
NASA CR-134472

NAS IS DATA BASE MANAGEMENT SYSTEM - IBM 3601370 OS MVT IMPLEMENTATION

III - DATA SET SPECIFICATIONS

AASA-CR-134472) NASIS DATA BASE N73-31134

HAAGEMENT SYSTEM - IBM 360/370 OS MVT

IMPLEMENTATION. 3: DATA SET
(Neoterics, Inc., Cleveland, Ohio.) Unclas

202 p HC CSCL 09B G3/08 13772

NEOTERICS, INC.

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

NASA Lewis Research Center

Contract NAS 3-14979

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA CR-134472

4. Title and Subtitle NASIS DATA BASE MANAGEMENT SYSTEM - IBM 5. Report Date

360/370 OS MVT IMPLEMENTATION September 1973
III - DATA SET SPECIFICATIONS 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

None

10. Work Unit No.
9. Performing Organization Name and Address

Neoterics, Inc. 11. Contract or Grant No.

2800 Euclid Avenue NAS 3-14979

Cleveland, Ohio 44115 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address . Contractor Report
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546

15. Supplementary Notes

Final Report. Project Manager, Charles M. Goldstein, Computer Services Division, NASA Lewis

Research Center, Cleveland, Ohio

16. Abstract

The NASIS development workbook contains all the required system documentation. The workbook

includes the following seven volumes:

I - Installation Standards (CR-1344'70)

II - Overviews (CR-134471)

III - Data Set Specifications (CR-134472)

IV - Program Design Specifications (CR-134473)

V - Retrieval Command System Reference Manual (CR-134474)

VI - NASIS Message File (CR-134475)

VII - Data Base Administrator User's Guide (CR-134476)

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Unclassified - unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages

Unclassified Unclassified 201

* For sale by the National Technical Information Service, Springfield, Virginia 22151

PAGE 2

TABLE CF CONTENTS

TOPIC A - MT/T

A.1 MODTAB - Transient Module Name File 4

A.2 ESDTAB - External Symbol File. 6

TOPIC B - DATA BASE EXECUTIVE

B.1 DBPL/I Diaqnostics 8
B.2 DBPL/I-DBPAC Interface 14
B.3 DBPAC Error Codes.. 17

B,4 Mainline File Contrcl Block. 24
P.5 List (SCB) Structure 28

B.6 List Error Control Block 29
B.7 Descriptor Descriptor File 31

B.8 DBPL/I-DBLIST Interface. 59

B.9 Sets Information File. 61
B.10 Set File 62

TOPIC C - UTILITIES

C.1 NASIS.USERIDS, 63

TOPIC D - MAINTENANCE

D.1 DBLOAD Error Codes Table 64
D.2 TRNSCT Descriptors 65

D.3 CORRECT Data Display Format.. 67

D.4 DBLOAD Error Data Set. 69
D.5 Inverted Index Forrat. 70
D.6 Descriptor Editor tata Display Format. 72
D.7 Descriptor Editor Field Name Display Format. . 74
D.8 DBLOAD Input Data Set, 76
D.9 Descriptor Editor listing Format 77
D.10 INVERT Restart File.79

D.11 INVERT SORTIN File 80

D.12 INVERT SORTOUT File. 81
D.13 INVERT PLEX File 82

D.14 INVERT RANGE File. 83

D.15 Descriptor Editor Checkpoint 84
D.16 MERGE INDEX File 86
D.17 Descriptor Editor FEVIEW isplay Forat. . . . 87
D.18 Descriptor Editor DEFIELD Structure. 90
D.19 Descriptor Editor LERECSEC Structure . . , . . 92
D.20 Descriptor Editor pESECUR Structure, 94
D.21 Descriptor Editor DESUPER Structure 96
D.22 Descriptor Editor EEVALIE Structure. 98

D.23 Descriptor Editor DEFLD Structure.100
D.24 Descriptor Editor DEXINIT103
D.25 Descriptor Editor tEX Structure.104
D.26 Descriptor Editor EHDR Structure.113

PAGE 3

D.27 CARDIN Freeform Parameter file115
D.28 PRTOUT Print File.116

TOPIC E - TERMINAL SUPPORT

E.1 TSPL/I Diagnostics117
E.2 Terminal Control Block120
E.3 TSTEXT-TCB Declaration124

TOIC F - DATA RETRIEVAL

F.1 RETDATA - Retrieval Data Tle.128
F.2 EXPAND Display Format.129
F.3 SELECT Display Format.131
F.4 DISPLAY Display Format133
F.5 PARSED Table, 137
F.6 SETS Display Format.141
F.7 Retrieval Transient-Module Interface143
F.8 PRINT Data Set Format.146
F.9 EXPTAB - Expand Term Table150
F.10 FLDTAB - Field Name Table. 152
F. 11 FORMATS Display Format156
F.12 SETAB - Sets Table157
F.13 USERTAB - User Data Table.. , .159
F.14 EXPLAIN Display Format162
F.15 SPRNTAE - Print Parameters163
F.16 SEQFORM - Sequential Format Table165
F.17 VALUTAB - Linear Search Value Table.167
F.18 SRCHTAB - Linear Search Table,169
F.19 COLFORM - Columnar Format Table172
F.20 FIELDS Display Forrat.174
F.21 S#ENTRY - Pseudo-set Expression Table. . . .175

7.22 ENTRYDEF - Pseudo-set Information Table. . . .176

TOPIC G - USAGE STATISTICS

G.1 STATIC Descriptors179
G.2 Maintenance Report Format..188
G.3 Retrieval Report Format. 190
G.4 Snapshot Report Format192

TOPIC H - IMMEDIATE COMMANDS

H.1 NASIS Message ile 194
8.2 Strategy Data Set. 195
8.3 Strategy Display Format.196
H.4 Strategy Names Display Format ,197

H.5 User Profile Table198
8.6 User Profile Data Set.199
8.7 VERBTAB - Command Table..200

PAGE 4

TOPIC A.1 - MT/T

A. DATA SET NAME:

MODTAB - Module Table File

B. CREATED BY:

DBMTAB - Utility Module

C. TYPE OF FILE:

Non-Data Base File

D. ORGANIZATION:

Sequential

E. KEY IDFNTIFIEP:

Not Applicable

F. RECORD LENGTP:

Fixed, 36 bytes

G. BLOCKING FACTOR:

360 bytes per block

H. PURPOSE:

This file is an ordered table of transient module
information. Each record contains the entry point name
used by the NASIS programs for the call-by-name of
transient modules, the maximum time (in milliseconds)
that a module can occupy a region of the overlay, the
relative offsets of the module for each region (1, 2,
or 3 in number), some ccntrol bytes allowed for to be
used at execution time, and the segment numbers for the
module in each of the regions. MODTAB file is read at
NASIS initialization. The first record of this file
contains control information ccncerning the rest of the
file: the number of remaining MODTAB records and the
number of regions processed; these counts are the first
and second full-words of the first record. The other
records are defined in the next section.

I. PL/I DECLARATION:

DECL APE
1 ODATA, /*A MCDTAE FECORED /

PAGE 5

2 MODULE CHAR8), /*TRANSIENT MODULE NAME*/
2 TIME FIXED BIN(31,0), /*MAYIMUM PESIDENT TIME*/
2 OFFSET(3) CHAR(4) , /*CFFSETS FOP 3 REGIONS*/
2 X FIXED BIN(31,O), /*SOME CONTROL BYTES */
2 Y CHAR(2), /* FCR MONITOR USAGE */
2 W CHAR(1), /* AT EXECUTION TIME */
2 U CHAR(1), /* ALLOWED FOR HERE */
2 SEGS CHAR(3), /*EYTE / SEGMENT NUMBER*/
2 END CHAR(1); /*PAD TO FUIL-WCRD */

PAGE 6

TOPIC A.2 - MT/T

A. EATA SET NAME:

ESDTAB - Composite ESD Table File

B. CREATED BY:

tBTABLE - Utility Module

C. TYPE OF FILE:

Non-Data Pase File

D. ORGANIZATION:

Seguential

E. KEY IDENTIFIER:

Not Applicable

F. RECORD LENGTR:

Fixed, 32 bytes

G. BLOCKING FACTOR:

Unblocked

H. PURPOSE:

This file is a sorted table of all external symbols
within the NASIS load module's composite ESD: it is
generated by a stand-alone utility module DBTABLE. It
is then processed by ~PMTAB to generate the MODTAB
file; ESDTAB is also used at execution time by the
EBCALL module to perform the call-by-name function
within NASIS. The first record in this file contains
control information concerning the rest of the file: 2
full-words of zeroes (unused), 4 bytes containina the
total number of remaining ESrTAB records, 4 bytes
containing the number of segment 1 type ESDTAB records
within the file, and 4 full-words of zeroes (unused).
The other records are defined in the next section.

I. PL/I DECLARATION:

DECL ARE
1 ESEATA, /*AN ESDTAB RECORD */

2 NAME CHAR(8), /*EXTERNAI SYMBOL NAME */
2 TYPE CHAR(1), /*TYPE OF SYMBOL 9/

PAGE 7

2 OFFSET CHAR(3), /*EEX. OFFSET IN MODULE*/
2 SEG# CHAR(1), /*SEGEENT NUMBEfR *
2 DATA CHAR(3), /*OTHER ESD DATA */
2 FILL CHAR(16); /* PAD (UNUSED)

PAGE 8

TC~EC B.1 - DATA BASE EYECUTIVE

A. DATA SET NAME:

DBPL/I Diagnostics

B. CREATED BY:

EB Preprocessor Function

C. TYPE OF FILE:

(4) Table

D. ORGANIZATION:

Keyed list

E. KEY IDENTIFIER (CONTROL FIELE):

Each diagnostic comment has a five-character
identification key having the form: DBnnn, where nnn
is a unique identificaticn number.

F. RECORD LENGTH:

Variable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

DBPL/I Diagnostic Comments are cenerated into mainline
source programs by the EB preprocessor function (see
Section IV, Topic B.1 of the DWE).

I. DBPL/I DIAGNCSTIC COMMENTS:

DB00 1 INITIALIZATION COMPLETE.

Informative - the % INCLUDE DB statement has been
successfully processed.

PAGE 9

DBOD2 'DB' FCUND WITHOUT APGUMEN. IT IS A RESERVED
IDENTIFIER.

Severe error - a DB preprocessor function reference
has no parenthesized argument.

DB03 MISSING LEFT PARENTHESIS.

Severe error - a DB preprocessor function reference
does not begin with doutle left Farentheses.
Processing of this DB reference was abandoned because
the closing right parenthesis would not be able to be
found.

DB004 ARGUMENT ABANDONED. TCC MANY EEPI/I EEOBPS.

Error - more than four errors have been noted from
one DB preprocessor function reference so it is being
abandoned. This diagnostic may arise when the right
parenthesis are missing at the end of the argument
(PL/I passes the remainder of the source program to
the DB function).

DBC05 EXTRANEOUS TEXT IGNOBEr.

Error - if this message immediately follows DB009,
then the statement has been processed properly but
additional clause(s) cther than comments intervene
before the semicolon. Verify that the statement has
its own semicolon. If this message fcllows a
diagnostic other than DBO09, it means merely that
part of the statement was ignored.

DBC06 MISSING SEMICOLON OR CCION. 'text'

Severe error - the richt rarenthesis at the end of a
DB preprocessor function reference has been
encountered unexpectedly. The label or statement
"text" shown was ignored.

DB07 MISSING SEMICOLON. 'text'

Severe error - the right parenthesis at the end of a
DB preprocessor function reference has been
encountered unexpectedly. The statement "text" shown
was ignored.

DBC09 DBPL/I STATEMENT: 'text; comments'

Informative - a non-null statement has been found.
The "text" shown is the statement as internally
rearranged into a standard format without embedded
comments for further analysis. The "comments" shown

PAGE 10

are those extracted from the statement.

DE011 STATEMENT FOLLOWS FINISH.

Severe error - the statement has been ignored because
it follows the DB((FINISH;)) reference,

DB013 STATEMENT HAS 'n' MORE LEFT PAPENTHESES THAN RIGHT
PARENTHESES.

Severe error - the statement semicolcn has been found
but the parentheses are unbalanced. The statement
was ignored.

DBC15 UNKNOWN STATEMENT KEYWCRD: 'word'.

Severe error - the 'word' shown is not the first word
of a DBPL/I statement. The statement was ignored.

DB017 INVALID LISTERCOR ACTICN.

Severe error - an CN LISTEPRCE statement was ignored
because its action clause was neither SYSTEM nor GO
TO.

DB019 INVALID ERRCRFILE.

Severe error - an ON ERRORFILE statement was ignored
because its filename was longer than eight characters
or was not terminated by a right parenthesis.

DEC21 INVALID ON CONDITION.

Severe error - an ON statement was ignored because it
was neither ON LISTERROR nor CN ERRORFILE. These are
the only ON statements recognized by the DB
preprocessor function.

DBC23 MISSING LIST POINTER.

A GET LIST or PUT LIST staterent was ignored because
it did not contain a reouired parenthesized list
pointer.

DB025 INVALID GET LIST CLAUSE.

Severe error - a GET LIST statement was ignored
because it did not contain either a KEY(O) or a KEY
INTO clause.

DB026 INVALID PUT LIST CLAUSE.

Severe error - a PUT LIST statement was ignored

PAGE 11

because it did not contain required INTEBNAL KEY FPOM
clauses.

DEC27 INVALID FILE.

Severe error - a statement having a FILE clause was
ignored because its filename was lcnger than eight
characters or was rct terminated by a right
parenthesis.

DB028 MISSING LIST.

Severe error - a SET statement was ignored because it
did not contain a required LIST clause.

DBC29 MISSING FILE.

Severe error - a statement that should have a FILE
clause was ignored because it did not have one.

DE030 MISSING SIZE.

Severe error - a SET LIST statement was ignored
because it did not contain a required SIZE clause.

DB31 INVALID ON ACTION.

Severe error - an ON EBRORFILE statement was ignored
because its action clause was neither SYSTEM nor GO
TO.

DB032 MISSING 'LIST' OP 'KEY' CLAUSE.

Severe error - a GET FILE statement was ignored
because it did not ccntain either a LIST or a KEY
clause.

DB033 MISSING FIELD CLAUSE.

Severe error - a statement that should have a FIELD
clause was ignored because it did not have cne.

DB034 MISSING 'LIKE LIST'.

Severe error - a SET LIST SIZE statement was ionored
because it did not contain a required LIKE LIST
clause.

DBO35 MISSING INTO.

Severe error - a GET FIELD statement was ignored
because it did not contain a required INTO clause.

PAGE 12

DB037 MISSING FROM,

Severe error - a PUT cr REPUT statement was ignored
because it did not contain a required FROM clause.

DB039 MORE ITEMS THAN FIELDS.

Severe error - excess INTO or FROM items in a GET,
PUT or REPU FIELD statement were ignored.

DBO41 MORE FIELDS THAN ITEMS.

Severe error - excess fieldnames in a GET, PUT or
REPUT FIELD statement were ignored because the INTO
or FROM clause has too few items.

DE043 INVALID OPEN CLAUSE.

Severe error - an OPEN statement has been abandoned
because one of its sutstatements has an invalid or
out of crder FILE, TITIE, access or function
clause.

DBO45 INVALID READ OPTION(S).

Severe error - a READ statement has been ignored
because it has an invalid cr out cf order
file-positioning or NOLOCK option.

DB047 INVALID CLOSE SYNTAX.

Severe error - a CLOSE statement has been abandoned
because one of its substatements has an invalid or
out of order FILE or EPASE clause.

DBC49 MISSING FROM.

Severe error - a WRITE statement has been ignored
because it did not contain a reauired FROM clause.

DB051 MISSING KEYFROM.

Severe error - a LOCATE statement has been ignored
because it did not contain a required KEYFROM
clause.

DB053 LIST OPTION MISSING.

Severe error - a FREE statement has been ignored
because it did not contain a required LIST option.

DB055 INVALID LIST.

PAGE 13

Severe error - a FREE LIST statement has been ignored
because it did not ccntain a parenthesized set of
list-pointers.

DEC57 'filename' FILE HAS STATEMENT LIAGNOSTIC(S).

Severe error - the FINISH statement has not generated
a Mainline File Control lecck declaration (see
Section III, Topic B.4 of the DWB) for the 'filename'
shown because errors in its use have been previously
detected. Note that a missing MFCB declaration will
yield "undefined qualified name" diagnostics from the
PL/I compiler for correct DBPI/I statements usina the
'filename'.

DBC59 'filename' FILE HAS NCN-INPUT USE(S).

Informative - the 'filename' shown has a use that may
conflict with the INPUT file function attribute.

DB61 'filename' FILE HAS NON-OUTPUT USF(S).

Informative - the 'filename' shown has a use that may
conflict with the OUTPUT file function attribute.

DBC63 'filename' FILE HAS NON-UPDATE USE(S).

Informative - the 'filename' shown has a use that may
conflict with the UPDATE file function attribute.

DB065 'filename' FILE REOUIRES UPDATE ATTRIBUTE,

Informative - the 'filename' shown has a use that
requires the UPDATE file function attribute, but this
compilation does not contain a valid OPEN...UPDATE
statement for the 'filename'.

DB067 'n' DBPL/I ERRORS.

Informative - the FINISH statement has been processed
and 'N' errors were previcusly detected. The
programmer should find and analyze the 'N' DBPL/I
diagnostic comments.

PAGE 14

TC1C B.2 - DATA EASE EXECUTIVE

A. EATA SET NAME:

DBPL/I - DBPAC Interface

B. CREATED BY:

DB Preprocessor Function

C. TYPE OF FILE:

(4) Table

D. ORGANIZATION:

Documentary Table

E. KEY IDENTIFIER (CONTROL FIELE):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The DBPL/I - DBPAC Interface (see Table 1) specifies
the PFCB.STATEHENT.OPERATION code, DEUAC entry point
name, and argument types and order for the various
DBPL/I statments and substaterents. Thus, it serves to
specify for the DB preprocessor function (see Section
IV, Topic B.1 of the DWB) what MFCB assicnments and
CALL statements are to be generated for each DBPL/I
statement. Conversely, it specifies for DEPAC (see
Sectiion IV, Topic B.2 of the DUB) what entry points
will be entered and what and how information will be
available at execution time fcr the performance of the
various statement actions.

The various entry points and their argument types are
declared by source code in SOUBCE.LISRMAC member
DBTEXT. Any program that includes the DB preprocessor
also is given DBTEXT by an INCLUDE statement in DE.

PAGE 15

TABLE 1.

ROUTINE OPTION OPERATION ENTRYPOINT ARG-1 ARG-2

SS CLOSE 00010000 rEPACFV f
SS CLOSE ERASE 00011000 DBPACFV f
SE GET FIELD 01100000 rEPACFV f v
SE GET INTERNAL FLD 01100100 UBPACFV f r

GET INDEX KEY 01100001 ErPACFV f v
GET KEY SET 011o0000 EBPACFP P v
GET SUEFILE KEY

SET 01010001 rEPACFP f v
GET LIST SET 01010000 DBFACFF f p
GET INDEX LIST

SET 01010001 EPACFP f p
GET SUBFILE LIST

SET 01010010 DBPACFP f p
GET RECORD 01000000 ECPACFE f r
LOCATE 11010000 DEPACFV f v
LOCATE SUEFILE 11010010 EBPACFV f

SS OPEN 00100000 DrPACFV f
SE PUT FIELD 10010000 EBPACFV f v

READ KEY 11100000 DBPACFV f v
READ KEY NOLOCK 11100100 DBPACYV f v
READ INDEX KEY 11100101 DEPACFV f v
READ SUEFILE KEY 11100010 DBPACFV f v
READ SUBFILE KEY

NCIOCK 11100110 EBPACFV f v
READ PER SUPPFILE 11101010 DBPACFV f v
READ PER SUFFILE

NCIOCK 11101110 DBPACFV f
READ LIST 111C1000 DEPACFF* f p
READ LIST NOLOCK 11101100 DFPACFP* f p
READ seq. 11110000 DBPACFV f
READ seq. NOLOCK 11110100 DBPACFV f
READ INDEX seq. 11110101 DBPACFV f
READ SUEFILE seq. 11110010 DEPACFV f
READ SUBFILE seq.

NOLOCK 11110110 DEPACFV f
READ BACK 11111000 DEPACFV f
READ BACK NOLOCK 11111100 EBPACFV f
READ INDEX BACK 11111101 DBPACFV f
READ SUEFILE BACK 11111101 rBPACFV f
READ SUEFILE BACK

NOLOCK 11111110 EEBPACFV f

SE REPUT FIELD 10100030 rBPACFV f v
UNLOCK 11000000 DEPACPV f
UNLOCK SUEFILE 11000010 DEPACFV f
WRITE 10000000 DEPACFF f r

PAGE 16

SS = substatement
SE = statement element
f = filename
p = list pointer
r = record work area
v = character strinq

*For READ LIST <NOLOCK> with the KEY (nn) clause, use
entry point DEPACPF and a fullword subscript value as
the third argument.

PAGE 17

TOFIC B.3 - DATA BASE EXECUTIVE

A. DATA SET NAME:

DBPAC Error Codes

B. CREATED BY:

NDBPAC posts in HFCB.ERRCR.ONCCDE.

C. TYPE OF FILE:

(4)Table

D. CRGANIZATION:

Sequential

E. KEY IDENTIFIER (CONTROL FIELD):

Error-code

F. RECORD LENGTH:

Not Applicable

G, BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

When any programs are written to interface with the
NASIS system, they usually involve some type of
interaction with the data base.

The data base executive was writter with the intent of
handling all such data base interfaces with the users
cf the NASIS system.

This is handled by the user writing a PL/I program and
in it using the DBPL/I language extension to handle all
of the input/output orerations to the data base.

The data base executive has cceplete error detection
and notification facilities built into it. Therefore,
when the user's proqrar is running, the data base
executive will attempt to detect any and all errors
which occur and communicate these errors back to the
user's program.

The method of performing this communication of errors

PAGE 18

is through the use of the data base executive error
codes. These are fixed .binary numbers which have
unique meanings and are transmitted tack to the user's
program using the MFCB (rainline file ccntrol block) as
a vehicle of communication. The various error codes
which exist and their meanings are discussed in the
following table:

ERROR
CODE EXPLANATION OF ERROR
---------------------- -------------- - - - - - - -

C01 Illegal attempt to imply open.

03 Tried to imply an cpen on a new file-name without
the use of an open command.

20 Trying to open a file when the header descriptor's
DESCOK switch is off.

21 Trying to open for CUTPUT or UPDATE and the file
is not the anchor or an associate or a descriptor
file.

22 End-of list (READ LIST Statement).

23 Number of files exceeds the number allowed in the
MFCB file array.

25 The user is not the owner of the file, but he is
attempting an open for UPDATE or OUTPUT.

26 Attempted open of the file for INPUT, the DATA
switch indicates no data.

27 Open attempted but its function was not INPUT,
OUTPUT, or UPDATE.

28 Open issued for UPDATE or CUTPUT was prohibited by
the MNTNING, NNTNABLE, or the DATA switch.

29 Operaticn code unsupported.

30 Operaticn code error.

31 Key field failed general validation (READ KEY or
LOCATE).

32 Key field failed specific validation (READ KEY or
LOCATE).

34 Erase attempted on CLOSE but the file is not open
for UPDATE.

PAGE 19

35 Erase attempted on descriptor file other than the
anchor.

36 The GET FIELD operaticn attempted but the last
record operation was a ICCATE.

38 The GET FIELE operation attempted but there is no
current record.

39 GET RECORD operation attempted but the user is not
the owner.

40 GET LIST attempted, but file is not inverted
index.

41 Key is null (READ KEY or LOCATE).

42 Key seauence error (LOCATE sequential).

43 Duplicate key error (LOCATE direct).

44 Not an CUTPUT file for WRITE.

46 No current record (PUT or REPUT).

47 Current record not locked (FUT or REPUT).

49 PUT or REPUT to INPUT file.

50 PEPUT to non-UPDATE file.

51 REPUT following LOCATE.

52 GET operation (field is not in descriptor
table).

53 Field failed general validation (PUT or REPUT).

54 Field failed special validation (PUT or REPUT).

55 Null value to be PUT.

56 Bit field too long (PUT or REPUT).

57 PUT to non-null bit switch.

58 PUT to non-null fixed length field.

59 PUT to non-null variable length (single element)
field.

61 Field would make record too long (PUT).

PAGE 29

62 Field sculd make record too long (REPUT).

63 Element would make record too lcna (PUT).

64 Element would make record too long (REPUT).

65 Element field too long (PUT or BEPUT).

66 Too many (variable) elements (PUT).

67 No GET before REPUT (variatle elements).

68 No good GET before REPUT (variable elements).

69 Undefined field (PUT or REPUT).

70 REPUT to never PCT (null) field (record not
found).

71 Too many (fixed) elements (PUT).

72 (Fixed) element would make record too long
(PUT).

73 No GET before REPUT (fixed elements).

74 No good GET before REPUT (fixed elements).

75 Field too long (PUT or PEPUT).

76 Key would make cross reference record too long
(PUT or REPUT).

77 Cross reference not found on record.

78 Target field 'actual' length checking indicates
truncation,

79 Command system trying to open someone elses STATIC
or TPNSCT data bases for UPDATE or OUTPUT.

80 Command system opening a data base (other than
STATIC or TRNSCT) for either OUTPUT or UPDATE.

83 GET KEY incompatible with list.

84 GET KEY sequence error,

85 Field length less than 2 found. Data Base
damage.

86 Field length beyond reclen found. Data Base
damage.

PAGE 21

87 Field length not equal toc 2 plus a multiple of
element length found. Data Base damage.

88 Element length less than 1 found. Data Base
damage.

89 Element length beycnd field length found. Data
Base damage.

90 Invalid DB2 header descriptor. DF1 descriptor or
damage,

91 Field descriptor reclen less than 78. Descriptor
damage.

92 Field length less than 2 in descriptor.
Descriptor damage,

93 Field length beyond reclen in descriptor.
Descriptor damage.

94 VALIDARG longer than 50 bytes would te truncated.
Descriptor damage.

95 SECURITY field length invalid. Should be 2 plus a
multiple of 8.

96 No descriptor fcund for key field. Descriptor
damage.

97 Invalid field length in index record found. Data
base damage.

98 Record missing from index region. Data base
damage.

99 End of data, (ISAM)

104 Keys equal - sequence error. (ISAM+100)

108 Key not found. (ISAM+100)

112 Keys out of sequence. (ISAM+100)

115 Keys do not coincide. (ISAq+100)

120 Keys coincide. (ISAM+100)

124 Invalid retrieval address. (ISAM+100)

128 Invalid record length. (ISAM+100)

131 Position past end of data set. fISAM+100)

PAGE 22

136 Position before start of data set. (ISAM+100)

140 Exceed iaximum number of overflow
pages, (ISAM+100)

144 Exceed iaximum size of shared data set. (ISAM+100)

145 No data set-name found which is like the given
one.(ISAM)

200 Attempt to (PUT or PEPUT) null pattern.

201 Attempt to (PUT or REPUT) to readonly field.

202 Undefined subfile or indexed field (READ, LOCATE,
or UNLOCK).

203 Not an indexed field.

204 Not a sutfile <control> field.

205 LOCATE to INPUT file.

206 No current anchor record (ICCATE SUEFILE).

207 Anchor record not Iccked (LCCATE SUEFILE).

208 No current subrecord (READ PER SUEFILE).

209 Anchor record not current (delete subrecord).

210 The file is not open (to pcst FIDTAB).

211 Descriptor damage detected while posting FLDTAE.

212 Anchor record not locked (delete subrecord).

213 Anchor record not parent of subrecord (delete
subrecord).

214 Subrecord id not found in control field (delete
subrecord).

215 Duplicate fixed length element (PUT or REPUT).

216 Duplicate varying length element (PUT or REPUT).

217 LOCATE SUBFILE not done because 131071 regions
used.

218 NAMEFLD field length invalid. Should be 2 plus a
multiple of 9.

PAGE 23

219 GET superfield requires current subfile record.

220 RSECTYCr field length invalid. Should be 2 plus a
multiple of 9.

221 Non-owner attempted to open associate havinq
record level security.

222 Anchor dummy descriptor not found for associate or
subfile field. Descriptor damage.

PAGE 24

TCEIC B.4 - DATA EASE EXECUTIVE

A. DATA SET NAME:

Mainline File Control Blcck

B. CREATED BY:

Declared by EE Preprocessor Function.

C. TYPE OF FILE:

(4)Table

D. ORGANIZATION:

linear structure followed by an array of linear
structures.

E. KEY IDENTIFIER (CONTROI FIELD):

Within DEPAC the mainline file control block is known
as a parameter named MFCB. Outside DEPAC each mainline
file control block is an independent external
controlled structure whose name is the DBPI/I file name
(PLEX in the retrieval system). For this reason, file
names must not conflict with other external name
system. This file name is not padded with dollar signs
the way a file title must be. The file name is passed
as an argument in CALL statements to DBPAC and thus
becomes the MFCB parameter.

F. bECORD LENGTH:

1324 bytes (hexadecimal 52C)

This is the length of the whole ccntrol block including
the necessary dope vectors and a thirty-seven element
array allowing up to thirty-seven data sets in a
dataplex. The number of elements in the array may be
adjusted, if necessary: - the control block size will
be adjusted by 24 bytes per element and the
MFCB.FILE.AP_SIZE field must be suitably initialized
but no changes are necessary in DEPAC or in other
MFCB's,

G. BLOCKING FACTCR:

Not Applicable

PAGE 25

H. PURPOSE:

The MFCB control block is used for communication
between mainline programs and EEPAC. The declaration
is generated by the DE preprocessor function with
suitable initial value attributes. For DBPL/I
statements in the mainline, the DB preprocessor
function generates statements that post fields in the
MFCB , such as the operation code. At execution time,
the posted MFCB is passed as an argument to DBPAC.
DBPAC performs the operation indicated in the MPCB,
making reference to other fields in the MFCB as
necessary and posting fields in the MFCB, such as
MFCB.ERRCR.ONCODE, which may subsequently be referenced
in the mainline.

I, PL/I DECLARATION:

DE LARE
1 MFCB, /*MAINLINE FIIE CCNTECI BLOCK*/
2 INITIALIZED EIT(2), /*00: NEVER INITIALIZED */

/*10: INITIALIZED, CLOSED */
/*11: INITIALIZED, OPENED */

2 FILLER 1 EIT(6), /*NOT USED
2 STATEMENT, /*OR FUNCTION */

3 OPERATION ETIT(8), /*CODE +/
3 ONFIELD CHAR(8), /*FIELD NAME

2 FILLER_2 CHAR(3), /*NOT USED */
2 ERROR,

3 SYSTEM BIT(1), /*1: STANDARD DBPAC ACTION */
/*O: USER ERROR ROUTINE 4/

3 FILLER_3 BIT(7), /*NOT USED
3 ONCODE FIXED BINARY,
3 ROUTINE LABEL, /*OSER'S */
3 ONRETURN LAPEL, /*IN MAINLINE */

2 FILE,
3 ONFILE CHAR(8), /*FILE TITLE */
3 OLFILE CHAR(8), /*TO SAVE FILE TITLE IF DYNAM*/
3 OWNER_ID CHAR(8), /*OWNEF OF THE FILE "/
3 DSNAME CHAP(35), /*DATA SET NAME */
3 ATTRIBUTES

4 ACCESS BIT(1), /*0: DIRECT */
/*1: SECUENTIAL /

4 SAVE FUNC BIT(2), /*TO SAVE FUNCTION IF DYNAMIC*/
4 FILLER 4 EIT(3), /*NOT USED S/

4 FUNCTION BIT(2), /*10: INPUT */
/*01: OUTPUT */
/*11: UPDATE */

3 CURRENT FIIE FIXED BINABY,/*SUBSCRIPT IN FILE.ARRAY*/
3 LASTFILE FIXED BINARY,

/*NUMBER OF FILES IN FILEPLEX OR DATAPLEX*/
3 ARR_SIZE FIXED BINARY(15),/*DECLARED ARRAY SIZE */
3 ARRAY 137),

PAGE 26

4 FILE NAME CHAR(),
4 DTP POINTER, /*DESCRIFTOR TABLE ADDRESS */
4 FCBP POINTER, /*FILE CCNTROI BLOCK ADDRESS */
4 KYC FIXED BINARY(15),/*SUBSCEIPT OF KEY FIELD */

/*DESCRIPTOR IS ALWAYS =1. */
4 SWITCHES,

5 CURRENT BIT(1),
5 LOCKED EIT(1),
5 WRITE BIT(1), /*FORCE WPITE */
5 REWRITE BIT(1), /*FORCE REWRITE */
5 ABSENT BIT(1), /*NULL CR SECUPED RECORD */
5 OPENED EIT(1), /*THE FILE IS CPEN */
5 FILLER 5 BIT (2), /*NOT USED

4 FILLER 6 CHAR(1), /*NOT USED */
4 RECORDCT FIXED BINARY(151;/* # OF USABLE DESC. */

J. DETAIL NOTES:

INITIALIZED - used entirely within DBPAC.

STATEMENT.OPERATION - see Section III, Topic E.2 of the
DWB for the codes that are posted here by the DB
preprocessor functicn.

STATEMENT.ONFIELD - posted by the DB preprocessor
function.

ERROR.SYSTEM - posted by the DB preprocessor
function.

ERROR.ONCODE - posted by DEPAC when an error is
detected but not reset for successful
operations. See Section III, Topic B.3 of the DWB
for the DBPAC Error Codes.

ERROR.ROUTINE - posted by the DB preprocessor
function.

ERROR.ONRETURN - posted by rEPAC when an error is
detected.

FILE.ONFILE - posted by the DB preprocessor function.
When the first character is not a pound sign
indicating a descriptor file, DBPAC shifts the
value one character to the right and posts a
leading black character.

FILE.OLFILE - used within DEPAC to detect need for
reinitialization.

FILE.CWNEP It - used within DEPAC.

FILE.DSNAME - used within DBPAC.

PAGE 27

FILE.ATTRIBUTES.ACCESS and FUNCTION - posted by either
the DB preprocessor functicn or, when in default,
by DEPAC.

FILE.SAVE_FUNC - used within DEPAC.

FILE.CURRENT FILE - used within DBPAC.

FILE.LAST FILE - used within DBPAC.

FILE,ARR_ SIZE - set by the DB preprccessor function
indicating the dimension of the FILE.ARRAY.

FILE.ARRAY - this array is used within DBPAC. Each
element of the array is a linear structure of
fields relating to a data set, When the mainline
is accessing a descriptor region or an inverted
index, only the first element is used. Otherwise,
the first element relates to the anchor data set
and subsequent elements relate to associated and
sutfile and inverted index data sets.

FILE.ABRAY.FILE_NAME - the "title" of the data set
having a leading blank or pound sign and a
trailing blank cr suffix.

FILE.APRAY.DTP - the address of the (dynamically
allocated) descriptor table for this data set.

FILE.ARRAY.FCBP - the address of the (dynamically
allocated) file control block for this data set,

FILE.ARRAY.KYC - the subscript of the key field
descriptor in the descriptor table array is always
1.

FILE.ARPAY.KYC(1) - one (the anchor) plus the number of
associate data sets.

FILE.ARRAY.KYC(2) - KYC(1) plus the number of subfile
data sets.

FILE.ARRAY,SWITCHES - switches used by DBPAC for the
status of the data set.

FILE.ARRAY.PECORECT - the number of descriptors in the
descriptor table array. This number does not
include descriptors of fields a oiven user does
not have field security clearance to access.

PAGE 28

TOCUC B.5 - DATA EASE EXECUTIVE

A. DATA SET NAME:

List SCB (Set Control Blocck) Structure

B. CREATED BY:

CBOSET, Set Management

C. TYPE OF FILE:

(4) Table

D. ORGANIZATION:

linear Structure

E. KEY IDENTIFIER (CONTROL FIEL):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

F. FURPOSE:

The SCB structure describes a particular set (or list)
of data keys and points to the next SCB in the system
chain (NULL if none exists),

I. PL/I DECLARATICN:

DEL ARE
1 SCB BASED(SCBPNTR), /*SET CONTROL BLOCK /
3 NXT_SCB POINTER, /*FOINTER TC NEXT SCB */
3 PAR _LIST, /*ATTRIBUTES OF KEYS */

5 FLDNAME CHAR(8), /* FIELD NAME */
5 CON_RTN CHAR(8), /* FORMATTING ROUTINE */
5 KEY LNT BIN(15), /* LENGTH IN LIST */

3 KEY REC BIN(15), /*NUMBER KEYS IN BUFFER*/
3 TOT_KEY BIN(15); /*TOTAL NUMEER OF KEYS */

PAGE 29

TOFIC B.6 - DATA BASE EXECUTIVE

A. DATA SET NAME:

LISTER - List Error Control Plock

B. CREATED BY:

Allocated by DBMTT.

Error fields are posted by DB preprocessor and DBOSET.
List chain anchors are initialized by DBMTT and posted
by DBOSET.

C. TYPE OF FILE:

(4) Table

D. ORGANIZATION:

Simple structure

E. KEY IDENTIFIER (CONTROL FIELD):

Not applicable

F. RECORD LENGTH:

68 bytes (20 bytes data + 48 bytes PL/I dope vectors,
etc.)

G. BLOCKING FACTOR:

Not applicable

H. PURPOSE:

The list error control block lolds the list segment
chain anchors. (The chain used by the FREE all LTSTs
statement.) It also is the point of communication
between DBLIST and mainline prcqrams for list error
handling when no MFCB is involved in the operation.
(When an MFCB is involved in a list error situation,
the MFCB is used for error indication, etc.)

I. PL/I DECLARATION:

DECL ARE

I IISTERR CTL EXT, /*COMMON CCNTPOI BLOCK "/
3 ERROR,
5 SYSTEM BIT(1) /*1: SYSTEM ACTION

PAGE 30

INIT('IB), /*0: GC TO USER ERROR RTNF */
5 ONCODE FIXED BIN(15) /*1: INVALID LIST OPERATION */

INIT(O), /*2: INCOMPATIBLE LISTS */
/* GET IIST KEY SET EFRRORS: */
/*4: NULL INPUT LIST */
/*5: NC GET KEY SINCE RESET */
/*6: INCOMPATIBLE LISTS */
/* GET IIST KEY INTO ERROR: */
/*7: FEY SEQUENCE ERROR */
/*A: TIUNC, TARGET TCCOO SHORT*/
/* SET LIST LIKE LIST ERROR:*/
/*9: INVALID SIZE */
/* PUT LIST KEY FPOM ERRORS:*/
/*10: NULL TARGET LIST */
/*11: WRONG LENGTH KEY VALUE*/
/*12: KEY SEQUENCE ERROR */

5 ROUTINE LABEL /*USER ERROR BTNE AEDRESS */
3 PTR, /*NHLL: NO CHAIN */

/*ALLCCATOB MUST INITIALIZE */
5(FIRST, /*FORWAED CHAIN ANCHOR */
LAST) PTR; /*BACKWARD CHAIN ANCHCR */

PAGE 31

TOEIC B.7 - DATA EASE EXECUTIVE

A. EATA SET NAME:

Data Base Descriptor File, ownerid, data-base.
data-base#

for example:

NASIS. ASDI$.ASREI$#

where:

"ownerid" is the 1-8 character CS identification of the
owner of the dataplex.

"data-base" is the 6 character data base name with the
dollar sign character used for paddina.

B. CREATED BY:

DBEDIT - the rescriptor Editor program

C. TYPE OF FILE:

(6) Data Base Descriptor file

D. ORGANIZATION

ISAM - Indexed Sequential Access Method, organized in
one or mcre regions of ccntiqucus records; one region
for the anchor data set descriptcrs and, as necessary,
a region for each associate, sutfile and inverted index
dataset's descriptors.

Records have the varying lengath universal record format
(URF) built by DBPAC.

E. KEY IDENTIFIER (CCNTROL FIELE):

The ISAM key length is 15 bytes consisting of:

7 character region tame and 8 character FIDNAME,

A DBPL/I descriptor FILE is a ccntiguous set of records
having the same region name. The DBPL/I FILE shall be
OPENed using an 8 character TITlE value consisting of:

1 pound sign character (f) (signifying descriptor
file).

6 character data base name with the dollar sign

PAGE 32

character ($) used for padding.

1 suffix character.

The suffix character shall be from the following
ranges:

blank anchor file descriptors
1-9 associate file descriptors
Z-Q subfile descriptors
A-P inverted index descriptors

DBPAC uses the data base name and suffix to
automatically generate the region name value for the
keys.

The DBPL/I KEY value is only the 8 character FIDNAME
(name of the field being described) that completes the
ISAM key value.

F. RECORD LENGTH:

34 bytes minimum for a file descriptor record.
78 bytes minimum for a field descriptor record.

G. BLOCKING FACTORS:

One 4096 byte page (block) will hold about 40 average
descriptors; enough for a few regions for a simple data
base. For a complicated data base with many data sets,
fields, secondary fields, and security codes, three or
more pages (blocks) may be required.

H. PURPOSE:

A data base descriptor file describes a data base in
terms of the datasets, records, and fields the data
base is composed of, and indicates their
interrelationships. A data base descriptor file is
created and maintained or modified by NDBEDIT, the
descriptor editor, which is a system service program.
Normally, a data base analyst runs NDBEDIT
conversationally. NDBEDIT is responsible for producing
a consistent and complete descriptor file according to
this specification.

Then the data base may be loaded, maintained,
retrieved, etc. by programs using NDBPAC for data base
access. NDEPAC, when CPENinq a data base, reads the
descriptor file and from it builds a table that governs
its further actions.

I. SAMPLE DATA BASE:

PAGE 33

A sample data base is used to illustrate in detail how
the descriptors shall describe a complicated data base.
The sample data base consists of eight datasets related
as shown in Figure 1.

The record layout in Figure 2 shows all eight record
layouts in the sample data base for reference in the
following sections of this specification.

3. DESCRIPTOR REGIONS:

The sample descriptor file consists of eight regions
(having the suffixes ' ,,1,Z,Y,A,B,C,D) corresponding
to the eight data sets in the sample data base. (Of
course ISAM alphabetizes them ' ',A,B,C,D,Y,Z,1.)

Each descriptor region has at least one file descriptor
record and two field descriptor records (kev and
PECLEN).

Dummy descriptor records are required in anchor regions
when the data base has asscciate and/or subfile
datasets. They are also required in associate regions
when subfile(s) are controlled from the associate
dataset.

Figure 3 tabulates all the file, field, and dummy
descriptors required to describe the sample data
base.

K. FILE DESCRIPTOR RECORD:

The file descriptor record describes the dataset as a
whole. It is uniquely identified by having a key
(FLDNAME) of 8 blanks. It has the field values shown
below. See Figure 4 for the field values of the sample
descriptor file. All values should be posted except
that if RECSECFP is NULL, RSECTYCD does not apply. The
MXRECLEN field will appear if the DBRECL utility
program has processed this file.

FIELD VALUE CCMMENTS

FLDNAME 8 blanks DEPT/I key

DESCOK OFF incomplete descriptors.
ON descriptors are complete.

FILETYPE ANCHOR type of data set being described
ASSOCIATE
SUEFILE
INDEX

PAGE 34

DESCRCT numeric number of field descriptors in
this region. (The file
descriptor is not to be
counted.)

ESELNGTH numeric lenqth in bytes of fixed portion
of records including RECLEN, key
and fixed primary fields. For a
spanned index, this includes the
key suffix byte.

SPANNED OFF ordinary records.
ON spanned records with internally

suffixed keys.

DATA OFF nc data on file vet.
ON retrieval is possible.

MNTNABLE ON maintenance is allowed.
OFF maintenance is prohibited.

MNTNING OFF no maintenance is in progress.
ON maintenance is in progress.

LOADABLE ON loading is allowed.
OFF loading this data set is

prohibited.

RECSECFP null records do not have a record
security field.

numeric offset in bytes of record secur-
ity field in records.

RSECTYCD 9 tyte
elements zero or mere record level

security codes.
8 alphameric record security password.
1 byte mask for comparison with record

security field.

MXRECLEN 4 byte if exists, current maximum
element record lenqth in file;

only one element.

L. FIELD DESCRIFTOR RECORES:

A field descriptor record indicates that a particular
named field occurs in the dataset beinq described. It
is uniquely identified within the region by having a
key (FLDNAME) that is the name of the field. There are
two kinds of field descriptors:

primary direct

PAGE 35

secondary (direct and indirect)

All field descriptor records may have the values shown
telow:

FIELD VALUE COPMENTS

FLDNAME 8 alphamerics unique field name. DBPL/I
blank padded key.

GENERCRT 8 alphamerics name of generic routine for
blank padded testing input values.

VALIDTN 8 alphamerics name of routine for testing
blank padded and/or converting input

values,

VALIDARG 0-50 bytes argument to be supplied
to VALIDRTN

NUMALIGN OFF string alignment, left lus-
tification

ON numeric alignment, right
justification

REFORMAT 8 alphamerics name of routine for con-
blank padded verting output values.

SECURITY 8 alphamerics 0-18 field security pass-
asterisk padded words

GENERCET, VAIIDRTN, VALIDARG, and NUMALIGN may even be
posted for secondary (read only) fields because linear
search, for example, may have to transform values to be
used as comparands.

M. PRIMARY DIRECT FIELD DESCRIPTOR BECOEDS:

A primary direct field descriptor record describes a
maintainable field that cccurs on each record of the
dataset being described. There are five kinds of
primary fields:

single fixed bit
single fixed byte
single varying byte
multiple fixed byte
multiple varying byte

In addition to the field values shown in Section L, all
primary descriptors have READCNLY OFF and a selection
of the following field values.

PAGE 36

FIELD VAIUE COMMENTS

READONLY OFF field value may be maintained
(PUM and REPUT.)

VARFLD FIXED fixed length field in fixed
portion of records.
portion of records.

BITFLD OFF byte field
ON bit field

FLDPOSIT numeric if VARFLD is FIXED, offset in
bytes of field.
if VARFLE is VARYING, relative
field in variable portion of
records.

FLDLEN numeric if BITFLD is ON, offset of bit
(0,2,4 or 6) in byte specified
by FIDPOSIS.
if VARFID is FIXED, internal
length of field in bytes.
if VARFLD is VARYING, maximum
internal length of field in bytes
with internal field length prefix.

ELTLIM 0 field does not have elements.
numeric maximum number of elements to be

PUT into field or, for a control
field, maximum number of sub-
records per parent record.

ELTLEN numeric if VARELT is FIXED, internal
length of elements in bytes.
if VARELT is VAPYING, maximum
internal length of elements in
bytes with internal element length
prefix.

VARELT FIXED fixed length elements.
VARYING varying length elements.

UNIQUELT OFF duplicate element values are
allowed.

ON internal element values must be
unigue.

INVFILE alphabetic descriptor region suffix for
inverted index dataset. (null
if none.)

PAGE 37

INDEXEXT OFF index internal values of field.
ON index external values of field.

fExternal length may require
index key length greater than
internal length.)

A single fixed bit field descriptor has:

VARFLD FIXED
BITFID ON
FLDPOSI7 offset in bytes
FIDIEN offset in bits 10,2,4 or 6)
INVFILE null (may not be indexed)

See VEHAIRCD in the sample data base.

A single fixed byte field descriptor has:

VARFLD FIXED
BITFLD OFF
FLDFOSIT offset in bytes
FLDLEN internal length in bytes
INVFILE optional if FPLDLEN less than 254

See EnPPAYCL, EMPINSCL and VEHMAKE in the sample
data base.

A single varying byte field descriptor has:

VARFID VARYING
FLDPOSIT relative varying field
FLDIEN maximum internal length including

internal 2 byte field length prefix
ELTLIN 0 (zero)
INVFILE optional if (FIDIEN-Z) less than 254

See KIDNAME in the sample data base.

A multiple fixed byte field descriptor has:

VARFLD VARYING
FLDPOSIT relative varying field
FIDIEN maximum internal field length including

internal 2 byte field length prefix
ELTLIM maximum number of elements
ELTLEN internal element length in bytes
VARFIT FIXED
UNIQUELT optional
INVFILE optional if ELTLEN less than 254

See the EMPKID and EMPVFH control fields in the
sample data base.

PAGE 38

A multiple varying byte field descriptor has:

VARFLD VARYING
FLDPOSIT relative varying field
FLDLEN maximum internal field length including

internal 2 byte field length prefix and
internal 1 byte element length prefixes

ELTLI maximum number of elements
ELTLEN maximum internal element length includ-

inq internal 1 byte element length
prefix. VARELT VARYING

UNIQUELT optional
INVFILE optional if (EL~EN-1)less than 254.

See the KIDPET field inthe sample data base.

CONTROL FIEIE DESCRIPTORS

Every descriptor region must have a key descriptor for
the field that uniquely identifies records in a
dataset. It is a primary direct field descriptor
record for a single fixed byte field.

SECURITY must be null.
READCNIY is OFF
VARFLD is FIXED
BITFLD is OFF
FLDPOSIT is 4
INVFILE must be null

Each associate key descriptor is identical (except the
region suffix) to the anchor key discriptor. See the
EMPNAME field in the sample data base.

Each subfile dataset in a data base requires:

1. a control field in the anchor or an associate
dataset

2. a separate descriptor region for the subfile
dataset containging:

2a. file descriptor record
2b. RECLEN secondary descriptor record
2c. sutrecord id key descriptor record
2d. parent key seccndary descriptor record
2e. descriptor records for cther subrecord

fields.

1. A subfile control field descriptor describes a
secondary multiple fixed byte field maintained by
NDBPAC.

FLUNAME is a six-character name suffixed

PAGE 39

by two blanks applying to the
subfile.

GENERCBT is trCVTID
VALIDRT is null
NUMALIGN is CN
REFORMAT is BFPTID
SECURITY is optional
READONLY is CN
VAFFLD is VARYING
FLDPOSIT is relative varying field
FLELEN is maximum internal field length
ELBLIM is maximum number of elements.

Note that FLDLEN or ELTLIM limits
the maximum number of subrecords
per parent record.

ELTLEN is 3
VARELT is FIXED
UNIQUELT is CN
SUECNTRL is CN
SUBFILE is alphabetic character descriptor

region suffix for subfile dataset.
INVFILE must be null

See EMPID and EHPVEB in the sample data base.

2a. A subfile file descriptor record has:

FILETYPE SUBFILE

2b. A subrecord RECLEN descriptor is standard.

2c. A subrecord id key descriptcr describes a primary
single fixed byte field:

FLDNAME is the six-character subfile name
suffixed by "ID".

GENERCRT is rECVTID
VALIDRTN is null
NUMALIGN is CN
REFORMAT is DBFMTID
SECURITY must be null
READONLY is CFF
VAFFLD is FIXED
BITFLD is CFF
FL FOSIT is 4
INVFILE must be null

See EMPKIDIE and !MPVEHIC in the sample data base.

2d. A subrecord parent key descriptor describes a
secondary single fixed byte field.

FLNAME is the six-character subfile name

PAGE 40

suffixed by "PK".
GENERCRT, VALIDRTN, EUMALIGN, REFCRMAT and

FLDIEN are the save as the anchor
key descriptor.

SECURITY is optional
READONLY is CN
VAFFLD is FIXED
BITFLD is CFF
FLEPOSIT is 7
INVFILE must be null

See EMPKIDPK and EMPVEHPK in the sample data base.

2e. Record level security may be independently
specified for the anchor, associate and/or subfile
datasets. It may not be specified for an inverted
index dataset. Each dataset to have record level
security must have:

RECSECFP field position of record security
field

RSECTYCE optional

in its file descriptor record and a primary direct
field descriptor record for a single fixed byte
field as shown in Figure 5 and as follows:

FLDNAME RECSEC suffixed by the descriptor
regicn suffix (blnak for the
anchor and a blank.

GENERCRT DBCVIHX
VAIIDARG null
NUMALIGN OFF
PEFORMAT EBFMTHX
SECUIRTY optional
READCNLY OFF
VARFLD FIXED
BITFLD OFF
FLDPOSIT on anchor or associate datasets,

after the key (ie. 4 + key FTDLEN +
1). on subfile datasets, after the
parent key field (ie. 4 + 3 +
parent key FIDLEN + 1).

INVFILE optional

See the RECSEC, RECSEC1, EMPFIDRS and EMPVEHRS
fields in the sample data base.

N. SECONDARY READONLY FIELD DESCRIPTOR PECCRES:

A secondary field descriptor record describes a derived
field made up of one or rcre component fields. There
are two types: direct and indirect.

PAGE 41

A direct secondary field descriptor redescribes part of
all of one primary field or a field automatically
maintained by NDBPAC such as RECLEN and subfile control
and parent key fields. A direct secondary descriptor
has the same field values as a primary descriptor with
the following qualifications:

READONLY is always CN. Field may only be
retrieved (GET).

INVFILE rust be null.

FLDPOSIT and FLDLEN will specify an internal
location within or equal to a primary field.

Otherwise, the descriptor fields may specify a direct
secondary field like any of the five types of primary
fields. A secondary of the same type of length
provides renaming and perhaps an alternate REFORMAT. A
secondary "single fixed byte" with a shorter FLDLNGTH
provides for subfields. A secondary "single varying
byte" redefining a primary "multiple fixed byte"
obtains the concatenation of the internal element
values.

Every descriptor region shall have a secondary direct
field descriptor for a single fixed byte RECLEN as
follows:

FLDNAME is RECLEN
GENERCRI is DBCVTFI
VALIDRTN is null
NUMALIGN is ON
REFORMAT is DBFMTRL
SECUPITY is optional
READON1Y is ON
VARFID is FIXED
BITFID is OFF
FLDPOSIT is 3 (zero)
FLDLEN is 4
INVFILE must be null

(No dummy descriptors are used for RECLEN. Direct
secondary descriptors may be specified by the Data Base
Analyst to provide unique field names for the various
RECLENs in a data base.)

An indirect secondary field descriptor describes a
"superfield" make up of one or more primary or direct
secondary component fields. No more than one of the
component fields may be a multi-element field. The
component field values will be concatenated in NAMEFLD
order for retrieval. (If there is a multi-element

PAGE 42

component field, then the superfield will yield
multiple values.) An indirect secondary descriptor has
the field values shown below.

FIELD VALUE COMMENIS

BEADONLY CN field may only be retrieved

NAMEFLD 9 byte one to 16 component field
elements specifications
hex '00' use external value of

component
hex '80' use internal value of

component
followed by nrimary or direct secondary
8 alphmerics component fieldname
blank padded

PEFORMAT 8 alphamerics name of routine for
converting

blank padded concatenated output value

If the component fields specified in NAMEFLD are all
from the same dataset (anchor, associate or subfile),
then the indirect seccndary descriptor goes in the
descriptor region for that dataset. (Dummy
descriptor(s) are required for the indirect secondary
descriptor if it is on an associate or subfile.) See
the KIDID field in the sample data base.

If the componenets are from an associate file and from
a subfile controlled from that associate file, then the
indirect seccndarv descriptor goes in the descriptor
region for that associate.

Otherwise the indirect secondary descriptor goes in the
anchor descriptor region and no dummy descriptors are
required. See the EMPTYPE field in the sample data
base.

If any component is from a subfile dataset, the (1.) no
components may be from any other sutfile dataset and
(2.) to GET such a field, a mainline program must first
obtain a current record in the sutfile -- NDBPAC will
automatically ensure that the parent and associate
record(s) are available when required.

Every anchor and associate descriptor region shall have
a secondary indirect field descriptor for the key
field, see Figure 6.

FLDNAME is 'FILEgEY '

PAGE 43

READONLY is ON
NAMEFLD has one element consisting of hex '00'

followed by the name of the primary
key field.

REFORMA is NULL.

(No dummy descriptor is used for FILEKEY on associate
eatasets.)

O. DUMMY DESCRIPTOR RECORDS

A dummy field descriptor indicates that the field
occurs in an associate or sutfile data set and if it
has an inverted index data set. It has the field
values shown below.

FIELD VALUE COMMINTS

FLDNAME 8 alphamerics field name. DBPL/I key.
blank padded

ASSOCFIL numeric descriptor region suffix for
character associate data set. (Null if

none,)

SUBFILE alphabetic descriptor region suffix for
character subfile data set. (Null if

none.)

SUBCNTRL OFF dummy descriptor for subfile
field.

ON primary (dummy if ASSOCFIL is
posted) descriptor for sub-
file control field.

INVFILE alphabetic descriptor region suffix for
character inverted index data set.

(Null if none.)

The descriptor file, shown graphicallv in Figure 7 and
8, is so designed that the anchor region describes the
anchor records and also has dummy descriptors for all
other fields on associate (1) or subfile (Z,Y) records
thus indicating the presence of all associate and
subfile data sets. It also indicates the presence of
all inverted indexes for the data base (A,B,C,D).

An associate region (1) describes a data set of

associate records and has dummy descriptors for all

other fields cn subfiles (Y) depending on the associate

record. It also indicates the presence of all inverted

indexes for the associate and dependent subfiles

PAGE 44

(C,D).

A subfile region (Z) describes a data set of sutfile
records and indicates the presence of all inverted
indexes for the subrecords (B).

An index region (A) describes a data set of inverted
index records.

This all enables DBPAC to access a whole data base, an
associate portion of a data tase, a subfile, or an
inverted index as if it were a deqenerate case of a
data base. This can be advantageous for certain
utility functions.

P. INVERTED INDEX DESCRIPTORS:

If INVFILE is posted for a primary direct field, then a
separate descriptor regicn must exist for the inverted
index dataset. It contains only the following:

FILE DESCRIPTOR RECOPR

FILETYPE is INDEX
SPANNED is optional
BSELNGTH is 4 + index key FLDLEN (+1 if

SPANNED).

RECLEN SECONDARY DIRECT FIELD DESCRIPTCR FECORr

Single Fixed Byte

INDEX KEY SECCNDARY DIRECT FIELD DESCRIPTOR RECORD

Single Fixed Byte

FLDNAME is same as indexed FEDFAME
REAUCNLY is ON
FLDPOSIT is 4

If indexed field descriptor has INDEXEXT OFF, the
FLDLEN is maximum internal indexed field value
length (without 2 byte internal field length or 1
byte internal element length) and REFORMAT is same
as indexed field REFORMAT. If indexed field
descriptor has INDEXEXT ON, then FPLDLEN is
maximum external indexed field value length and
REFORMAT is null or a blank stripper. In either
case, FLDLEN does not include the internal
"sequence number" suffix if SPANNED.

CROSS REFERENCES SECONDAFY DIRECT FIELD DESCRIPTOR

PAGE 45

Record rultiple Fixed Byte

FIDNAME is same as indexed field's record key
FLDNAME.

READCNLY is CN.
FLDPOSI is 1.
FLDLEN is 4030.
ELTLI is 4010.
ELTLEN is same as indexed field's record key

FLDLEN.
REFORMAT is same as indexed field's record key

REFORMAT.

O. FILE AND FIELD DESCRIPTOP RECCORD FOPMATS:

File Descriptor Record Format

1 RECLEN 0-3 Fixed Binary Length of header
record, in bytes,
includinq itself.

2 KEY 4-18 Fixed EBCDIC Identifier for this
descriptor. Contains
file name .

3 FLENAME 4-10 Fixed EBCDIC Seven-character file
name for this
descriptor. Contains
data base and
suffix.

4 DATAPLEX 4-9 Fixed EBCDIC Dataplex name padded
with $s to 6
characters.

5 SUFFIX 13 Fixed EBCDIC Identifier dataset.

6 FLDNAME 11-18 Fixed EBCDIC Contains blanks.

7 FILETYPE 19 Fixed EBCDIC 1: Anchor
2: Associate
3: Subfile
4: Inverted index

8 DESCRCT 20-21 Fixed Binary Number of field
descriptors for this
dataset.

9 BSELNGTH 22-23 Fixed Binary Length of fixed
portion of record.

10 DESCOK 24.0 Fixed Bit 0: incomplete
descrivtors.

PAGE 46

1: complete
descriptors,.

11 SPANNED 24.2 Fixed Pit Applicable if
FILETYPE=4:
0: ordinary records
1: spanned records
with internally
suffixed keys.

12 DATA 24.4 Fixed Bit 0: No data on file.
1: Retrieval is
possible.

13 MNTNABLE 24.6 Fixed Bit 0: Maintenance
prohibited.
1: Maintenance
allowed.

14 MNTNING 25.0 Fixed Bit 0: Maintenance not in
progress,
1: Maintenance in
progress.

15 -------- 25.2 Fixed Bit Currently not
applicatle-Null.
1: Check record
security.

16 LOADABLE 25.4 Fixed Bit 0: Loading
prohibited.
1: Loading allowed.

17 -------- 25.6 Fixed Bit Currently not
applicable-Null.

18 REMAINS 26-29 Fixed ------ Currently not
applicable-Null.

19 RECSECFP 30-31 Fixed Einary Record security field
offset in records;
null if none.

20 RSECTYCD VrFldl Var ------ 0-18 record security
specifications
consisting of a
NASIS-id padded with
$s to 8 characters and
a one byte mask.

21 MXRECLEN VrFld2 Var ------ Maximum record length
in file; field may not
exist.

PAGE 47

Field Descriptcr Record Format

1 RECIEN 0-3 Fixed Binary Lenqth of entire
descriptor, in bytes,
including itself.

2 KEY 4-18 Fixed EBCDIC Identifier for this
descriptor. Contains
file and field
names.

3 FLENAME 4-10 Fixed EBCDIC Seven character file
name for these
descriptcrs.

4 FLDNAME 11-18 Fixed EBCDIC Name of field within
file.

5 ASSOCFIL 19 Fixed EBCDIC Suffix of associated
linear file which
contains this field;
null if none.

6 SUBFILE 20 Fixed EBCDIC Suffix of subfile
which contains this
field or which is
controlled by this
field; null if none.

7 INVFILE 21 Fixed EBCDIC Suffix of inverted
file which indexes
this field; null if
none.

8 READONLY 22.0 Fixed Pit 0: (Re)Put allowed.
1: (Fe)Put
prohibited.

9 SUBCNTRL 22.2 Fixed Bit Applicable if SUBFILE
is non-null:
0: Field is on
subfile.
1: This is control
field.

10 VARFLD 22.4 Fixed Bit 0: Fixed length
field.
1: Varying length
field.

11 BITFID 22.6 Fixed Bit Applicable if VARFID=0
0: Byte field.
1I Bit field.

PAGE 48

12 NUMALIGN 23.0 Fixed Bit 0: String (left)
align.
1: Numeric (right)
align.

13 VARELT 23.2 Fixed Bit Applicable if
ELTLIM>0:
0: Fixed length
elements.
1: Varying length
elements.

14 UNIQUELT 23.4 Fixed Bit Applicable if
ELTLIM>0:
Or Duplicate elements
allowed.
1: Duplicate elements
prohibited.

15 INDEXEXT 23.6 Fixed Bit Applicable if INVFILE
is non-null.
0: Index internal
values.
1: Index external
values.

16 GENERCRT 24-31 Fixed EBCDIC Name of routine to be
used for testing type
of input characters
(numeric, alpha,
etc.);null if none.

17 VAIIDRIN 32-39 Fixed FEBCtC Name of routine to be
used for special
validation or
conversion of input
data; null if none.
Uses argument in
VAIIDARG.

18 REFORAT 40-47 Fixed EBCDIC Name of routine to be
used for any necessary
output reformatting or
conversion; null if
none.

19 SPARE 48-55 Fixed ------ Currently not
applicable-Null.

20 NAMECNT 56-57 Fixed ------ Currently not
applicable-Null.

21 FLDPOSIT 58-59 Fixed Einary If VARFLD=0: byte

PAGE 49

offset in record.
If VARFLD=1: relative
varyina field.

22 FLDLEN 60-61 Fixed Binary If PITFLD=1: bit
offset in byte.
If VARFLD=O: field
length in bytes.
If VARFLD=1: maximum
field length
in bytes including 2
byte length indicator.

23 DFLDIEN 62-63 Fixed ------ Currently not
applicable-Null.

24 ELTLIM 64-65 Fixed Binary Applicable if
VARFLD=1:
0: not
multi-element.
>0: maximum number of
elements allowed.

25 DELTLIN 66-67 Fixed ------ Currently not
applicable-Null.

26 ELTLEN 68-69 Fixed Binary If VAPEIT=0: element
lenqth in bytes.
If VARELT=1: maximum
element length in
bytes including I byte
length indicator.

27 DELTLEN 70-71 Fixed ------ Currently not
applicable-Null.

28 VALIDARG VrFldl VarHex Argument to be used
with VALIDRTN
(test mask, limit,
etc.). Fifty
bytes maximum. Null
if none.

29 NAMEFLD VrFld2 Var 0-18 Superfield
components
consisting of a one
byte function code
(80x: external field
element,
OOx: internal field
element) and an 8
character component
field name.

PAGE 50

30 SECURITY VrFld3 Var EBCDIC 0-18 field security
codes
consistinq of a
NASIS-id
padded with *s to 8
characters.

Anchor , parallel
-pAssociate ''i

dependent
dependent

Subfile 'b'
ak Subfile ,y,

inverted / inverted inverted inverted
Index 'A' Index 'B' Index 'C' Index 'D'

(Note: A simple data plex consists of only ananchor data set. A more complicated dataplex thanthe sample may have multiple index, associateand/or subfile datasets but the principles fordescribing it are shown in the sample.)

FIGURE 1. SAMPLE DATAPLEX

BYTES IO I CM IN v I:L u rits MACHINES CORPORATION
'-vouy w System/3S0 i-,ard Layout W'rkshest ' R4 0 -4 -ob w ord Do •9 1.. r Printed in U.S.A. (Rept. 4/70)4 - word 1

2 -hlifword FOLDOUT MA
I -2 pcked-decimal digits

Record Name SAMPLE DATAPLEX 02/07/72 I APPLICATION . Page of

ANCHOR
U ..

RECLEN EMPNAME (KEY) < EMPKID (CONTROL FIELD)
FOLDOUT FRAM V II

JB : FL

ASSOCIATE H

'1' RECLEN EMPNAME (KEY) W EMPINSCL EMPVEH (FIELD i I FIELD
EHEX DEC: j [' : ' -,

0 11 0 HEXI
100 =3 256 L _ * l 5 f 3 __ El __ ..

300 a 768 SUBFILE
400oo I 1024 Z' RECLEN EMPKIDPK CPARENT KEY) KIDNAME KIDPE'T

o500o 1280

600 = 1792536

-. 800 E 2048. , I ,___ = T. . , ,._ _., , ,_ _

AGO 2560 D cM.I

EOO 359. Y RECLEN EMPVENPK (PARENT KEY)'00 3840 L I

INDEX (KEY)

RECLEN >4 H EMPNAME (CROSS REFERENCES)

DE L

INDEX -2
'B' RECLEN KIDNAME (KEY) EMPKIDID (CROSS REFERENCESI

EC j I H , ,, I
100 = 256 _.' .. .

200 =1 512 INDEX
300 =3 768
400 1024 C ' RECLEN EMPINSCL EMPNAME (CROSS REFERENCES)
0 0 =] 1 2 __EY) I
800 = 1792

- - " ' , , - ,, -

900 =1 2304 L
AGO = 2560 H T n
B0O =3 2816 Z 4 1_2 7 L
00 C3328 VE'PAKE (KEY)
EGO r- 3584 D RECLEN EPVEHID- (CROSS REFERENCES)

SCHARACTRSTC C - ch cter, 8-b code F - fixed-point, full wor - loting-point, full word P - packed decimal A I address value, full word V - i- --CHA ACTERISTIC CODES ,, B - binary H - fxed-point, halfwor-- -.. .

Anchor Associate Subfile Subfile

Region: 'PLEX$$ ' 'PLEX$$1' 'PLEX$$Z' 'PLEX$$Y'

file descriptor file descriptor file descriptor file descriptor
Field descriptors: RECLEN RECLEN RECLEN RECLEN

EMPNAME (Key) E.PNAME (Key)
FILEKEY FILEKEY
RECSEC
EMPTYPE
EMPPAYCL

EMPKID (control)
EMPKIDIDEMPKIDPR

EMPKIDID (Key)
EMPKIDRS

EMPKIDPK
IDNAMRS

ENPKIDRS
KIDNMPET

KIDNAME
KIDPET

KIDPETKIDID
KIDID

RECSECl RECSECl
EPINSCL EMPINSCL
EIPVEH EMPVEH (control)
EMPVEHID EEPVEHID
EN1PVEHPK EMPVEHPK EMPVEIHD (Key)
EMPVEHRS EMPVEHRS EMPVEHPK
VEHAIRCD VEHAIRCD VEHIRDRS
VEHMAKE VERMIAKE VEMAIRCD

VEHMAKE
dummy descriptors

Index Index Index Index
Region: 'PLEX$$A' 'PLEX$$B' 'PLEX$$C' 'PLEX$$D'

file descriptor file descriptor file descriptor file descriptor
Field descriptors: RECLEN RECLEN RECLEN RECLEN

Key: EMPPAYCL KIDNAME EPINSCL VENMAKECross references: EMPNAME EMPKIDID EM2PNME EMPVEHID

FIGURE 3. SAMPLE DATAPLEX DESCRIPTOR LIST

REGION DESCOK FILETYPE DESCRCT BSELNGTH SPANNED DATA MNTNABLE MNTNING LOADABLE RECSECFP

PLEX$$ ON ANCHOR 21 17 OFF OFF ON OFF ON 14
PLEX$$1 ON ASSOCIATE 11 20 OFF OFF ON OFF ON 14

PLEX$$Z ON SUBFILE 7 18 OFF OFF ON OFF ON 17
PLEX$$Y ON SUBFILE 6 21 OFF OFF ON OFF ON 17
PLEX$$A ON INDEX 3 7 ON OFF ON OFF ON null

PLEX$$B -ON INDEX 3 14 OFF OFF ON OFF ON null

PLEX$$C ON INDEX 3 9 OFF OFF ON OFF ON null

PLEX$$D ON INDEX 3 14 OFF OFF ON OFF ON null

FIGURE 4. SAPLE FILE DESCRIPTORS

SAMPLE PRIMARY DIRECT FIELD DESCRIPTORS

H 0

H H

FLDNAME m P4 Zm z 0

PLEX$$ EMPNAME X OFF F OFF 4 10 OFF ()) () XPLEX$$ RECSEC () OFF F OFF 14 1 OFF DBCYTHX X X DBFMTHX
PLEX$$ EMPPAYCL () OFF OFFFF 15 2 OFF) () () A OFF

PLEX$$1EPNAME X OFF F OFF 4 10 * * * * * X
PLEX$$1RECSEC1 () OFF F OFF 14 1 OFF DBCVTHX X X DBFMTHX
PLEX$$1EMPINSCL () OFF F OFF 15 5 OFF () () () C OFF

PLEX$$ZEMPKIDID X OFF F OFF 4 3 ON DBCVTID X X DBFDTID X
PLEX$$ZEMPKIDRS () OFF F OFF 17 1 OFF DBCVTHX X X DBFMTHX
PLEX$$ZKIDNAME () OFF V 1 10 OFF) () () () B OFF
PLEX$$ZKIDPET () OFF V 2 40 OFF 5 10 V OFF () () () () ()

PLEX$$YEMPVEHID X OFF F OFF 4 3 ON DBCVTID X X DBFMTID X
PLEX$$YEaMPVEHRS () OFF F OFF 17 1 OFF DBCVTHX X X DBFiYTHX
PLEX$$YVEHAIRCD () OFF F ON 18 0 OFF) (-)() X
PLEX$$YVEHMAKE () OFF F OFF 19 2 OFF) () () () D ON

SAMPLE SECONDARY DIRECT FIELD DESCRIPTORS

PLEX$$ RECLEN () ON F OFF 0 4 ON DBCVTRL X X DBFMTRL X XX
PLEX$$ EMPKID () ON V 1 4000 ON 20 3 F ON DBCVTID X X DBITID X ON Z
PLEX$$1RECLEN () ON F OFF 0 4 ON DBCVTRL X X DBFMTRL X X X
PLEX$$1EF PVEH () ON V 1 4000 ON 5 3 F ON DBCVTID X X DBFITID X ON Y
PLEX$$ZRECLEN () ON F OFF 0 4 ON DBCVTRL X X DBFMTRL X X X
PLEX$$ZE~PKIDPK () ON F OFF 7 10 ** D* * * X

PLEX$$YRECLEN () ON F OFF 0 4 ON DBCVTRL X DBFMTRL X X XPLEX$$YEMPVEPK () ON F OFF 7 10 * D * * * X

FIGURE 5. SAMPLE DIRECT FIELD DESCRIPTORS

FLDNAME

PLEX$$ FILEKEY X ON (EMPNAME) XPLEX$$ EMPTYPE () ON (EMPPAYCL,EMPINSCL) (

PLEX$$1FILEKEY X ON (EMPNAME) X

PLEX$$ZKIDID () ON (KIDNAME,EMPKIDPK) ()

FIGURE 6. SAIPLE INDIRECT SECONDARY FIELD DESCRIPTORS

Anchor ' ' Associate '1'

Subfile 'Z' Subfile 'Y'

Index 'A' Index 'B'Index Index D

FIGURE 7. SAMPLE DESCRIPTOR FILE

P $ FLDNAEX ASSOCFIL SUBFILE SUBCNTRL INVFILEEX$$ EMPKIDID
ZF

,, EMPKIDPK Z OFF
i EMPKIDRS g OFF
,, KIDNAIE Z OFF
,, KIDPET Z OFF
,, KIDID Z OFF B
If RECSEC1 1 ZOFF

,, EMPINSCL 1
o1 YOC,, EMPVEHID I ON

,, EPVEHPK Y OFFEMPVEHRS 1 OFF
1 OFF

,, EMPIVEHPK OFFPLEX 1 ENPVEID1 OFF

i EMPVEHRS Y OFF
VEHAIRCD Y OFF
VEHMAKE Y OFF

Y OFF

FIGURE 8. SAMPLE DUIMpM FIELD DESCRIPTORS

PAGE 59

TOCIC B.8 - DATA BASE EXECUTIVE

A. DATA SET NAME:

DBPL/I - DBLIST Interface

B. CREATED BY:

DB Preprocessor Function

C. TYPE OF FILE:

(4) Table

D, ORGANI2ATION:

Documentary Table

E. KEY IDENTIFIER (CONTROL FIELE):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. ELOCKING FACTOR:

Not Applicable

H. PURPOSE:

The DBPL/I - DBLIST Interface (see Table 1) specifies
the DBLIST entry point name and the argument types and
crder for the various EBPL/I statements. Thus, it
serves to specify for the DB Preprocessor function (see
Section IV, Topic B.5) what CALL statements are to be
generated for each DBPI/I statement. Conversely, it
specifies for DBLIST (see Section IV, Topic B.5) what
entry points will be entered and what and how
information will be available at execution time for
the performance of the various statement actions.

The various entry points and their argument types are
declared by source code in the macro library member
DBTEXT. Any program that includes the DB preprocessor
also is given DBTEXT by an INCLUDE statement in DB.

!)KIAdaVA(-)a3f.LDV!IVHZ ST 4

401dvuia Qai Si u

I(Ldduizd) irisaa viivD o (Ld).lsIIl axii (ukazis (zd) isi j~as
I(Qd ILd) sxriqa iiv:)' (ZciJas kl (L d) IS l aLg o

(:t'u~daxqaa-iv: (s) 1N () ax t) snaa f

I/id Qtimua 1/13 G

09 a~vd

PAGE 61

TOFIC B.9 - SETS INFORMATION FIIE

A. DATA SET NAME:

SETSINFO - Set-File Information File

B. CREATED BY:

DBSETI - Utility odule

C. TYPE OF FILE:

Non-Data Pase File

D. ORGANIZATION:

Sequential

E. KEY IDENTIFIER:

Not Applicable

F., RECORD LENGTH:

Fixed, 100 bytes

G. BLOCKING FACTOR:

Unblocked

H. PURPOSE:

This file describes the attributes of the Set File; it
is created at the time the Set File is pre-formatted.
The Information File ccntains the number of devices
allocated to the Set File, the nurter of records per
device, and the record size. This file is read at
NASIS initialization by MTTSTART and the information is
posted into the MASTAB table for DBCSET.

PAGE 62

TOPIC B.10 - SET FILE

A, EATA SET NAME:

SETFILE - Set File

B. CREATED BY:

SETINIT - Utility Module

C. TYPE OF FILE:

Non-Data Base File

D. ORGANIZATION:

Random (BrAM)

E. KEY IDENTIFIER:

Not Applicable

F. RECOPD LENGTH:

Fixed factual length parameterized at creation)

G. BLOCKING FACTOR:

Unblocked

H. PURPOSE:

This file is created and vre-formatted by SETINIT,
which is attached by the DBSETI stand-alone utility.
Its record length and size is optional. The
characteristics of this file reside in the SETSINFO
File upon creation. Once pre-fcrmatted, this file is
used by the NASIS Set Manager, DBOSET, for storing
sets.

PAGE 63

TOFIC C.1 - UTILITIES

A. DATA SET NAME:

NASIS USERIDS

B. CREATED BY:

DBJOIN

C. TYPE OF FILE:

ISAM

D. ORGANIZATION:

Variable format

E. KEY IDENTIFIER (CONTROL FIELD):

8 Character NASISID, key length 8, key position 5.

F. RECORD LENGTH:

4000 bytes

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

Maintain for each NASIS ID, the correspondinq password,
timeslice, user authority and list of valid files.

PAGE 64

TOfC D.1 - MAINTENANCE

A. DATA SET NAME:

NDBLOAD ERROR CODES Table

B. CREATED BY:

NDBLOAD

C. TYPE OF FILE:

Core table

D. ORGANIZATION:

Sequential array

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Defined as (0:216) character (1)

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This table contains codes to be used to control the
action taken for each EEPAC error that may occur.

PAGE 65

TCEIC D.2 - MAINTENANCE

A. EATA SET NAME:

TRNSCT Data Set Descriptcrs

B. CREATED BY:

CORRECT (NDBCCRR)

C. TYPE OF FILE:

OISAM - Anchor

D. ORGANIZATION:

Indexed Sequential

E. KEY IDENTIFIER (CONTROL FIELE):

Offset of 5, fixed field (255)

F. RECORD LENGTH:

Varyinq (4001)

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose cf the transaction data base is to serve as
a temporary repository for changes to one of the data
base datafiles, until the file owner can validate the
change and execute the maintenance program to apply
it.

The TRNSCT file will consist of fields defined as
follows:

KEY - This will be an alphanumeric fixed field 255
bytes in length consisting of the file name (padded to
six characters with $) concatenated with the OWNER-ID,
(padded to eight characters with *) of the affected
file concatinated with the anchor's key. The last
fourteen (14) bytes of the key will be the time stamp
field.

NASISID - This is an alphanumeric fixed field, 8 bytes
in length, containing the NASIS-ID of where the
transaction was created.

PAGE 66

CPCODE - This is a alphanumeric fixed field 3 bytes in
length, which indicates the operation to be
performed.

FIELD - This is an alphanumeric fixed field, 8 bytes in
length, which indicates the field of a file which is to
be updated. START - This is an alphanumeric fixed
field, 4 bytes in length. For field context
operation, this field will contain the startinq
location of the context.

END - This is an alphanumeric fixed field, 4 bytes in
length. For field context operation, this field will
contain the ending locaticn of the context.

SUBKEY - This is an alphanumeric fixed field, 10 bytes
in length, which indicates the sutfile key to be
corrected.

SUBCTL - This is an alphanumeric fixed field, 8 bytes
in length, which is the sutfile control field for
subtfile being corrected.

OLDDATA - This is a varying alphanumeric field, maximum
3694 bytes long. This will be the old data field to
change.

NEWDATA - This is a varying alphanumeric field, maximum
3694 bytes Icng. This will be the new data field to be
added or updated.

There are many advantages to having the transactions on
a data base. One impocrtant consideration is that
conversion, validation and reformatting routine can be
written and used to check the data as it enters the
data base, thus causing many errors to be detected
before maintenance is ever run.

There are many advantages to having the transactions on
a data tase. One impcrtant consideration is that
conversion, validation and reformatting routines can be
written and used to check the data as it enters the
data base, thus causing many errors to be detected
before maintenance is ever run.

PAGE 67

TOFIC D.3 - MAINTENANCE

A. rATA SET NAME:

CORRECT Data risplay Format

B. CREATED BY:

CORRECT (NDBCORR)

C. TYPE OF FILE:

Terminal Display

D. ORGANIZATION:

Not Applicable

E. KEY IDENTIFIER (CONTROL TIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose of this display is to present as much of
the data contained in the field as possible to the
user. By dcing so, in a reasonable format, the user
can examine the data and make any required adjustments
to correct errors that he detects.

PAGE 68

CCORECT IXXXXXXX, XXXXXXXXXXXXXXX

fLINGTEH = 80, ELEM1ENTS = 4)

E001 :YXxxxxxx
EOC2 : XXXXXXXIXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

002 XFXXXX
E003 :xxxxxxxx
E004 :XXXXXXXX

PAGE 69

TOFIC D.4 - MAINTENANCE

A. DATA SET NAME:

NDBLOAD Error Data Set 'BLIOAD.EFEOR'

B. CREATED BY:

VDBLOAD

C. TYPE OF FILE:

QISAM

D, ORGANIZATION:

Indexed Sequential

E. KEY IDENTIFIER (CONTROL FIELD):

(Must be the same as that of the NDBLOAD input data
set).

F. RECORD LENGTH:

(Must be the same as that of the NDBLOAD input data
set).

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This data set serves as the repository for all input
records that cannot be successfully loaded.

PAGE 70

TOFIC D.5 - MAINTENANCE

A. tATA SET NAME:

Data Base Inverted Index Format

B. CREATED BY:

A descriptor region is created by DBEDIT (the
descriptor editor) for each inverted index. It
generally consists of a header record and three field
descriptor records.

Inverted index records are originally written by
either the invert maintenance program or NDBPAC
(inverting ccncurrently with data base loading).

Inverted index records are automatically maintained

during data base maintenance by EBPAC.

C. TYPE OF FILE:

(6) NASIS File

D. ORGANIZATION:

QISAM - Queued Indexed Sequential Access Method

E. KEY IDENTIFIER (CONTROL FIELE):

The index key field name is the same as the indexed
field name, e.g. 4UTHOP, SUBJTERM, FEYWORD etc. The
CISAM key length is the maximum length of the indexed
values (plus 1 for a sparned index) and may not exceed
255 bytes.

F. RECORD LENGTH:

Variable - 4000 bytes maximum.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose of the inverted index files is to give the
system a fast, efficient method of storing and
accessing the list of records in a data base file that
contain a particular data element value.

The records of inverted files consist of a universal

PAGE 71

record form with a sreciali2ed structure. The
structure consists of the concatenation of the
following fields:

the QISAM record length field (BECLEN)
4 bytes, fixed length, binary

the QISAM delete byte, 1 byte, fixed length, binary

the QISAM key field
1-254 bytes, fixed length, indexed field element
value
optionally suffixed by
1 byte, fixed length, binary record number within
region if the index is SPANNED.

the crcss references field
2 bytes, fixed length, binary field length
followed by one or rore fixed length
anchor or subfile kev values in ascendinq
collating sequence.

In a SPANNED index, the first record of a region has
key suffix zero, and possible continuation records (up
to 255) in a continuous 'region'. All records in a
region, except possibly the last, are maximum length
(have the aximum number of whole cross references)
after index loading or maintenance with the cross
reference values ascending frcr record to record as
well as across each record.

PAGE 72

TOFIC D.6 - MAINTENANCE

A. DATA SET NAME:

Descriptor Editor Data Display format

B., CREATED BY:

Descriptor Editor DISPLAY Command (DBEDDP)

C. TYPE OF FILE:

Terminal Display

D, ORGANIZATION:

Not Applicable

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose of this display is to allow the user of the
Descriptor Editor to review the specifications for a
particular field descriptor.

I. SAMPLE DISPLAY:

FIELD NAM..,,............xxxxxxxx
FIELD TYPE..........,....xx
ALIGNMENT................x
FIELD FORMAT............ xx
FIELD LENGTH.............xxxx
ELEMENT LENGTH,,..,..... xxx
ELEMENT NUMBI...........xxxx
UNIQUE ELEMENTS..........x
CONVERSION BOUTINE.......xxxxxxxx
FORMATTING ROUTINE,......xxxxxxxx
VALIDATION RCUTINE.,....*xxxxxxxx
VALIDATION AFGUMENT......xxxxxxxxxxxx

XXXXXXXXXXXXXXXXXXXXXxXXXXXXX

XXXXXXXXXXXXXXXXXX XxxxxxX .

PAGE 73

xxxxxxxxxxxxxxxxxxxxxxxxxxxx
INDEX FILE ir, ... oe*,,*ox
INDEX KEY FORM ... ooo*vooox
EXTERNAL KEY LFNGTHe#****x
INDEX SPAYNEDe.99sooosotex
ASSOCIATE FILE IDoooe*oo*x
SMILE CONTROL FIELD,.*.x
SUEFILE
BASE FIELD NAME*.sooooesoxxxxxxxX
BASE FIELD OFFSET*ooooooexxxx
SUPERFIELD CCMPONENTS...,xxxxxxxxx

x*xxxxxxxx xoxxxxxxxx
xoxxxxxxxx xoxxxx xxxx
xexxxxxxxx xoxxxxxxxx
xoxxxxxxxx xoxxxylixx
xexxxxxxxx x9xxx'xxxxx
xexxxxxxxx xoxxxyxxxx
xexxxxxxxx xoxxxxxxxx
Koxxxxxxxx

SECURITY ... 0690000*0090**Xxxxxxxx
xxxyxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xyxxxxxx xxxxxxxx
xxxxxxxx xxlxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx
xxxxxxxx

PAGE 74

TOEIC D.7 - AINTENANCE

A. EATA SET NAME:

rescriptor Editor Field Name Display Format

B. CREATED BY;

Descriptor Editor (FIELDS) Command (DBEDFD)

C. TYPE OF FILE:

Terminal Display

D. CRGANIZATION:

Not Applicable

E. KEY IDENTIFIER (CONTROL FIELE):

Not Applicable

F. RECORD LENGTH:

Not Applicable

H. PURPOSE:

The purpose of this display is to allow the user of the
Descriptor Editor to review the names of all of the
fields described thus far in CREATE mode. In UPDATE
mode the user is oresented a list of the descriptor
descriptor field names.

PAGE 75

I, SAMPLE DISPLAY:

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx XXXxxxxx
xxxxxxxx xxxxxxxx

NOTE A Total of 57 names can te displayed on one
screen.

PAGE 76

TOPIC D.8 - MAINTENANCE

A. DATA SET NAME:

NDBLOAD Input Data Set

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

QISAM

D. ORGANIZATION:

Sequential

E. KEY IDENTIFIER (CCNTROL FIELD):

Usually same as that of the data base to be loaded.

F, RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. FURPOSE:

This data set serves as the source of input records for
NDBLOAD,

PAGE 77

TOPIC D.9 - MAINTENANCE

A. EATA SET NAME:

Descriptor Editor Listing Format

B. CREATED BY:

Descriptor Editor Print Command (DBEDPR)
S.

C. TYPE OF FILE:

1403 Printer Display

D. ORGANIZATION:

Not Applicable

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

133

G. ELCCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose of this display is to list the contents of
each descriptor field and each file descriptor in
character form.

I. SAMPLE DISPLAY:

See Figure 1

******* ****** ******** ***** **

DATAPLEX XXXXXX

A*******************

*F ASIRSVBNVUIG R V F F E E NAMEFLD S V
L SUNEUAI UANN E E A L L L L E A , D SBVABRTMRID N F L D D T T C F C L* N 0 FFD CFFAEQE E 0 I P L L L 0 I U I ,* A CII 0NLLLLUX R R D 0 E E I D E R D* M FLLNTDDITEE C M R S N N M E L I A
* E IEEL R G LX R A T I D T R ,

L Y L N TT T T N T Y G

XXXXXXXX.XX X X X X X X x x x X xXXxxxxxx xxxxxxxx xxxxXXX xxxx xxx XXXX X.XXXXXXXX xxxxxxxx xxxxxxxxmXX

X.XXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXX
~************************ ~X.XXXXXXXX XXXXXXXX XXXXXXXXXXXXXXXXXX

*SF D B DSDMML R RSECTYCD **UI E S EPANNOE
*F L S E S A T T T A C C M *
I E C L CNAN ND S 0 A
XT R N ON AIA E D S
* Y C G K E BNB C E K*
* P T T D L GL F ,
* E H E E P ,**

X X XXXX XXXX X X X X X X XXXX XXXXXXXX:XX
xxxxxxxx: XX

FIGURE 1. SAMPLE LISTING FORMAT

PAGE 79

TOPIC D.10 - MAINTENANCE

A. rATA SET NAME:

INVERT Restart File

'INVERT.PAR.'IjFILENAME -
where FILINAMP is the six character data base name.

B. CREATED BY:

NDBIVRT1 module.

C. TYPE OF FILE:

Seauential

D. ORGANIZATION:

SA

E. KEY IDENTIFIER (CCNTROL FIELE):

Not Applicable

F. RECORD LENGTH:

255 bytes (Variable)

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This file prcvides a restart key for the first phase of
INVERT.

PAGE 80

TCEIC D.11 - MAINTENANCE

A. rATA SET NAME:

INVERT SORTIN File

'SORTIN.1 | FILENA M E j.' |FIEtl

1. FILEVAME is the six character data base name.

2. FIELD is the 1-8 character field name that is
being inverted.

B. CREATED BY:

First step of DBIVRTI.

C. TYPE OF FILE:

Sequential

D. ORGANIZATION:

SAM

E. KEY IDENTIFIER (CONTROI FIELD):

First field is the maximum length value of the field
being inverted.

F. RECORD LENGTH:

4000 bytes (Variable). Record consists of maximum
length value of field being inverted concatenated with
file Key.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This file is the input to the second phase of invert, a
DSORT utility.

PAGE 81

TOPIC D.12 - MAINIENANCE

A. EATA SET NAME:

INVERT SORTOUT File

'SORTOUT. 'jFILENAMEI '.' FIELD

1. FILENAME is the six character data base name.

2. FIEID is the 1-8 character field name that is
being inverted.

B. CREATED BY:

Sort step of rBSIVRT.

C. TYPE OF FILE:

Sequential

D. ORGANIZATION:

QSAM

E. KEY IDENTIFIER (CONTROL FIELD):

First field is the maximum length value of the field

being inverted.

F. RECORD LENGTH:

4000 bytes (Variable). Record consists of maximum
length value of field being inverted concatenated with
the file Key.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This file is the input to DBIVRT2.

PAGE 82

TCR1C D.13 - MAINTENANCE

A. CATA SET NAME:

INVERT PLEX File

'PIEX.'|jFILENAMElI'. *'IIFLE

1. FILNAME is the six character data base name.

2. FIELD is the 1-8 character field name that is
being inverted.

B. CREATED BY:

Step three of DBIVRT2.

C. TYPE OF FILE:

Indexed Sequential

D. CRGANIZATION:

ISAM

E. KEY IDENTIFIER (CCNTRCL FIELE):

Key of file is internal field value being inverted
concatenated with blanks up to the maximum external
field length. If index file is spanned, span character
is concatenated as last positicn of Key.

F. RECORD LENGTH:

4000 bytes (Variable). Record is identical in format
as an index file record.

G. ELOCKING FACTOR:

Not Applicable

H. PURPOSE:

This file is the input to the last step, translation
step, of DBIVRT2.

PAGE 83

TOPIC D.14 - MAINTENANCE

A. £ATA SET NAME:

INVERT RANGE File

'RANGE.' IFILENAME I'.' IFIELD

1. FILENAME is the six character data base name.

2. FIELD is the 1-8 character field name that is
being inverted.

B. CREATED BY:

EBI RT2

C. TYPE OF FILE:

Indexed Sequential

D. ORGANIZATION:

ISAM

E. KEY IDENTIFIER (CCNTROL FIELD):

Key of the file is the maximum length value of the
field being inverted. If index file is spanned, span
character is concatenated as last position of Key.

F. RECORD LENGTH:

4000 bytes (Variable). Record is identical to index
file record.

G, BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This file is the input to the index merge module for
index updates.

PAGE 84

TCFIC D.15 - RAINTENANCE

A. DATA SET NAME:

DESCRP.CHKPOINT

B. CREATED BY:

Descriptor Editor Checkpcint (DBEDCP)

C. TYPE OF FILE:

TSS VAM

D. ORGANIZATION:

Sequential

E. KEY IDENTIFIER (CONTROL FIELE):

Not Applicable

F. RECORD LENGTHi

The records are of varying length of which the maximum
is dynamically determined at execution time. The
maximum possible value is 4000.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose of this dataset is for storing sufficient
information from the descriptor tables so that the user
can continue creating the descriptor file at a future
time through use of the RESTORE command.

The first record consists of those items from the X
structure whose value must te preserved. The second
record consists of the entire content of the FIELD
structure. The next group of records will contain the
field descriptor information. There will be one record
for each existing field, consisting of the information
in the appropriate FLD structure concatenated with the
information contained in the appropriate SECURITY,
SUPER, and VALID structures where applicable.
Following the field descriptor records are records
containing the header descriptcr information, one for
each existing file. These records consist of the
information from the appropriate HDR structure

PAGE 85

concatenated to the information from the proper RECSEC
structure when apolicable.

PAGE 86

TOFIC D.16 - MAINTENANCE

A. tATA SET NAME:

IINDMRG.PARM.'IFILENAME - FILENAME is the six
character data base name.

B. CREATED BY:

NDBINDM2 (index merge module)

C. TYPE OF FILE:

SEQUENTIAL

D. ORGANIZATION:

QSAM

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. FECORD LENGTH:

255 Bytes (variable)

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This file provides a restart key for restart of
tBINDM2.

PAGE 87

TCEIC D.17 - MAINTENANCE

A. IATA SET NAME:

Descriptor Editor REVIEW Display Format

B, CREATED BY:

Descriptor Editor REVIEW Command (DBEERV)

C. TYPE OF FILE:

Terminal Display

D. ORGANIZATION:

Not Applicable

E. KEY IDENTIFIER (CONTROL FIELE):

Not Applicable

F. RECORD LENGTE:

Not Applicable

G. ELOCKING FACTOR:

Not Applicable

H. PURPOSE:

The purpose of this display is to allow the user of the
Descriptor Editor to review the exact contents of any
descriptor record in any descriptor region.

PAGE 88

SAMPLE DISPLAYS:

FILE DESCRIPTOF

SUFFIX =x FILETYPE=x
DESCRCT =xxxxx BSEIFGTH=xxxxx
DESCOK =x SPAVVED =x
tATA =-F MNTWABLE=x
MNTVIVG =x LOArABLE=x
BECSECFP=xxxxx REMAINS =xxxxxxxx
PSECTYCD=xxxxxxxx:xx xxxxxxxx:xx

xxxixxxx:xx xyxxxxyx:ix
xxxxxxxx:xx xxxxxxxx:xx
xxxxxxxx:xx xxxxxxxx:xx
xxxxxxxx:xx x'xxxxxxx:xx
XXXXXXXXI.XX xxxxxxxx:xx
xxxixxxx:xx xxxxxxxx:xx
xxxxxxxxxx xylxxxxx:xx
xxxxxxxx:xx xxxxxxxxzxx

PAGE 89

FIEID DESCRIPTOR

FLDVAME =xxxxxxxx ASSOCFIL=x
SUBFILE =x IVVFIlE =x
READOVIY=x INFIlf =x
VARFLD =x BITFID =x
VUMAlIGN=x VAPELT =x
UNIQUELT=x INDEIEXT=x
GENERCFT=xxxxxxxx VALIERTN=xxxxxxxx
BEFORMAT=xxxxxxxxx FLDPCSIT=xxxxx
FLDEN =xxxxx DFLDIEV =xxxxx
TLDLEN =xxxxx DELTIIM =xxxxx
ELTLIM =xxxxx LILTIEN =xxxxx
SPARE =xxxxxxxxxxxxxxxx
VALIDABG=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxx7xyx7xxxx
XXXXXXXXXXXXXXIYXXXXXxxxxxxxxxx
xxxxxxx

WAMEFID =xoxxxxxxxx xoxxxxxxxx
xoxxxxxxxx xolxxxxxxx
X*XXXXXXXX xoxxxxxxyx
xoxxxxxxxx xoixxxxxxx
xexxxxxxxx KOXXXXXXXX
XoXxxxxxxx X*Xxxxxxxx
xoxxxxxxxx xoxxxx-xxxx
lexxxxxxxx X*Iyxxxlyx

SECURITY=xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx 2xxxxxxx
xxxxxxxx xxxxxxxx xxxxxxxx
xxxxxxxx xxxxxxxx xxxxxxxx

PAGE 90

TOPIC D.18 - VAINTENANCE

A. DATA SET NAME:

DEFIELD which consists of the external structure FIELD

B, CREATED BY:

Not Applicable

C. TYPE OF FILE:

Table

D. ORGANIZATION:

PL/I Data Structure

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This table is used to contain the names and core
locations of all the field descriptor during the
runnine of a retrieval session.

PAGE 91

I. PL/I DECLARATION:

THIS STRUCTURE IS USED TO CONTAIN THE FIELD NAMES AND
THEIR RESPECTIVE FLD PCINTERS.

1 FIELD BASED (X.FIELD_PTR), /* FIELD NAMES AND */
/* PCINTERS STRUCTURE. */

3 RECLEN BIN (31) FIXED, /* RECORD LENGTH FOR */
/* ASMPUI. THIS IS USED IN */
/* CHKPOINT COMMAND. IT IS */
/* SET ECUAL TO ELT LENGTH OF */
/+ FIELD STRUCTURE.

3 LAST BIN FIXED, /* INDEX OF LAST TABLE ENTRY. /
3# BIN FIXED, /* NUMBER OF ENTRIES IN TABLE.*/
3 A (X.#FN REFER (FIELD.#)),

5 NAME CHAE (8), /* FIELENAME ARRAY. */
5 PTR PTR; /* FLD STRUCTURE POINTERS. */

PAGE 92

TOfIC D.19 - MAIVTENANCE

A. EATA SET NAME:

DERECSEC which consists cf the structures RECSEC and
RECSEC STR

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

Table

D. ORGANIZATION:

PL/I Data Structure

E. KEY IDENTIFIER (CONTROL FIELE):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. FURPOSE:

The BECSEC structure is used to contain the record
security codes that rertain to a given file.
RECSECSTE is a character string overlay of the RECSEC
structure.

PAGE 93

I. PL/I DECIARATICN:

THE RECSEC STRUCTURE IS USED TO STORE THE RECORD
SECURITY CODES AND SECURITY MASKS USED TO DETERMINE
RECORD SECURITY. THE RECSEC STRUCTURE IS POINTED TO BE
EDR.RSECTYCD FIELD WHEN THE FILE HAS RECORD SECURITY
DEFNED ON IT.

1 RECSEC BASED (X.RSECPTR), /* RECORD SECURITY */
/* CODES STRUCTURE.

3 # BIN FIXED, /* NUNBBE OF SECURITY CODES. */
3 SECURITY (18),

5 CODES CHAR (8), /* USER PASSWORD. $/
5 MASK CHAR (2), / RECORD ACCESS CODE. */

3 CHANGED (18) BIT (1), /* ONE FIAG FOR EACH SECURITY */
/* CODE. IF ON THEN REPUT NEW */
/* VALUE. */

3 FILLER CHAR (8); /* NEEDED FOR PLI BUG. /

THIS STRUCTURE IS A CHARACTER STRING OVERLAY OF THE
RECSEC STRUCTURE. IT IS USED FCR MAKING
COPIES OF THE RECSEC STRUCTURE.

DCL RECSECSTR CHAR (193) BASED (X.RSECPTR);
/* RECSEC STRUCTURE OVERLAY. */

PAGE 94

TOPIC D.20 - MAINTENANCE

A. DATA SET NAME:

DESECUP which consists of the structure SECURITY and
SECURITY STR.

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

Table

D. CRGAWIZATION:

PL/I Data Structure

E. KEY IDENTIFIER (CONTROL FIELE):

Not Applicable

F. FECORD LENGTE:

Not Applicable

G. BLOCKING FACTCR:

Not Applicable

H. PURPOSE:

The SECURITY structure is used to ccntain the security
codes definingq field security for a given field.
SECURITY STR is a character string overlay of the
SECURITY structure.

PAGE 95

I. PL/I DECLARATION

THE SECURITY STRUCTURE IS USED TO STORE THE FIELD
SECURITY CODES DEFINED FOR A GIVEN FIELD. IT TS
POINTED TO EY TBE FLD.SECURITY FIELD ON WHICH THIS
FIELD SECURITY IS DEFINED.

1 SECURITY BASED (X.FSEC_PTR), /* FIELD SECURITY */
1/ COLES STRUCTURE. */

3 # BIN FIXED, /* NUMBER OF SECURITY CCDES */
/+ FOR THIS FIELD. */

3 CODE (18) CHAR (8), /* SECURITY CODE VALUES. */
3 CHANGED (18) BIT (1), /* ONE FLAG FOR EACH SECURITY */

/* CODE. IF ON THEN REPUT THE */
/* NEW VALUE. */

3 FILLER CHAR (8); /* NEEDED FOR PLI BUG. */

THIS STRUCTURE IS A CHARACTER STRING OVERLAY OF THE
SECURITY STRUCTURE. IT IS USED FOF MAKING COPIES OF
THE SECURITY STRUCTURE.

DCL SECURITY STR CHAR (157) BASED (XFSECPTR) ;
/* SECURITY STRUCTURE OVERLAY.*/

PAGE 96

TOPIC D.21 - MAINTENANCE

A, EATA SET NAME:

DESUPER which consists of the structure SUPER and
SUPER STR.

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

Table

D. ORGANIZATION:

PL/I Data Structure.

E. KEY IDENTIFIER (CONTROL FIELE):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. ELOCKING FACTOR:

Not Applicable

H. PUPPOSE:

The SUPER structure is used to contain the superfield
component information of a field descriptor. SUPER STR
is a character string overlay of the SUPER structure.

PAGE 97

1. PL/I DECLARATION:

THE SUPER STRUCTURE IS USED TO STORE THE SUPERFIELD
COMPONENTS OF A SUPER DESCRIPTCR. IT IS PCIETED TO BY
THE FLD.NAMEFID OF THE DEFINING SUPERFIELD.

1 SUPER BASED (X.SUPER_PTR), /* SUPER FIELD */
/* COMPCNENT FIELDNAMES */
/* STRUCTURE. */

3 # BIN FIXED, /* NUMBER OF CCMPCNENT NAMES. */
3 NAME (16),

5 CODE CHAR (1), /* INTERNAL-EXTERNAL INDICATOR*/
5 FIELD CHAF(8), /* COMPONENT FIELD NAMES. */

3 CHANGED (16) BIT (1), /* ONE FIAG FOR EACH COMPONENT*/
/* NAME. IF CN THEN REPUT THIS*/
/* COMFONENT NAME. */

3 FILLER CHAR (8); /* NEEDED POP ELI EUG. */

THIS STRUCTURE IS A CHARACTER STRING OVERLAY OF THE
SUPER STRUCTURE. IT IS USED FOR MAKING COPIES OF THE
SUPER STRUCTURE.

DCL SUPEFSTF CHAR (156) BASED (X.SUPER_PTR);
/4 SUPER STRUCTURE OVERLAY. */

PAGE 98

TOPIC D.22 - MAINTENANCE

A. rATA SET NAME:

DEVALID which consists of the structure VALID

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

Table

D. ORGANIZATION:

PL/I Data Structure

E. KEY IrENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. ELOCKING FACTOR:

Not Applicable

H. PURPOSE:

This structure is used to contain the validation
argument for a field descriptor.

PAGE 99

1. PL/I DECLARATION:

THE VALID STRUCTURE IS USED 10 STORE A VALIDATION
ARGUMENT IF ONE IS DEFINED FOR THE FIELD. IT IS
POINTED TO BY FLD.VALIDARG IN THE FIELD TO WHICH THIS
ARGUMENT EELCNGS.

1 VALID BASED (X.ARG_FTR), /* VALIDATION ARGUMENT */
/4 STEUCTURE. */

3 LNGTH BIN FIXED, /* LENGTH OF VALIDATION */
/* ARGUMENT. */

3 ARGUMENT CHAR (X.LVA REFER (VALID.LNGTH)):
/* VALIDATION ARGUMENT.

PAGE 100

TCFIC D.23 - MAINTENANCE

A. DATA SET NAME:

tEFLD which ccnsists of the based structures

FLD and FLD STRING

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

Table

D. ORGANIZATION:

PL/I Data Structure

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH

Not Applicable

G, BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The FLD structure is used to contain the information
describing a field descriptor. FLDSTRING is a
character string used to overlay the FLD structure.

PAGE 101

I. PL/I DECLARATICN:

THIS STRUCUTRE IS USED TO STORE THE INFORMATION
DEFINING A FIELD DESCRIPTOR.

1 FLD BASED (X.FtD PTR), /* FIELD DESCRIPTOR */
/* STRUCTURE. */

3 BACKWARD PTR, /* BACKWARE FID POINTER. */
3 FCRWARD PTE, /* FORVARt FLi POINTER. */
3 FLDNAME CHAP (8), /* FIELD XAPIE. */
3 ASSOCFIL CHAP (1), /* ASSOCIATE FILE IDENTIFIER. */
3 SUBFILE CHAR (1), /* SUEFILE IDENTIFIER. */
3 INVFILE CHAR (1), /* INVERTED FILE IDENTIFIER. */
3 READCNLY CHAP (1), /* FIELD READ ONLY FLAE. */
3 SUBCNTRL CHAR (1), /* FIELD A SUEFILE CONTROL FLD*/
3 VARFLD CHAR (1), /* VARYING LENGTH FIELD FLAG, */
3 BITFLD CHAR (1), /* FIELD IS FIXED LENGTH */

/* BIT STRING OF LENGTH ONE. */
3 NUMALIGN CHAR (1), /* FIELD ALIGNMENT FLAG. */
3 VARELT CHAR (1), /* FIELD ELEMENTS OF VARYING */

/* LENGTH FLAG. */
3 UNIQUELT CHAR (1), /* ELEMENTS UNIOUE FLAG. */
3 INDEXEXT CHAR (1), /* INDEX FEYS TC BE IN */

/* INTERNAL OR EXTERNAL FORM */
/* FLAG. */

3 FILLER CHAR (1), /* BOUNDRY ALIGNMENT. */
3 GENERCRT CHAP (8), /* CCNVERSICN ROUTINE NAME. */
3 VALIDRTN CHAR (8), /* VALIDATION ROUTINE NAME. */
3 REFORMAT CHAR (8), /* FORMATTING ROUTINE NAME. */
3 SPARE CHAR (16), /* UNUSED DESCRIPTOR FIELD. */
3 FLDPCSIT BIN FIXED, /* FIELD POSITION VALUE. */
3 FLDLEN BIN FIXED, /* FIELD LENGTH VALUE. */
3 DFLDIEN BIN FIXED, /* MAXIMUM FIELD LENGTH OF ALL*/

/* VALUES STCRED ON THE DATA */
EASE. */

3 ELTLIM BIN FIXED, /* MAX NUMBER OF ELEMENTS/FLD.*/
3 DELTLIM BIN FIXED, /* MAXIMUM ELEMENTS STORED IN */

/* THIS FIELD IN THE DATA BASE*/
3 ELTLEN BIN FIXED, /* ELEMENT LENGTH VALUE. */
3 DELTLEN BIN FIXED, /* MAXIMUM ELEMENT LENGTH */

/* OF ALL OF THE ELEMENTS */
/* STORED FOP THIS FIELD IN */
/+ THE DATA BASE. */

3 VALIDARG PTR, /* POINTER TO VALIDATION */
/* ARGUMENT IF ANY. */

3 NAMEFLD PTP, /* POINTER TC LIST OF FIELD */
/* NAMES MAKING UP SUPER FIELD*/

3 SECURITY PTR, /* POINTER TC FIELD SECURITY */
CODES IF ANY. */

3 BASEFLD CHAR (8), /* THE FIEIDNAME ON WHICH A */
/* SUBFIELD IS TO EE DEFINED. */

3 OFFSET BIN FIXED, /* THE OFFSET WITHIN THE BASE */
/* FIELD THAT THE SUBFIELD */

PAGE 102

STARTS. */
3 FILE LIST BIN FIXED, /* ON WHICH ENTEY IN FtLTAB */

/* HAS THIS FIELD BEEN HUNG. */
3 FLDTYPE BIN FIXED, /* ENTRY INTC FIELD TYPE TAELE*/

/* DEFINING WHICH TYPE OF
/* FIELD THIS IS. */

3 CHANGED (28) BIT (1), /* ONE FLAG FOR EACH ITEM IN */
/* FLD STRUCTURE. IF ON THEN */
/* PUT NEV VALUE IN DESCRIPTOR*/
/* FILE. */

3 FILLER2 CHAR (8);/* NEEDED FCR PL/I BUG. */

THIS STRUCTURE IS A CHARACTER SIFING OVERIAY ON THE FLD
STRUCTURE. IT IS USED FOR MAKING COPIES OF THE FID
STRUCTURE.

DCL FID STRING CHAR (1221 BASED (X.FLD_PTR);
/* FLD STRUCTURE OVERLAY. *

PAGE 103

TCFIC D.24 - MAINTFNANCE

A. tATA SET NAME:

EEXINIT which consists of the X external data structure
including all initialization values.

B. CREATED BY:

Mot Applicable

C. TYPE OF FILE:

Table

D. ORGANIZATION:

PL/I Data Structure

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACIOP:

Not Applicable

H. PURPOSE:

The X structure is used to contain common variables and
information used to ccntrol the flow through the
descriptor editor

PAGE 104

TOPIC D.25 - MAINTENANCE

A. EATA SET NAME:

DEX which ccnsists of the X external data structure
minus all initialization values.

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

Table

D, CRGANIZATION:

EL/I Data Structure

E. KEY IDENTIFIER (CONTROI FTELr):

Not Applicable

F. RECORD LENGTFH:

Not Applicable

G. BLOCKING FACTCR:

Not Applicable

H. PURPOSE:

The X structure is used to contain common variables and
information used to ccntrol the flow through the
descriptor editor.

PAGE 105

I. PL/I DECLARATICNi

THE X STRUCTURE IS A COLLECTION OF MINOR STRUCTURES AND
SINGLE VARIABLES USED IN THE RUENING CF THE DESCRIPTOR
EDITOR. THESE MINOR STRUCTURES CONSIST OF PREDEFINED
FLD, HDR, RECSEC SECURITY, AND SUPER STRUCTURES, AS
WELL AS THE INPUT OUTPUT WORK AREAS FOR THE VARIOUS
STRUCTURES. THE OTHER MINOR STRUCTURES ARE A LIST OF
RESERVED FIELED NAMES ANt A LIST OF FIELDS WHICH ARE TO
FE DELETED FROM THE DESCRIPTOR FILE WHEN THE CURRENT
DESCRIPTORS ARE FILED TO PAKE THE DESCRIPTOR FILE
ACCURATE.

1 X EXT CTL, /* EXTERNAL CONTROLLED */
/* ELOCKED VARIABLES. */

THIS MINOR STRUCTURE IS THE PREDEFINED COMMENTS FIELD
LESCBIPTOR.

3 FLD_COMMENTS LIKE FLC,/*COMMENTS FIELD DESCRIPTOR*/

THIS MINOR STRUCTURE IS THE PREDEFINED FREEFORM FIELD
DESCRIPTOR.

3 FLD_FREEFORE LIKE FLD, /*USER ENTERED KEYWORDS */

THIS MINOR STRUCTURE IS THE PREEFINED RECORD SECURITY
FIELD DESCRIPTOR.

3 FLDRS LIKE FLD,
/* RECORD SECURITY DESCRIPTOR.*/

THIS MINOR STRUCTURE IS THE PREDEFINED BASE FCR A SUBFILE
COnTrOL FIELD DESCRIPTOR.

3 FLDSUBCNTRL LIKE FLD,

THIS MINOR STRUCTURE IS THE PREDEFINED BASE FOR A
SUEFILE KEY FIELD DESCRIPTOR.

3 FLDSUBID LIKE FID,

THIS MINOR STRUCTURE IS THE PREDEFINEE BASE FOP A
SUBFILE PARENT KEY FIELD DESCBIFTOR.

3 FLDSUBPK LIKE FID,

THIS MINOR STRUCTURE IS THE PEEDEFINED HEADER
DESCRIPTOR RECORD FOR THE ASSOCIATE FILE CONTAINING
COMMENTS AND FREEFORM FIELD DESCRIPTORS.

3 HDR ASSOC LIKE HER,/* HEADER FOR COMMENTS AND */

PAGE 106

THIS MINOR STRUCTURE IS TFE PREDEFINED HEADER
DESCRIPTOR RECORD THE INDEX FIIE CN WHICH THE FIELD
FREEFORM IS INDEXED.

3 HDR INDEX LIKE HDR,
/* INDEX FILE HEADIP FOR USER */
/* KEYWOFES STORED IN FREEFORM*/

THIS MINOR STRUCTURE IS A PREDEFINED INITIALI ED FLD
STRUCTURE- IT IS USED TC INITIAII E A NEWLY ALLOCATED
FLD STRUCTURE.

3 INIT_FLD LIKE FLD,
/* FIELD DESCRIPTOR INITIAL */
/* VALUES. */

THIS MINOR STRUCTURE IS A PREDEFINED INITIALI ED HDR
STRUCTURE, IT IS USED TO INITIALI E A NEWLY ALLOCATED
HDR STRUCTURE.

3 INITHDR LIKE HDR,
/* HEADER DESCRIPTCP INITIAL */
/* VALUES. */

THIS MINOR STRUCTURE IS A PREDEFINED INITIALI ED
SECURITY STRUCTURE. IT IS USED TO INITIALI E A NEWLY
ALLOCATED SECURITY STRUCTURE.

3 INIT_SECURITY, /* FIELD SECURITY STRUCTURE */
/* INITIAL VALUES. */

5 # BIN FIXED,
5 CODE (18) CHAR (81
5 CHANGED (18) BIT (1),
5 FILLER CHAR (8),/* NEEDED FOR PLI BUG. */

THIS MINOR STRUCTURE IS USED FCF AlL IO OPERATIONS TO
AND FROM THE DESCRIPTOR FILE INVOLVING FIELD DESCRIPTOR
RECORDS. ALL FIELD DESCRIPTOR INPUT FROM THE
DESCRIPTOR FILE IS PLACfD INTO THIS WORK AREA BEFORE
BEING MOVED TO AN ALLOCATED FLD STRUCTURE. BEFORE
OUTPUTTING TO A FIELD rESCRIPTOR ON THE DESCRIPTOR
FILE, THE FIELD INFORMATION IS MOVED INTO THE IOFLD
STRUCTURE. THIS IS NECESSARY BECAUSE DBPAC REQUIRES
ALL IO INTO AND FROM TC BE DONE FROM VARYING LENGTH
CHARACTER STRINGS.

3 IO-FLD, /* FIELD DESCRIPTOR WORK AREA */
/* STRUCTURE, */

5 BACKWARD PTR, /* BACKWARD FIELD POINTER. +/
5 FORWARD PTR, /* FORWARD FIELD POINTER. */
5 FLDNAME CHAR (8) VAR,/* FIELD NAME. */
5 ASSOCFIL CHAR (1) VAR,/* ASSOCIATE FILE ID. */
5 SUBFILE CHAR (1) VAR,/* SUTFIIE IDENTIFIER. */

PAGE 107

5 INVPILE CHAR (1) VAR,/* INVERTED FILE ID. 8/
5 READONLY CHAR (1) VAR,/* FIELD READ ONLY PLAG.*/
5 SUBCNTFL CHAR (1) VAR,/* FIELD IS A SUEFILE */

/* CONTROL FIELD. */
5 VARFLD CHAR (1) VAR,/* VARGING LENGTH FIELD.*/
5 BITFLD CHAR (1) VAR,/* FIXED LENGTH BIT */

/* STRING OF LENGTH ONE. */
5 NUMALIGN CHAR (1) VAR,/* FIELD ALIGNMENT FLAG.*/
5 VARELT CHAR (1) VAR,/* FIELD ELEMENTS OF */

LENGTH FLAG. */
5 UNIQUELT CHAR (1) VAR,/* ELEMENTS UNIQUE FLAG.*/
5 INDEXEXT CHAR (1) VAR,/* INDEX KEYS TO BE IN */

/* INTERNAL OR EXTERNAL FORM */
/4 FLAG. */

5 FILLEP CHAR (1) VAR,/* BOUNDRY ALIGNMENT. /
5 GENERCRT CHAR (8) VAR,/* CONVERSION RTN NAME. */
5 VALIDRTN CHAR (8) VAR,/* VALIDATION RTN NAME. */
5 REFORMAT CHAR (8) VAR,/* FORMATTING RTN NAME. */
5 SPARE CHAR (8) VAR,/* UNUSED DESCRIPTOR FIELD. */
5 FLDPOSIT CHAR (2) VAR,/* FLELD POSITION VALUE.*/
5 FLDLEN CHAR (2) VAR,/* FIELD LENGTH VALUE. */
5 EFLDLEN CHAR (2) VAR,/* EAXIMUM FIELD LENGTH.*/
5 ELTLIM CHAR (2) VAR,/* MAX NUMBER OF */

/9 ELEFENTS / FIELD. */
5 DELTLIM CHAR (2) VAR,/* MAXIMUM # OF ELEMENTS*/
5 ELTLEN CHAR (2) var,/* ELEMENT LENGTH VALUE.*/
5 DELTLEN CHAR (2) VAR,/* FAXIBUM ELEMENT LNGTH*/
5 VALIDARG PTR, /* POINTER TO VALIDATION */

/8 ARGUMENT IF ANY. */
5 NAMEFLE PTR, /* POINTER TO LIST OF FIELD */

/* NAMES MAKING UP SUPER FIELD*/
5 SECURITY PTR, /* POINTER TO FIFLD SECURITY */

/9 CODES IF ANY. */
5 BASEFLD CHAR (8),/* STEFIELD DEFINING BASE. */
5 OFFSET BIN FIXED,/* OFFSET IN RASEFIELD */

/* SUBFIELD IS TO START. */
5 FILE LIST BIN FIXEr,/* WHICH ENTRY IN FLD_TAB. */
5 FLDTYPE BIN FIXED,/* TYPE OF FIELD. */
5 CHANGED (28) BIT (1),/* CNE FLAG FOR EACH ITEM */

/* IN FLD STRUCTURE. IF ON */
/* THEN PUT NEW VAIUE IN */
/4 DESCRIPTOR FILE.

5 FILLER2 CHAR (8),/* NEEDED FOR PLI BUG. */

THIS MINOR STRUCTURE IS USED FCR ALL IO OPERATIONS TO
AND FROM THE DESCRIPTOR FILE INVOLVING READER RECORDS.
ALL INPUT FROM THE DESCRIPTCR FILE INVOLVING HEALER
RECORDS IS PLACED IN THE 10_HR STRUCTURE BEFORE BEING
MOVED TO AN ALLOCATED HDR STRUCTURE. TO OUTPUT A
READER RECORD, THE INFORMATION IS MOVED INTO THE IO-HDR

STRUCTURE BEFORE BEING PLACED ON THE FILE. THIS IS
NECESSARY BECAUSE DBPAC FEQUIRES ALL IO TO BE DONE IN
INTO AND FROM VARYING LENGTH CHARACTER STRINGS.

PAGE 108

3 IOHDR, /* HEAtER DESCRIPTOR WORK AREA*/
5 BACKWARD PTR, /* BACkWARD HEADER POINTER. */
5 FORWARD PTR, /* FORWARD HEADER POINTER. 8/
5 SUFFIX CHAR (1) VAR,/* NHICH FILE THIS */

/4 HEADER BELONGS TO. */
5 FILETYPE CHAR (1) VAR,/* TYPE OF FILE INDICATP*/
5 DESCRCT CHAR (2) VAR,/* NUMBER OF FIELD */

/* DESCRIPTORS ON THIS FILE. */
5 BSELNGTH CHAR (2) VAR,/* TOTAL LENGTH OF FIXED*/

FIELDS ON THIS FILE. */
5 DESCOK CHAR (1) VAR,/* DESCRIPTORS OK FLAG. */
5 SPANNED CHAR (1) VAR,/* THIS INDEX TO CONSIST*/

/* OF SPANNED RECORDS FLAG, */
5 DATA CHAR (1) VAR,/* DATA IS ON FILE FLAG.*/
5 MNTNABLE CHAR (1) VAP,/* FILE CAN BE

/8 MAINTAINED FLAG. /
5 HNTNING CHAR (1) VAR,/* FILE BEING MAITAINFD*/

* FLAG. *
5 LOADABLE CHAR (1) VAR,/* FILE CAN BE LOADED. */
5 REMAINS CHAR (4) VAR,/* UNUSED DESCRIPTOR FLD*/
5 RECSECFP CHAR (2) VAR,/* FILE HAS RECORD */

/8 SECURITY FLAG. /
5 PSECTYCE PTP, /* POINTER TO RECORD */

/4 SECURITY CODES IF ANY. */
5 CHANGED (13) BIT (1),/* ONE FLAG FOR EACH ITEM */

/* IN HEADER STRUCTURE. IF */
/* ON THEN PUT NEW VALUE */
/* IN THE DESCRIPTOR FILE. */

5 FILLER CHAR (8),/* NEEDED FCR PLI BUG. */

THIS MINOR STRUCTURE IS USED FCF AlL 10 OPERATIONS TO
AND FROM THE DESCRIPTOR FILE INVOLVING FIELD SECURITY
CODES.

3 10 SECURITY, /* FIELD SECURITY STRUCTURE. */
5 # BIN FIXER,/* NUMBER OF SECURITY CODES*/

/8 FOR THIS FIELD. */
5 CODE (18) CHAR (8) VAR,/* USEP PASSWORD. */
5 CHANGED (181 1IT (I),/* CNE FLAG FOE EACH */

/* SECURITY CODE, IF ON THEN */
/8 ~EFUT THE NEW VALUE. */

5 FILLER CHAR (8),/* NEEDED FOR FZI BUG. */
3 GF, /* PARAMETERS TO GET FIELD */

/4 SUBROUTINE. */
5 ALLCCEEW BIT (1),/* ALLOCATE AND INITIALI E A /

/ NEW FLD STRUCTURE. */
5 FLDLEN BIN FIXEE,/* MAXIMUM ALLOWABLE LENGTH*/

/4 FOR THE FIELDNAME.
5 FLDMSG CHAR (8),/* 14SGID TC PRCMPT FOR THE */

/8 TIELENAME.
5 FLD# BIN FIXED,/* FOB AN EXISTING FIELD, */

/* THE ENTRY IN FIELD STRUCTUP*/
/8 ELSE 0. */

/* *i3ILVd-aiaa ia t40 aaaofi t
/4 ~)Niaa aiuii ao awvN */' (8) HVH0 m G Iivd E
/4 *H3LVd -MaIA~1i La NO0 *1
/~azAaoR smiaa aiii ao ai */' U) avHo an1i&~vd £

/4 14iJvailvA jDH1a WLII OaXU xiia VA I E

/* caouaa aao .sav avo-i */,(L) JIa auI0GI01 £
1* owoaa avo'i ai aiia io ai u*/' U)a-vo UVI L& U'

1* Iadfl I~wal HOWfrOD */'8VA t(9z) vAnD vaavoi £
/4 SeaI aiIa .

/* XaGNI MIISSOd 11V 10 ~I'S1
'(90) HVH3 Sawvu XzGII E

I. Ti1JIDzavxaH a'IgrdaDD'i 'IV
1(90) hivHu salff3XRH E

/4 *dZGVaH IIDVI90 aoi d aRD lai'~d (90 avi-~iam c
/4 oiaia~saa aiia 0Jl aid l1 aid UJld-aH E

/4 aanIDadais
/4Aiiaaoas QUiai 01 aid 1 aid dld-DaSa C

1* UtIV Aia aasL1 idiJ anii waaJxii mia adlAIQ'1 E
/4 miais aiarI iIDV3 RI

/ L3 criaIa ISUIA 01 Sadd* 'Hld (09) gVIja'ia E
/4 UO1dIaosaa mia Oa, dId l aid alId UIa E
/4 KIAIS aiaii MDVi I RI
/4 A11a alii IsV7 01 saida la'id (09) isvirala c
/*aaiaai am 31 0i DI ad la 'id Hd-alaIa E

/*sadAl aiaia aim& ixv */'(z) aVHZ) (OL :0) adliaiald E
/4 asSa3Oad aa 01 muia */,(q) HVHID aIaVNUia E

/*mo1Ivoixnfloo maflow aaj&Ni *
/4 O& aasa SVua 9aaa */'0 I) a DVrICHH3 E
/4 anV aNvwwoD a0 iw'vx */' (e) am1~ awvu-amwD E
/4 UOlva ivtaaili .

/4 V 80 1'IVD tHIVIWD V */'(L) I18 1iYDo axwoD E

/*iass aiaiIDOSS iiIS~ v */' (&) hVHD S3WVN Dossv E
/eimawagay moiivailVA 0.6 dId */ 'did adad av c

Is -VHd'II MVdDDT 77,V e
'(90? RVHD 3Ida~flkVHd V E

Is aiami aav ov m tg)a S1

/* *GaivwiOD asuavii do aav NI 5' U) Ila Dvia-aav E
Is 3 15GV~da30V 1094 *
S aav szwvN cahaasaa -aa0

/4 .*Rald133V .
I~aav samV aaAaasaa -NOQ */' (L) ~Ia a'xssaa s
/* QiaAdIS3d *

1* ~ s SImi 3W14115 1 al #
/*miivDIasi anivA MandLad V WW(LIU M1gQadSad G
/*asa*d~d*DI IaS 01 3111VA */'U) Ila ddl J4Idd S

Isi ouiisIx IISX? aao -/
/sG'1ia PRN aNvaa v la No */'(t) Ia a am s

60L a~va

PAGE 119

3 REV MODE BIT (1),/* IN REVIEW OR UPDATE MODE. */
3 RSEC_PTR PTR, /* PTR TO FECCED SECURITY */

/* CODES. */
3 SAVE STRING CHAR (15C) VAR,/* AREA TO BUILD */

/9 COEMAND STRINGS. */
3 SUBFILENAMES CHAR (10),

/* LIST CF AIL POSSIBLE
/ SUE-FILE ID'S.

3 SUFFIX CHAR (36),
/* ALL PCSSIBIE FIIE */

IDENTIFIER SUFFICIES. */
3 SUPER PTR PTR, /* PTR OC SUPEBFIELD COMPONENT*/
3 TRANS, /* TRANSITORY CALL LABELS. /

5 CALL CHAR (8),/* ROUTINE TO BE CALIED */
5 RET CHAR (8),/* ROUTINE TO RETURN TO. */

THIS SUBSEQUENT PART OF THE Y STRUCTUPE IS SEPARATED
FROM THE REST OF THE X ITEMS AS THIS PART OF X IS THE
FART THAT MUST BE SAVED WHEN USING THE CHKPOINT
COMMAND. THIS PREVIOUS INFORPATICN OF X NEED NOT BE
SAVED, AS IT IS SETUP PROPERLY WHENEVER X IS ALLOCATED,
OR THOSE ITEMS WHOSE VALUES MATTERS NOT BETWEEN COMMAND
EXECUTION.

3 CHKPOINTRECLEN BIN (31) FIXED,
/* OUTPUT RECORD IENGTH FOR */
/* ASMPUT ROUTINE. IT IS SET */
/* SET TO THE LENGTH OF THE */
/* X STRUCTURE THAT MUST BE */
/* SAVED fHEN CHECFPOINT IS */
/8 EXECUTED. /

THIS MINOR STRUCTURE IS THE PREDFTINED PECLEN FIELD
DESCRIPTOR. IT IS PLACED IN IN THIS PART OF X BECAUSE
IT MAY HAVE FIELD SECURITY APPLIED TO IT.

3 FLD_RECLEN LIKE FLD,

THIS MONOR STRUCTURE IS A LIST CF RESERVED FIELDNAMES.
THE USER MAY NOT DEFINE BY USE OF THE ADD, SUPEPFLD,
CREATSUB, ADDLIKE, AND PENAPE CCMMANDS A FIELD
DESCRIPTOR WITH A FIELENAME THAT APPEARS IN THIS
TABLE.

3 RESERVED, /* LIST OF RESERVED FIELDNAMES*/
5 LAST # BIN FIXED INIT (14),

/* INDEX CF LAST ENTRY. */
5 FIEIDNAME (40) CHAR (8),/*RRESERVED FIELDNAMES */

3 ASSOC_LIST CHAR (9),/* LIST OF ASSOCIATE FILE */
/* ID'S AVAILABLE FOR */
/* ASSIGNMENT. */

3 CREATEF BIT (1),/* CREATE-UPDATE MODE FLAG. */
3 DATAPLEX CHAR (6),/* FILE BEING DEFINED.

PAGF 111

3 DELETE_FILES CHAR (36),/* LIST OF DESCRIPTOR */
/* REGIONS TC EE DEIETED FROM */
/* DISC. */

3 EXIST FILES CHAR (36),/* FILE IDS CF ALL FILES */
/* EXISTING ON DISC. */

3 FILE EXISTS BIT (1),/* DESCFIPTOR FILE EXISTS. */
3 INDEX LIST CHAR (16),/* LIST OF UNASSIGNED INDEX*/

/* FILE ID'S. */
3 #FN BIN FIXED,/* NUBEP OF ENTRIES IN */

/* FIELD STRUCTURE. */
3 LOAD ERROR BIT (1),

/* ERROR IN LCADING DESCRIPTRS*/
3 NEED FILE BIT (1),

/* USER SHOULD FILE TO SAVE. */
3 SUBFILE LIST CHAR (10),/* LIST OF ALL UNASSIGNED */

/* SUB FILE ID'S. */

THIS MINOR STRUCTURE IS USED TO STORE THAT INFORMATION
NECESSARY TC THE EXECUTION CF MODULES THAT CAN HAVE
PAGEABLE INFORMATION DISPLAYS.

3 PAGE INFO,
5 RTN LABEL, /* WHAT ROUTINE TO PAGE.
5 RTN NAME CHAR (8),

/* THE POUTINE NAME THE PAGING*/
/4 MODULE IS TO CALL. */

5 PTR PTR, /* ADDRESS OF STRUCTURE BEING */
/* DISPLAYED. */

5 DIR CHAR (1),/* PAGING DIRECTION. */
5 FILE ID CHAR (1),/* SUFFIX OF FILE BEING */

/* REVIEWED.
5 FLD_NAME CHAR (8),

/*NAME CF FIEID BEING REVIEWD */
5 !OTEJ BON FOXED./* LAST ITEM PUT ON SCREEN-%*/
5 ITEMS BIN FIXED,/* # OF ITEMS TO DISPLAY. */
5 LIMIT BIN FIXED,/* ALl ITEMS AFTER LIMIT TO*/

/* BE DISPLAYED ONE PER LINE. */
5 # BIN FIXED,/* # OF PAGE BEING DISPLAYD*/
5 LAST BIN FIXED,/* LAST ENTRY USED. */
5 START (100) BIN FIXED,/* ITEM # USED TO START */

/* EACH PAGE. */

THIS MINOE STRUCTURE IS USED TO STORE THOSE FIELD NAMES
AND IDS OF THE DESCRIPTOR REGIONS IN WHICH THEY APPEAR
THAT MUST BE DELETED FROP THE DESCRIPTOR FILE THE NEXT
TIME A FILE IS DONE.

3 DELETE, /* LIST OF FIELD NAMES TO BE */
/* DELETED FBCM THE DISC. */

5 KEY_NAME CHAR (8),/* ANCEOH KEY NAME IF
/* ANCHOR FEY NAME HAS BEEN */
/* CHANGED.

5 * BIN FIXED,/* NUmBFR OF FIELDS */

PAGE 112

/* TO PE DELETED. */
5 A (100),

7 FIELD CHAR (8),/* NAMES OF FIELDS TO BE */
/8 DELETED. */

7 IDS CHAR (4);/* IDS CF FILES ON WHICH */
/1 THE FIELD APPEARS.

PAGE 113

TCOIC D.26 - MAINTENANCE

A. ATA SET NAME:

DEHDR which consists of the structures HDR and
RDB STRING

B, CREATED BY:

Not Applicable

C. TYPE OF FILE:

Table

D. CRGANIZATION:

PL/I Data Structure

E, KEY IDENTIFIER (CCNTECL FIEL£):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. ELOCKING FACTOR:

Not Applicable

H. PURPOSE:

The HDR structure is used to contain the information
describing a file descriptor. HD STRING is a
character string used to overlay the HDR structure.

PAGE 114

I. PL/I DECLARATION:

THE HDR STRUCTURE IS USED STORE THE INFORMATION
DEFINING A FILE DESCRIPTOR.

1 HDR BASED (X.BDB_FTR), /* FILE DESCRIPTOR */
/8 STRUCTURE. */

3 BACKWARD PIR, /* BACFWARD HDER POINTER. */
3 FORWARD PTR, /* FORWARE HLER POINTER. */
3 SUFFIX CHAR (1), /* WHICH FILE THIS HEADER */

/* BELONGS TO. */
3 FILETYPE CHAR (1) /* TYPE OF FILE INDICATOR.
3 DESCRCT BIN FIXED, /4 NUBE OF FIELD DESCRIPTORS*/

/4 ON THIS FILE. */
3 BSELNGTH BIN FIXED, /* TOTAL LENGTH OF FIXED */

1/ FIELDS ON THIS FILE. */
3 DESCOK CHAR (1), /* DESCRIPTORS CK FLAG. */
3 SPANNED CHAR (1), /* THIS INDEX TO CONSIST OF */

/* SPANNEt RECORDS. */
3 DATA CHAR (1), /* DATA CE FILE SWITCH. */
3 MNTNABLE CHAR (1), /* FILE CAN BE MAINTAINED FLAG*/
3 HNTNING CHAR (1), /* FILE BEING MAINTAINED FLAG.*/
3 LOADABLE CHAR (1), /* WHETBHR OR NOT TO PLACE */

/4 DATA ON THIS FILE.
3 REMAINS CHAR (8), /* UNUSED HDR DESCPIPTCP FIELD*/
3 RECSECFP BIN FIXED, /* FILE HAS RECORD SECURITY. */
3 RSECTYCD PTR, /* POINTER TC RECORD SECURITY */

/* CODES IF ANY, */
3 CHANGED (13) BIT (1), /* ONE FLAG FOR EACH ITEM IN */

/* HEADER STRUCTURE. IF ON */
/* THEN FUT NEW VALUE IN
/4 DESCRIPTOR FILE. /

3 FILLER CHAR (8); /* NEEDED FOR PLI BUG. */

THIS STRUCTURE IS A CHARACTER STRING OVERLAY ON THE HDR
STRUCTURE. IT IS USED FOR FAKING CCPIES OF THE HDR
STRUCTURE,

DCL HDR_STRING CHAR (46), BASED (X.BDR_PTR);
/ HDR STRUCTURE OVERLAY. */

PAGE 115

TOPIC D.27 - MAINTENANCE

A. DATA SET NAME:

CARDIN Freeform Parameter File

B. CREATED BY:

User

C. TYPE OF FILE:

SYSIN Input

D. ORGANIZATION:

Sequential (QSAM)

E. KEY IDENTIFIER (CONTRO FIELD):

Not Applicable

G. ELOCKING FACTOR:

Not Applicable

H. PURPOSE:

This input card file contains the parameters needed
for each individual maintenance job. Parameters are
entered on cards in a freeform format. Parameters
mmst be Keyworded and separated by a comma, Element
parameters must be enclosed in left and riqht parens.
No embedded blanks are allowed but Keyword can start
in any position in the card. Values must not be
split on two different cards but element parameters
may be continued on next card if preceded with a
Keyword. Following is an example of parameter cards:

//CA RDIN DE *
FILENAME=DE2TDB
FIE1D=(EMPNAME,EMPAGE,EMPSEX)
ANCHOR=YES,ASSOCIAT=NO,INDEX=NC

PAGE 116

TOPIC D.28 - MAINSENANCE

A. EATA SET NAME:

PETOUT PRINT FILE

B. CREATED BY:

Maintenance Modules

C. TYPE OF FILE:

Printer Output

D. CRGANIZATION:

Sequential (QSAM)

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

7. FECORD LENGTH:

Fixed 133 bytes (first byte print control
character).

G. BLOCKING FACTOP:

Not Applicable

H. PURPOSE:

This is a printer output file for maintenance
modules to display diagnostic informaticn or
program status information such as record counts.
DD card should be:

//PRTCUT DD SYSOUT=A, CE=(PECFM=FA,LRECL=133,
// BLKSIE=133)

PAGE 117

TOPIC E.1 - TERMINAL SUPPORT

A. DATA SET NAME:

TSPL/I Diagnostics

B. CREATED BY:

TS Preprocesscr Function

C. TYPE OF FILE:

(4) Table

D. ORGANIZATION:

Keyed List

E. KEY IDENTIFIER (CONTROL FIELD):

Each diagnostic comment has an identification key
having the form: ,---EFROR---nn' where nn is a unique
identification number.

F. RECORD LENGTH:

Variable

G. ELOCKING FACTOR:

Not Applicable

H. PURPOSE:

TSPL/I Diagnostic comments are qenerated into mainline
source programs by the TS preprocessor function (see
Section IV, Topic E.1 of the DWB). They are tabulated
here with additional notes for reference. In Paragraph
I, single quotes denote that characters from the TS
preprocessor function or its argument are filled into
the message to make its zeaning clearer.

I, TSPL/I DIAGNOSTIC COMMENTS:

TS01 HISSING ARGUMENT ON TSTL/I REIERENCE.

Severe error - a TS preprocessor function reference
has no parenthesized argument.

TSC0 2 TSPL/I ARGUMENT DOES NCT BEGIN WITH A '('.

Severe error - a TS preprocessor function reference

PAGE 118

does not begin with double left parentheses.
Processing of this TS reference was abandoned because
the closing right parerthesis would not be able to be
found.

TSCO3 hISSING DEIIMITER IN TSPL/I STATEMENT.

Severe errcr - the right parenthesis at the end of a
TS preprocessor function reference has been
encountered unexpectedly.

TSCO4 STATEMENT HAS A MISSING ':'.

Severe error - the right parenthesis at the end of a
TS preprocessor function reference has been
encountered unexpectedly.

TSCOS5 STATEMENT FOUND FOLLOWING FINISH.

Severe error - the statement has been ignored because
it follows the TS (fFINISH;)) reference,

TSC06 STATEhENT CCOTAINS EXCESS ' ('(s).

Severe error - the statement semicolon has been
found, but the parentheses are unbalanced. The
statement was ignored.

TSC07 STATEMENT KEYWORD UNKNCWN,

Severe error - an unkncwn wcrd was found as the first
word of a TSPL/I statement. The statement was
ignored.

TSC08 'text' STATEMENT CONTAINS INVALID SYNTAX.

The statement type identified by 'text' was found to
contain invalid syntax. The statement was ignored.

TSCO9 EXTRANEOUS TEXT IGNOREE.

This message merely means that part of the statement
was ignored.

TS010 IMPROPER OE MULTIPLE ENABLE STATEMENTS.

An improper placement cf or multiple use of an enable
statement has been encountered. The statement was
ignored.

PAGE 119

* ---NNNNN---**: ~SPL/I ERBCRS.'

The finish statement has been processed and NNNNN
errors were previously detected.

PAGE 120

TOfIC E,2 - TEPMINAL SUPPORT

A. DATA SET NAME:

Terminal Control Block

B. CREATED BY:

TS Preprocessor Function

C. TYPE OF FILE:

(4) Table

D. ORGANIZATION:

Linear Structure of Fields

E. KEY IDENTIFIER (CONTROL FIELE):

TC

The terminal control block is an automatic internal
data table.

F. RECORD LENGTH:

236 Bytes (Hexidecimal EC)

This is the length of the whole control block including
the dope vectors,

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The TC control block is used for communication between
mainline programs and TSSUP. The declaration is
generated by the TS preprocessor function. For TSPL/I
statements in the mainline, the TS preprocessor
function generates statements that post fields in TC,
such as a prompt message key. At execution time, TSSUP
refers to fields in 'C and posts error code fields in
TC which may subsequently be referenced in the
mainline.

PAGE 121

1. PL/I DECLARATION:

/* TERMINAL CONTROL BLOCK (TC) FOR (TS2) TSPL/I */

DECLARE
1 TC, /*DEFINE THE TC STRUCTURE */

2 FUNCTION CHAR18), /*TS FUNCTION IDENTIFIER */
/*SET EY IS PREPROCESSCR */
/**ENTRY '=ENTRY s/
/**READ '=READ */
/*'WRITE '=WRITE */
/*IFLUSH '=FLUSH /
/*"PUT '=PUT */
/*vPROMPI-C'=COMMAND PROMPT*/
/*9PROMPT-D'=EATA PPOMPT */
/*PROPPT-M'=MESSAGE

2 PAGING_ENTRY CHAR(8), /*TS PAGING ENTRY POINT */
/*SET BY TS PREPROCESSOR */
/*TO NAME OF THE CURRENT */
/*MODULE'S PAGING ENTRY */

2 LINE SIZE FIXED BIN(15),/*TS LINE WIDTH (BYTES)
/*SET BY TSSUP ON ENTRY

2 INPUT, /*TS SCREEN INPUT FIELDS */
3 ERROR BIT(1), /*READ ERROR BIT SWITCH */

/*SET BY TSSUP AFTER READ */
/*'O'=NC ERRCR '1'=EPRCF */

3 EXTRA BITS BIT(7), /*RESERVED BIT SWITCHES */
2 OUTPUT, /*TS SCREEN OUTPUT FIELDS */
3 SIZE FIXED BIN(15), /*CUTPUT AREA SIZE (LINES) */

/*SET PY TSSUP ON ENTRY */
3 INDENT FIXED BIN(15), /*INDENTATION COLUMN NUMBER*/

/*SET BY USER AT ANYTIME */
3 WRITTEN FIXED BIN(15), /*PUT OUTPUT COUNT fBYTES) */

/*SET BY TSSUP CN CVERFLOW */
/*IF AUTO WRITE IS SET ON */

3 DIRECTION BIT(1), /*PUT DIRECTION PIT SWITCH */
/*SET FY TS PREPROCESSOR */
/*'O'=FOEWARD '1'=BACKWARD */

3 PUT_PARTIAL BIT(1), /*PUT CUTPUT MODE SWITCH */
/*SET BY USER AT ANYTIME */
/*'0'=PUT FULL FECORD ONLY */
/*'1'=PUT PARTIAL RECORD */

3 AUTO WRITE BIT(1), /*PUT ENE OF BUFFER SWITCH */
/*SET BY USER AT ANYTIME */
/*90'=RETURN TO USER */
/*'1'=AUICMATIC WRITE */

3 WORD BREAK BIT(1), /*PUT LINE SPLIT SWITCH */
/*SET BY USER AT ANYTIME */
/*'0'=TRUNCATE AT LINE END */
/*'1'=BREAK AT LAST WORD */

3 CVERFLOW BIT(1), /*PUT OVERFLOW BIT SWITCH */

PAGE 122

/*SET BY TSSUP WHEN PUT
/*CAUSES BUFFER OVERFLOW */
/*'O'=NO OVERFLOW */
/*'1'=CVERFLC~ */

3 CONTINUATION BIT(1), /*PUT CONTINUATION SWITCH */
/*SET BY USER WHEN HE IS */
/*PUTTING CONTINUED DATA */
/*IO'=NO CONTINUATION
/*'1'=PUT CONTINUED DATA */

3 POSITION EIT(1), /*PUT POSITIONING SWITCH */
/*SET BY TS PREPROCESSOR */
/*'O'=PUT TO NEXT LINE */
/*41'=PUT TO TOP OF SCREEN */

3 MORE_DATA BIT(1), /*SCREEN CVERFLOW SWITCH */
/*SET BY THE USER WHEN HE */
/*HAS MORE DATA TO OUTPUT */
/*VIA THE PAGING MECHANISM */
/*O'=NO MORE DATA REMAINS */
/*'1'=MORE DATA AVAILABLE */

2 PEOMPT, /*TS SCREEN PROMPT FIELDS */
3 SIZE FIXED BIN(15), /*PROMPT AREA SITE (LINES) */

/*SET BY TSSUP ON ENTRY */
3 MESSAGE KEY CHAR(8), /*KEY OF CURRENT MESSAGE */

/*SET BY IS PREPOCESSCR */
3 KEYWORD CHAR(8), /*KEYWORD FOR DATA PROMPT */

/*SET BY TS PREPROCESSCOR */
3 BYPASS BIT(1), /*PROMPTING EYPASS SWITCH */

/*SET BY USER AT ANYTIME */
/*'3'=TRCMPT IF NC DATA
/*'1'=REIURN NULL VALUE */

3 ERROR BIT(1), /*PPOMPTING ERROR SWITCHZZZ*/
/*SET BY USER WHEN A DATA */
/*ERROR FORCES REPROMPTING */
/*0O'=PFCCESS NORMALLY */
/*'1'=REPPOMPT FOR DATA */

3 TRUNCATION BIT(l), /*rATA TRUNCATION SWITCH */
/*SET BY 'SSUP FCR PROMPT */
/*'0'=NO TRUNCATION */
/*11'=DATA TPUNCATED */

3 DEFAULT BIT(1), /*DEFAULT VALUE BIT SWITCH */
/*SET BY TSSUP FOR PROMPT */
/*'O'=DATA ENTERED BY USER */
/*'1'=DATA WAS A DEFAULT */

3 UOTED BIT(1), /* UOTED UOTED BIT SWITCH */
/*SET BY TSSUP FCOR PROMPT */
/*'O'=NORMAL DATA VALUE */
/*'1'= UCTED STRING */

3 MORE_DATA BIT(l), /*PARENTHIZED LIST SWITCH */
/*SET BY TSSUP FOR PROMPT */
/*'O'=LASI DATA VALUE */
/*41'=MORE VALUES FOLLOW */

3 SKIP BIT(1), /*SKIP INPUT PARSING BIT */
/*SET BY THE USER WHEN HE */

PAGE 123

/*WISHES TC BYPASS PARSING */
/*'O'=DC NORMAL PARSING */
/*'1'=SKIF NCFAI PAPSING */

3 PAGE BIT(1); /*PAGING CONTROL SWITCH */
/*'0'=IGNCRE PAGING ENTRY */
/* ''=ALTER PAGING ENTRY */

PAGE 124

TOFIC E.3 - TEPMIEAL SUPPORT

A. DATA SET NAME:

TSTEXT - Terminal Ccntrol Block Declaration

B. CREATED BY:

Included by TS processor function.

C. TYPE OF FILE:

Table

D. CRGANIZATION:

PL/I Source Statements

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

92 bytes

G. BLOCKING FACTCR:

Not Applicable

H. PURPOSE:

The purpose of the TSTEXT is to define the terminal
control block (TC) withim every Program using it. This
enables the programmer and the preprocessor to refer to
the fields of the TC block in order to specify the
various functions and options needed by the program.

I. PL/I DECLARATION:

DECL ARE
TSFLUSH ENTRY(), /* FLUSH ENTRY POINT */
TSREAD ENTRY(,CHAR (*) VAR),/* READ ENTFY POINT */
TSWRITE ENTPY(,CHARX*) VAR),/* WRITE ENTRY POINT
TSPUT ENTRY(,CHAR(*) VAR, /* PUT ENTRY POINT */

CHAR(*) VAR) ,/* DEFINITICN */
(TSPRMTC, /* COVMAND PPOMPT ENTRY */

TSPRnTD, /* DATA FRCrrT ENTRY */
TSPRMTM) ENTRY(,CHAR(*) VAR, /* MESSAGE ENTRY POINT*/

CHAR(*) VAR, CHARt*) VAR, CHAR(*) VAR, CHAF(*) VAR,
CHAR(*) VAB, CHAPI*) VAR, CHAR(*) VAP, CHAR(*) VAR,
CHAR(*) VAR, CHAR(*) VAR, CHAR(*) VAR, CHAR(*) VAR,

PAGE 125

CFAR(*) VAR, CHAR(*) VAR, CHAR(*) VAR, CRAP(*) VAR,
CHAR(*) VAR, CHAR(*) VAR, CHAR(*) VAE, CRAF(*) VAR);

DECLARE
1 TC, /* DEFINE THE TC STRUCTURE */

2 FUNCTION CHAR(8), /* TS FUNCTION IDENTIFIER */
/* SET BY TS PPEPSOCESSOP */
/* 'ENTRY '=ENTRY */
/* 'REAr '=PEAD */
/* 'WRITE '=WRPTE */

/* 'FLUS '=FLUSH */
/* 'PUT '=PUT */
/* 'PROMT--C'=COMMAND PROMPT*/
/* 'PROMFT-D'=DATA PROMPT */
/*' PROMIT-M'=MESSAGE */

2 PAGING ENTRY CHAR(8), /4 TS FAGING ENTRY POINT */
/* SET EY TS PREPROCESSOR */
/* TO NAME OF THE CURRENT */
/* MCDULE'S FAGING ENTRY */

2 LINE SIZE FIXED BIN(15), /* TS LINE WIDTH (BYTES) */
/* SET BY TSSUP CN ENTRY */

2 INPUT, /* TS SCREEN INPUT FIEIDS */
3 ERROR BIT(1), /* READ ERROR EIT SWITCH */

/* SET EY TSSUF AFTER READ */
/* 'O'=NC ERROR '1'=ERROR */

3 EXTRABITS BIT(7), /* RESERVED BIT SWITCHES */
2 OUTPUT, /* TS SCREEN OUTPUT FIELDS */

3 SIZE FIXED BIN(15), /* OUTPUT AREA SIZE (LINES) */
/* SET BY TSSUF ON ENTRY */

3 INDENT FIXED BIN(15), /* INDENTATICN COLUMN NUMBER*/
/4 SET BY USER AT ANYTIME *f

3 WRITTEN FIXED BIN(15),/* PUT CUTPUT COUNT (BYTES) */
/* SET BY TSSUF ON OVERFLOW */
/* IF AUTO WRITE IS SET ON */

3 DIRECTION EIT(1), /* PUT DIRECTION BIT SWITCH */
/* SET BY TS PREPROCESSOR */
/* '0'=FORWARE '1'=BACKWARD */

3 PUT_PARTIAL BIT(1), /* PUT CUTPUT MODE SWITCH */
/* SET BY USER AT ANYTIME */
/* 'O'=PUT FULL RECORD ONLY */
/* '1'=FUT PARTIAL RECORD */

3 AUTOWRITE EIT(1), /* PUT END OF BUFFER SWITCH */
/* SET BY USER AT ANYTIME */
/* 'O'=RETURN TO USER */
/4 ''=AUTCMATIC WRITE */

3 WORDBREAK BIT(1), /* PUT LINE SPLIT SWITCH 8/
/* SET 9Y USER AT ANYTIME */
/* 'O'=TRUNCATE AT LINE END */
/* '1'=EBEAg AT LAST WORD */

3 OVERFLOW BIT(1), /* PUT OVERFLOW BIT SWITCH */
/* SET EY TSSUP WHEN PUT */
/* CAUSES BUFFER OVERFLOW */
/* 'C'=NC OVERpLOW */
/4 ' 1'=CVERFLCL */

PAGE 126

3 CONTINUATICON BIT(1), /* PUT CONTINUATION SWITCH */
/* SET BY USER WHEN HE IS */
/* PUTTING CONTINUED DATA *f
/* 'O'=NC CONTINUATION
/* '1'=FUT CONTINUED DATA */

3 POSITION BIT(1), /* PUT POSITIONING SWITCH */
/* SET BY TS PREPEOCESSOR */
/* 'O'=PUT TO NEXT LINE */
/* '1'=FUT TC TOP OF SCREEN */

3 MORE DATA EIT(l), /* SCREEN OVERFLOW SWITCH */
/* SET PY THE USER WHEN HE */
/* HAS MORE DATA TO OUTPUT */
/* VIA THE PAGING MECHANISM */
/* *0'=NC MORE DATA REMAINS */
/* 't'=MCRE DATA AVAILABLE */

2 PRCMPT, /* TS SCREEN PROMPT FIELDS */
3 SIZE FIXED BIN(15), /* PROMPT AREA SIZE (LINES) */

/* SET BY TSSUP ON ENTRY */
3 MESSAGE KEY CHAR(8), /* KEY OF CURRENT MESSAGE */

/* SET BY TS PREPROCESSCR *f
3 KEYWORD CHAR(8), /* KEYWORD FOR DATA PROMPT */

/* SET BY TS PREPROCESSOR */
3 BYPASS BIT(1), /* PROMPTING BYPASS SWITCH */

/* SET BY USER AT ANYTIME */
/* 'O'=EROMPT IF NO DATA */
/* '1'=BETURN NULL VALUE */

3 ERROR BIT(1), /* PROMPTING ERROR SWITCH */
/* SET BY USER WHEN A DATA */
/* ERROR FORCES REPROMPTING */
/* 'O'=PROCESS NORMALLY */
/* 'I'=REPROMPT FOR DATA

3 TRUNCATION BIT(1), /* DATA TRUNCATION SWITCH */
/* SET BY TSSUP FCR PROMPT */
/* 'O'=NO TRUNCATION */
/* '1'=DATA TRUNCATED */

3 DEFAULT BIT(1), /* DEFAULT VALUE BIT SWITCH */
/* SET BY TSSUP FCR PROMPT */
/* 'O'=LATA ENTERED BY USER */
/* '1'=LATA WAS A DEFAULT */

3 QUOTED BIT(1), /* QUOTED QUOTED BIT SWITCH */
/* SET BY TSSUF FOR PROMPT */
/* 'O'=NORMAL DATA VALUE */
/* 11'=QUOTED STRING */

3 MORE_DATA BIT(1), /* PARPNTHI7ED LIST SWITCH */
/* SET BY TSSUP FCR PROMPT */
/* 'O'=1AST DATA VALUE */
/* '1'=MCRE VALUES FOLLOW */

3 SKIP BIT(1), /* SKIP INPUT PARSING BIT */
/* SET BY THE USER WHEN HE */
/* WISHES TO BYPASS PARSING */
/* 'O'=DC NCOMAL PARSING */
/* '1'=SKIP NORMAL PARSING */

3 PAGE BIT(1); /* PAGING CONTROL SWITCH */

PAGE 127

/* 'O'=IGNOPE PAGING ENTRY */
/* '1'=AITER PAGING ENTRY */

PAGE 128

TOPIC F.1 - DATA RETRIEVAI

A. DATA SET NAME

RETDATA - Retrieval Data Table

B. CREATED BY:

DBINIT

C. TYPE OF FILE:

Table

D. ORGANIZATION

PL/I Data Structure

E. KEY IDENTIFIEP (CONTROL FTELE):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE

1. RETDATA EXTERNAL CONTROLLED.
This table contains data fields unique to the
retrieval sub-svstem and referenced by various
modules of that sub-system.

2. NAME CHAR(50) VARYING.
This field contains the name of the user.

2. ADDRESS CHAR(10O VARYING.
This field contains the address of the
user,

I. PL/I DECLARATION

/* NASIS SYSTEM RETRIEVAL DATA TABLE */

DCL
1 EETDATA EXTERNAL CONTROLLEU,/*DETINE RETRIEVAL DATA */

2 NAME CHAR(50) VAR, /* USEr'S NAE */
2 ADDRESS CHAR(100) VAR; /* USER'S ADDRESS

PAGE 129

TOFIC F.2 - DATA RETRIEVAL

A, DATA SET NAME:

EXPAND Display Format

B. CREATED BY:

EXPAND (DBXPNE)

C. TYPE OF FILE:

(3) Terminal Communication

D. ORGANIZATION:

Character Display Screen

E. KEY IDENTIFIER (CONTROL TIELD):

Not Applicable

F. RECORD LENGTH:

Variable (Enter output area cf the screen or pseudo
screen)

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This is a series of on-line output displays produced by
the EXPAND ccmmand giving the user full access to the
inverted indexes of a data base assisting him in an
on-line search for inforraticn.

The display is adapted to the size of the display
screen being used. If the end of the inverted index or
the end of the ranqe of E-numbers (000-999) is
encountered in either direction, a line such as

(--TOP OF PAGING SEqUENCE--)
(--END OF INDEX----)

is displayed in the apprcpriate row. The primary term
is always reqenerated cn the appropriate row when
multiple paging operations are done in either direction
even if the primary term is not found in the inverted
index.

PAGE 130

SAPILE EXPAND tISPIAY

SYSTEM -ENTEF:
USER: expand asm,languaqe
SYSTEM: tINE XRETS LANCUAG (S)

-E100 28 ASM
P101 6 ENG
P102 12 N/A
E103 43 PLI
P104 4 TSS
*8** t---END OF INDEX---)

PAGE 131

TOFIC F.3 - DATA PETRIEVAL

A. DATA SET NAME:

SELECT Display Format

B, CREATED BY:

SELECT (DBSLCT and DBSETC)

C. TYPE OF FILE:

(3) Terminal communication

D. ORGANIZATION:

Character Display Screen

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

480 Byte typical - 40 column, 22 line output area apart
from the prompting area.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This is the output qenerated by the SELECT command.
UBSLCT calls the DBPSET entry point of DBSETU to post
the users new set and DBSETU sends this display to the
prompt area of the screen.

PAGE 132

SELECT COMNAND SCREEN DISPLAY

aa bbttt ccccccc

or

aa bbbbb (FROM: ddddd) ccccccc

where:

aa = set number
bbbbb = number of references
ccccccc = SELECT expression
dddddd = control field name, if applicable

PAGE 133

TOFIC F.4 - DATA RETRIEVAL

A. EATA SET NAME:

DISPLAY Display Format

B. CREATED BY:

DISPLAY (DBDSPL)

C. TYPE OF FILE:

(3) Terminal Communication

D. ORGANIZATION:

Character Display Screen

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. EECORD LENGTH:

480 Bytes typical - 40 column, 12 line output area

apart from the prompting area.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This is a series of on-line output displays produced by
the DISPLAY command givirn the user full access to the
anchor and associated files of a data base assisting
him in an on-line search for information. Each screen
image is built in a PAGTAE buffer and then transmitted
in a single output operation to the display screen. A
special use of the DISPLAY command is to retrieve saved
screen images and redisplav them. Usually a stored
screen image is one of the formats produced by the
various commands, but it may even be a screen image the
user has keyed in.

The display is adapted to the size of the display
screen being used including the degenerate case of a
typevriter terminal (120 columns by one line).

PAGE 134

The first row under the heading rows always has a field
name tag, even when it is a ccntinuation of an element
value begun on the previous screen.

PAGE 135

DISPLAY Command Screen Display

DISPLAY aa,t,ccccc (oriqinal command parameters)

wwwwwwww= mmmmmm OF SET aa, FOKAT b, ITEM nn
xxxxxxxx: n

yyyyyyyy: p,YYYY: P,

zzzzzZZz: rrrrrrrrrrrrrrrrrrrrrrrrrrrrr
rr
rrr
rrrrrrrrrrrrrrrrr etc.

where:

nn = relative reccrd in set/key aa
mmm etc. = up to 30 characters of key value.
p, q = up to 30 characters of element value.
rrr etc. = 77 character element value.
www etc. = key field name.
xxx etc. = field name having a single short element.
yyy etc. = field name having twc short elements.
zzz etc. = field name having a single long element.

PAGE 136

COIU MNAR

EISPLAY aa, FFF, ccccc (original ccrmand parameters)
PAGE xx

ti
t2

tn
hl
h2

hn

F1 F2 F5
F2

F3 F4
F4

F3 F4
F3

where:

xx = page number.
ti = one or more title lines.
hi = one or more header lines.
F1,F5 = one element field on the anchor or associate

file.
F2 = a multi-element field.
P3,FP4 = an elemental field on a sutfile.

PAGE 137

TOPIC F.5 - DATA RETRIEVAL

A. EATA SET NAME:

PARSED Table

B. CREATED BY:

The SELECT Command (DBSLCT)

C. TYPE OF FILE:

Table

D. ORGANIZATION:

Linear Structure cf elements

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

PARSED is a group of structures used by SELECT to save
the information from a parsed expression, when that
expression requires a search or contains "S" numbers
which cannot be resolved with set numbers until after
execution at the actual linear search.

At search time EXSEARCH calls SELECT to begin
evaluation of the boolean expressions and to post sets
to be searched. SELECT uses the information contained
in PARSED tc do this and to replace all "S" numbers
with their correspondinq set numters. After the search
SELECT proceeds with the final evaluation of the
expression.

1. PARSED is a based structure consisting of pointers
to the other structures containinq the various
pieces of information that needs to be saved when
a boolean expressicn contains "S"numbers.

2. PAFSTABPTR is a pointer to the structure

PAGE 1.38

which is used to describe each element of the
expression.

2. PTAE_INFO P8IR is a pointer to the structure
which holds additional information about each
element of the expression.

2. PTAB PTRSPIR is a pointer to the array of
pointers, each pointer corresponding to an
element of the expression.

2. INST LIST PIR is a pointer to the list of
instructions generated by SELECT to provide
for evaluation of the expression.

2. WASPTR is a pointer to the work string in
which the expression and other necessary
character strings are stored.

2. LNTH is the length for allocation of all
tables listed here except WAS. It is
determined from the length of the input
expression.

2. S# contains the S# in which the PARSED
pointer is stcred, i.e. the PARSED pointer
is stored in ENTRYDEF.PARSED pointed to by
SRCHTAB.DEFPTR(PARSED. S).

1. PARS TAB is the primary table for storage of
information as the expressicn is parsed.

2. LNTH is the number of array elements in the
table.

2. EL is an element of the table. One element
in the table is used to describe each
syntactic item in the expression.

3. IDX is the relative position of the item
in the string WAS.

3. LTH is the length of the item.

3. ID is the identifier of the item which
distinguishes between items of the same
general type.

3. TYPE is the general type of the item,
such a relation operator, character
string, etc.

3. TERM is used to mark an item as being a

PAGE 139

term during expression evaluation, or
to mark an item so that it will be
ignored by later Dasses.

3. SKIP causes later proaram passes to skip
over a particular number of items (or
elements in PARSTAB).

1. PTABPTRS is an array of pointers. Each pointer
corresponds directly to an element in PARSTABthe
Nth pointer in FTAEPTPS corresponds to the Nth
element in PARS TAP. When an expression item
results in the formation of a set, the pointer to
the set is stored in the corresponding element of
PTABPTRS.

2. LNIH is number of array elements.

2. El is a pcinter array element.

. PTAB INFO is a table for storage of additional
information about an expression item, and again
each element corresponds directly to an element in
PARSTAE.

2. LNSH is number of array elements.

2. EL is an array element.

3. IDX relative position of item, in string
WAS, which is associated with item to
which this element corresponds.

3. SFX indicates subfile which applies to
item.

3. INDXD on if item (Fieldname or value) is
indexed.

3. NNDXE on if item (Fieldname or value) is
not indexed.

3. CTL on when item (Fieldname) is control
field name.

1. INST LIST is a list of "instructions" created and
executed by SELECT. The instructions guide the
creation of sets, both from index files and
through linear search, as well as the boolean
combination of all sets, once formed, to yield the
final set.

2. LNSH number of instruction elements in this

PAGF 140

list.

2. EL an instruction.

3. OP is the operation code.

3. IDX1 first parameter/

3. IDX2 second parameter.

3.IDX3 third parameter.

1. WAS is a work string containing the input
expression and other necessary character
strings.

2. LNTB length of work string.

2. S actual string.

1. WAA is a one-character-per-element array which is
defined on top of WAS to allow easy access to a
single character.

2. LNTH is number of elements.

2. A is a one character element.

PARSED LIST is base pointer for PARSED structure.

PARS_TAB_PTR is base pointer for PAFS_TAB.

PTABINFO PTF is base pointer for PTAEINFO.

PTABPTRSPTP is base pointer for PTABPTRS,

WAS_PTR is base pointer for WAS and WAA,

INST LIST PTF is base pointer for IFSTLIST,

WAS SIZE is set to adjust size of WAS at allocation.

PAGE 141

TOFIC F.6 - DATA PETRIEVAL

A. 1ATA SET NAME:

SETS Display Format

B. CREATED BY:

SETS (DBSETS)

C. TYPE OF FILE:

Terminal Communication

D. ORGANIZATION:

Character Screen Eisplay

E. KEY IDENTIFIEP (CCNTROt FIELE):

Not Applicable

F. EECORD LENGTH:

320 Bytes typical - 40 column, 8 line output area apart
from the prompting area.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This is the output created by the SETS command. It is
a display on the user's screen or typewriter terminal
of the sets created during the current strategy
session.

This display consists of the set number or S-number,
the number of index references in the set, and the
expression (including the control field name, if
applicable) that formed the set. The expression will
wrap around if it exceeds one line.

Paging forwards and backwards is available. The word
'MORE:' will appear at the bottcm of the list if there
is more data forward.

PAGE 142

,I SAMPLE OUTPUT:

ENTER : SETS

SET# XREPS EXPRESSICN PAGE 1
aa bbtt cccccccccccccccccccccc

SCCCCCC

aa bbtb (FRO: dddddd) cccccc
-MORE:

Where:

aa = set number,
bbbb = number of references,
ccc etc. = expressicn,
dddddd = control field name,

-MORE: = forward continuaticn indicator.

PAGE 143

TOFIC F.7 - DATA RETRIEVAL

A. DATA SET NAME:

DBINIT - Transient Module Interfaces

E. CREATED BY:

DBINIT

C. TYPE OF FILE:

Table

D. ORGANIZATION:

Dccumentary Table

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

7. BECORD LENGTH:

Not Applicable

G, BLOCKING FACTCR:

Not Applicable

H. PURPOSE:

The transient module interfaces (see Table 1)
are the values assigned to the first parameter
of every transient module entry. These values
inform DBINIT, the retrieval subsystem director,
which modules are to be called next.

Due to the inability in OS for one transient module
to call another, the retrieval director has been
given the logic to perform all inter-transient
module calls. This is accomplished with a half-
word (2 bytes) parameter passed to every module
called by DBINIT (and the TS supervisor for paqinq
entry points). This parameter has two functions.
On entry the value of this parameter dictates the
processing flow. Since transient modules have only
one entry point, what normally would have been
accomplished with additional entry points is
provided for with this parameter value on entry.
On return, this parameter's value will direct
rBINIT to call another module in the table with
or without recall or go cn and trcmpt the user

PAGE 144

for the next command. Consider these functions
separately.

On Entry:

All of the retrieval commands except CANCEL
result in DBINIT calling the entry point so
indicated in Table 1 with the parameter's value
of zero (0). The CANCEL command results in a
value of 14 for the entry parameter value.

Since transient modules may only have one entry
point, their paging antry point must be the
primary module entry point. Thus, the Terminal
Support supervisor has adopted a parameter entry
value of 100 to indicate paginq at the main
entry.

On Return:

When a transient mocdule (cr any command module
called by DBINIT) is finished processing, it
must reset the parameter value to zero (0) before
returning to prevent DBINIT from calling another
module. It is recommended that the parameter be
set to zero (0) immediately upon entry to assure
its return value in the event of an END or ATTN
condition being raised. This is also true for
paging entry pcint processing.

When a transient module (cr any command module
called by DBINIT) desires to call another
transient module, the parameter will have to be
set at one of the values in Table 1 to accomplish
the call by DBINIT. For example, if a module
wished to call the CANCEL SEARCH service entry in
DBEXSR, the parameter should be set to 16 and
then return. When DBEXSR is then called by DBINIT,
its entry parameter value will remain at 16;
parameter values remain as returned for any calls
done by DBINIT as a result of returning parameter
values.

If a module performing an indirect call through
DBINIT wishes to be re-called ly EBINIT when the
subsequent module returns, the returning parameter
value should be 100 plus the desired entry value in
Table 1. In the example in the previous paragraph,
the returning value would be 116. Note that the
subsequently called module sees a parameter value of
16 (not 116). On re-call the entry parameter value
will be zero (or 14 in the case of CANCEL).

Returning Entry

PAGE 145

Parameter Point Function At Entry
Value Called

3 DBXPNE primary EXPAND command entry

4 DESLCTO primary SELECT command entry

5 DBDSPL primary DISPLAY command entry

6 DBSETS primary SETS command entry

7 DEPLDS primary FIELDS rommand entry

8 DEFORM primary FORMAT command entry

9 DBSTRT2 FORMATS command entry

10 DBSLCT1 SEARCH command entry

11 DBPRNT primary PRINT command entry

12 DECOFR primary CORRECT command entry

13 DBEXSR primary CORRECT command entry

14 DBPRNT CANCEL command entry

15 DBPRNT S numter PRINT service entry

16 DBEXSR CANCEL SEARCH service entry

17 DBDSPLA second DISPLAY module entry

18 DBFORMA second FORMAT module entry

(100 universal system paqing value at paging entry)

Table 1. Retrieval Transient Parameter Values

PAGE 146

TOTIC F.8 - DATA RETRIEVAL

A. CATA SET NAME:

PRINT Data Set Format

B. CREATED BY:

PRINT (DEPRNT)

C. TYPE OF FILE:

(5) Non-data base file and

(2) Formatted print-out

D. ORGANIZATION:

VSAM

E. KEY IDENTIFIER (CONTROl FIELD):

Not Applicable

F. PRINT LENGTH:

132 Bytes maximum printed plus record length and
carriage control fields (5 bytes).

G. BLOCKING FACTOR:

Block size = 4096 bytes.

H. PURPOSE:

This is an output data set produced by the PRINT
command. It consists cf line images written using a
PL/I file named PRINTER. At the end of a terminal
session an OS PRINT job may be initiated to print the
data set off-line on a line printer.

A leader page shows the user's name and mail stop for
distribution. Following the output produced for each
PRINT command is a separator rage having 36 dollar
signs on the first line.

PAGE 147

PRINT Command - LEADER PAGE

DISTRIBUTE TO: xxxxxxxxx etc.

MAIL STOP: yyyyyyy etc.

where:

xxx etc. = user's name
yyy etc. = mail stop

PAGE 148

PRINT Command - TYPICAL FORMAT 1 PAGE

PRINT OF SET xx, Format 1,

aaaaaaaa: ddddddd
aaaaaaaa: eeeeeee
aaaaaaaa: fffffff

where:

aaaaaaaa = key field name
d thru f = key value (wraps around to column 1 if more than

122 characters).

PAGE 149

PRINT Command - TYPICAL FORMAI 2, 3 or 4 PAGE

PRINT OF SET xx, FORMAT y, zzzzzzzz:vvvvvvvvvvvv PAGE wwvvwww

aa aaaaa: d
bbtbbbbb: e

: f
ccoccccc: gggq qqq
ggggggggggg
gggggq

where:

aaeaaaaa = field name having a single short element.
bbtbttbb = field name having two short elements.
ccccccc = field name having a long element.
d, f = element value up tc 122 characters (no maximum

number of elements).
qgg etc. = 379 character element value (no maximum).
z72 etc. = key field name.
vvv etc. = first 74 characters of key value.

PAGE 150

TOTIC P.9 - DATA RETRIEVAL

A. EATA SET NAME:

EXPTAB - Expand Term Table

B. CREATED BY:

EBXPND

C. TYPE OF FILE:

(4) Table

D. ORGANIZATION:

PL/I Data Structure

E, KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

1. EXPTAB EXTERNAL CCNTPOLLE.
This table contains a list of alphabetically
sequential terms taken from an inverted index file
and information relating the terms to reference
numbers (E-numbers) used in the SELECT command.

2. TERMS AREA (1250).
This area contains a linked list of terms
read from the inverted index.

2. FIRST PTR POINTER.
Points to the first term in the linked
list.

2. LAST PTR POINTER.
Points to the last term in the linked list.

2. TOP FTR POINTET
Points to the first term displayed on the
current paqe of data.

PAGE 151

2. BOTTOM-PTR POINTER
Points to the last term displa7ed on the
current page of data.

2. FIRST E# BINARY FIXED.
Contains the reference number for the first
terms in the list.

2. LASTE# BINARY FIXED.
Contains the reference number for the last
term in the list.

2. TOP F4 BINARY FIXED.
Contains the reference number for the first
term on the current page.

2. BOTTOM E# BINARY FIXED.
Contains the reference number for the last
term on the current page.

2. LO_E# BINARY FIXED.
Contains the lowest valid reference number.
(Either 1 or the reference number of the
index origin.)

2. HI_E# BINARY FIXED.
Contains the highest valid reference number.
(Either 999 or the reference number of the
index end.)

2. FLD NAME CHAR(8) VAR.
Contains the index field name upon which the
terms have been expanded.

I. PL/I DECLARATION

DC1 1 EXPTAE EXT CCNTROCLED,/*DEFIN THE TERM TABLE */
2 TERMS AREA(1250), /*TERP STCRAGE AREA *
2 FIRST PTR POINTER, /*FIRST lIST ENTRY POINTER*/
2 LASTPTR PCINTER, /*LAST LIST ENTRY POINTER */
2 TOP_PTR POINTER, /*FIRSI IINE CN PAGE PTE */
2 BOTTOM PTF POINTER, /*LAST LINE ON PAGE PTR */
2 FIRSTFI# BIN FIXED, /*FIRST ENTRY'S E# */
2 LAST_E# BIN FIXEr, /*LAST ENTRY'S E# /
2 TOPE# BIN FIXED, /*FIRST E# ON PAGE */
2 BOTTOM_E# BIN FIXED,/*LAST E# ON PAGE
2 LO_E# BIN FIXED, /*LOEST VALID E# */
2 HI_E# BIN FIXEr, /*HIGHEST VALID E# */
2 FLD NAME CHAR(8)VAR;/*EXPANDEE FIELD NAME */

PAGE 152

TOPIC F.10 - DATA RETRIEVAL

A. EATA SET NAME:

FLDTAB - Field Name Table

B. CREATED BY:

EBPFLDT entry of module EEPAC

C. TYPE OF FILE:

(4) Table

D. ORGANIZATION:

linear structure containing adjustable arrays.

E. KEY IDENTIFIER (CONTROL FTELE):

FLDTAB is the major structure name. It is the name of
an external variable containing the data.

F. BECORD LENGTH:

Not Applicable.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The field name table FLDTAB contains the file name and
the number of fields available for the user. (The
count does not include the PECLEN field.) The sizes,
base addresses and names of sequential format
definition tables are tabulated. The base addresses
and names of columnar format definition tables are
tabulated.

PAGE 153

To SCHEMATIC DIAGRAM:

See Fiqure 1

J. PL/I DECLARATION:

/* FLDTAB: NASIS SYSTEM FIELD NAME TABLE FOR
DATABASE-2,

THIS TABLE IS ALLOCATED (OR FREED AND REALLOCATED) AND
INITIALIZED BY A CALL 10 THE ENTRY POINT DBPFEDT OF
MODULE DEPAC. EACH CALL TO THIS ENTRY POINT CAUSES THE
ENTIRE TABLE TO BE RE-INITIALIZED TO THE VALUES FOR THE
CURRENTLY SPECIFIED EATAEASE FILE, THE VALUES WILL BE
ADJUSTED TO REFLECT THE DATA AVAILABILITY BASED UPON
THE SECURITY CODE ENTERED EY THE USER. */

DECL ARE
1 FLDTAB EXT CONTROLLED, /*NASIS FIELD NAME TABLE */

3 DATAPLEX CHARACTER(8), /*TEE DATABASE FILE NAME */

3 FIELD, /*THE DATABASE FIL NAMES */
5 # FIXED BINARY, /*TEE NUMBER CF FIELD

/*NAMES IN THE TABLE */

3 SEQ_FORMAT(25), /*SECUENTIAL FORMAT INDEX*/
5 # FIXED BINARY, /*TF NUMBER CF FIELD */

/*NAMES IN TRE FORMAT */
5 BASE POINTER, /*THE FCRMAT DESCRIPTION */

/*TAELE ADDRESS */
5 NAME CHARACTER(8), /*THE NAME ASSIGNED TO */

/*THIS FORMAT (OPTIONAL) */

3 COL_FORMAT(25), /*COLUMNAR FORMAT INDEX */
5 BASE POINTER, /*THE FORMAT DESCRIPTION */

/*TAELE ADDRESS */
5 NAME CHARACTER(8); /*THE NAME ASSIGNED TO */

/*TBIS FORMAT (OPTIONAL) */

K. FIELD DETAILS:

DATA BASE - has the name of the current dataplex.

FIELD. # - the number of field names excepting RECLEN.

SEQFORMAT - an arrav serving as a directory of the
sequential format definition tatles. The first
four entries are posted by RDBPAC to overlay
FIELD.NAME beginninq with FIELD.KEYNAME as shown
in Paragraph I. The remaining entries are posted
by RDBFORM to refer to dynamically allocated

PAGE 154

sequential format definition tables.

SEQ_FORMAT.# - the nurber of field names in a
sequential format definition table.

SEQ_FORMAT.BASE - the address of a sequential format
definition table or a NULL pointer value if it is
undefined or the formats 1 through 5.

SEQ_FOBMAT.NAME - the name assigned to a sequential
format cr blanks.

COLFORMAT - an array serving as a directory of the
columnar format definition tables. The entries
are posted by RDBYORM to refer to dynamically
allocated columnar format definition tables.

COL PORMAT.BASE - the address of a columnar format
definition table or a NULL pointer value if it is
undefined.

COL FORMAT.NAME - the name assigned to a columnar
format or blanks.

DATA BASE FILE $$NAE FILE $$

NO. OF FIELDS L

SEQUENTIAL NO. BASE
FORMATS OF ADDR. NAME

1 1 NULL

2 5 NULL

3 8 NULL

4 16 NULL

5 8 NULL

25 5 (ADDR)

COLUMNAR BASE
FORMATS ADDR. NAME

1 (ADDR) PAYROLL

2 (ADDR) CUSTOMER

25 _

Figure 1. Schematic Diagram of FLDTAB

PAGE 156

TOPIC F.11 - DATA RETRIEVAL

A. DATA SET NAME:

FORMATS Display Format

B. CREATED BY:

Formats - DBSTRT

C. TYPE OF FILE:

Terminal Display (Pageable)

D. ORGANIZATION:

Not Applicable

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This terminal display is created to display the names
of the formats currently available to him. A title,

identifyinq the display, is generated, followed by the

format names. The eight character names are sorted
into alphabetic sequence, tagqed with an asterisk if

the format is in core, separated by a blank and grouped

into a SCRNWVH size line before they are written to the
display.

PAGE 157

TOPIC F.12 - DATA RETRIEVAL

A. DATA SET NAME:

SETAB Sets Table

B. CREATED BY:

EBINIT and modified by DBSETU

C. TYPE OF FILE:

Table

D. ORGANIZATION:

PL/I Data Structure

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

1. SETAB EXTERNAL CCNTRCILED.
This structure contains the sets, i.e., current
strategy, that the user is creating and associated
information.

2. CURRENT_# BINARY FIXEr (15,0).
This is the value of the last set number that was
created.

2. SET (0:99).
There is one set created for each select, search
and LIMIT COMMAND.

3. POINTEP POINTEF.
There is a fointer to a list of keys for
every set that is created. POINTER (J)
points to the list for SET (J).

3. SIZE BINARY FIXED (31,0).
This is the number of keys associated with

PAGE 158

the corresponding set numter.

3. TYFE CHARACTER (1).
This is the SUEFILE SUFFIX that describes the
origin of the keys in the set.

I. PL/I DECLARATION:

/ NSIS SYSTEP SET ITALE */

DCL 1 SETAB EXTRNL CONIROLLED,/*DEFINE THE SET TABLE */
2 CURRENT_# BIN FIXED(15,O), /*LAST ASSIGNED SET NUMBER */
2 SET(0:99), /*DEFINE THE SET ENTRIES */
3 POINTER PTR, /*THE SET LIST fCINTER */
3 SIZE BIN FIXED(15,0), /*THE SET SIZE (# OF KEYS) */
3 TYPE CHAR(1); /*THE SET TYPE (SUBFILE ID)*/

PAGE 159

TCEIC F.13 - DATA RETRIEVAL

A. DATA SET NAME:

USERTAB User Data Table

E. CREATED BY:

PDBMTT

C. TYPE OF FILE:

Table

D. ORGANIZATION:

PL/I Data Structure

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G, BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

1. USERTAB EXTERNAL COETROLIEC.
This structure contains user oriented and status
information useful to all NASIS sub-systems.

2. NASISID CHARACTER(8) VARYING.
This field contains the id specified by the
user when initiating his NASIS session.

2. SECURITY CHARACTER (8) VARYING.
This field contains the user's most recently
specified security code, i.e. his PASSWORD at
lcgcn or in respond to a SECURE Command.

2. OWNERIE CBARACTEP (8) VARPYING.
This field contains the ID associated with
the owner of the file specified by the
user.

2, STRATEGY CHARACTER (16) VARYING.
This field contains the name of the strategy

PAGE 160

in the event of a RERUN.

2. TASK ID BINARY FIXED (31,0).
This field cottains the task identification
number assigned to the user at logon time.

2. SEQUENCE BINARY FIXED (15,0).
This field contains a sequence number used by
the system in defining unioue ddnames to
dynamically specified files.

2. BITS.
The status of the user's session is reflected
by the settings of the following bit
switches.

3. MTTFLAG BIT(1).
Describes whether the task is running
under MTT or not.

3. DISABLED PIT(1).
Defines the status of attention
interupts.

3. RETRIEVR PIT(1).
Describes whether the task is running
under the retrieval system or not,

3. RESTART BIT(1).
Describes whether the session is a
restart.

3. RERUN BIT(1).
Describes whether the session is a
rerun.

3. TESTMODE EIT(1).
Describes whether the session is
productive or a debugging run.

3. CONVFLAG PIT(1).
Describes whether the task is
conversational cr not.

3. RECALL BIT (1).
Describes whether the last program is to
be recalled.

I. PL/I DECLARATION:

f/ NASIS SYSTEM USER DATA TABLE */

DCL

PAGE 161

1 USERTAB EXT CONTROLLED, /*NASIS USER DATA TABLE */
2 NASIS ID CHAR(8) VAR, /*USER'S IDENTIFICATION */
2 SECURITY CHAR(8) VAR, /*USER'S SECURITY CODE */
2 CWNER_ID CHAR(8) VAR, /*FILE CWNER'S IDENTIFIER */
2 STRATEGY CHARI16) VAR, /*STRATEGY NAME FOR RERUN */
2 TASK ID BIN FIXED(31,0), /*TASK IDENTIFICATION # */
2 SEQUENCE BIN FIXED(15,0), /*DDNAME SEQUENCE NUMBER */
2 PITS, /*SYSTEM STATUS FLAGS */

3 MTTFLAG BIT(1), /*'1'=IN MTT MODE */
3 DISABLED BIT(1), /*'1'=A7TN'S DISABLED */
3 RETRIEVE BIT(1), /*' 11'=RUNNING RETRIEVAL */
3 RESTART BIT(1), /*'1'=IN RESTART MODE */
3 RERUN BIT(1), /*'1'=IN RERUN MODE */
3 TESTMODE BIT1l), /*'1'=NC STRATEGY SAVING */
3 CONVFLAG BIT(1) , /*'1'=CCNVEPSATICNAL /
3 RECALL BIT(1); /*'1'=RECALL LAST PROGRAM */

PAGE 162

TOPIC F.14 - DATA RETRIEVAL

A. DATA SET NAME:

EXPLAIN Display Format

B. CREATED BY:

EXPLAIN (message, RESPONSE and term options) - DBEXPL

C, TYPE OF FILE:

Terminal Display (Pageable)

D. ORGANIZATION:

Not Applicable

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This terminal display is created to display to the user
the results of his message response or term
explanation. The date will be written to the screen as
read from the message file with no indentation or data
tagging, but with word-break specified.

PAGE 163

TOFIC F.15 - DATA RETRIEVAL

A. £ATA SET NAME:

SPRNTAB - St PRINT-parameter table

B. CREATED BY:

SELECT (search option) - DESLCT

C. TYPE OF FILE:

Table

D. ORGANIZATION:

Linear structure.

E. KEY IDENTIFIER (CONTROL FIELE):

SPRNTAB is the major structure name; it is the name of
the control section containing the data.

F, RECORD LENGTH:

Not Applicable

G. BLOCKING PACTOR:

Not Applicable

H. PURPOSE:

This table ccntains a set of PRINTparameters saved at
the time a user issued a PRINT on an S#. Since S#'s do
not refer to a specific list of keys, the actual PRINT
is not acted upon until after the search execution. At
that time DEEXSR calls DBPRNT to perform the PRINT
wherein the SPRNTAB is referenced for the PRINT
parameters.

I, SCHEMATIC DIAGRAM:

See Fiqure 1 of the SRCHIAB Data Set Specification.

J. VARIABLE DETAILS:

1. SPRNTAB is a table of record parameters of an
S#,

3. FORMAT is a table of record format
parameters.

PAGE 164

5. TYPE

5, FIPST
5, LAST

3. NEXTSPENTAF is a pointer to next SPRNTAB
structure.

PAGE 165

TOFIC F.16 - DATA RETRIEVAl

A. EATA SET NAME:

SEQ_FORM - Sequential Format Definition Table

E. CREATED BY:

DBPPLET entry DEPAC (formats 1-5)

DBFORV (formats 6-25) - vby the PORMAT command.

C. TYPE OF FILE:

14) Table

D. ORGANIZATION:

Adjustable linear array of 8-character field names.

E. KEY IDENTIFIER (CCNTFOL FIELE):

SEQFORM is the malor structure name.

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

A sequential format definition table, SEQ_FORM,
contains a list of the names of the fields in a
sequential format for use by the DISPLAY and PRINT
commands. The key field name is always the first in
the list. The number cf names in the list and the base
address of the list is posted in FLDTAB.SEO_FORMAT.#.

PAGE 166

I. PL/I DECLARATION:

E LARE
1 SEQ_FORM BASED(SEQ BASE),/* SEOUENTIAL FORMAT SPECS */

3 FIELD 1_, /* OVEEIAID BY FIELD(l) */
5 #FIELDS FIXED BIN, /* NCT USED */
5 PAD CHAR(6), /* FILLER TO CHAR(8) */

3 FIELD(2:I
REFEP(SEQ_FORM.#FIELES)),/* NCT USED */
5 NAME CHAR(8); /* NAME LIST */

PAGE 167

TOFIC F.17 - DATA RETRIEVAL

A. LATA SET NAME:

VALUTAB - a linear search table of test values

B. CREATED BY:

SELECT (search option) - DBSICT

C. TYPE OF FILE:

Table

D. ORGANIZATION:

Linear structure.

E, KEY IDENTIFIER (CONTROL FIELD):

VALUTAB is the major structure name; it is the name of
the control section containing the data.

F. RECORD LENGTB:

Not Applicable

G. BLOCKING FACTCR:

Not Applicable

H. PURPOSE:

This table contains the number of and the ointers to
the test values associated with an S#. Each pointer
points to a based structure containing the value length
and the value string, called VALUE.

I. SCHEMATIC DIAGRAM:

See Figure 1 of the SRCHTAP Data Set Specification.

J. VARIABLE DETAILS:

1. VALU_4 is set to adjust the si7e of the VALUPTR
array in VALUTAB.

1. VALUTAB is a table of pointers to values.

3. #OF is number of pointers in this table.

3. VALUPTR is an array cf pointers to values.

PAGE 168

V. ALUE_SIZE is set for size of value at
allocation.

1, VALUE is a table containing a value to be used
during search. Pointer is in VALUTAB.

3. SIZE is length of value.

3. X is actual value.

PAGE 169

TOtEC F.18 - DATA RETRIEVAL

A. tATA SET NAME:

SBCHTAB - Linear Search Table cf Pseudo-sets

B. CREATED BY:

SELECT (search option) - DESLCT

C. TYPE OF FILE:

Table

D. ORGANIZATION:

Linear structure containing arrays.

E. KEY IDENTIFIER (CONTROL FIELD):

SRCHTAB is the major structure name; it is the name of
the control section containing t'e data.

F. RECORD LENGTH:

Not Applicable.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

The linear search table cf pseudo-sets, SRCHTAB,
contains pointers to the EWTRYDEF structure allocated
for each defined S#, whether a PRINT is to be performed
on any S#, and various ccntrcl switches used during the
search execution between DBEXSR and DBSLCT
interactively.

I. SCHEMATIC DIAGRAM:

See Figure 1

J. VARIABLE DETAILS:

1. MAX_S is the maximum allowable pseudo-set
number.

1. SRCHTAB is the main search table.

3. CURRENT S# is the last pseudo-set number

PAGE 170

assigned.

3. SRCHIN PROGRESS is a bit on if a search is
being executed.

3. IFSC is set on if any pseudo-set is to be
printed.

3. SLCTBTRN is set on tv DBFXSR before a
transient call to DESLCT as a return flag.

3, PRNTRTRN is set on by CBEXSR before a
transient call to DBPENT as a return flag.

3. StCT ERROR is a bit on if errcr occurs in
SELECT during execution of search.

3. SLCT FINISH is a bit on if all SELECT
functions are complete during execution of
search.

3. DEFPTR is an array of pointers which point to
a ENTRYDEF structure for each defined St.

/7/
SRCHTAB ENTRY DEF

CONTROL SEARCH
DATA EXECUTION

DATA

ENTRY
DEF 1

POINTERS PARSED PTR PASED TALE

2 VALUES PTR VALUTAB

3 EXPRESSION PTR S # ENTRY

S LIST PTR SCB

S# ENTRY

1EXPRESSION SIZE EXPRESSION

VALUTAB

NO. OF VALUES 5

VALUE PTR: 1 ADDR VALUE SIZE VALUE

2

3

4

5

Figure 1. Schematic Diagram of Search Tables

PAGE 172

TOtEC F.19 - DATA BETRIEVAL

A. EATA SET NAME:

COL FORM - Columnar Format Definition Table

B. CREATED BY:

DBFORM - the FORMAT command

C. TYPE OF FILE:

14) Table

D. ORGANIZATION:

Structure containing miscellaneous items, a linear
array, and an adjustable array cf structures.

E. KEY IDENTIFIER (CONTROL FIELD):

COL FORM is the major structure name.

F. RECORD LENGTH:

Not Applicable.

G. BLOCKING FACTCR:

Not Applicable

H. PURPOSE:

A columnar format definition table, COL FORM, contains
coded specifications for a columnar display. It is
used by the DISPLAY and PRINT commands and may be
revised by the FORMAT command. The optional line for
the page number, lines for titles, and lines for
headers hold literal text for output. For each field
specified, the field tame, column, width, summary
requirements, tally, and summation values are carried.
(Average is not carried in CCL FORM; it is computed in
DISPLAY or PPINT.)

I. PL/I DECLARATION:

rECLARE
1 CCL_FORM EASEt(COL_BASE), /*COLUMNAP FORMAT SPECS */

3 LINESIZE FIXED BIN(31), /*SCRNCCI OF 132 */
3 RECORD_COUNT FIXED BIN(31),/*INIT(0) */
3 TOP,
5 (PAGE#, /*1 OR 0 LINES */

PAGE 173

#TITLES, /*0 OF MOPE LINES */
#BEADERS, /*0 CF MC.E LINES */
DEFAULT_HDR))IXED BIN,/*C CR RELATIVE HEADER LINE*/

5 LINE(10) CHAR(132),
3 COL GIVEN BIT(1), /*1: FIELD COLUMNS GIVEN */

/*0: FIELD COLUMNS DEFALTD*/
3 #FIELDS FIXED BIN,
3 FIELD(I BEFER(COLFORM.#FIELES)),

5 NAME CHAR(8),
5 COLUMN FIXED BIN, /*FOR TRUNCATION INDICATOR*/

/*USE COUBN+1,...FOR VALUE*/
5 WIDTH FIXED BIN, /*WITHOUT */

/*TRUNCATION INDICATOR
5 ELEMENTLIMIT FIXED BIN,/*FOR RETRIEVAL */
5 ELEMENT TALLY,

7 PEQUIRE BIT(1), /*INIT('0'B) */
7 # FIXED BIN(31), /*INIT(0) */

5 ELEMENT_SUM,
7 REQUIRED BIT(1), /*INIT('0'B) */
7 ZONED BIT(1), /*1: ZONED VALUE (INIT) */

/*0: FINARY VALUE
7 VALUE FLOAT BIN(53), /*INIT(O) */

5 ELEMENT AVERAGE REOUIPED
BIT(1); /*INIT('O'B) */

PAGE 174

TOPIC F.20 - DATA RETRIEVAL

A. EATA SET NAME:

FIELDS Display Format

B. CREATED BY:

FIELDS - EBFIES

C. TYPE OF FILE:

Terminal Display (Pageable)

D. ORGANIZATION:

Not Applicable

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LFNGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This terminal display is created to display the names
of the fields available to him from the current file.
A title, identifying the display, is generated,
followed by the field names. The eight character
names, flagged by an asterisk, if indexed, and
separated by a blank, are qrouped into SCRNWTH size
lines before they are written to the display. As each
subfile is encountered, a heading, identifying it and
its control field, is generated.

PAGE 175

TOFIC F.21 - DATA RETRIEVAL

A. LATA SET NAlE:

S#ENTRY - S# Expression Data Table

B. CREATED BY:

SELECT (search option) - DESLCT

C. TYPE OF FILE:

Table

D. ORGANIZATICN:

Linear structure.

E. KEY IDENTIFIER (CCNTROL FIELD):

S#ENTRY is the major structure name; it is the name of
the control section containing the data.

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This table contains the actual screen image expression
for each defined St. This table is allocated by DBSLCT
and referenced by DBEXSR and DBSETS.

I. SCHEMATIC DIAGRAM:

See Figure 1 of the SECHTAB Data Set Specification.

J. VARIABLE DETAILS:

1. S#ENTRY is a structure of S5 expression

displayable information.

3. EXPRSNSIZE is the allocated size of the
variable part of the expression for this
St.

3. The remaining variables contiquously
represent the St expression.

PAGE 176

TOFIC F.22 - DATA RETRIEVAL

A. EATA SET NAME:

ENTRYDEF table of S# infcrmaticn for linear search

B. CREATED BY:

SELECT (search option) - DESLCT

C. TYPE OF FILE:

Table

D. CRGANIZATION:

linear structure.

E. KEY IDENTIFIER (CCNTROL FIELD):

ENTRYDEF is the major structure name; it is the name of
the control section containing the data.

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This table contains associated information per S*
posted at definition time by rBSICT and during the
search execution by DBEXSR. Contained within ENTRYDEF
are pointers to the SPRNTAB structure of PRINT
parameters for an S#, to the temporary list keys, to
the parsing informaticn, to the VALUTAB structure of
test values, and the S5 expression in S#ENTRY.

I. SCHEMATIC DIAGRAM:

See Figure 1 of the SRCHIAB Data Set Specification.

J. VARIABLE DETAILS:

1 EXPRSN LYE is the dynamic length of a particular St
entry's expression; see S#ENTRY.

1 ENTRYDEF is an array with detailed pseudo-set
information:

PAGE 177

5 DELETED is a bit on if this pseudo-set has
been deleted.

5 ACTIVE is set on by DBEXSR during the search
execution if the S# is involved in the
current search pass.

5 PECOBD is a pointer used for the parameters of
thcse pseudo-sets to be RECORDed after a
search execution. This points to SPRNTAB
structure.

5 CREATEDBY is two bits identifyina the type of
SELECT command used to create this
pseudo-set where,

7 SELECT_IF bit is on if the search option
was used, or

7 SELECT EOO1 bit is on if the boolean
option was used.

5 REF_SET is a structure used for identifying
the searching universe for set) wherein,

7 PTR is pointer to set to search within

7 S# is a bit on it the set to be searched
is a pseudo-set.

5 CORBES_SET# is the value of the set resulting
from this pseudo-set.

5 LIST~PNTR is a pointer to the search list
structure for this pseudo-set.

5 PARSED is a pointer to a parsing structure for
toolean-created pseudc-sets.

5 FIELDNAM is the field name to be tested.

5 CP CODE is a value of the operator to be used
for the test, as follows:

1. greater than
2. less than
3. equal
4. greater than or equal
5 less than cr equal
6. not equal
7. between
8. containing

PAGE 178

VALUES is a pointer to test values; this
points to VALUTAB.

5. EXFF PTR is a pointer to the S#ENTRY
structure.

PAGE 179

TOEIC G.1 - USAGE STATISTICS

A. DATA SET NAME:

STATIC Data Set Descriptcrs

B. CREATED BY:

Command System and Maintenance System

C. TYPE OF FILE:

Dataplex

D, ORGANIZATION:

ISAM

E. KEY IDENTIFIER (CONTROI FIELD):

See PURPOSE discussion of KEY.

F. RECORD LENGTH:

4000/V

G. ELOCKING FACTOR:

Not Applicable

H. PURPOSE:

Maintain system statistics:

1. Retention of Statistics

In order to maintain usage statistics a file is
required. To do so efficiently the file will be a
simple ISAM data set. It has been shown that
undue overhead of EBPL/1 causes modules accessing
data using these facilities to run 5 to 10 times
longer, Since the qatheringq of statistics should
ideally not be reflected in the gathered
statistics a simple file is to be use. The
standard name for the file is to be NASIS.STATIC

2. Accumulation of Statistics

The STATIC file will be composed of two different
record types. The data required, and how it will
be kept, is as follows:

PAGE 180

a. KEY

SEPARATE - A single character which will
distinguish the record type. A
value of zero will indicate a
maintenance record. A value of one
will indicate a retrieval record.

IDENTIFIER - For maintenance records, it will
be the data base name padded with
dollar signs. For retrieval
records, it will be the NASIS-ID
padded with asterisks (to eight
characters). Appended to the
NASIS-ID will be the data base
owner's ID, the file where this
field exists, and the field name.

b. The maintenance fields are as follows:

TO~ALTRN - the number of transactions
processed.

ANCOUNT - the number of records on the
anchor file.

TOTALBUN - the number of maintenance runs.

MAINDATE - the date of each maintenance run:
element 1 will be the dates of the
data base creation, elements 2
through 13 will be the dates of
individual maintenance runs. After
the dates have been filled, the
second one will te dropped and the
newest date added on the end. This
field is treated as a 13 element
char (6) array.

TRANCNEW

TRANCDEI

TRANCUPD

TRSUENEW

TRSUBDEL

TRSUBUPD

TRINPNEW

PAGE 181

TRINVDEL

TRINVUJPD

- where TR indicates transaction;
ANC, the anchor file; SUB, the
sutrecord files; INV, inverted
files; NEW, new records; DEL,
deletions; and UPC, updates.

These are the transaction count fields
required for raintenance statistics. These
fields will be used in conjunction with the
data field. These fields are treated as 13
element fixed binary (31 arrays. The
elements will corresond directly with the
date field and will represent the number of
that given type of transaction encountered
during the maintenance run. When all of the
elements are present, the next count inserted
will cause the second count to be added to
the first element and the second element
dropped. The newest element will go on the
end.

c. The retrieval fields are:

CONNTIME - the connect time

CPUTIME - the CPU time

TOTALES - numter of sessions

STFATLEN - the strateqy length

STBATSTR - the number of strategies stored

STARDTE - the date cf the first terminal
session

LASTDATE - the date cf the last terminal
session

NOTE: The eight fields atove are to be
accumulated for each NASIS-ID. There
may be many reccrds for each NASIS-ID:
therefore, these statistics will be kept
in a special record. The CWNER-ID and
the inverted file name in this special
record will be equal to blanks.

#EXPANDS - numter of EXPANDS per session

PAGE 182

#SELECTS - number of SELECTs per session

#SEARCHS - number of STAPC~es per session

#COBECTS - number of CCRRFCTs per session

SESSDATE - the date of each session

These fields are all treated as 13 element arrays.
The first element represents an accumulator and
contains the total for all occurrences up to the
SESSDATE, which is the date of the last elected
session of the list (the earliest session).
Regardless of the actual number of sessions within
one calendar day, the statistics will be
accumulated as if there were only one session.

All of the maintenance statistics will be
automatically updated with the Load/Create program
and the Maintenance Mainline program. If the data
base cwner wishes to modify certain data
pertaining to the maintenance statistics, he has
the ability to use the COFRECT command to update
the STATIC data base interactively.

All of the retrieval statistics will be
automatically updated with the FINISH module of
the command system. If required, at maintenance
time, a 'snapshot' of the statistics will be
printed. If the data base owner (system manager)
wishes to mcdify certain data pertaining to the
retrieval statistics, he has the ability to use
the CORRECT command to interactively update the
STATIC data base.

PAGE 183

APPENEIX A.

The STATIC file is composed of the following fields:

A. KEY

1. Alphanumeric.
2. Fixed field.
3. Length cf 32 bytes.

a. First byte is maintenance or retrieval record
indicator.
1. 0 = maintenance record.

a. data base name left lustified.
b. remainder padded with '$'s.

2. 1 = retrieval record.
a. NASIS-ID//OWNER-ID//file of data

base//field name.
1. The NASIS-ID is eight

characters long and padded
with '*'s.

2. The CNNER-ID is really a
TSS-ID, eight characters long
and padded with '*ss.

3. The file name is that file on
which the field for statistics
is being gathered.

4. The field name is the name of
field cn which statistics are
being gathered.

B. TOTALTRN (Maintenance)
1. Alphanumeric
2. Fixed field
3. Length cf 6 bytes
4. Contains the total number cf transactions.

C. ANCOUNT (Maintenance)
1. Alphanumeric
2. Fixed field.
3. Length of 6 bytes.
4. Contains number of records on the anchor file.

D. TOTALRUN (Maintenance)
1. Alphanumeric.
2. Fixed field.
3. Length of 3 bytes.
4. Contains the number of maintenance runs.

E. MAINDATE (Maintenance)
1. Alphanumeric.
2. Fixed element.

a. Total of 13 elements, each 6 bytes long.

PAGE 184

b. In the form MM/DD/YY to indicate the month,
day, and year of each maintenance run.
Element 1 will contain the data base creation
date while elements 2-13 will be the dates of
the individual maintenance runs. After the
dates have been filled, the second one will
be dropped and the newest date added to the
end.

3. Total length of 78 tytes.

F. TRANCNEW (Maintenance)
1. Alphanumeric.
2. Fixed elements.

a. Each 4 bytes lcnq.
b. 13 elements.

3. Total length of 52 tytes.

G. TRANCDEL (Maintenance)
1. Alohanumeric.
2. Fixed element.

a. Each 4 bytes long.
t. 13 elements.

3. Total length of 52 hytes.

H. TRANCUPD (Maintenance)
1. Alphanumeric.
2. Fixed element.

a. Each 4 bytes lcng.
b. 13 elements.

3. Total length of 52 tytes.

I. TBSUBNEW (Maintenance)
1. Alphanumeric.
2. Fixed element.

a. Each 4 bytes longq
t. 13 elements.

3. Total length of 52 tytes.

J. TRSUBDEL (Maintenance)
1. Alphanumeric.
2. Fixed element.

a. Each 4 bytes lcnq.
b. 13 elements.

3. Total length of 52 bytes.

K. TRSUBUPD (Maintenance)
1. Alphanumeric.
2. Fixed element.

a. Each 4 bytes long.
b. 13 elements.

3. Total length of 52 tytes.

L. TRINVNEW (Maintenance)

PAGE 185

1. Alphanureric.
2. Fixed element.

a. Each 4 bytes lcnq.
b. 13 elements.

3. Total length of 52 bytes.

M. TRINVDEL (Maintenance)
1. Alphanumeric.
2. Fixed element.

a. Each 4 bytes long.
b. 13 elements.

3. Total length of 52 tytes.

N. TRINVUPD (Maintenance)
1. Alphanumeric.
2. Fixed element.

a. Each 4 bytes lcng.
b. 13 elements.

3. Total length of 52 tytes.

NOTE: Items F through N are transaction count fields
for the maintenance statistics and correspond directly
to MAINDATE.

TR indicates TRANSACIION
ANC indicates PNCHOR FILE
INV indicates INVERTFD FILE
NEW indicates NEW PECOEDS
DEL indicates DEIETICNS
UPE indicates UPDATES

O. CONNTIME (Retrieval)
1. Alphanumeric.
2. Fixed field.
3. Length cf 10 bytes.
4. Contains connect time.

P. CPUTIME (Betrieval)
1. Alphanumeric.
2. Fixed field.
3. Length of 10 bytes.
4. Contains total CPU time.

Q. TOTALSES (Retrieval)
1. Alphanumeric.
2. Fixed field.
3. Length of 4 bytes.
4. Contains total number of sessicns.

R. STRATLEN (Retrieval)
1. Alphanumeric.
2. Fixed field.
3. Length of 4 bytes.

PAGE 186

4. Contains strategy length.

S. STRATSTR (Retrieval)
1. Alphanumeric.
2. Fixed field.
3. Length cf 4 bytes.
4. Contains number of strategies stored.

U. STARTDTE (Retrieval)
1. Alphanumeric.
2. Fixed field.
3. Length cf 6 bytes.
4. Contains date of first terminal session.

V. LASTDATE (Retrieval)
1. Alphanumeric.
2. Fixed field.
3. Length of 6 bytes.

NOTE: The riqht fields above are accumulated for each
NASIS-ID. The owner-ID and the file-name have no
meaning.

Therefore, the KEY of the record where these statistics
are meaningful will be composed of an owner-ID and a
file-name which are blank.

W. #EXPANDS (Retrieval)
1. Alphanumeric.
2. Fixed element.

a. Each 4 bvters long.
b. 13 elements.

3. Total length of 52 tytes.

X. #SELECTS (Retrieval)
1. Alphanumeric.
2. Fixed element.

a. Each 4 bytes lcng.
b. 13 elements.

3. Total length of 52 tytes.

y. #SEARCHS (Retrieval)
1. Alphanumerics.
2. Fixed element.

a. Each 4 bytes lonq.
b. 13 elements.

3. Total length of 52 tytes.

Z. #CORECTS (Retrieval)
1. Alphanumerics.
2. Fixed element.

a. Each 4 bytes lcno.
b. 13 elements.

PAGE 187

3. Total lenqth of 52 SESSDATE (Retrieval)

AA. SESSDATE (Retrieval)
1. Alphanumerics.
2. Fixed element.

a. Each 6 bytes lcng.
b. Maximum of 13 elements.

3. Total length of 78 tytes.

NOTE: In the last 5 fields there is a one for one
correspondence in the elements.

first SESSDATE - the date of the newest session in
the accumulated counts.

first (others) - the accurulated counts on all
indicated.

Regardless of the actual number of sessions within one
given calendar day, the statistics will be accumulated
as if there were only one session.

When (during UPDATE) a record is encountered with the
variable fields having all 13 elements filled, the
'snapshot' of the given record will be taken. The last
12 elements will then be cleared, by summing them and
adding them to the first element, the first element
SESSDATE will be made equal to the last element
SESSDATE.

PAGE 188

TOTIC G.2 - USAGE STATISTICS

A. EATA SET NAMI:

Maintenance Statistics Rerort Format

B. CREATED BY:

STATIC Report (NDBPRNTM)

C. TYPE OF FILE:

VS (print)

D. ORGANIZATION:

Sequential

E. KEY IDENTIFIER (CONTROL FIEL):

Not Applicable

F. FECORD LENGTH:

133 Bytes

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To display (via listinq) the status of the maintenance
statistics.

MAINTENANCE STATISTICS FOR SYSTEMS MANAGER ** 01/11/73
PAGE 1

DATAPLEX TOTAL ANCHOR NUMBER TRANS MAINTENANCE FILEPLEX SUBPLEX XPLEX
NAME TRNS RECORDS RUNS RUN DATES ADDS DELETES UPDATES ADDS DELETES UPDATES ADDS DELETES UPDATESASRD1$ 3,132 1 12/19/72 3,132

FILEPLEX ADDS DELETES UPDATES

TOTAL 3,132
FOR ALL RUNS

AVERAGE 3,132
PER RUN

PAGE 190

TOREC G.3 - USAGE STATISTICS

A. LATA SET NAME:

Retrieval Statistics Report Format

B. CREATED BY:

Report Print (NDBPRNTP)

C. TYPE OF FILE:

PS (print)

D. ORGANIZATION:

Sequential

E. KEY IDENTIFIER (CONTROL FIELr):

Not Applicable

F. EECOBD LENGTH:

133 Bytes

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To display (via listing) the status of the retrieval
statistics.

RETRIEVAL STATISTICS 01/03/73

NASISID CONN-TIME CPU-TIME # STRAT STORED OWNER FILE FIELD ACTUAL TOTAL NUMBER OFHR:MM:SC HR:MM:SC:MS SES LENGTH # ID NAME NAME EXP SEL SRCH CORRNE01 0:53:30 0:00:48:790 5 0 .0

SAOWNER ASRD1$A AUTHOR 3 0 0 0
SAOWNER ASRD1$B KEYWORDS 13 0 0 0
SAOWNER DB2TDBA EMPAGE 1 0 0 0
SAOWNER DB2TDBB TOTALCAR 1 0 0 0SAOWNER DB2TDBC KIDAGE 1 0 0 0
SAOWNER DB2TDBD PET 1 0 0 0
SAOWNER DB2TDBE 'SVCDATE 1 0 0 0

PAGE 192

TOFIC G.4 - USAGE STATISTICS

A. EATA SET NAME:

Snapshot Statistics Report Format

B. CREATED BY:

Snapshot Print (NDBCHKPT)

C. TYPE OF FILE:

PS (print)

D. ORGANIZATION:

Sequential

E. KEY IDENTIFIER (CONTROI FIELD):

Not Applicable

F, RECORD LENGTH:

133 Bytes

G, BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To display (via listinq) those records which have
undergone the reinitialization process.

SNAPSHOT (CHECKPOINT)OF RETRIEVAL STATISTICS RECORDS BEFORE REINITIALIZATION

12/18/72 PAGE 1

LISR ID CONN-TIME CPU-TIME # STRAT OWNER-ID FIELD FILE SESSION # # #HR:MIN:SC HR:MN:SC:MS SES LENGTH NAME NAME DATE EXPANDS SELECTS SEARCHS CORRECTS

NEOI :19:40 0:00:12:399 2 SAOWNER KEYWORDS ASRDI$B 721215

721215 1

721215

721215

721215

721215

721215

721215

721215

721215

721215

721215

721215 1

PAGE 194

TOFIC H.1 - IMMEDIATE COMMANDS

A. DATA SET NAME:

NASIS Message File - NASIS.MESSAGES

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

ISAM

D. ORGANIZATION:

Indexed-Sequential

E. KEY IDENTIFIER (CONTROL FIELE):

The fifteen byte key is ccmrosed of the eight byte
message key concatenated to the seven byte line
number.

F. RECORD LENGTH:

F(160), key length is 15 with an RKP = 0.

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

This data set contains the NASIS system messages used
by the various modules for prcrpting and diagnostic
messages.

PAGE 195

TOPIC H.2 - STRATEGY FILE

A. DATA SET NAME:

NASIS.STRATEGY

B. CREATED BY:

NTSTRAT

C. TYPE OF FILE:

ISAM

D. ORGANIZATION:

Random. File consists of approximately 4000
records. The first 256 contain bit switches
flagging which of the remainder are active. The
next 256 are base records pointing to the first
of a string of chained data records.

E. KEY IDENTIFIER (CONTROL FIELD):

Strategy Name (16 characters)

F. RECORD LENGTH:

150 characters

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To store strategies, formats and print
information created by a NASIS user.

PAGE 196

TOFIC H,3 - IMPEDIATE COPMANDS

A. DATA SET NAFE:

Strategy Display Format

B. CREATED BY:

DBSTRT

C. TYPE OF FILE:

Screen Display

D. CRGANIZATION:

Header = STRATEGY name (centered)

Data Lines = full width, word split

Overflow Lines = indented three characters

Page Overflow = full reccrd

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To display the contents of the data lines comprising a
stored strategy.

PAGE 197

TOTIC H.4 - IMmEDIATE COMMANDS

A. DATA SET NAME:

Strategy Names Display Format

B. CREATED BY:

NDBSTRT

C. TYPE OF FILE:

Screen Display

D. CORGANIZATION:

Data Lines = complete 16 character strategy names
separated by two blanks (as tany as will fit on a
line).

E. KEY IDENTIFIEP (CONTROL FIELD):

Not Applicable

F. RECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To display the names of the strategies present in the
strategy data set.

PAGE 198

TOPIC H.5 - INTERNAL PROFILE TABLE

A. DATA SET NAME:

NASIS.PROFILES

B. CREATED BY:

NTSPRO

C. TYPE OF FILE:

Sequential Array

D. ORGANIZATICN:

Sequent-1 (Synonyms) - Sequential
Sequent-2 (Defaults) - Sequential
Sequent-3 (Default Data) - Random

E. KEY IDENTIFIER (CONTROL FIELD):

Not Applicable

F. FECORD LENGTH:

1500 Bytes

G. BIOCKING FACTOB:

Not Applicable

H. PURPOSE:

To save user defined synonyms and defaults.

PAGE 199

TOEIC H.6 - IMMEDIATE COMMANDS

A. DATA SET NAME:

NASIS User Profile Dataset NASIS Profiles

B. CREATED BY:

Not Applicable

C. TYPE OF FILE:

Members are SAM, PDS ccntaining all PPAM members.

D. ORGANIZATION:

Sequential

E. KEY IDENTIFIER (CCNTPCI FIELD):

Not Applicable

F. RECORD LENGTH:

F (2000)

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

To contain the lists cf user defined synonyms and
defaults for a particular NASISID.

PAGE 200

TOFIC H.7 - COMMANDS FCR DATA ITFIEVAL

A. DATA SET NAME:

VERBTAB Table.

B. CREATED BY:

The NASIS modules which prompt for commands.

C. TYPE OF FILE:

Table

D. ORGANIZATION:

PL/I Data Structure

E. KEY IDENTIFIEP (CONTROL FIELD):

Not Applicable

F. FECORD LENGTH:

Not Applicable

G. BLOCKING FACTOR:

Not Applicable

H. PURPOSE:

1. VEPBTAB EXTERNAL CONFOLIED.
This table contains the information necessary to
associate a set cf valid verbs (commands) and
their respective entry points.

2. #_ENTRIES BINARY FIXED.
This field ccntains the count of the number
of valid entries in tte list below.

2. SIZE BINARY FIXED.
This field contains the count of the number
of entries that can te contained in the list
below.

2. SYMBOLIC ID CHARACTER (8).
This field contains the default symbol that
can be used to define user written extentions
to this list of verbs.

PAGE 201

2. COMMAND (VER _CCUNT).
This list is used to describe the commands
recoqnized by the defining module.

3. NAME CHARACTER (8).
This field contains the command name.

3. ROUTINE CHARACTER (8).
This field contains the name of the
entry point to be called when this
command is entered.

1. VERB COUNT BINARY FIXED.
This field must be set to the iaximum number of
entries allowable in the verb list, before the
table is allocated.

I. PL/I DECLARATION:

/* GENERALIZED NASIS SYSTEM VERB TABLE */

DCL 1 VERBTAB EXT CONTROLLED, /*DEFINE THE VERB TABLE */
2 # ENTRIES BIN FIXED, /*DEFINE THE CURRENT SIZE */
2 SIZE BIN FIXED, /*DEfINE THE MAXIMUM SIZE */
2 SYMBOLIC_ID CHAR(8), /*DEFIVE THE DEFAULT TERM */
2 COMMAND(VErB_COUNT), /*DEFINE THE VERB ENTRIES */

3 NAME CHAR(8), /*DEFINE THE VERB NAME */
3 ROUTINE CHAR(8); /*DFFINE THE ROUTINE NAME */

DCI VERB COUNT BIN FIXED: /*DETINE THE TABLE SIZE */

