated amplitude in frequency band j (Bendat and Piersol,

1966).

It may be shown that two estimates,Pj and P (j+l) are orthogonal

(uncorrelated) if their corresponding frequencieswj and
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w(j+l), or of course fj and f(j+l), are spaced such that Af = 1/T.

If, in the time series f(t) there exist two signals separated in

frequency by much less than &'f, then power estimates at those two

frequencies Pj and P(j+l) can be expressed as a continuous function

called a frequency domain or spectrum "window", the main lobe of

which is shown in Figure 1. The window function shows that for

any estimate, Pj, if f(t) contains a signal the frequency of

which can take on values of fj + l/T, then the value of Pj is a

function of the true signal frequency. Similarly, if two estimates,

Pj and P(j+l) were made at fj and f(j+l) as shown in Figure 1, and

there were two frequencies present in f(t) at fj and f(j+l), then

the two estimates would be nearly equal because data from the signal

at fj are included in Pj+i~ and vice versa.

Multiple Variable Prediction

Equations 13] and [4] are univariate prediction equations.

They are combined in (5) and (6) as a two variable prediction

scheme where the two variables are orthogonal. In usual multiple

regression, least squares prediction schemes it is possible to use

several predictors simultaneously to estimate the dependent

variable. In these cases the several predictors may or may not
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be correlated. However, when the predictors are highly inter-

correlated, estimates of each predictor's contribution, based

on separate univariate estimates, are very inaccurate (Draper

and Smith, 1966). When k nonindependent predictors are used

simultaneously to estimate a dependent variable, the contribution

of each is called the "partial regression weight." This

regression coefficient is a least squares estimate of the con-

tribution of a given predictor k with the effects of all the

other k-1 predictors "accounted for" or "statistically held

constant" (Guilford, 1950).

Instead of using univariate predictors such as [3] and [4] to

estimate the contribution of a sine/cosine pair of frequency j

to f(t), a multiple prediction scheme might be used. In a multiple

prediction scheme for estimation of aj one would not only use a

sine wave of frequency j but would include sine waves of several

different frequencies in a simultaneous prediction equation. For

example if a two predictor scheme were used, then a normalized

form of aj would be estimated using

Rdi - RdkRjk [7]

I - Rjk
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where the R quantities are Pearson product moment correlation coefficients

between the variables indicated in the subscripts and the three

variables involved are (1) the dependent variable, f(t) which is

identified by the subscript "d"; (2) the sine wave of frequency j,

the one whose contribution is estimated as a and (3) the sine wave

of frequency k, the other simultaneous predictor, the effect of

which is to be "controlled" or "accounted" for. Examination of

[7] reveals that not only is the relation of a sine wave of frequency

j to f(t) considered, R , but the relations of the other predictor
dj

wave to f(t) and the interpredictor relations are also considered.

Thus if R # O, as it will not be if Af<I/T, then this "overlap"
jk

will be considered in estimating aj. This multiple prediction

scheme is shown to have a higher resolution than equations [3] and

[4]. A similar procedure would be used for estimating bj, the cosine

components. When more than two predictors are used in a simultaneous

prediction scheme, matrix methods for estimating the contributions

of each predictor must be used as shown in [8] and [9].

The expression for the standardized regression weights in this

model is

=Rj-Rlj [8]
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where B is the standardized regression weight vector; Rjj is the

matrix of correlations among predictors; and R1. is the vector of

correlations between the predictors and the dependent variable, f(t).

The predictors in this model consist of sin and cos pairs at each of

K frequencies. Thus, if there are K frequencies, the order of

Rjj is J = 2K. The matrix of predictors consists of a J by N

matrix where N is the number of observations in f(t). The ampli-

tude estimates are computed from the J length vector B by first

converting each $ weight to a deviation score weight using

S1

j = 5 [9]

where S1 is the standard deviation of f(t) and Sj is the standard

deviation of predictor j, (.707). Then the sin/cos components

are combined according to

A = B2 + B2 [10]
i j+1

where Ak is the amplitude in frequency band K, Bj is the sin

component, and Bj+l is the cos component. Here k = j/2 where

j = 2,4,6,..,j.
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A Realization of the Multiple Model

The particular program in this study was designed along ti

lines of a multiple predictor least squares theme as outlined al

The procedure of the program is as follows:

(1) compute a spectrum using one frequency at a time as ii

equations [3] and [4] ;

(2) examine this spectrum to locate peaks which exceed a

statistical criterion of significance;

(3) compute a new spectrum where each frequency's

contribution, Aj, was evaluated with the contribution

of all other significant peaks held constant by the

use of multiple least squares prediction as shown in

equation [8] ;

(4) return to step (2) and continue to loop through the

procedure until no new peaks are found.

ihe

bove.

n

In addition to the above procedure, each time step (3) is

executed, the frequency value for the significant peaks is moved

up and down around the original value with the spectrum being

recomputed for each new frequency component. By moving the

significant frequency bands up and/or down around their original
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values, it is possible to attempt to optimize the fit of the

predictors to the empirical wave f(t). Optimization was carried

out by moving a frequency band, testing the spectrum result

using the new band for improved fit to f(t), continuing in the

same direction if improvement resulted or trying the other direction

if the fit was poorer. In this way each band in the multiple

prediction model was shifted around in frequency to optimize the

model's fit.

A computer program has been written to realize the multiple

regression model discussed above. The program consists of a

mainline calling IBM Scientific Subroutines (SS) computing

multiple regression.

Monte Carlo Runs

In order to evaluate the performance of the multiple predictor

spectrum analysis program it is necessary to analyze data which

approximate that on which the program will be used. Biological

signals which are subject to circadian or other periodic variation

can be modeled using a "source of variance" model such as

V(Total) = V(Periodic) + V(Unaccounted) [11]

where V(Total) is the total variance (or power) in the wave,
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V(Periodic) is that portion or component of the wave which is due

or correlated with such periodic components as diurnal cycling and

V(Unaccounted) are such sources of variation as short term

fluctuations due to stress, homeostatic fluctuation, and in general,

any source of variation not related to periodic cycles. In this

discussion V(Unaccounted) will be referred to as either noise or

error variance. The general effect of noise in the biological

signal is to "mask" the periodic component both with respect to

amplitude and frequency. This results in unreliable estimates

of variance in the power spectrum since, as with most transfor-

mations, the Fourier transformation has as much variance in the

resultant as in the original data.

In this paper data were constructed using [11] as a model.

The periodic component, V(Periodic), was simulated by generating

a sine wave of a particular frequency. The noise, V(Unaccounted),

was simulated by a white Gaussian noise generated by sampling

from a random number table (Rand Corp., 1955) which was punched

onto cards and loaded into a disk file. It is fully realized

that biological noise might not have a white spectrum or have

a Gaussian distribution. It is true, however, that the assumption

of white, Gaussian noise is usually made and it was felt that

11



the program should be evaluated on "fair" theoretical grounds.

When random noise is involved in data to be analyzed, it is

the long-range, average results which are of interest as well as

the variation around these averages. The variation around average

results is sometimes expressed as variance, error, confidence

intervals, failure rates, etc. In order to assess the program's

average performance and variance about these averages, a series

of records were generated according to [11] . For each of 100

records the noise was obtained by sampling from a unique section

of random number table. Each record had a length of 100 obser-

vations; the sinusoids which were used as the signals (sine waves)

were at various frequencies. Several SNR (signal to noise ratio)

levels were used.

Period and Frequency Domains

The theoretical relations worked out for spectrum analysis

are usually expressed in terms of the frequency of sinusoids.

It often becomes convenient for one purpose or another to express

rate of oscillation in terms of the length of one cycle (period

length). Spectra where estimates are spaced along equal incre-

ments of frequencies, Af, will be referred to as frequency domain

12



data. Spectra where estimates are spaced along equal increments

of periods, AP, will be called period domain data. Most of the

results of this study will be given in the period domain but

frequent comparisons and references will be made to the

frequency domain.'

Criteria of Performance

Several aspects of the performance of the spectrum analysis

program were used as criteria as follows: (1) finding the correct

frequency of the periodic components, (2) finding the correct

amplitudes of the periodic components and (3) program failure to

find too few or too many peaks. The average performance as well

as the variability about the averages is described for (1) and (2)

above and failure probabilities are given for (3).

On any given wave the program generates a spectrum which

shows significant amplitude peak(s). Due to the noise component

there is some error in the frequency of a peak. This error

(variability) is described in terms of the relative number of

times that the program made various degrees of error. There is

a probability of error for each particular degree of error and

13



and a graph of error probability vs degrees of error constitutes

the probability distribution of frequency errors. Optimally one

would want this distribution to be peaked around a mean of zero

(high probability of zero error) and to have a narrow width

(lower probability or error the greater the degree of error). This

probability distribution of frequency errors is analogous to a

frequency domain window except that it refers to probability of

errors in finding narrow peaks rather than amplitudes.

On any given analysis, the amplitude of any peak hopefully

approximates the correct amplitude of the signal but will frequently

be greater or less due to noise. In order to evaluate the vari-

ability around the correct amplitude the probability of an amplitude

estimate falling into a certain amplitude range or category can

be computed. Here a distribution of probabilities can be graphed

and it would be desirable for this distribution to be peaked

around the correct amplitudes (high probability of finding the

correct amplitude) and have a narrow width (lower probabilities

of finding amplitudes, the farther the value deviates from the

correct amplitude). This is essentially the sampling distribution

of amplitudes from which confidence limits would be computed.
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RESULTS

Criterion For Acceptance of a Peak

In the Rummel program an initial test is made on each peak

found in the univariate spectrum to decide whether or not a peak

is sufficiently large to be considered statistically significant

and hence retained as a predictor. Similarly, each time the

program attempts to optimize the period value of a particular

peak and a new optimized multiple predictor spectrum is computed,

each empirical peak found is again checked for significance. The

criterion used for acceptance or rejection of a peak as significant,

is the value of Student's t for that peak. Since the peak is

a regression coefficient, the significance of a regression

coefficient can be evaluated using a form of Student's t (Hays,

1963, p. 521). The particular form of t-test used here is

equivalent to

t = /t 2 + t 2 [12]

where ts is the t-value for the sine wave predictor at a particular

peak's period and t is the corresponding cosine predictor's

value. The criterion used for the univariate spectrum was

15



called CHEK and the criterion for the multivariate spectrum was

called CHEX.

The effect of various levels of CHEK and CHEX was evaluated.

The methods for evaluating these criterion levels were essentially

the same as in the previous work. Monte Carlo methods were used

with sine waves at two period lengths, 23 and 27, mixed with

Gaussian random noise. One hundred points were used in each

time series and 100 time series were used for the evaluation of

the program's performance. AP was set at 0.5. Performance was

evaluated at SNR (signal to noise ratios) of 1/.5 and 1/1.

For SNR 1/.5, there were very few differences in proba-

bility distribution for periods and none for probability or

failure across various values of CHEK and CHEX.

For a signal/noise ratio of 1/1 however, the differences

for various levels of CHEK, CHEX were more noticeable, but only

very extreme values were meaningfully different. Figure 2

shows the graphs for the four levels of CHEK, CHEX. Values for

CHEK, CHEX of (2.56, 2.56) yield a probability distribution

which indicated considerably poorer resolution than other values.
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The next poorest result is probably that yielded by CHEK, CHEX

values of (0.8, 0.8). While the other curves are only marginally

different, it would appear that the values of CHEK, CHEX of (1.95,

1.95) are best. Table 1 shows the probabilities of failure for

the various values.

Table 4

CHEX 0.80 1.00 1.95 2.56

0.80 0.18

1.00 0.18 0.37

1.95 0.12

Examination of this table verifies the above conclusions

suggesting that values of (1.95, 1.95) yield the lowest probability

of program failure.

A Method of Detecting Some Forms of Program Failure

It was observed in many of the Monte Carlo runs that the

program sometimes yielded spectrum results in which the sum of the

significant amplitudes was considerably greater than the total

amplitude of the original time function which had been analyzed.
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As usual, the time series were composed of the sum of the two

sine waves and white Gaussian random noise. In order to determine

what feature of the signals might have triggered this peculiar

failure, the signals of several of the successful runs and the

signals of several of the "failure" runs were plotted for in-

spection. From inspection of such records it was not possible to

deduce the causes of the failures.

Since the root mean squared (RMS) amplitude of the time

series wave is known, it is possible to compare the total of the

significant peaks against this value and reject erroneous results

even when the true nature of the time series data is unknown.

Thus, while this kind of failure occurs unpredictably, its

occurrence is at least detectable and the results can be dis-

regarded. It was therefore decided to recompute the operating

characteristics of the program by eliminating all spectra in

which the total of the significant peaks was 20% or more greater

than the RMS amplitude of the time series. The selection of a

20% cut point was entirely arbitrary.

After having eliminated cases of detectable failure, a new

period discrimination window was computed. Figure 3 shows the

19
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period discrimination window for SNR = 1/1 as reported in an

earlier interim report, as compared to the window obtained for

the same SNR, but with the deviant cases removed. It is readily

seen that there is better separation between the two periods, 23

and 27, with the deviant data removed. Apparently, those cases

were also deviant in that wrong periods were found. Of course,

the latter condition would not have been independently detectable.

Thus, by eliminating deviant cases, considerable improvement in

period discrimination has been attained.

In order to explore the operating characteristics of the

program further, period discrimination windows were computed for

SNR = 1/0.5, 1/1 and 1/1.5. The results are displayed in Figure 4.

As can be seen, when SNR = 1/0.5, the discrimination is excellent

and it remains reasonably good for SNR = 1/1. The discrimination

for SNR = 1/1.5, while still better than theoretically expected,

is not impressively sharp. It therefore appears that SNR = 1/1.5

is about as high an SNR time series as ought to be analyzed. Sub-

sequently presented data will bolster that conclusion.
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Too Few or Many Peaks

As discussed in previous reports, the program also sometimes

finds too many or too few peaks in the spectrum. This kind of

failure is not detectable, however, in "real world" situations

where the time series population is not known. Therefore, all

such failures, while detectable in a Monte Carlo study, must

still be included in the results.

Table 2 shows the probability of finding the wrong number

of peaks in the spectrum for three levels of SNR.

SNR p (failure)

1/0.5 0.00

1/1.0 0.05

1/1.5 0.61

Table 2. Probability of program
failure by finding wrong number
of peaks.

Comparison of Table 2 with results given in earlier reports shows

that substantial improvement has been made in the probability of

failures to detect the wrong number of peaks. This finding

supports the notion that the deviant cases which were eliminated

23



were deviant on other (but undetectable) grounds than that of

finding excessive total amplitude. While this is true for SNR = 1/0.5

and for SNR = 1/1, one cannot fail to be alarmed at the high (0.61)

probability of program failure for SNR = 1/1.5. Inspection of the

failures reveals that usually the program found one significant

period only. Modifications discussed in the next section however,

reduce these probabilities of failure even further.

Multiple Correlation as a Criterion of Fit

The original Rummel program not only uses a t-test criterion

to decide whether a peak is significant, it also attempts to

optimize the multivariate model by optimizing the value of t for

the particular peak being moved up or down in period. The program

was modified to optimize multiple correlation, the amount of variance

accounted for in f(t). The rationale for this change was that

possibly t-values for a given period band could increase while the

overall goodness-of-fit could decrease. Certainly it is possible

for one t-value to increase at the expense of another. At least

it was not clear that optimizing individual t-values was the best

approach.
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Period discrimination optimizing R2 rather than t was explored

through several Monte Carlo test runs. Figure 5 shows the results

of three such runs of one hundred segments each at SNR levels

of 1/0.5, 1/1, and 1/1.5. The two sinusoids had period lengths

of 23 and 27 respectively. These graphs should be compared to

the results for optimizing t, shown in Figure 4. It can be seen

that the curves for optimized R2 are generally smoother, but

not otherwise dramatically different in shape from those for

optimized t. R2 does achieve higher levels of probability for

detection of the correct peaks. This is due to a considerably

reduced rate of detectable program failure for optimized R2

which is discussed below.

One of the more prominent kinds of program failures for the

optimized t method was that of excessive amplitude estimates.

As for previous runs, it was arbitrarily decided that when the

total of the amplitude estimates for all significant peaks in

any given spectrum was 20% greater than' the amplitude of f(t),

the result would be declared a program failure and the data not

included in further performance characteristics. Table 3 shows

the probabilities for this kind of failure (which is detectable

in real data cases) for three levels of SNR. Data for both methods

are given.
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1/0.5 .17 .05

1/1.0 .27 .08

1/1.5 .05 .17

Table 3. Probability of program failure by finding
excessive total significant peak amplitude.

It is noteworthy that optimized R2 produces lower proba-

bility of failure for all SNR levels than optimized t, except

for SNR = 1/1.5.

Another kind of program failure, which is not detectable in

a real data case, is that of finding too many or too few signifi-

cant peaks. Table 4 shows the probabilities of this kind of failure

for the two methods at three levels of SNR. Here, it is seen that

optimized R2 is higher at SNR = 1/0.5. Quite possibly, when SNR is

known to be low, t-values ought to be optimized rather than R2.

Even so, optimized R2 exhibits a relatively low probability of

failure, even for SNR = 1/0.5.

27
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nnotm1ped R2

1/0.5 0.00 0.03

1/1.0 0.05 0.02

1/1.5 0.61 0.11

Table 4. Probability of program failure by finding the
wrong number of peaks.

Estimation of SNR from the Data. Multiple squared correlation, R2,

is obviously related to SNR and can be computed from the data.

Figure 6 shows a plot of mean R2 values obtained for Monte Carlo

runs using four levels of SNR. It is quite apparent that R can

be used to estimate SNR. When only one sinusoid was used in a

Monte Carlo run with SNR = 1/1, R2 was as shown by the asterisk

in the plot. For the two sinusoid case, the RMS value of the

signal component was higher than for the single sinusoid case

and so the effective SNR would be lower. When this is considered,

all points would lie close to the plotted line.
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Other Attempted Improvements

Several other attempts were made to improve the search

routine for the best fit. None of these proved to be clearly

superior across the board. Some of the attempts will be described

below.

Rather than moving each peak up and/or down only once before

computing the whole spectrum anew, using a multi-prediction

scheme, it was decided to run through the entire sequence of

moving each peak several times. The rationale was that it

was possible to affect the optimal value of one peak by moving

another since these predictors interact. Looping through

the peak-shifting algorithm a number of times did indeed alter

specific results, sometimes for the better, sometimes for the

worse. The overall long run result showed no improvement however.

Rather than shifting a peak only one increment of AP it

was decided to optimize the model in two or more stages before

computing the whole spectrum. The first stage was as usual,

shifting peaks by one increment of AP. The second stage began

at the shortest period and shifted each peak by two increments

30



up and/or down in an attempt to optimize R . The third stage

shifted by three increments of AP, etc. This technique showed

some small improvements for a two stage process, but the

advantages were very small and tenuous.

Several combinations of the above procedures were attempted

with generally similar results. It was finally decided to use a

simple one-pass search algorithm as used in the original Rummel

program except to offer the alternative of optimizing R2 instead

of t-values.

One method of analysis which was attempted yielded ambiguous

results. Rather than entering only significant peaks into the

spectrum analysis model, it was attempted to enter all frequencies

in the spectrum simultaneously. The rationale for this procedure

was that in this way all interpredictor correlations would be

accounted for simultaneously and the optimization routine might

be avoided. In terms of equation (8), there would be J = 2k estimators

or k frequency bands in the whole spectrum, all k of them entered

simultaneously.

There were immediate and serious problems with this technique
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even when f(t) consisted of two sinusoids without noise.
1

When Af was set at 10T and there were as few as 10 frequency

bands in the spectrum, the determinant of Rj was zero. With

fewer than 10 bands, the determinant was very small, approaching

zero as the number of bands approached a limit of 10. Similar

results were obtained with other values of Af.

It was initially expected that the determinants would be

small, due to the large correlations among predictors. It was

not anticipated and is not presently clear why the determinant

should ever equal zero. Apparently as the determinant approaches

zero, the machine accuracy eventually truncates the value to zero.

This possibility was substantiated by using a double precision

program, where it was possible to enter a few more variables than

with single precision.

If this problem had been the only difficulty, it might

still have been possible to test this model, at least for narrow

spectrum ranges. However, even where the spectrum range was re-

stricted so as to obtain non-zero determinants of Rjj, some

insurmountable problems remained. As long as Rjj was not

singular and as long as f(t) was not noisy, the program provided

accurate spectra. When even a slight amount of noise was added
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to f(t), however, the spectrum estimates were exceedingly large

and bore little relation to expected results. It was not entirely

clear why this result should occur, but the hypothesis was made

that the model was grossly "overpredicting" f(t). When the

number of predictors becomes large and when these predictors

are highly correlated regression weights may become quite large.

The scalar expression for the two predictor standard regression

coefficient illustrates this:

rO,1 - ro,2rl,2
B1 = 1 - r [13]

1,2

where variable zero is the dependent variable and variables 1 and 2

are predictors. Now

Lim. B1

1,2 [14]

This conclusion may be phrased more analogically and in-

tuitively. The program is attempting to predict the random noise

in f(t) by adding all the sinusoids at its disposal. Sometimes

the resulting S values are very large.

The above explanation is still speculative because no proofs

were performed, but it is considered plausible. The warning
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should also be clear. When Af becomes small, too many predictors

can result in nonsensical results. It is not clear how many

estimators may be used for any given Af. It is apparently

reasonably safe to use two estimators when Af is as small as
1
5T because these were values used in earlier reports.

At this point it was decided to abandon this particular effort

in favor of other approaches described below. The effort was

obstructed because of mathematical limitations on the model.

The above results were obtained when estimators were spaced

at equal AP or equal Af intervals.'

Period vs Frequency Domain

Theoretical treatment of spectrum analysis is most often

expressed in the frequency domain. An attempt was made to document

the performance of the multiple predictor model of spectrum

analysis in the frequency rather than the period domain. Again,

non-noisy sinusoids were used to test the program. The results

were dismayingly close to correct, but the program could not be

made to find the correct frequency bands. The results would

invariably be a spectrum of two peaks with non-zero estimates

around the peaks. Furthermore, the peaks were invariably
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exactly two Af increments above or below the correct value. This

was no fault of the regression computations because when the correct

values were forced and the program was not allowed to search,

the amplitude estimates were exactly correct; all other estimates

were zero; and the multiple correlation coefficient was one.

After testing an exhaustingly long list of possible expla-

nations for this error, it was decided to space the predictor

waves unequally in the frequency domain, that is Afl<Af2<Af3 .. .. .. ..

Under these circumstances the program worked perfectly for the

no-noise case. It became obvious that the period domain would

provide superior results because of the unequal spacings

which it provides in the frequency domain. Inspection of the

program's search attempts, when equal Afs were used, revealed

that as the selection procedure began with a frequency reasonably

far removed from the correct value and approached the correct

band, the criterion for optimum value (the t-value) would

appropriately increase. However, superimposed upon the increasing

t-value trend was an oscillation such that some steps made more

improvement than others. If fo was the correct band and the search

was approaching from f4 downward, t<t <tt2 as would be expected.
4 32
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However, t2>tl and although t0<tl, the program stopped the

search because a maximum value of t had passed. At this point
1

it was decided to continue working in the period domain when Af<T.

When using R2 as an optimization criterion, rather than t, as

discussed above, the results were quite different. The program

found the correct frequencies without problem with approximately

the same performance as documented previously. This finding rein-

forces the use of R2 rather than t.

Other Performance Characteristics

Using the final version of the program, which optimized R2

and rejected obviously erroneous results, further operating

characteristics were documented.

Comparison to FFT

Performance of the multiple prediction program was compared

to that of the more classical FFT and the results were as expected.

Figure 7 shows the performance of the two programs when there was

one frequency in f(t) and no noise. Quite clearly, while the FFT

meets theoretical expectations, the multivariate program is superior.
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Fig. 7 Average windows for the FFT and the NASA multivariate program.
It should be pointed out that the NASA window demonstrates the probability
of line-spectrum results falling within a certain frequency range, whereas
the FFT window is simply the average of many windows. This is because the
FFT never yields a line-spectrum result when estimates are spaced at 1/8T.
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Amplitude Estimates

Figure 8 shows the probability distribution for three levels

of SNR. It is noticed that all of the distribution have maxima

near the correct value of the signal (10). Thus the program appears

to provide unbiased estimates. Also the probability of correct

estimates increases as an inverse function of noise.

A New Program

Using the improvements which were devised, a new multivariate

program was written. The program, called SPECT, was written in

Fortran IV, using only the most generally available features of

the language. Thus while some aspects of the program are somewhat

awkward, such as if statements rather than logical statements, the

program is less machine dependent. The program makes use of exten-

sive comment cards for documentation.

SPECT is written in modular form using IBM scientific sub-

routines for many of the modules. These subroutines are well

"de-bugged" and reduce the probability of programming errors. Other

modules were written especially for SPECT.
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Figure 8. Distribution of peak amplitudes for various levels of SNR.
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SPECT can be used in any one of three modes and either in

the frequency or time domain. By simply selecting control card

parameters, SPECT will either (1) compute an optimized spectrum

using either R2 or t as a criterion, (2) compute a multiple estima-

tor special model where specific period frequency bands are en-

tered by the user, or (3) compute a simple univariate amplitude

spectrum. The above three options can be performed in either

the Frequency or Period domain.

There are two ways that the user can enter the spectrum

limits and values. He can read in the longest period value, AP

and the number of bands in the spectrum and let the program

generate the appropriate values, or he can choose to read in the

value of each period individually. The latter provides the

ability to perform specially spaced spectra. Of course, if the

program is performing a frequency domain analysis, then the

frequency band values are read in.

Documentation on the output (printer) is automatically

appropriate to the domain of the analysis. Output printing of

numerical results is controlled by a three-level control digit

so as to either (1) print out only final results; (2) print out
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final and intermediate search results; and (3) print out final

results, intermediate results plus all matrices, correlations,

determinants, etc. All numeric output is inhibited by a fourth

level. "Dot plot" graphs are also available under a two-level

control, the levels of which correspond to levels 1 and 2 of

the numeric output control. All plots may be inhibited by a

third level.

The program examines the final results as well as inter-

mediate results, for all of several possible program failures and

unreasonable results. Frequently, a suggestion will be printed

along with the warning that the result might be unreasonable.

Some types of program failure are documented, b-ut no output

is permitted.

A complete listing of the program SPECT is provided in

Appendix I. This listing gives ample documentation of the

program's operation and complete instructions as to its use.

About 300K of core requirements can be greatly reduced by re-

ducing the dimensions of the job. Presently the program can

handle an f(t) length of 300 observations and can compute a
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spectrum with 50 period/frequency bands.

Appendix II gives example runs for each of the several

options available. These include execution times.
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CONCLUSION

The report contains documentation on the performance of

an improved version of the NASA multivariate spectrum analysis

program which was written by John A. Rummel. It is shown that

the general method of multivariate spectrum analysis is superior

to the standard FFT in resolution.

Also included in this report are various other modifications

and efforts which were for some reason rejected. The appendices

contain listings of a new, highly flexible modular program

written by the contractor, as well as several examples of its use.
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