NASA CR-134473

NASA-CR~-134473) NASIS DATA BASE ¥73-31135
‘MANAGEMENT SYSTEH - IBM 360,370 0S HVT

INPLEMERTATICH, U4: PROGEAM DESIGH
Unclas

{Neoterics, Ianc., Cleveland, Ohio,)
“596 p BC $31.50 CS5CL §9B G3/708 13773

53?3’;,»*
NASIS DATA BASE MANAGEMENT SYSTEM - IBM 360/370 0S MVT IMPLEMENTATION

IV - PROGRAM DES IGN SPECIFICATIONS

NEOTERICS, INC.

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center
Contract NAS '3-14979

1. Report Nop, 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR-134473

2 Title and Subtitie NASIS DATA BASE MANAGEMENT SYSTEM - IBM | 5. Report Date |
360/370 OS MVT IMPLEMENTATION September 1973
IV - PROGRAM DESIGN SPECIFICATIONS 6. Performing Organization Cade

7. Author(s} : . 8. Performing Organization Report No.
None

. 10. Work Unit No.
9. Performing Crganization Name and Address)

Neoterics, Inc. : ' 11. Contract or Grant No,

2800 Euclid Avenue NAS 3-14979

Cleveland, Ohio_ 44115 13. Type of Report and Period Covered
12, Sponsoring Agency Name and Address ' Contractor Report

National Aercnantics and Space Administration 14. Sponsoring Agency Code -

Washington, D.C. 20546

15. Supplementary Notes .
Final Report. Project Manager, Charles M, Goldstein, Computer Services Division, NASA Lewis
Research Center, Cleveland, Ohio

16, Abstract

The NASIS developz_nent workbook contains all the required system documentation., The workbook
includes the following seven volumes: ‘

1 - Installation Standards (CR-134470)
Il - Overviews (CR-13447T1)
III - Data Set Specifications (CR-134472)
IV - Program Design Specifications (CR-134473)
V - Retrieval Command System Reference Manual (CR-134474)
VI - NASIS Message File (CR-134475)
VII - Data Base Administrator User's Guide (CR- 1344":’6)

17. Key Words (Suggested by Author(s))) 18. Distribution Statement
' Unclassified - unlimited

19, Security Classif. {of this report) . 20. Security Classif. (of this page} :) 21. No. of Pages 22, Price®
Unclassified ‘ Unclassified 582 - $10,75

* For sale by the Nationa! Technical |iformation Service, Springfield, Virginia 22151

1

TABLE CF CONTERIE

TOEIC A - MOULTI-TERMINAL TASKING

oo Dpe e Pw D% i
2 4 % 8 @
(=L I 5, BN NI N

TOFIC B - DATA BASE

. b 5 ¢ 2 # ¥ &

ok WO QO S O Y B NS

wh LD

oo ¥ oD

NHTTSUP - HTT Nonitﬂr- ¥ & & 4 & & = ¥ s
NDBMTT -~ Initial Epntry Boutine, Retrieval.
NIGC253 - Superviscr Call Rontine., . .+ .
NDPMTTE - Decriptor Editor Entry Routine
KDENTTPE - Ratch—=Print Fntry Routine., . .

EXECUTIYE

Tata Base PreDIOCEESOT 4 & s o s = s s »

¥DEPAC - Data Base Executive {(TBRPAC,DEMPACY .

NDBDEIC - Data Base I/0. o « o« + 4 o s s »

NDBEYITS - Conversion and Forpatting Routines.

NDPLIST ~ List Processor « o « o o 2 8 s &
NCCLIST - Parent-Children 1ist Processor

NDBRTNS - Assenhler Foutines o« + » v » s+ o
WDBOSET ~ Set Hanager, « « o s s o s 2 s o
NDBSETIC -~ Set file I/Ce o o o o o ¢ o » =
NDBFLDU - Field f+ilities. + 4 » o + = & s
NDECALL =~ Call-by-nane Routine + + ¢ o + =«

UTILITIES

NDBJOIN - JOIN NASIS USEIS » » -+ . . » I .
NDRTAEIF ~ ESDTAF Tile Generatorl « + « s o
N¥DBMTAE - MODTAE File GeneratoTe « « » s« o
VDBSETY - Sets Infcrmation FPile Generator.
NSETINIT - Set File GeneratoT. «» s » s » »

MAINTENANCE

NFPARM - Free Form Parameter Program
NPRTFILE ~ Print File Program. . .
NDBMNTN - Maintenance Mainline . .
NDBLOAD - Lecad/Create Program, ., .

*] - - - -

NDBIVRT1 - File Invert, Prcgram 1. « « .

NDBIVRYZ - File Invert, PIcgram 2. . «

NDBINDR = Index Merqe: . s : 2 ¢ : s s s =
NDBRECL ~ Maxinmunm Fecord Length. . « « . &
NDBEDBC - ADD-CHANGE COmmandS' = 5 & & P
NDBEDAR = ADDIIERE-HENAME Commands. . « + »
HDEEﬁCP - CHK?OINT COﬂmand s & a2 » . = a »
NDBEDCS - CREATSUB Command + o « o o o « »
NDBEBBE - END COmmand. s & % s » 8 ® » . ®
NDBEDDI ~ DISPLAY Internal Command + + +
KDBEDDP - DISPLAY Field Ccmmand. . + s « «
NDBFDIN - x“itialization Boutine , . . . s

PAGE 2

29
3y
38
40
45

a & 5 = s =

@ " 8 ¥ s »

50
65
84
95
38

L] »
»]

o o125
. »128
« +131
. '172
. -176
o +181

. 186
, 191
. 196
. 201
. 205

e+ 0 b

» 209
« 213
n217
« 227
« 232

.« 237
242

.

. 249
« 254
. 262
a267
. 272
» 277
+ 282

. 289
. 294
. 300

L] E] L] - * L]

& ® a5 % 5 & 2 ¢ 2 8 @

PAGE 3

D.18 KDBEDFD -~ FIELDS Ccmmamd « « + + s s s o » o« o314
0,19 NDBEDFI - FILE COmRANd o« o o o o » s » o o« o o318
D.20 NDBEDSU - SUPERFLD Command « o« o+ « « » o » « o324
D.21 NDBEDLD - Lcad Descripters Boutimne o329
Du22 NDREDMC ~ MOVE Command . o« o s o o o s o & » o336
D.23 NDBEDPA -~ PATCH CORMANd. + « o o« o s« o o o + o341
D'Zu NDBEDPE - PRIHT Commando » & = e @ s ® . o = .3“6
D.25 NDBEDRS - Reccord Security Routine, . + 4+ « o+ o351
h,26 NDBEDRT ~ BESTORE Command. o« « a s & o = » a'o356
Do?? NDBEDRV - RE?IEE Ccmmand s » 4 3 = * ® . s '361
D-ZS NDBEBSS - SVASTRT ccmmaﬁd- » & » & » B » a a l367
TOPIC E - TERMINAL SUPPORT
E, 1 Terminal Support PICDIOCESSOTas 4+ o » » s o & 373
E.2 NTSUPER - Terminal Support Supervisor, . . . «382
.3 ¥DBPLINK -~ PLI/Assembler Linkage Routine . . .398
E. 4 WTSATTN - Attention Interface. « o« o o o o o« o401
E.5 NLBATTE ~ Attention Prompting Routine. . o « 2404
TOPIC F - DATA RETRIEVAL
F. 1 NDBINIT - Retrieval Initialization + . . » . L4006
F.2 NDBFLDS =~ FIELDS CORMANA « « s s o » & o o » o411
F.3 NDBYXPHD ~ EXPAND Ccrmand « o« « « o s s o o o o416
Fo 4 MDBSLCT - SEARCH/SEILECT Commands . + « « o o #8421
?.5 EDEDSPL - DISPLAY Command, Module 1. ¢« + o+ » 433
F.6 NDBPRNT -~ PRINT Command. o« o o o » 2 s « a = +439
Fo? NDEEYSE - EXYECUTE Conmmand. s [T T T T T 1447
F.8 NDBSETS = SETS Com2and o s s s s o » o a s o »5453
F.g RDBSETU = Set Utilities. a8 8 8 " 8 8 s » @ ¢q58
3010 NDBFORM -~ FORMAT Ccmmand' HOdule 1 .« a & = 0463
F. 11 NDBSFMT - Store Formats Boutine, . +« +« + & o« +473
F,12 MNDBYPNDE - Expanded Terwm Foutine . « o « o o 477
F.13 NDBPRINT -~ Eatch Print Nonitor s e % s & e + #0179
F.14 WNDBYRIT - Batch Print Output Module 484
P15 NWDBCORR - CORRBRECT Commands « « ¢ s- 9 « s » o 489
F.16 DBCORRY -~ Transaction Write Routine,0498
F.17 DBDSPLE -~ DISPLAY Command, Module 2, . + . . +503
F, 18 DBFORMA - FORHMAT Ccmmarnd, Module 2 « « « » o 510

TOFEC G - USAGE STATISTICS

1 NDBACCUM - Statistics Accumulator,. « « « » + o516
2 NDBPRNTR - Print Retrieval Statistics Boutine. 521
3 NDBUPDST - Update ¥aint, Statistics Routine, .525
4 NTIMERS - Clock EOUtines + = & ® & & & s & & '532
5 WDBPRNTHM -~ Print Maint, Statistics Boutine . .534
6 NDBSTAT - Retrieval Statistics Director. . . +539

TOPIC H - IMMEDIATE CONMANDS

H,1 NDBEXPL - EXPLAIN FacilitV « o « o« o« o o« o o+ o545 |

o omoon o e
.

. - - .

RN E W

WDBSTRT - Strategy Interface . + » .
NTSTRAT - Strateqgy Assenbler Routine .
NDBUSER - {ser Ver!‘. Tahle. 2 & a » .
NDBFRO - User Profile RBoutine. « &+ +« .
NTSPRO ~ User Prcfile Assembler Routines .,
NDBCMNL - PL/I Tmmediate Cemmand Interface

. » *
- 9 = @

PAGE 4

552
«559
. 564
« 573
» 580

- - . - - -

PAGE 5

TOFIC A,1 - MCNITCR

A,

B,

C,

D.

E.

HODULE HAME

Multi-Terminal Tasking Menitor
Program-~ID - NMETSUP
Hodule-ID - MTTSOP

ANALYST

J. H. Herpel
Neoterics, Inc.

MODULE FUNCTICHN

The Monitor is the program which is responsible for the
multi-programming and

terminal~handling functicns for CS BASIS, It also
contains support for such

things as sowe user commands which fall most easily to
the Monitor to

process, the loadings/scheduling of programs in
"transient® memory, the :
accumualation of user timing statistics, and so on,
Finally, it is the single

program which is respcnsible fcor the terminal-related
corppunjication with

the operating system {0S/360).

TATA REQUIREMENTS

Mot Applicable

PROCESSING BECUIREMENTS

1. Top Level Flowchart
Not Applicable

2, Narrative
a. Qverview
With the exception of some routines which initiate
NASIS and take it hack
down, the Monitor ceonsists of one gueune-scanning
and schednling routine to
scan the various queues which tell the Monitor
what work there is to be
done and a bunch of subroutines to actually

perform the indicated work,
Thus, there are two main flows of control through

PAGE ©

the program., The first

is from the gunene-scannina/scheduling routine to a
subrcutine te perforn

a particular function {program load, terminal I/0,
etc,), tack to the

scheduler and by and by to a (NASIS) task for
executicn., Since the Monitcer

can be called by NASIS programs for requests, the
other possible £low has

a call to the Moniter at cne of the service entry
points and a return to

the calling prograw around the first flow,
Finally, under certain circunm-

stances, the scheduling rcoutine is not alwavs
needed to fulfill an

application request so it may he left out of the
flow of control on

occasion,

b. External Specifications

1. Hodule HRame - NTTSOP
2 CSECT nate -~ MTTSOLC
3. Fntry Point RNames

a, OSNASTIS ({To initialize all of ¥NASIS.) -
Main entry.

b. MTTREAD (To read text from a user
terminal.)

Ca MTTWRITE (To write text to a user
terminal.,)

d. MTTPGMIN (To process progranm
interrupticns.)

e. MTTHREAD ({To write text to and read text
frcem a user terwminal,)

f. MTITFLUSH (To empty the I/C huffer to a
user termipal.)

g MTTTSEND ({(To end the time-slice for a
usSer,)

h, MTTXTR (Tc vrovide application
informaticn to a proqrapm.)

i. MTTGETIM (To provide timing information
+0 a progran,)

Je MTTHMUST (To enter "must complete"
status.)

k. MTTKA (To enter "KA" mode.)

1. MTTEKB {To enter "KBY mode.)

M. MTTOSERS {To execute the "“ysers"
cormand,)

D HTTNUSER {To execnte the "pusers”
cogmand.)

0. MTTHELP (To execute the "help" command.)

P MTTMSG (Tc exectute the "msg" command,)

PAGE 7

9. MTTIPASS (To provide a program with a
user's security code,)

MTTNLOD (Tc provide skipping of
transient loading.)

S. HTTHALOE (To provide reguirement of
transient lcading,)

te MTTCALL (To support the loading of
a transient program.)

1. MTITSE (To leave "must complete® npode.)

Ve MTTCHMND {(To sort and process a user
command,)

b, External References

as, TSATIN (Application attention
processing.,)

b, IHEMAIN (For initializing a task.)

Ca THENTRY (Fer ipitializing a task.)

d. MASTAB (Pointer to the master set file
table,)

Q. INTFNDS (MPFINDDS™ table initialization
routine,)

f. TSATIN (Arplication attention
processing,)

C. Sectional Narratives

The following secticns describe the workings of
the Monitor section bty

section as the secticns appear in the Monitor
itself, Please note that

these discussions are ordered only by their
appearance in the Mcnitor and

pot in any manner cf gprogram flow.

1. MTTIINIT (System Initialization)

This routine is the one called by the
operating systenm to initiate NASIS.

it first sets-up tle proper linkage and then
lcads and executes the

MTTSTART routine to perform all the once-only
initializing functions, After

the MTTSTART routine has finished execution
and returned tc the Hcpitor,

it is unloaded (deleted), Now a SPIE is
issued to obtain control upon

the occurance ¢f a non-maskakle program
interrupticn. (The maskable

interrupts are masked out,) After this is
done, scme alteratiorns are made

in a couple of BTAM nmodules. Specifically,
IGGO19PF is altered to permit

PAGE 8

attenticon interrupts and IGGC19MP is altered
to prevent timecuts, At this

point all the initialization is complete and
the scheduler (BRTTFINDEY is

called to begin user processing,

2. INITEND (System terminaticn)

This routine un-does everything that MTTIHIT
did. It is called by the

scheduler after it has determined that it is
tipme to shut dcwn., All

this routine dces is load, execute and delete
the NTTEND routine and

then issue a SFIE macro with no operands to
relinguish control <f

progran interruptions, After this is done,
the routine returns centrol

to the operating systerm by returning through
the linkage,

3. MTTFINDQ (Queune~scanning and scheduling)

This is the routine which locks for work for
the Monitor to do and calls

the appropriate subroutines to rerform the
indicated tasks. On entry,

this routine saves registers for returning
callers and =ets an indicator

as to whether cor not there are saved
registers, It then zeroes out the
current-user indicatcrs preparatory to
switching tasks,

The first scan made is the one for messages
to ke sent to tasks, If any

are found in the Terminal Table (TRC} and the
task is eligitkle to recieve

the nessage, it is sent by calling the
MTTSENDM Toutine,

After this scan is done, the cunrrent time is
obtained by the TIME macro and

compared with the time specified at shutdowun
time, If the time returned by

TIME is greater than the shotdown time, the
INITEND routine is called to

terminate NASIS.

The next scan is again throuah the TRQ for
users to be forced off HNASIS.

If any are found, a guickie subroutine named
FDQFORCE is called to send the

PAGE 9

force mpessage to the user (MTTHEEITI1) and then
log off the user
{MTIQUITY .,

The next scan through the TRO looks for user
core requests, They are
processed bty a call to the MTTCCEE routine.

Now the scan througqh the terminal tatle for
coppleted user terminal I/C

operations is started, This scan is made by
interrogating the DECB in

each TRC entry for posted status., Each time
one is found tc have heen

posted, it is examined by btranching to the
appropriate code to process

each permissible terminal type. Each time a
DECR is found not to be

posted, it is returned to the ECB list to be
waited on if there is

I/C in progress for tke terminal, If I/0 is
not in progress, the

TRY is skipped over, The I/0 conpletion
exarination code starts uith

a check for a valid terminal type. After
this is verified, the code for

the type of terminal is called to check for
excepticnal {(errcr) conditions

{(i. e¢. line errors)y. In the case of a hard
line error, the line is hung

ap and re-opened; in the case of an
attention, indication cf same is

merely added to the return ccde returned to
the caller of the scanning

routine., If there were no errors,
examination continues by checking the

type of operaticen which just conmnpleted, If
it was a read initial operation,

the BWTTTASKI rcutine is called to log on the
new user, If it was a

write operation, processing is finished and
the FDORETN routine is

kranched to to enter the task into the
work-to-bhe-done quene, If the

conpleted operation was a read, the retarns
are checked to see if the

user entered tc¢ much text (buffer overflow).
¥f that is the case, a

return code is set~up to indicate the
condition to the caller of the

scanning routine, After the I/C completion
stati are processed, the

task is placed into the work gueue {this is

PAGE 10

FDORETN}. This is dcne by

locating the TRQ entry pointer and setting
the vork flag in it so that the

next scan will find it. This scan is
finished when the entire list of

DECB's has been examined.

The last scan is the cne which looks for
tasks with processing to be

started., These can be tasks restarting after
a time-slice end or tasks

wvhich bave gone through the I/0 completion
ccde descrihed above, The

TRG is scanned for users with werk to do
starting with the task after

the last one tc have been dispatched. After
a task has been found xith

work t0 bhe done, the loading indicators are
examined tc determine whether

or not a transient load is redquired to get
the appropriate proaranm hack

in memory., If a lcad is needed, the MNTTLOAD
- subrouytine is called to

process it. If on return frcm that routine,
the module is loaded, the

FDCTSISP routine is kranched to to get the
task started, Otherwise {or

if the task didn't have work to 4oy the rest
of the TRQ is scanned.

If a task was found eligible to start
precessing by the last scan, all

the pointers relavent to the "current task”
information are posted

and the dispatcher {(MTITDISPR) is bhranched to
to actually initiate

execution for the task.

If the last scan d4idn't find anything, it
means that there is nothing at

all for the Monitor to do, At this point, a
timer ECER is added to the

end of the list of terminal ECB's {for
checking shutdeown time) and this

ECB list is WAITed on. Upon return from this
WAIT, the timer is cancelled

and the beginning of the gueuve scanner is
returned to to see which ECH

it was that was posted,

31so in the gaeue-scanner is the routine to
post the completion cf the
tirer set by the waiting routine. All it

PAGE 11

does is post the ECB for the

timer and return to the system so as to
notify the wait routine that

it terminated,

4, MTTLOAD (Transient mcdule load)

This is the routine which checks and (maybe)
loads a transient module, Upon

entry it investigates the seagment table to
see if a SEGLD has been posted

copplete, If cne has, the internal flaqg is
turned off., Now the module

to be loaded is looked for in the Module
Entry Table (MET). After it is

found, the MET entry is examined to see if
the requested mpodule is already

lecaded, If it is, the caller is returned to
with the loaded flagq set in

the TRQ entry, If the module is not loaded,
a check is made to see if it

has been assigned tc a partition, If it has,
a check is made to see if the

module has been loaded (segrent tabley, Tf
it has, the caller is returned

to; if the load is in progress for the
module, return is made to tell the
scheduler to wait a while. OCtherwise, the
code to check for a timed-out

partition is brancled to,

If the requested module is not assigned to a
partition, an empty partition

is looked for., If cme is found, the module
is asgsigned to it and the

code to initiate the lcading of the module is
branched to., 1If no emgty

partition is fcund, one which is not bheing
used is looked for {(i. e. the

nunter of users is zerc)., If one is found,
its module entry is marked

unlocaded and the code to load the reqguested
modole is Lranched to, The

next effort to locate a partition is to find
one which has timed out,

If ¢ne is found which has exceeded its tinme
in execution, it is overlaved

in the same manner as an unuysed partition.
The last test is to smee if

the requested module is a "priority"™ module.
If it is, the first

partiticn is overlaved ywith the requested
nodule in the same manner as

PAGE 12

if the partiticn was vnused, TIf all the test
failed, the mecdule is marked
not loaded and the scheduler is returned to,

The code to initiate a load into a partition
hegins hy posting the RET

pointer in the partition table (PET). Then
the partiticn number is set

in the MET and the partiticn time is set to
zerc, MNow a check is made

to see if a SEGCLD is already in progress
since only one is allcowed to be

in progress at a time, If there is ¢ne
already executing, the scheduler

is told that it will have to wait for a
while, Otherwise, all the

parameters to initiate a SEGLD are set-up
manually and the SEGID for

the module is initiated via a SVYC 37. DNow
the internal flag indicating

a SEGLD in progress is turned on and the
scheduler is returned to with

the load flag in the TB) entry turned off to
tell it to wait until the

module is loaded.

5. HTTTIMER (Sub~task time-slice timer
initiation) '

All this routine does is start the task's
time-slice timer running with

the STIMER macro, The interval used is
thenext time slicem field

in the TCTE. After the STIMER is issued, an
internal flag is set indicating

that there is a timer active and the caller
is returned to,

6. MTTUNTIM (Sub-task time-slice timer
cancellation)

This routine is called whenever somebody
wants to stop the task's time-slice

timer (for instance, a service routine called
by the applicaticen). ©On

entry it makes sure there is a timer runaning
{if there isn't, the caller

is merely returned to) and cancels it with a
TTINER macro call, After the

TTIMER completes, the next time slice value
is updated to contain the armount

of time left in the time-slice and the timing
accunrulators are updated by

PAGE 13

the amount of time actually used from the
tine slice, Return is to the
caller.

6. MTITTSEWD (Time-slice end)

This is the Toutine srecified at the exit
routine by the STIMFR issued by

the MTTTIMER routine., Upon teing called by
the coperating system, it

"degueunes™ the timer interrupt by saving the
registers and return address

in the PRB and returning to the operating
system, After this manouver,

the task is placed intc the work gueue (TRQ)
and all the timing accurulators

are npdated, The user is set-up to get an
entire time-slice next time

and the queue-scanning routine is exitted to
{at HTTENDO1).

7 HTTITSE {Forced time-slice end}

This is a routine which the application may
call to prematurely end a user’'s

time slice, After performing linkage
initialization, it calls the BTTONTINM
routine to turn off the time~slice timer.
Now it moves all the caller's

registers and a return PSW into the task's
TCTE. Finally, the task is

narked dispatchable in the TRQ and the
queve-scanner is called to logk for
sopething to do. (¥When it re-dispatches the
calling task, it will dispatch

it to the return address presented to
MTTTSE.)

8, MTTTASKI (Sub-task initialization)

MTTTASKI is the routine called bv the
scheduler when it finds the completion

of a read initial operation at a terminal.,
After checking to see if the

system is in the nidst of a shutdown (if it
is, the request to log on a

user is ignored), the routine obtains space
for the user's task ccntrol

table (TCTE)} and posts its pointer in the
terminal table. The user counter

is incremented as soon as this action is
completed for consistency with

the logoff routine., Now the TCTE is

PAGE 14

initialized with as many fields as

the routine %Xncws about., The user at the
terminal is prompted for his

NASIS-id and {cpticnally) his password by
calls to MTTWRIT1 and WMTTREAD1,

(If he can't provide a valid MASIS-id or
password in three tries, he is

logaed off by a call to the HTTQUIT routine.)
After these items are

obtained and posted, the remainder of the
informatiorn necessary for the

TCTF is filled in, the operator is notified
that ancother usger has Jjoined

the application and the user is notified of
impending shutdcwns and

given the news of the day by calls to
MTIWRITY. Finally, he is marked

present to the application and all his
recisters are initialized in

the TCTE along with scme of the vital
indicators, Return is made to

the gueue-scanner at HTTFNDO1.

9. MTTQUIT (Sub-task termination)

This is the routine unsed to terminate a
sub-task. Tt is called either by one

of the routines to force a nser off the
system or by a neormal return fronm

the application task. 2s this routine may or
may not have to return to its

caller, it sets—up indicators for this when
it is called. It then checks

to see if the task to be guit has a task
control tahle, If it does not, the
implication is that scmebody hung~up a phone
and the line is merely ra-

enabled, Otherwise, the coperator is notified
as to who is leaving ty the

MSG macro. Then the user is removed from the
user tatle (his logged-on

flag is zerced ocut s¢ somebody else can use
the userid later)., HNow the

logoff message containing the used connect
and CP times is huilt and sent

tc the user via a call to MTIRRITI/NITFLSH1,

At this point, the TCTE space is freed and
the user is ta%en out cf the’

terminal table (TRQ). The count of active
users is decremented and the

space used to tuild the logoff message in is
released, MNow the line the

PAGE 15

user was using is re-enabled by issuing a
read initial on it., After all

this is finished, eitter the caller is
returned to or if there is no return

to be made, control is returned to the queue
scanner at MTTFNDOQ1,

10. HMTTPOST (Sub-task attenticn processing)

This is the routine which the gqueue-scanner
calls with it finds a terwinal

which received an attenticn-only status,
{This means that there was an

asynchronous attention which is a special
case,) Upon entry, it locates the

TCTF for the task and checks myriad and
sundry conditicns to see if the

attention should be ignored (shutdowun,
non-logged-on user, etc,). if the
interrupt is acceptatle, space for an
attention table is obtained and all

the interrupt information is moved into it.
it is then chained onto the end

of the chain of such tables and the
application attenticn processing routine

is called with this table is input. If this
processor returuns to wve, the

last tatle on the chain is yn-linked and
freed, Now the task iz reset hy

posting the attention interrupt information
back into the TCTE and posting

the wvork-to-be~-done flag in the TRO, Exit is
tc the queue-scanner at

MTTFNDO1,

The other entry to this routine is at
HTTPOST1 for those routines which are
returned with the attention-~in-addition
return code set., This entry merely

"fakes" the interrupt information in the TCTE
and then processes the

attention as atove,

11, HMTISENDN (Message sending subroutine)

This subroutine is called by whomever decides
it is time tc =end a message to

one of the sub-tasks. All it does is locate
and describe the message, call
MTTHRITI/NTTFLSHT to send it, take the MCBH
(message contrcl block) out of

the MCB chain and free the space for the MCB
and the message by the

PAGE 16

FREEMAIN facility. WReturn is to the caller,
12. MTTCHERKM (Messaoge checking subroutine)

This subroutine is the one ¢alled by several
of the service routines to see

if there any messages pending for the
sub-task involved, If there are, the
NTTSENDM routine is called tc send the top
message on the chain and get rid

of the MCBR and message space, Return is to
the caller,

13, HITGETIM (Timing ottaining routine)

This service routine is c¢alled by the
application whenever it wishes to find

out how much time the sub-task user has spent
ccnnected to the application

and actually computing., BAfter it initializes
the linkage, it calculates the

user's conneéct time by subtracting the
current system time from the time

when the user logged cn., The user's elapsed
CPU time is taken directly

from the TCTE (TCTCPUTM). Bcecth these results
are vlaced in the parameter

list provided ty the caller and he is
returned to,

14, HNATTXTR {(Information extracting routine)

This is the service routine to present to an
aprlicaticn prcoranm sorme

information about the user using the
sub-task. 1Intc a parameter list

provided by the caller, this routine places
the following information:

the MASIS-ID of the unser, the passwerd of the
user, the task-id of the

sub«task, a flag to sav whether melti-tasking
is active (this flag is

alvays set on}, a flag to sav whether or not
the sub-task i= conversational

{this flag is alwavs set on). This routine,
after filling in the parameter

list for the caller, returns to him,

15. HTTNLOD (No-load reqguest routine)
This routine is called by those application

programs which wish to indicate
to the Moniter that no transient load is

PAGE 17

required to re-dispatch the user.

A1l this routine does is set the "no-load"
flag on in the task's TRQ entry

after it performs standard initialization.
Return is to the caller throngh

standard linkaage,

16. HTTHMLOD (Feset no-load request routine

This service rcotine is the inverse of
MTTNLOD, After performing

initialization, it turns off the "no-=load"
flag in the user's TRQO entry,

turns on the "load® flag (so that no messages
are sent) and then calls

the scheduling rountine (MTTFINDO) to cause
the module whose nawre is in

the user*s TRO entrvy to be loaded. After the
scheduler returns, the

implication is that the module in guestion
has been loaded, and return 1is

wzade to the caller through the linkage.

17. MTTCALL (Eodule call routine)

This is the routine used by the application
"eall" routine (DBCALLY to get

a module loaded. Except for the resetting of
the "no-lcad" flaq {(which

DRCALL has set for us), the action of this
routine is identical t¢ the

action of the NTTMLOD rontine,

18, MTTHUST (Hust-ceonplete routine)

This routine ccmprises the Ypust-complete"
function for the application.

After this routine has been called by an
application prcgram, the sub-task

involved will execute until either MTTTSE is
called or until the next

terminal transaction takes place, 1All this
routine Adoes is initialize the

lirkage, turn cff the user's time-slicing
timer and return to the caller,

19. HBTTPASS (Password obtaiping routine)

This routine is called by the application
program which needs tc know the

user's {(new) password {security code}., After
it initializes itself and the

linkage, it uses WMTTWRIT!t and MTTREADT to

PAGE 18

obtain a new security code from

the user, {"Rlanking® is used here as it is
for the passvord at logon tinme.)

¥o checking of the entered security code is

performed; after it has been

read, the caller is returned to through the

linkaqge,

20, MITPGHMIN {Program interrupt handler)

This is the routine which is called as a
result of the EPIE issved in MTTINIT

to process the occurance of a progranm
interruption. BAfter it sets-up all the
necessary registers to run with and saves the
interrupt registers and PS¥, it

returns momentarily to the operating systen
to cause the interrupt to be

"degueuned”, After the retunrn from this
excercise, a message is built to send

to the operatoy listing ovt all the interrupt
registers and PSW (for de-

bugging purposes). Then a message is sent to
the user indicating that the

system has done him a wrong and he is forced
off the application by a call

to the HTTQUIT routine. (If there was no
user in control when the interrupt

occured, this last ster is skipped.)

21, MTTHRITE ({(Sub-task write)

This is the applicaticn service routine to
write text to the user's terpinal.

After this rcutine has initialized the
linkage {for external callers), it

locates and moves the parameters (text
pointer/text lengthy into registers,

(At this point is the entry for intermnal
callers who already have their

parameters in the aprropriate registers.)
Now some internal register/flag
initialization is perfcrmed and the text
length is checked. Tf the length

is zero, a single carriage-return is written
to the user, HNew all trailing

blanks are remeved frem the text by
shortening the text length,

¥ovw the buffer is checked for any room at all
and if it is full, it is

emptied by writing it out to the terminal
with the MTTFLSHY routine,

PAGE 19

At this point, the initialization for
teletvpes and for writing after reading

is performed, For wuriting after reading, a
number of idles corresronding te

the distance acress the pater the carriage
was when the user hit carriage-

return is written ocut. For a teletype, if
the last line was not carriage

hanged, a line~feed and an idle are written
out,

How the text is processed character by
character., One character is picked-up,
tested and put into the I/0 ruffer in the
task's TCTE. For certain characters

there is additional processing performed.
These are:

Line~feeds, after which idles must be added:
Backspaces, which must he

accounted for in the distance across the
parer the carriage isj; carriage

returns, after which must he added idles:
tabs, after which pust also be

added idles. To speed up the testing
process, there is an additional

branch high after the test for line-feeds
(which is the first test) which

will kick out most of the text, For
teletypes, a line-feed mav be added

after the carriage-returns found in the taxt,

After the text has all been moved, end
processing hegins, If the text ended

with a carriage hang character (":"), this
processing is skipped. Otherwise,

a carriage-return and idles are inserted
after the text, Alsc, in the case

of a buffer shich has Just £illed up with the
last character, the buffer is

emptied to the terminal with a call to
MTTFLSRH1.

After this has beem done, all that remains is
to rtemember whether the

routine was called internally or externally
and return appropriately.

22, MTTCHARS {Character stuffing subroutine)

This subroutine is used by MTTHEITE whenever
it wants to add s discreet

nuekter of characters to the I/C huffer, As
it moves these characters, it

PAGE 20

checks the condition of the kuffer and
flushes it tc the torminal with

MTTFLSH1 if necessary., Return is to the
caller {in MTTWRITE) through a

linkage register,

23, MTTREAD {Sub=-task read)

This is the service routine to read text from
a user's terminal, After

initializing the parameter list pointers {one
for the target area and one

for the input length area) for external
callers, the ccde for toth

external and internal callers joins as with
MTTHWERITE,

If there is any text in the usert's I/ 0
buffer, it is written with a call

to MTITFLSHY svecifving that the gqueune routine
to te used is the cpe shich

reads the terminal after writing the text to
it, If there is no user output

text in the huftfer, the MTTRD) routine is
called to Just read the terminal,

After the text has teen read, cone way or the
other, the length is checked to

make sure the user didnt*t overflow the
buffer. The text is ncw translated

frem line cede to EBCRIC and, optionally, all
lower~case alphabetics are

translated tc vpper-case. If there is a
carriage-return at the end of the

text it is remcved at this point.

The next thing checked for is a cancelled
line. 1If the last character in

the yser's text is the line-kill character,
the routine re-calls itself to

begin reading the terminal over again.

Now backspaces and trailing blanks are
processed and stripped off,

respectively., Also, a check is made to see
if the last character in the

text is the centinnaticn character, in which
case the flag in the return code

for that event is turned on. (The
application precqrams are left toc process
continuaticn hcwever they wish to.}

If it vas the operator's terninal which was

PAGE 21

read, his input is scanned to see

if it is one of the Monitor commands, If it
was, the approrriate processor

is located and called and the roatine to
re-call the MTTREAD routine is

called,

Finally, the length actuvally read in is
checked against the target length

sent by the caller and the text is noved to
the caller's taraget area. A

flag indicating text truncation is turned on
if the user entered more text

than the caller allowed for.

Now determinaticn is wmade to see whether the
routine was called intermnally

or externally and appropriate return if
effected,

24, MTTWREAD ({Sub-task write/read)

This routine is the application service
routine which is used to write text

{a prompting string) tc¢ a user's tersinal and
then read in the resrponse to

the text, It is not intermally callable.

After initialization c¢f the linkage is done,
this routine merely calls the

BTTWRITY and MTTREADT routines with the
parapeters suptlied by the

caller to perform the necessary functions.
Return is to the caller through

the standard linkaage,

25, HTTFLOSH (Sub-task flush)

This is the service routine which the
application or the MNenitor itself can

call to cause the task I/0 huffer to be
emptied to the user's terminal,

There is impitializaticn code for external
callers to get the linkages set-

up properly, fcr internal callers, the
registers are merely saved.

After this is done, the routine checks to see
if there is any text in the

buffer, If there is none, the caller is
merely returned to., If there is,

and the terminal is a 1050, an end-of-block
{EOB} is added to the end of

the text. Now the text is ready to be

PAGE 22

written out,

For internal callers, the address of the
desired quneune-writing routine is

already specified, For external callers,
MTTRRQ is assumed, The cueuye-

writing routine is now called to write out
the text and the return code

is checked. If the return code is zero
{saccessfull ipitiation), the
queune-scanning routine (MTITFINDEY is called
to avait the completion of

the I/0 operaticn, After the queuve-scanner
returns, the caller of

flush is returned to (depending on how the
routine was called)},

26, MTTRDC, MTTWRQ, ETTHROAR (Quene I/0
rovtines)

These are the routines which actually perform
writing and reading I/0 on the

sub-task terminal, They are called only from
within the Monitor itself,

MTTRDO is the rcutine which is used to only
read text from a sub-task

terminal, After saving all the reqgisters and
locating the DECB in the task's

TRC entry, this routine executes a BTAM read
{TV) on the DECB., It then

turns off the flag allcwing WRITE type
"econtinue®s on the terminal and

branches to join the common return processing
code,

MTTHROQ is the routine to only write text to a
terminal, After it saves

the reqisters and sets-up the DECE pointer in
the TRQ entry, it determines

whether a "cconversational®” or "continuation®
write is called for ané performs

the approgriate action with a BTAM RRITE
macro., In addition, if it is

the operator?’s terminal being written to, the
completion of the write is

awvaited with the WAIT macro. The
continue-write-permitted flag is turned

on in all cases and ccntrol transfers to the
common return processing

section,

MTTERQAR is the routine to read text from a

PAGE 23

user terminal after writing text

to it. This is accomplished hy first issuing
a BTAM WRITE (as in MTTWRQ) and

then a BTAM type TV READ. After this is
initiated, the continue~-write-

pernitted flag is turned off and the return
precessing section is fallen

through to.

After whatever type of 1I/0 operation has been
injtiated, the return code from

the ¥RITE or READ is tested, If it is
non~zero, an I/0 error return is sent

back to the caller. If it is zero, the
terminal is marked busy in the TCTE

and the caller is returned to,

27. HTTMOVE {Text nmoving subroutine)

This internal subroutine merely moves text
from here to there in an efficient

manner, The inputs are to address, from
address and length, The method

used are successive MVC's of length 256 until
there are fewer than 2f€ bytes

to be mcved and then an executed MNYC is
issued to move the rest, Return is

to the caller through a linkage register,

28, HTTTRAY (Text translating subroutiney

This internal subroutine is used to translate
text, The inputs are text

address, takle address and length, The
nethod used is similar to the one

for MTTHMOVE except that TRs are used instead
cf HYCs,

29, MTTCMND (User command routine)

This routine is called by the application to
execute a user command, Tt

takes as input parameters describing the
command processor address, the

data text pointers and lengths and calls the
aprropriate cosgmand preccessor

internaliy, After the command is finished,
return is made to the caller

through the standard linkage.

30. HNTTEA {KA command routine)

This processor is the routine to execute the

PAGE 24

KA command, All it Adoces is
turn on the KA flag in the task's TCTE and
return to the caller

31, HMTTKER (KB command routine)

This routine processes the user KB command in
the same manner as the HTTRA

routine except that the flag is turned off
instead of on.

32, HETTIMSG (WSG command routine)

This routine is the processor for the
user/operater #5G command., It first

locates and verifies the receiving userid
parameter with the WTTGTUSE

subroutine, It then verifies that there is a
nessage text rarameter by :
checking its length., 7If either of these
tests fail, an error messaqge is

send either with HTTRRIT1 {for users) or tha
MSG macro (for the operator}.

Nos enough space for the messaqge itself plus
the message control Llcck

(MCB) is obtain wia the FREEMAIN macro. The
MCE is £illed in and chained

to the end of the MCH chain, the time-field
in the message header is

filled ip and the flag in the TRC entry for
the yser indicating that there

is at least cne message in the queuve is
torned on, PFetnrn is to the caller

through the linkage reqister.

33. MTTBCST (EEST coprand routine)

This rootine is the one which processes the
operator BCSTccemmand, After

parsing the input string to locate the
message text, it obtains and builds

MCPs for each active user in the same mannerv
MTTHNSG bhuilds them for single

users. After all the active users have the
MCR added to their chains, the

caller is returned to through the linkage
register,

34, MITSTOP (SBUTDCWN command roatine)

This routine is the processor for the
operator SHUIDCWN command. This conmand

PAGE 25

is the one used to terminate the application
after an optional time periocd.

After locating the tige parameter {and
defaulting it if it is not presenty,

the routine converts the time parameter to a
fivxed number and stores it in

the field whichk is inpterrogated by the
quene~-scanning routine, {There is

a special code which is nsed to terminate the
application imrediately which

is also checked for., If it is found,
termination is effected by an immediate
transfer to the INITENT routine,)

Novy the tipe-of-day of the shutdown is
calculated and a message for the users
warning them of the shutdecun is composed,
After the current tipme is obtained,

the shutdown time field is updated to
correctness by adding its contents to

the current time, After turning on the
shutdown-issved indicator, this

routine sends the shutdcwn messaqge to the
operator and then exits to the

MTTBCST routine to cause the warning to be
sent to all the users,

35. WTTHELP (EELP conmand routine)

This routine processes the user BELP command
which is merely a ¥SG command

with the operator assumed to be the receiving
userid. This rcutine nerely

points to a field containing the operators
oserid and the text sent by the

user and exits to the HTTHSG routine to
actually send the message.

36, MTTUSERS (USERS command routine)

This routine is the prcoccessor for the
user/operator USERS ccmmand which is

used to list out all the active application
users, Upon entry, this routine

obtains a workarea with the GETMAIN¥ macro and
sets-up to start locking for

users in the terminal table {(TRQ).

Before the search is started, a header
nessage is moved to the workarea,

filled in with the time and then sent to the
gser with HTTEWRIT?! or to the

PAGE 26

operator with the MSG macro, HNow the
terminal table is scanned and for

each active user located, his userid, the
synbolic device address of his

terminal and the user's taskid is sent to
either the user or the operator,

After all the users have been listed, the
caller of this routine is

returned t¢ through the linkage register.

37. HMTIFORCE (FORCE command routine)

The FORCE command is used by the operator to
gracefully get rid of an

application user and this is the routine that
processes the ccmmand,

211 it does if verify that the userid
specified by the operator is a

valid one, locate the TRQ entry for this user
and turn on the force-

issued flag in that tatle, (The
gueue~-scanning routine will do the

actual dirty work.) Return is to the caller
through the linkage register,

38, MTTNOSER (NUSERS command routine)

This is the processor for the user/operator
NUSERS command which is used to

present the nusber of active application
users. All it does is f£fill in

a skeleton message with the current time and
nunher 0of users {(from

MTIUSER#) and then send the result with
either MTTWRIT1 or the MS5G macro

depending cn whether it is going to a user or
to the operator, Return

is to the caller through the linkage
register.

39. ®ITGTUSR {User locating subroutine)

This subroutine is callied by various comnmand
processors t¢ leocate the TRQ

entry for a given userid. It compares the
userids in all the TR entries

to the one provided by the caller and returns
the correct cne if it can

be found in the terminal tahkle, If the
appropriate user can nct be located,

a non-zero condition code is returned to the
caller to so indicate,

PAGE 27

40. MTTBUSR (User errcr subroutine)

This subroutine is a convenience iter used by
the command rtoutines when they

come across an ipvalid wserid, A1l this
routine does is send an error message

to either the user (MTTWRIT1) or the operator
(MS6 macro) and then retutrn

to the original caller of the command
routine,

41. MTTBHSG {Message error subroutine)

This subroutine does the same thing as the
MTTBUSR sabroutine except that

the errcr condition located for this routine
vas missing messaqge text.

42, MNTTPRMPT (Operator commpunicationy

This is the routine wmhich is called as a
result of the issuance of an MSG

macro, It first sets-up and fills in a
time-stanmp and sends it to the

operator via the MTTIWFITY routine., How the
message proper is sent to the

operator the same way. {(The time-stamp is
sent with a carriage-hang so that

the message comes out all on one line,)
Before returning to the caller,

this routine turns off the time-slicing timer
4ust in case,

43, HTTCORR (Ccre obtaining subkroutine)

This is the suolroutipe which is called by the
gquene~scanners/scheduler when

it finds an cutstanding user core request.
A1l it does is load tte number '

of bytes reguested frocm the TCTE for the task
and issuve a conditional

GETHAIN macrc for that number of bytes, If
the GETHBIN is successful, the

core request flag in the TRQ entry is tuarned
off hefore returning, cther-

wise, the caller is merely returned to.

G4, MTTLISPR {Sub-task dispatch)

This is the routine which is called when it
is necessary tc re-start execotion

of one of the sub-tasks, Upon entry, it
checks for a dispatch for the first

PAGE 28

time and exits to the first-time code if this
is the case, The other test

made here is fcr an internal dispatch, If
that is the case, the registers

are merely restored frcm the task control
tabtle (TCTE} and the returning

register is branched through,

¥ormal dispatch to a sub-task is acconmplished
by restarting the task timer

{MTTTINXER routine), lcading the floating
registers, loading the general

registers and finally entering supervisor
state long enough to load the

resume PS¥ which has been moved to location
240 tdecimal) for address-

ibility.

First-time dispatching is handled by first
turning off that indicator and

then starting the task?'s time-slice timer (by
calling HTTTINERY. After

the floating registers are initialized,
linkage is set-up to call the

application the first time by pointing
IHEMAIN at the application entry

point (DBMTT) and calling it.

PAGE 29

TOHC A,2 - IWITIAL ENTRY ROUTINE

A,

B,

C.

MCDULE NAME

Initial Entry Routine, Retrieval Only
Frogqram-IT - NDBNTT

Module-ID - DBMTT

ANRLYST

John A, lozan
¥eoterics, Inc,

MODULE FUNCTICN
The function of this module is to perform the necessary
allocaticns of the <external data items used by the
retrieval system, It also 1issuves the initial prompt,
vhich is used to determine which BASIS sub-systenrn the
user wishes to invoke, and then calls the proper module
for that sub-systemn,
LATA REQUIREMENTS
T I/0 Elock Diagrams
See Figqure 1
2, Jupat Data Sets
a. Parameter Cards
Wet Applicable
t. Punched Card Input Files
Not Applicable
C. Input Files
Not Applicable
3. Output Data Sets
A Output Files
¥ot Applicable

be On~-line Terminal Displays

Not Applicable

E.

Ce

PAGE 30

Forpatted Print-outs

Sot Applicable

Reference Tables

The program makes use of the folleowing tables:

A

b.

USERTAB

VERETAB

PROCESSING REQUIREMENTS

1.

2

Top Level Flowchart

See Figure 2

Rarrative

&a

Ce

Initialize

This Toutine initializes the interrupt (ATTHN
and END) processing routines and the PL/T
error handler, It allocaters and initializes
the user data table, The program also
allocates and initializes the verb table
{including user specified ccmmands) which it
uses in the prompt routine,

Define

This routine performs all of the file control
bleock allocations and initializations
necessary for the pre¢per operation of the
rest of the NASIS systen.

Prompter

This routine sets a temporary END condition
handler which results 1in a new prompt on an
END condition. It vprompts the user for a
command and searches the verb table for a
matching entry. If no match is found a
diagnostic message is written to the user and
the rrompt re-issued.

The verb tatle entrvy is analyzed and if an
igmediate command has Ekeen entered, the
prcgram branches tc the routine which
processes that compmand, Otherwise, the
progran optionally establishes a new strateqgy
and themn calls the entry point of the

PAGE 31— 33

precesser for the command entered, When
control dis returned to DBMTT, the aser is
prompted for the dispecsition of the current
strateay and it is either renewed or
erased.

When the command entered has been completely
processed, controcl 1is passed back to the
prompting routine. The entry of an END
command causes the progran to he
terminated,

Fe CODING SPECIFICATIGNS

1.

2,

Source Language

This wmodule 1is written in the IBN PL/I ()
language.

Sugqgestions and Technigues

¥ot Applicable

J PAGE 34
PRICEDING PAGE,BLANK NOT FILMED

TOFLC A.3 - MT/T MONITOR INITIALIZATICYN ECUTINE

A, MODULE NAME
Monitor Initialization Progranm
Program-ID - NHTISTRT
Module-ID -~ MTTSTRT

B, ANALYST

J. H, Herpel
Neoterics, Inc.

C. MODOLE FURCTIOR
The Moniter Tnitializaticn Routine is loaded by the
FT/T Moniter to perform
all the once-cnly initialization function regquired by
the Monitor. Since
this routine is lcaded, executed and then unloaded, the
space taken up by
it is not left idle after it is finished executing,

D. TATA REQUIREMENTS

1. Parameter list from the EFXEC statement in the JCL
strean,

r DD statement for the master set £ile information
table in the JCIL strean,

3. DD statement for the module table in the JICL
stream,

4, DD statement for the ESP tatle in the JCL streae,
Se DD statement for the user table in the JICL strean,

6, DD statements for the terminal line groups in the
JCL streau.

E, FROCESSING REQUIREMENTS
1. Top Level Flowchart
Not Applicable
2. Narrative
B Overview

This program performs all the once-only

PAGE 35

initialization reguired by the

Monitor., These include the obtaining and
setting-up of the user takle,

module table, partition takle, line groeoups and so
on., There is direct

communication with the Moniter by way of an entry
point into the Monitor's

CSECT where the communicaticn variables are, This
routine is alsc

responsitle for imitializing all the terminal
lines and initiating the

operator's sub-task,

b. Detailed Description

The following secticnh is a discussion of the
progra® in the order it
appears in the listing,

After MTTSTRT has initialized the linkage
conventions, the first thing it

does is inform the {0S)} cperator where the
Ponitor's CSECT begins by printing

its address on the ccnsole typevwriter with a WTO
macro, It then parses

and isolates the parameters supplied on the EXEC
card in the JCL stream,

one of the parameters is the maximum allowved
nunber of users., This parameter

is used for allocating space for and initializing
the terminal table {(TRQ).

Space for it is ottained via GETMAI¥ and then the
following fields are

initialized in each entry: TCTE pointer, module
request field, flags,

nodule table entry rpointer, relative terminal
number, skeleton DECB and

a fake symbolic device address.

FProm the TIOT {Task XI/0 Table) the descriptions of
the lire groups are

located (they get there frcm the DD statements ia
the JCL stream)., These

are used to fill ‘in termwminal information in the
TRQ terminal type and

DECB fields,

¥ext, the routine locates the dcb for the Module
Table and opens it, It o

then reads the header record from the table and
from it calculates the

room necessary to hold the informatiocn in the

PAGE 36

dataset., After this space

is obtained via GETMAIN, the partition table is
ipitialized (with the

nunber cf partiticons contained on the first record
in the module talbled,

Also from that record, space for the module table
is allocated with

GETMAIN, VYov the mcdule table is built one entry
from each of the

remaining records ir the mcdule table dataset,

How the segment table dataset is located and
opened, The records in it

are scanned until the one describing the CSECT for
the Monitor is found

and its offset is saved in the segment table,

Next the DCB for the unser table dataset is opened
and the records in the

dataset are all read in and counted., The nusher
of records is used to

determine how ruch space iz reguired for the user
table and that mach

space is obtain via GETMAIK. Now the dataset is
read again and entries

in the neser table are created from the records in
the dataset, one €for one,

After this is done, the set file master table is
opened and read. Srace

for the set huffers is allocated., Novw space for
the segmpent table itself

is obtained and the table is initialized fronm
information in the set file

master table,

At this point, the space for the task control
table for the ogperator's task

is obtained via GETMAIN., RAfter the space is
obtained, the TCTE is filled in

with arbitrary orverator information and the first
terninal table is pcsted

as being the operator. (This will be the first
phone line called in on.)

After the TRQ entry is posted with the TCTE
pointer, the duplicated

information is transferred from the TRQ entry to
the TCT.

Now the program pcints tc the DCB list it
constructed for all the terminal

lines and opens each of them with the BTAM OPEN
macro, If any DCR

PAGE 37

fails to open in this manner, the progran
terminates with an error,

After all the line group DCEs are opened, the
program locates the

DCB for the first phone line and enatles it via a
BTAM REZD initial

(TI). It now waits until scmebody rings its bell,
Lfter a comnnection

is made to this line, its ECE is cleared and some
flaqgs are marked

special to the operator task (which never calls
the application but .

remains dormant to receive messages and nake
requests,)

Rs soon as the operator is connected, all the
remaining terminal ghone

lines are enable with READ initials and the
Monitor is returned to,

TOFIC A.4 - MT/T SYC

A,

C.

D.

E.

F.

HODULE NAME

Program-1D: NIGC253
Bodule-ID: IGC253

ANALYST

John H, Herpel,
Neoterics, Inc.

MODULE FUNCTICN

This moduale is a type 1 SVC issued by the METTSUER
monitor to get into protect key zero-supervisor
state or tkack to problem program state.

PAGE 38

Hhen the SVC

is issued, register cne is set tc zero for supervisor

state or one for original trogram state,
zero must contain 'NASTI?

DATAR REQUIREMENTS

1.

3.

4,

I/0 Block Liagram
Not Applicable
Input Data Sets
Not Applicable
fatput Data Sets
Not Applicable
Reference Tables

Not Applicable

PEOCESSING REQUIREMENTS

1.

2,

Top Level Flowchart
See Figure 1,
Narrative

See MODULE FUNCTICN

CCDING SPECIFICATICNS

1.

Source Languaqe

<Y,

Register
for this SVC to proceed.

2.

This mpodule is written in IBM 0S/360
Assembler lanquadge.

Suggestions and Techniques

Not Applicable

PAGE 39

CHANGE OLD LOOK UP
TASK PSW
PSW PROTECT VALUE IN
KEY TO ZEROJ OB
SUPERVISOR
STATE
CHANGE OLD
PSW TC TAST
- [PSW PROGRAM
STATE
Vv
(RETURN)
FPigure 1. Top Level Flowchart

PAGE 40

TOKC A,5 = INITIARL ENTRY RCUTINE

k.

B,

Ce

Da

MODULE NANME

Initial Entry Routine, Descriptor Editor Only
Program=-1ID - NDBMTTE

Modyle~ID - LEMTTE

ANALYST

John A, Lozan
Neoterics, Inc.

MODULE FUNCTION
The function of this module is tc perform the necessary
allocations of the external data items used by the
descriptor editor systerm, It also issues the initial
prompt, which 1is wused to determine which NASIS
sub-system the user wishes +to invoke, and then calls
the proper module for that sub~system.
DPATA REQUIREHENTS
1. I/0 Block Diagrams
See Figure 1
2. Input Data Sets
a., Parameter Cards
Not Applicable
b. Punched Card Input Files
Not Applicable
Cs Input Files
Not Applicable
3. Cutput Lata Sets
- 1 Qutput Files
Not Applicable

k. Cn-line Terminal Disglays

Not Applicable

PAGE 041

C, Formatted Print-outs
Not Applicable
4, Feference Tables
The program makes use of the follcwing tables:
a, USERTAB
b, YERBTAB
FROCESSING REQUIREMENTS
1. Top level Flowchart
See Fiqure 2
2, ¥arrative
a. Initialize

This routine initializes the interrmspt (ATTN
and END) vprocessing routines and the PL/X
error handler, It allocates and initializes
the wuser data -table. The program also
allocates and 1initializes the verb table
(including wuser syecified compands) which it
uses in the prempt routine,

b. Define

This routine performs all of the file control
block allocations and initializations
necessary for the rproper operation of the
rest of the NASIS systen.

C. Prcmpter

This routine =sets a temporary END condition
handler which results inr a new prompt on an
END conditicn. It ¢rompts the user for a
conmand and searches the verb table for a
matching entry. If no match is found a
diagnostic message is written to the user and
the rrompt re-issued,

The wverd table entry is analyzed and if an
immediate command bhas teen entered, the
prcgram branches to the routine which
processes that command, Othervise, the
prcgram optionally establishes a new strategy
and then «calls +the entry point of the

PAGE 42

processer for the ccomand entered, ¥hen
control is returned tc DEMTTE, the user is
prompted for the disposition of the current
strategy and it is either reneved oOr
erased,

%hen the command entered has been completely
processed, contrcl 1is passed back to the
proppting routine. The entry of an END
corrand causes the program to he
terminated,

E. CODING SPECIFICATIONS

1.

2.

Source Langunags

This module is writtes in +the IEBM PL/I (P
language.

Sugaestions and Technigues

Not Applicable

o=t

YPEWRITER
TERMINAL

DBMTTE

Figure 1. I/0 Block dlagram

Es

4,

Cs

PAGE 46

Formatted Print-outs

Not Applicable

Reference Tables

The program makes use of the following tables:

A

b.

USERTAB

VERBTAB

PROCESSING REGUIREMENTS

1.

2.

Top level Flowchart

See Fiqure 2

Narrative

Aa

Ca

Initialize

This routine ipitializes the interrapt (ATTHN
and END) processing rcutines and the PL/T
error handler. It allocates and initializes
the user data tabhle, The prograsm also
allocates and initializes +the verb table
{including user specified commands) which it
uses in the prempt routine.

Define

This routine performs all of the f£ile control
blcck allocations and initializations
necessary for the proper operation of the
rest of the HASIS system.

Prompter

This routine sets a temporary END condition
bandler which results 1in a new prompt on an

ENI condition, It vprompts the user for a
cenmand and sgarches the verb table for a
matching entry. If no watch is found a

diagnostic message is written to the user and
the pronpt re-issued,

The verd table entry is analvyzed and if an
impediate ccerand has been entered, the
progran branches to the routine which
Frccesses that command, Otherwise, the
program optionally establishes a new strateqgy
and then calls the entry point of the

F.

PAGE 47

processer for the command entered, When
control is returned to DBMTITP, +the user is
prcmpted for the dispcsition of the current
strategy and it is either renewved or
erased,

When the command entered has teen completely
processed, control 1is passed back to the
prompting rcutine, The entry of an END
command causes the progran to be
terrinated,

CCDING SPECIFICATIONS

1.

2,

Source language

This

medule is writter in the IBM PL/T (F)

lanquage,

Suggestions and Techniques

Not Applicable

ram

- [TYPEWRITER
TERMINAL

DBMTTP

Figure 1. 1,/0 Block diagram

PAGE 590

TOHC B,1 - EXECUTIVE FRE~PROCESSCR

A,

B.

D.

PODULE NANE

Data Base Execotive - Preprocesscr
Program-II - EF
Module-ID -~ DB

ANALYST

Garth B, ¥yman
Becterics, Inc,

MODULE FUNCTION

BB anmalyzes Data Base PI1/I language extension (DBPL/I}
statements and dgenerates, in their place, in a source
program, PL/I statements for ccmmunication with the
Data Base Executive (DEPAC OCR DRELIST), Diagnostic
comients shall he generated fcr errors that c¢an be
detected by LE during precompilation,

DATA REQUIBEMENRTS

1. 170 Block Diagrar
See Figure 1

2. Input Data Sets
- Parameter Cards

Jok control parameters for operation under 08
are those required for PL/I cprecompilation
and impmediate cconrilation. Refer to the
appropriate IEM PL/I Programmer's Guide,
The PL/I compiler parameters-MACRO, SOURCE2,
and COMP (amcng cthers) are specified to
indicate that rreccompiling, rrecompiler input
listing and corpiling are desired,

b. Punched Card ITnput Files
1 DB Text

The DB text deck 1is all text for
insertion into the scource program as a
resnlt of a % INCLUDE IB; statement in
the sgurce Pprcogram, This text is
conposed of the source statements of the
DB Epreprccessor function procedure,
itself, and any PL/I statements to be

3.

Ce

d.

PAGFE 51

uncenditicnally inserted at the
% INCLUDE DB:; ©pecint in the source
progran, The TE text is coded as
specified in this report, formatted
according to PL/I source langunage
standards and catalogued once in a data
set for compile-time use by all prodgranss
using DB.

Ze Scurce Deck

The SOURCF Teck 1is any PL/I source
proegranm using DB for its DBPL/I
statements, Tt is prepared according to
the DBPL/I User's Manual (D¥B Section V,
Topic B,2) to access a self-describing
data baise and fcrmatted according +to
PL/I source language standarde,

Input Files

The DB text is catalogued as a meamber, named
DB, of a partitioned direct access data set
for retrieval by the IB® PL/I precompiler.
The data set is accessed via ddname
LISEMAC,

On—-line Terminal Entries

Mot Applicable

Cutput Lata Sets

de

b.

Ce

Output Files

The obhject wodule consists of the relocatable
nachine instructions and constants generated
by the PL/TI compiler for the scurce program.
Tt is stored as a member of 2 prograwm librarvy
{partitioned data set) for subsequent linking
by the 0S syster linkage editor.

On-Line Terminal Displays
Not Applicatle
Forpatted Print-outs
1. Precompiler listings
Two precompiler 1listings are produced:

a source listing before preconmpilation,
and any rpreccetiler diagnostics (these

4,

d.

PAGE 52

diagnostics are any errors in the use of
preprocessor PL/I, not ©TBPL/I}. The
appropriate TBM FL/I Programmer's Guide
explains the listing formats,

2, Compiler listings

The compiler 1listings produced inclade
an intermediate source listing (between
. precompiling and compiling) and any
conmpller diagnostics, Any errors in the
use of DBPL/T generate diagnestic PL/T
comments in the intermediate sourcse
listinag. Serious DBFL/I errors may
result in compiler diagnostics,
particularly for undeclared qualified
names when DB has suppressed automatic
generaticn of a declare statenent, The
appropriate JIBM/]1 Programmer's Guide
explains the listing formats.

Panched Card OQutput Files

Bot Applicable

Reference Tables

MFCB - Mainline file contrcl block.

See Section ¥II, Topic B.4, of the DWB,

DBPL/I ~ Diagnostic comments,

See Section III, Topic B, 1, of the DWB.

DBPL/I - DEBPAC Interface,

See Section ITI, Topic B.2, of the D¥B,

DEPL/TI - DBLIST Interface,

See Section ITII, Topic B. 10.

E. PROCESSING REQUIREMENTS

1.

2.

Top Level Flowchart

See Fiqure 2

Narrative

- 1

Top lLevel

The mainline PL/I source program is regquired,
according to the DBRPL/T User's Manual (DWER
Section ¥, Toric B.2y, to have a % INCLUDE
DE: statement once in the program bhefore all
DB preprocesscr function references. This
statement directs the PL/Y preconpiler to
take text frem menber DB of the partitionsed

PAGE 53

data set accessed via ddname LISRMAC and
incorporate it into the source program. (See
the I/0 Block Diagram in Figqure 1.}.

The DB text includes the following
statement:

ON¥ FINISH GO TO FINISH;
for Mautomatic® data base file closing,
DBREL/I requires that the PL/I FINISH
O¥+«condition he reserved for this purpose,

The DB text declares and activates the DB

Dr8processor nape by the following
statenment:
% CECLARE DR ENTRY {CHARACTER)

RETURNS{CHARACTER) ;
The DB text fcllowing the end of the DB
preprocessor function procedure itself,
invokes DB once as follows:

DR(INITIATIIZE)

This statement is a special function
reference to be reccgnized by DB as the first
reference {directing DB to initialize
itselfy,

The remainder cf this narrative specifies the
DB preprocessor function procedure itself,
which is depicted in the Top level Flowchart
in Figure 2,

DB receives one arqgument from a preprocessor
function reference: a varying length
character string consisting, in general, of
latels, comments, valid DBPL/I statements
and, possibly, invalid text, DB's objective
is to analyze the argqument and qgenerate a
varvying 1length character string, cailed +the
"generated text", ccnsisting of valid PL/I
labels, comments and PL/I statements for
copmunication with the Data Base Executive,

If the special arqument, 'INITIALIZEY, is
received, (i.,e., the first reference to DB},
the Initialize DB routine is performed and a
conment, such as?

/% DBO01 INITIALIZATION COMPLETE, %/

PAGE 54

is returned fcr insertion into the source
proagram and DR is terminated, Othervise, the
Argument Initialization routine is
performed.

Following the Argument Initialization routine
is the ©point where, in general, DB is
logically bhetween DBPL/I statements 1in its
processing of the argument, The Find
Subargument routine is performed there. If
it finds the right rarenthesis at the end of
the arqument, the generated text is returned
for insertion into the source program, and DB
is terminated. If Find Subargument finds an
inter-statement comment, a statement label,
or a null statement (simply a semicolon),
then the subargument is concatenated to the
right end of the qenerated text (i.e.,
"nassed through™ t¢ the intermediate source

text), and preprocessor control is
transferred tack to the inter-statement
point, Ctherwise, the Process Statement
routine is rerformed, and preprocessor
control is transferred back to the

inter-statement voint.
Diagnostic Comment Genmeration

Wherever this narrative specifies the
generation of a diagnostic comment, the
following specifications apply. A diagnostic
coament is concatenated +to the right end of
the generated text for insertion into the
intermediate source progranm, 1f the
diagnostic 1is for an error, the precompiler
count of diagamcstics is incremented., TIf nore
than four errors are detected dip one DB
reference further processing of that
reference is stopped to vrevent the
possibility of unpaired quotes, parentheses
or comment delimiters looping the
preprocessor. B diagnostic bhas the following
general format:

/% DBEnnn diagnostic-message., */

The wppvY preceding the mnessage nunber
indicates that the ccoament was generated by
the DB preprocessor. The three-digit message
nunber quides the user to a more detailed
explanation cf the messaqge vhich is
documented in the DWE Section III, Topic B, 1.
The diagnostic message is concise, and does

Ca

d.

PAGE 55

not contain abbreviations,
Initialize DB

Precompiler variables for file attributes,
file usages and diagnostic counts are
appropriately initialized. These variables
ar€ subsequently set or incremented as DBPL/I
statements are processed and are exanined
when the finish statement is processed, A
precompiler indicator is set to indicate that
the FINISH =tatement has not vyet heen
processed,

Argument Initialization

The argumnent iz eyamined +to find the left
parenthesis at its beqginning, If any other
non~blank character is found, a diagnostic
conment is generated and DB is terminated. 2
precompiler variable peinting to the "current
argument character" is initialized to point
to the character following the beginning left
parenthesis, The generated text is
initialized as ope tlank character,

Pind Subargument

A subarqument, as used in this specification,
is a substring cf the arqument that is one of
the following classes of syntactic units:

1. The right parenthesis at the end of the
argument,

2. 2 label, including its colon.
3. An inter-statement PL/1 comment,

4, A Null statement consisting only of a
semicolon.

5. A DBPL,sI statement terminated by a
semnicoloen.

6. A syntax error; i,e,, none of the
above,

A class {5} =subargument may contain paired
parenthesis (ressibly nested) or string
constants enclosed in string cuotes. B class
{6y subargupent will be terminated by a
semicolon 1if one 1is found but will never

PRGE 56

include the right parenthesis at the end of
the arqgument.

The Find Sulbargqument routine is used at the
inter-statement peint in the Top lLevel
Flewchart, The argument is exanined
heainning at the <current argument character
and ignoring leading blanks to find the next
subargument. B precompiler variable pointing
to the beginning character of the
subargument, and another indicating its
length is characters, 1is set, The carrent
argument pointer is advanced to point to the
character follcwing the subargument,

Process Statement

This routine dis the kernal of the DB
preprocessor: it aralyzes a single DBPL/X
statement body {(i.e., apart fron any
statement labels), generates suitable PL/T
statements for communication with the DBPAC
executive and returns preprocessor control to
the inter~-statement peint. The PL/I
statements and comments that are generated
are concatenated to the right end of the
generated text string for subsequent
insertion intc the intermediate source
program,

A diagnostic comnnment containing the
subargument and any intra-statement comments
is generated for documentation and for
reference 1in case of c¢ther diagnostics, If
the FINISH statement has already heen
precessed or if the suybargument has a syntax
error, an appropriate diagnostic comment is
generated, and ce¢ntrel is returned to the
inter-statement point,

The Find Keywerd rouwtine is performed., Tf it
does not find a keyword that identifies a
DBFL/1I statement, +tten a diagnostic comment
is generated apd centrel is returned to the
inter-statement point, If the keyword
identifies a SET, FINISH, FREE or ON
statement, control is transferred to the

relevant specific statement routine,
Otherwise, the Find File Clause routine is
performed. If the second clause is not a

FILE clause, a diagnostic comment is
generated, and conticl is returned to the
inter-statement point, The Find File routine

is

PAGE 57

performed, and control is transferred to

the relevant srecific statement routine.

1,

Find FKeyword Routine

A clause, as used in this specification,
is a sukstring c¢f the subarguwent that
is one of +the following classes of
syntactic vunits:

-the semicolon at the end of the
subargument,

-a COETa separating DBPL/I
substatenentss;

€49+, in a multiple OPEN,

~-a keyword with an associated
parenthesized argument,

-a keyword withont a vparenthesized
argument,

A keyword-with-argument clause may
contain paired parenthesis (possibly
nested), ¢r string constants enclosed in
string guotes.

The Find Keyvord routine is used to find
the Xkeywcrd that will identify a
statement to branch to the specific
statement routines,

Find File Routine

The Fird File sobrountine extracts the
file name from a given FILE clause. 1If
the file-name is not a wvalid PL/X
external ©npame, a diagnostic nessage is
generated, and the statement abandoned
by contrcl being transferred to the
inter-statement <toint. Othervise, the
precompiler's file table is searched to
determine if the file-name has been ysed
previocusly in the ©progran. If it has
not, a new entry is aprended to the file
table, In either case, a precompiler
variable is set to indicate the current
file, and contrcl 1is returned +to the
point fronm which Find File was
invoked,

3.

PAGE 58

Specific Statement Routines

Each specific statement routine examines
the statement from left to right until
the semicclon clause 1is found. (The
CLCSE and OPEN statepent routines
recoqnize a comma clause as separating
substatements and locop accordingly).
The keywcrds are verified for correct
spelling and order., The FREE TLIST
routine for specific lists recognizes a
comma separating list-pcinters and loops
accordingly. Routines that process a
statement having a FIELD clause
recognize a comma separating field-name
expressions, find +the corresponding
element in the FROM or INTC clause and
loop accordingly. If any error is
detected, a diagnostic commpent is
generated, and the statement abandoned
by contrcl being transferred to the
inter-statement point.

For those statements having a FILE
clause, the preccmpiler's file table is
posted to record the file uasage (for
analysis in the FINISH routine),

Following snccessful analysis, each
specific statement routine generates
PL/I statements for communication with
the DEPAC or DRLIST executive and then
loors back either to process another
FIELD or FREE LIST <€lement, te process
ancther CPEN cr CILCSE substatement, or
to the inter-statement point, as the
case may be, Stecial processing for the
ON and FINISH statements is specified
after the general specifications for all
other specific statement routines.,

For those statepents having an entry in
the DBPL/I - DBPAC Interface table
{Section III, Topic B.2, of the DWB)}, an
assignment statement is generated in the
following format:

filename,CPERATICH = %Yoperation'B;

For examnple, vhen processing the
following argument:

LOCATE FILE(SAMPF) TFEYFRCM{REC#H)

E1}

PAGE 59

The following assignment is generated:
SAMPF,OPERATICON = "11010000'Bs

For statements bhaving a FIELD clause,
the operation assignment need only be
generated once for the statement, even
it it contains multiple field nanmes.

Ffor an CPEN statement having a TITLE
clause the following assignment is
generated;

filename ,CNFILE = title-expressiong

If it has no TITLE clause the following
is generated:

filenamne,CNFILE = tfilenanet:

For an QPEN statement having an "access"
option andsor a "function" option, a
bit-string value is assigned to
filename ,ATTRIBUTES according to the
definition of a Mainline File Control
Block {described in Section ITI, Topic
B. 4 of the CER) 3 otherwise, the
following assignment is generated for an
OPEN:

filename.FURCTICN = ' 10'B;

For each field-name in a FIELD clause,
an assignment statement is generated as
follows:

filename.CNFIFLD = fieldnanme:

#here the field~-nane may bhe an
expression, for example, when processing
the follov¥ing arqument:

GET FILE{EXAKE} FIELD (*DATEPUB?)
INTO (DP) 3

The following assignment is generated:
EXANP,ONFIELD = SDATEPUB?;

Por those statements having an entry in
the DBPL/I - DEBPAC Interface table, a

CALL statement igs generated in one of
the following formats, depending on

PAGE 60

vhether the "Arg1" and "Airg2" colunmns of
the table have entriess:

CALL entrypoint (argl);
CALL entrypoint (argl, argl):
CALL entrypoint (argl, arg2, arg3):

For exarple, when processing this
statement:

LOCATE FILE{DAMPF} KREYFROM{REC#):
This CALL is generateds
CALL DBPACFY ({SAMPP, REC#);
For those statements having an entry in
the DEPL/I-DBLIST Interface Table
(Secticn 1IXI, “Topic B. 10y , a CALL
statement is generated according to the
tatbtle,
The ON statement routine examines the
second clause. If an ERRORFILE clause
is found, the Find File subroutine is
performed. The statements shown below
at the rtiqht are generated for the OW
statement shown at the left,
ON EFRORBPILE(f) GO TO label:

f.ERROR, RCUTINE = Jahel;

f.5Y8TEM = Y0VB;
ON EFRORFILE(fY SYSTEM;

F.SYSTEM = *1'B;%
ON LISTERECE GC TC label;

LISTERR, EBRCR, ROOTINE = label:

LISTERRE,SYSTEM = *('B;
ON LISTEREFQR SYSTEM:

LISTERR,SYSTEM = "1%R;

The FIRISH statement routine sets. a
precompiler indicator to indicate that a

PAGE &1

FINISHA statement has been processed,
Also, the following statement is
generated:

FINISH: ©N FINISH SYSTEN;

Then each entry in the precompilerts
file table is apalyzed, TIf the file was
used inconsistently in the program, a
diagnostic comment is generated and the
next file analyzed. Cthervise, a
Hainline File <Ccontrol Block (MFCB)
declaraticn i=s generated, using the
file-name as the mador structure name
and as tke inpitial value of the title,
Any file attrihutes implied by the usage
of +the file are generated into +the
initial value of the filenawe,ACCESS and
filepame.FORCTICN fields, Statements
are generated to Tauntomatically" CLOSE
the file, Jjust the =same as for a CLOSE
statement,

After all files have heen analyzed, the
following statemert is generated:

RETURN:

In all programs, a declaraticn of the
entry points tc the Data Base Executive
{DEPAC) is generated,

In all cases, a sumpary diagnostic
coament it generated giving the number
of DB diagnostic error comments in the
Program, This conpletes the FINISH
statement routine specification,

F. CODING SPECIFICATIONS

1.

2.

Source language

The DB preprocessor function preccedure is coded
using the preprocessor PL/I statenents perpitted
in preprocessor PL/Y procedures,

Statements to be INCLUDFd or generated into the
intermediate source oprogram are coded using
PL/I.

Suggestions and Technigques

The DB preprocessor function procedure is coded in

PAGE 62~LH4

a wmodular manner so that the syntax analysis of
the arcument is separate from the aqgeneration of
statements. This modularity will allow much of
the DB coding te bhe usable for any other
extensions to PL/I that may be designed, such as a
Terminal Support PLyY language extension,

The coding of the specific staterment routines are
"table~-driven® where possikle tc facilitate anvy
foture changes in the generated text for a
particular statement,

[}

rnmbmuuxu-faumﬁﬁ 0o - -
ABLANK NUL kit PAGE 65

TOELC B.2 - DATA BASE EXECUTIVE EXECUGTICN ERCCESSOR

A,

Cs

MODULE MNAME

Data Base Executive Execution Processor
Program~-ID : NDBMPAC { and HDBREAC)
Hodule-ID - LEPAC
Procedure Entry Point (ccntrel section name) : #FIELD
Cther Entry Points - #XREF,DEPACFR,LEBPACFP
DBPACPF ,DBPFACFV,DEBFFLDT

{(NOTE: This specification is for the module NDEMPAC
which contains INPUT and UPDATE capabilities, HModule
NDBRPAC is a subset of this wodule with only the INPUT
fanctions.,)

ANALYST

Garth B. ¥Wyman
Neoterics, Inc.

MODULE FUNCTICN

EBPAC executes all data base input/output forvr mainline
frograms.

Mainline PL/TI prograns are written with DBPL/I
statements for data base input/cutput. (See the DBPL/I
User's Guide, Section 8, Topic B.2). These statements
are processed during cowrilaticen and CALL statenents
are generated (according to the DBFL/I~DEPAC Interface
Specification, Section 3, Topic B.2). The CALL
staterents pass ccntrel tc the various entry points in
DEPAC, The first parameter passed in a CALL to DBPAC
is a Mainline File Contrcl Blcck (see Section 3, Topic
B.4). Other parameters are passed for vparticular
purvoses as needed,

DBPAC executes the ‘request indicated by +the operation
code in the KFCB., For physical input/cutput cperations
it CALLs appropriate entries in the RDBTSSIC module,
thenever DBPAC detects either a logical error or a
physical input/cutput error it pcsts an error code in
the MFCB. (Sea DBPAC frror Codes, Section 3, Topic
B.3).

LATR REQUIREMENTS
1. I/0 Block Diagram

See Figure 1

3.

4,

PAGE 66

The DFPAC module does mnot de any terminal
input/cutput or rrirt any rerorts,

Input Data Sets
In IRPUT mode there are no cutpet data sets.

In TINPOT or UPDATE nmode a data base is the input
to DBPAC. 1Tts descripter data set is always read
in as part of the CPEN processing and its anchor
and/or associate and/or sukfile and/or inverted
index data sets are read depending on the
operaticns requested by the mainline progqram,
{See Dataplex Descriptor File, Section 3, Topic
B.7).

In QUTPUT mode only the descriptor data set of the
data base is read as input to DEPAC (during OPEWN
processing).

¥hen a mainline program is accessing the
descriptoer data set of a data base, "descriptor
descriptor” tahbles coded in DBPAC are used instead
of an input descriptor data set.

Output rata Sets

In UPDATE or QUTPUT mode a data base is the ocutput
from DBPAC, Its descriptor data set is updated as
vart of OPEN and CLOSE processing (setting and
reseting the MNTNABLE and MNTRING switches). Its
anchor and/or associate and/or subfile and/or
inverted index data sets are updated or output
depending on the operaticns Tegquested by the
mainline prograrw,

Reference Tables

a. DEFL/T - ODBPAC Interface (see Section 3,
Topic B.2)

b. DBPAC Error Codes {see Section 3, Topic 5. 3)

Ca Mainline File Control Block (see Section 3,
Topic B. &)

d. List Structure (see Section 3, Topic B.5)

e, Dataplex Descriptor File (see Sectiocen 3,
Topic B. 7Y

f. Inverted Index Format {see Section 3, Topic
D.5)

L+

PAGE 67

FLLTAB Table (see Section 3, Topic F.10)

E. PROCESSTING RFQUIREMENTS

1. Top Level Flowchart

See Figure 2

2, Narrative

a.

Receive Contrcl

DEFAC receives control by being called from a
fpainline™ programn, The entries at the
beginning of the wcdule are described here;
entry DBPFLET is described in paragraph "f®
below, All entries receive a Mainline File
Control Block {MFCE) as their first
parameter, DBPAC treats the MFCB as a simple
parameter; that is, LEPAC does not know that
the H¥CB is a CCWTRCILED structure allocated
by the mainline: TDEPAC never ALLOCATEs or
FREEs an MFCB.

For the #FIELD and #YREF functicn entries, an
appropriate operatiocn code is posted in the
MFCB and the seccnd parameter, which is a
file name, is copied into the MFCB,., This is
necessary because the function references in
the mainline have not been expanded by the DB
pre€processcr, {At the other entry points,
which are for LEPL/T statements, the
operaticn code and, if aprropriate, the field
pame have been rosted 1in the MFCB by
statements preceding the CALL in the
mainline. These assignment statements vere
qenerated by the DB preprocesscor,)

The DBPACFR entry handles a auser record in
the form ¢of a character string as its second
parameter.

The DBPACPP and DBPACPF entries both handle a
gser list pointer as their second parameter,
DBEACPF additiocnally accepts a user subscript
as its third parameter. A switch indicating
the absence or presence of a user subscript
i= set,

The DBEPACFY entry handles a user field value
in the form o¢f a varying length character
string as its second parameter. The DBPACFV
entry is also used for all statement calls

b,

Ca

PAGE 68

that only pass an HFCB without a second
paraneter,

Common Code

Handling for FEL/I <errors that may cccur in
DBPAC is initialized =o that they will cause
a Junmp to paragraph ngn belew Dbefore
returning to the mainline,

If the MFCB is <closed and a redundant CLOSE
operation is attempted then control branches
directly to the commen return paragraph "m",
If an OPEN operation or an operation that can
imply opening {(most record level operations)
is encountered then <ccntrol branches to the
openr routine - paragrarph ngn, If the
operation can not imply opening then an error
is raised: a specific errcr cofle is posted in
the MPCBE and control dJumps to the common
return - paragraph "m". This is an example
of the general method DBPAC uses when it
detects an errcr.

If the MFCE is open the operation code is
checked for validity, Close and open (which
is re-open in this case} operations branch to
the close routine-paragraph hev, Record
operations branch +t¢ paragrapk Ye", Get
operations tranch to paragraph "h®, Pyt and
Reput operations branch to paragraph “i®", An
invalid@ operation code raises an error and
Jupps to the common return - paragraph "a",

Close Routine

The close routine is used for the close
operation and also for the open operation in
re-open cases when by inplication the
dataplex must be closed first, For each data
set in the dataplex the wunlock subroutine is
called and the ASKCIOS 1is called, {The
Unlock subroutine is also used by the record
level operaticns. It writes or rewrites or
releases any nevw or modified or locked record
by calliing ASMPUT or ASHPUTK or ASHMREL),

If a non-descriptor file was output or
updated then the MN¥TRABLE or HNTHING switch
in the amchor file descriptor record is
updated by calling ASHIUCB, ASMFNDS, ASHOPENW,
ASMGETX, ASMPUTK and ASHMCLOS on the
descriptor data set,

PAGE 69

Por a simple close operaticn centrel branches
to the common return, For an open operation
control branches to the open routine -~
paragraph ndw,

Open Routine

The open routine is used €for the o¢pen
operation and also when record level
operations imply opening., The title value in
the MPFCB is dcllar sign padded. For implied
open ogperations, implied access and nmode
attributes are assigned, The master userid
is obtained by calling ASMID, For a re-open
operation on the same dataplex with the same
security password, the follewing descriptor
read-in and File Control Block {FCBY
initialization steps are bypassed. For an
open operation on a Jdescriptor data set, a
pointer to the hard-coded descriptor
descriptor table inp main storage is posted in
the MPCB and the following descriptor read-in
step is byrassed.

To read in the descripter records, ASMDCE,
ASMFNDS, and ASMOPYN are called. Then for
each region (describing cne date set) ASHMGETK
is called to read the file descriptor record
and ASHGET is called repeatedly to read the
field descriptor records, The file
descriptor's DESCRCT field governs the size
of the adijustable TESC tabtle tc be allocated
and how mpany field descriptors to read. The
applicable RSECTYCDI rtecord secnrity mask is
obtained frow the file descriptor or a null
mask is assuped. As the field descriptors
are vread in, they are checked for valid
format, A descripter for the RECLEN field is
bypassed except on the first data set, ¥hen
the descriptor for the key field is found, it
igs stored at the top of the DESC table, other
descriptors are stored sequentially which is
airhabetical by fieid nawe. For IHNPUT mode,
field level SECURITY codes are checked:
failure results in the field descriptor being
hypassed and any dumpy descriptor for the
field bhaving 1its field name nuoulled. Any
superfield descriptors encountered are
counted for checking later. For the first
data set ({the one specified by the TITLE
clause) rteferences tc associate, subfile,
and/sor index files are takulated to govern
which other descriptor regions are to be read

L=

PAGE 70

in. After all the relevant descriptor
regions have been read in, any superfield
descriptors are reread {(ty calling ASMGETK}
so that their compconent fields may be checked
{if a component has failed security checking
then the superfield alsc fails). Finally
ASMCLOS is called to <close +the descriptor
data set,

The wmain storage descriptors built during
OPEN ate telescoped; i.e. they contain no
dummy descrigtors. When associate and
suabhfile descrirptors are read, only the header
and key field descriptcecrs are posted to the
DESC table for the data set. For each field
descriptor, the corresponding dummy field
descriptor already in the anchor DESC table
is fcund and overlaid,

Next for each data set a File <Control Block
(FCB) is allocated and a skeleton Data
Control Bleock is copied into it and ASHFNDS
is called, For OUTPOT or UPDATE pode a null
tecord is compcsed in the FCR by finding the
primary field descrirtors. After the FCBs
are all initialized, then file and field
subscripts (INVFLCUR,ASSOCCUR,SUBFLCUR, and
RELFLDSS) are determined once for all to save
the need for search Jloops elsewhere in
DBPAC,

If a non-descriptor file is teing opened for
ontput or update then the MNTRABLE or MHNTNING
switch in the anchor £file descriptor record
is nupdated by calling ASMFNDS, ASMOPEN,
ASMGETK,ASMPUTK and ASHCLOS. The first data
set (the one specified by the TITLE clause}
is alvays opened by ASHMOPEN Leing called, If
it is a descriptor data set, it is positioned
to the specified region by calling
ASMSTLEK.For output or wupdate, any subfile
data sets in the datarlex are opened and the
highest id-kev in use 1is found 1in the
descriptor header record for the suabfile,
DESC.HDR.ID_XEY_REG. TIf the operation was an
explicit open then <ccntrel branches to the
copmon return, Otherwise it was an implicit
open and control ©proceeds to the record
rootine,

Record BRBoutine

The record-level routine is used for WRITE,

PAGE 71

LOCATE, REARL and UNLOCK ovperations. The
WRITE operaticn 3is handled separately by
calling ASHMPUTK and lranching to the common
return.

If the statement has a SUBRFILE or an INDEX
clauvse then the field pnamwe is found in the
DESC tatle to determine the data set for the
operation. For output or update, the Unlock
sukroutine is called for the particular data
set or for +the ancher and associate data
sets, {The Unlock subroutine is also used by
the close routine, It writes or revrites or
releases any new or medified or locked record
by calling ASMFUT or ASMPUTK or ASMREL.) For
any UNLOCK operaticn contrcl branches to the
comeon return,

For LOCATE and READ operations, the element
GET cursors are reset for the particular data
set or for the anchor and associate data
sets, The I1CCATE SUBFILE operation is
handled separately at this point: control
branches into the Put routine to €£ind the
anchor or associate control field <for +the
sukfile., 2 subrececrd id-key is determined
from the highest id-key in the control file
or, if it is null, from the highest id-key
previously used in the subfile, This highest
id-key is found in the header descriptor for
that subfile, LCESC,HLF.ID_KEY_REG, A current
sukrecord is byilt by copvying the null record
built by the open routine, posting the new
id-key and posting the parent key field by
copying the anchor key field. Control
branches intc the Put routine again to put
the new element into the control field. To
better ensure datarlex integrity, the anchor
or associate record containing the control
field is ipmediately written or rewritten
and reread by calling ASHPUTK and ASMGETK.
If the control field is on an associate and
the anchor record vwas newly 1lccated then it
is written and reread too. The LOCATE
SUE¥ILE operation is thas complete and
control transfers to the common return,

If a particelar subfile or index data set has
nct been opened by this point (for a READ
operation) it 1is opened by a call to
AS®OPEN,

Since the highest id-%ev is maintained in the

PAGE 72

sutfile descrirtor header record, whenever a
LOCATE SUBFILE 1is performed the subfile
header record is re-written at CLCSE time.

An anchor LOCATE oreration is handled
separately at this point: contrcl branches to
the Validate kev routine (described with and
also used by the READ KEY operation} and then
an attemrt is made to read the new key using
ASMGETK, If the new key is found, the record
iz made current ({just as 1f a BEAD KEY
operation had teen requested) and an error is
raised. Norwmally, the new key vill not be
found and a current anchor record is built by
copying the null grecord built by the Open
routine {(or, for a descriptor data set, a
hard-coded mnull file or field descriptor
record is copied) and the pew key valve |is
posted in it. The LCCATE operation is thas
complete and control transfers to the conmmon
return,)

The remainder of the Record routine processes
the various EEAD operations., Spanned index
reads are handled serarately at this point:
their fundamental objective is to make the
last record of a spanned region current, For
read TINDEX forwards TEPAC attempts to read
with a suffix of (0 hex. If successful,
forvard sequential reading is done until the
end of the reqicn is passed., Then, a direct
read by key 1is made using the last suffix
enccuntered for the region. For read INDEX
KEY the wvalidate key routine {described
later} is used. Then for all types of read
INLEX, ASHGET is called +to read the last
record of the new region. The read spanned
INDEY operatiom is thus complete and control
transfers to the commen return.

Normal {un-spanned) reads are processed as
followus, For read forwards, it is
nnnecessary to do any file positioning., For
read PER SUEFILE, the parent key value is
taken from the current subrecord for use
without validation. For 1read by KEY, the
Yalidate key rcutine 1is used. The Validate
key routine (also wused for LOCATE RKEYFORM)
calls the generic c¢onversion routine, if
specified in the Xey field descriptor, and
then «calls the validation roatine, if
specified, using "CALl CALL™ service for both
purposes. For read LIST, the appropriate key

£f.

PAGE 73

value is taken from the list (next forward,
next backward, oxr by suvbscript) for use
withont validation. Tten for all non-locking
direct reads (PER SUEFILE, by KEY, or from
LIST), ASMSTLK is called to position to the
desired record. Yow the file is positioned
for all reads (except direct locking) and
ASHGET is called to actually read the desired
record. Then if +the record is to be locked
and for direct locking reads, ASMGETK is
called toc reread or read the record and lock
it for exclusive use. HNext, for INPUT modes,
any record level security checking is doneg
if it fails and it was a seguential read
(fcrwards or backwards), control loops back
to do another sequential read until a record
that passes security or end-of-file is
encountered, If record security fails for a
direct read, a key-nct-found error is raised,
For reading a descriptor data set only, the
region is compared to determine if the read
stayed within the regicn that was opened and
the key is checked to determine if a file or
a field descriptor was read so that the
pointer to the arpropriate hard-coded
descriptor descriptor tahble can be posted in
the HMFCB +to govern subsequent field level
operations. 1f an anchor record was read,
then all subfiles are <checked: any having a
current subrecord with a different parent key
to the new anchor %key are marked "not
current®, If a sulfile record was read, then
tke anchor and all other subfiles are
checked: any having a curreat {(sul) record
with a different (parent) key to the new
subrecord's bparent key are marked "not
carrent®, ¥Normal {un-spanned) read
operations are thus complete and control
transfers to the commcn return,

DBPFLDT Entry

The DBPFLDT (Post FLITABY entry is provided
to build a Field name Taltle by reference to
DBEFAC's main storage descriptor tahles bhuilt
by the Open routine, This entry 1is not
sapported by a DBPL/I statements a mainline
prcgram must:

i. execute a DBPL/I QOPEN statement or a
record level statemwent implying
opening,

Ge

PAGE 74

ii. ¥YCALL DBPFLDT (mfck); where mfchb is the
file name of +the dataplex +that was
opened,

iii, have a ng INCLUDE IISEMAC{FLDTAB):Y
statenent to copy in the declaration for
FLDTaB, Use of this entry is cptional;
DBEAC makes no use of FLDTABR,

FLDTAB Routine

The PLDTAB routine is entered only from the
DBEFLDT entry descrited above, FLDTAB is
allceccated or freed and reallocated with its
size adjusted to hold the number of field
names in the dataplex. The data base name is
posted without trailing dollar signs, The
FLLTAB routine then sets up the main storage
descriptor tatle 1linking a pointer chain,
DESC_FLD.FCP, starting with the anchor key
descriptor connecting all fields, except
RECLEN, in the pre-defined format 4 order.
SEQ_FORMAT,# in TFLDTAB is posted with the
field counts for formats 1 through 5,
Retrieval field name functions are supported
with the DBFIDU wmodule. In addition, the
DESC_FLD,GROUP indicator is posted as "1°Y,
12¢, or '3* tc show the field is available
from +the anchor alore, from one or more
asscciate records, or from a sukfile record,
respectively, The FIDTAE routine dis thus
complete and control tranches to the common
return.

Get Routine

The Get routine is used for all GET
operations and for the #FIELD ‘and #XREF
functions.

When a field name has been passed or posted
in the MFCB, it is fcund in the [ESC table
to determine the data set for the GET:
otherwise, the first data set ({the one
specified by the OPEN TITLE clause) 1is
implied.

If that data set does not have a current
record, then for the #XREF function a zero is
returned, If it 1is the anchor data set and
any subfile has a current record, its pareat
key will be wused to read (using ASMGETK),
The anchor record whose recerd security will

PAGE 75

be checked: if it fails, a null value will be
returned and c¢cntrcl kranches to the common
return or, for #FIFLD, a zero is returned.

The GET PRECOBD operations is handled by
copying the record frcs the FCE to the user's
string and kranching to the common retuorn,

For the GET LIST SET statemesnt and GET INDEX
LIST SET statement the cress-reference field
descriptor is found and cecntrol branches down
to the Get Field rovutine,

For the GET KEY SET, GET SUBFITE KEY SET and
GET INDEX KEY statements the appropriate key
descriptor is fc¢und and cecntrol branches down
to the Get Field rountine,

For the #XBEF functicn the cross-reference
field descriptor is found and control
branches down to the Get Field routine,

Fer GET FIBLD, 4FIELT and GET SUBFILE LIST
SET if the descriptor found previously was a
dumpy, then the corresponding real descriptor
must be found in an associate descriptor
table. For GET FIELD and #FIELD of a
superfield, a locop is initialized to take
each component field, =tarting with the
first, find its read descrirptor and record
(esing ASMOPEN and ASMGETK for an associate
record if necessary}) and perform the Get
Field routine repeatedly until the superfield
has been composed or its count determined,

The Get Field routine uses the current record
of the current data set and a direct field
descriptor and its file descriptor to extract
a field value, It hbandles a bit field, a
fixed length byte field, a simple variable
field, a fixed length element of a
multi-element field c¢r a variahle length
elenent of a multi-element field,

GET KEY SET operations are handled separately
after the fixed length key has been
extracted, The ¥ey value 1is ©pested and
control branches to the common return,

GET LIST SET operaticns are handled
separately after the pultirle fixed length
element field has been found. For the
SUBFILE option the sulbfile id-key field name

i.

PAGE 76

is found in the sutfile descriptor table,
For an index crtion, if the index is spanned
and the last suffix is qreater than zero, the
first record in the reqgicn is read using
ASHGETK and control Lrranches back to the Get
Pield routine. R list 1is posted with the
whole multi-element €ield value. For a
spanned index, if the guffix is less than the
last in the region, then the mnext index
record is read wusing ASNGET and control
branches back to the Get Field routine; this
repeats until the whole region has been
copied into list segments and the data set is
positioned at the 1last record of the region
again, GET 1IST SET operations are thus
complete and ccntrel kranches +to the common
return,

The #FIELD function 1is handled for the null
and vteal value cases of all five types of
direct fields and for the case of an empty
associate data set or an absent associate
record. Superfields are handled by
effectively evalvating #FIELD for each
conponent to determine the net count, The
#YREP function for a sranned index calculates
the nunher of cross-references con records
preceding the last in the region by assuming
full maximum 3length records and adds the
nurnber of cress-references on the last
record, The 4#FIELD and #XREF functions are
thus complete and retuvrn their function value
directly ({without Yranching to the common
return).

The GET INTO orerations are handled for the
null and real value cases o©of all five types
of direct fields and for the case of an empty
associate data set or an absent associate
record, When the external form of the field
is needed and a reformatting rcutine is
specified in the descriptor, it is called
using "CALL CRLLY service, Superfieléds are
handled by lcoring back to get each component
field and concatenating them together; if the
surerfield descrigtor specifies a
reformatting routine, it is called using
ACALL CALLY service. The GET INTC operations
are thus complete and centrol branches to the
conmon returmn.

Put PRoutine

3.

PAGE 77

The Put routire is psed for PUT and REPUT
operations, The field name rpassed in the
MFCB is found in the ©[ESC table to determine
the data set implicated, If it 1is an
associate data set, it is opened, if
necessary, by calling ASOPEN and read, if
necessary, by calling ASHGETK and if the
record is absent a current associate vrecord
is built by ccrvying the null record built by
the open routine and the anchor key value is
copied into it. If a generic conversion
routine is specified in the field descriptor,
it is called using "CALL CALI"™ service. If a
validation routine is specified, it is called
using "CALL CALL" service. If an anchor key
or a subfile id-key 1is heing REPUT to null,
then ccntrol branches to the Delete rontine
described in paragraph 9% below,

Using the current record of the current data
set and a primary direct field descriptor and
its file descriptor, a kit field, a fixed
length byte field, a simple variable field, a
fixed length element of a mylti-element field
has a new valvue PUT or REPUT into it., For a
fixed length field or element, the nev value
is justified right or left depending on the
HUMALIGN switch in the field descriptor. For
a variable length or multi-element field, the
field length and record length {RECLEN field)
are adjusted as necessary, If the field is
indexed and had a non-null valune, then the
Delete XEEF subroutine {described in
paragraph "1" below) is called. If the new
value is non-nuwll and the field is indexed,
then the ¥REF subroutine {described in
paragraph "k™ below) is called. The PUT and
REPUT operations are thas complete and
control branches to the cowmpon Teturn,

Delete Routine

The Delete routine is uvused when amn anchor key
or a subfile id-key is being REPUT to null.

Nolling a sutfile id-key indicates that a
sukrecord is to be deleted, The subfile
control field descriptor is fcund and if i+t
is on an associate, the asscciate data set is
opened, 1if necessary, by calling ASOPEN and
read, if necessary, by calling ASMGETK. The
control field element is fcund and excised
and the field length and RECLEX are

k.

PAGE 78

decremented, Then the subfile descriptors
are searched: for all indexed fields, the
Delete XREF subroutine {described in
paragraph "1%v l}elow)}) is called for each
element value, Finally the subrecord is
deleted by calling ASHDELE and control
tranches to the common return.

Nulling an anchor key indicates that an
anchor record and its associated and
sutordinate rTecords are to Le deleted, The
anchor descriptors are searched for subfile
contro)l fields and for indexed anchor or
associated fields, If a control or indexed
field is found on an associate data set, it
is opened, if necessary, by calling ASHOPEN
and read, if necessary, by <calling ASMGETK.
For each control field, the sukfile is
opened, if pecessary, by c¢alling ASMOPEN and
each element is used to read a sabrecord
using ASMGETK. The subfile descriptors are
searched for every subrecord: for all indexed
fields, the Delete XREF svbroutine is called,
Each sutrecord is deleted by calling ASMDELR,
Dering the anchor descriptor search, when an
indexed anchor or associate field is found,
the Delete XBREF subroutine is called,
Fipally the associated records and the anchor
record are deleted by calls to ASWDELR and
control branches to the common return.

XREF Subroutine

The YXREF subrcutine is called from the Put
routine when a non-null value is PUT or REPUT
to an indexed field, TIf TINDEXEXT and a
reforpatting routine are =specified, it is
called using "CALL CALL™ service to transform
the value to the form 1in which it is to be
indexed, The dinverted index data set is
opened, if necessary, by calling ASMOPEN,
Then an index read is attempted using ASHGETK
{with a suffix of zero if it is spanned). If
the record is nct found, then the null record
built hy +the Open routine 1is copied, the
cress-reference and the indexed value are
copied in, it is written by calling ASMPOTK
and control returns to the calling prograsm,

If an index Tecord is found, then its highest
frichtmost) cross~reference value is compared
¥ith +the new cross-reference, Tf the new
reference is lower, then the insertion point

1.

PAGE 79

is found by a binary secarch and the new
reference inserted; otherwise the new
reference is agppended. If the index is not
spanned or if the regicn only needs one
record, the cress-reference field length and
RECLEN are incremented, the index record is
rewritten using ASMPUTK and control returns
to the calling program.

In a spanned 3index region when the 2zero
suffix record is full, if its last reference
is 1less than cr equal to the new reference
then it 1is 1released by calling ASHREL:
ctherwise the inserticn point is found by a
binary search, the new reference is inserted,
the last reference overfleows to become the
new reference to be propagated forward, and
the record is rewritten using ASMEUTK. The
gsuffix is incremented and control lcops back
to attempt a read of the next record of the
region, This continues as long as full
records are found, <finally a short record is
found to append +to c¢r a fresh record is
created and the process 1is completed like a
non~spanned case and coptrcl returns to the
calling progranm.

Delete XREF Subraoutine

The Delete XREF subroutine is called from the
Put routine when an indexed field that had a
non-null value is being REPUOT, It is also
called exhaustively by the Delete routine for
indexed fields., If INDEXEBXT and a
reformatting rcutine are specified, it is
called wsing "CALL CALL"™ service to transforn
the value to the fcorm in which it was
indexed. The inverted index data set is
opened, if necessary, by calling ASPMOPEN., If
the index 1is spanned, the index region is
read forward tc find the last record in the
region, Whether or not the index is spanned,
ASMGETR 1is called tc¢ read the index record
(with the highest suffix if it is spanned).
If the index is not spanned or if the region
only has one record, then the cross reference
ig found by a binary search and excised, the
cross-reference field length and RECLEN are
decremented, the index rTecord is rewritten
using ASMPUTK and control returns to the
calling prograz. In the exceptional case of
the index record c¢nly having the one
crcess-reference, it is deleted using ASMDELR

M,

PAGE B0

and control returns to the calling program,

In a spanned index region having nrore than
ane record, the lovest {leftmost)
cress-=reference valpoe is examined tbefore the
binary search. If it is greater than the
crecss-reference to ke deleted, then the whole
cross-reference falls off to bhe rolled
backward in the regicn, The record is then
rewritten (vith the field lengthk and RECLEN
decrenmented if necessary) using ASMPUTK or
deleted using ASHMDELR, Then the previous
recoerd is read using ASHGETE with +the next
lower suffix and the lowest cross-reference
examined., This process repeats rolling one
cress~reference backward in the region until
the record is found wvith a lovest
crcss-reference less than or 2gqgual to the one
to te deleted. The cross~reference is found
by a tinary search and excised, the rolled
crcss-reference frenm the record Just
processed is tposted at the right end, the
record is rewritten using ASHMPUTFKF and control
returns to the calling preogram. If the cross
reference is not found on the record, it
keloengs on then the record is released using
ASHMREL and in the simrple case control retanrns
to the calling program; the intent has been
accomplished, However, if rolling back had
heen started in a spanned region, one
cress~reference is still in limbo, so control
branches into +the XREF subroutine which will
toll one cross-reference forwvard from that
point ta reconstruct the region before
retarning to the calling program; this should
be an extremely infreguent occurrence,

Return

The common Return 1is wused by all routines,
The only excertion is that when the #FIELD
or #XREF functions complete successfully they
return directly.

¥hen an error has teen detected, an ervor
code is posted in the MFCB, The address of
the H#APFPCB is pcested in DBEFCBEP to assist any
mainline having nualtiple MFCBs. If the
mainline has a current DBPLyI CN EREOBRFILE GO
TO s+ action, then RETBRNPT is called to post
MFCB.ONRETURK and DBPAC is left by branching
to the mainline label in HM¥CB.ERROR.ROUTINE,
Otherwise DBPAC is 1left by signalling the

PAGE 81

PL/T ERROR conditicn which, unless the
mainline catches it, will terminate the
painline prcqranm,

Normally, DBPAC is left by a simple RETURH
statement and control returns to the mainline
that called,

F. CODING SPECIFICATIONS

1.

2.

Source language

DBPAC is wuritten in PL/XI, The DB preprocessor and
DPBPL/YI are not used 1in DBFAC, VYarious Assembdler
language subroutines are used as mentioned in the
Processing Requirements Narrative,

Suggestions and Techniques

¥hen a desired field descriptor has heen found by
subscript in the tables, its address is held 1in a
pointer variable and based structure references
are used to avoid fregquent re-evaluation of the
subscript. Similar technigues are used whenever
possible,

Binary search technigues are used to maintain the
cross~-reference lists in inverted index records in
ascending sequence,

The facilities available in +he DEBDRIO module are
used tc the best possible advantage with the 0S
I5AM access methced.

The DBPAC module is designed and irmplenmented to be
reentrant under multi-programming; automatic,
controlled and based storage are used
appropriately, One known exception is that the
main stocrage descriptor descriptor tables are
static for efficiency; if two or more users
attempt to access the same descriptor data set
region concurrently they nay encounter
interference on the multi-element €field cursors
{only RSECTYCD, NAHEFLD and SECORITY fields are
affected).

 DBPAC

DATA

_ H DBDBIO | BASE

L

Figure 1. I/0 Block diagram

72-73

PAGE 84

TOHC B.3 - EXECUTIVE ASSEMBLER PRCGRAHNS

A.

B.

D.

MODULE NARME
Executive Assembler Program
Program~ID - NDRDBIO
fodule-ID - LEBDPBIO
ANALYST
Connie D. Becker
Edward J. Scheboth, Jr.
Heoterics, Inc,
HMODULE FUNCTION
This program ®sorks in cocnjunction with the Data Base
Executive Prcgram {(NDBPAC) and provides the assenmbler
language macros required to handle the input, outpunt
and updating of ISAM files, as well as the handling of
error conditions.
These ISAM files are the files cf a dataglex and the
Data Base Executive will call the Executive Assembler
Program when it needs an 1I/0 operation perforned,
DATA REQUIREMENTS
1. I/0 Flock Diagram
See Figqure 1
2. Input Data Sets
- Parameter Cards
Not Applicable
b, Punched Card Input Files
Not Applicable
C, Input Files
A1l of +the files which make wup a dataplex
could conceivably be input, including
descriptor files. The only real restriction
is that the files be ISaH,

d. On-line Terminal Entries

Not Applicable

4,

PAGE 85

Qutput Tata Sets
a, Output Files
Same as input files,
b, On-line Terminal Displays
Not Applicable
C, Formatted Print-outs
¥ot Applicable i’
d. Punched Card Output Files
¥ot Applicable
Reference Tables

Not Applicable

PROCESSING RECOIREMENTS

.1'

2.

Top Level Flowchart
See Figure 2
Narrative

This progras is designed +to handle the input and
output functions for the Data PBase Executive
{¥DBPAL), It deals strictly with ISAM files,

The program is divided 1into many routines, and
each of these roatines has a unique function. The
Data Base Executive (NDEPAC) calls these routines
individvally to perform the varicus functions
which are required. Associated with each of these
calls is the passing of the regvired parameters.

The Data Base Executive is required to perform the
varicus calls to the Executive Assembler Romtinesg
in a logical crder.

The abilities of these assembtler routines atre
comprehensive enough to handle any situation which
might arise in the Data Base Executive., This
includes the abilities to: open files for input,
output, or wupdate; read the file sequentially,
read the file by key, position the file to the
beginning, or the next record; and close the file.
For example, 1if the Lata Base Executive werse

PAGE 86

required to copen a dataplex in the update node and
process records, the sequence of calls would he as
follows:

CALI ASNMDCB {praranetexrs)
estatlish the files DCE (data
control block),

CALL ASHFNDS ({rarameters)
link the DCB with the JFCE (job
file control block),.

CARIL ASMOPEN (parameters)
open the file.

CALL ASMGETK {parameters)
read a record by key.

CALL ASMPUTEK (parameters)
rewrite the record,

CALYI ASMCLOS {parameters)
close the file,

DBDBIO 1is called from +the Data @BRase Executive
{NDBPAC). If no errors are detected by the
assembler routines, the error switch {one of the
paraneters) is set equal tc¢ zerc upon return to
NDBPAC and the return is to the specified 'Good?
return address (one of thke rparameters), If an
error is detected by the assembler routines, the
error switch is set with the proper error code and
the return 1is to the next sequential instruction
in NDEFAC, The error codes vill bave the
following values when an error occurs in ASHMOPEN,
ASHPUTK, ASHGETK, ASHGET, ASMPUT, ASMSETL,
ASHMESTL, ASMEEL, ASMCLOS, ASHDELR or ASHSTLK:

a. 08 - %ey not found

b. 12 - seguence errcr

c. 28 - LRECI greater than MAX
de 31 - position past end of D.S.
2. 4 - no srace for record

£. 48 - invalid I/0 area

g 52 - invalid I/0 request

h. 56 - duplicate record

i. 60 ~ DCB was closed

Fe 64 - overflow record

K. 68 - uncorrectable I/0 error
1. 72 - no key length specified

The assembler routines will add 100 to all of the
above error codes prior to returning to the Data

PAGE 87

Base Executive {(NDEPAC}. The end of data exit
sets the error switch to 99, The error switch is
a fixed binary half-sord,

The PL/T calls for ASHMOPEN, ASNPOTK, ASMGETR,
ASNGET, ASHPUT, ASHMSETIL, ASHMESTL, ASHMREL,
ASMCLOS, ASMDELR, and ASHMSTLE are illustrated in
Table 1.

The first parameter is always the DCB address {DCB
means Data Control 3locky, The second parameter
is the record area, except for:

de The open {ASMOPEN)} ~ in this instance, it is
a cne byte function ccde -

I = input
0 = output
0 = update

b. The close (ASMCLOS)
ESETL {ASMESTL)
STILK {ASHSTLEK)

REL {ASMREL) - in these instances, it
is a one tyte dummy character (mno
meaning.)

Ca The DELREC {(ASEDELR) - in this impstance, it
is the kev,

d. The SETL (ASHSETL) ~ in this instance, it is
a one byte function ccde -
B = beginning
¥ = next

The third parameter indicates the routine to which
return is made if there are no errors,

NOTEs The error switch parameter for the
following routines must be preset.

2. ASMGETK - 01 {Eead kv key)
00 (fead by key exclusive)

b ASHMPUTK - {1 if KT (¥rite)
00 if KS{Rewrite)

The toutines and their functions are as focllows:

@ ASKFNDS: This routine obtains the DDNAME for
an associated DSNAME and posts it in the
DCE, The DSNAME must appear in the JICL for
the dob step currently being executed.
"ASMFNDS" has an associated entry point

b.

Ce

PAGE 88

PINTFNDS™ which does dinitialization for
"ASMFNDS™ for a particular Jjobstep, it
shounld be called duripg dinitialization for
the applicaticn, It is a simple <calll of
form:

CAIL TINTPNDS OR L RI15,=V{INTFNDS)BALR R
14,R15

The parameters required for successfual
execution of the FINDDS are as follows:

1. The DS nams ({35 characters)
2. The DCP address

3. The ownert's ID

4, The error switch {key length)

ASHERSEs: This routine erases the
direct-access storage for a data set, In
addition, it %ill remove the entry for a
cataloguned data set from the catalog. The
DSNAME passed is padded with blanks to 135
characters., If a =stored data set 1is opened
hy many users concurrently, a particular user
cannot erase that data set until every other
sharer actively using that data set issues a
close,

Once a user is the only currently active task
using the data set, he may erase it
reqgardless of whether he has closed it or
not,

The paraneters required are the DSNAME and
the error switch,

HOTE: For both ASMENDS and ASMERSE, the
error switch upen return to the Data
Base Executive is equal to zero only if
no error occurred,

ASMOPEN: This routine connects the data set
te the systenr by cenplating +the DCR
{containing the attributes), 1indicates the
pmanner in which the data set 1is to be
processed and positiecens the data set for
processing, The address of the SYRAD routine
{SYNADRTR}Y and +the address of ¢the EODAD
routine {EODADRTN) are pcsted to the DCB.,
Phe address of the save area is also posted
to the DCB,

The parameters are as follows:

d.

&,

f.

ha

PAGE 89

1 The DCBE address

2. The function code

3. The *Good' return address
4, The error switch

ASMPUTK: This routine mcves a selected
record from a user specified area to an
output buffer, The system then includes the
record in the ocutput data set by key. This
operates in one of twc medes: Rewyrite (KS}
or Write (KT). W®Write releases any page level
interlocks set for the data set,. The
parameters are as follcws:

1. The DCB address
2. The record area {address)
3. The ¥Good' return address
4. The errcor switch (preset:
) means Rewrite (KS)Y,
1 means ¥rite (FT1)).
S, The key {address)

ASMGETK: This routine obtains a selected
logical records from an input data set and
moves it to a user specified area,

The parameters are as follows:

1. The DCPE address

2 The record area {address)
3. The 'Good' teturn address
4, The error svitch

5. The key (address)

ASMGET: This routine obtains the next
sequential record and moves it from an input
buffer to a user specified area., The
parameters are as follows:

1. The DCB address
2 The record area
3. The 'Gocd' return address
4, The error switch

ASEPUT: This routine has the same parameters
as the ASMGET routine, Ho¥ever, instead of
reading a record, it writes a record.

ASKSTLK, ASMSETL: These routines position a
data set, The vparameters for both —routines
are as follows:

1. The DCP address
2, The code 2 K {(ky key)

i,

1.

1,

N

PAGE 90

B ¢{beginning)
¥ {(next)
3. The *Gocd?' return address
4, The error switch
Se The kev (address, for ASMSTIK only)

ASMESTL: This routine tefpositions the
pointer to the beginning of the file. This
is automatically done in ASMGETK, ASMSETL,
ASHSTLK.

The parameters are as followus:
1, The DCE address

ASMLDELR: This routine flags a record for
deletion from an ISEM file, The ©parameters
are as followus:

1. The DCB address

2, The key

3, The *Goed? return address
4, The error switch

ASNMNCLOS: This routine closes the Ffile
{ISAN}),

SYNADRTHN, EQDADRTN: ®hen an end of file or
some error is detected during any of the
routines in this program, these routines set
the proper errcr code in the error switch and
return control to the Data Base Executive for
aprropriate action,

ASHLCCB: This routine takes the DCE created
in this program and moves it tc the user's
specified area. The only rparameter is the
user specified area (address).

ASWMXTR, ASMPASS, ASMNUST: These entry points
simply transfer contrel to the MTT nonitor
to maintain linkage conventions,

F. CODING SPECIFICATIONS

1.

2.

Source language

Onlike most other modules for the VNASIS systen,

the

Executive assembler program (DBDBIO) is

yritten entirely in Assenhly lanquage.

Suggestions and Technigques

da

PAGE 91

Special attenticon is paid to the linkage
conventions of the cunrrent PL/I compiler,

The Data Base Executive, by desiqgn, is the
primary user of this program, However, the
program 1is written so that programs other
than the Data Base Executive can use it.

NDBPAC

— 3
o

Figure 1, I/0 Block Diagram

DBDBIO

— paTa
BASE

97

.

NDBPAC

DATA BASE EXECUTIVE

qEKIT)

ENTRY , VASMERSE

X1 ROUTINE
GEXTT
T
GEX LT : ‘

ENTRY JASMOPEN

ROUTINE FROM VISAM
tegEX LT 1 ERROR
—— DETECTION
%EﬂIBX€,ASMPUTK
ROUTEINE
EXIT
ENTRY , Moo
| Y S JASMGETK EODADRTN
FIROUTINE ROUTINE
@EKJ‘J‘) f
SYNADRTHN -
ROUTINE
I
| GETRECRD
ROUTINE

[ENTRY ASMSTLK

'F'YT‘T'

ENTRY ASMSETL
[JEXLT

ENTRY ASMESTL
éEXIT
ENTRY, I
—— 5] ASMDELR
: ROUTINFE
QEXIT]
ENTRY
D ASMCLOS
ROUTINE
WEX LT 1

L_ENTRY atASMDCB

GEXIT |

Figure 2 - Top level flow chart.

1514

PAGE 95

TOELC B,4 - DATA BASE EXECUTIVE CONVEESICHE AND REFCRMATTING

A,

B.

Cs

D.

E.

BCUTINES

MODULE NAME

Standard Conversicn and Reformatting routines for the
Descriptor Editor and the Data
Base Executive,

Program~ID - NDBEXIIS
Module-IL - LREXITS
Entry Pcints -~ See Table 1,

ANALYST

Garth B, Wyman
Neoterics, Inc,

MODULE FUNCTION

This module provides standard general field
conversion and reformatting routines, They are called
by the Data Base Executive field processing roatines
{PUT, GET, and REPUT) if +they are specified in the
field descrirpter record. The routines are written
according to the DBPAC Exit PRoutines User's Guide
{Section 8, Topic B.1) and pay be used €for user's
database fields, if desired.

CATA REQUIREMENTS

¥ot Applicable

PROCESSING REQUIREMENTS

1. Top Level Flowchart
Not BApplicable

2. Narrative

The conversion routines (LBCYT__) are for use
during POT or REPUT field processing., They all
accept a varying 1length character string argqument
and all allow the +value to have 1leading and
trailing blanks, They check the argument value
according to the UNotes in Tabtle 1, If the
arqupeent value is invalid, they return with the
BAD parameter left set, COtherwise they copy the
value o¢or convart it +to the internal fore and
length shown in Tatle 1, reset the BAD parameter
switch and return.

PAGE 96 ~9F 7

The reformatting routines (DEFNET__) are for use
during GET field processing, They all accept a
varying length character string arqgument (from the
dataplex), If the argqument length is not as shown
under "Internal bytes™ in Table 1, then the
routine is being misused and the value "BAD., HEX="
is generated followed hy the hexadecimal expansion
of up to eight bytes of the arqument, Normally
the internal form of the value is reformatted to
the external forem and control is returned. These
routines all produce exact length output {i.e.
without leading or trailing blanks).

F. CODING SPECIPICATIONS
1. Source language
PL/YI with no DREPL/I statements.
2, suggestions and Techniques

Not Applicable

PAGE 98

TOHC B.5 ~ LIST BANAGER

A,

B.

Ca

D,

HODULE NAME

Program=-ID: NDBLIST
¥odule-ID: DBLIST

ANALYST

George Osvald,
Neoterics, Inc,

MODULE FURCTION

NDBLIST will be responsible fer all requests for keys
from an existing SET. It will ccntain the following
functions in order to prcovide this facility., The

DEPL/I statements handled hy this module are as follows:

1. FREE LIST
{a} General
(b) Specific
2. GET LIST INTERNAL XKEY INTC
3. GET LIST KEY INTO
4, GET LIST EKEY ({0}
5. GET 1IST KEY SET
6, COPY LIST
7. LIST
8. #LIST
q. PUT LIST INTEBNAL REY FRCH
10. SET LIST LIKE LIST

The Free temporary list and TUnigne list functicps are
called directly. The wmcdule will be called wvia PL/I
conventions (DB Preprocessor Statements) and will
use the facilities of SET ¥anager via PL/I calling
conventions,
DATA RFQUIREMENTS
1., I/0 BLOCK DIAGRAN

¥ot Applicable
2., Input Data Sets

Not Applicable
3, Output Data Sets

Not Aprlicable

4.

Reference Tables
a. SET CONTROL BLOCK {SCB)

b, LISTEFR

E. PROCESSING REQUIREHENTS

1.

2,

3.

4,

5.

6.

Te

8,

10.

Top Level Flowcharts
la. FREE LIST {General)
ENTRY: DEPAC, see Pigure 1a,
th. FREE LIST {Specific)
ENTRY: DBPACT, see Figure 1b,
GET LIST INTERNAL KEY INTO
EWNTRY: DEGLIK, and
GET LIST KEY INTO
ENTRY: DBGLKI, see Figure 1c.
GET 1IST KEY{D)
ENTRY: DEGLKO, see Figure 1d.
GET LIST KEY SET
ENTRY: DBGLKS, see Pigure 1le.
COPY LIST
ENTRY: DUPLIST, see Fiqure 11,
LYIST |
ENTRY: LIST, see Figure 1g.
411IST
ENTRY: #1IST, see Figure 1h,
POT LIST INTERNAL XEY FROH
ENTRY: DBPLIK, see Figure 1i.
SET LIST LIEKE LIST

ENTRY: DESLLL, see Figure 17,

PAGE 99

11.

12,

13,

T4,

PAGE

FREE TEMPORARY LIST

ENTRY: ODEFREET, see Figure 1k,

UNIQUE LIST

ENTRY: ULIST, see Figure 11,

Internal Routines

a4, GET, see Figqure 1m,

b, ERROR CONTEQL, see Figure 1n,

¢, PINISH LIST, see Fidqure 10.

Narrative

NDBLIST provides an interface between a user’'s
request for manipulation of a list and the SET
Manager. The intenticn being:

1. HMaintain the DBEPL/TY LIST statements as they
are nov defined by the NBRSIS systen.

2. Isclate the manipulaticn of SET's to a
single module {SET Manager).

3. Provide minimal amount of coding to support
items 1 and 2.

In general, the NODBLIST functions will rerform a
piniwal amount of data manipulation. This means
that the requirements of each function are
basically three:

1. Validation at Time of Fntry

2. Call tc SET Manager

3. Return Variables to Caller

The main exception is the LIST function which

logically combines twc existing sets into a
third set and returns an address of the new set,

100

The entry points to the NDELIST will he as defined

by DBPL/I. This retains the integrity of a
user request {FL/I coded) for the BDBLISTH
functions,

a. FREE LIST

‘b.

d.

2,

£.

.t

PAGE 101

4 request to free a General or Specific
list is an ERASE CALL to the SET Manager.

GET LIST INTERNAL EKEY INTOC

This entry requests a key via SET Manager from
a current set (hy set pointer) and returns

to the user a variable string containing

the key.

GET LIST KEY(0)

This will request via SET Manager that a
current set's get cursor te reset to point
to the first key within the set, This
will be through a CLOSE CALL,

GET LIST KEY INTO

The entry will call SET Manager requesting a
key from a current set {ty set pointer). 1If
the requested set indicates a conversion is
necessary, the appropriate conversion routine
will be called. Returned to the user will

be a variable string containing the {converted)
key,

GET LIST KEY SET

The entry will call SET Manager requesting a
key from a current set (by set pointer), If
the reaquested set indicates a conversion is
necessary, the appropriate conversicn routine
¥ill be called. Feturned to the user will bhe
a variable string containing the (converted)
kevy.

GET LIST XKEY SET

This eptry will request a key from SET Manager
and then write a key via SET Manager to a

new or existing set, Returned to the user
will be a pointer to the new list,

COPY 1LIST

Duplicates an existing list.

LIST

This entry allows a user to combine two
existing sets by a logical operation:

F.

Je

k.

PAGE 102

(1 Llogical OR, "{' (vertical), 1If the
key is present in either set, the key
is placed in the new set,

{2) Logical AND, '§' (amrersand). If the
key is present in both sets, the Rey
is placed in the new set,

{3) logical NoT, *-' (minus sign)., Tt the
¥ey is present in set 1 but not in set 2,
then the key is placed in the new set,

It is pogsible for either the argument

set (1) or the function set (2 to he FULIL,
The logical operation will return a pointer
to either set ¢r a NULL set,

Returned to the user is a set pointer to the
new list,

#LIST

This entry requests the number of keys in a set
and returns a variaktle containing the value,
{Dces neot call SET Manader).

PUT LIST INTERNAL REY FRCE

This entry will ottain (a) kev{(s) from a
user's variable and write it wvia SET Manager
to an existing set.

SET LIST LIKE LIST

This entry will verform an OPEN CALL of a
new set and return a set pointer to the
user, The new set will have the sanre
characteristics as the existing set,

FREE TEMPORARY LIEST

This entry loops through the list chain and
frees {calls SETERAS) for every list without
its SCE.PERMEN bit on.

ONIQUE LIST

This entry creates a new list of non~-duplicate
keys from an input list, If no duplicates

are fcund, the original list is returned

as the new list.

CODING SPECIFICATION

1.

PAGE 103

Source lLanguage
This module will be coded in PL/I.
Suggestions and Techniques

The 1IST ¥anager will call the SET Manager via
PL/T c¢alling conventions., The structare
LISTERF will be used as the communicator
hetvween the SET Manager and the LIST Manager.,

An attempt will be made to maintain all
structures and processing techniques so as
to negate any charges to the modules
requesting the use of the LIST functions,

DEBPAC

SET SEB
+ TO BE
"ERASED -

.

CALL
ERASE

ERROR
COND,

Figure la. DBPAC Entry

(o4}

DBPACP

ERASE

Figure 1lb. DBPACP Entry

/05

CH—

/06

DBGLIK

SET
INTERNAL
KEY
SWITCH

‘ DBGLKI) :

SET USER
FIELD
NULL

CALL
GET KEY

ERROR
QNTRO

Figure lc. DBGLIK and DBGLKI Entries (Page 1 of 2)

/o7

EYOBE
CONVER

\ -
CALL
CONVERSIVD

ROUTINE

MOVE KEY

TO
USER
FIELD

YES

Figure 1lc. DBGLIK and DBGLKXI Entries (Page 2 of 2)

/09

DBGLKO

CALL
CLOSE

_SICONTROL

Figure 1d. DBGLKO Entry

DBGLKS

GET
CURRENT
SUBSCRIPT

|

CALL
GET KEY BY
SUBSCRIPT

YES

Figure le. DBGLKS Entry (Page 1 of 2)

/09

/10

CALL
OPEN

ERROR

CONTRO B CONTROL

CALL
PUT
KEY

ERROR YES
COND.

Figure le. DBGLKS Entry (Page 2 of 2)

/1]

DUPLIST

Figure 1f. DUPLIST Entry (Page 1 of 2)

!

CALL
GET XEY

CALL
PUT KEY

ERROR
sl CONTRO

/11

v

ERROR
CONTROL

Figure 1f. DUPLIST Entry (Page 2 of 2)

/13

VALID
OPERATOR

ERROR
CONTROL

SET POINTEH

1s
QPERATOR EQUAL TO
i 1) 4

USER-PNTR
2

SET POINTER
EQUAL To
USER-PNTR 1

Figure lg. LIST Entry (Page 1 of 4)

Figure lg.

114

nf ERROR
“\CONTRO

CALL QFEN
SET WRITE

_LES B\ CONTRO

CALL GET
{SET 1)

CALL GET
(SET 2)

LIST Entry (Page 2 of 4)

/15

.

N

/ 4a

N

EQF NO EOF NO 3a
{ON SET 1 ON SET 2

YES {vEs

A
Sii;gf 3b

T
FES

3e HO

e’

‘\gi

—~

Ve
FINISH
LIST

Figure 1lg, LIST Entry (Page 3 of £)

YES

CALL SET
WRITE (Set
1, Key n)

CALL SET
WRITE(Set2
Key n)

CALL GET
{Set 1)

sk CONTROY

CALL GET
(SET 2)

CALL SET
WRITE(Setl,
KEY n)

CALL GET
(SET 1)

|

CALL GET
(SET 2)

iz

/17

ERROR
ONTROL

GET TOTAL
NUMBER
OF KEYS

Figure 1h. #LIST Entry

/1y

DBPLIK

ERROR
CONTROT,

CALL SET
WRITE

ERROR
"CONTROL

Figure 1i, DBPLIK Entry

/19

DBSLLL

ERROR
ONTROL

CALL
OPEN

m{ ERROR
CONTROJ

Figure lu. DBSLLL Entry

{20

DBFREET

PRINT TO
FIRST LIST
IN CHAIN

CALL
SETERAS

GET NEXT
LIST IN
CHAIN

©,

Figure 1lk. DBFREET Entry

/2]

ULIST - :

CALL GET
FOR FIRST
KEY
N
PUT KEY
TO NEW
LIST '
ERASE
CREATED
LIST
CALL GET
FOR NEXT
' KEY "JRETURN
. ERASE INPUT LIST
CREATED AS NEW LIST
SCB NULL :
1E
]

Figure 11. UL1isT Entry

| X2

CALL GET
BY
SUBSCRIPT |

Py

INCREMENT
CURSOR

RETURN

Figufre im. GET Internal Routine

/23

ERROR
CONTROL

Figure 1n, ERROR CONTROL Internal Routiune

j24

CALL
ERASE

./ ERROR
MACONTROL

Figure lo. FINISH LIST Internal Routine

PAGE 304 (25

TOFLC B.6 ~ DATA BASE EXECUTIVE PAREKT - CHILDREN FUNCTIONS

A, MODULE NANE

Data Base Executive Parent and Children list Punctions.
Progqram~ID : NCCLIST

Module~ID 2 CCLIST

Entry points - UPLIST,CPLIST

B. ANALYST

¥illiam H., Petrarca
Eeoterics, Inc,

C. HODULE FURCTION

CCLIST btuilds a list of children (or parent) keys from
a list of vparent (or children) keys. Since data base
input is needed to build these 1ists, this progranm
could have been a part of DBPAC, However, {1) DBPAC is
already large, {2) these functions are logically
fabove®™ those in DBPAC, in fact they use DBPAC and {(3)
these functicns are dinfreguently used, i.e. only for
certain SELECT operations vwhen subfiles are Jinvolved,
Consequently this is a separate module,

Mainline PL/I proqrams use the CCLIST services by
function reference in a PL/YI exgpression.

D. CATA REQUIREMENTS

Sea the DEPL/I Language Extension User's Guide,
Section &, Topic B.2.

E. ERQCESSING REQUIREMENTS
L Top Level Flowchart
Not Applicable
2, Narrative

The routines all receive a HFCB (Mainline File
Control Block) as their £first parameter. They
gtilize entry points in the ©DBLIST or DBOSET
nodules to pecfore list or set operations,
CCLIST's second pararmeter, a sybfile control field
name, 1is posted in MFCB.ONFIELD for DBPAC, The
routines all receive a list pointer paranmeter. If
it has the BNOLL value, they return a NULL 1list
pointer immediately.

PAGE WS f1[

Then READ FILE LIST REY (0): is done to reset the
READ cursor ¢f the input list and the list's key
field nare is compared with the anchor key field
name in the core descripter tables, For CCLIST
they should be equal (the input 1list should be an
anchor key 1list}; if unequal, the input 1list
pointer is returned imnediately. For CPLIST and
UPLIST they should differ (the input 1ist should
be a subfile key 1ist); if equal, the input list
pointer is returned immediately.

The #LIST function is imnvoked on the input list to
obtain the count to govern further processing.

For the CCLIST function READ FILE 1LIST NOLOCK is
done iteratively to process all (parent) records
in the input set, From each one a GET FILE
SUBFILE LIST SET is dcne using the second
parameter for +the subfile name. This rTeturns a
list pointer to a temporary set consisting of the
subfile control field, If it is nall, control
loops back toc the next READ and GET. If it is the
first non~null contrel field encountered, it is
made the basis for the output list. If it is a
subsequent non-null contrcl field it must be
merged with the rtrevious output., Control last
segment, Otherwise {rarely} +the OR LIST function
of the RDBLIST wmodule must be invoked to loops
back until all the REAL and GET's have been
processed., The output list pointer is returned.

For the UPLIST and CPLIST functions a switch is
set indicating whether duplicate keys are to he
dropped after the paremt 1list has been built by
code cormon to bhoth entry points. READ FILE LIST
NOLOCK is done iternatively to process all
subrecords in the input set., ¥rom each one the
interral parent key value is extracted and posted
to the output list,

If the ocutput list has enly one key, its pointer
is returned for either UeLIST or CPLIST,
Othervise the ountput list is assumed to be in an
ascending collating sequence, For +the CPLIST
fanction the output list fpeinter is returned at
this point.

For the UOPLIST function the previous key added to
the output list is saved., New Kkeys are compared
to the saved key; if it is unequal to it, the new
key is added to the output list and becomes the
next saved key, The cutput 1list pointer is
returned,

PAGE 386 /17

¥, CODING SPECIFICATIONS

1.

2.

Source Languag=a

PL/I

The SCB and LISTERR declarations are included from
the SCORCE, LISERMAC dataset, Declarations for
MFCB, DESC, DESC_FID and FCB structures have been
taken from the socurce for LEPAC,

No asseanhbler routines are uvsed,

Suggestions and Technigues

Not Applicable

pace 307 /29

TOHC B,7 -~ EXECUTIVE ASSEMELER ROUTINES

A,

D.

E.

MODULE NAHME

Program-ID: NDBRTHS
Module-ID: DERTNS

ANALYST

Connie T, Becker
Keoterics, Inc,

MODULE FONCTICH
This program is divided into many routines and
entry points each with a unique functicm, Refer
to the individual entry pcint prccessing requirements
in section E,
EATA RECQUIRENENTS
Not Applicablse
ERFOCESSING RFQUIREMENTS
1. Top lLevel Flowchart
See Figure 1.
2, Narrative
A. HRETRNPT Entry
This routine is used by the Data Base
Executive error rcoontine, It posts the
double word in the MFCB s¢ that the
user {(of DBPAC) can return to the next
seguential instruction in his program
after the instruction in his program
after the occurrence of an error, The
first word is the inveocation count; the
second vord is the address,
b. ASMMODE Entry

This routine is used to determine if the
maintenance task is running in a batch mode,

It returns a 'C*' if running conversationally; or

it returns a *B* if not, The current
implementation alw%ays returns a 'C°¢.

c. DBUOCHEK Entry

F.

PAGE

This routine is used to validate the
construction of an external name., The
rules used are:

1. the name must begin with an algphabetic
character {including %, §, 3},

2., the name pust be eight characters or
less,

3. the second and subsequent characters of
the name must be alrhanumeric (incluoding
#, 3, 2, M.

The parameters passed are the name and the
nampe length (im the event that the user
wishes to restrict it to less than eight),
If the name is invalid, the length
parameter will be set to ¢cre, as an error
indicator, othervise it will be set to
Z2E8TO0.,

MTT Interface Fntries

ASHMYXTR, ASHPASS, ASMMUST: These eatry
points simply transfer ccntrol to the HTIT
moenitcr to maintain linkage conventiomns,

ASMID Entry

This entry is called to provide the systenm
¥ith the current installation ID., Current
implementation returns an ID of TNASISH&%¢
to all c¢alling pregrans,

CODING SPECIFICATIONS

1.

3%]

]

Source language

e /24

DBRETNS is uritten in IBM 360/05 Assembler lLanquage

Suggesticons and Technigues

Special attention is paid to the linkage conventions
of the current PL/I compiler,

ASMMUST

CALL
MTTMUST

RETURN

ASMXTR

WL

CALL
MTTXTR

RETURN

ASMPASS

CALL
MTTPASS

RETURN

40

GET
PARAMETERS
FROM LIST

VALIDATE
LENGTH OF
NAME

VALIDATE
FORMAT OF
NAME

Figure 1,

SET RETURN
CODE

(RETURN)

TOP LEVEL FLOWCHART

' (RETRNPT)

POST MFCB
WITH ADD-
RESS,INVO-
CATION CNT.

RETURN
,‘ ASMMODE)

RETURN A
e
TO CALLER

(RETURNl)

/30

PAGE 369 7/

TOPIC B.8 - SET MANAGEMENT

A. MODULE NAWE

Erogram-IDz NIDBOSET
Module-ID: DECSET

B. ANALYST
0. K, Hearne
G. ¥, 0Oswald
Neoterics, Inc,
C. NODOLE FUNCTION
NDBOSET will provide the CS syctem with the means of
storing and retrieving SET's. These SET's %ill be
maintained as a sinale data set for all users. The
module will provide the capability of Adynamically
allocating and deallocating both external storage
areas and internal buffers, The 1ife span of a SET
is currently the duration of a sessicn or from
LOGON to LOGOFF (which ever is shorter).
P. DATA REQUIBENENTS
1. I/0 Block Diaqranm
See Figqure 1.
Z. Input Data Sets
a, Parameter Cards
Using the normal €S precedure for passing
parameters in the EXEC card, the following
information will te available at load time:
1. HNumber of reccrds in an allocation group,
2., Allocation algorithm variables (proposed).
3, Number of set 1,0 truffers to be allocated,
b. Punched Card Input Files
None

ce. Ingut Files (Propcsed)

The standard NASIS index files may, at
times, be input toc the routine wher such a

pace e /3L

file has been designated as a set. Keys may
te retrieved via ncrmal facilities,

d, On-Line Terminal Entries
None
3, Output Data Sets
a, Output Files

The NLBOSET module is prirarily ccncerned
with a single large BDAM data set. 2All
sets of keys are allocated as subfiles;
example, SET number is sulfile name within
the primary data set, PRecords are accessed
using relative record numters. Bit tatles
are used to indicate which records are
allocated to a particular set. The bit
tables allow fast deallocation of records
¢comprising a set,

The primary BDAY £file is defined using
standard JCI cards., Record size, file
size and palcement can te specified for
maximum optimization for an installation,
The parameterized information will be used
to preformat the allotted storage areas
and control the ccnstruction of the SET
manager's system tables, The above
preliminaries will he a function of the
system load routine, thereby reducing the
SET manager's resident hoosekeeping
requirenments,

b, TFile BRttrihutes
t» Organizatiom -~ ED2AM
2., Recording Mediuwm -~ DAST
3. Name - SETPLEX
c., Record Attributes
1. EKey Identifier - None
2. length - As Syrecified in JCL
3, Hode - FIXED

4, Blocking Factor - 1

PAGE 341 /33

d. Field Attributes
1, Length - Same as Key Leéngth
2. Mode - Fixed at Key Length
3. Data Tyve - Alvhanumeric

k., Position - As many fields {(keys) as will
fit in record,

@, Other Identifying Information

The BDAM lcgical record size and block size
nust be equal., NIBCSET itself provides for
blockirg and deblcckirng cf the keys into
the BIAM record.

Referénce Tabhles

The SET manager's system tables are installation
variables and, therefore, the construction and
initialization of the system tables will be a
function of the system loader. These tables

are likewise expected to he protected from
extraneouns manipulations.

a. Master Bit Tahle (MABTAR)Y €Glolkal System Table

This table wil]l be comprised of four parts.
They are as follous:

1. HMaster Tabkle Header Elock

The header will contain static information
defining the characteristics for the SET
data set {(SETPLEX).

2. Master Segment Control Bleck

This section c€ the table requires omne
entry for each segment {(device) allotted
to the S5ET data set. It will contain bhoth
static and variable information.

3. Haster Bit Tatle BRlock

This part of the *able will ke formated so
as each group (of records) contained

in the SET data set lkas a corresponding
bit in the tatle whose integrity is
maintained by the SET Manager's allocate
and deallocate fumnctions,

b.

pacE 42 (34

The Section Lcck Table

This table is the same size as the Master
Bit Table, It contains a one byte entry
for each secticn (8 bhits egval 1 section).
The table is used by the SET Manager to
lcck a particular section of the NMaster
Bit Table, TIn this manner the SET
manager is able to maintain the integrity
of a given section doring task allocation,

There are several reasons for this type of
control on the SET data set, They are as
follows:

1.

2,

3.

The use of allocaticn by group allows the
record size tc ce independent of the
amount of storadge taken in each allocation,

Faster allocation cf reccrds since a
current status of all records available
in the SET data set is possible by a
sirple interrcgaticn ¢f the bit table,

Deallocation of a SET (ERASE) requires
resetting of all bits asscciated with the
SET, ©WNo record manipulation is necessary.

Core storage is minirized since each hit
pesition represents a unit of records
{qroup).

Haster Bit Table flock Characteristics

There are three levels of the Master Bit Table
Block.

1.

2.

Segment, A segment is defined as a
predeternined area residing on a
rhysical device which has been mapped
according to the system's specifications

~as part of the SET data set;. There are as

many segments as there are physical
devices assigned to the SET data set,

Section., & section is an interrnal unit of
organization w%ithin a given segment., The
nunter of sections within a segment is a
function of the record size and the nuaber
cof records per group as defined for a
system. The section is represented by
eight bits (byte) in the Master Bit

d.

PAGE 3~ /35"

Table Block, The use of byte is for
programmatical ease.

3. Group, A& group is the smallest entity
represented in the Master Bit Table,
Each bit represents a group of records.,
The nunber of records per group is
parameterized and, thus, allows for
individval system optimization,

Buffer Pool

The buffer pool will he a predetermined size
depending upon record size of the installation.
This will be built at system initialization
time and contain as many Lkuffers as the systen
will allow. The format of pcol allows a task
to step through the buffers to find one which
is not allocated., The tuffer will be marked as
locked and the current available buffer count
will te decremented,

Secticn Lock Table

The Section Lock Table is comyrised of a one
byte entry for every section within the SET
data set,

Allocation of a group(s) is attempted within cne
section, If that section cannot accommodate the
number of groups regquested, the next section
within a segment is tested. Once a section
satisfies the alleccation reguirement, it

must te marked so that a manipulation of the
group bits can occur. The Section Lock Table
will reflect those secticns currently being
manipulated by the allocator and, thus, negate
the possibility of multiple allocations of a
single group.

PF indicates this section is currently being
manipulated by the allocator.

User Set Table (USETAR)} Local Task Table
{One Per Set)

The User Set Table will be comprised of two
parts, They are as fcllows:

1. Set Contrel Blceck

The Set Control Block will contain the
current information regarding a user's SET,.

PAGE Hﬂ“/ﬁ(a

2, User Bit Table EBlock

The bit takle will retain the allocation
characteristics of an individual SET,
Each UBTB will reflect the section number
and eight allccation hits within that
section,

E. PBOCESSING REQUIREMENTS

1. Top Level Flowcharts

See Figqures 2.1, ff,

A

READ/WRITE LOGIC

A1l read operations require a logical record #

a buffer and a key position within the buffer,
Bach entry point will be respensible for setting
a current key subscript in the appropriate SCB,
In this manner a common routine can be utilized
to decide whether the key requested resides
within the realwm ¢f the current groups; ie, 1
group covers X records and Y keys four records.

1. The write routine will set the
subscript to the previous subscript + 1

2. Sequential read forward will set the
subscript to the previous suhscript +1

3. Sequential read backvard will set the
subscript to the previous subscript +1

4, Subscripted read will set the subscript
equal to the one requested,

Division of the subscript by the namher of keys
per record equals the relative record number
and the key position within the record if the
relative record number is egunal to the previous
record pumber, the reguested ¥key location

is within the current record., Division of the
relative record number by the pumber of records
per dgroup will develop a remainder equal

to the relative pcsition ¢of the logical record
nurber within a qroup.

Exanple:
Number records per group = U
Number Keys per record = 20

pace +5-/37

107
10

Previous subscript

Previous legical record #-1

Previcus relative record §
key position 5, 7

File layout

0 i

Log Rec 1: Rec O, keys 0-19
Rec 1, keys 20-39
Rec 2, keys U0~59
Rec 3, kevys 60~79

iog Rec 9: Rec 4, keys 80-99
Rec 5, keys 1006-119
Rec 6, keys 120-139
Rec 7, keys 140-159

Two groups have bheen allocated to this file,
They control logical record numbers 1 thra 4,
and 9 thru 12,

b. NDRBOSET will provide the follcwirng internal
routines which will be invoked by external
calls,

1. Set Write

2. Set Read

3. Oren Set ¥Write {Currently Implied Entry)
4, Open Set Read (Currently Implied Entry)
5., Close {(Currently Implied Eatry)

6. Erase Set (Currently Implied Entry)

These routines will comprise the normal
processing path within the module,’

Each of the above routines will require an
interral call to the varicus managers within
the mcdule., The following are the panager
entry points:
1., Master Bit Table Hanager

a. Alloccation

b, Deallocation

2. Set Control

3. User Bit Table Manager

PAGE w16 /3¢

4, Ccre Request/Release Manager
5. Read/¥Write Key Manager

6, Buffer Manager

7. Error Control Hanager

8. Subscript Function

2, Reseguence Function

10, OFR Function

Before the system (sessicn} is operatiocnal,
there are two phacses of initialization which
sust be accomplished:

1. Preformatting of SET data set records.
2, Table allocation and initialization,

Step one of the atove may be an off-line progranm
unless reorganizaticn eof SET data set is
required at system load time.

Step two is required every time the system is
initialized, Ster two is a parameterized
housekeeping function which need only be

called once during a session. It is, therefore,
a conpletion of its function, See systes

load Primary initializaticn of SET data set,

Routines Invoked ty External Calls:

There are two tasic entry points to the

module. They are:r SET RRITE and SET READ.
These external requests will require the
repaining functicns of the SET Manager.
However, further analysis of the systen has
shown a desirability to provide additional
external requests in order to efficiently
maintain syster and core resources. Therefore,
an additional four functions will prcvide for
external calls., They are as follows:

1« SET WRITE
The functions are:
a. Verify existence of the SET number,

b. Verify SFT is in write mode,

2a

3.

5

6.

PAGE 447 /39

c. Non-existent SET ipplies OPEN of new
SET,.

d, ®RITE key to SEI,

SET READ

a, Verify existence of the SET nunber,
b, Verify SET is in read mode,

¢, Existing SET in write mode implies CLOSE
and OPEY of SET.

d. Read kev from SET.

OPEN SET ¥RITE

a., €Call SET control to create new SET,

OFEN SET RE2D

a, Verify existence c¢f SET.

b. Verify SET clesed.

C. SET OPENed for WRITE, most be closed
to force cut last record and reOPEN,

d. Deallocate unused groups,

CLOSE

a., Verify existence of SET,

b, CLCSE SET
1. In ¥RITE nmcde, pust force write,

2. CLOSE READ SET.

¢, Call SET control for updating SET
Centrol Tatle,

4, Call Buffer Manager for release of I/0
Buffers,

ERASE SET
a. Verify existence of SET.

b. €Call SET control for updating SET
Control Tatle,

EAGE 38 /4f0

c., ¢€all Buffer FManager for release of
1/0 Buffers,

d. Call Deallocation for release of
allocated aroups.

e, €all SET control for release of SET
Control Table,

Functiors Invoked by Internal Calls:

The purpose of these functioms is to maintain
the integrity of the user SETs. Whenever
possitle, these functiens will perform as part
of the user task.

1. Master Bit Talkle Manager (GETRCD)

a. Allocation

1. Determine segments for attempted
allecation,

2., Find secticn within segment to
accompodate allocation,

3. Lock section during bit manipulation
{allocation).

4, Call Oser #it Table Manager.
b, Deallocaticn {(ERASE)

1. Call SET Control for updating of
SET Control Table.

2. Obtain each entry within User Bit
Table Block,

3., Mark corresponding section/grounp
bits as unallccated,

4, Call Core FEanager
to release User Bit Talkle entries
and Set Contrcl Block.,
2., Set Control

a. Call Core Request/Release Manager for
create/destroy of SET Control Tabtle,

b, Update SET Contrcl Tatle variables,

3.

4,

5

6,

PAGE 139- 4/

User Bit Talkle Manager

2

b,

Insert newly allocated section in User
Bit Table.

Determine if another entry is possible.
1. Call Core Request/Release Nanager.
2. Initialize new User Bit Table.

3. Link User Bit Table entry.

Core Request/Release Manager

- B

Parameterized request of memory.
Parameterized release of memory,

Indication cf insufficient memory
requires the task to wait,

Read/¥rite Key Manager

A

Write

1. Insert ¥ey in current buffer,
2. Write tuffer, if £ull,

3. <Call EFuffer Manager.

4. Wait User Task.

Read

1, Obtain Rey frcom current huffer, if
possitle,

2. Call Buffer Manager, if no buffer,
3. Initiate Read,

4, Wait User Task.

Buffer Manager

-

b.

Obtain or relinguish buffer from buffer
pool.

Call Core Banager,

B.

9.

10.

PAGE ¥20-///7

te If no buffers availatrle,

2. If buffer returned causes previously
requested memcry to be free,

Error Control Manager

a., Facilitate debugging aids.

b, Traps system eIroxs.

Subscript Function

The Subscript function will allow a user to
reguest a key from ap existing SET by
subscript, The user has three {3) options

for accessing a rveccrd by subscript,

a. Positive Subscript - Direct displacement
to key from relative key zero.

k. Zero Subscript - Resets current key
pointer to beginning of SET.

c. Negative Subscript - Sets current key

position to last key in SET or to
current key position -~ 1,

Resequence Function

As each write key reqnest is processed, the
write manager will test for a possible key
out of seguence. This is possible

within children/parent list operations,

The resequence function will first attempt
to resequence the keys within the current
user buffer, If it is determined that the
out-of~sequence key nust affect a previously
written reccrd, a OR =set will be opened and
a key that fits this criteria will te kept
in sequence in the Ok set,

The *'OR' set can fill a tuffer; if this
happens, the user set will he pseudo closed
and the OR set and the OR function of the
set manager will be involved.

OR Function
The OR function will be used to generate

a new set by CBing the user’s set with the
resequence 'OR*' set, An entry will be made

PAGE 4%*/AE3

into the LIST functions which facilitate
this requirement. Upcn completion of the
ney comnbined set, the SET NManager will
perform the fcllowing operations:

@8, Deallocate user's set,

b. Overlay user's SCE with the new combined
set's SCBH,

c. FRelease new cowrbined sett's SCB,

d. Release 'CRY get?'s SCR, (No
deallocation necessary; *'OR' set
maintained as single isternal huffer,)

Control %ill return to the ¥rite Manager for
twrite key completiont processing,

Reguirements Outside cf NLBOSET:

1.

2,

3.

by

5.

Before System Lcad

a. Primarv BLAR file initialization,
preformatting and description,

System Initializatiocon

a, Build tables,

b, Get number of records/grour,
c, Open BLAM data set.

Rcnitor

a. ¥WAIT with single ECB address,
I/C Manager

a. Write BDAM record using relative record
number,

b. FRead EDAM record using relative record
number,

System Shutdown
a, Close BDAF data set.
Logoff Processor and User Atend

a., Call to NIEBOSET to flush and erase

PAGE -?-2—:..1-/4171

user's sets.
7. NASIS Director
On return fror comwand processing modules,
a call to NCBOSET is necessary to release
buffers st+ill allocated and other clean-up.

g. Command Modules

CLCSE or FREE LIST can be used to close a
set and deallccate Luffer,

9. DEPAC

a. Provision to allow GET INDEX ELEMENT
forward, backward anmd by subscript.

b, Separate READ and GET pocinters which
are not maintained by the SET Manager.,
DBPAC must use read hy subscript to
maintain position,
f. I/0 Manager Linkade:
Entry Point: SETIC
B1 - Points to parameter list in core.
1. Parameters
a. DECB address (FHW)
bk, Relative record nunher {(FW)
2, DECB Contains:
a. Buffer Address
b. BRead or Write Flag
F. CODING SPECIFICATTIONS
1. Source lLanguage
Assemnbly language is used for efficiency.
2. Suggestions and Techniques
a., Yeeds on Set Manager

1. A request to set the GET cursor (current
key pointer) to the teginning of the

7.
8.
2.

10,
11.
12,

13.

PAGE *%3/‘!57

SET. (This call could he a pseudoc OPEN
READ,)

Subscripted read from a set,

Desian macros for call tc Set Manager.,

OPEX Processing

a. If OPEN SET READ is implemented, then
OPEN couléd return an error indicator
for involved COPEN, for CFPEN of KULL
file, and for SET OPENed successfully,

b 2 return ¢f a null entry when a SET
exists but no keys are present in the
SET.

Set Manager pust retain field name and
conversion routine nane,

Set Manaqer must check sequence of keys on
all WRITE's. F%hen a sequence error is
detected, a second list must be made
available in crder tc retain the keys to
bhe inserted. Whenever necessary, the two
One section may cross a sedment boundarvy.,
Conditional GETHAIN within NASIS.

Address of user's USETAB chain in user's
master table,

Clean-up exit in LCGOFF processor.
Relinqguish control macro.
Set closing fencticn SCLOSE,

A1l sets are closed by return to director,

A

GET
PUT SET
SET
NDBOSET : | jﬂ
——_ﬁ ER
SEGMENT TABLE NASTER ik
— SECTION LOCK TABLE

[MASTER BIT TABLE

_ﬁgl SET CNTRL | USER BIT UBT _9[UBT
BLOCK TABLE I EXTENSION n, EXTEN |
BUFFER POOL

| @IBUFFER . 1 2 | 3

Figure 1. I/0 BLOCK DIAGRAM

12

16 .

20
24
28

32

36

40
44
48
52
56
60
64
68
72
76

80

84

MNXTAL

ADDRESS OF NEXT SEGMENT TO BEGIN ALLOCATTION

MBGNMBT

BEGINNING ADDRESS OF MBT"

MENDMBT

ENDING ADDRESS OF MBT

MISECLCK

ADDRESS OF THE SECTION LOCK TABLE

MCURBUF

ADDRESS OF THE CURRENT BUFFER IN THE POOL

MFRTBUF

ADDRESS OF THE FIRST BUFFER TO POOL
. MNUMBUF .
NUMBER INTERNAL BUFFERS

MNUMSEG

NUMBER OF SEGMENTS"

Tabl= 1, .

MREGRP MBUFSIZ
RECRODS PER GROUP _BUFFER SIZE
MRECSIZ
RECORD SIZE

MASTAB

147

12

16

20
24
28
32
35
40
44

48

52

36

60

- 64

68
72
76
80

84

4y

_ 1 BYTE pER SECTION ~ EACH BrT EQUAL 1 GROUP

Table 2. MASTER BIT TABLE

12
16
20
24
28

32

36

40
44
48

52

56

60
64
68
72
76
80

84

MSTB

/449

MSALOC

MSSECNO

MSSEGAD

ADDRESS OF NEXT SEGMENT TABLE ENTRY

Table 3.

Master Segment Table

12

16

20
24

28

32

36

40
44
48
52
56
60
64
68
72
76
80

84

1 BYTE PER SECTIORN '"FF' INDICATES

ALLOCATION IN PROCESS

Table 4,

Master Secrion Lock Table

12
16
20
24
28

32

36

40
44
48

52

56

60
64
68
72
76
80

84

WEY)

BUFLOCK —

BUFNEXT ADDR OF NEXT BUFFER

BUFFER o o |
BUFFER EQUAL RECORD SIZE (FULL WORDS)

Table 5. BUFPOOL

12

16

20

24

28
32

36

40

44
48
52
58
60
- 64
68
72
76
80

84

| ‘_/5'2,

SNXTSCB
ADDRESS OF NEXT SCB

SUBTDIS/SCURUBT .

UBT DISPLACEMENT/ADDR OF CURRENT UBT

SCURBUF
ABDR. QF CURRENT,BUFFER

SCURKEY
ADDR OF CURRENT KEY

SFLD NAME

SCON RTN

'|NUMBER KEYS PER REC

SBGNREC SENDREC
BGN LOGICAL REC NUMBER ENDING LOGICAL REC #
| SCURREC SNUMREC
CUR LOGICAL REC NUMBER NUMBER RECS WRITTEN
SKEVREC SKYLSTR

NUMBER KEYS LAST REC

NUMBER GRPS PER ALLOC

SKEYLNT SCNTRL ,
KEY LENGTH CONTROL BYTE
SNUMGRP SRECCUR -

GET-RECORD CURSOR

SUBSCRPT

SCBDECB

Table 6. SCB

12

15 .

20

24

28

32

36

40
44
48
52
56
60
64
68
72
76

80

(55

SPRVIIBT
SNXTUBT _

ADDRESS OF NEXT yUBT EXTENSION E
UBTSECRD . -UBSTALCTL UBTALMSE
SECTION NUMBER ___ CONTROL BYTE ALLOC MASK

BCBPRKEY

255

Table 7.

UBT

BYTE

BIT [
POSITION

/5

CONTENTS

Contains section number frdm which group(s)
(Byte 3) were obtained,

Not Used .
Initialized to zero when UBTE created
NUMBER OF GROUPS Allocated by this entry.
Initialized to 1 when UBTE created
CURRENT GROUP (Bit Position)

|Being filled (write) or ACCESSED (READ).

CONTAINS GROUP(s) ALLOCATED WITHIN THIS
SECTION. : :

TABLE 8. USER BIT TABLE ENTRY

e W e Vs S

4 r RY l
v /Master Bit Table Block
FamErah ™~ \SEC 1 SEC 2 SEC n [;SEC 1 SEC 2 SEC n
i
/ L | a
SEG 1 ' _USER BIT TABLE BLOCK
I SEC 1 I SEC 1]
& .)
Mo
\'4
Group
+ |REC 1 SEGMENT 1
S Y DU A T A I :
‘ REC 7 o SECTION 1 .
TR ST GROUP 1 8 t/ ti‘ '
- - groupt/sections
O -E’t_. . RE RD l N bl :
SEG 2 — A ! co —- system variable
KEY 1l -- set variable
. A
e e g s . REC n-

SEG n.

2e/

TABLE 10. FILE RELATION SHIPS

/56

INITIALIZE

GET PHYSICAL
i ECORD SIZE

!

DETERMINE
HIGHEST
RECQRD # .

!

;DETERMINE
! FIRST RECD |
| # ON EACH
LDEVICE (SGMT)

|

i
ki
(WRITE THESE
JPARMS INTO
}SPECIAL

FILE TO RE

f

i
Y

EPREFORMAT
iUSING

READ AT SYSTEM LOAD

o
7
o=
=

Figure 2.1 FILE INITIALIZATION
(Must be done before system load)

_ /577
(KLLOCATIONj
3 o

o

&
; GET ADDR OF

BGN. OF MBTL

¥
GET ADDR.
OF NEXT SEG
TO ALLOC,

-

INDEX MBT
BY SEC. NO.

v

GET ADDR,
OF TRT TBL.
FOR GRIDI,]

lzl_ibw :

\\\\\End of i RESET ADDR
T TO BGN OF

]Aval Functlon MAT

3

ﬁ?“"
HL
b

WAIT

ALLOC.BITS
1 IN MBT RSET
SEC.NO.LOCK
BYTE,

SET UBT.
SEC.NO.
ALLOC ,BYTE

-
S A

SET NEW SEG
ADDR IN MHT

M-

ALLOCATE
SCG

i

INITIALIZE
UBTB PTR
KEY LENGTH
. KEY_PTR

SET BITS

IN CONTROL

BYTE OF
SCB

.

'DETERMINE
OF GROUPS

PER ALLOC.
. FOR_THIS

. ____1SER

/5

/54

SET CURRENT
RED#EQUAL
TO FIRST
. ___RED#

!

' i
POSITION KE;
PTR TO 0O .

Figure 2.4 OPEN- READ (Internal)

la
(o}

GET
SUBSCRIPT

?

4
 DIVIDE BY
KEYS PER
RECORD

SET CUR
KEY CURSOR

GET PREV |
REL RECORD
UMBER
4 — STORE NEW
- ' REL-REC # &
NOTE .o e s it EY CURSOR
The remainder in- | Remaindesr DIVIDE BY !
dicares the record 5 ' t =41 RECORD PER .
position within the | h GROUP
current ‘group P .
~NOLE ey ,
This develops a neg- ' SUBTRAGCT |
ative or positive ; PREV.REL~
displacement from REC # FROM |
the previous record. ' |CUR REL-REC,
T e ' .
_NOTE ey Y =
If this exceeds the limits ADD TO
of a group (Oton where N j ' REMAINDER
is the number of record E """ 0F CcuRr REL
per group-1l) Then a new [REC{DIVISION)
group must be found : { e
2 b
(0) Figure 2.5

J

]
NOTE i

SET CUR,
KEY
CURSOR

ADD NEGATIVE OR PQOS-
ITIVE DISPLACEMENT
FROM PREVIOUS REC.

FFER

\\éiTOCATE 0 g

CALL
GETBUF

5\

THI
A WRITE ™ _NQ

s

{YEs

CALL
READ

;RET;%E>Q

N~

Figurg 2.6

WAIT ~

ze

_m

3
S

s
N
4

l GET DISPL.
| INTO CUR
| UBT EXT.

GET ADDR

OF CUR UBT
ENTRY

GET POINTER
TO THE CUR
[GROUP

h

k4
GET GRP?P
MASK

}

SHIFT ToO
NEXT GROUP

|
N
F SEC-

TION -~

"
e

oy

i3

NO
5
[DEVELDP

LOG REC#
(Sec.No 8
GRP N)

(B

!

Figure 2.7 NEXT GROUP ROUTINE

[63

GET DISPL
INTO CUR
- UBT EXT

GET ADDR OF
PINEXT UBT
_ EXT.
5 —
INCR DISPL | - %ET_DISPL. .
TG NEXT UB | IO FIRST UB¥
ENTRY NTRY -l
B ¥
GET ADDR
OF NEXT
UBT ENTRY
4
. k4
SET GRP
POINTER TO
1 !

Figure 2.8 GIFT NEXT SECTION

Figure 2.9

GET NEW
REL REC #

]

SET DISPL.
TO FIRST
UBT (1)

—

b

GET ADDR.
OF UBT
ENTRY

-

.

GET UBT
CONTROI,
BYTE

b

CLEAR EXTR
RBITS

|

.

MULT
BY NUM
RECs/GRP

1

SUBTRACT
FROM REL
REC #

T
/’fﬁ“\\\
3_;\

R

4

164

COUNT
EGATIVE

4
INCR.DISPL.

TO NEXT UBT|.
ENTRY

%[COUNTER

SET DISPL
{ TO FIRST
NBT ENTRY

oy

BET CUR..
UBT ADDR
TG NEXT

L EXIT.

/‘L\

|

- 5 e
2/

Figure 2.10

Figure 2.11

/66

SET GRP.
POINTER TO

1
GET GRP,
MASK

[SHIFT MASK:
TO NEXT GRP
“1INCR GRP |
{POINTER o
&

. -
ol

YES

SUBTRACT
NUM REC
FROM REL-
REC_#

|

S .
COUNT YES
NEG?

e

g

RESET
COUNT

T ey S

S
DEVELOP 1
i
|

LOG REC #
SEC NOX8+
GRPXN

START

/;l/ TN
! RETURW

' OPEN7

READ

/67

URR\;%- yES o CRITE |
E J
- XES s LAST

-BUFFER? . BUFFER [

WRITE
1/0

%NO
“

i

CALL

—% & FREERUF

i

¥
SET CONTR&E
BYTE.MARK
Lfs READ

ONLY

(RETURN

Figure 2.12 CLOSE (Internal)

. CALL
FREEBUF

- GROUPS M
- NABTAB

+tUBTB
EXTENSIONS

o

SCB

Figure 2.13 ERASE (EXTERNAL)

169

{ , ;
| THg}‘\\ MARK BUFFER
: ANS;?%&»/” —¥ BUFFER Eca

—
L
INCOMPLETE |
lf/ |

MARK BUFFERI - .

ECB AS o S—
ECOMPLETED]

!

]
f‘/g\
{ RETURN)

i
('_,_ /

Figure 2,14 GETBUF (Internal)

170

LUNLOCK
‘BUFFER QUEVE

ENTRY

|POST BUFFER
WAIT ECB
{COMPLETED
f

‘: T TR R U —

o

-RETURN)

e

Figure 2.15 FRFTPUT (Internal)

/7]

READ MASTE

SET FILE
PARM. FROM

L SETCRTL

GET SET
PARM, FROM
"EXEC"
CARD

k- 4
BUILD
MABTAB
STORE
ADDRESS

4

OPEN BDAM | . &
MASTER SET | _ ’
FILE.

/

|SET LAST

R ADD.OF BUF
| -~ {POOL IN:
GET BUFFER HARTAS
POOL USINGH# |]

BUF FROM
EXEC CARD

{SET BEGIN 5 PUT # BUF j

- |ADDRESS OF 5 |IN FREE !

l BUF POOL . BUFFER E
' MABTAB ; COUNT

INIT BUF
TR.& BUF
PARMS 1IN
3 SET SECTION} {SET BIT i 'SET FREE
%m—a——%$?OCK TABLE ~—~%TABLE TO t—~¢BUF COUNT %nl

- -fo 00" } |x "FF' a lBYTE X '00']

b !

!

Figure 2.16 SYSTEM LOAD

PAGE 125 /77

TOHC B.9 - SET FILE I/0

R

C.

MODULE MANE:

Program-ID ~ NDBSETIO
Rodule~ID - DRSETIO

ANALYST

Tom C.

Moser

Beoterics, Inc,

HODULE FUNCTICN

This program is called by the RASIS Set Manager

DBOSET to access the set file, Passed in register

one will be the address of the parapeter list containing
a word for the address of the DECE, a word for the
address of a buffer, and a word containing the actual
relative record number to read/urite.

DATR REQUIRENENIS

1. I/0 Block Piagram

See Figure 1,

2. Input Data Sets

doe

Ce

d.

Parameter Cards

Not Applicable

Punched Card Ingut Files
Input Files

The Set File is accessed by the program to
write or read a record of set items.

Qn-Line Terminal Entries

Not Applicable

3, Output Data Sets

Ads .

r.

Output Files
The Set File is accessed by the progranm,

On-Line Terminal Distlays

Not Rpplicable
c. Formatted Print-Outs
Not Applicable
d. Punched Card Cutput
¥ot Applicable
4, Reference Tables
Not Applicable
Fs PHOCESSTHG RECUIREMENTS
1. Top Level Flowchart
See Figure 2
2. VNarrative
After initial hounsekeering, this module
to see if the setfile is open. If not,
ovened, After the open of the setfile,
is checked to see if the orern conpleted
successfully, If not, an error code is

R15 and the module returns.

If upon entry to this module the DCE is

PAGE /73

checks
it is
the DCB

set into

already

open or after a successful open to the DCB, the
parm list passed is validated for proper data.
Depending on the bhit settings in the DECB, a
read or write is perfcrmed to the setfile using

the parameters passed,
F. CODING SPECIFICATIONS

1. Source Languaqge

The module is writtesn in IBM Assembler languaqge.

7. Suggestions and Technigues

Not Applicable

174

DBOSET

DBSETIO

Figure 2, I/0 Block Diagram

175

. DBSETIOC

N OPEN
- SET FILE

i

ERROR {

CODE)

READ
‘ s
ISSUE READ% ISSUE WRITE
TO SET FILE . |TO SET FILE
WITH PASSED WITH PASSED |

DECR J LDECB j

{ RETURN i

Figure 2. TOP LEVEL FLOWCHART

PAGE 127 [/7(,

TOPIC B, 10 - PIELD UTILITIES

A, MCDULE MNAME:

Frogram=IL: NDBFLDU
Module-ID: DEFLDU

Ba. ANWALYST
Hilliam Petrarca
C. MODULE FUNCTICN

NDBFLDU surpports retrieval modules regquiring various
field~-related functions previously provided with the
FLDTAB table of NASIS/TSS Release 2, The four basic
functions are described in the fcllowing paragraphs,
each representing an entry point,

1. Field classification - FLDCLAS

This function returns pertinent infermation about
a particular field, The field is classed as to
{1) invalid, (2) anchor-resident, {(3) associate-
resident, (4) subfile-resident, Furthermore, the
subfile character of a sutfile or control field

is provided, along with a tit switch indicating an
indexed field.

2. Fipd control field nagpe~FLDCTIRL

This function returns the name of the control field
for a provided subfile character or subfile field,

3. Fipd ¥key field name-FLIDSKRY

This function provides the name of a Xey field for
either the anchor file or a subfile,

4, Get seguential-format field name-FLDGET -

This function returns the next field name in

the predefined seguential formats 2 thru 5, The
calling routine provides the subscript field
nunber.

This function has an inverse capability of
providing a subscript field number for a given
field nanme,

All entry peoints will be called via PL/Y
conventions.

D.

E.

PAGE 128 [77’]

DATA REQUIRERENTS:

1.

3.

4,

I/0 Bleck liagran

Not Applicable,

Input Data Sets

.Not Applicable

OQutpat Data Sets

Not Applicable

Reference Tables

-

b.

Cas

Mainline File Ccntrcl Bleck

(MFCB) is setup by DBPAC and containmns
database file status switches and pointers
to the descriptor table and the file control
block (FCB) for each file. NIBFLDU merely
references this bleock to return the proper
field information,

Descriptor Tables (DESC) are the internal file
descriptors; these tables contain information
concerning each field on each data hase file,
DBPAC links Aescriptor tatles' field

elements consecutively, similar to the fields
seguential order in the criginal FLDTAB with

a pointer named DESC.FLD,¥CP which points

to the next DESC,FLD in the chain, NDBFLDU
utilizes this linkadgde for the FLDGET fuynction.

Field table (0S version)-FLDTABR contains basic
informatiocn cencerning the fields of a data
base. NDBFLDU references FLDTAB.FIELD.# to
verify the total number of fields on the data
base,

Please refer tc the Data Set Specifications for
each of the individual tables for details,

BEROCESSING RECUIRENENTS

1.

e

Top Level Flowchart

See Figure 1

Narrative

Ce

PAGE 429 /7 ¢

FLDCLAS

This routine looks for a LESC,FID.FLDNAME in
the file descriptcrs identical to the
parameter field name., ¥hen it is found,

DESC, FLD, GROUP reveals the file of residence,
Super~-fields have DESC,.FLD.NAMECNT greater
t+han vero. The DESC,FLD,ASSOCFIL byte flags
associate file fields., The DESC.F1D, SUBCNTEL
byte is set on for control fields and, likewise
for inverted fields with the DESC.FLD.INVFILE
byte, Consequently, the parameters are set
as follows:

parm 1: the HPLCB

parm 2: @ - invalid field
1 - ancher field
2 -~ associate field
3 - sukfile field

parm 3: the field nane,

parm 4: either a subfile field character
for sukfile fields and cantrol
fields or a hlank for non~-subfile
fields.

parm 5: a bit on for indexed fields,

FLESKFY

This routine searches for the file descriptor
whose MFCB,FILE_NAME ends with the supplied
subfile character, Once found the file
descriptors contain the key field name in
DESC,FLD{t), PLODNAME, Consequently, the
parameters are set as follows:

parm 1: the MFCB
parm 22 0 =~ umsuccessful call
1 - successful call
parms 33 the key field nare
parn 4: the file suffix character

FLDCTEL

If a field name is given, this routine performs
an internal f£ield classification to get the
field names subfile suffix; if a subfile suffix
is provided, this routine proceeds as normal,
The field descriptors for the anchor file are
searched until DESC.FLD,SUBCNTRL is on and
DPESC.FLD.SUBFILE is the same as the suhfile
suffix. Ccnsequertly, the parameters are

set as follows:

d.

PAGE 179

parm 13 the MFCER

parm 2: 0O = unsuccessful call
1 - successful call

parm 3: the contrcl field name for the
suhfile,

‘parm U: the suffix of a subfile,

FLDGET

This routine performs twc functions, By
providing a field subscript nusher to the
standard format # list of fieldnames, the caller
can obtain the particular field's name in any
order. Inversely, hy providing a valid field
name, the caller can get the particular

field's subscript number in the format 4 list.

Fer the former furcticon this routine loops
down the DESC,FLD.FCP gointer chain the

nuaber of fields gpecified in the given field
nunbher; the final DESC.FLD.FLIDNAME is returned,
For the latter function the same chain is
followed with a ccmparative check for the
given field names having teen fcund, the
subtscript number is returned.

parm 1: the HFCB
parm 2: the field numter
parm 3: the field name

F, CODING SPECIFICATIONS

1.

2.

Source languaqge

The NDBFLDU coding is to emplcy the TIBM PL/I
programeing language.

Suggestions and Technigues

NDBFLDU is not to alter any MFCB or related tahles
to perforw its functicns s¢ as to guard the
integrity of DBPAC,

I4

——— A

- - ;””_“*"—_"“\ .
_ FLDCLAS _FLDCTRL J \FLDGET
I—— \-;.__..T_H, .

LOCATE
FIELD
DESC

FOR GIVEN

_ ;

LQCATE'DESf

FIELD NAME |
!

I
|

SET PARMS,. - ggggEFggWN
FROM DESC : -
FOUND > u CHAIN FOR
FDATA ~ -~ . ISUBSCRIPT
. N NO,OF PTS
| @ — (M J
f' RETURN) fSEARCH FLD . =KJ) i
D - DESC OF ANC - GET FIELD
HOR FOR SUB ;
" S/ SUFFIX
: : GIVEN/FND
i: ::"““‘\
r RETURN
LOCATE R ‘
FILE NAME (Ei) '
IN MFCB e’

'LHIIH]ﬂHEElX 1N

: ’ * ICHASE .DOWN

N bEsc.FCP,f

~ FOUND —H 'CHAIN FOR
\\\\\i = }FLDNAME

SET PARM. SET PARMS LIKE GIVEN
#2 TO FROM FIELD NAME i
_ ! . 1zERO DESC DATA : 1
{GET FIELD | |
| NANE FROM | § | | |
| 1ST DESC | v ¥
) |

! FOR FILE

’ |

| ' T
. {)

{ RETURN) TR

.

Figure 1. TOP LEVEL FLOWCHART kaﬂ)

pace 131/Y/

TOPIC B.11 - GENERAL CALL BY NAME

A. MODULE NAME:

Frogram-IT - NDECALL
dodule~ID - DBCALL

B. ANALYST

Tom Moser., ¥illiam Petrarca
Neoterics, Inc.

C. HODULE FUNCTICH
This module allows a PL/1 module to call an
external entry point by srecifying its name at
execution time, Any parameters other than the entry
peint name will be passed on to the called entry
point, The name specified must ccnform to the
construction standards of 0S/360.
D, DATA REQUIREMENTS
1. TI/0 Block Diagranm
See Figure 1,
2. Input Data Sets
a. Parameter Cards
Not Applicable
" b. Punched Card Input Piles
Not Applicable
¢. Input Files
The ESDTAB file is read in to build an
in~core table of entrv-rcints and their
addresses: RSDTAB is created tv the
stand-alone DRTABIE module.
d, On-Line Terminal Entries
Not Applicatble
3, Output Data Sets

Not Applicable

E.

paGE 432 [Y L

4, Reference Tables

TRODSECT - Terminal Regquest Table
METDSECT - Module Entry Tatle

PROCESSING REQUIREMENTS

1. Top Level Flowchart
See Fiqure 2

2. HNarrative

Upon entry the program checks for first time
entered., If this is the first time the progran
is entered, an initialization of tables is
tegun, Otherwise, the table initialization is
bypassed,

The first table bunilt is an in-core duplicata

of the ESDTAB data set which has been sorted

by DBTABLE, a stand-alone program. The table
contains all the external symbols of the HNASIS
load module in alphabetic order along with the
relative offset in the module and the segment
nuomber the external symbol resides within. A
segment greater than 1t implies a transient entry
point.

The second tabtle built is a quick index of first
letters into the first table huilt, %hen this
table is built, initializatiocn is complete,

The reguested entry point is ncw locked for in
the in-core ESDTAB, 1he index table is used
to position the first ESDTAE entry to tegin
searching.,

If none is found, a diagnostic is sent to the 08
operator and a return is made to the calling
program.,

Upon finding the reguested entry point, its
segment numher is checked to determine
transiency.

A non-transient module can be called (branched to)
impmediately; therefore, the registers are set

ugp for any parameters and the call is made.
Aftervards, the caller is returned to,

A transient module must be made resident before
being called. This is accomrlished by putting

PAGE 433 /{7

the entry point to be loaded into TROHCDRQ of the
TRQDSECT and calling the MTTCALL entry in the
monitor {(MTISUP),., VUpcn return the requested
nodule will have been loaded and its address will
be in METENTRY of the METDSECT pointed to by
register 9,

This program also maintains the number of users
for any lcaded transient meodule. To do this the
METUSERS field in METISECT is incremented hefore
the contrecl is passed to it.

The registers are set up for any parameters and
the call is made,

Opon retuarn from the transient module the METUSERS
field is decremented, Furtherwrore, the TRCMODRY
field is blanked out to show no tramsient activity
for this terminal,

Finally the caller is returned too,

F. CODING SPECIFICATICRNS

1.

2,

Source Language

This module is written in IBM Assembler language for
speed and efficiency,

Suggestions and Techniques

The initialization process must be uninterruptable
to prevent reentrance during its cccurrence; the
MTTRDST function shceuld be emyloyed to facilitate
this.

[TERHINAL

\

ANY

APPLICATIO

PROGRAM

ESDIAB |~ gy

DBCALL

I

;- 4

|
|

f,f”/ﬁTRQDSEC

PROGRAM
TQ BE
CALLED

TABLE

METDSEC
TABLE

Figure 1, I/0 BLOCK DIAGRAM

[74

. DBCALL

BUILD TABLE
OF ENTRY
PTS.FROM
ESDTAB

BUILD AN
{INDEX FOR
ENTRY PTS.
TABLE

(D—

SEARCH FOR
EQUESTED
NTRY PT.

|

' 1
CALL MTTSUP
TO LOAD
MGDULE

|

INCREMENT
USER TALLY
FOR MODULE

REGISTERS

SETUP

BRANCH TO
NTRY PT,

| PECREMENT

USER TALLY
FOR MODULE

SEND
N DIAGNOSTIC
FOUND? > 10 0s

'\\\\\ o GPERATOR..

: A RETURN
_ _ RE

ISETUP
{REGISTERS. _
{BRANCH 'TO
:ENTRY PT.

|

. ‘wm'—‘\\
(, RETURN

e s et

Figure 2. TOP LEVEL FLOWCHART

95

PAGE 434 /¥ (

TOHC Cu1 - UTILITIES JOIN (RCEJOIN)

A, NODDLE RANME
Joining new NASIS users
Program-I1ID - NDBJOIW
®odule~-IL : I[BJOIN

B. ANALYST

Edward J. Scheboth,rar.
Neoterics, Inc,

C. MODULE FUNRCTICH
This prcoram gives the NASIS DEA the ability to create
and maintain the data set NASIS.USERIDS which <contains
the NASISIDS under which users of the NASIS system are
given access to MT/T, the Retrieval system and +the
varicus datarlices. The data set HNASIS,USERIDS is
organized under ISAM, and has as a key the eight byte
NASISID of each joined user, #«ith a variable record
format containing his password, timeslice, user
anthority, apd list of permitted files,
This program has as a secondary function the task of
displaying for DBINIT the files available for retrieval
to a specific user,
D. DATA REQUIREMENTS
T, I/0 Block Diagranm
See Figqure 1
2. Input Data sets
a. Parameter cards
Not Applicatle
b. Punched Card Inrut Files
Hot Applicable
C. Input Files
The NASISIDS data set, {For conplete
detailed specificaticons of this file see
Section IIX of the Development HWorkbook).

d. on=line Terwminal Entries

3.

pagr +35~ §¥7

Valid JOIN ccmeands.
Output Lata Sets
a, Cutput Files
See 2.c
b. On-line Terminal Disrlays
See 2,4
Ce Formatted Print Outs
Fot Applicable
d. Punched Card Outpnt Files
Not Applicable
Reference Tables

Not applicable

PROCESSING REQUIREMENTS

1.

2,

Top lLevel Flowchart
See Figure 2
Narrative

The primary entry toint of this progras (DBJOIN)
is respensible for maintenance and display of the
NASIS.USERYIDS file, It is necessary that +this
file be safeguarded from tampering and it
therefore should be rasswerd protected,

The main routine should have a prompt validation
locp which calls the subordinate functions such
as Join, OQuit,.. etc, making the program more
modular and much easier +tc¢ wmodify. T¢ enhance
speed of the system these calls shouyld not bhe to
internal procedures bhut should he pseudo calls set
up using the extensive facilities of +the PL/1
preprocessor to simulate these calls,

Program termination should te thru the common END
convention set up in TS/2, All parameters to the
comnands shall bhe ohtained using the new TS/2
facilities,

The proper value of the first parameter signifies

pacE 436 /Y

this module is to display the availatle files for
DBINIT, This is really a sut function of the main
routine's Display function and paqing entry and
should he coded as such to facilitate coding,

F. CODING SPECIFICATIONS
1, Source landuage

s puch as pessible of the RDBJOIN module is coded
in the IBA PL/1 programming language. The input
and output coding for accessing the file
NASIS,0USERIDS is handled bty a direct call to the
DEPAC assembler routines, 211 terwinal access is
handled by TS/2.

2 Suggestions and Teckniques

Refer to Section 111 of the Levelopment Workbook
for all data set specifications,

TERMINAL

CONTROL

{NDBINIT

NDBJOIN

¥

NASIS
\USERIDS

Figure 1. 1/0 BLOCK DIAGRAM

/94

DRIOIN

PROMPT
AND
VALIDATE

PASSWORD

PROMPT
FOR
FUNCTION

T

VALIDATE
FUNCTION
OR END

UPDATE?,,

UPDATE
SUB
FUNCTIONS

Figure 2. Top Level Flowchart

/90

PAGE 439 /4 /

TOHC C.2 - ESD TAELE GENERATOR

A.

B.

C.

MODULE NAME

Erogram-ID: NLETABLE
Module-ID: DETABLE

ANALYST

Tomn €. Moser, ®illiam H., FPetrarca
Neoterics, Inc.

MODULE FUNCTION

This module reads the comrposite extermnal symhol
dictionary (CESD) of the KASIS lcad module to
generate an ordered ESDTAF file to be used by

DBMTAB (to generate the MODTAB file) stand-alone

and by DBCALL (for general call ty name} of execution
time-

DATA REQUIREMENTS
1. TI/0 Block Biagrém
See Figure 1,
2., Input Data Sets
a., Parameter Cards
Rot Applicable
b. Punched Card Input Files
Not Applicable
c. Input Files

Y, DINAME MOLULE: This file is the load
mcdule from which the CESD is to be
processed,

2., DDNANME SOBTIN: This file is built by
this medule from the CESD; it contains
the external symbol name, its segment
nusber, and its relative offset. LRTABLE
then calls the 0S Sort facility to sort
this file, After the sort this file is
rewritten to form the ESLTAR file,

3. DDRANE SORTCUT: This file is the ontput
file from the 0S Sort facility. It is

E.

pace o /9L

Tread hy DBTABLE following the Sort,
4, Sort work files: These files are used by
the IBM OS5 Sort utility, Refer to the IBH
Otilities Mangal for details.
d. On-lipne Terminal Eintries
Not Applicable
3. Output Data Sets
a., Output Files
1., DILYANE SORTIN: This file is inpnitially an
output file. After teing processed by
the Sort facility, this file is rewritten
to hecome the final ESDTAB file,
2. Scort work files used by utility.
3, SYSPRINT: Sort Diagneostics,
b, On-lLine Terminal Tisplays
Hot Applicable
¢, Formatted Print-Quts
Not Applicable
4. Punched Card Output Files
Kot Applicable
4, Reference Tables
Not Applicable
PROCESSING REQUIREMENTS
1. Top level flowchart
See Figure 2,
2. Narrative
On entry LBETABLE opens the MCDUOLE and SORTIN files
and writes a dummy {zeroes) record to the SORTIN
file; this reccrd will be unsed later for control
information in ESDTAB., Then the lcad module is

read to get all BSD-type records. Each ESD-type
record is written to SORTIN, Having read all

PAGE Wt /43

needed records, DETABLE attaches the Sort utility
to sort the external sywhbols in the ESD records,
Bhen the sort is finished, SORTOUT file has the
sorted ESD records. This file is read into core,
The segment and offset information are posted

into an ESDTAB reccrd with each external symbol
name, rendering a 32-tvte ESLTAB record - B bhytes of
name, 8 bytes of data, and 16 bytes of zeroes.

The SOBTI¥ file is re-opened for ocutput; the first
record written is 8 bytes of zerces, followed by

4 bytes of total records in the ESDTAB file,
followed ty U bytes of total segment 1 csects
found in the CESD, and followed ty 16 bytes of
zeroes, Then all the ESDTAB records are written
from core,

. CODING SPECIFICATIONS

1.

2,

Source Language

DBTABLE i:s written in 057360 Assenbler
language.

Suggestions and Techniques

Not Applicable

/74

LOAD

MODULE
CESD

DETABLE

SORT

Figure 1. I/0 BLOCK DIAGRAM

‘ DBTABLE }

OPEN MODULE
AND SORTIN
FILES

SORTIN
RECORD

READ ALL
CESD RECS.
FROM MODULE

FILE,WRITE
TO SORTIN

ATTACH
SORT,
WAILT ON
ECB -

DETACH
SORT

FORMAT
SORTED
RECORDS
FOR ESDTAEB

WRITE
ESDTAB
RECORDS
sORTIN
ILE

RJRITE DUMMY{

RETURN

/75

‘Figure 2. TOP LEVEL FLOWCHART

PAGE 2 /9(,

TCEHC C,3 - MCDULE TARLE OTILITY

A,

B,

Ce

P.

MODULE NAME:

Program=I1ID - NUBMTAB
Module-ID - DEMTAB

ANALYST

William H, Petrarca
Neoterics, Inc.

BCDULE FUNCTION

This module runs stand-alcne to process records from
the ESDTAB data set {(created By L[ETABLE) and generate
records for the MODTAR data set. The MNCDTAB records
are then used during the initialization of the NRSIS

monitor,

CATA REQUIREMENTS

1.

2.

I/0 BLCCK TIAGRANM

See Figure 1,

INPOT DATA SETS

da

b,

Cs

Parameter Cards
Not Applicable
Punched Card Input Files

SYSIN - This file is used to convey the
number of reqions the MOETAB data set is
to have addresses and seqment nuebers for
per transient (non-segment 1) modanle, If
this file is omitted, three regions are
assumed, This file shonld ccntain one
card with the syntax

REGIONS = 1

wvhere i is the number of regions 1, 2, or 3,
The keyvword can start in any column,

Input Files
This module reads the ESDTAB data set created

by the TBTABLE module; it expects a DDNAME
of ESDTAB,

E.

3.

4

PAGE 3 /4]

d, On-Line Terminal Emtries
Ron Applicable

OUTPUT DATA SETS

a. Output Files

This module creates the MCDTAB data sat:; it
expects a DDNAME of MODTAE for this file.

The SYSPRINT file is used to provide
precessing information either assumed or
received from the input files., Also,
error diaqgnostics appear on this file,

b. On-Line Terminal Tisplays
Not Applicable

Cc, Formatted Print-Quts
This module provides a copy of the information
written to MODTAB on the SYSPRINT file, For
each mcdule processed, the tipe linmit,
region offsets, and seqment members per
reqicn are written in tatular form. All
valyes are decimal,

d. Punched Card Output Files
Not Applicable

REFERERCEL TABLES

Hot Applicable

PROCESSING RECODIREMENTS

‘1'

2,

TOP LEVEL FLOWCHART
See Figure 2.
NARRATIVE

Upon entry this program attemrts to open the SYSIN
file, If the open is successful the first card

is read in and interpreted for the 'REGIONS?
keyword value., TIf the value is nct greater than
one or not less than four or SYSIN could not be
opened, a default value of three regions is
assumed,

pace /99

The first ESDTAB record is read, This record
contains the numhber of remairing ESDTABR records
there are to read.

A1l the ESDTAB records are read, Only the CSECT
external sysbols are checked and only those with

a blank, '2%, or *3* 3as the €igth character. This
test provides all ncn-segment-one csects; i.e.
transient csects., Having fcund one, the progran
saves the ESDTAB record.

When all ESDTAB records have bkeen read, then the
MODTAR file is opened and a dummy fixed record
is writter.

211 the saved ESDTIAR records are sorted so that
the csects with a blank eighth character are in
alphabetical order followed (each) by their 12*%
and *3' suffixed counterparts, ¥or example,

DBAAAA
DBAAARAZ
DBAAARS
DBCCCC
DBCLCC2
DBCCCCI
etc,

After being ordered in this fashion, the data for
each module and its '2' and *3* corresronding csects
are combined into one MODTAB record and written out.

Concurrently, the same MODTAER information is written
to the SYSPRINT f£ile in tabular form,

The MODTAB file is closed and recpened, The first
record is read and £illed with MODTAR number of
records and number of reqgions used; the first
record is rewritten and the file closed,

F. CODING SPECIFICATIONS

1.

Source Lanquage
This module is written in IB® PL/I language.
Suggestions and Technigues

Not Applicable

ESDTAB

DATA
SET

SYSIN

EIDBMTAB

TABLE
PRINTOUT,
DIAGNOSTICS

Figure 1. I1/0 BLOCK DIAGRAM

READ WRITE FIRST
' REGIONS MODTAB REC |
INFORMATION AS DUMMY

SEARCH
SAVED ESD
RECS., FOR A
"|MODULE PER
ASSUME { REGION
3 i
REGIONS |
. | FORM REGION
%F- . INFO. PER
: ‘ : MODULE INTGQ
READ FIRST : 1 MODTAB
ESDTAB REC.
RECORD :
WRITE
MODTAB
RECORDS
{PRINT
MODTAB
~ INFORMATION
READ AN ‘
ESDTAB
RECORD

REWRITE 18T
MODTAB REC,
WITH

{STATISTICS

(RETURN)

Figure 2. TOP LEVEL FLOWCHART

SAVE ESD
RECORD

PAGE 44520/

TOFIC C,4 - SET FILE INITIAIIZATION
A, MODULE NAME:

Programn=ID - NDBSETI
Hodule~ID - DBSETI

B, ANALYST

Ten C, Moser,
Neoterics, Inc.

C., MODULE FPONCTICN
This module rups stand-alcnre to attach the SETINIT
module to pre-format the Set ¥ile; this module also
creates the Sets Informaticn File,
D, LATA REQUIREMENTS
1. I/0 Block Diagram
See Figure 1
2., Input Data Sets
Not Applicable
3. Output Data Sets
a. Output Piles

This module creates the Sets Information
File.

b, On-Line Terminal risplays
Not Applicable

c., Formatted Printcuts
Not Applicable

d. Punched Card Output Piles
Not Applicable

4, Reference Tables
Yot Applicable

P, PROCESSING REQUIREMENTS

1.

PAGE

Top Level Flowchart
See Pigure 2
Narrative

This nmodule attaches the SETINIT module to
pre-format the Set File. The attached sub-

task will abend with a completion code of

D37 or B37 signifying the end of the

allocated space was encounter<d. Concurrently,
the SETIRIT module updates the VCLTBL table.
When the attached sub-task finishes, DBSETI
opens and writes the data in the VOLTBL table

to the Set Information file., After closing this
file, the module returns,

F. CODING SPECIFICATIONS

1.

2

Source lLanguage

This module is written in IBM 057360 Assenbler
language.,

Suggestions and Technigues

Not Applicable

A2

c

DBSETT

Figure 1., I/0 BLOCK DIAGRAM

203

‘ DBSETI]

1 ATTACH
SETINIT

WAIT FOR
ATTACH TO
COMPLETE

"IWRITE SET
FILE DATA

IN VOLTEBL

TO SETS
INEORMATION]

FITLE ™

(RETURN)

Figure 2. TOP LEVEL FLOWCHART

104

page He+ 205

TOELC C.5 - SET FILE PRE-FORMATTING

A.

Ba

D.

E.

Fo

MODULE NANWFE

Program-ID: NSETINIT
Modale-ID: SETINIT

ANALYST

Tow C, Moser,
Neoterics, Inc,

MODUOLE PUBCTION

This module is attached by DBSETI to pre-format the
Set File. SETINIT writes fixed-length reccrds to

a one or pulti-volume PBDAN file until it runs out

of space, abending with a D37 or R37 completion code,
While the BDA¥ file is bkeing pre~-formatted, the
VOLTBL table is kept current with the Set File data,
Control is returned to CBSETI.

DATA REQUIREMENTS

1.

2,

3.

4.

I,0 Block Diagranm
See Figure 1
Input Tata Sets
Not Applicable
Output Data Sets

This module writes fixed records toc pre-format the
Set File,

Reference Tables

Not Applicable

ERQOCESSIXG REQUIREMENTS

1s

2

Top lLevel Flowchart
See Figure 2
Narrative

See MODULE FUNCTION (C).

CODING SPECIFICATIONS

2.

PAGE

Source Languagde

This module is writter in IBM 057360 Assenbdbler
language.

Suggestions and Techniques

Not Applicable

200

SETINIT

Figure 1, 1/0 BLOCK DIAGRAM

207

(SETINTIT .).
(D—

WRITE
SET FILE
RECORD

UPDATE
VOLTBL
DATA

NOTE: MODULE WILL'ABEND WHEN SET FILE IS FULL

Figure 2. TOP LEVEL FLOWCHART

N

PAGE #& 749

TOFIC D,Y - MAINTENANCE, FREE-FCR® PAFAMETER FARSER
A, HODULE NAME

Frogram=-ID « NFPARN
Bodule-ID - FEFARM

B, ANALYST

Richard D, Graven
Beoterics, Inc.

Ce MODOUOLE FURCTIOWN
This routine reads in a card input file and parses
program parameters that are entered on cards with
Keywords, The Keywords are saved in a controlled
table with their parameter values.
. DATA REQUIRERMENTS
1. 1I/0 BLOCK DIAGRAH
See Figure 1,
2. Input Data Sets
a., Parameter Cards
Not applicable
b, Punched Card Input Files,

The user enters parameters fre¢form on the
sepin card input,

c, Inpot Files,
Not Applicable.
d, On-line terminal entries
Not Applicable
3, Output Data Sets
Not Applicable
3, Reference Tabhles

Keywords with their parameter values are saved in a
controlled structure,

PAGE

E, PFOCESSING RECUIREMENTS

1.

2,

Top level Flowchart

See Figure 2

Harrative

A

Ce

2,

Initialization

Initialize ccntrolled table cf keywords and
parameters to null,

Read Card

Read card and strip off leading and trailing
blanks., Save string in scrk area.

parse for Equal Sian

Search for egual sign if no equal sign, print
diagnestic and terninate. Save keyword in
keyword_Table., IF left paren, gqo to section 4,
Go to section e,

Hulti_comma_search

Loop through elements and save parameters
in tabtle,

Single_Field

Search for a comma., Save parameter in table,
Go to section b if no comma. Go to section c,

Hhen ne more input cards, return to caller.

F. CODING SPECIFICATIONS

1.

Source Language

The module is coded in IB# PI,/YI language,

Suggestions and techniques

Not Applicable

2(0

20l

pa
yd

MAINTENANCE
MODULE - CARDIN

NFPARM

Figure 1, I/0 BLOCK DIAGRAM

ENTER

ZATION

INITIALI-

PARSE

pARAMETERS

Figure 2.

i+ RETURN

TOP LEVEL FLOWCHART

/1

eace a5+ .2/3

TOFIC D,2 - MAINTENANCE, PRINT FILE RCUTINE

A, HMODULE NAME

Progaram-ID - NPRTFILE
Module-ID ~ PRTFILE

B. ANALYST

Richard D. Graven
Neoterics, Inc.,

C. HMCDULE FUNCTION
This routine prints the print line frem an external
contrelled structure to the sysout device which is
usually the class A printer for an 0S systen.
D. ©LDATA REQUIREMENTS
1. TI/0 BLCCK DIAGRAM
See Fiqure 1.
2. Input Data Sets
a., Parameter Cards
Not Arplicable
b, Punched Card input files,
Not Applicable
c. Inpat Files
Not BApplicable
4., On-line terminal entries
Not Bpplicable
3, Output Data Sets

PRTOUT is the only cutput dataset. This is a
CLass R print output file,

4, Reference Tables
External PRT structure is ysed to get the print

line, First tyte is the printer contrcl
character. MNext 132 tytes are the print line,

E.

F.

pace L/H

PEOCESSING REQUIREMENTS

1.

2.

Top lLevel Flowchart
See Piqure 2.
Narrative

Check for valid print control character. IF
not valid, set print control character to a
blank, ({=single space), Cecnstruoct print work
area from external structure. ¥Write the print
lipe. Return to caller,

CODING SPECIFICATIONS

1.

2.

Source language
The IBY PI/I language is employed,
Suggestions and technigues

¥ot Aprlicable.

MAINTENANCE

MODULE

il

NPRTFILE

-y

Figure 1,

CLASS A
PRINT

I/0 BLOCK

DIAGRAM

/5

ENTER

PRT~CTL
LI

Figure 2. TOP LEVEL FLOWCHART

2L

page 353 A7

TOHC D.3 - MAINTENANCE MAINLINE

A BODULE NRANME

Maintenance Mainline
Program=-I0 - NDBMNTH
Module-ID - DBMNTN

B. ANALYST

Richard ID. Graven
Neoterics, Inc,

C. MODULE FUNCTION

The Maintenance Mainline program 1is an independent
module which carries out any actual changes necessary
to correct, update, or expand the file. The specific
changes, which can be additions, deletions, or
replacenents, are accepted ty Maintenance in the fornm
cf transactions. The transacticns are kept on a data
bkase named 'TENSCT' and are created and maintained by
the CORRECT command,

The transactions can ke applied %o the data hase on a
record, field, or element lhasis, Those transactions
which are successfnlly applied to the data hase are
deleted. Therefore, after the successful completion of
a maintenance run, the cnly +transactions remaining on
the YTRNSCTY data base are those which need correcting.
The Maintenance Mainline acquires the necessary
statistics while executing and causes the "STATICY data
tase to be updated ({via a call +to WDBUPDST), The
faintenance ®ainline is run only in batch mode., The
restart capability of the paintenance runm is inherant
because of the deleting +transactions as they are
applied.

3 29 CATA REQUIRE®ENTS
1. I/0 Block Dilagranm
See Figure 1
2 Input Data Sets
a. Parameter Cards

Filename mnust te entered as 'PARMY on the
prcgranm execuote card,

b. Punched Card Input Files

3.

4,

Ce

d.

pace w54 2/9

Not Applicable
Inrut Files

The maintenance program regquires all of the
files which make up a data base as input to
the module,

A particular execotion of maintenance may
reguire any or all: of the individual data
files, depending wuron the makeup of the
transactions, %Whereas the files in a data
base are the s=curce ¢f the o¢ld or cuarrent
data for maintenance, the transaction data
base (TRNSCT) 1is the source of the new or
replacement data (i.e., the changes). The
corplete description c¢f the transaction queue
is found in the dataset specifications, The
transaction data base (TRNSCT) contains
inforpmatiaon cencerning +the data hase, file,
record, field and €lement to he maintained,.
as well as the type ¢f wmaintenance and the
new data.

Op=Line Terminal Entries

Nct Applicable

Cutput Lata Sets

a.

b,

d.

Ontput Files

The entire files cf a data base may be used
as output files for maintenance, As in the
case where the files of a data tase are used
for input, the individual data files are
output files e¢nly if specific transactions
require thew,

On-line Terminal Displays

¥ot Aprlicahble

Formatted Print-outs

Hot Applicable

Punched Card Output Files

Not Applicable

Reference Tables

pace 155 2/ 9

Since DEPL/I is used extensively in this module,
the varicus combinaticns of DEFAC errors should he
handled properly., These are in an array to
deteraine program processing after error occurs,

E. PROCESSIKG REQUIREMENTS
1. Top level Flowchart
See Figure 2
2, Narrative
A NODEMETN (DBMNTR-entry pcint)

The ¥aintenance Mainline rrogran is an
mainterance nodule vwhich carries out changes
to the files comprising a data base, The
program receives directives to modify a data
base file or files from the maintenance
transaction data base (TRNSCT).

b. Initialization

The key fields descriptor is read and upon
finding it, the key <fisld's length is
saved.

If any errers are incurred while reading the
descriptor file, the ©progper nessage is
epitted and the run terminated. If not, then
the use of the descriptor file 4is at an end
and it is closed,

It is pow time to Initialize the transaction
file by opening it, rositioning it and making
the first record to he processed available,

An error on orening ¢f +the transaction data
base could mearn that there is no data on the
'TRNSCT* data tase, or that the *TRNSCT! data
tase is already opened for urdate or output,
In either <case, appropriate error messages
are issved and the run is terminated,.

To position the data hase (after opening), we
do a Read by Key NOLOCK, The key we create
consists of the data base name concatenated
with the owners=~ID contatenated with all bits
off., This should represent a lov key value,
This vields either a successfal read or a
DBEAC error of 108. We expect the errar to
occur. Then a sequential read is perforned

Ce

d.

=

pace 56 LA0

and we obtain the first transaction to be
processed. Eefore continuing a get field is
executed on the ¥ey and its contents are
checked, If the key does not represent the
procper data base name, owner-ID combination
an error message is emitted and the rtun is
terminated.

Otherwise, we are prepared for +the Ffinal
stage of initialization.

The regular transacticn data base (TRESCT)
routine is set, +the data base which is being
updated has its error routine set and it is
opened for direct update or sequential
output,

The initialization process is complete,
Delete the Yrarsaction

If the transaction is successful, it is now
deleted from the TRESCT data base,

Read Transacticn

The transaction £ile is a data base which
congists of only an anchor file and no
asscociated cr inverted files, The
transactions are read sequentially. The Data
Base Executive performss all of the necessary
I/C aoperations. After a transacticn record
is located by the Data Base Erxecutive, GETS
are executed on all of the desirable fields,
These fields are disseminated to various
vork areas. Then, checking is vperforned
based cn the presence and/or absence of data.
The validation of this data is based vpon the
follcowing:

See Figure 3

If there is an error detected during this
initial ©processing, then the transaction is
in error.

E.Q.D, (end"ﬁf‘data)

The end-ocf~data 1is only detected on the
transaction data tase., When this condition
is detected, all the files are closed,
appropriate messages are issued and the
precessing continues at the reset the

f.

i+

h.

i.

pacE 157 22/

switches, section {(g9).
Reset the Switches

This section of code is executed antecedent -
to the occurence of anp end-of-data condition.
The function required at this point of time
is a reseting cf the ?'DATA' svwitch on each of
the descriptor regions., The files of the
data base are nmanirslated to detect the
existence or non-existence of data and the
*DATA' switches of +the corresponding files
are set accordingly.

DEL_RTN: Delete field routine,

This routine wuses the #FIELD function ¢to
reput all the elements in the field to null,
If it 1is the key field, then the entire
record is deleted,

ADD_RTN: RAdd rocutine,

This is the add record and add element
routine, If the field name is the key field
then this pame is stored to indicate to the
maipntenance routine that a newy record is to
be added to the file. If the field is not
the key field, then a test is made to see if
the tramsaction key is already present, If
not, then the key is compared toc the stored
key from the last add transaction with a key
field, If they do not watch, an error has
cccurred and is flagged; otherwise, a record
is created with the stored key. The new
element is then put tc the record. Control
is passed thack to section {e} on completion
of this transaction.

NOTE: If subkfile key is present in
transaction then surfile record is obtained.
If SUBCTL field is present then new suhfile
record is located,

CHG_RTN: Change Routine,

If no start or end field, ogiven element is
replaced, Using the key passed in the
transaction record, the apprepriate record is
read in from the data base, The field is
obtained, by name, as indicated in the
transaction. At that roint, the value of the
returned field elesent is compared to the

PAGE ¥58- 2 22

'0ld*' data elemwent in the transaction, If no
match is made, a test is made as to whether
the returned element is nell, thereby
signifying the end of the field. If that is
the case, then an errcr has occurred and is
indicated. If the null element was not
detected, then the naxt elepent 1is obtained
and +the process repeated. If a match does
occur, then the *new' data element from the
transaction record 1is reput te the record,
If the Ynew' data element is null, then the
element is deleted. Continue processing with
section (e). If a =start and end field is
present then a field context operation is
performed,

The maintenance program can carry out changes
tc portions of large <fields without the
entire field <¢m the +transaction entry of
record. To begin, the record is read into a
large enough area to hold the maximum record
using the key provided in the transaction,
The field in question will then be obhtained
and an iterative process is applied wherein
the *o0ld data value is corppared
sequentially across the field from the
starting 1location to the ending 1location.
¥henever a match iz found, the ‘tnew' data
valye dis used +to rerlace the *old' in the
field and a count is kept of the number of
replacepents, When the end of the search
range is reached, the count is tested, If no
matches were mpade, then that error is
recorded, The processing will continue sith
section {e}.

F. CODING SPECIFICATIONS

1.

2.

Source Language

As much as possible of the Maintenance Nodule is
coded in the IBYM programming language PL/T, The
input and outout coding for access to files in a
data base 1is handled through an extension to that
languagqe, known as LBPL/T,

Suggesticns and Techniques

a. Huch of the verificaticn of correct access to
files in a data tase is handled within the
DRPAC routines, Full advantage of +these
features was taken for all I/0 processing,

pace 9223

In the preceding narrative, not every
instance o¢f the need for an informative
message vas indicated, During
implementation, all appropriate messages are
inclnded +to increase the understanding of
the user,

While not noted in the nparrative, it is
necessary to test the return codes from
every input and output operation, In those
cases where errors gcceur, Rmessages are
written out apd the task terminated unless a
correction can Le applied, in which case the
processing ¢an then continue,

¥henever it becomes necessary to terminate
the maintenance routime at any point, it is
desirable tc make every attempt to restore
the data base to a normal comrdition., In most
cases, this action involves resetting control-
switches found in the header records of the
descriptor file., This action makes possible
subsequent processing on the data base which
might correct the original problem and also.
allows continned retrieval from all usable
portions of the data base.

\-_.-—"/
TRNSCT
/
DBMNTHN
V
STATIC

|

j

Figure 1, I/I BLOCK DIAGRAM

224

(NDBMNTN)
SERETTE IR Qg;bf**_ﬁ'ADDLRTN‘-
i -

INITIALIZE
‘THE
PROGRAM

A

|

. Cg é;

DELETE : @—-&T CHG_RTN
TRANS . ‘ '
| READ o ERROR
NEXT :
TRANS ,
ERROR
| HANDLE
{RESET
FILE
SWITCHES
QPCODE - RESET l
, ‘ ||PROGRAM
AND GET I
LT CLEAN

AUDIT

\ ENT
(rETURY) TRIES

Figure 2. TOP LEVEL FLOWCHART

v ¢ REQUIRED PARAMETER

X : NOT REQUIRED

ADD DEL CHG
1key mj J | _.y i
NASISID J / VE
- {oPcoDE / / /o
[FIELD X / /
START AND END X ; X
OLDDATA X VX /
NEWDATA /X X v
SUBKEY VX /x 1 J/x
lcTLFLD /X /X X

Figure 3. PARAMETER TABLE

TOELC D,4 - MAINTENANCE LOAL/CREATE

i,

C.

MODULE NAME
Load/Create
Program~ID -~ ¥DBLOAD
Module-ID ~ CBLOAD
ANALYST

Ric¢hard L, Graven
Neoterics, Inc.

WODULE FONCTION

This module provides a generalized
capability for NASIS.
LATA REQUIREMENTS
1. I/8 Block Diagram

See Figure 1
2a Input Data Sets

A Parameter Cards

Farameters are Xeyworded and

sysin card input,
b, Punched Card Iaput Files
Not Applicatble

Cs Intut Files

1. The
containing the records
the data Dbase, This

pace 163 227

'
Hie

HER

file 1loading

freefora on

primary input file is the data set
to be loaded to
file

nust be

indexed seguencial, with the keys having

the sape feormat and vale
0f the final data base.

2. The cnly cther input
descriptor data set for
being loaded,

d. On-line Terminal Entries

Not Applicahble

file is
the

as thats that

the
data base

E.

3.

4.

pace 64 2215

Outpat Data Sets

- I

b.

Refer

The

which
possi
field

Output Files

1. The primary ovtput file is the data base
which i=s being 1caded, It wmust have
its descrigptors fully defined
heforehand, but all cther functions will
ke handled by NDELOAT,

2. The other cutput file is the error file,
on which is written exact duplicates of
any input recoris that cannot be
successfully lecaded,

3. 3 print file for diagnostics and program
status information is printed on Class A
ocutput.

On-line Terminal Displays

Not Applicable,

Formatted Print-outs

Not Applicable

Panched Card Output Files

Not Applicable

ence Tables

module contains a table of error switches

control the action to be taken for each
ble DBPAC errcr; abend, skip record, or skip

PROCESSING REQUIRENENTS

1.

2,

Top L
Sea F
Narra

a.

b.

evel Flowchart

igﬁre 2

tive

Upcn entry the program establishes interrupt

handling routipes which will terminate if any
PL/I errors occur, or display statistical
data,

The program next reads in and parses the
input parameters applying defanlts for any

PAGE 4&3ﬁ2}17

parameters that are not entered,

C. The next ster 1is te crer the descriptors for
the file specified, The file header switches
are reset in case +the system crashed. The
index file headers are read, and if field not
indicated to invert, the loadable switch is
turned off,

d. The next Function performed is the definition
and opening of the input file, the error file
and the data kase itself. At this point, the
program checks the user's mode parameter, and
if it is restart passes control to section
{g) before continuing.

£, Finally, the program 1is ready to ©process
data., It reads an input record, passes the
record to the user written exit routine for
separation intc its ccmponent fields. Upon
return from the exit routine, the program
tests the status bits, and if set properly,
begins writing the input data to the data
base, field by field. If any errors are
detected, and appropriate diagnoestic is
written to the user and the action irdicated
by that error's code in the ERROR_CODE table
is taken, The orticns are to abend the
program, to skip the rzmainder of the record,
or to skip the field., When the field has
been conpletely processed, the routine
continnes with the next input record, until
the data is exhausted.

f. When all of the data has heen processed or
when a terminal error has been detected,
statistical counts are written or the user's
terrinal alcng with a termination message.
211 of the files are <c¢losed, and the status
bits of the descriptor header records of each
of +the component files of the data base are
posted to indicate whether date exists on the
file or not., The program then terminates.

g. If the user specified a restart, the program
retrieves the last record ¥ritten to the data
base, It then accesses the next record to he
written from the input data set, ¥hen the
operation 1is complete, processing continues
with secticn (e).

F. CODING SPECIFICATIONS

2,

PAGE 166 230

Source language

This

module shonld be written in the PL/Y

Langquage.

Suggestions and Technigques

e

k.

Ca

d.

Because of +the fenction of this module,
extreme care should te taken to code it as
efficiently yet as indestructibly as
possible,

Apny place in the program where there is any
remote possibility ¢f an error, there should
be a meaningful diagnostic.

The ERROR_CODES table was designed to be used
in condunction with a 1label array. The
digits in the table are to te <converted to
index values and an indexed branch taken
based onthe latel arrav.

The user~written exit routine is responsible
for assigning field npames, field off-sets,
and field lengths,

23]

RDBLOAD.

INPUT
DATA
SET

Figure 1. 1/0 BLOCK DIAGRAM

PAGE 469 732

TOPIC D.5 FILE INVERTER

A. MODULE NANE

Maintenance - File Inverter
Program-ID - NDBIVRTH
Module-IL - CBITVRT1

B. ANALYST

Richard D. Graven
Neoterics, Inc,

Cas MGDULE PUNCTION

The inversion program (NDBIVETTY is a wmaintenance
program for data bhase file <c¢reation, The parpose of
the program is to take data frcm certain fields of a
data base and to post this data to an inverted index
file, This operation can ke done autcomatically by
DEPAC during a normal file lcading cperation, but it is
very time consuming and could therefore jeopardize the
successfyl completion cf the 1load, Further, by
separating this function out, in this manner, the
capability c¢f creating inverted indices after a file
has been loaded and used is added to the regertoire of
the NASIS system, Finally, this separation also
permitz the use of specialized technigues suitable
specifically to this furction +to reduce the amount of
time required for the entire process of loading and
index creaticn,

D, TATA REQUIREHENTS
1. I1/0 Block Diagram
See Figure 1
2. Input Data Sets
a. Parameter Cards

Parameters are entered freeform with keywords
on CARDIY input file.

b, punched Card Input Files
Not Applicable
C. Input Files

1. Data Base: The primary input to the

PAGE 478 235

Inversicn module 1is the file being

inverted,

2, Data Base Descriptors:y The file
descrirptors are needed to provide
information.

3. Restart file: If the program is invoked
in restart wmode, a restart file with
the restart key is needed,

d. On-Line Terminal Entries

Not Applicable

3. Output Cata Sets
a. Qutput Files
Sortin File: This file is a QSARM file with
the value of the field being inverted
concatenated =mith the file key. This file
becomes the inrut to a DSORT utilitv.
b, On-Line Terminal Distlays
Rot Applicable
c. Formatted Print-Quts
Not Applicable
4. Panched Card Output Filés
Hot Applicable
4, Reference Tables
Not Rpplicable
PROCESSING REQUIREMENTS
Te Top Level Flowchart
See Fiaure 2
24 Narrative

a. Parameter Parsing routine

Call FPARM routine and save parameters in
appropriate save areas.,

PAGE 44 7 3¢f

b. Field stripping routine (step one)

If restart rtun, read in restart key and read
this file recerd., If range rump, read first
file key to start at. Read seguentially the
input file, save the internal file key. Loop
through the index file suffixes, Loop
through the field name table. Loop through
the $#FIELD fcr this field. ¥rite out a
sortin file record. I1f end of €file reached,

terminate, If end range kay reached
terminate, If numker of records to process
is reached, wurite cut restart f£file and
terminate.

F. CODING SPECIFICATIONS
1. Source language
The Inversion prcgram employs the IBM PL/T
programming language, The special extensions of
that 1language, called DBEL/I is uytilized for all
access to files in the data base.
2, Suqggesticns and Technigues

Not Applicable

DATA
BASE RESTARTY -
FILE

SYSIN
ARAMETERS

: SYSOUT
INVERT 1 ./ MESSAGE
FILE
SORTIN
FILES

Figure 1. I/0 BLOCK DIAGRAM

PARAMETER

PARSE
ROUTINE

RESTART

READ
{DATABASE

{SORTIN

RECORD

SORTIN

Figure 2. TOP LEVEL FLOWCHART.

. v

A3

READ
RESTART
FILE

READ
DATABASE
BY KEY

pace 3 2377

TOFIC D.6 - MAINTENANCE, FILE INVERTER2

A.

c.

De

HODULE HANE

Program=ID - NDBIVRT2
Bodule~ID - DEIVRT2Z

ANALYST

Richard [, Graven
Neoterics, Inc,

MODULE FUNCTION

This modunle reads in the sorted file frosm DBIVRETY
and creates an inverted index file for a data base,

DATR REQUIREMENTS

1. I/C Block Diagram

See Fiqure 1

2, Ipput Data Sets

a.

b.

Ce

d.

FParameter Cards

Parameters are entered freefores with Keywords
cn CARTDIN input file,

Pgnched Card Input Piles Not Applicable
Ingut Files

1. Database Lescriptors: The file
are needed to provide information,

2, Scrted file frewm DBIVET?!. This file has
f£ield values concatenated to file kevy in
sorted order,

On=-1ine Terminal Entries

Kot Applicable

3., Output Data Sets

-

Output Files

1. PLEX Pile: This file is the output of
step three in the form on an index file
with the internal field value as the key.

E,

4,

b.

Ca

a.

pacE 435 23Y

This £file becomes the input to step four,
the Translaticn step for external indexing.

2. PRange File: This file is the output of
step three if field is indexed with internal
format, and is the output of step four if
field is indexed with external format,
Range of keys to invert myst have been
specified for this file to be produced,
This file beccmes the input to the index
merge program,

3. Datakase Index File: This is the final
index file. It is the ountput of step
three if internal indexing, and is the
output of step four if external indexing.

On~line Terminal Tisplays

Not RApplicable

Pormatted Print-outs

Net Applicable

Punched Card Output Files

Not Applicable

Reference Tables

Not Applicable

EFOCESSING REQUIRENMENTS

1,

2.

Top level Flowchart

S5ee FPigure 2

Barrative

s

b.

Parameter Parsing routine

Call FPARM routine and save parameters in
appropriate save areas,

Get Rescriptor information

Find the key length of the QISAM output
file, This will te the paximpum length

of the fields heing inverted on the sane
index file, IF field is indexed external,

‘use length, IF index file is spapned, increase

PAGE

by one,
Write QISAFM File

Read input file. IF Reys are the sane,
concatenate file key onto list of keys.

IF list has reached paxinmum list length,

up the span character and initialize list
to null, 1IF keys are different, write out
index record, IF end of input file reached,
write out last index record amd check to
see if external indexing, IF external
indexing, proceed to next section. Display
record counts for user and post the index
descriptor data switch,

Translate FKeys routine

Read input file sequencially., Search key
for first blank character after first non-
blank character, Use this parsed string to
pars to field formatting routine. Replace
internal value in key with external value,
IF end of file reached, post data bit in
index header descriptor record, IF more
field names in takle. gc to translate keys
routine again., Terminate the program,

P, CODING SPECIFICATIONS

1.

Source lLanguage

The IRM 0S PL/I programming language is used.
The special extension of that language, called

DBPL/I is utilized for all access to files in
the database,

Suggestions and Techniques

Not Applicable,

239

INVERT 2

SORTOUT
FILE

SYSIN
PARAMETERS

SYSOLT

Figure 1. I/0 Block Diagram

EXTERNZ
KEYED
INDEX
FILES.

MESSAGE
FILE

o |

A

READ
SORTOUT

READ
INTERNAL
INDEX

BUILD
LIST OF
KEYS

TRANSLATE
KEY

WRITE
INTERKAL
INDEX

WRITE
EXTERNAL
INDEX

Figure 2. Top Level Flowchart

race ¥3 1H 1L

TOFTC D,7 - INDEX FILE MERGE

A. MODUOLE NAME

Maintenance - File Merger
Program~Id - NDBINDM
Modale-Id -~ TEINDH

B. ANALYST

Edward McIntire
Neoterics, Inc,

C, MOTULE FURCTICH

The merge wvodule is an indegendent ©program whose
function is to create an updated index file for a
database, The updating cf the index file can be done
in place or to a new index file, This new index file
will be named ‘*INDMRG.® {{FILE WAME)|', *{|FIELD NAHE®
and it will have to te renamed upon ccmpleticn of the
merging operation, This module will also allow for the
processing of duplicate records if deemed necessary.

D. DATA REQUIREMENTS
1. I,0 Blcck Diagram
See Figure 1
2, Input Data Sets
a. Parameter Cards
¥ot Applicable
b. Paunched Card Iaput Files
The mperging utility 1is most often invoked
from a terminal 1in conversational mode.
However, it is possible to initiate the task
in the non-ccnversational wmode, Hust as in
the case of any other os task. In batch
mode, the format of the punched card input is
the same as whken terminal input 4is used to
invocke the rcutine,
C. Input Files
1. Index File: The primary input ¢to the

merae vprcgram is the current index file
that is to bhe updated, and the update

PAGE 438 743

index £file that is to te merge with the
current index. The anchor descriptor
file is needed to provide field
informaticn.,

2. Parameter File: If the user wishes to
stop processing he may do so by pressing
attenticon and responding ty' to the
prompt message, Thus a parameter file
is created for input to further
restarts, This will minimize the chance
for user input error and insure restart
at the proper key. This file consists
of the last key processed on the current
index file, This file is a SAM file
used only in the index merge program,

d. On=~line Terminal Entries

211 of the terminal entries to the merge
prcgram are in the form of Tresponses to
prompting messages frem the program itself,
The one excepticn to this rule is the initial
command with its parameter to invoke the
procedure. The purrose of the terminal
entries are to establish file and field
names, new file or inplace merge, process
dups or not, firstpass or restart, and if the
user wishes to quit processing or not,

3. Output Lata Sets
a. Qutpyt Files

The outrut data set is the index file created

by the wmerge progranv. This data set can take

two forms:

1. The current index file updated
inplace.

2. A new file created by the merging of the
current index with the update index.

On-Line Terminal Displays

A11 on-line termipal displays for the nmerge
program follow the same format, The TSPL/I
facility of the system is utilized to request
entries at the terminal and display progress
information,

Ce Formatted Print~Cuts

E.

4,

d.

PAGE +79~ ﬂ-"{"’f'

¥ot Applicable
Punched Card Output Files

Not Applicable

Reference Tables

Not 2Applicable

PROCESSING REQUIREMENTS

1.

2.

Top Level Flowchart

Seae Fiqure 2

Barrative

(- 1

b.

Prompting

Prompt the vser for first pass., TIf it is not
the first pases, go and tTead the parameter
file. Prompt the user for the anchor file
name, for new file creaticn or wmerge in
place, for the processing of duplicates or
not, and for the inverted <field mame. The
uger nust enter a valid response to all of
the prompts or he will be reprompted., 1A read
seguentially of the ancher descriptors is
done until a fixed field with an offset of
four {4) is found. That, in fact, is the key
descripter and 1its length is saved, The
index field is alsc checked for validity, if
it is not a wvalid index, then a regprompt is
initiated, Following this the index
descriptors are opened and read sequentially
until the index field length is obtained, and
the spanned indicator 1is <checked and it's
value is saved, In all of the above cases if
a critical error is encountered an error
message is displayed and the program is
terminated,

¥rite Parameter File

If the user deems it necessary to stop
processing during the merging operation, he
can press the attention button and the total
records processed will be displayed. Also, a
ressage will be displayed asking if he wishes
to guit processing. When the user replys
with a quit ©vprocessing cocmmand the following
oCccurs:

Ca

d.

€.

£ .

PAGE 186 245

1. Quit switch is set.

2. Processing is ccntinued uptil a clean
close can be carried out,

3. Parameter file is opened and the key of
the last record swritten is written to
the parameter file,

4, Parametar file is closed.

54 Program branches to end of job
routines,

Read Anchor Descriptors

DBEFAC is utilized to read sequentially the
anchor file descrirtcrs and retrieve the
field that is indexed and the anchor Xey
length,

Read Index Cescriptors

DBERAC is wutilized to read sequentially the
index file descriptors and retrieve the index
key length and the spanned indicator.

fead Parameter File

If pot the first pass, the paranpeter file is
read to get the needed key for the restart.
The restart key is gsed as the key and a get
by Xey is done on the <current index file,
Alsc a read by key is done on the unpdate file
to find its starting position. From here we
ge to normal reads on the input files for
further processing,

Brite Index File

The writing of the dindex file can take two
different forms,

1. Merge Inplace.

If +the ucser decides +0 mnmerge to the
current index file the pmew records will
be built in core and tabled there until
a unigue record is read, If a record is
longerx than the naximum allowable
length, then create a spanned record by
adding che to the spanned rtecord
character., Then rewrite any existing

pace 3o+ 140

P R

records and write any new records that
zay have teen created. When an update
record doces not match a current record,
the npdate record and any vwvwith the same
key are written tc the current file.

2. Merge tc New File.

The merge to a new file is much the same
as the merge inrlace. The Adifferences
are listed belcwu:

a. An oyt put file is created with the
same attritutes as the current
indeyx file,

b, There will ke no rewrites to the
new file,

C. 411 current and update records will
he written to the new file, If
either file finishes first the
cther will be read and written
antil it is finished.

e Attenticn Interruopts

Attenticn interrupt handling was discussed in
section *E*, sub-section 12¢, Ttem 'B?
{Frite Paraneter File). Any questions you
might have concerning this area should be
referred there,

F. CODING SPECIFICATIONS
1. Source language

The merge progranm eprloys the IBM PL/T Progranmming
Languonage. The special extensions of that
language, called TCBPL/Y and TSPL/I, are utilized
for acecess to file descriptors in the database
and for all terminal commupicaticon, respectively.
Also, the merge program employs asserbler
routines to handle a1l 1I/0 during the execution of
this prograe, except for the wuriting of the
parameter file which 1is bhandled exclusively by
PL/1.

Ze Suggestions and Technigues

Hot Bdpplicable

247

RENAME

SYSIN

RENAME f 8.- ‘ {PARAMETERS

o
i
!

. it
i
i
!

S A
i |
!
~ —! MERGE 4 ~ — —pJDBINDM MESSAGE
J"INPLACE" 7 | FILE
N J

LS

Figure 1. 1I/g Biock Diagram

ENTER

READ
MASTER
INDEX

; - B WRITE
x NEW FIL

Figure 2A. Top Level Flowchart

MERGE ALL
MATCHING
RECORDS

PAGE 84 ;ﬁ“i

TOEIC D,8 - DATA PASE RECORD TENGTHS

A, HMODULE EAME

Frogram-ID: NDBRECL
Yodule-ID: DERECL

B. ANALYST

¥illiam H, Petrarca,
Neoterics, Inc,

C. MODULE PUNCTICHN

This module executes stand-alone to read one or all
files of a data base {excluding the descriptors) to
determine the maximum record length within the
respective file{s). %when found, these maximanm
record lengths are posted in the respective file
header descriptors as the second variable field,
just past the security codes, Although the record
length is posted as a variable field, it is always
a full word (4-bytes) preceded by a two byte field
length with a value of 6. The DEEPAC module
interrogates each header record for the presence

of this field at every data base open, When present
this value is used to allccate the size of the
input buffer for the respective files. 1If absent
the default value of 3996 is used as a maximum,

Only DB2 type descriptors are accepted by this
nodule,

D, DATA2 REQUIREMENTS
1, 1/0 Block Diagrawm
See Figure 1
2., Input Data Sets
a. Parameter Cards

The EXEC card PARYK character string must
contain the data tase or data base file to
sweep, The string must ke of the form
*FILE = name' vhere name can ke just the
data Lhase name, such as LE2TDEB, to imply
that all files of that data tase are to be
analyzed or the name can be the data base
file name, such as CB2TLEZ, to imply only
one file t¢ analyze,

b,

Ca

4.

PAGE 485 ﬂfo

Punched Card Ingput Files

Not Applicable

Input Files

This program reads the particular data base
descriptors along with any other data base
files to be analyzed, The descrigpgtors and
the requested files to be analyzed must have
DT cards provided; the DLNAMES are arkitrary,
On-Linre Terminal Fntries

Not Applicable

3, OQutput Data Sets

de

d.

Qutput Files

This nmodule rsurites the file header deseriptor
records of the data hase descriptors for those
files analyzed.

On-Line Terminal Cisplays

Not Applicable

Formatted Print-Outs

This module provides messages with the

rnaxipur record lergths fouynd per file

on the SYSPRINT file, Any errors

encountered are also diagnosed.

Punched Card Cutput Files

Not Applicable

4, FReference Tables

Not Applicable

FFOCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2, Harrative

Upon entry DBRECL validates the parameter

PAGE 386 25 [

string: invalid parameters are diagnosed at
SYSPRINT and the program returns, WRith a

valid parameter, DBRECL assumes a parameter

of length less than seven characters to imply an
entire data-base name; greater than seven ipplies
a particular file nane.

If all the files of a data base are to be dcone,
then the descriptors are read sequentially to
determine all the file names, The names are
saved in a list, and the descriptors are closed,

If only cne file is tc be analyzed, then it is
put into a 1list of ane,

Then, for each file name in the current list the
following is done. The file is opened and

read sequentially, Each record length is compared
against the going maximum., JIf it is qreater,

it beccomes the going maximum, After all records
have been read, the file is closed and the

arrived maximuw is =saved ir a 'lenqth? list,

The foond maximum for the file is printed on
SYSPRINT.

After all the files have heen read, the
descriptors are opened again. The header
descriptors are read for each file name in

the list, If a maximum record lenqgth already
exists on the record, it is overlaid with the
nexly found maximum, If none exists, the header
record length is increased by 6 and the newly
found maximur is added on the end as a variable
field., The header record is rewritten., The
descriptor file is then closed,

for all file 170, the ISAH assenbler routines

in the DBDBIC medule are used., Any DD or CPBEN
errors are diagnosed with processing continuing
with the pext file in the list. Likewise, any
read errors are diagnosed and the file skipped.

F. CODING SPECIFICATICNS

LS

2

Source Language
This module is written in IBM PL/I,
Suggestions and Techniques

Not Applicable

52

ANCHOR INDEX ' ® DATA BASE

l\\h_ FILES

DRRECL

MESSAGES
AND
| DTAGNOSTICS

Figure 1. 1/0 Block Diagram

DBRECL ,

0 PO N

READ DESC'RS
AND SAVE
ALL

FILE IDS.

&

L FILES
?

*

DIAGNOSE
ERROR

RETURN

GIVEN
FILE I.D.

¥

PUT SAVED
FILE(S) IN A
LIST

‘READ FACH
FILE IN LIST
TO FIND MAX.
RECORD LENGTH
IN FACH

] \
READER HEADER
DESCRIPTOR |
FOR EACH |
FILE AND . |
POST MAX.
LENGTH;
REWRITE REC.

™7

253

pacE 48T 254

TOHC D.,9 ~ DESCRIPTOR EDITOR - ALDD - CHANGE COHMANDS

k. MODULE NANE

Program—-ID - NDBEDAC
Module-¥Namne -~ DBELAC

B. ANALYST

Barry G. Hazlett
Neoterics, Inc,

Ca. BODULE FUNCTION

Those commands allow the user to create and modify
field descrirptors.

D DATA REQUIREMENTS
1. I/C Block Diagram
See Figure 1
2. Input Data Sets
Not Applicable
3. OQutput Data Sets
a, Oatput Files
Not Applicable
b. On-line Terminal Displays
¥ot Applicable
Ce FPormatted Print-Outs
Not Applicable
4, | Reference Tables

The following external tables are referenced by

NDRELAL:
1. FIELD
2. FLD
3. FLD_STRING
4, HDR

5. HDR_STRING
6. X

PAGE 4-9«5—7-55

A description of these tatles can be fougnd in the
dataset specificaticns of the DEB,

E. PROCRBSSING REQUIREMENTS
1. Top Level Flowchart
See Figure 2
2, Barrative

Upon antry into NDBEDAC a flag is set to indicate
if the 2ADBD or CHANGE command was entered, The
routine DBEDGPF iz called +o obtain a valid
£ieldname, In 3ADL mode it must be a valid
non-existent and snon-reserved fieldnane, In
CHANGE mede it must he an existent non reserved
fieldnane with +the excerption of the fields
FREEFORM and COMMENTS and it nmust . not be a
superfield nor a subfile control field, If in
ADD mode a FLD structure is allocated, initialirzed
and posted with the fieldname.

The user is prompted for the field type and the
input is validated, If it is invalid, the user is
given a diagnostic and prcompted for a new value,
If in update =mode, the user is not allowed +to
change the field type if it affects the field
length and the field appears in the fixed part of
the record. The user is alsc not allowed to make
the key field a bit field,

If there is more data in the parameter list 'TYPR?
the user is prompted for an alignment value, 1If
it is invalid, the user is given a diagnostic and
prompted for a nevw value. If no value is entered
a2 built in default value is assumed and posted in
FLD.

The field form is prompted for and validated, 1If
invalid, the user is given a diagnostic and
prompted for a new value, The anchor file key
field and bit field can only be of fiyed form. 1In
Update mode, the user can not change fized field
to a varying or elemental field, the necessary
values are posted in FLD.

The user 1is prompted for a field length and the
value is validated against prestored maximum
values for single and multielement fields., If it
is invalid, the user is given a diagnostic and
prompted for a new value, The correct values are
posted in FLD.

PAGE 489 25 b

If the field is non-elemental, go prompt the user
for a conversion rcutine, otherwise the user 1is
rrompted for an element length value if necessary.
For sewveral field types the only element length
value ics posted in ¥FLD, If the element value is
invalid, the user is given a diagnostic and
prompted for a news value,

The user is prompted for the number of elements
and the input validated. Tf the value is invalid,
the user is given a diagnostic and prompted for a
new valewe, 1A correct valae is posted in FLD, The
parameter anique element is prompted for and
processed in the same manner.

The routine DBEDGR is called to obtain and process
the conversion, fcrmatting, validation routine
names and validation argument.

At this point of adding the %key field or in update
mode, the rest of the parameters are ignored., in
npdate wode the changed informaticn is posted to
the descriptor dataset by calling DEEDFL, and then
go save the command string, The use is prompted
if the field is to be indeyxed, It the ansver is
no +then go prompt the uaser for associated file
information, ctherwise the user 1is prompted as to
wvhich dindex file the field is +to appear. If no
defining fieldname is entered, a new index file is
created for this field, Otherwise +the field is
placed e¢n the same index as that of the dJdefining
field, In the CHANGE command, if +the field was
already indexed on a different file, it must be
deleted from that index file before it is placed
on the nevw index file,

The user 1is prompted as to vhether the index key
is to be in either internal or exterral form., TIf
no value is entered, internal is assumed, If the
value is external then the user is prompted for
and must enter the paximum length of the external
value,

The user 1is prompted if +the index dis to be
spanned. If no valve is entered, it is assuned
"not to bhe spanned., At this point, the index is
ready to te setup., 1If it is a new index a header
descriptor is allocated and setup for the index,
else the nevw informaticn is posted to the
existing header,

The routine DBEELGA is called to determine if the
field is to be placed on an associate file,

PAGE 90T 157

The user is prompted if the field is to be on a
sobfile, If not go prompt the user for a subfile
value as ohtained, the subfile header is updated
accordingly,

The user is prompted for the defining base field
name 1if the field is +to be a subfield. If no
value 1is entered, +the field will not he a
subfield. If it is to be a subfield, the user is
pronpted for an offset valume. . If none is entered,
a valwue of 0 1is assumed, In case the defining
base field is either RECLEN or +the anchor key
field +the user is ©prompted for the particular
file on which this sobkfield is to be placed. The
user can specify the actual file name if known or
indicate the type of file on which the subfield is
to bhe placed. If ASS5CCIATE or SUEFILE is
specified the user is prompted for a field
defining which asscciate file or which subfile,
the subfield information is posted in FLD,

it this point all of the rarameters have heen
entered, processed and the information posted, It
is nov determined which file list the field is to
te placed and if not in the proper place already,
threaded onto the end of that f£file list,

If adding the anchor %ey field then the fields
FILEXEY, FREEFORM, and CONMENTS are setup on the
"appropriate files and an index file is setup for
FREEFORN,
The compand string is saved in the current
strategy and contrel is returned to the calling
routine,
F. CODING SBECIFICATIONS
1. Source language
PL/Y with TSPL/Y statements,
2. Suggestions and Techniguoes

Not Applicable

=i omEDAC

- —

159

‘Figure 1. I/0 Block diagram

DESCRIPTOR -

|-

l

E

P

INTTIALIZE

(DBEDACZ)

~N

INITIALIZE

GET AND
"PROCESS
FIELDNAME
- DBEDGH

b

GET AND
PROCESS
FIELDTYPRE

-

““GET AND

ALIGNMENT

PROCESS

GET AND
PROCESS
“FIELD . -

FORMAT - .

N

- FIELD

GET AND
PROCESS

"LENGTH

N ‘
ELEMENTALS ———>
?

J

" GET AND
PROCESS

LENGTH

b

GET AND
PROCESS
ELEMENT
NUMBER

W

GET. AND
PROCESS
UNIQUE

ELEMENTS

GET ROUTINES
& ARGUMENT

{GET AND -
PROCESS
VALTIDATION |
ROUTINE

|GET AND -
PROCESS
. |VALIDATION
- |ARGUMENT

_ A

ELEMENT |

\L)

leET anD

DBEDGR

|PROCESS . | |
INDEX

Figure 2a. Top level flowchart -

FILE

CHANGES

.

)

\

GET AND
PROCESS
{ wHICH
INDEX

h

GET AND
PROCESS
INTERNAL

{ EXTERNAL |

v

GET AND
PROCESS
EXTERNAL
LENGTH

p4

GET AND
PROCESS

SPANNED

SETUP
INDEX

Gl5

Figure 2b.

PROCESS
ASSOCIATED
PAREM

T DBEDGK

GET AND
PROCESS
SUBFILE ~

GET AND
PROCESS .
WHICH
SUBFILE

Top level flowchart

L

¥
COSETR T - | THREAD
 SUBFILE | 't FIELD
|
GET AND o
PROCESS | . POST
SUBFIELD | o FmELD

“GET AND C j &
- PROCESS . SETUP -
OFFSET - - FILEKEY
- , - - | FREEFORM -
4 : ' | COMMENTS |
GET AND ‘ g
PROCESS - , T
FILE - , | SAVE
_ o o coMMaND
" SRR o STRING
GET AND
PROCESS
' DEFINING
- FIELD
~ SETUP
SUBFIELD

Figure 2c. Top level flowchart

PAGE 395 2(1

TOPLIC D, 10 - DESCRIPTOR EDITOR - ADDIIXKE - BRENAME COMMANDS

a, MODULE WAME

Program-ID — NDBELAR
Module-ID - DEEDAR

B. ANALYST

Barry 6. Hazlett
¥eoterics, Inc.

C. HODULE FUNCTION
The ADDLIKE command <creates a new field descriptor
exactly 1ike an existing descriptor with a different
name, The RENAME command changers the pame of an
existing descriptor.
De CATA REQUIREMENTS
1, I/0 Block Pbiagram
See Fiqure 1
2, Input Data Sets
aa Parameter Cards
Not Applicable
b. Punched Cafﬁ Inrut Files
¥ot Applicable
C, Input Files
Not BRpplicatle
3. Output Data Sets
Ao Output Files
Not Applicatle
b. on-Line Terminal Distlays
Not Applicable

C. Formatted Print-outs

Not Applicable

pace 496 2.6 9 |

4, Reference Tables

The following external tatles are referenced by

NDBEDAR:
1. FIELD
2. FLD
3., FLD_STRING
4, HDR
5. SECURITY
7. SUPER

8. SUPER_STR
8. SUPER_STR
9, VALID

10. X

A description cf these tahles can be found in the
dataset specificaticns of the DWB,

E. PROCESSING RECUIREMENTS
1, Top Level Flowchart
See Figure 2
2. Narrative

The entry points are ADDLIKE command - DBEDARY and
RENAME command - DBEDAR2., Opon entry into either
command a flag is set indicating which command was
called, After which the twc commands share common
code for parameter processing.

Routine DBEDGF is called to obtain a valid new
field name, To be valid the newx field name must
be of alphanumeric of at most eight characters
long, must not already exist and mnust not be a
reserved field name,

Routine DBEDGP is called +to obtain a valid
existing fieldname. This field must exist and
must not appear in the reserved fieldname list,

If in the RENAME ccmmand, then the name of the
specified existing field is changed to the
specified new field name and the field name change
is posted in the FIELD structure. At this point
the command string is stored in +the current
strategy and then control is rteturned to the
calling routine,

If in the ADDLIKE command the existing field is
doplicated, the npew fieldname posted in the copy.

PAGE 3197 2.,6’4

The new fieldnane is vposted in the FIELD
structure. Thae ADILLIKE ccenmand string 14is saved

in the current strateqgy, after which control is
returned to the calling routine,
F, CODING SPECTIFICATIONS

1. Source Language

PL/T yith TSPL/I statements.

2, Suggestions and Techniques

Not Applicable

DESCRTPTOR
TABLES

DBEDAR <;_~;>

 Fgure 1. 1/ Block Diagram -

24l

DBEDARZ1 DBEDAR? ‘
] l ‘ \

k
- SET RENAME| ISET RENaMm— = - GET oLp "}
FLAG ON FLAG OFF . FIELDNAME
' DBEDGF
P ! o
oET NEW | RENAME'
| FIELDNAME | ST
DBEDGF

. _ A Ay ADDLIKE s

S DUPLICATE | © | cHance

' - | FmEDD | FIELDNAME

\) L 4
POST NEW St

NAME - |POST FIELD

[POST FIELD

(EXIT J

Figure 2, - Top 'Lével- Flowchart

page 206 2L 7

TOELC D.11 - DESCRIETCR EDITOR - CHKPCINT COMMAND

aA. MODULE NAME

Program-ID ~ HDBEDCP
dodule-IC - LEREDCP

B, ANRLYST

Barry G, Hazlett
Neoterics, Inc,

Ca MODULE PURCTIONS
This command is used +tc¢ save the descriptor tables as
they exist in memory in a SAM data set as that they may
bte retrieved at a future time Ly use of the RESTORE
command and then continue to create the descriptors
from that point,
1. 1,0 Block Diagran
See Figqure 1
2. Input Data Sets
a. Parameter Cards
Not Applicakle
b, Punched Card Inrput Files
Not Apmnlicable
C. Input Files
Not Applicatle
3, Qutput Data Sets
a. Cutput Files

The output file is a SAH data set named

DESCERP,CHEPCINT, Refer to the data set
specifications for a description of +this data
set,

b. On-line Terminal Displavys
ot Applicable

Ca Formatted Print-Quts

PAGE 204 Z.LY

¥ot Applicable
4, feference Tables

The follcwing external tatles are referenced by

BDBEDCP:
1. FIELD
2, FLD
3. FLD_STRING
4, HDR

S. HDE_STRING
6. RECSEC_STR
7. SECURITY_STR
8, SUPER_STR

9. VALID

10, X

The description of these tables is specifications
in the dataset of the D¥WE,

E. EROCESSING REQUIREMENTS
1. Top Level Flowchart
See Figure 2
2. Narrative

Upon entry into CHEFOINT, any previously existing
checkpoint dataset 1is erased by use of ASHERSE
routine, The data set record length is
dynamically determined by calculating the length
of that part of the X structure that must he
saved, the curremt length of the FIELD structure
and using the larger of the two values,

The data set CHEPCINT.DATASET is created and
initialized by use of the routine ASMDCE to
create the DCB for the data set, routine ASMFNDS
to initialize the JFCB, and rouwutine ASMOPEN ¢to
open the checkpcint data set,

The wvariable part of the X structure is put into
the data set by use of +the ASNPUT routine, and
likevise the FIELD structure,

Each of the fields are saved through use of ASHPUT
routine by creating the following character .
string: the FLD_STRING concatenated to SUPER_STR
if it is a snperfield, cencatenated to
SECURITY_STR if there is field security on this
field, concatenated to VALIL,ARGUMENT if the field

PAGE 269

has a validation argument,

Each of the theaders are saved through use of
ASMPUT routine ty creating the following
character string: the HDF_STRING concatenated to
BRECSEC_STR if the file has record security.

The checkpoint dataset is closed by use of the
routine ASMCLOS, after which control is returned
to the calling routine,
Fo CODING SPECIFICATIONS
1. Source lLanguage
PL/T with TSPL/I statements,

2. Suggestions and Techniques

Not Rpplicable

TERMINAL

Figura 1.

DESCRIPTIOR
TABLES

I/0 Block diagram

271/

‘SAVE X
STRUCTURE

SAVE
HEADERS

Figure 2, Top level flowéhart

PAGE 205 2.7 4

TOPIC D, 12 - DESCRIPTOR EDITOR - CREAT SUB COBMAND

A, MODULE WAME

Program~ID - NDBETLCS
Module~ID - DREDCS

B, ANALYST

Barry G, Hazlett
Neoterics, Inc.

C. MODULE FUNCTION

This routine is used to define and setup the necessary
field tec create a subfile.

D, EATL REQUIREMENTS
1. I/0 Block Diagram
See Figure 1
2, Input Data Sets
e Parameter.Cards
Not Applicable
b, Punched Cafd Input Files
Not Applicable
C. Input Files
Not Applicable
3. Qutput Data Sets
a. Output Files
Mot Applicable
b On-line Terminal Displays
Not Applicable
C. Porratted Print-Outs
Not Applicable

y, Reference Tables

pace 206 273

The following external tahbles are referenced by

NDBEDCS s
1. PIELD
2. FLD
3, FLB_STRING
4., HDR
5. HDER_STRING
6. X

A description of these tatles can he found in the
dataset specificaticns of the D¥B.

E. PRO!L;ESSING REQUIREMENTS
1 Top lLevel Flowchart
See Figure 2
2, Barrative

Upon entry into CREATSUE, module DBEDGF is called
to obtain a valid surfile control fieldname, To
be valid this field name must not be longer than
six characters long and te a valid alphanumeric
character string., The following field names are
then created. The sukfile kev field npape, the
subkfile parent key field name, and the sunbfile
record security field name., 0f the above
mentioned four fieldnames, none must exist and
none must be a reserved ficld name for the entered
subfile control field name to be valid,

The user is prompted for the paximum number of
subfile records per anchor file record that may
he locaded 4into the suhfile, The number must be
less than or egqual +to 1325, If the number is
valid, processing ccontinues, else the user is
given a diagnostic and prompted for a new number,
This nunber then becomes the nunher of elements on
the suhfile control field.

Routine DBEDGA 1is called to determine if the
sukfile control field is to appear on an associate
file.

The subfile control field, the subfile key field,
and the subfile parent key field are now created
and posted with the proper values, The subfile
control field is placed in the varying field list
of either the anchor £file or the appropriate
associated file, The subfile Xkey field and the
parent field are placed in the fixed list of the

pacE 20+ 274

appropriate subfile,
The afore menticned field names are placed in the
reserved field name list, The command string is
saved in the current strategy, after which control
is returned to the calling routine,

Fo CODING SPECIFICATIONS

1, Source Languaqe

PL/I with TSPL/I statements,

2. Suggestions and Technigues

Not Applicable

-

Figure 1. I/0 Block diagram

UDBEDCS feeli s

. DESCRIPTOR | .

 TABLES

g

Fdy tew

Siak

DBEDCS)

ET FIELD

AME
DBEDGF

- [GET numpEm |
Lor RrECORDS |

GET
ASSOCIATED
PARAMETERS

)

Z7¢

CREATE
FIEILDS

v

THREAD
FIELDS

DBEDGA - |

v

 POST -
" FIELD
" RESERVED

.

PAGE i‘-‘iﬁ“z_’]’]

TOPIC D. 13 - DESCRIPTOR EDITOR - END COMMANDS

A, MODULE NAME

Program-ID - NLBEDDE
Module-ID - LBEDDE

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

Ce EODULE FUNCTION
This module i the entry point into the Descriptor
Editor. It prompts for and processes Descriptor Editor
commands and calls the approrriate ccmmand routine,
The ERD compand is used to terrinate Descriptor EBditor
processing and return control to the maintainence
director,
D. DATA EEQUIRENENTS
t. I/0 Block piagram
See Figure 1
N Input Data Sets
8. Parameter Cards
Not Applicable
t. Punched Card Input Files
Not Applicable
Ce Input Files
Not Applicable
3, gutput Data Sets
. Outrput Files
Not Applicable
be On~Line Terminal Displays

Not Applicable

Ca Formatted Print-Outs L

PAGE 24t 27§

Not Applicable
G, Reference Tables

The following external +tables are referenced by

NDBEDDE:
1. FIELD
2, X

3. VERBRTAE

A description of +these tables is found in the
dataset specificatiens of the DWB,

E. PROCESSING REQUIREMENTS
1, Top Level Flowchart
See Figure 2
2, Narrative

Module DREDIN is called ¢to set up node of
operation and all cf the tables necessary +to the
running of the descriptor editor.

The user is vyvprompted for his next Descriptor
Editor conmmand, If +the command is invalid as
determined by a search of the verhk table, the user
is given a diagpostic and prompted for a command
string,

If the command is not FNL, then the appropriate
command is called by use cf the CALL routine when
control is returned, the user is prompted for his
next coresand,

If the compmand is END +then if the user has not
filed his corrections, additions, or changes, he
is rronpted informing hir such and asked if he
really wants to terminate the Descriptor Editor,
If the anser is no then the user is prompted for
his next Descriptor Fditor command, else the
pescriptor Editor run is terminated,

At termination each field storage and each header
storage area is released. The FIELD apnd X
structures are then released., Control is +then
retuorned to the calling routine.

Fa CODING SPECIFICATIONS

1. Source Language

pAGE 242 279

PL/TI with DBPL/I and TSPL/I statements,
2. Suggestions and Techniques

¥ot Applicable

.DBEDDE

250

DESCRIPTOR
TABLES .

(D—=

291

DBEDDE

INITIALIZE|
DBEDIN

. .- ._] GET AND
| 'PROCESS
COMMAND.

7| COMMAND - -

b .

“bAZL-,fﬁ‘_f.

- 1 USER WANT
| TO QUIT?

SCLEANUP.

Figure 2. Top level flowchart

PAGE =216 797

TOPIC D, 74 - DESCRIPTOR EDITOR - DISELAY INTERNAL COMMAND

A,

B,

MODULE NAHE

¥rograwm-ID - NDBEDDI
¥odyle=-ID -~ DEEDDT

AWALYST

Barry G, Hazlett
Neoterics, Inc.

MODULE FUNCTION

module is a debugging tool used to display the

various external descriptor tables (DESCTAB), by their
internal name, field descripters by their field name
and header descriptors by their file ids.

DISPLAYI DRISTYPE=<I F H> , DISNAME=structure-nane

where:

LISTYPE is the tvpe of variatle to be displayed I for

internal, F for field descriptor and H for file or
header descriptor,

DISNARE is tke name cf the variahle %o be displayed.

For internal mocde the fcllcecwing structures may be
displayed.

ERECRFILE
FTELD

FLD

HDR

RECSEC
SECURITY
SUPER

YALID
FIL_CCMMENTS
FLD_FREEFCRY
FLL_BRS
FLD_SUBCNTRL
FLL_SUBID
FLD_SUBPK
HDE_ASSOC
HDR_INDEX
INIT_FLD
INIT_HDR
INIT_RECSEC
INIT_SECURTTY
INIT_SUFER

D.

DATA

2,

3.

4.

For

TO_FLE
TO_HDR
I0_BECSEC
10_SECURITY
PLEX
RESERVEC

XS

X

field mode +the name of

PAGE 247 1.¥3

to be

displaved is supplied, Fcr header mode the file
suffix id is entered.

REQUIREMERNTS

I,0 Block Diagram

See Figare 1

Inpat Lata Sets

a,

C.

Parameter Cards

Not Applicable

Punched Card Input Files
Not Applicable

Input Piles

Not Applicable

CQutput LCata Sets

aa

Cs

Output Files

Not Applicable

On-Line Terminal Disgplays
¥ot Applicatle

Formatted Print-Cuts

Not Applicable

feference Tables

1. FIELD
2. FLD
3. HDR

PAGE 248 794

4. RECSEC
5. SECURITY

6. SUPER
7. VALID
8. X

32 description of these tatles can be found in the
dataset specificaticns of the DHB,

E. PROCESSING REQUIREMENTS
1. Top level Flouchart
See Figure 2
2. Narrative

Upor entry into KDEEDDI tte user is prompted for
the disrplay type. If the display type value 1is
not 'I', *'Fr*, or H? the user is given a
diagnostic and prompted for a new value,

Depending on the disglay type the user is prompted
for either an internal structure name, a field
name, or a header i4, If the internal structure
name is not contained in the list of names in the
modunle function sectiomn, or the field does not
exist or +the file does net exist, the user is
given a diagnostic and promgted for a new display
nape value,

¥hen displaying arp internal name, a label variable
is used, one label for each structure that may be
displayed. At each of these pieces of code, a
generalized display sukroutine is called to
display the desired type of structure passing the
address of the particular structure to be
displayed. This is done for all stractures except
for the structures PLEX, ERRORFILE, and XS, A
word abouvt these display procedvres later, The
information from the structures PLEX and
ERRORFILE is setup and displayed., The displav of
the X structure is a service of calls to the
different display fproceduvres, one for each minor
structure of X to he displaved.

®¥hen displaying a field descriptor, a call to the
procedure DIS_FLD is called to display the proper
FLD structure, If the field is a superfield, has
a validation argument, or has field security,
calls are made to the routines DIS_SUPER,
DIS_VALID, and DIS_SECURITY to display the proper
structures, This 1is done to display all of the

PAGE i+9;2§§5—

information associated with the field,

¥hen display a header descriptor, a call is made
to DIS_HDR to display the proper HDR structure and
if the file has record security, a call is made to
DIS_RECSEC to display the aprropriate record
security information,

After the informaticn has keen displayed, control
is returned to the calling routine.

For displaying the actual desired data several
internal procedures are set up, one for each type
of structure, They are DIS_FIELD, DIS_FLD,
DIS_HDR, DIS_RECSEC, DIS_RESERVEL, DIS_SECURITY,
DIS_SUPER, DIS_VAILID, and DIS_XS. These
procedures build the output information in a work
area in predefined formats., The information is
output to the terminal thru use of the TS PROMPT
facility, The output consists of a title line
followed by the data usually displayed beneath the
title line.

F. CODING SPECIFICATIONS
T Source lLandguage
PL/TI with TSPL/Y and DBPL/I statements,
2. Suggestions and Techniques

Not Applicable

am

TERMINAYL ~ [

Figure 1.

- DESCRIPTOR

-' . TABLES ~

/o Block diagranm

B i s S

e e e e 4 ot

. DBEDDI o
r 5
GET DISPLAY |
TYPE - _ o _ | . ;
N] : g
= DIAGNOSTIC = S

* HEADER

." :1|IIf1.. DISPLAY

¥y

B e

GET INTERNAL

GET FIELD
- NAME

NAME

HEADER
Iip

DIAGNOSTIC DIAGNOSTIC

B ,l : '_;?]”‘, .. —;'
4‘:’ . &

| DIAGNOSTIC

 Figure 2a, Top level flowchart.

DISPLAY
INTERNATL
STRUCTURE

‘DISPLAY
FTELD
DESCRIPTOR

Figure 2b. Top level fiowchart

. DISPLAY

298

HEADER

“JESCRIPTO

PAGE 222 jLE“?

TOPIC D.15 - DESCRIPTOR EDITOR - DELETE FYIEID COMMAND

A. EQODULE NAME

Program=-IT - NDBELDL
¥odule-ID - UBEDDL

B. ANALYST

Barry 6, Hazlett
Neoterics, Inc,

Ce MODULE FUNCTION

This module is used tc delete a previously defined
field descrigptor.

D. LCATA BEQUIREMENTS
1. I/0 Block Diagram
See FPigure 1
2. Input Data Sets
¥ot Applicable
3. Output Lata Sets
a. Qutput Files
Hot Applicable
b. On-line Terminal Disrlays
Not Applicable
C. Formatted Print-Cuts
Net Applicable
4, Reference Tatles

The following external takles are referenced by

NDBEDDL.
Ts FIELD
2, FLD
3. HDR
4, SUFPER

5. X

PAGE 223740

A description of these tables is €found in the
dataset specificaticns of the DWE.

E. PROCESSING REQUIREMENTS
1. Top Level Flowchart
See Figure 2
2. Narrative

Routine DBEDGF 1is <called ¢to obktain a valig
fieldnanre. To be valid, the field nust exist., 1If
the field name appears in the reserved list, then
it must be a subfile contrcl field and there mnust
be no other fields on this suhfile to be valid.

A2 further check is made to determine if the field
to ke deleted is a comperent of any superfields or
is the defining base field for any subfields. 1If
so, the user is told of all superfields and all
subfields that make use of this field, The user
is then prompted fc¢r a new field name value, If
here then the field can te deleted,

At this point, the internal delete entry point is
defined, If the field name to be deleted does not
exist, control is returned to the calling routine,

" Dtherwise a pcinter 1is set to the field to be
daletad. At this point delete formws common
code,

If the field appears on an asscciate or subfile or
is indexed, then the appropriate file descriptor
counts are updated, If the associated file or
index £file 1is depleted of fields, the €£ile
headers are deleted, and the file ids pade
available for reassignment,

At this point the field is deleted by the internal
delete field routine, If the deleted field is a
subfile control field, the subfile key field and
the parent key field are also deleted,

The next field in the list to be deleted is now
processed in the afore menticned manner, After
2all of tke fields have heen processed, the command
string is saved in the current strategy, if it was
the delete coamand that was called. Control is
then returned to the calling routine,

The internal proceduwre DELETE FIELD is used to
release the work areas containing the field

PAGE -2-2-&-1,4/

information, and to post the deleted field list if
this field exists on the disc stcrage version of
the descriptor file.
F, COPING SPECIFICATIONS
1. Source lanquage
PL/I with TSPL/I statements,

2. Suggestions and Techniques

Fot Applicable

. DESCRIPTOR

—

Figure 1. 1/0 Block diagram

295

'\ DBEDLD

‘ — E
- DELETE FIELD
e

CALL S
- | FIELDNAME -]~ |~ _

. . N

DBEDGF | - | - | e
; N | R DELETE

$— :) S : B " . FLD L
CALL R

G . DELETE FIELD

N

. posT
FIELD

Figure 2. Top level flowchart -

PAGE 232 244

TOPIC D,16 - DESCFIPTOR EDITOR - DISELAY FIEID COMMAND

B. MODULE NAME

Frogram-ID ~ NDBEDDP
Module~-ID - DREDDP

B, ANALYST

Barry G. Hazlett
Heoterics, Inc..

C. HODULE FUNCTION

This routine is used +to display the information
defining a field,

De CATA REQUIRENMENTS
1. I/0 Elock Diagram
See Figure 1
2, Input Data Sets
B Parameter Cards
Not Applicable
b. Punched Card Input File
Not Applicable
C. Input Files
Nct Applicable
3. OCutput Cata Sets
A, Output Files
Not Applicable
b. Cn-1ine Terminal Displays
The various pieces of information are
displaved on the screen one item per 1line
preceded by a descriptive title, Refer +to
the dataset svecifications for a description

of this disvlay format.

Ce Formatted Print-Outs

4,

PAGE

Nct Applicable
Reference Tatles

The following external tatles are referenced hy
NDBEDDP<

1. FIELD

2. FLD

3, HDR

i, SECURITY
Se. SUBER

6. YALIE

T X

& description of these tables iIs found 1in the
dataset specificaticns of the D#B,

E. PROCESSING REQUIREMENTS

1.

2.

Top level Flowchart
See F¥igqure 2
Narrative

At the command entry point the paging information
structure is allocated and initialized and rouantine
DBEDGF 1is called to obtain the fieldname to be
displavyed,

At the paging entry point, the paging information
is set to point tc the proper page to be displaved
and then doin commen code %ith the command entry
poeint.

At the start of the common <code the number of the
next iter to be displaved is retrieved £rom the
paging information and a tranch 1is taken to the
appropriate code to oktain the mnext piece of field
information. If there is no information for this
item number, the next ditem 1is pointed to and
processed as above. After the line of information
is built, it is placed in the screen buffer,

If there is more rocm in the buffer, the next itenm
is pointed to and rrocessed as above. once the
screen is full and there is more information to be
output in the fcrward direction, a paging entry
point is setup and next page information is posted
in the paging information structure. The buffer
is then flashed to the screen after which control
is returned to the calling routine.

295

¥, CODING SPECIFICATIONS
1. Source language
PL/I with TSPL/I statements.
2, Suggestions and Techniques

Not Applicable

rage 229 2906

Figure 1. 1/0 Block Diagram

CGosmooer) R 299

"

INITIALIZE}

\

GET .
FIELDNAME §

. . .DBEDGF e ,_ e C R _.A,

SETUP FOR
. PAGING

,!!.

~=

POST PAGE | .© &
{INFORMATION] - =

DISPLAY. \ =~
~ DATA

Figure‘Ea.' Top Level Flowchart

b

SETUP

Ay

Figure 2b. Top Lével.Flowchart"_f-‘

DBEDDP2 o

2419

PAGE 233 200

TOEEC D, 17 - DESCEIPTCR EDITCR - Initialization
A, PODULE YAME

Froqram-IL - NLCBEDIN
Module-IT - DEBEDINM

Ba ANALYST

Barry G. Hazlett
Beoterics, Inc,

C. NODULE PUNCTICHN
This wmodule performs all of the initialization
necessary for the ronning of the Descriptor Editor., It
is called by the Cescriptor Editor director,
Da DATA REQUTREMENTS
1. I/0 Block Diagranm
See Figure 1
2. Input Data Sets
e Parameter Cards
Not Applicable
b. Punched Card Input Files
Not Applicable
C» Ingut Files
There are no inpnt files for the Descriptor
Editor when 1in the CRFATEY mode and the user
is creating a new set of descriptors.
However, when in UPDATE mode, or when the
user 1is contipuing the creation of a
previously entered set of descriptors, - the
previously created descriptor file is used as
an input file, The description of this fils
is found in the dataset specifications of the
DWE,
3. Qutput Data Fets
A Output Files

Not Applicable

PAGE 234 301

b. On Line Terminal Displays
Not Applicable
T Forpatted Print-Quts
Not Applicable
4, Reference Tables

The following external tables are referenced bhvy

NDBEDIN: .
1. FIELD
2. FLD

3. HDFE

4, RECSEC

Se SECURITY

6. SUPER
7. VALID
8. X

R description of these +tabhles is found in the
dataset specificatiocns of the DWB,

E. PROCESSING REQUIREMENTS
1. Top Level Flowchart
See Figure 2
2. Narrative

The descriptor file indicated is opened for input
to determine if the file exists. If the file
exists and in CRE2TE mode, routine DBEDID? is
called to load the descrirtors. If in UYDATE mode
and the file does not exist, the user is given a
diaqnostic and promrpted for a new file name,

The verk table is allocated and initialized to the
prorer verbh table copv. The routine DBUSER is
called to setup any aflditional user defined
commands,

If in CREATE mode and no file exists, the user is

PAGE 235 300

prompted for the anchor key field, The routine
DBEDACT is called to preocess and setup the anchor
. key field.

The user is prompted for the descriptor mode, If
the response is valid, flags are set indicating
the mode, and a pcinter is set to the appropriate
verbh tatle copy. If the mcde is invalid, the user
is given a diagnostic and rrompted for a new mode
value,

The X structure is allocated and initialized, The
initialization consists of setting the various
pointers in X to NULL, he FIELD structure is
allocated and its pcinters set to RULL,

If RESTOBE mode is indicated, DREDRT is called to
restore the checkpointed descrirptor., If no
restore errors cccurred, the go setup the verdb
table, If there were restcre errors, or CREATE or
UPDATE mode were indicated, the £file npame is
retrieved f£rom the MFCB,.
Control is then returned to the calling routine.
Fe CODING SPECIFICATIONS

1. Scurce language
PL/I with DBPL/I and TSPL/I statements

2. Snggestions and Techniques

Not RApplicable

TERMINAL

7

DBEDCM

]

DESCRIPTOR
 TABLES -

Figure 1 - 1/0 Bloek Diagram

363

DBEDDA

POINT TO
FILE

T

POST
HEADER
DESCRIPTOR]

1

POST
DELETE
FIELD

N

POST
FIELD

. DESCRIPTO

RETURN

cMk

B4

305

M5

(DBEDSS)

N\

POINT TO
FILE

R
POST

| HEADER
DESCRIPTION

!

POST
DELETE
FIELD

l’
POST

FIELD
DESCRIPTOR

(RETURN)]

(DBEDDX).

POINT TO
FILE

W

POST
HEADER
‘DESCRIPTOR

T

POST
DELETE
-FIELD

b

POST
FIELD
DESCRIPTOR

CM6

300

g s ——

' DBEDEF
RAISE
LIMLT
.. e A o h

ALLOCATE
NEW FIELD

y

MOVE
.OLD FIELD
INFORMATION
FREE .
CLD FIELD
ﬁ_ EXIT 7 i - -

o
i,
T
b
Vi

Figure 2. Top Level Flowchart -

CHM8

_ 207
I |

POINT TO
FIRST
FIELD.

FREE
VALID

FREE ‘
SECURITY

N
FREE
SUPER

POINT g
NEXT
FIELD

POINT TO | '
_ FIRST ,
. HEADER

FREE
RECSEC

POINT TO
 NEXT HEADER

Wb l

Gm) &
- B

309

DBEDGA '
. CM9
o—=2
' OCIAlED

?ET ASS

SETUP .
| DIAGNOSTIC|

o

SETUP '
DIAGNOSTICY

| Y

| CREATE
NEW FILE

-

: POST
INFORMATION

RETURN),

DBEDGF

GET FIELDNAME
—]

POST
FTELDNAME

(RETURN)

SETUP.

DIAGNOSTIC

Z/0

CM10

- ', a4
(:::::::::: CM11-
DBEDGR
@?.@mmj
| NaME |

SETUP
IDIAGNOSTIC

POST \ o
.ROUTINE o

NAME

POINT TO
NEXT N
ROUTINE.

\/ | |
ARGUMENT |

sETUP

N DIAGNOSTIC
POST | e
ARGUMENT -

_ N
{ “RETURN)

312

, CM12
(pBEDPG1) - _

(» 5
GET DIRECTI?N

 SETUP - |
DIAGNOSTIC |

- POST - =
| DIRECTION

N/
|
 [CALL ROUTINE

CALL

N :
(RETURN j

3/3

CM13

DBEDPG2

b

1
r

ALLOW USER
TO PAGE 5

PAGE 238-4/4f

TOHC D.18 - LCESCEIFTOR EDITOR - FIELIS COMMAND

A, MODULE NAME

Progran~-ID ~ NDBEDFD
Module-ID ~ CRBEDFT

B. ANRLYST

Barry G, Hazlett
Neoterics, Inc,

c. MODULE FUNCTICH
In CREATE mode the FIEFLDS ccamand outputs the pamnes of
the fields thus far <created, In UOPDATE wode the
descriptor descriptor names are displayed.
Da CATA REQUIREMENTS
1. I/0 Block Diagram
See Figure 1
2. Input Data Sets
a, Parameter Cards
Rot Applicable
k. Punched Card Ynrut Files
Not Applicable
C. Input Files
Not Applicable
3. Ontput Data Sets
de Dutput Files
Not Applicable
b, On-line Terminal Displays
The fieldnames are placed on the screen, the
number of nanes rer 1line determined by

dividing the screen width by 20,

C. Formatted Print-OQuts

PAGE 239-3/5

Rot Applicalble
u, Reference Tables

The following external tables are referenced by

NDBEDFD:
1. FIELD
2. X

& description of these takles can he found in the
dataset specificaticns of the DWB.

E. FROCESSING REQUIREMENTS
1. Top level Flowchart
See Figqure 2
2. Narrative

If in CREATE mode, a pointer is set to the FIELD
structuyre, othervise in UPLATE mode the ©pointer
is set to an internal list containing the
descriptor descripter field nanmes,

At the paging entry the protper prage number is set
up in the paging informatiocn structure,

At this point, the code tecomes ccnmon for both
the command and paging entry points, The numdber
of the next field name to be displayed is obtained
from the paging information structure, T¥o
control loops are set up, cne to build every line
to fill the screen and the cther to fill each line
of the screen.,

If there is more informaticn to be displayed, the
paging entry point is set up, The paging
information structure is rosted, the buffer is
flushed to the screen and ccntrol is then
returned to the calling routine.
F. CODING SPECIFICATIONS

1. sourcea lanquaqge
PL/I with TSPL/I statements,

2 Suggestions and Technigques

Mot Applicable

LI

DESCRIPTOR
TABLES .

DBEDFD

s

3

Figure 1. I/0 Bloelk Diagram

1 3/7

A\

SETUP

UPDATE

J CREATE
I i g A

BUILD SCREE

l
BUILD SCREEN
FROM FIELD

. FROM :
INTERNAL LIST
|

o

MORE ~_ N

‘DATA
?

J

SETUP FOR
PAGING

<
r

]
POST PAGING
INFORMATION

4

OUTPUT
DATA

Pigure 2. Top Level Flowchart

DBEDFD? :

.PAGE 22 Z/¢

TOPIC D, 19 -~ DESCRIPTCR EDITOR - FILE CCMEAND

A, MODULE NAME

Program~IL - NDBELFI
#Module~ID - DBEDFI

B, BANALYST

Barry G. Hazlett
Neoterics, Inc.

C. MODOLE FPONCTION
This module is used to place +those additions and/or
changes from the descriptors in core +to the descriptor
file.
D, LDATA BEQUIREFENTS
1. I1/0 Block Diagranm
See Figure 1
2. Inpat Data Sets
a. Parameter Cards
Not Applicable
ba. Punched Card Input Files
Not Applicaltle
Ce Input Files
Not Applicable
3. Qutput lata Sets
. Output Files
The descriptor file is a region ISAM dataset
containing all the information necessary to
conpletely define the data base.
b. On-line Terminal Disrplays

Nct Applicable

C. ¥ormatted Print-Cuts

PAGE 243 X/4

Nect Applicable
L, Reference Tables

The following external takles are referenced by

¥DBEDFI:
1, FIELD
2, FLD
3. FLD_STRING
4, HDR

5, HDR_STRING
6. RECSEC
7. SECURYTY

8. SUPER
9, VALID
10. X

R description of these tables can be found in the
dataset specifications of the DWBH,

E. PROCESSING REGQUIREMENTS
1. Top Level Flowchart
See Figure 2
2, Barrative

Upon entering FILE conmand, if just cne descriptor
record 1is to be updated, +the appropriate file
identified is setup, the file opened and the
descriptor record 1is vpdated after which control
is returned to the calling routine. Otherwise all
the descriptor informaticn is to be filed to the
descriptor file, The wuser 1is rrompted for the
parapeter DESCOX and the value saved for posting
each header record. If the input value 1is in
error the user is given a diagnostic and prompted
for a new value,

If the anchor key field needs to tke deleted, it is
deleted from the anchor and all associate files,
The delete file 1ist is then processed deleting
the header, RECLEW key <field and when applicable

the parent key field of all files listed,

For outputting descriptor information, the files
are processed in the following order: anchor, all
associate files, then all subfiles., If the file
does not exist op disc the EBECLEN field is
written out, If it is a new region and the file
is either the ancheor file cr an associate f£ile the

PAGE 244 Z 70

anchor key field must be written out for a new
suhfile the subfile key field and parent key field
are written out. If these or any other fields
already exist on the file then cnly the changes if
any, +to these fields are written owut. Record
security if any is then written out,

As these fields are output the field position
value for each €field inm maintained and updated.
This valuwe is then placed in the FLDPOSIT position
for each field,

The packed bit fie¢lds for the file are then
processed in the c¢rdexr in which they appear in
the list, They are packed ¢four to a byte and the
field position and field length indicating which
byte and where in the byte respectfully the field
can he found., After all packed bits fields are
processed, the fixed fields for the file are
processed shipping over the key field, parent key
field and record securitv field where applicable.
Then all wvarying fields are processed in order,

If it is an anchor or associate file all
descriptors if any arvre set up and processed,
Then the header record 1is setup and processed and
the file closed. The next file is processed in
this marnner until the anchor file, all associate
files and all subfiles are processed,

The index files are processed next, If it is a
new file the RECLEN field is written out. Each
field tc be indexed on this file is located, setup
and written out. The anchor or ¥ey field on the
appropiate subfile key field 1is setup and written
out. If the index file already exists then only
those changes applicable are written out to the
dataset. FEach index file is processed 1inm this
manner antil all index files have been
processed.

after all the fields have been processed the
various external structures are marked indicating
that the descriptor data is on the dataset, The
compand string is saved in the current strategy
and control is returned to the calling routine.

E, CODING SPECIFICATICHNS
1. Source lLanguage

PL/Y with DERPL/I and TSPL/I statements,

PAGE %&&igzbf

2. Suggestions and Techniques

Not Bhpplicable

-éizyg’

' (k . - - | DEScRIPTOR

A —— T
DESCRIPTCR
FILE

.Figure 1. /0 Block Diagram

‘.
bl

32,3
| POINT TO . |SETUP anp
GET DESCOK NEXT FILE ~lourPUT

" |FIELDS
T
_ : s SETUP AND
Q%NFgﬂ - |oureyr
h - HEADER

- _FILE AL}

DESCRIPTOR
i

g SETUP

. FILE 1D

>
‘o

g

L | - | DELETE. }. . ~ |SETUP AND Y ..
e OPEN -t - - {KEY FIELDS [7 {FIELDS
.| FILE - b B |

\

] | DELETE l SETUP AND |
- - FIELDS o ,
_ FIELD - {ourpur -]
oUTPUT . | I o
“[DESCRIPTOR : ~

RECORD . v

' , — | DELETE
| REGIONS
{ ExIT)
i ;
' 'l" s
_ POINT TO
NEXT INDE
FILE |
DIAGNOSTIC 5

; Figure 2. Top Level Flowchart
|

pacE 24 324

TOPIC D.20 - DESCRIPTOR EDITOR - SUPERFIELD COMMARNT

a, MODULE NAHE

Program=-ID - NDBEDSU
Module~ID - TEREDSU

B. ANALYST

Earry G. Hazlett
Neoterics, Inc.

C, HODULE FONCTION

The SUPERFILL commands allow the wuser to define a
superfield descricptor,

D. DATA REQUIREMENTS
1. 1/0 Block Diagram
See Fiqure 1
2, Input Data Sets
a. Parameter Cards
Not Applicable
b. Punched Card Input Files
Not Applicable
C, Input Files
¥ot Applicable
3, Qutput Data Sets
aa Qutput Files
Not BRpplicatble
b. On-line Terminal Displays
Yot Applicable
Ce Formatted Print-Quts
Not 2pplicakle

4, Reference Tables

paGE 256-525

The following external tables are referenced by

NDBREDSU:
1. FIELD
2. FLT
3. FLD_STRING
4. HDR
5. SUPER
6. YVALID
7. X

A description of these tables can be found in the
dataset specifications of the DWEH,

F. PROCESSING RECUIREHENTS
1, Top Level Flowchart
See Figqure 2
2. Narrative

Tpon entry into SUPERFLD, routine DBEDGF is called
to ottain a new fieldpame,

2 FLD structure is allocated and initialized,
Routine UBEDGR is called to obhtais any conversion,
formatting and validaticn routines and validation
argubent,

The user is promcted for a list of field names
which are to be the superfield components. Each
component is processed in the following manner,
If no interral external indicator 1is present,
external form is assumed, If an indicator is
present, it is sererated from the field name. If
the indicator is invalid, the user is given a
diagnostic and prompted for a new component value.
To be valid the component fieldname must be the
name of an existirg field, In addition, for a
field having nore than one component, the
component list is limited to at most one
anltieleneat ¢field and all if any subfile
components must be from the same subfile, If the
component fieldname is invalid, the user is given
a Adiagnostic and rprompted for a new component
value,

After all the ccmponents are entered, and
processed, they are saved in a SUPER structure and
the pointer stored in the ¥FLD structure,

Next it is deternined on which descriptor file the

paGe 259 32(

superfield is tc be placed., If all the components
are from one file, then the superfield descriptor
is placed in +the descriptor region. It the
components are all from one associate file ard one
subfile and the subfile is defiped off of that
associate file, the superfied descriptor is placed
in that asscciate descripter region, A1l other
superfield descriptors are placed in +the anchor
descriptor file,

The SUPERFLD command string is saved in the
current strateqgqy and contrecl is then returned to
the calling routine,
F. CODING SPECIFICATIONS
1. Source Language
PL/Y with TSPL/I statements,

2. Suggestions and Techniques

Not Applicable

DBEDFS

o,

@ |

W

GET
FIELDNAME
DBEDGE

- | FIELDNAME

SAVE

&

dadl

Figure 2b,

GET SECURITY
. CODE

Top Lével

Floweharte

ég;zgrﬂ

DIAGNOSTIC

PACGE 25% 374

TOHEC D,21 - DESCRIPTCGR EDITOR - LOAL DESCRIPTORS MODULE

a. MODULE NAME

Prograwp~ID - NDBEDLD
Module-ID - LREDLT

B. ANALYST

Barry G, Hazlett
Neoterics, Inc,

Ca BODULE PURCTION
In create mode the load npodule lcads and sets up all
fiald and header descriptor informaticn, 1In update
node the locad module 1cads the desired descriptor
record, including file descriptors and dummy descriptor
records,
b, DATA REQUIREMENTS
1. I/70 Flock Diagram
See Figure 1
2 Input Data Sets
aa Parameter Cards
Not Applicable
b. Punched Card Ingut Files
Yot Aprvlicable
Cs Input Files
The descriptor file is a region ISAM dataset
containing all the inforwation necessary to
completely define the data base,
3. Output Data Sets
a. Output Files
Not Applicable

b. On-line Terminal Displays

Not Applicable

PAGE 255 £3)

Ca Formatted Print-GCuts
Not RApplicable
4, Reference Tahles

The following external tables are referenced by

NDBEDLD:
1. FIFLD
2. FLD
3. FLD_STRINC
4, HDR
5. HDF_STRING
6. RECSEC . . . S

7. SECURITY
8. SECURIMTY_STR

9. SUPER
10, VALID
11. X

A description of these tables can be found in the
dataset specificaticns of the D¥WBH.

B. PROCESSING REQUIREMENTS
1, Top Level Flowchart
See Figure 2
2, Farrative

gpon entry into DBEILD if all descriptors are to
te loaded, the ancher file is first pointed to,
otherwise the appropriate file identifier is set
up. If c¢all frecm REVIEW conmmand branch to
retrieve the appropriate header on field
descriptor fields as the file has been opened and
the approrriate descriptor read into core,

In update mode any fields which have been loaded
and still exist in work areas are released, This
is a control so that no more than one field
descripter can be lcaded at any one time, PNote:
this is not true for header descriptor.

The next descriptor regicn is opened starting with
the anchor region and the descriptor header record
read in., The header fields are ohtained and all
kit switches converted to an alphabetic character.
A HDR structure is allccated and the header
information saved therein. If the file has record
security, the security codes ohtained, placed in a

PAGE 256 33/

BECSEC structurse and hocked up to +the HDR
structure,

If in update mode, the desired field descriptor
record is read 3in, otherwise the next segquential
field descripter is read in, If not in review
mode, it must be determined if the field is a
dummy descriptor. Tf it 1is then a list of file
ids 1is bhuilt eventually containing all of the
descriptor regicns on the file once all of the
field descriptors on +the anchor file have been
processed, This 1list is built from non-blank
entries in +the ASSOC¥IL, INVYFILE and SUBFILE
descriptor fields., If the field is a dummy, and
in update mode, the correct file is pointed to and
a Yranch goes +to cpen the file and read the
desired field descriptor. In create node, this
record is skipped and the next descriptor record
in the reqgion is read,

If this field descriptor is saved, all of the
field descriptor bit field values are +translated
to an alphabetic character,

The field validaticn arqument, if any, is obtained
and saved, If the field is a superfield, the
component values are obtained and saved,
Likevise, 1f the field has secuyrity, the security
codes are obtained and saved,

A FLD structure 1is allocated and the field
information =saved therein, The field name and
pointer are posted in the next available slot in
the FIFELD structure, and if ip create node, the
FLD structure is chained to the end of the proper
file 1list,

When the anchor region is finished, A list of all
existing descriptor regions is complete. The next
descriptor region in that list is selected and
loaded as described,

In review mode once the desired descriptor record
from the desired descrirtor region has heen
processed, as the correct nen donpy field
descriptor has been loaded in update mode, control
is returned to the calling routine.

In create mode a search ic made through all file
lists to locate all subfields. For aach
subfield, the defining tase field 1is located and
the tase field name and cffset are posted 1in the
subfield FLD structure.

PAGE 257337

The fields within the file 1lists are ordered by
their field positions withip each file list with
all subfields and superfields agpearing at the end
of the crdered lists, Control is then returned to
the calling routine.

F. CODING SPECIFICATIONS

1. Source Language

PL/T with DBRPL/I statements.

2. Suggestions and Techniques

Not Applicable

- DESCRIPTGR
 FILE

Figure 1.

1/0 Block Piagram

333

.| ‘DESCRIPTOR | . -
o] maBrEs]

F

334

DBEDLD

SETUP N
FOR
LOADING

“SET TQ :
ANCHOR FILE!

'-Figure 2a.’

-.Top_LevelfFlowehart-'

335

FROCESS anp
SAVE FIELD

EXIT

GET FIELD
INFORMATION

POINT 79 -
NEXT REGIOy

SETUP «
READ ONLy

BASE FIRLDS .
”INFORMATION

Figure 23,

TOHC D.22 ~ DESCRIFTCR EDITOF - ¥OVE COMMAND

A. MODULE NWAHE

Program~ID - NDBEDMO
Podule-IL - CBEDNO

B. ANALYST

Barry G. Hazlett
Keoterics, Inc,

C. MODULE FUNCTION

The MOVE command permits the user +to reorder
within any field list,

D. EATA REQUIREMENTS
1. I/0 BLOCK DIAGRANM
See Figure 1
2, Inpot Data Sets
a. Parameter Cards
Kot Applicable
b. punched Card Input Files
Not Applicable
Ca Input Files
Not Applicable
3. Cutput Lata Sets
a. OQutpnt Files
Not Aprlicable
b, On-lLine Terwminal Displays
Not Applicable
Cs Formatted Print-Outs
Hot Applicable

q, Reference Takles

PAGE a6+ 330

fields

PAGE 262 337

The following external takles are referenced by

NDBEDNMO:
1. FLE
2. HDR
3. X

3 description of these tatkles can be found in the
dataset specificaticns of the DV¥B.

E. PROCESSING REQUIREMENTS
T. Top Level Flowchart
See Figure 2
2, Harrative

The usetr is prompted for the new position field
nane, If the entered field name does not exist,
the user is given a diagnostic and prompted for a
new fieldname. The new position field nawe cannot
ke, the anchor key f£field if the anchor file has
record security, the sukfile parent key field if
the suhkfile has reccrd security or the subfile key
field, or the RECLEN field. If any of these
conditions are met, the user is given a diagnostic
and reprompted for a new position fieldname., A
superfield has no field position, If a subfield
is specified, the defining base field is located
and used as the new rpositicn fieldname, All other
fields are unacceptable.

The user 1is pronpted for +the field to be moved,
To te valid, the field nmust exist and must not be
a reserved fieldname, must appear in the sane
field 1ist as the new position field name and
must not be a superfield or a subfield. If the
field is invalid, the user is given a diagnostic
and reprompted for the field to be moved.,

The field to he moved 1is deccupled from the list
by resetting the aprropriate forward and backward
pointers, It is then threaded into its new
positior by setting the aprropriate forvard and
backward pointers, -

The cozmand string is savefl in the current
strategy and then control is returned to the
calling routine.

F. CODING SPECIFICATICHNS

Source language
PL/I with TSPL/Y statements.
Suggestions and Technigues

¥ot Applicable

PAGE 263 3)

o DBEDMG DESCRIPTOR
o TABLES -

Figure 1, I/O'Blcck diagram

GET FEILD ToO

_BE MovED

Figure 2.

,po level flowechart

340

PAGE 266 34/

TOEC D.23 -~ DESCRIPTCR EDITOR ~ PATCH COMMAND

A.

B.

D.

HODULE NAMNE

Program-ID -~ NDBEDPA
Module-ID - LEEDPA

ANALYST

Barry G. Hazlett
Neoterics, Inc.

MODULE FUKRCTICH
The Patch comsmand permits the user to patch the value
in any descriptor record im any description tregion in
the descripter file, The record to be patched must be
identified by use of the REVIFY command,
DATA REQUIREN¥ENTS
1. I/0 Block Diagranm
See Figure 1
2. Input Data Sets
3. Parameter Cards
Not Applicable
b. Punched Card Invput Files
Not Applicable
Cs Input Files
Not Applicable
3. Qutput Tata Sets
a. Qutput Files
Not Applicable
k. On-Line Termwinal Displays
Not Applicable
C. Forzatted Print-Quts

Not Applicable

PAGE 263 S}

iy, Reference Tables

The following external takles are referenced by

NDBEDPA:
1. FLD
2. HDE

3. RECSEC
4. SECURITY

S. SOPER
6. VALID
T X

A description of these tables c¢can ke found in the
dataset specificaticns of the DWR,

B, PROCESSING REQUIREMENTS
1. Top lLevel Flowchart
See Figure 2
2, Narrative

The REVIEW command indicates in X that a REVIEW
has beer done and it is alright to patch, REVIEW
also indicates whether the field to be patched is
a field or header descriptor. IXf a REVIEW has not
been done the user is 4given a diagnostic and
control is returned to the calling routine.

The user is prompted for his patch in the fornm
"keyword=test", The kevword is checked to see if
valid, If not, the patch is ignored, the user
given a diagpostic and reprompted for- the patch,
If the name is valid, a tranch is taken +to the
piece of coded wvhich actually posts the
appropriate field.,

In each of the sections of «code, one for each
descriptor field pame, a Tresonableness check is
made on the patch text, tc assure that the data
will be accepted by the validation routines when
posting the information to the descriptor file.

Refer to the Descrigptor Fditor Users Guide for the
acceptatble range and form <f the patch texts,

The user may enter a parenthesesed 1list of
patches.,

After all +the patches have been posted in the
descriptor table work areas, they past then be

pace 268 343

posted tc the descriptor data set., The routine
DBEDFD3 is called to post the appropriate field
descriptor, or the vroutine DBEDFI is called to
post the apprcpriate header descriptor. The
routine called depends on whether the user 1is
patching a field descriptor or a header
descriptor. Control 1is then returned to the
calling routine,

F. CODING SEECIFICATIONS
1. Source Language
PL/T with TSPL/I statements,
2, Suggestions and Technigues

¥ot applicable

Figure 1.

" DBEDPA

I/O BlOCk Idiagram

: 'EESCRIPIOE_
T mames

POINT g
HEADER
DESCRIPTOR
FIELD NAMES

DESCRIPTOR
FIELD NAMES

DIAGNOSTIC

Figure 2.

Top level flowchary

pace 27+ 344

TOPIC D.,24 - DESCRIPTOR EDITOR - PRINT COMMBND

A, MODULE NARE

Program=-I5 - NDBELPR
Hodule-ID ~DREDPR

B. ANALYST

Barry G, Hazlett
Neoterics, Inc,

C. MODULE FONCTION
The PRINT command gives the user a formatted printout
of the descriptor information as it exists in core at
the time the print is issued.
D. EATA RECQUIREMEERTS
1. I/0 Block Diagram
See Figure 1
2. Input Data Sets
. Parameter Cards
Not Applicable
b. Punched Card Input Files
Not Applicable
Ca Inrut Files
¥ot Applicable
3. gutput Tata Sets
a. Output Files
The output data from NILBEDPR is placed in the
SA¥ data set IIST.DESC from where it is
printed on the high speed printer by an 0S
Job., For the details of the data set refer
to the dataset specifications,

b, Onp-Line Terminal Distlays

¥ot Applicable

paGE 232 347

c. Formatted Print-Outs
The informaticn stored in LIST, DESC is
printed using column cne of each record as a
carriaqe ccntrcl.

4, Reference Tables

The following external tatles are referenced by

NDBEDPR:
1. FPIELD
2, FLD
3. HDR
4. RECSEC
5. SECURITY
6, SUEPER
7. VALID
8. X

A descripticn of these tabhles can be found.
dataset specificaticns inp the of the DHEB.

E. PROCESSING REQUIREMENTS
1. Top Level Flowchart
See Figure 2
24 Narrative

The data set LIST.DESC is created wusing the
assembYer routines, A DCB 1is created for the
output file by the toutine ASMDCB, the JFCB set up
by the routine ASMFNDS, and the dataset opened hy
the routine ASMOPERW,

The title lines for the data rase name are output
by the routine ASFPUT. The data base name is
ontput followed by two trailing title lines,

The title 1l1lines fcr the field descriptors are
output, The 1lines of field information for each
field are built and output.

After the field irforwmaticn 1is processed, the
title lines for the header descriptor information
are writtenm out. The lines of header informwmation
for each descripter regicn are built and written
out,

The LIST,DESC dataset is closed ty calling the
routine ASHCLOS, .

¥, CODING SPECIFICATIONS
1. Source language
PL/I with TSPL/T statements,
2, Suggestions and Techniques

Yot Applicable

PaGE 293 34¢

DESCRIPTGR
TABLES

- PRINTER
LISTING

Figure 1. 1/0 Bigex diagr

am

s i v

(DsEDPR)

:

CREATE
LIST.DESC(+1)

é

OPEN

3

OUT DATA-
PLEX NAME
AND HEADER

LIST.DESC(0) |

QUTPUT
FIELD
HEADER

'

OUTPUT
FIELDS

|

' Figure 2, Top level flowchart

.’*'

.) 4

3570

o

S 7 L
OUTPUT
FILE

- READER

$

OUTPUY
FILE
DESCRIPTORS

| ;;} },

CLOSE
FILE

—

é

" PRINT
LIST.DESC(0)

—

PAGE 276 35/

TOPFIC D.25 - DESCRIPTOR EDITOR - RECCED SECURITY CCMMAND

A, MODULE NAME

Program—ID ~ NDBELERS
Module~ID ~ TERERDES

B. ANALYST

Barry G, Hazlett
Neoterics, Inc.

Ca MODUOLE FUNCTION

This coemand is used to create and define record
security for any data base file except for indicies.

D. CATA REQUIREMENTS
1, I/70 Block Liagram
See Figure 1
2. Input Data Sets
as. Parameter Cards
¥ot Applicable
b, Punched Card Input Files
¥ot Applicable
Ca Input Files
Not Applicatle
3. Output lata Sets
a. Outrut Files
Not Applicable
b. Ogn-Line Terminal Displays
Nct Applicable
Ce Formatted Print-QOuts
Not Applicable

4, Eeference Tables

PAGE 277 350

The following extermnal tables are referenced by

HDBEDRS 3
1, FIELD
2. FLD
3. FLD_STRING
4., MDR
5. RECSEC
6., X

2 description of these tatles can be found in the
dataset specificaticns of the DW®B.

E. PROCESSIVG REQUIREMENTS
1. Top level Flowchart
See Fiqgure 2
i Narrative

Routine PBELGF is called to obtain a fieldnanme
used to define on which f£file record security is to
te placed, If in vpdate mode and the header
record is not loaded, DBEDLT is called to load the
header, Tf there is no record security currently
defined for the file in UPDATE mode, the user is
given a diagnostic and control is returned to the
calling routine,

The user 1is pronmpted for a record security code,
The add-delete indicator is removed from the code
and wvalidated, If it 1is invalid, the security
code is rTedjected, the wser is given a diagnostic
and reprompted for the security coded, If no
indicator is entered, "ADD"™ is assumed.

The security code is removed from the parameter,
Jf this is not an alphanumeric character string,
the security parameter is redjected, the user is
given a diagnostic and reprompted for the
security code,

The security mask to be valid mpust be a two digit
hexadecimal character string, JIf it is invalid,
the security parameter is rediected, the user is
given a diagnostic and reprompted for the
security parameter,

Oonce the security parameter 1is validated, it is
saved in an internal work area. The user nmay
enter a list of security parameters as a list in
parentheses, Fach security parameter is obtained

racE 278-353

from the user and processed as akove,

If record security has bheen previously defined for
the file, a pointer is set up to the file header
and record security information. Otherwise a
record security field 1is created and placed 1in
the appropriate vposition in the fixed field list
of the file, A record security save area is
allocated and initialized.

A control loop is set up to process each entered
security code, The existing security list if any-
is searched for the entered security code, If the
security code exists and the new code is to be
added, the two security masks are 1logically OR?ed
together and the result posted in record security
structure, If the code is to be deleted, the two
security mask are logically exclusively OR'ed and
the result placed in the record security
structure, If the security code 4is nct in the
existing list and it is to be added, it is placed
at the end of the existing 1ist., If the code to
be deleted and it does not appear in the list, it
is ignored. Fach security code 1is processed in
this wanner.

After all security code have heen proéessed and
the reccrd security list is empty, the area 1is

released and the record =security field deleted
from the file.

If in UPDATE routine DBEDFI is called to post the
record security tc the descriptor file, The
command string is saved in the current strategy
and then ccntrol is returned to the calling
nodule.
F. CODING SPECIFICATIONS

1 Sounrce languaqge
PL/TI with TSPL/I statenents,

2, Suggestions and Techpingues

Not Applicable

354

- Figure 1. 1/0 Block diagray .

355

GET . : - | T
FIELDNAME
DBEDGF

":4/'

Tiomm | B o IR C
HEADER ([- | =~ = S
DBEDLD3 ' '

| sETUF -
 SECURITY .

A

POST
SECURITY
CODES - -

SAVE
SECURITY
CODE

Figure 2. po level flowchart

pAGE 283+ 350

TOFLCS D.26 ~ DESCRIPIOR EDITCR - RESTORE CCHMMAND

A, MODULE NARE

Program=-1ID - NDBEDRT
Bodule-~ID ~- DEEDRT

B. ANALYST

Barry G. Hazlett
Heoterics, Irc.

Cs MODULE PFPOUNCTIONW
This command is used to restore the descriptor tables
from a SAM data set to memory, so that the user mavy
continue to create and/cr modify the descriptors fronm
their point of existence at the time the checkpoint vas
issued.
D. LATA REQUIREMENTS
1. I/0 Bleck Diagram
Sea Figure 1
2. Input Pata Sets
a. Parameter Cards
Not Applicable
b. Punched Card Input Files
Not BApplicable
C. Ingut Files

The dinput file 3is a SAM data set named

DESCRP, CHKFEQINT, Refer to the dataset
specifications for a description of this data
set.

3. Ootput Data Sets
a. Ontput Files
Not Applicable
b, On lLine Terminal DPisplays

Nct Applicable

vaGE 282 357

Ca Formatted Print-Cuts
Not Applicable
4, Reference Tables

The following external tables are referenced by

NDBEDRT:
t, FIELD
2. FLD
3. FLD_STRING
4, HDR

S. HDF_STRING
6. RECSEC_STR
7. SECURITY_STR
8., SUPER_SIR

9, VALID

10. X

The description of these tables is 1in the
specifications of the dataset DWB,

E. PROCESSIYG REQUIREMENTS
1. Top level Flowchart
See Figure 2
2. Narrative

Upon entry into NDBEDRT a DCB is set up for the
dataset LESCRP.CHEPCINT Yy calling the toutine
ASMDCB, ASHMFNDS is called tc setup the JFCB, Any
and all existing field descriptors and file
descriptors are released and then the FIELD
structure itself is released.

ASHCOFEN is called tc open the dataset, That part
of the ¥ structure which was saved is read in over
top of the same part of the existing ¥ strucure.

The FIELD structure is allccated next, Note that
the variable defining the size of FIELD structure
is in that part of ¥ which has -ust been restored,
The FIELD structure is read in overlayving the Fjust
allocated existing FIFLD structure.

A field descriptor is read into a work area. A
FLD structure is alleccated on the field
information moved 1into it. If the PLD has field
security, a validatien argument, or is a super
field, the appropriate structures are allocated,

PAGE &&335?’

the information moved into ther, and the pointers
in FLD setup accordingly. The chanced flags in
FLD are setup so that all of the ficld descriptoer
information will be forced cut to disc when the
PILE command is issued, Each field descriptor is
processed in this manner,

A file descriptor is read into a work area. An
HDR structure is alleccated and the header
informaticn moved into it, If the file has record
security, a RECSEC structure is allocated, the
informaticn moved into it, and the pointer posted
into the HDR structure. The HIR rointer is posted
into the proper slct in X.HEAD_TAE. Each header
descriptor is processed ip this wanner,

The dJdataset DESCRP,CHEPOINT is then closed and
control is returned to the calling preogranm,

P. CCDING SPECIFICATIONS
1 Source Llanquage
PL/I with TSPL/I statements.,
2, Suggestions and Techniques

Not Applicable

357

DESCRIPTOR
TABLES

Figure 1,

I/0 Block diagrag

" Figure 2,

~Top leval flowchart .

3L

PAGE 286 AL/

TOPLIC D,27 - DESCRIPTOR EDITOR - REVIEW COMMAND

A, MODULE NAME

Program-ID - NDBEDRV
Module-IT - TEBEDRY

B. ANALYST

Barry G, Hazlett
Neoterics, Inc,

Ca MODULE FUNCTICN
This command is used to present the descriptor
information to the user of any descriptor record in any
descriptor region in the descriptor file, Revisw
roints to the record +to bhe patched by means of the
PATCH command,
D. DATA REQUIREMEWTS
1. I/0 Block Diagram
See Figure 1
2 Input Data Sets
A Parameter Cards
Not Applicable
b. Punched Card Input File
Vot Applicable
Ce Input files
The data base descriptor file is a ISAM file
rmaintained by DBEAC, containing the
information defining and detailing the
infermation contained in the data base.
3. OQutput LCata Sets
a. Output Files
Net Applicable

b. On-Line Terminal Disrlays

The various pieces of information contained

pAGE 28F LA

in the descripntor record are displayed on the
screen preceeded by the descriptor descriptor
field name, A1l fixed fields are displayed
within a 20 character string, The number of
items per 1line for fixed £field items is
determined by dividing the screen width by
20, The varying elements are display omne per
line, with continuation lipnes if necessarvy.

Ca Formatted Print-Outs
Not Applicable
4, References

The f£following external tatles are referenced by

NDBELDRV:
Te FLD
2. EDR

3. RECSEC
4, SECURITY

5, SUPER
6. VYALID
T X

A description of these tables is found in the
dataset specifications of the dataset DWB,

E, PROCESSTNG REQUIREMENTS
1. Top Level Flowchart
See Figure 2
2. Narrative

At the command entry point the paging information
structure is allccated and initialized, The user
is prompted for the descriptor file a region iid
that he wishes +to review from, If the region id
is invalid, the user is given a diagnostic and
prompted for a new regiom id,

The user 1is prompted for the name of the
descriptor record he wishes to review from the
descriptor regicon. If the descriptor mname is
invalid, the user is given a diagnostic and
promgted for a nevw descriptor nanme, If the
descriptor exists the routine DBEDLD is called to
load +the descriptor data. If a lcading error
occured, the wuser is given a diagnostic and
prompted for a new descriptor value,

PAGE 288 3&3

The paging information structure is setup to point
to the first page of infcormation to be displaved,
At whichk point the command entry and paging entry
join in common code,

At +the vaging entry point, the paging information
is set to point to the proper page to be displayed
and then join commen code with the coanmand entry
point,

At the start of the common code, the number of the
next 1item to be displayed is retrieved from the
paging information and a branch is taken to the
approprate code to obtain the next piece of
descriptor informaticon. Seperate pieces of code
exist for each field descriptor and file
descripter descriptor fields., After the piece of
information is built, it is inserted in the ouvtput
line., If there is sufficient room in the outout
line for more data, the next item of information
is cobtained as above, If the line is full, it 1is
put into the TS screen buffer.

If there are more lines of screen available, they
are built and processed as above. This continunes
until either the screen buffer is full or all of
the dinformation has been exhausted, If the
screen is full and there is more information to
output ip the forwvard direction, a paging entry
point is setup and the next page cf information is
posted in the paging dinfcrmation. The bhuffer is
then flashed to the screen.

The ¥ structure is tposted as the descripter region
and field nare of the reccrd REVIEW'ed so that the
user may use the PATCH command if he desires,
after whichk contrel 3ds then returned +to the
calling routine,
F. CODING SPECIFICATIONS

T Source Language
PL/T with TSPL/I and DBPL/T statements.

2. Snggestions and Technigues

Nct Applicable

.: é;(ﬂﬁe'

| . DESCRIPTOR |
| TaBLEs

Figure 1. I/0 Block diagran

DEEDRV1

INITIALIZE
_PAGING
. INFORMATION

A S
¥

GET FILE ID

DIAGNOSTIC

GET
FIELDNAME
i .

LOAD
FIELD-

DBEDLD3 |

POINT TOQ
FIRST PAGE

POINT To
NEXT ITEM

38

| ITEM

SETUP FIELD
DESCRIPTOR

j
"SETUP FILE

- DESCRIPTOR
TTEM

ki

PUT DATA IN
OUTPUT LINE -

" Figure 2a. Top level flowchart

’ —:.

(DBEDRV2)

v/

POINT TO
‘PAGE

| POINT TO |
NEXT LINE -

| PUT LINE
INTO SCREER

- SETUP -
PAGING
ENTRY

LY

EXIT)

o

QUTPUT ¥
DATA TO
SCREEN

Figuré 2b., Top level flowchart

PAGE 233 3 &7

TOEEC D.28B - DESCRIPTOR EDITOR - SAVE STRATEGY CGHHANb

A. ¥ODULE NAME

Program-ID - NDBEDSS
Module-IL - LBEDSS

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

c. HODULE FUNCTION
The command is used to create and save in the strategy
data set, a list of Descriptor Editcr commands which
vhen executed at any future time will create a set of
descriptors exactly 1like those that exist in core at
the time the SAVSTRT command is issued,
D, CATA REQUIREMENTS
Te I/0 Block Diagram
See Figure 1
2. Input Data Sets
a. Parameter Cards
Not Applicable
b, Punched Card Input Files
Not Applicable
C. Input Files
Not Applicable
3. Output Data Sets
a. Output Files
Not Applicatle
ba. On-line Terminal Displavys

Net Applicable

Cs Formatted Print-Outs

pace 294 3LY

Not Applicable
g, Feference Takles

The following external takles are referenced by

¥DBEPSSz
1. FLD
2, HDR

3. RECSEC
4, SECURITY

5. SUPER
6. VALID
7. X

A description of these tatles can be found in the
dataset specificaticns of the D¥B,

F. PROCESSING REQUIREMENTS
1, Top level Flowchart
See Figure 2
2. Narrative

Upon entry into SAVSTRT, tle user is preompted for
the strategy name in which the Descriptor Editor
commands are +to be <saved., If the name is not of
the oproper form or a strategy by that nanme
already exists, the user is given a diagnostic and
prompted for a new strategy name.

Once a valid strategy name is obttained, the
BMAINTAIN and EDIT command strings are saved in
the strateqgy. This initializes the strategy. The
internal subroutine SAVE_FID is called ¢to save
the ADD command to create the anchor file key
field .

A control leoop is set up to process each of the 20
possible files in the order of anchor file,
associate file and then subfiles. fith each
existing file each field list is processed in the
order of packed bit fields, fixed fields, and then
varying fields., EFach field list is processed fron
the start of the list to the end of the list,

The SAVE_FLD command is called for each field to
create and save the approrriate cemmand string,

The fields COMNENTS, PREEFORM, the sutfile key
field, and the subfile rarent key fields are

PAGE 295 3(,7

skipped as they are created thru the adding of the
anchor key field or the CREATSUR command. The
record security field is cskigped if encountered
and processed after all other fields on the file
have been processed, All the fields on all of the
files are processed in the manner and order.

If +the RECLEN field has €£ield security, the
SAVE_PS is called +to build and save the FLDSEC
command,

After all of the fields and files have Dbeen
processed, the ¥ILE and END commands are saved in
the strategy, after which tire ccntrol is returned
to the calling routine,

In the SAVE_FLD internal procedure, if the field
is a subfile control field the CREATSUR command
string is built else of the field is a superfield
the SUPERFLL command string is built, othervise
the ADP command string is built, The appropriate
command string is saved thru use of the routine
TSPUTG.

The internal entry SAVE_¥S 1is defined at this
point to save the field security if any. This
code is also part of the SAVE_FLD procedure, If
the field has field security defined on it, a
FLDSEC conmnand string is kuilt or saved in the
strategy through use of the routine TSPUTG.
control is then returned to the calling point in
SAVSTRT,

F, CODING SPECIFICATIONS
1. Sodrce languade
PL/Y with TSPL/T statements,
2. Suggestions and Technigues

Yot Applicable

370

>
-

DESCRIPTOR
TABLES

R TR e DATA sET

Figure 1. T/0 Bioex diagram

GET STRATEGY
NAME

INITIALIZE,

¥
- [gAVE'ANCHDR
- ' | kiY FrELD

Figure 23,

Top level flowchart

37

BUILD AND

SAVE .
CREATSUR

CONTROL,
FIELD

BUILD avp. | S
SAVE . |- o
SUPERFLD . |~ S
CoMaNn

R ———

BUILD AND
SAVE .
FLDSEC =

. COMMAND

‘Figure 2b. Top level flowchart

PAGE 300 373

TOHEC E,1 -~ TEBMINAL SUPPORT -~ PREPEOCESSOR

a. HODULE NAME

Terminal Support PL/I Preprocesscr
Program-ID - TS
Module-ID - TS

B. ANALYST

John A, Lozan
Reoterics, Inc,

C. MODULE PFURCTION

TS analyzes terminal input/ocutpat PL/I language
extension statements and produces statements acceptable
to the PL/T compiler, These statements call the
terminal sSupporTt mcdule allewing the proaram to
communicate with the uservs SYSIN and S5Y¥SOUT or,
rending 7SS support, an on-line display station, The
user's SYSIN and SYSOUT are a terminal if the task is
conversational, or data sets, if non-conversational,
Diagnostic messages are generated for errors which can
ke detected by TSPL/I during rreprocessing,

De DATA BEQUIREMTNTIS
1. I/0 EFlock Diagram
See Figqure 1
2. Input Data Sets
A, Parameter Cards
The Job Control cards needed to invoke the
PL/Y compiler for 0OS are described in the IBRM
PL/I Programmer?s Guide,
| 8 Punched Card Tngut Files
1, TS Text
The 75 text deck is all text for
insertion into the source proggran
following a "% INCLUDE LISEMAC{TS):"
statement in the source program. This
text consists of the scurce statements

of the TS preprocessor fanction and any
PL/I statements te be inserted at the "%

3.

pAGE 39+ 374

INCLUDE TIISRMAC({TS);" statement in the
source program. The TS text is coded as
specified in this report, formatted
according to FL/T sSOULce language
standards, and catalogued in a data st
for compile +time wuse bty all prograns
using TS5,

2e Source TCeck

- The source deck 1is any PL/I source
program using TS statements to interface.
with the user's SYSIN and SYSOUT or any
on-line display station. The statement
formats and their use are described in
the TSPL/I UOser's Manpal (Section II,
Topic E.2 of the L¥B).

C. Input Files
The TS text statements are catalogued as a
member of a partitioned direct access data
set fer retrieval by the IBN PL/T
precompiler, This data set is accessed via
ddname LISEMAC,

d. On-line Terminal Entries
Not Applicable

Outpot Data Sets

a, Output Files
The object modnle consists of the relocatable
machine instructions and constants generated
by the PL/I comriler for the source progranm.
It is stored in a partitioned data set, This
data set is that one defined in the compiler
jo0b step with the DDNAME SYSLMOD, The module
is linked by the 0S5 linkage editor.

b, On-line Terminal Disrlavys
Not Applicable

Cy Formatted Print-outs
1. Preconpiler Listings

Two precompiler listings are produced:

{a) & source listing hbefore

E.

precompilation and

PAGE 3072 375’

{h) Any precompiler diagnostics (i.e.,
errors in the use of preprocessor PL/I,
not TS error messages). The IBM PL/I
Programmer's Guide explains the listing

format,
2. Compiler Listings

The coapiler listinas produaced
an intermediate source listing
preconpiling and compiling}
conpiler diagnostics, Any
detected by the precompiler
wvill generate PL/T comments

include

- {hetween

and any
errors
function
in +the

intermediate scurce listing. Serious TS

PL/1 errors may result in

compiler

diagnostics alec, The IEH PL/Y
Programmer's Guide explains the listing

formats.
d, Pynched Card Qutput Files
Not Applicable
4, Reference Tables
a. TC - terminal control hlock
b. TSPL/I ~ diagnostic ccoments,
PROCESSINEG REQUIREMENTS
1. Top Level Flowchart
See Fiqure 2
2, Narrative

a. Top Level

The mainline PL/T socurce program 1is reguired
to have a "% INCLUDE LISRMAC({TS):" statement

once in the program before

preprocessor functieon references,

all TS

This

statement directs the PL/I precompiler +to

take +text frcy memker TS of the

library

accessed via ddpame TLTISRMAC and incorporate
it into the source rreogram, (Befer to the T5
biock diagram in Secticn 0.1 of this

write-up).

b,

PAGE 383-37(,

The TS function receives one argument from a
preprocessor functien reference; i.e., a
variable length character strimg. It is TS's
fanction to scan and parse this input string
to determine 1if it is in the <correct format
and then to generate a string called the
"generated text," This string consists of
valid PL/I statements and conments for
communication with the terminal support
nrodules,

The processing of TSPIL/I is closely analogous
tc the processing of DBPL/I described in
Section IV, Tecpic A of the DWER and is only
summarized here, The TS text declares and
activates the TS preprocessor function,
Argument initialization, . finding a
sutargument, rassing labels and comnents
through, and finding the statement keyword to
select the srecific statement routine are all
done analogously to the DBPL/I preprocessor
function. Diagnostic comments are generated
far any errors detected., (See Section III,
Toric E.1 of the D¥R.,) There are no files to
he analvyzed.

In all programs a declaration of the entry
point to the terminal suvpport modules is
generated and a declaraticn of TC - the
Terminal Ccntrel bhleck (See Section 111,
Topic E,2 of the DWE.)

Specific Statement Routines

Each srpecific statement rcutine examines the
statement from left to right until the
semicolon clause is fcund, The keywords are
verified for correct spelling and order, If
any error is detected, a diagnostic comment
is generated and the statement abandoned by
control being transferred to the
inter-statement point., Folloving successfal
analysis, each specific statement rcoutine
generates PL/Y statements for communication
with the terminal support modules and 1loops
back to the inter-statement point.

The ON PAGE statemsent routine generates the
foliowing statement:

TC.PAGING_ENTRY=expression;

Where TMexpression" is taken from the CALL

PAGE %&577

clause of the IS ON PAGE statement.

The ENTRY statement routine generates the
folleowing statements:

TS_ENTRY_EETURN_POINT=TS_ENTRY_LAEEL_n;
GO TO TS_ENTRY_CODING:
TS_ENTRY_IABEL ns

Vhere m"* is a numeric value assigned
seguentially to each ENTRY statement as it
is encountered. S ' :

The ENABLE statement routine generates the
following statements:

DCL TS_ENTRY_RETURN_POINT LAREL:
TS_ENTRY_RETORN_POINT=TS_ENTRY_LABEL_1;
TS_ENTRY_CCDING:
ON CONDITION (END)

GO0 TO TS_EXIT_CODING;
ON CONDITION (BTIN);
TC,PUNCTICK='ENTRY '
CALL TSCHNTRL (TC):
GO TO TS_ENTRY_RETURN_POINT;
TS_EXIT_CODING;:
RETURN;
TS_ENTRY_LABEL_1:

Lines U4-6 and 10-11 of the ahove text are
cnly generated when the user specifies the
aprropriate option on the ENABLE statement,

The TS logic is such that the ENABLE
statement, if it apprears, must appear before
the first ENTRY statement, and 1in fact,
implies an ENTRY statement, Likewise, the
first ENTRY =statement implies a defaunlt
ENABLE statement, if nocne are present,

The PROMPT statement routine generates the
following statements:

TC.FUNCTICN=*PROMET~ct;

TC, PROMPT ,MESSAGE_KEY=expressionj
TC,PROMPT,.EKEYROEBD=values

CALL TSPRMTe(TC,variable,list):

Phere TVexpressicn® is taken from the #MSG
clause of +the statement, "value®™ is taken
from the KEYHORD clause (if present},
“"yariable® is taken from the INTO clause {if
present) and Mlist" is taken from the USING

pAGE 395-%7¢

clause (if opresent), The value of "e" is
generated according to the following table:

1. INTO clause - none
l!e!!z,-m

2. KEYWCRD clause - none
“e"-:c

3. KEYHORD clause ~ yes
“e.‘ =g

The READ statement routine generates the
following statements:

TC.FUNCTICN=?READY;
CALL TSREAr(TC,variable):

Hhere "variable® 4is taken from the INTO
clause of the TS READ statement,

The ®RITE statement routine generates the
foliowing statements:

TC FONCTICN='YRITE":
CALL TSWRITE(TC,variable)g

Where f"variatle®"™ is taken from +the FRON
clause aof the 15 WRITE statement,

The PUT statement routine generates the
following statements:

TC, PUONCTICN=*PUT";
TC.00TRUT,POSITICN=Yar’;
TC.0UTRPUT . DIRECTICH='%";

CALL TSPUT{TC,vatriable,value)

#here "M™variable®™ 1is taken from the FROHN
clause of the TS PUT statement and "value" is
taken from +the TAG clause (if present). The
value for "a" will te generated according +to
the following table:

1. position clause - none

ﬂa“:G

24 position clause -LINE
"aﬂ‘:o

3. position clause - PAGE

“a":“

paGE 306 379

The value for *b" will be generated according
to the following table:

1. direction clause - none
l!bﬂ:ﬁ

re direction clause -~ FORKARD
!!bl!zﬁ

3. direction clause - BACKWARD
” b“:—_ 1
The FLUSH statement voutine qenerates. ihe
following statementss

TC,FUNCTICN='FLUSH";
CALL TSFLUSH({TIC);

The FINISH routine sets a precompiler
variable to indicate that a FINISH statement
has been processed and to prevent the
processing of any further TSPL/I statements,
A diagrostic comment indicating the number of
TSPL/T errors 1is generated. If there have
been any errors detected, the following
statement will be generated causing an
IEM0512I PL/I error:

DCL TS_DUMMY_VARIARBLE LABEL
INIT(TS_ERRS_nn);

Phere "nn® is the nusber of TSPL/I errors
detected,

411 statements and comments generated will be
aligned as seventy~-one byte strings, for ease
of analysis.

F. CODING SPECIFICATIONS

1.

2o

Source Language

TS is vrcitten in IEH PL/I preprocessor
statenents,

Suggestions and Technigues

Kot Applicable,

Figure 1.

© - DBEDSY

§
e

I/O ‘Bloclk diégram

o g

et e sp—— -

 DESCRIPTOR -
. ‘TABLES

o

39/

(DBEDSU

: e o
GET .- sgd poa

FIELDNAME :
DBEDGF

GET

DBEDBGR

T [eET |
- | coMPONENT

¢{

MORE
FIELDS 3
' L I~

. SETUP
SUPERFIELD

T B B

THREAD IN
1 L LIsT

A
. EXIT

Figure 2. Top level flowchart

"”ROUTINES “"f'i¥f¥““f;“;%%—;ffff4u N

TORC E.,2 - TERNINAL SUPPORT SUPERVISOR

A, MGDULE NAME

Terminal Support - Termipal Supreort Supervisor
Program-ID - NTSUPER

Bodule~ID - TSTGPER

Entry Points -« TSATIN, TISCNTRL, TSFLUSH,

pagE 389 3L

TSGETKY,

TSPRHTC, TSPR®TD, TSFRMTH, TSPUT, TSREAD, TS®WRITE

Ba ANALYST

Frank BReed
Neoterics, Inc.

C. BODULE PUONESTIONS
1. Organization Chart
See Figure 1

2 QOverview

TSUPER is +the vrimary vehicle of compmunications
betveen the NASIS monitor (MTT or stand-alone)

and the NASIS PL/I data Ease programs.
functions TSUPER performs are:

Among the

a. Issues I/0 requnests from data base programs.

This includes conmand, data and

pronpts and ordinary read and write

requests.

nessage

b. Initializes the Terminal Contreol Block (TC)
for each PL/1 gprogram. Supplies information
abcut the currept disglay area dimensions and

resets all bit switches to zero.

Ca Controls asynchroncus interrupt processing.,
Detects APOFF, END and GO conditions and
inenres that asynchronous activities do not

interfere with ncrwal rrocessing.

d, Maintains a push-down stack of message key
references to support the EXPLAIN facility,

e, Scans and passes user input strings for
commands and data., Information entered at -
the terminal is ‘interpreted and passed +to
rteguesting programs in useful seqgments, The
TC Block is utilized to enhance interprogran

compunicaticn.

i

PAGE 310 3¢5

D. DATAR REQUIRENMENTS
1. I/0 Block riagram
See Figqure 2
2. Input Data Sets
a, Parameter Cards
- Not .applicable
k. Punched Card Inyrut Files
Not applicahle
C. Input Files
1. NASIS Message file
d., On-1ine Terminal Entries
A1l responses to command and data proapts by
WRSIS programs pass through TSUPER, See the
corrand System User's Guide for a detailed
discussion of the format and svntactic rules
for these respcnses,
3. Output Lata Sets
a. Cutput Files
¥ot applicable
b, On-line Terminal Disrplays
311 output from NASIS data base proogranms
passes through TSUPER, See the TSPUT and
TSPROMPT sections of +this TOPIC for a
complete discussion of terminal output
characteristics,
C. Formatted Print-Outs
Kot applicable
d. Punched Card Output Files
Not applicable

4. Reference Tables

2. External Tables

b,

1.
2,
3.
4.

TSCTL

USERTAB
TSCREEN
MITUTAB

Internal Tables

1.

EXPLIST

An area 1in which a

E. PROCESSING REQUIREMERTS

1. Top Level Flowcharts

ae

b.

Co

MAINLINF: See Figure 3

Entry Points:

1.
2.
3.
4,
5.
6.
7.
8.

9.

TSATIN ~ See Figure §
TSCNTRL - See Fidure
TSFLUSH - See Fiqure
TSGETEY - See Figure
TSPRMTC -~ See Figure
TSPRMTD - See Pigure
TSPRMTM ~ See Fidure

TSPUT

See Fidure

TSRRITE See Figure

Pregram Subroutiness

1.
2.
3.
u,
5,
6.

Te

GETPR -~ See Fiqure 13
DELPR - See Figqure 14
GETSYN and GETDFALT -
POLIWEND - See Figure
SDGIVITD and SDGIVITC
SDPASS and SDYSHCEE -

RESETBUF - See Figure

pace 3+ 3 ¥4

poash~down list of

message keys is saved.

~ & in

-]

10

See Figure 15
16

~ Sge Fiqure 17
See Figure 18

19

PAGE 942—59’{

8. SDSTRIP and STRIP - See Figure 20
S. PRRKEYSAV « See Fiqure 21
10. IMCHECKE - See Fiqure 22
11, SIGNAL and SIGHALC - See Figure 23
12, SETLDAB -~ See Pigure 24
13, GETMLF - See Figure 25
14, MOVE - See Figure 26 ”
15, PROMPT - See Figure 28
16, EXIT - See Figure 2%

2. Narrative

A, MAIRLINE

Al1]1 calls to TSUPER entry points pass through
the MAINLINE ccde, The purpose of this code
is to insure +that each user has the correct
work areas, to initialigze base registers and
to restrict TS usage during APOFF and
ATTENTION processing,

Execution proceeds by calling the PLI service
routine IHESADA to ottain a Dynamic Storage
Area {(DSAY. MHNext, registers are initialized
and useful pointers are saved in unique
locations. The PLY Pseudo BRegister Vector
{PEV) draws special attention since it is not
maintained in register 12, as is the noram for
other programns.

Using the PRV, MAINLINE determines 1if a copvy
of the TS PSECT has teen allocated for this
USET, If not, the routine GETPR is invoked
to cohtain cone. On return, data lifted from
MPTUTAR is utilived to compute the user's
logical and prhysical device dimensions and
this information is saved for future
referencs,

The one-bhyte switch I0SW is checked to find
out which entry point was entered. 1If entry
was through TSATIN, ccentrel goes directly to
the interrupt processing code, For any other
entry, the contents of the user's TC Block
{passed as a parameter) is moved to the DSA

b.

page 33 3Y0

for easy addressakility. 3If an APOFF has
been regpested by the user, only calls to
TSERNMTHM and TSCNTRL are allowed to execute
normally, all cthers being short circuited to
the routine which signals an END condition,
If not in APOFF wmode, control is passed to
the troutine specified at entry.

Entry Points
1. TSATIN

This entry point is called by module
TSATTN whenever it determines that a
aser attentions should be processed. If
the user has previously entered APOFF,
the attention is ignored, If an
inmediate cemmand is currently
processing, condition FND 1is signaled
which terminates the ccmmand. ITf this
is the second successive attention and
processing of the first is sufficiently
advanced, conditicn END is signaled:
othervise, this interrupt is ignored.

For all first attentions not mentioned
abhove, condition ATTN is signaled in the
nost recently activated ON CONDITION
block. On return, a second copy of the
user PSECT 1is allocated, the string
input buffer is imnitialized to pull
input and the EL/Y rouvtine DBRATTN is
called to issue the '1'-ATTN:'' prompt.

On return from DBATTN, all user requests
have been satisfied and the user is
Teady to continue, After closing the
duplicate DCBs fcr the message files,
the duplicate user PSECT is released.
If the wuser entered END or APOFF in
response to VV-ATTN:*'', +then pointers
are set tc canse execution to resume at
the PL/I signal rovtine for END
conditions ctherwise, execution resuanes
at the point of interrupt.

2. TSCNTRL

TSCNTRL iz called by any program which
anticipates calling TSUPER for
input-outrut service., TIts function is
to initialize the TC Block for use and
pass the userts terminal dimensions.

4,

pace 315 37

Terminal dimensicns are obtained from
the user?s oprofile by repetitive calls
to TSGDEF. If no defanlts are
specified, the necessary information is
taken from MTTUTAB.

Control is returned to the caller
through the EXIT routine,

TSFLUSH

TSFLUSH is the display output routine:
for terminal suprort. It is normally
called after consecutive calls to TSPUT
have caused an output buffer to bhe
filled, If a huffer has overflowed and
AUTOWRITE is indicated, this routine is
called frcm TSPUT and a flag is set to
cause the '"*MORE:' nmessage to replace
the next rrompt.

The name of the paging entry for the
program doing a POT or FLUSH should
always be in the TC Block as it is saved
by TSFLUSHE Hust oprior to the write,
bata is cutput one line at a time for
typewriters and in a block for screens,
The most current display is saved in the
external controllied storage naned
TSCREEY,

TSGETKY

This entry point is called with three
paraneters: {"Y TC Rlock, {2) messaqge
key or 1list refdrence or list reference
pointer in the range -7 < pointer < 0 ,
(3) varying length data area to hold the
nessage text read from the file, On
entry, peinters to these parameters are
placed 1in registers and the +type of
request dis dJdetermined (either key or
pointer).

If it is a pointer, the key is obtained
from EXPLIST {a vpush=-down stack of
keysy., If the aser wants just the kevy,
control is returned to the caller,
Otherwise, and if the second parameter
is a key, the npessage file is searched
for the Key.

If the key is not found, error £lags are

5.

PAGE 345357

set and control vreturned to the caller.,
Else, the text ¢f the message is read
into the user's area and the message kevy
is reset to rpoint to the next record of
the file, if any, and control is
returned to the caller,

TSPRHTC

This is the entrv point called by any

~data base program to reguest a command
from the wuser, On entry, an -internal

Yuffer is checked for the presence of a
previously entered command. If one is
there, it is TtTeturned to the caller as
satisfying the rrempt, If the huffer is
empty, a ressage key passed as a calling
parameter 1is us€d +to access a message
file to obtain the text of the message
vhich describes the context of the
grompt tc¢ the user, This nessage is
displayed in +the prompt area of the
user's 1,0 device and the terminal is
opened for input,

The rescponse to this ryproppt pust be a
comsand, It may ke the one requested by
the calling program, in which case it is
passed alcng., Or, alternatively, it may
be any of the ‘**immediate'' commands
vhich cause one of the immediate command
processors to be invoked, After all
activities associated with the inmediate
command are comngpleted, the execution
cycle beginning on entry to TSERMTC is
repeated until a satisfactory response
is returned to the caller or until APOFF
or END processing is initiated.

Consult the Comwand System Dser's Guide
for details of ccmmand syntax.

ESERHTD

This entry point is called by a data
base program wishing to obtain
user-entered data., ©On entry, the sane
internal tuffer that holds copmands is
checked for a parameter string that nay
have been entered with a conmand, 1f
data is there, it is parsed o¢ut of the
string (in accordance with the syntactic
rules outlined in the Copmand System

7

PAGE 316 Z Y

Uger's Guide} and returned to the
calling proagram. If the buffer is empty
or the next itenm in it is a conmand, a
message key passed as a calling
parameter is used to access a message
file to obtain the text of the message
which will explain to the user wvhat data
is regquested, The message is displayed
in the prompt area of the userts I/0
device and the terminal is opened for
input.

The response to this prompt may be data
or any of the impediate commands. Tf it
igs data, it is parsed as above and
returned to the wuser, The Terminal
Control PRlock serves as a center for
communicating infcermation about the data
betwean TSPRMPD and its caller,

If the resronse is an immediate command,
this corpand and its associated
parameters are treated separately £fron
any aser input intended for a data base
program, Y¥hen processing of the
impediate cormand is complete, the cycle
beginning on entry to TSPRMTD is
repeated until a satisfactory response
is received or wupntil APOFF or END
processing is initialed.

Consult the Command System User's Guide
for the details cf parameter syntax.

TSPRATH

This entry point is called to display a
mnessage from the Hessage file on the
user?'s terminal, No reply is asked for.
Auxiliary subroutine entry points are
called frcm variocus locations in TSUPER
+to perform prompting tasks,

The messaqe filter HMSGLEVEL in the
user's prcfile determines whether or not
informaticnal {I-level) messages are
displayed. ¥arning (¥W=level} nmessages
are alvavs transmitted,

The wnessage ID €ilter MSGIDS specifies
insertion of the message key between the
message prefix and the +text. MSGIDS=Y
requasts display of message keys,

PAGE 347390

MSGIDS=N implies no kevys.

If the last ocutput +to the display area
left residual data undisplayved, the
TIMDREY!Y pegsage is substituted for any
command or data proanpt message, The key
of s2very message (except explanations)
is placed in +the EXPLIST area for
reference by the EXPLAIN comnand,

- TSPOT

TSPUT may be called one or more times by
data base prograwms to format data
{passed as a parameter) in a buffer for
output, The data consists of a string
0f characters to he displayed on the
user's terminal and an optional tag
field which is aprended to the beginrning
of the string, Formatting consists of
manipulating the data so that it appears
in a consistent and logqical pattern on
the screen,

On entry, TSPUT initializes pointers and
work areas based on whether a restart,
continunation or backvards put is
indicated, After insuring there is
sufficient room in the ruffer to insert
ney data, a subroutine is called to move
the tag and data string to +the output
buffer. 7This step is repeated until all
data is in +the tuffer or the baffer is
filled. An attenpt is rade to
terminate lines tetween words and at
punctuaticn,

On huffer overflow, 1if the caller does
not want overflowed records inserted,
all pointers are vreset and control is
returned to the caller. If partial
records are inserted, control characters
are appended, a TC Block variable is set
to indicate the number of characters
taken and the AUTOWRITE switch is
checked, If it is on, control passes to
the FLUSH routine, othervwise control is
returned to the caller.

If all data is inserted ¥ith 1o
overflow, the +trailing position of the
record is padded with blanks (to f£ill
out a screen line) and control is

PAGE é—?ﬁ-j‘}l

returned to the caller,
9. TSWRITE

This routine is called +to flush the
contents cf the external storage npamed
TSCREEN, After locating the area,
control is passed to FLUSH, vhich
outputs the data and returns control to
the caller.

¢. Subroutines
1. GETPR

This routine calls the PFL/I controlled
storage allocaticn routine Y'IHESADD'?
to obtain space into vwhich the master
PSECT may be copied, The caller's
registers are saved in an area common to
the copy routine so after the area is
obtained a btranch 1is taken to¢ MOVECOPY
and from there ccntrol 1is returned to
the caller,

2. DELPR

This routine =ipply deallocates the
external controlled storage allocated by

GRETPR, The FL/1 service routine
Y*THESAFF'' is c¢alled to perform this
function.

On return, reqgister 12 1is set to point
to the next area in the chain and
confrol ig returned to the caller.

3, GETSYN and GETDFAIT

These two subroutines primarily the sanme
code, the differences being in the
lengths of the parameter list used in
the aventuyal call to an external program
and the v~con which is posted in
register 15 and points to the prograan
which is called. GETSYN calls TSGSIN to
obtain a svnonym for a term. GETDFALT
calls TSGLEF to oktain a default value
for a parameter. On return from the
respective calls, the 1length of the
returned data is checked, If nothing
came tack, the data pointers are reset
te point to the data used as a calling

5.

6.

7.

PAGE 34&3?2'

paraneter,
PULINEND

This subroutine is called by TSPUT to
insert the proper end-control characters
on each line of display ountput as it is
moved into the cutput buffer, Screen
lines are padded with blamks to £fill oat
the line, Typewriter lines are
terminated with an interpretive hex
15-.- i i

GIVITD and GIVITC

Theses two subroutines are called by the
prompting routine to pass data to the
user, If the prompt prccessing is in
skip mode or the call was inadvertently
done hefore an item-was found, the pass
is not done. Otherwise SDPASS is called
to move the data to the user's area.

On return, the passed data is excised
from the input buffer, If it came fronm
a parenthesized 1list, the list flag 1is
set in the terminal Control Block and
control is returned to the user,

SDPASS

SDPASS compares the length of the data
or command passed from the inrnt string
with the receive area., If the item will
fit the area, it 1is mnoved, otherwise a
syntax ertor is noted and error
processing is begun.

SDSYNCHK

This routine 1is called to check for
certain syntax errors, If an error is
detected, contrel is transferred to
SYNNER to initiate an error control
seguence. Ctherwise, control is
returned to the peint of call,

RESETBUF
Preparing a buffer for input and

initializing all flags associated with
input parsing is performed here,

PAGE %%%5?3

9. SDSTRIP and STRIE

SDSTRIP is called to delete leading and
trailing guotes and leading and trailing
blanks from an item passed as input to a
calling program. If only blanks are to
be deleted, entry is at STRIP,

10. PREEYSAV

Inserts the key of a prompting message
“into a " pish-down list of message keys
for rteference by the EYPLAIN command.

11, INCHECK

fhenaver +the user enters an immediate
command, it is discovered by this
subroutine, Cenparing the entered
command against a table of walid
inrediate commands, a *'thit'* leads to
either signalling **END*' or calling an
external rprogram to initiate processing.
On return, the Frompt routine is
informed of the occurrences and the
prompting cycle tkegins again.

12. SIGNAL and SIGNALC

Entry at SIGNALI causes preparations to
call the PL/TI service routine ITHEERRD,
Contrel then falls through to SIGNALC,
which calls a pre-indicated routine and,
on return, itself returns.

13. SETLDER

This routine opens and initializes the
DCR for the ©prcmpt pessage Librarvy:
NASIS. MESSAGES. Also, it issues a SETL
to find a particular message %Xey in the
file, If the FKey is not found in
NASIS.MESSAGES a csubstitute message is
written which indicates the wmwessage was
not fcound,

14, GETMLF

GETHMLY is the sister routine of SETLDBA,
Its function is to read the text of a
message record pointed to by a messags
key, Each record read is checked for
the presence of a minus sign (~) or plus

PAGE 3-2-139/.,1

sign {¢+) as its last character,

If there is a mwinus sign, the pext
record is read and appended to the
first, If the last is a ©plus sign, the
truncation bit in the ?C Block is set to
one{1l) and control is returned to the
caller.

15. MOVE

A1l extended data - relocations are
performed by this rcutine, In addition
it is also used +to bhlank-fill a data
area and copy from one area to
another,

16. PROMPT

On entry, if the wuser 1is in RESTART or
RERUN mode the next record of input is
obtained from the strategy dataset named
in the external «control block TUSERTAB,
Othervise pointers and constants are set
in the TI/0 control btlock and HMTT is
called to dc an I/D.

On return from MTT, the return code in
register 15 is checked, If there was an
error, attenticn interrupt orT
continuation the I/0 is retried,
Otherwvise, the data is moved to a work
area and contrcl is returned to the
caller.

17. EXIT

Returning to any program calling an
TSUPER entry §poeint is accomplished by
passing through this code, The caller's
TC Block 1is updated by moving our copy
of it back into the caller's area. The
PRY 1is restored in register 12 and
control is retarned by calling the PL/T
service rcutine THESAFA vwhich releases
our Dynamic Stcrage Area (DSA) and
restores the callers registers.

F. CODING SPECIFICATIONS
1 Source langquadge

057360 Assenmbler Lanquage,

PAGE 3222394

2. Suggesticns and Techniques

Not Applicable

396

MTTWRITE

MONITOR, MTTWREAD MTTREAD
2 TR ~ZX
MTTKA MTTKB
TSATTN
'EL
TSATIN TSPROMPT TSREAD TSWRITE
ii . Y =
[
DBATTN TSCNTRL TSFLUSH TSPUT
. H
TSGETKY
on IMMEDIATE
CONDITION COMMANDS
END
s
ON 5
CONDITION [PATA BASE
ATTENTION ROGRAMS

Figure 1. Terminpal Support Organization Chart

377

MONITOR

RTSUPER !
LISRMLF

DATA BASE
PROGRAMS

Figure 2, I1/0 Block Diagram

PAGE 356 397

TCHLC E,3 - PLI-ASSEMBLER LINKRAGE MCDULE

A, MODULE NAHE

Progqram-ID - ¥DBPLINK
Module~ID - DBPLI¥NK

B, ANALYST

T, C. Moser
Neoterics, Inc,

C. MODULE FUNCTION

This module completes the linkage tetween a PL/I
program and an assembler subroutine, It does so in
such a way that the assentler routine may in torn call
a PL/Y subroutine and yet maintain the continuity of
control necessary for proper PL/I linkage and
communication, Another aspect of this linkage method
is that it makes the module reentrant and recursive,

D. DATA REQUIREMENTS
Not Applicable
E. PROCESSING RECUIREMENTS
1. Top Level Flowchart
See Fiqure 1
2, Narrative

Upon entry, the prcgrawm initializes the variables
it needs from the parameter list passed by the
calling module, This data is wused to ohtain fronm
PL/T 1litrary routine IHESADA a dynamic storage
area {(DS3) large enough ¢tc contain the register
save area and a c¢copy ¢f +the «calling roatinets
pseudo FSECT,

once this has been done, the program copries the
calling programs pseudo PSECT to the DSA,chains
the DSA into the pseudo register vector {(PRV)} and
posts the DSA address in register 13. The program
then initializes all of the base registers
required,

Before exiting the program restores the remaining
registers from the calling programs callert's
savearea, It then chains the LS2 into the

F.

PAGE 357399

savearea chain and returns to the caller,

CODING SPECIFICATIONS

1.

Source Language

The module is writtem wusing the O©0S Assenbler
ianguage,

Suggestions and Technigues

. Extreme care must be taken to ensure the fact that

this ¢rogram is completely reentrant and
recursive, 211 operations should be performed in
registers, or in the DSA obtained from PL/I.

Hoo

- DBPLINK

INITTALIZE |

¥

GET DSA

il

COPY
PSUEDQ
PSECT

}

RELOAD
REGISTERS

Figure 1. Top Level Flowchart — DBPLINK

PAGE 359 4]

TOPIC E,4 - ASYNCHRONOUS INTERRUPT PRCCESSOR

A. MODULE NAHE

Terminal Support -~ Attention Interface
Programn-ID - NTSATTN

Module-ID - TSATTN

Entry Point - TSHATTHN

B, ANALYST

Frank Reed
Naoterics, Inc.

C. MODILE FUNCTIONS
1. Organization Chart
See Figure 1
2 Overview
TSATTN is the interface hetween the nmonitor and
the terminal suppert supervisor TSUPER. Its
fonction is to link the &ponitor to the TSUPER
attention routine TSATIN, TSATTN is only called
after an asynchronous interrupt resulting from the
user depressing the attention key at his
terminal,
Da TATA REQUIREMENTS
¥Not Applicable
E. PROCESSING REQUIREMERTS
1. Top Level Flowchart
See Figure 2
2. Narrative
On entry, TSATTN performs ©OS standard 1linkage
except that the address it picks up as its PSECT
register points to a tahle of v-cons which are (in
ordert: TSATIN and MTTUTAB., TSATIN is the entry
point to Terminal Support's attention processing
rontine. MTTUTAB is a tahle which holds the userfts
pseudo-register vector (PRV),

After linking, TSATTN checks the interrupted
register 13 to determine if it points to a PL/I

PAGE 366LLp7

Dynamric Storage Area (DSA}. TIf not, no further
attempt is made to process the attention, That
is, TSATTN returns to the nmonitor, effectively
ignoring the interrupt.

When a valid DSA is found, the PRY is checked and
if it is OK, the TSA registers are saved in an
area provided by the monitor, TSATTN next calls
TSATIY using the interrupted DSA as a savearea.

On Teturn from TSATIN, . the DSA regs are restored,
the caller's registers are restored and control is
returned to the smcnitcr.

F. CODING SPECIFICATIONS
1, Source language
05/360 Assenmbler lLanguage,
2. Suggesticns and Technigues
The HASIS assembler macro library must be uased to
reference the fser Informaticon Table (TSUTAR).

Also, entry linkage is stapdard 05/360 while
calling linkage is standard PL/I,

‘o3

MONTTOR MTTWREAD MITREAD MTTWRITE
Vi & &
— MTTKA MTTKB
B
TSATTN 4 \\
Ny’
. TSATIN TSPROMPT TSREAD TSWRITE
;L yon Y Y
DBATTN TSCNTRL TSFLUSH TSPUT
i i
TSGETKY
@ &
ON ' |
CONDITION IMMEDIATE gff
END COMMANDS
¥ - LY
ON 7 5| DATA BASE
CONDITION PROGRAMS
ATTENTION

i3

Figure 1. Terminal Support

3

Organization Chart

PAGE 363 404

TOEHC E.5 ~ ATTENTION FROMPTING PROGRAM

A. MCDULE NAME
Terminal Support~-Attenticn Prompting Progqran
Frograe~-IDL - RDBATTN
Module~-ID - DBATTH

B. ANALYST

¥rank Beed
Neoterics, Inc,.

C. MODULE FUNCTIONS
1. Oorganization Chart
See Figure 1
2. Overview
DBATTN is called by TSUPER +to issue the conmmand
prompt V'<-ATTN: 'Y and check the user's response
thereto,
D, DATA REQUDIREMENTS
1, I/0 Elock Diagram
Not Applicable
2. Input Lata Sets
Not Applicable
3, Output Data Sets
Not Apvlicable
4, Beferencé‘Tables
a. External tables
LISRMAC {(ISERTAE)
b, Internal Tables
Not Applicable\\\

E. PROCESSING REQUIREMENTS .

1. Top Level Flouwchart .

PAGE 364 L4105

See Figure 2
2, Narrative

On entry, DBATTN checks the DISABLED switch in
ISERTAR, If attentions have been disabled,
TSPRATM is called to inform the wuser at the
terminal and executicn returns to the caller., If
attentions are enabled, LBATTE sends a blank
character out to insure that the carriage is in
its home position, then 1issues a command prompt
with the message "'-ATTN:2'' to allow asynchronous
commands to ke entered by the user.

TSUPER intercepts all *vimpediate'*' compands

except GO and calls the appropriate routine, 1f

the user enters GC, null or any non-immediate

command, DBATTN takes the following action:

Ao GQ or null =« returns control +to the caller,
thus signifying the end of +the prompting
sequence,

b. Non-immediate command - ignores the user's
response and reprompts as above.

If +the END conditien 4= raised while executing
this module, execution control is returned to the
caller,
F. CODING SFECIFICATIONS
1. Source Language
057360 PL/I

2. Suggestions and Techniques

Yot Applicable

PAGE 367400

TO¥IC F.1 - RETRIEVAL INITIALIZATICN

A,

B,

C.

#ODULE NAMWE:

Program=ID - NDBINIT
Module-ID - DFINIT

ANALYST

John A, TLozan, Williawm H, Petrarca
Neoterics, Inc.

MODULE FPUNCTION
This module performs the initialization functions for
the retrieval systerm and is the command director
{prompting module) for retrieval.
DATA REQUIRENMENTS
1. I,0 Block Diagram
See Figure 1
2. Input Data Sets
a, Parameter Cards
Net Applicable
b. Punched Card Ipput Files
Not Applicable
Ca Input Files
Not 2applicable
d. On-line Terminal Entries
The program initially prompts for the PFILE,
NAHE and ADLDRESS ©parameters, and later,
prompts for the retrieval compands,
3. gutput Data Sets
a. Output Files

Hot Applicalble

b. On-line Terminal Displays

PAGE 3684407

The program issues various diagnostic
messages, where appropriate.

Ca Formatted Print-Outs
Hot Applicable
a, Punched Card Qutput Files
Hot Applicable
4, Reference Tables

The program references and optionally initializes
the follcwing tables,

USERTAB
FLDTAB
COLFCRM
SEQFORM
SRCHTAB
VERBTAR
RETDATA
SETAB

E. PROCESSING BEQUIREMENTS
1. TOP LEVEL FLOWCHART
See Figure 2
2. Narrative

Upon entry the program initializes itself and the
terminal support facilities., It calls DBJOIN to
process the file tarameter and prompts for the
NAME and ADDRESS parameters. The parameters are
all verified and saved for later reference,

The pregram then initializes the retrieval data
table, RETDATA. The set +table, SETAB is then
ipitialized, the dataplex is opened for input and
the field takle, FLDTAB, is initialigead,

The program then initializes 1its verb table,
including the addition of any user defined
commands, HNow the trogram trompts the user for a
retrieval command. Tf the comnmand entered is not
valid, a diagnostic message is written to the user
and he is reprompted.

If the command entered was not END or RETRIEVE,
the program calls the entry point specified for

PAGE 365 409

that command, If the <called mwmodule reguests
another wmodule, the other module is called., 1If
necessary the original module 1is recalled, Then
the user is prompted for his next command, If the
user ' entered END or RETRIEVE, the retrieval
session is terminated by closing the data bass,
erasing the sets and the formats. All searches
are cancelled, If the user entered RETRIEVE, the
program branches back to initialize itself for a
new retrieval session, Otherwise, the program is
terminated.

Due to the complex relationship of the two modules
performing the DISPLAY function (DBDSPL and
DBDSPLA), the DISPLRY paging entrv point, DBDSPLP,
is withip DBINIT., Only the program calling code
is ytilized and a2 return is made following the
completion of the DISPLAY nmcdules,
F. CODTNG SPECIFICATIONS
1. Source language

The nodule is writter using the IBM PL/I
langwage.

2, Suggestions and Techniques

Not Applicable

H-04

SYSIN

DBINIT

/j?
SYSOUT

Figure 1. 1/0 Block Diagram

.- DBINIT e
‘L

INITTALTZE

INITIALIZE
RETRIEVAL

B

GET
COMMAND

TERMINATE
RETRIEVAL

CALL
COMMAND
ROUTINE

Figure 2. Top Level Flowchart

PAGE 3-‘?‘2"/./.1!

TOHEC P,2 - RETRIEVAL FIELDS CONMMARD

A, BODULE NAME

Program-ID - NDBFLDS
Module-IL - DBFLDS

B, ANALYST

John A, Lozan
¥eoterics, Inc,

C. MODULE FUNCTICN
This module displays a formatted listing of the field
names of the file currently teing accessed by the
user,
De DATA REQUIREMENTS
1. I/0 Block Diagram
See Figure 1
2, Input Data Sets
. Parameter Cards
Not Applicable
b. Punched Card Ianput Files
Not Applicable
Coe Input Filaes
Not Applicable
d. On-~tine Terminal Entries

The routine vrompts for the parameter
associated with a PAGE command.

3. Ogutput Data Sets
a. Output Files
Not Applicatle
b, On-Line Terminal Displays

Phe program rroduces a formatted 1list of

E.

F.

PAGE 3F3LL/7

field names.
Ca Formatted Print Quts
Not Applicable
d. Panched Card Output Files
Not Applicable
4. Reference Tables

FLDTAB-The progran extracts sone of its
information frcm FLDTAB.

BROCESSING BRECQCUIREMENTS
1. Top level Flowchart
See Figure 2
Ze Farrative
a. LBFLDS

At this entry point the parameter is checked
for a paging regquests if paging, the
processing continues with the label DBFLDSP
{see below) . Otherwise, the progran
initializes the screen and rpaging status
data. It extracts the database name from
FLDTABR. The progras then, repetitively,
retrieves field nanmes with calls to the field
utilities in TDEFLDU - - FLDGET, FLDCLAS,
FLDCTRL, and FIDSKEY., It flags each field
that bas an inverted index, It rposts the
field names tc¢ the screen, F®hen the list of
names has been exhausted, or the screen has
been filled, the screen is displayed to the
user, the paging status data is posted and
the program is terminated,

b, DRFLDSP

At this 1label the program is re-initialized
using the paging statvs data. If more data
remains, the program Yranches to the ©proper
routine to build the next screen image.
Othervise, a diagnostic message is written to
the user and the program is terminated.

CODI¥G SPECIFICATIOHNS

1.

2.

Source language

The wmodule is written using
Languagde.

Suggestions and Technigues

Not Applicable

the

PAGE 944-1.,113

1B8HM

PL/I

144

DBFLDS

Figure 1. I/0 Block Diagram

INITIALIZE

3

FIELD

END ¥

oF -

By INITTALIZE

GET A S -

LIST
2

POST
SCREEN

SAVE
STATUS

WRITE
MESSAGE

Figure 2, Top Level Flowchart - DBFLDS

PAGE 3TTLL/(

TOHC ?,3 - BETRIEVAL EXPAND COMMAND

A. MODULE NANME

Prograp-ID - NDBYPND
¥odule-ID -~ LDRYPNT

B. ANALYST

John A, Lozan
Neoterics, Inc,

C. BODULE FUONCTICR
This module displays to the retrieval user, a formatted
listing of a cross section of an inverted index at and
beyond a specified texrm,
D. DATA REQUIREHERTS
1. 170 Block Diagran
See Figure 1
2. Input Data Sets
a, Parameter Cards
Not Applicable
k. Panched Card Input Files
Not Applicable

Ca Input Files

The inverted index files of a dataplex are
used as a source of data by the program.

d. on~Line Terminal Entries

The program proupts for the TERHM and INDEX
parameters,

3. Output LData Sets
a. Output Files
Not Applicable

b. On-Line Terminal Displays

PAGE -3#-8"171;7

The program produces a formatted listing of
the index records read.

C. Formatted Print Outs
Not Applicable
d. Panched Card Ovtpat Files
Not Applicable
4, Reference Tables

The program uses the following tables as a source
of data and as a wmeans of data controel,

USERTAB
FLDTAB
EXPTARB
EXPTERH

E. PROCESSING REQUIREMENTS
1. Top Level Flowchart
See Figure 2
2, Narrative
As DBXPRD

At this eatry point +the parameter is checked
for a pagina reguest; if paging, the
precessing continues at label DBXPNDP (s=e
belovw). Otherwise, the program initializes
itself to perfcrm a new expansion of an index
file. The program initializes the screen and
the data storage table EXPTAE,

The program then prownpts the user for the
TERM and 7INDEY parameters, The parameters
are validated and the program gets ready to
read the index for anchor) f€file specified,
The first read cf the file is for
positioning, based upon the term entered by
the user. If wmore data remains on the file,
the program begins reading records, saving
the data in EXPTAB and vposting them on the
screen, The relative E-number is computed
and also posted, If an end-of-file is
encountered, an indication is posted on the
screen, At this point, or when the screen is
filled, it 1is displayed to the user, the

PAGE 372L/;¢

paging status data is posted and the progranm
tersinates.

1f any errors are encountered, a diagnostic
message 1is writtem to the user and the
program is terminated,.

b, DEXPNDP

At this 1abel the program re-initializes
itself using the paging status data. If more
data remains to ke displayed the progras
branches to the appropriate point to begin
reading the index and building the new screen
image. If no more data remains, a diagnostic
nessage 1s written to the user and the
progranm is terminated,

F. CODING SPECIFICATIONS
1. Source lLanguage

The pcdule 1is written using the IBM PL/I
language.

2. Suggestions and Technigues
The ARFR facilities of PL/T should be used to

organize the term data stored in EYDPTAB +to
optimize file access and data storage.

o4

DEXPND

Figure 1. I/0 Block Diagram

DBRXPND

PAGING

420

?

INTTTALIZE

GET
/ PARAMETERS

PROCESS
RECORD

4

POST
SCREEN

ANY N
MORE ROOM >

INITTALIZE

MORE DATA
?

. WRITE
MESSAGE

PRGE Qﬂ?['[z”

TOPIC P.4 - RETRIEVAL, Select Command

I,

SELECT
A, HODULE NAME

Retrieval, SELECT Command
Program -~ ID - NDBSLCT
Module « ID - DBBSLCT
Entry Points (LBSLCTO,DBSLCT1,DBSLCT2)

B, ANALYST

0, Kirt Hearne
¥eoterics, Inc,

C. MODULE FURCTION
The SELECT ccomand format is:
SELECT expression,field,replace,method

The SELECT command outputs the expression and the
number of citations (record keys) for which the
expression applies, A set number or S-numbher is
assigned to the expression, and the command string
is entered into the next available 1line in the
cuarrent search strategy.

The expression parameter (keyword=EXPR) is a
boolean combination of terms which define a set.
It all fields referenced are indexed, the
expression is evaluated immediately and a
set-nunber assigned. If a field in the expression
is not indexed or a previons S-number is
referenced, a search entry is constructed and
saved, and an S-number assigned.

Only a single non-indexed field is allowed in a
single SELECT expression,

The field parameter (keyword=FIELDY 4dis used by
SELECT tc rtesolve any values in the expression
vhich are not directly related to a fieldnane
within the expressicn.

The replace parameter {keyword=REPLACF) is a
previously defined S~number which 1is to have its
expression replaced by the current expression,

The method parameter {keyword=HETHOD} is used to
force a search on indexed fields., To do this,
RSEARCHY pust be entered as the nmethod parameter,

D,

PAGE 3832(77

Note that only a single field may be referenced in
this case.

SELECT will prompt the user if the expression is
nissing, or the field parameter is missing and
found to be needed,

DATA REQUIREHENTS

1.

2,

3.

I/C Block niagram

See Figure 1

Input Data Sets

A, Parameter Cards
¥ot Applicable

b. Punched Card Input Files
Hot Aprlicable

C, Input Files
The descriptor files and the index files
nay be referenced by the SELECT command.
The descriptor file is used to obtain
the data set name of the subiect tern
index file. The index files are used to
obtain a 1list cof accession nunbers
associated with a particular subiject
tern,

d. On-line Te¢rminal Entries
Not Applicable

Dutpnt Data Sets

A. Qutput Files
The command string, as it is entered, is
saved in the region containing +the
current strategy using the routine
PSTRAT,

b. On-line Terminal Cisplavs.
The follcwing is displayed if a set is

successtnlly produced from the
expression:

Ce

d.

PAGE 38TL 213

{1y, A unique set nunmber or S-number.

{2.) The nunber of citations {or keys)
in the set

{(3.) The expression, with:

{a.} E-numbers rerlaced with the
corresponding
"fieldnane=value®,

{b.) Valunes shich returr a null are
notated with special symbols,
as: AGE =>>79999r«<,

{c.) If the resultant set consists
of subfile keys, the
expression will be displayed
pith the subfile name, as:
{FRON:subfilerame¢) expression

Formatted Print-ocuts
Not Applicable
Punched Card Output Files

Not Applicalble

4, Reference Tables

A
b.
Ce
d.
Ca
f.

Je
he

EXPTAB

FLOTAR

MFCH

PARSED

SETAB

SRCHTAB

TC

USERTAB

E. PROCESSING REQUIRENMERNTS

1. Topr level Flowchart

PAGE 385474

See Figure 2
NABRATIVE

The SELECT command outputs the expression and
the number of citations (record keys)
associated with that expression. A unigue
set-numher or S-number is assigned,

The input expression 1is a hcolean expression
made up of set-numbers, S-numbers, valnes,
E-nupnbers or ranga forms ¢f these terms,

The SELECT command is processed in three
phases:

te Parsing
2. Expression analysis
3. Execntion of SELECT "instructions®

SELECT parses the expression in three passes,
The £first pass recognizes and marks as such,
letter strings, digit strings, operators,
special <characters and delimiters. Quoted
strings are recopied to remove any double
guctes,

The second pass recognises primary elements
such as S-numters, E-nunkers, set-numbers,
values, and field npames, Field names are
marked as indexed or non-indexed.

The third pass Tecognises garoupings of
elements such as range forms and associates
each value in the expression with the proper
field name,. If necessary a prompt with the
keyword "FIELD™ is done to obtain the fielad
name, This pass also sets up SELECT execute
phase ianstructions for the creation of sets
from basic terms such as a set~number,

Also, during the third pass, a non-indexed
field name appears 1in the expression, the
proper entries are made in SRCHTAB to provide
for the search to bte execunted later,

A1l informaticn found during the first three
passes is enterad into PARS_TAB and
PTAE_INFO. The original expression, recopied
qucted strings, and cther necessary character
strings are all contained in ¥AS. Each
element in PARS_TAB contains an index (IDX)
into was to note the vpesition of the iten

PAGE '3'8‘6"4:{5'

described,

The next phase of SELECT analyses the
expression algebraically and bwpilds execute
phase instructions +t¢ perform the proper
operations, If a search is required
instructions are built to post final entries
in SRCHTAB, bhefore the search, and to
retrieve information from SRCHTAB, after the
search, for final evaluation of the
expression,

During expression analysis, the ANDing of a
search term with ancther set is noted, and
instructions are created to cause the search
to occur only within the set ANDed with the
search tern,

After the second phase all is ready for final
evaluation of the expression by execution of
the previously created instructions, At this
tine the input command, with parameters, is
reconstructed and posted in the
CURRENT_STRATEGY data set,

If a search 1is reguired, all SELECT tables
and instructions are stored for use at the
time of search execution. An S-number is
assigned and this numrber, . with the
exrression, is cutput to tle terminal.

If no search is regquired, the execuotion
phases of SELECT is invoked, The
instructions built esarxlier are now executed,
Sets are created, combined, and a altered as
the expressior dictated, wentil the final
resultant set is ottained. This set is
assigqned a unique number and posted into
SETAB through the use of the DBPSET routine
vhich also sends a line describing the set
{set-~ number, size, expression) to the
terminal,

¥hen the user enters the EXECUTE command to
invecke the search, the DBEXSR program is
given control, Thig rcutine contains all of
the actual search logic, hcwever repetitive
calls to SELECT (DBSICT2 entrvy point) are
made, The execute rhase instructions are-
used by SELECT to control the search.

During a search each previcusly defined
S-number has associated with it an

PAGE 38FLL7(,

ingtruction 1list. The first instruction in
the 1list for each S-number 1is a "branch"
initialized to pcint to the second
instruction in the 1list, #hern SELECT is
first qgiven control, €ach instruction list is
executed until an S-pumber or a search tern
ingtruction is encountared, The search
instruction posts prorer final information to
SRCHTAE and 1in both cases execution of the
instruction list is suspended. A new branch
point indicating where to resume execotion is
stored in the "branch" instruction at the top
of the list,

When all instruaction listg have heen executed
as far as possible, control is returned to
DBEXSR for the actual search to take place,
After this SELECT is called again and
instruction executicn is restarted. Some
S-numbers and searches may now be evaluated.
Again each instruction list is executed until
an undefined S-numkher or search term is
encountered or an actual set is created and
posted, BRgain contrcl returns to DBEXSR.
PThis process continues until all instruction
lists terminate by posting a set,

The SEARCH is dpplemented simply as an
additional entry (DBSLCT1) into SELECT, The
cormand format is the same as that for the
SELECT command, thus a valid SELECT
expression may he used.

DBSLCT1 is the entry point for the SEARCH,
This command first gets and verifies the set
nunker cr S-number ¢n shich a linear search
is to be performed, SEARCH then prompts the
user for the rest of the search expression to
be performed tc the specified set, Once the
search expression is entered, +then SEARCH
passes this informaticn to the search option
rart of the SELECT ccecmmand, W®hen control is
returned to SEARCH, it then prompts the user
for ancther search to be performed on the
same Set as before, This 1loop continues
until the user enters a nvll responss to the
search expression tfrempt, at which time
control is passed to the calling routine,

F, CODING SPECIFICATIORS

1. Source lLandguage

2,

PAGE 3887£17

The SELECT command module is written in the
IBM/360 PL/I prograzming language, The
DBEL/T language extension is used to handle
all access to the files in the data bhase and
the TSPL/I language extensicn is used to
handle all companicaticn with the terminal,

Suggestions and Techniques

¥ot Applicable

IT.

PAGE %9'?(2?/

SELECT, THE SEARCH OPTIOR

a,

B,

C.

MODULE NAME

Eetrieval, SELECT Search Option
Program - ID - NDBSICT

podule - ID - CBSLCT

ARALYST

0, Kirt Hearne
Neoterics, Inc,

Maodule Function
The SELECT search opticn is a feature of the
SELECT command which guides the wuser through a
search strategy. The SEARCH command is used to
define a set or pseudo-set to be used as the
search universe,

The user 1is then prompted for 1linear search
expressions with the phrase:

SELECT {Set-number S-number) IF:

The reply is of the same format as the SELECT

" command itself:

expression,field,replace,method

where the parameters have the same meaning as with
the SELECT Command,

The set~number or S-number defined by the SEARCH
command is added aloma ¥ith an AND boolean
operator to the left end of the expressicn entered
in resrponse to the SELECT IF prompt. The
resultant expression is then sent directly to the
SELECT conmand processor.
1. Beference Tables

A EXPTAB

b, FLDTAB

Ce uFCB

4. PARSFD

PAGE 396-4/29

e, SETAB
£f. SRCHTAPR
d. T
ha USERTAB
D. DATA REQUIRENENTS
1. I/0 Rlock liagram
See Figure 1
2. Input Data Sets
A, Parameter Cards
¥ot Applicable
b, Punched Card Input files
Not Applicable
C. Input Files
Not Applicable
d. On-line Terminal Entries
If a terminal is +the source of search
parameters as previously defined, the TS
systen will apply defaunlt values, if
available, to the parameters when no
values are entered.
3. Qutput Data Sets
A Output Files
Using the PSTRAT routine, the command
string, as it is entered and validated,
will be saved in the region
CURRBRENT_STRATEGY,
Fo PROCESSING REQUDIREMENTS
1. Top Level Fleuchart

See Figure 2

2. Narrative

PAGE 39143,

The SELECT Search command format is:

SEARCH expression,field,replace,method

vhich results in a set-number or S-number,
The user 1is then rrompted for a linear
search:

SELECT (Set-nurher S-Number) IF:
expression
field,replace,nethod

The set-number or S-~number 1is added, along
with an AND orerator to the expression angd
the 7rtesult is sent to <the SELECT command
processor, Thereafter all rprocessing is the
same as for any SELECT expression,

Rfter the expression is processed, the user
is again promnpted with the SELECT 1F
prompt, This continuyes until a null is
entered,

F, CODING SPECIFICATIONS
1. Source Languade

The SELECT Scearch command is written in the
IBN/360 PL/I programming lanquage, The
DBPL/I lanauaqge extension 1is used to handle
all access to the files in the data kase,
and the TSPL/I language extension is used to
handle all communications with the
terminal.

2. Suggestions and Techniqgyes

Not Applicable

EXPTAB

FLDTAB

: TERMINAL |
_ KEYB0ARD

SETASB
SRCHIAB

PAGTAR

DBSTRAT

Figurs .. Block diagram,

{ SELECT }

DBESLCTO
NS

PARSE
EXPRESSION .

g

ANALYZE
EXPRESSION
AND BUILD
[INSTRUCTION

¥

. POST
STRATEGY

EXECUTE
INSTRUCTIONS

e

-POST
SET

,
(RETURN)

OUTPUT
S-NUMBER
I0 TERMINAL

432

SEARCH | (DB:SL:C:T:E)
|PBsLCT2 CALLED FRO
: - y . EXSEARCH
' ; EXECUTE _
SELECT INSTRUCTIOJ
PROCESSOR LIST FOR EACH
S—NUMBER A§
T FAR AS POSYIBLE
SEVE |
SET-NUMBER
OR
S-NUMBER

ANY
INPUT

| BUILD
EXPRESSION

!

SELECT
PROCESSOR

3 1g
- FINISHED? n

N k—~—~___r

- SET
FINISH
FLAG

@

PAGE 394433

TOEHC P.5 RETRIEVAL DISPLAY CCHMAND

a,

B,

MODULE HNAME

Retrieval, DISPLAY Command {module 1 of 2)
Program~-ID - EDBDSPL
¥odule~ID - DEDSPL

ANALYSTS

sJohn 3. lozan
Neoterics, Irc,

MODULE FURCTION

The DISPLAY conmand is a routine whose purpose is to
allow the retrieval system user to have designated data
for a given set to be displaved on a terminal. Like
the PRINT command, the user may specify the format of
the outpat as the citation number, the citaticn, the
ahstract, or the full text for any item contained in a
set which has been previously selected. Optionally,
the user may prespecify a format of his own, using the
FORWAT command, to govern the DISPLAY command, One
set~-numbher is reserved €for special purposes in the

"systen, Set-number 0 is a logical reference to the

entire anchor file. The PAGE command alsc calls the
DISPLAY command in order to create additional displavs,
logically, before and tevond the currest one. The
calling sequence is: DISPLAY set-number, format, item,
type or, alternately, DISPLAY citation#, format.
This module performs preliminary analysis of DISPLAY
parameters and fila positioning; it +then <calls the
second DISPLAY module DBDSPLA via DRINIT. BRefer to the
DBDSPLA Program Design Specifications.
DATA REQUIREMENTS
1. I/,0 Block Diagranm

See Figure 1
2. Input Data Sets

A Parameter Cards

¥Not Applicakle
b. Punched Card Invut Files

Not Applicakble

3.

4.

PAGE 385443/

C, Ingut Files

The anchor and associated files of a dataplex
#ill be input to the DISPLAY command., The
complete description of +the files in a data
base is found in the Data Set Specification
Section of the Worbook.

d,. On-line Terminal Entries

B terminal is the most 1likely source of the
parameters which are passed to the DISPLAY
cormand. The parameters available +to the
DISPLAY command are set or citation numrber,
format, items, and type. The NASIS systens
will apply default values to the parameters,
if they are available, when mno original
values are entered.

Output Data Sets

. Output Files
Not Applicable

b. On-line Terminal Displays
The DISPLAY comnand will output a
partially-formatted display of the items in a
set or for a specific citation number., For
seguential forpats, each field is started on
a revw line, and the key field is always on
the first line below the header information
for a particular displavy. For colomnar
forpats, the fields from each record are
arranged across one or more lines in
columns, The ccntent of the display depends
upon the format code entered as the second
parameter,

C. Formatted Print-outs
Kot Applicable

d. Punched Card Output Files
Not Applicable

Reference Tables

A CCLFORH

The DISPLAY command refers to a COLFORM table

PAGE 3964£34

when a colurnar format is referenced.,
b, USERTAB

This table contains user-oriented and status
information,

C. FLLTAB
The DISPLAY command refers +to FLDTAB to
locate the apprepiate seguential (SEQFORM) or
columnar {COLFCERMY format table,

d, RETDATA

This tabla contains data fields unique to the
retrieval sub-systen.

e, PLEX
The DISPLAY command uses a DRPL/I File called

PLEX for all of its retrievals from the
dataplex,

f. SEQFORH

The DISPLAY command refers to a SEQFORN table
when a sequential format is referenced,

E. PROCESSING REQUIREMENTS
1. Top Level Flowchart
See Figure 2
2 Rarrative
a. Display

The DISPLAY ccmmand is called by the NASIS
systenm by the director,

b Accept Parameters

Since the parameters are not passed to the
DISPLAY command, by +the director, they are
retrieved via Terminal Support (T5). The
first parameter is either a "set-pumber", or
a "“citation &v, The second parameter is
"format” code, the third dis an "item" number
and the fourth is +the "type" code, The last
three paraneters are optional, The
Peet-number¥ is a one or two digit number and

PAGE 3974(3(,

is not likely a defavlt value since it will
change for every command. The "citation &%
is a character string, which is not likely to
have a defanlt, If no entry is wmade and no
default exists, then an error is reported and
control passed back to the calling routine,
The %format" code is a value of 1 to 25
designating a sequential format or EF1 to F25
designating a columnar format, or a format
pame representing cone of the above format:
values or a fieldnams. If no entry or
default is present, the value "2" is provided
for anchor key sets cor 75" for sukfile sets,
The "jtem"” parametey designates the member of
the specified set, The entry is a character
string having a numeric valuve, If no entry
or default is given for this parameter, the
first item in the set is displayed. The
"type? code indicates whether the user wants
sutbkfile informaticn to be displayed
continnally following the anchor data, and if
so, whether the data fields of each suhfile
record are to te exhausted sequentially or
the data field values are to be exhausted
across subfiles before proceeding to the next
field, An invalid entry is reported before
returning control to the calling routine, If
all parameters have valid values, then
execution continues with the next section.

The DISPLAY command is placed as the next
record in the strategy data set by a call to
the save strategqy routine. The parameters to
this subroutine are the word DISPLAY and its
parameters in their ncrmal order,

First Page Initialization

Depending on the “class" of the first
parampeter, certain specific initialization is
necessary. If the rarameter is a dataplex
key (class 1}, e.9., a citation number, then
the anchor record 1is read and a headinqg
prepared., If the parameter is a set number
(class 2y, the relative key is taken from the
set and used to read the anchor record and a
heading prepared, Caontrol is transferred to
Section (f) below.

Page DISPLAY

The DBDSPL module is entered with a parameter
value indicating pagings ccentrel is passed to

PAGE 398437

the DBDSPLP label. (The paging entry point
for DISPLAY is within LBINIT to utilize the
code there to handle the nmulti-nodule
transient interface.) The paging direction
and mode are indicated by the PAGE
parameters,

€. Validate Next Page

Depending on the "class" of the first
parameter tc the original DISPLAY command and
the paging directicn, certain specific
validation and initialization is necessary.
If the page requested has been seen before,
it need not be regenerated, but may be
retrieved from based storage, where it was
saved, and control can be transferred to
Section {qg) below tec display 1it. When
non-contiguous skip raging is being done, the
relative kxey is taken from the set and the
anchor record read.

£. DBEDSPLA
The remrainder of the processing for the
DISPLAY commrand is handled by the DBDSPLA
module. This module is called via the DBEINIT
Transient Hodule Interface convention,
Necessary information is retained in a common
structure called DSPLCTL,

g Return
Do a normal return to the calling routine,

3. Submodules Required

Ba DB - data base package

b. PSTRAT - save strateqgy

Ca TS - terninal support package

d. DESETD - set irnformaticn package

e, DRFLDO - field utilities

F, CODING SPECIFICATIONWS

1. Source Language

The DISPLRY command is coded entirely with the IBNM
PL/I vprogramming language. The DBPL/I language

2,

extension is used to handle all
files in the data base, The
extension handles all instances cof
with the tersinal.

Suggestions and Techniques

Rot Applicable

PAGE 399 43¢

access to the
TSPL/I language
ceomunication

TERMINAL
ENTRY

ki

USERTAB .

439

DATA
BASE

DBDSPL

TERMINAL
DISPLAY

DBDSPLA

FLDTAR

RETDATA

PAGE 40242 -4/

TOPIC F.6 - RETRIEVAL PRINT CCHMMAND

A, MODULE NANE

Betrieval, PRINT and CANCEL compands
Frogram~-ID - NDBPERNT
Module-TD - DEPRNT

Entry Point (DBPHNT)

B, ANALYSTS

Frank B, Reed
¥illiam H., Petrarca
Keoterics, Inc,

Ce MODULE FUNCTION

The PRINT command is a rtoutine whose purpose is to
allow the retrieval system user to have designated data
for a given set listed on a high-speed printer. Like
the DISPLAY command, the user may specify the format of
the output as the citation numter, the citation, the
abstract, or the full text for any item or range of
items contained in a set which bhas heen vpreviously
selected, Set number 0 is a lcaical reference to the
entire anchor file, Opticnally, the aser nay
prespecify a format of his own, using the FORHAT
conrand, to govern the PRINT command., A4l1ll of the uses
of the PRINT command during a single terminal session
%ill be accumulated and printed ocut as one continuvous
output for the user to vpick ngp at a later time, All
prints are queued for the wuser to ke printed later by
the DBA with the Print Monitor (DBPRINT). Prints
issved on S-numbers (pseudo-sets}y are not quened but
nerely deferred until after the EXECUTE command;
parameters are saved in SPRNTAE. The command seguence
iss PRINT set-number, format, item(s), type, copies,
or, alternately, PRINT citation#, format,

The CANCEL compand terminates an active SEARCH
specification or deletes one cr pore queued prints
called BSN's, The compand sequence is: CANCETL
range,
D, DATA BEQUIREMNERTS
1. 1,70 Block Diagrasm
See Figure 1

2 Input Data Sets

| DISPLAY -
\ v
PAGING

“Ho

Figure 2. Top Level Flowchart

I A
ACCEPT VALIDATE
PARAMETERS NEXT PACE
FIRST PAGE NEXT PAGE
INITIALIZA- INITIALIZA-
TFTON TION
DBDSPLA

3,

&,

de.

C.

d,

PAGE 483-L{f (0 —~4

Parameter Cards

Not Avplicable

Punched Card Input Files
Kot Applicatle

Inrut Files

The anchor and associated files of a data
base are input to the PRINT coamand,.

On-line Terminal Entries

The parameters available to the PRINT command
are "set-number®™ (or *“citation number® or
f*s-popbher"), "format", "items", "type™, and
Acopies™, NASIS will apply default values to
the parameters if they are available, vhern no
original values are entered,

Cutput Data Sets

Ae

d.

Output Files

The output of the PRINT ccmmand consists of
the strategy library containing the queued
RSN,

On~line Terminal Displays

Not Applicatle

Formatted Print-outs

Yot Applicable

Punched Card Output Files

Not Applicable

tefavence Tables

.

b,

COLFOERY

The PRINT ccompand refers to a COLFORY table
vhen a columnar format is referenced,

FLETAB

The PRINT command refers to FORMTAB to locate
the appropiate sequential (SEQFORM) or

PAGE 484 444/

columnar {COLFORM) format table,
C. USERTAB

This table contains user-oriented and status
information,

d. PLEX

The PRINT command uses a DBPL/T f£ile called
PLEY for all <c¢f ites retrievals from the data
hase,

S SRCHTAB and ENTRYDEF
These tables contain S-number information,
£, SEQFORM

The PRINT command refers to a SEQFOER table
when a seguential format is referenced.

g. RETDATA

This table ccntains data fields uniqmne to the
retrieval systen,

E. PROCESSING REQUIREMENTS
1. Top lLevel Flowchart
See Figure 2
2. Narrative
a. Print/Cancel

The PRINT command is called by the directors
processing continues with Section (b)), The
CANCEL command is called by the director with
a non-zero TLarameter value; processing
continues with Section {d).

b. Accept Parameters

Since the parameters are passed to the PRINT
compand through Terminal Support, they are
arranged in a kxeyword or predefined order,
The first paranmeter is either a "set-number®,
as defined by a SELECT conmand, or a
"citation #" or an "S-number" as defined by a
SELECT-IF command. The second parameter is a
“"format" code, and the +third is an "iten"

PAGE #85-ALLf7

nunher or range of nunbers., The fourth
parameter is a "tyre" code governing the form
of sequential formatting, and the fifth
parameter is a "copies" option for up to 9
copies. The latter t¥o parameters are
optional. The set nupber will be a one- or
two-digit number and will not likelv have a
defaunlt valune since it changes for every
command, The ®citation #%" dis a character
string which also will not 1likely have a
default, If no entry is made and no defauylt
exists, +then the error is reported and
control ©passed back to the calling routine,
The "format"” code is a value of 1 to 25
designating a sequential format or F1 to F25
designating a columnar €format or a format
name trepresenting one of the above format
numbers. If nc entry cr default is present,
the value of two is provided for anchor key
sets or four for sukfile sets, The ®item"
parameter is nct required when the ¥citation
#" is entered as the first parameter:
otherwise, it designates the member or range
of members of the srecified set, The entry
is a character string of one to eleven
positions, ¥hen a range of items is entered,
the tvo values are separated by a hyphen, IFf
no entry or defanlt is given for this
parameter, all of the items in the set are
printed. The “type" parameter may be 1, 2,
or 3: a +type of 1 1is the default. The
“copies" parameter may have a value up to 9,
with 1 as the default., 2An invalid entry will
te reported befcre control is returned to the
calling routine, 3If all vparameters have a
valid value, then execution continuves with
the next secticn,

The PRINT command is gplaced as the next
record in the strategy data set by a call to
the save strateqgy routine. The parameters to
this subroutine are the word PRINT and its
parameters in their normpal order.

If the first parameter was an S-nunber, the
providad parameters ar¢ entered in a SPRNTAB
tabkle for later use and processing continues
with Section {e€) below.

Queue the Print

The data pertinent tc produce the print is
then stored in the user's strategy file as a

3.

e,

PAGE #86-4/4/3

batch segquence number (BSN) to be later
processed by the Print Monitor (DBPRINT).
Processing continues with Section (e).

Cancel Processing

The CANCEL parameter may have the value of a
BSN {i.,e. 1, 2, etc.)}, *ALL m@meaning all
cutstanding prints queuned for the user, or
the string 'SEARCHY. For a CANCEL SEARCH
command the director is returned to with an
indication made to call the DBEXSR module to
perform the CANCEL. The BSY cancels are
handled thusly, The BSN is verified to exist
and then to be the yser's, Then the strateqgy
region containing the BSN({s) 1is deleted.
Processing continues at Section ({e}.

Return
#ben all processing for the PRINT/CANCEL

command has been completed, control is
returned to the calling routine,

Subroutines Required

.
b,
Ce
d.

€.

DB - data base rackage

PSTRAT - save strategy

TS - terminal support packaqe
DBSETU -~ set informaticn package

DEFLDD -« field ntilities

¥, CODING SPECIFICATIONS

1.

2.

Source lLanguage

The
PL/I

PRINT command is coded entirely with the IBM
programeing language. The DEPL/T language

extension is used +to handle all access to the
files in the Aata base, and the TSPL/I extension
handles all instances of communication with the
terminal, :

Suggestions and Technigues

e

b.

Normal PL/T statements are used to write the
line images to the print data set.

The manvy external variables required in the

PAGE 49744/ L)

PRINT command are conbined into external
data stryctures, in many cases, This
redguires only one name to be an external

synbhol.

s
TERMINAL - |

ENTRY

PRINT

USERTAR

PRINTER
" FILE.

-~

RETDATA

Filgure 1, 'y/9 Block diagrag .

L ermvr). ‘ é%eag

ACCEPT .
PARAMETERS
INITIALLZA-
TION
T —— e
P y
PROCESS || - PROCESS
FROM] . - FROM
DATAPLEX X : SAVFILE

Figure 2, Top level flowchart

PAGE -6 447

TCHC F.7 - BRETRIEVAL EXECUTE COMMANE

A. KODULE NAME

Retrieval, EYECUTE Command
Program~ID - NDBEZXSR
Module=-IC - LEBEXSR

B. ANALYSTS

Barry G, Hazlett
William H, Petrarca
Raoterics, Inc,

C. MODULE FURCTION

The EXECUTE command?s purpose is ¢to 1identify the
overall search universe for all linear search commpands
defined on the same set, perform a 1linear search upon
that wuniverse, and call, i€ requested, the SELECT,
PRINT, and/cr report dgenerator wmodules to perform
set-1list formatigns, 1list printing or 1list format
printing, respectively. Use of the EXECUTE compand
informs the NASIS system that user has specified all of
his SELECT~-IF and/or PRINT commands for his linear
search and is novw ready to have thern executed.

The format of the Execute~-Search ccampand is as
follows:

EXECUTE

Use of the EXECUTE command informs the NASIS system
that the user has specified all of his search requests
on one or more sets and is now ready to have them
executed, When an attention interrupt 1is made, the
EXECUTE comnmand will return the user with its cuarrent
status; i,e., the file teina =searched, the number of
processed records and the gnumber of records to be
processed, To continue any further in the execution of
the linear search, the vser pust then enter:

GO which will resume the search at the
point of executicn, or

END which will +terminate the search in
progress, returning the wuser to the
point of his strategy irmediately before
the last EXECUTE,

D. DATA EBEEQUIREMENTS

2,

3,

PAGE 4M-LL L

I/0 Block Diagranm

See Figure 1

Inp4at Data Sets

a. Parameter Cards
Not Applicatble

b. Punched Card Input Files
Not Applicable

Ca Input files

The dataplex anchor file 1is accessed to
obtain the records fcr the 1linear search,
The conmplete description of the files in a
dataplex is found in the Data Set
Specifications Section of the Workbook,

d. On-lLine Terminal Entries

If a Terminal is the source of EXECUTE
parameters,

Qutput Data Sets
a. Output Files

Using the PSTRAT routine, the command string,
as it is entered (modified if any by prompt
responses) and validated, is saved in the
region CURRENT-STRATEGY of the strategy
librarvy. For a contlete description of the
litrary, refer to the Specifications for the
strategy file{D%B, Section 1V, Topic H.2).

b. On-Line Terminal Disrplavs

The following is displayed at the ontput
interface by the set utilities module
{CESETOY :

1, ney set hunber,

2. items contained in a ney set, and

3. the {combined) expression describing the
new set.

for each set c¢reated as the result of the
linear search, 211 diagnostic messages are
displayed in the prompt area of a screen,

4.

PAGE 442~ 4141 T

C. Formatted Print-outs
Not Applicable

d. Punched Card Output Files
Not Applicadle

Reference Tahles

e FLILTLAB is +the descriptor field table
referenced to determine the data base name

b, SRCHTAER is the search table referenced to
obtain search status switches and psendo-set
tatle (ENTRYDEF) pcinters.

C. Other search tables referenced are ENTRYDEF,
S#ENTRY, VALUTAB, VALUE, and SPRNTAB. The
data in these tables is described in their
respective Data Set Specifications,

E. PROCESSING REQUIREMENTS

1.

2,

Top Level Flowchart

See Figure 2

Narrative

The EXECUTE calling sequence is as follows:
CALL DBEXSR

Search processing will follow the following
steps:

1. Notify STATISTICS of the search and what
dataplex,

2. Call DBSILCT to set up search tables,

3. Identify a search set; group tests on
that set,

4, Read in records ¢f the the search set
one at a time.

5. For each record test each field against
its corresponding test criterion as
defined in the LS strategy.

6, Fach successful receord 1is added to a

PAGE 413457

search list associated with the
pertinent test pseudo-set,

7. After all records have been tested, new
sets are made with the lists for
pseudo-sets involved in the search and
dependent pseudo-sets defined by a
Bovolean SELECT wvia a call to a special
entry point in the DBSLCT module,

8. It there is another set +to search
continue at step 2,

9. 411 pseudo-sets regqguiring a PERINT" are
printed via a <c¢all to the PRINT command
(DBPRNT).

At the search termination all unnecessary dynamic
storage will he freed, In addition a special
entry point parameter value for the CANCEL SEARCH
conmand will accomplish the same function,

F. CODIBG SPECIFICATIONS
1a Source lLanguaqe

The BEYXECUTE command is written in the IEM PL/Y
progranming language, The DBPL/Y and TSPL/I
language extensions are used for dataplex file
accessing and terminal communication,
respectively.

2, Suggesticns and Techniques

It is suggested that considerable analysis be made
of search universes to determine the final search
gniverse for the EXECUTE ccrmmand due to the rather
large dataplexes that may exist. The success of
reducing a search universe to its minipal size is
reflected to the user in response tine,

TERMINAL
COMMANDS

USER
TABLE
(USERTAB)

SEARCH

SEARCH
LISTS

TABLES .

FIELD
TABLE
(FLDTAB)

TERMINAL
DISPLAY

Figure 1. I/0 Bloek Diagram

s

CALL SELEC
TO INIT.
PSEUDO SET
TABLES | CALL
IDENTIFY | SELECT FOR
A SEARCH SETS FROM
SET S#'S
() gl |
| | UPDATE
GROUP s#'S PSEUDO SET
ON SEARCH - - |
SET FOUND | - TABLES
ALLOCATE A
LIST FOR EACH
PSKUDO SET IN
GROUP
| EVALUATE
SEARCH
REQUESTS

RETURN

Figure 2. Top Level Flowchart

TOHC F.8 RETRIEVAL SETS COMMAND

A, MODGLE KAME
SETS Comnand
Program~ILF - NDBSETS
Hodule~-ID - DBSETS
B, ANALYST

James A. V¥Wesley
Neoterics, Inc.

C. MODULE FUNRCTION

PAGE 446 45 3

The primary function of the DESETS module is to display

to the HNMSIS Retrieval Sub-system user a
sets or s-nunbers he has
strategy session, The list is displayed

of the

formed durinc the current
in the form:

set numbker or s-number, number ¢f items in the set, and

the expression that formed the set,

D. CATA REQUIREKENTS
1. I/0 Block Diagram
See Figure 1
2. Input Data Sets
a. Parameter Cards

Not Applicable

k. Punched Card Input Files

Not Applicable

Ca Input Files

SETAB and Strategy library

d. On~line Terminal Entries

Not Applicable
3. Output Data Sets
a. Output Piles

Not Applicable

PAGE M—?L,[jif

b. On-line Terminal Displays
The terminal display from this mnodule will
congist of a 1list of the set npumbers or
s~numbers, the number of items in the set and
the expression that formed the set,

Ca Formatted Print-Outs
Not Applicable

d. Punched Card Qutput Files
Not Applicatble

4, Reference Tahles

a. SETIAB
b. TS
C. DE

d. Strategy library
e, SRCHTAB, ENTRYDEF, and S#ENTEY
E. PROCESSING RFQUIREMENTS
1. Top lLevel Flowchart
See Piqure 2
2, Narrative
a. DRSETS
The SETS command is used by the Retrieval
System user to dispglay all the sets or
s+-number {(pseudo-set) he has created. Upon
entry at the ODBSETS entry point, it checks

the parameter for paging request; if paging
is meeded, processing contipves at label

DBPAGST ({see belowy, ODtherwise, it
allocates controlled area for the current
user to keep track of bis paging
operations,

The module looks for any parameters that vere
passed with the command., If there are none,
the module will default to set nusbers and
start displayirng at the beginning of SETAB.

PAGE W8 L{5 4

If a nunber between 1 and 97 is passed, the
nodule verifies that as a valid set number
and starts the displaying with that number.
Paging backwards frcm this point is not
supported, the user need only restarts SETS
at a lower set number to achieve this
effect,

If the parameter is an 'S' the module will
display s-numbers {pseudo-sets), B second
parameter may be 1included here to indicate
starting at a specific s-pumter, Here again,
the nunber is verified, and backwards paging
is not supported,

This precessing continues until the bottom of
SETAB or SRCHTAB 1is encountered or the TS
supervisor indicates the output screen is
full and avtomatically writes the screen,

DBSETS saves the set number or s-number, that
would have caused the screen overflow, in the
user control +table, This set number or
s-nueber is then used as the first number to
arrear on the next page forward,

b, DBEAGST

This label is called ty the TS supervisor
when the wuser wiches +to page in either a
forward or bhackward directicn through his
list of sets.

DBPRGST validates the command and
{(rejconstructs a page in the appropriate
direction, Only the 1letter *'B' will cause a
backwards page operation; anything else
defaults to forward,

Fe CODING SPECIFICATIOWS
1. Source language
The mpodule is written in the IBM PL/I programming
language, The LBPL/T and TSPL/] language
extensions are used for data kase access and
terminal I/0, respectively.

2. Saqgestions and Technigues

Not Applicable

45

SETAB
¥
—~ B
DBSETS fﬁ— SEARCH
—> TABLES
STRATEGY
LIBRARY

Figure 1. I1/0 Block Diagram

4577

{ pBseTs

SET
PAGING I,
BACKBW
ALLOCATE ARD
USER
. TABLE,
4
; SET
g PAGING
E SET - | FORWARD
STARTING
S—NUMBER
SET _
STARTING A
SET NUMBER
\ (::) % " SET
GET STARTING
NUMBER, NUMBER
XREFS,
EXPRESSION

¥

SAVE

NEXT
NUMBER

"Fionrs 72 Tan T-w T Tlae-?

PAGE 42345

TOHC F,9 -~ RETRTEVAL SETS UTILITIES

A, BODULE NAME

Program-ID - NDBSETH

Module~ID - DBSETU

Entry Points - DBGSET and DBPSET
B. ANALYST

James A. Wesley
Neoterics, Inc,

C. MODULE PURCTICHN
The function of the DBSETO mcduyle is to provide set
expression updating functions for variocus retrieval
modules which create of reference sets.
The entry points DBGSET and DRPSET are called fron
application programs to GET SETS and POST SETS,
respectively,
D. LATA REQUIREMENTS
1. I/0 Block Diagram
See Figure 1
2, Input Data Sets
a. Parameter Cards
Not Applicable
b, Punched Card Inrut Files
Not Applicable
c. Input Files
SETAR and Strategy library
d, On-line Terminal Entries
¥ot Applicable
3. Quitput Cata Sets

a, Output Files

SETAB and Strategy library

PAGE 423459

k. On-line Terminal Displays
The terminal display from this modole will
consist of a list of the set numbers or
s-nunbers , the number of items in the set
and the expression that fcrmed the set,

c. Formatted Print-Outs
Not Applicable

d. Punched Card Gutput Piles
Not Applicable

b, heference Tables

a, SETAB
b. TS
Ca LB

E. PROCESSING REQUIREMENTS
1. Top Level Flcwchart
See Figure 2
2. Narrative
a. DBEPSET
This entry point is available to the
avplication programmer who wishes to post a
new set and its corresponding data to SETAB.
The calling sequence follows:
CALL DBPSET(PCINTER,EXPRESSION,SETH) 3
Where:

POINTER ~ is a pointer variatle passed by the
user. It points to the list to be posted.

EXPRESSION - is a varving length character
string, maximum 256 bhytes, It is vpassed by
the user as the expression that formed the
set to be posted,

SET# ~ is a varving character string, maximum
2 bvtes long., It is passed by the user as
the one byte supbfile suffix character for the

b.

PAGE #2t-L{((

set being posted and is returned hy DBPSET as
the 2 byte set number ¢n a2 successful posting
or a null string to indicate an I/0 error or
no more sets availatble,

This entry pcint <€irst checks for a slot in
SETAB: if none are available, it sets the set
nunker wvariable to null and returns to the
USE€r.,

If a set narber is available,it verifies the
suffix as being between ¢ and Z or it assigns
a tlank suffix. DBISET then <collects and
posts the data to SETAE and the STRATEGY
LIBRARY. It tvosts the set number for the
user and returns.

DBGSET

This entry gpoint is available to the
application programmer who wishes to get and
verify a given set number, The calling
sequence follows:

CALL DBGSET(SET#,POINTER,#LIST,SUFFIX);
Hheret

SET# - is. a varvimg length character string,
maximam 3 bytes long. The user passes this
variable as the set number, and optionally
the subfile suffix, to be gotten and
verified. 1If either the set number or the
suffix is invalid, that is, a non-existent
set number or a wrenqg suffix, this variahle
is returned as null,

POINTER - 1is a rpointer variable. It is
returned by DBEGSET as a pointer to the set
(listy.

$LIST ~ is a integer full word. It is
Teturned by DBGSET as the number of YREFS in
the set,

SUFFIY - is a single character, It is always
returned as the correct suffiy for the set
requested, In the event an invalid suffix is
specified in the set number, the set nunber
is returned as null and the correct suffix is
returned here,

DBGSET first separates the set number from

PAGE &%56Q;/

the suffizx and verifies both, If either is
invalid, set nunber is returned as null and
the correct suffix, if available, 1is put in
SUFFIX., If the validation is successfuyl, the
set number, the 1list pointer, the number of
¥REFS and the suffix are returned to the
caller,

Y. CODING SPECIFICATIONS
1. Sonrce Language
The module is written in the IBN PL/Y programming
language, The LEPL /I and TSPL/XI langquage
extensicns are used for data base access and
terminal I/0, respectively.
2, . Suggesticns and Techniques

¥ot Applicable

RETRIEVAL
COMMAND
MODULE

DBSET

SETAB

Figure 1. 1/0 Block Diagram

STRATEGY
LIBRARY

Hia

PAGE ‘#‘2‘9"4&3

TOPIC F.10 - RETRIEVAL PORRAT COHHAND

A, MODULE NAHE

Retrieval, FORMAT Command {(module 1 of 2)
Freqram-1IDb - NBBFORNM
Module-ID - DRFORM,.

B. ANALYST

Garth B. ¥vman
Neoterics, Inc.,

C. MODULE FUNCTION

The DBFORY module 1is the first FORMAT command routine,
called by the retrieval system, whose purpose is to
allow the retrieval system user to define, revise
and/or dAisplay the content and format for suybsequent
informaticn retrievals wusing the DISPLAY or PRINT
retrieval commands, Sequential and columnar formats
pay ke defined,

Sequential formats extend the series of predefined
formats 1-4 by allowing the user to select a set of
fields to be displaved crpe under anocther with no more
than one recordt*s fields per output page.

Columnar formats are a separate series allowing the
user to select a set <¢f fields +to be displayed in
tabular format. Optionally, the user may define screen
ar printer cutput, page numbering, titles, column
headers, colunmn positions, and element tallying,
summing and averaging.

After a current format has been established, the DBEFCRY
module functions as a command director processing the
FIELD, PFIELDS, HNAME, STCRE, FCBHATS, DISPLAY, PAGE,
TITLE, HEADER, FORMAT and END sukcoammands of the FORMAT
command, Although DBFORN recoqgnizes all FORMAT
subconmands, for +the HEADER and FIELD subcommands a
transient call is made via DBINIT to the second FORMAT
comkand module TDTBFORHNA, Refer to DBFORMA Progranm
Design Specification for the details of these two
subcommands.

The user may review the arprearance of the ultimate
disvlay {paging through screen-width portions, if
necessary). The user has complete revision and storing
capability.

Da LATA REQUIREMNENTS

PAGE #3'0‘/.,[&4

1. I/0 Elock Diagram
See Figure 1
2. Input Data Sets
a,. Parameter Cards
Not Applicable
b. Punched Card Input Files
Not Applicable
C, Input Files
¥ot Bpplicatle
d. On-line Terminal Entries

A terminal is the most likely source of the
parameters which are passed +to0 the FORHAT
coupand by the Terminal Support system. The
fundamental parameters are the format number
and the field namnes, Default values for the
fundanental mparameters are unlikely, The
FORMAT command then accepts the TFORMAT
sutcommands and their parameters,

3. Output Data Sets
a. Output Files
Yot Applicatble
b. On-line Terminal Displays

For sequential formats, the DISPLAY
subcommand will display the field names
vertically in the order they will ultimately
be displayed. The FAGE sgbcommand will
display anv field names that do not appear on
the first =creen,

For columnar formats, the DISPLAY svubcommand
will display the title and header values and
field column positions as thevy will
ultimately be displayed. ¥n the case of
printer formats wider than the display
screen, the left-most portion will be
displayed initially. The FAGE sub-command
will display suhsegquent portions, These
displays will shov the positioning and length

PAGE #3TL{1 5

of the field values for the first data 1line;
otherwise, they have the same format as the
DISPLAY and PRINT retrieval commands produce
{see Section III, Topic F.4 of the DWB).

C. Formatted Print-outs
¥ot Rpplicable
d. Panched Card output Files
Hot Applicable
4, Reference Tables
a. COL_FORM

When +the FORMAT command gprocesses a new
colupnar format, it allocates and initializes
a COL_FORM structure and posts its base
address in the COL_FORMAT array in FLDTAB.
When the PORMAT command processes a TITLE or
HEADER sub-commpand or any cther revision to a
colunnar forpat, it wupdates the appropriate
COL_TFORMN struactare, Thus, a COL_FORY
structure specifies a colomnar format for use
by the DISPLAY and PRINT cosnands,

b. FLDTAR

The FORMAT command refers to DATAPLEX portion
of FLDTAB, The FORWMAT ccmmand also posts the
SEQ_FORMAT and COL_FORMAT arrays as it
processes nev formats,

c¢. SEC_FORM

#hen the FORMAT command processes a ney
sequential format, it allocates and
initializas a SEQ_FORM structure and posts
its hase address and field rname count in the
SEC_FORMAT array in FLITAB. Thus, a SEQ_FORH
structonre specifies a sequential format for
use by the DISPLAY and PRIET commands.

d. USERTAR
The FORMAT command checks the
USERTAB, RETRIEVE switch to verify thkat it is
being called properly.

E. PROCESSING REQDIREMENTS

2,

PAGE 432][(,

Top Level Flowchart

See Figure 2

Narrative

Qs

b,

Format

The PFORMAT ccamand 1is recognized by the
retrieval systemr director module DBINIT which
valls the DBFORM entry point.

Process FNUMBER parameter

Ar FNUMBER parameter value 1is obtained fronm
the Terminal Support system, If wpull or
blanks are entered, the FORMAT command is
cancelled. The value is checked for proper
syntax and for range and duplication of the
number; errors are diagnosed and the user
allowed to re-enter., If the value is a name,
the external GEISFMT routine is called to
obtain the stored forwat. ¥For a new format,
a SEQ_FORM or COL_FCRMN structure is allocated
and initialized according to given and
default options and the structure's base
address posted in FLDTAB. For a revised
columnar format, any options given will
result in the CCL_FORM structure being
modified cr re-allocated and ipitialized
accordingly, F®emoval c¢f page numbering may
be specified and/cr expansion to printer
width or contraction to screen width, If the
¥idth changes, any titles are re-centered,
If the width changes and the columns are
proportional, they are re~-proportioned and
their headers {(if any) re-centered, If the
width expands and the columns are explicit,
the rightmost <column will have dits width
expanded and its headers {(if anvy)
re~-centered, If the width contracts and the
columns are explicit, columus to the right of
a screen width are dropped from +the format
with their headers (if any) and the remaining
rightmost column will have its width reduced
and its headers (if any) re-centered. Thus,
a current format has been established for
further processing.

If a FLDSPEC parameter was entered explicitly
by the user with the ¥ORMAT compand, control
passes to (d,} below where the parameter is
processed, Otherwise, processing continues

Ca

d,

PAGE -&-3‘34(&7

at {Ct’.'
Ptocess subcchmtand

A command is obtained f£from +the Terminal
Sgpport system, If it is a valid FORNAT
subcopmand, it is processed by one of the
routines {d.) through (k.} below. Otherwvwise,
it is diagnos¢d as an invalid subcommand and
the user allowed to re-enter,

Process PIELD command

This subcommand is handled by the DBFORHA
module; it is called via the DRINIT
Transient Module Interface convention.
Necessary information is retained in a conmon
structure called FCEBNCTL,

Process FIELLS or FORMATS command

These commands are recognized as a
convenience to the user to save him having to
leave FORMAT and later re~genter it.
Processing congists only of a call to the
external entry point DBFLDS or DBSTRT2
respectively; the DBFIDS module is called via
the DEINIT Transient Rodule Interface
convention,

Process NAME or STORE command

An FUTNAME parameter value is obtained from
the Termsinal Saprort system, wvalidated
syntactically by calling the external DBUCHEX
routine, and checked for duplication of the
name of any other current format. PFor a NAME
compand, the valne 1is simply posted 1in
FLDTAB, Ffor a STORE command, the value is
posted in FLDTAB or it is verified that a
name value was posted there previously and
the external PUTISFMT routine is called to
store the format for availability in later
sessions, If the FMTIEAME value is invalid or
missing or if PUTSFMT returns an error code,
a diagnostic is issued and the user allowed
t0o re-enter it,

Process TITLE copmand
If the current format is not coluamnar, the

TITLE command is <cancelled with a diagnostic.
message,

PAGE w‘/—{ﬂ’

A TTLLINE parameter value is obtained fronm
the Terminal Support system, if the user
entered it explicitly, or by assuming the

‘next relative title line number, The value

is checked for syntax, range, duplication,
and space in COL_FCEH,TOP, &ny error is
diagnosed and the user allowed to re-enter
the parameter, For a title 1line deletion,
any lower title and header line images are
shifted up and CCL_FORM.TOP,.#TITLES is
decremented and centrel branches to {c.).
For a new title line, any lower title and
header 1line images are shifted down and
intervening lines blanked in
COL_FORM,TOP,LINE and COL_YCRH,TOP, #TITLES is
posted.

A TTLSPEC vparameter value is obtained from
the Terminal Support system, if the auser
entered it explicitly, or by taking the
FLDTAB,DATAPLEY name value and stripping any
trailing dollar sign characters. The value
is vposted centered in the particular
COL_FOR¥.TOP,LINE,

Process HEADER command

If the current format 1is net colomnar, the
HEADER command is cancelled with a diagnostic
pessage,

This subcommand 3is handled by the DBFORMA
nmodule; it is called via the DBINIT Transient
Hodule Interface ccnvention, Necessary
inforezation is retained in a compmon structure
called FORHCTL,

Process DISPLAY compmand

A display screen image is composed and
transmitted via the <Terminal Support systen
to the user's terminal showing the format as
curtrently defined., The displayv simuniates the
appearance prodaced by the retrieval systen
DISPLAY command if it was used with the
current format,

If a sequential forwmat display overflows the
screen at the bottom or if a columnar format
display overflows the screen at the right
side, THORE" is ipdicated and the Terminal
Support system is requested to call DBFORMNP
if the user enters the PAGE immediate

pace 435 4 (T

command.

When the module is entered at the main entry
point with a parameter value set for paging,
a DIRECTON parameter value is obtained from
the Terminal Support system, if the user
entered it explicitly, or by assumning forward
paging, If the value starts with "B" the
previous display screen image is re-composed,
otherwise the next display screen image (down
or +to the right) is composed. Screen
overflow is rechecked to Teset the WMORE"™
indication and the Ternminal Support systenm
transmits +the screen image +to0 the aser's
terminal,

Fe FORMAT command

If "FORMATHY is detected as a sub-command,
control simply tranches wup to (h.) ®here its
parameters are obtained and it is
processed,

X END comwand: EETURN

The END subecmmand cauvses control to be
returned to the retrieval system director
module DBIRIT.

If the END ccndition is raised by the user
entering the END immediate command in blocks
{a.) or (.}, ccentrel returns to the DBIRIT
nodule, If it is raised after Dblock (b.)
control branches to bleck (c.}, that is, the
subcommand is atorted and another taken,

3. Submodules required

DEFORBA - FORMAT command, mcdule 2
DBPLDO -~ field untilities

DEFILDS -~ FIELDS subcommand

DBSTRTZ - FORMATS subcompand
DEUCHEER = check name routine
GETSPHNT - get stored format
POTSFMT - put stored format

PSTRAT - save strateqy

TS =- terminal support vackags

F. CODING SPECIFICATIOQONS
1. Source Language

The FORMAT command is coded in TIBM PL/I, The

2,

PAGE 436 H]p

TSPL/I language extensicn is used for all
coamunication with the terminal,

Suggestions and Technigunes

The PSTRAT external routine shall ke called
vhenever a valid comsand or subcommand with wvalid
parameters is detected,

Subroutine facilities shall be coded to handle the

general case of re-propcrtioning colunns,
re-centering headers, and shrinking sequential

formats (DUP_COL, RE_PFRO_COL, RE_HEAD,
SHRINK_SEQ). .

TERMINAL
ENTRIES

s

SEQ-FORM

DEFORM

TERMINAL
DISPLAYS

DBFORMA

FLDTAB

COL-FORM

Figure 1, 1/0 Block Diagram

PROCESS
FNUMBER
PARAMETER

&

YTZ

PROCESS

SUBCOMMAND K&

W

—

-

« PROCESS
FIELD
COMMAND
- DBFORMA

PROCESS
FIELDS/
FORMATS
COMMAND

STORE

PROCESS

3 NAME/

COMMAND

PROCESS
TITLE
COMMAND

PROCESS
HEADER

3| comann:

lDBFORMA

PROCESS
DISPLAY
COMMAND

- FORMAT
poreremeree B COMMAND 2

/" END COMMAND
L RETURN

Figure 2. Top Level Flowchart

PAGE ‘?39'473

TOBLC F.11 « STORED FORHMATS

A. HODULE WANE

Progran-ID - NDBSFHT
Module-ID - DBSFMT

B ANRATLYST

John A, Lozan
Feoterics, Inc.

Ca HODULE FUONCTICN
The function of this mcdule is to provide generalized
GET/PUT rougtines for the processing of stored
formats.,
D. DATA REQUIREMENTS
1. T/0 Block Diagran
See Figure 1
2 Input Data Sets
a. Parameter Cards
Not applicable
k. Punched Card Inrput File
Fot Applicable
c, Input Files
Yot 2Applicable
d, On~time terminal Entries
HNot Applicable
3. Output Lata Sets
a. Cutput Files
¥ot Applicable
b. on-Line Terminal Disglays

The program procduces diagnostic messages for
the various errors that may coccur,

PAGE w40 {4}

Ca Formatted Print Outs
Not Applicable
da. Punched Card Output Files
Not Applicable
4, Reference Talles
The €following tables are referenced, used in the
construction of new formats and used to output
exiting formats.
FLDTAR
SEQFORM
COLFCRM
E. FROCESSING REQUIREMENTS
1. Top Level Flowchart
See Figure 2
2. ¥arrative
A GETISFHUT
At this entry point the program initializes
itself to read inp a previously stored format.

It verifies the name of the format and checks
to see if the format is already in the format

table. If S0, the programn retgrns
imzediately with the appropriate
information.

If the format must e reading, the first
record of the format is obtained by calling
TSCETEG. This record is analyzed to
determine if the fecrmat is columnar or
seguential. The appropriate format tables
are then searched fér a slot into which the
format can e placed and the format |is
allocated and initialized,

The program then obtains the rewaining format
records and posts the data obtained into the
aprropriate lccations within the format
entry. If any errors are encountered, an
appropriate diagnostic message is written to
the user and +the partial format is freed,
After an error, or vhen the format has been
completed, the required information |is

PAGE -HH-L/75’

updated and the pregram teturns to the
caller.

b. POISFMT

At this entry point the program initializes
itself to wuwrite cut one of the currently
defined formats, It verifies the name of the
format and checks o see of the format exists
in the format tables, If not, +the progran
terninates with a diagnostic,

If everything is in order, the program
constructs the first format record (FORMATY,
indicating the forpat name, type, the
intended file name and cther descriptive
inforpaticn and writes it to the data set by
calling TSPUTRG,

The remaining format data is organized into
TITLE, READER and FIELLS records and written
to the data SET in the same fashion as the
FORMAT record. If any @rrors are
encountered, an appropriate diagnostic
message is written %to the user and the
partially stored format is erased, After an
error, or vhen the format has been completely
written out, the required inforpation is
posted and the Frogram returns to the
caller.,

F. CODING SPECIFICATIONS

1,

2,

Source Language

The mofule 1is written using the IBR PL/I
Languaqge,

Suggestions and Techniques

Nct Applicable

41¢,

DBSFMT

S5YSOUT

Figure 1. I/0 Block Diagram

PAGE W17l77

TOELC F.12 « E NUMEER ROUTINE

A.

c.

D.

MODULE UAME

Prograpm-ID - NDBXPKDE
Module~XID -~ ERYPNLE

ANALYSTYT

John A, Lozan
Neoterics, Inc,

MODULE FUBRCTION

This module is called by DBSICT to validate ap E-number
and, if valid, to return associated data.

LATA REQUIRENENTS
1. I/0 Block Diagram
Not Applicable
2. Input Data Sets
a. Paraneter Cards
Not Applicable
b, Punched Card Ipgut Files
ot Applicable
T, Input Piles
Not Applicable
d. On-liipne Terminal Entries

Not Applicable

(=]

0

Qutput LCata Sets

- Output Files
Not Applicable

b, On~-line Terminal Displays
Not Applicable

Cs Fergatted Print Outs

E.

F.

4,

PAGE #45-LL 7 ¢

Hot Applicable

d. Punched Card Output Files
Not Rpplicable

Reference Tables

EXPTAB
EXPTERH

PROCESSING REQUIREHMENTS

1.

‘2. .

Top Level Flowchart
Not Applicable
Narrative

This wmodule initializes 1itself to decode an
E-number reference, If the E-number parameter is
valid, the data asscciated sith it is passed back
to the caller ({DESLCT) and the ©progranm is
terminated.,

CODING SPECIFICATION

1.

Soﬁtce Language
The module is written in IEM PL/I language.
Spygestions and technigues

Not BApplicable

TOELC F.13 - BATCH PRINT MONITOR
A, HODULE NAME

Fragram - ID = EDBPRINT
Module ~ ID ~ DBPRINT

B. ANALYST

Frank Reed
Neoterics, Inc,

c. MODULE FONCTION

PAGE #49—6(7?

This program controls the execution of the batch print
syster in wmuch the same way that NDBINIT controls the
retrieval system. That is, it initializes file-related
tables and issues ccmmand gpreogpts to activate batch

sub-systen operations.
D. DATA REQUIREMENTS
Te I/0 Blocﬁ Diagranp
Ses Figurerl.
2., - Input Data Sets
a. Parameter Cards
Not Applicable
b. Punched Card Input Files
Hot Applicable

C, Input Files

NASIS,USERIDS
d. On~line Terminal Entries
The gser cf the batch print

systen

communicates with the system through a series

of command and data prompts. The
and parameters are:

1. END
Terminate the terminal session

2, PRINT NASISID=,BSN=

commands

3.

4,

S

6.

8.

g.

3.

PAGE “56"Zf§%9

Produce a formatted print-out of data from a Eile
ntilizing informaticn saved in the print gueue for
Nasis ID with Batch Sequence Number (BSH)
specified,

HOLD NASTISID=,BSH=

Place a print job im "hold" status,

RELEASE BASIYISID=,BSH=

Place a print dcb in MactiveY status so that it
can be executed,

EXHIBIT NASISID=,BSH=

Display a formatted description of the contents of
the batch print queue at tke user's terminal,

NUMBER NASISID=

Tally the number of print tasks in the queue.
CANCEL NASISID=,BSN=

Remove a print task from the queune,

KEYS NASISID=,BSH=

Display the file name and record keys recorded for
a print task,

COPTIES NASISIDB=,PBSN=,COPIES=

Overide the nuser specified value for number of
copies of a printed report.

Output Data Sets

A, Output Files
Hot Applicable

b. On~line Terminal Displays
Not Applicable

C. Formatted Print-outs
Not Applicable

d, Punched Card Output Files

Fa

q,

PAGE 45t 4L (]

Not Applicable
Reference Tables

Not RApplicable

FROCESSING REQUIREMENTS

1.

2.

Top level Flowcharts
See Figqure 2,
Narrative

DBPRINT gets control from DBMTT, +themn prompts for
one of the commands outlined in section 2D. If
the command is PRINT, the information relating to
the nuser's print gqueue 1is retrieved from the
strategy data set ard wused to open the file from
which data 1is toc he printed, After all
initialization is complete, contrel is passed to
DBWRIT to perform the actual data retrieval and
printing,

211 other commands provide varions operations on
the user's print gueue as described above, except
END, which returos centrel to DBMTT.

CODING SPFCIFICATIONS

1.

2.

Source Language
P1/1
Suggestions and Techniques

¥ot Applicable

NASIS,

DATA-
BASE

~

4

USERIDY,

DBPRINT |

TERMTHNAL

.5\H_,;;.f'

—

. 'NASIS STRATEGY, DATASET

Fig. 1 I/0 Block Diagram

INITIALTZE
VARIABLES

493

CLEAR

COUNTERS

CALL "
PROMPT
FOR"

|RANCE

—[DIsPray o
-, LINFORMATION
- S

ACCUNULATE

TATISTICS
—FROM

STRATEGY [

FIG. 2 m7gp LEVEL FLOWCHART

PAGE 452 4L

TCHC F,14 - BATCH PRINT WRITER

R.

B,

D.

FODULE NAKE

frogram - ID - NDBWRIT
Module - ID - DBYWRIT

ANALYST

Frank Reed
Neoterics, Inc.

MODULE FUNCTIOW
This program retrieves data from a auser - specified
data base and prints a listing in either a predefined
sequential format or a user~-defined sequential or
columnar format.,
DATA REQUIRFMENTS
1. I/0 Block Diagram
See Figure 1.
2. Input Data Sets
A. Parameter Cards
Not Applicable
b. Punched Card Input Files
¥ot Applicable
Ce Input Files
Any NASIS data base,
d. On-line Terminal Entries
None
3. Output Lata Sets
A. Output Files
Print file (PRINTER)
k. On-line Terminal Displays

Not Applicable

495

OPEN FILE
| |FILE LJ

CALL -
DBPAC T0
CREATE A
in

iST OF KEYS

CALL
DBWRIT
TO DO

1 PRINTING

{1 DATA—
BASE

'S“Vf%

- / ‘_

DBWRIT

L Yge-m

. FIGURE 1 1/0 BLock DIAGRAM | .

| ;ga_?’é :
(omen)
OPEN

PRINT
FILE

INITIALIZE |
VARIABLES |

PRINT
TITLE

PAGE -
GET NEXT 7
RECORD

FROM ' P
FILE /\. SR

vEs| DISPLAY
DATA UNDER
COLUMN -

: HEADI‘N _

COLUMNAR

DISPLAY '
FIELD NAME [
AND DAT

POST
'RETURN
CODE

RETURN

FIGURE 2 TOP LEVEL FLOWCHART

E.

PAGE 453- 477

C, Formatted Print Outs

User - defined sequential or columnar
prints,

d. Panched Card Output Files
Not Applicable
L. Reference Tables
Not Boplicable
PBOCESSING REQUIREMENTS
1a Top Level Flowcharts
See Figure 2,
2. Narrative

DBRRIT cets comtrecl from CTEPRINT, then opens the
PRINTER outpuat file and <creates the title page.
Next, a record from the data base being retrieved
from is read and either sequential or columnar
formatting is bhegun hased on a tahle of field
names specified by the user. For sequential
formats, the field names and associated data are
displayed on successive lines with the field names
to the left of the data. Columnar formats reguire
thke printing of +header and title information
{saved by the PRINT and FORHMAT functions) along
with the field names or cther identifier for each
column cf data acrocss the top of each page, The
data for each field 1is presented under the
appropriate column heading wuntil the 1list of
record keys is exhausted,

%when all printing of data is corpleted, a summary
of information contained therein is displayed.
For sequential prints this is simply a count of
the number of records displayed. For columnar
prints, this can be, optionally, a tally, sum, and
average of the numerical values of items cccurring
in one or more of the columns,

After c¢losing the PRINTER file, control is
returned to LEPRINT with a return ccde of *X' for
a print terwminated by the operator of *0* for a
print terminated by a data tase error. The return
code is unchanged if the print completes
successfully,

F. CODING SPECIFICATIONS

1.,

2.

Source Language
PL/X
Suggestions and Techniques

Kot Applicable

PAGE 454 LYY

PAGE 45544 ¢4

TOPLC P,15 =~ RﬁTBIEV&L CORRECT CONMHMANEL

A. MODUOLE NAMWE

Retrieval, CORRECT Ccomparnd
Program-ID - YDBCORR
Module~ID - LECORR

Entty Pcint {(DBCORR)

B. ANALYST

Richard [, Graven
Neoterics, Inc.

C. MODULE FURCTION

The CORRECT command is a routine, called by the
RETRIEVAL system, whcse purpose is to allow the
retrieval system user tc¢ create certain maintenance
transactions during retrieval, When a user olserves an
error during a display, he is able to have any or all
of the fields of a given record displayed and then he
able to specify any deletions, additions, or changes to
those fields, The transactions created are not
executed, but are placed in a transaction data base
which is examined by the data tase owner before the
actual maintenance takes place. The calling seqguence
is: CORRECT field,kev.

D. DATA REQUIRBREHERNTS
1. I/0 Block Diagram
See Figure 1
2. input Data Sets
a, Parameter Cards

Not Applicable

(1]

b. Panched Card Input Files
Not Applicable

Ca Input Files
Not Applicable

d.,. On-1ine Terminal Entries

A terminal is the most likely sovurce of the

PAGE #5640

parapeters vwhich are passed to CORRECT by
Terminal Sapport, The parameters available
to the CORBECT ccmmand are nkey" and
"fieldname®, The Terminal Support systen
aprlies default wvalues tec the parameters, if
they are available, when no original values
are entered.

Additional terminal entries are requested of
the user, These responses indicate what
alterations, if any, to the field are
desired, Thece entries take the form of
sub~-commands availahle to +the user vhile
running under contrcl of CORRECT. The
sab-commands are:

ADD data

CANCEL

CORRECT field,<key>

DELETE element

DISPLAY

ENEC

FIELDS

INSERT field,...

REPLACE elementl,<element>,oclddata<,nevdata>
YERIFY

3. Output Data Sets

a.

pDutput Files

The only output file from the CORRECT command
is the transaction data base, This file is a
QTSAHM data set containing maintenance
transactions from all sources for all data
bases, The fields c¢f the transaction data
base and their format are completely
described in the Dataset Specifications,

On-~-line Terminal Displays

The CORRECT command outputs a formatted
display of the specified field on +the
terminal. Each field to be rrocessed begins
on a ney screen imaqge with appropriate header
information.. Each element of nulti-element
fields begins o©on a new line, HNo attenmpt is
made to end lines of ¢the display on word
boundaries, In addition to the display of
the field in questicn, a prompting mpessage
requesting the action to he taken is issued
in the inpat area of the screen,

Cb

E.

4,

Ce

PAGE 5% 44|

Formatted Frint-outs
Not Applicable
Punched Card Output Files

Not Applicable

Referaence Tables

Not Applicable

PROGRARl REQUIREMENTS

t.

2,

Flowchart

See Figqure 2

Narrative

Qe .

b,

CORRECT

The CORRECT conmand is called by the
retrieval sub-system at entry point DBCORR,
Bny default paramenters which are applicable
are supplied hy terminal support.

Real Entry

This routine initializes the routines for
handling the excepticnal error and interrupt
copditions. Attenticon interrupts cause the
user to be rprompted for a decision. If he
defaults, execuytion continues from the point
of interruption. Terwminal support prompting
8rTrors cause progrark termination, unless the
error is for input transaction, in which
case, a warning message is issued to the user
and execution continued. Apny other errors
cause programn terminatiocn, following an
appropriate diagnostic message,

Main Line

The rtoutine allocates the screen buffers, if
not already done, and cbhtains the julian date .
for time stamping the transactions, The
current retrieval data base is then opened
for dinput, unless that data base is the
vsert's transaction data base, in vhich case,
it is opened for update, The parameters
passed by the user are validated. The user
is prompted for a field nawe if he failed to

d.

f.

de.

PAGE -H-&B’/.{.qu

enter it initially.
Get Record

If necessary, this routine reads a new record
from the input data tase and gets the value
of the key field, the latter necessitated by
the optional sequential mcde of operation,
Again, if necessry, the routine reads in the
values for 4ll elements of the field,
paintaining a count of the number of elements
processed, Finally, the routine copies the
input data to a temporary storage area for
the user to process against,

Format Screen

This routine, unless Tunning from a
typewriter with the verify option egqual to
no, formats and displays the status of the
data most rTecently referenced by him, It
first constructs a heading, composed of the
record key, data tase name, £field nawe and
element count., It then proceeds to fill the
remainder of the screen with data beginning
at the element 1indicated by the calling
routine, TIf +the element length is less than
the lenqgth of the data portion of the line,
the element is written on a single line
preceeded by the element number, If the
element 1is tco largs, the first 1line is
processed as atove, but the remaining data is
split across succeeding lines,

Re-pronpt

This routine rrompts the user for his next
request, It extracts the comnmand Xevword,
apd if valid, calls the appropriate calling
routine, 1f any type of error is
enccuntered, the routine re-prompts for the
correct information,

Add Routine

This routine takes the input data and uses it
to create a new element for the field being
processed. If FYBLD is key field, then new
record is created, I1f there 1is no data
entered, or if the waximum allowable number
of elements has been reached, a diagnostic is
written and rrocessing bypassed. After
processing, that data control 1is passed to

b,

PAGE #59—445

Format Screen to display the updated data,
Replace Routine

This rovtine expects four parameters to be
entered, a starting point, an ending point,
an old data valve and a new data value. The
starting and ending pcints are expressed in
terns of elemrent nombers. If the element
numbers are invalid, or if no old data value
is entered, a diagnestic is written and
processing bypassed. The data 1is then
searched, character bky character, from the
starting point to the ending point, If any
vccurrence of the o©ld data value is found,
it is replaced by the new data value, If no
cccurrence of the old data value was found, a
diagnostic is written, Otherwise, control is
pacssed to Permat Screen to display the
updated data. '

Cancel Routine

This routine re-ipitializes the data in the
field to its initial status when read fronm
the data base. Control is then passed to
Format Screen.

Page Routine

This routine expects cne rparaneter, which it
uses to adjust the current elempent pointers
to adjust the segment of the data which is
displayed on the screen., The parameter may
be a defanlt for forward paging, a *BY for
backvard paging, a number for a specific
element number. If the data is invalid or
the request cannot be honored, a diagnostic
is wvritten and processing bypassed.,
Otherwise, ceontrol 1is transferred to Format
Screen to display the data,

Yerify Routine

This routine sets the switch that determines
ghether the user, operating from a
typewriter, receives a verification display
of the data following each ccmmand. The data
entered should be 'YESs*' for verification or
*¥0Y for nome, If the data is invalid, a
diagnostic is written and processing
bypassed, Otherwise, control passes to
Format Screen,

1.

M

Os

PAGE %&444

Pelete BRoutine

This routine uses the usert's data to decide
whether to delete the entire record, to
delete the field, to delete an element or to
delete a range of elewments, If the field is
to be deleted, it is done ard contrcl passed
to Format Screen, If the record is to be
deleted, it is done and control passed to End
Routine, If elememnts are to be deleted, the
routine will accept a list of elements or
elerent ranges asg input. For each, it
analyses the e€lerent number to determine its
validity., An invalid element will cause a
diagnostic to te written and further
processing bypassed,

Insert Routine

This routine allecws +the user to specify the
fields of subfile reccrds to be inserted into
the dataples. If no field is specified, a
diagnostic is written and processing is
bypassed. If the previous field's data has
been changed, OCutput Routine 1is <called to
create the necessary transactions. Control
is then passed +to the Correct Routine for
further processing,

Correct Routine

This routine allows the user to specify the
key of a new record to he processed, the nanme
of the next field to be processed, or both,.
It the previcus field's data has been
changed, Output Routine is called to create
the necessary transactions, The routine
first checks for a signed numeric value in
the key operand, and if found, reads the file
sequentially forward or backward to the
desired rtecord, TIf sequential processing is
not indicated, the rcutine extracts the new
key and the new field name, if present, and
transfers control to Get Record for further
processing.,

Fields Routine - CALL IRFLDS

This routine displays a list of the field
napes for the data tase for the user. It
calls DBFLDS tc extract the field nanmes. It
also checks each field until it has
identified +the kevy field, whose name it

PAGE 46t+445"

maintains separately. T+ then mwnoves the
field names into the cutput area, fitting as
many as possible on each line, and displays
them to the user, If mcre names exist than
may be displayed .on the screen at once, the
routine prompts the user for a decision as to
vhether he wants to see the remaining names
or to continue correcting.

Pa End Rowntine

This routine processes any transactions
remaining to he written, It closes all of
the files, resets switches, restores the
HASYIS status to what it was when the program
was invoked and returns to the calling
prograt,

¥ CODING SPECIFICATICHS

1. Scurce Langnage
The NDECORR progranm emBrloys the IRM PL/Y
programming language, The special extensions of
that language, called DEFL/Y and TSEL/I, are
ptilized for all access to files and for all
terminal comrunication, respectively.

2a Suggestions and Techniques

Not Applicable

TERMINAL
PARAMETERS

CORRECT
COMMAND

B4 DBCORRM

PROMPTS

Figure 1.

TERMINAL
DISPLAYS

1/0 Block Diagram

446

FORMAT
SCREEN

B!

RE-PROMPT
ROUTINE

447

FIELDS END
ROUTINE ROUTINE
. [}
- B
[

ADD REPLACE " CANCEL PAGE
ROUTINE © ROUTINE ROUTINE ROUTIKE
VERIFY DELETE . INSERT . CORRECT
ROUTINE ROUTINE ROUTINE ROUTTNE

Figure 2. Top Level Flowchart

PAGE 464 44Y

TOH C P,16 ~ CORRECT COMMAND ~ ®¥RITE TRANSACTIONS

A, UMODULE NAME

Program-ID ~ NDBCORRRW
Yodule~ID - DECORRY

Bs ANALYST

Richard D. Grawven
Keoterics, Inc.

C, MODULE FUFRCTICN
The DBCORRW module is the routine that urites the
transactions for the CORRECT command to the TRNSCT
file. It is called by the DBCORR module,
D. DATE BEQUIREHENTS
ts I/0 Elock Tiagram
See FPiaure 1
2. Input Data Sets
a., Parameter Cards
Not Applicable
t. Punched Card Input Files
Not Applicable
c, Input Files
Not Applicable
d. On-Line Terminal Entries
Not Applicaﬁle
3, Output Data Sets
a, QOutput Piles
The only output file from the DBCORRY¥ module
is the transaction file, This file is a
QISAM data set containing wmaintenance
transactions frcm all sources for all files,

The fields of the transaction file and their
format are completely described in the

4.

.,

d.

PAGE 465 499

Dataset specificaticons,
On-line Terminal Tisplays
Not Applicable

FPormatted Print-outs

Not Arplicable

Punched Card Output Files

Not Applicabie

Reference Tables

Not Applicable

E. PFOGBAM REQUIREMENTS

T

2e

Floxchart

See FTigure 2

Narrative

da

t.

Output Routine

This routine analyses the data maintained for
the field being rrecessed, and for each

alement whose data has been changed, creates
transactions tc represent the change, The
routine calls write tranplx to actually write
the transactions, The rogtine handles three
cases, an added element, a deleted element, and
a changed element, Uvrcn completion, the routine
returnes to its caller,

Write Tranpix

This rcutine perfeorms the actual creation

of transactions, tased upon the data supplied
to it. Upen completicn; it returns to its
caller,

F, CODING SPECIFICATIONS

.“.

Source lLanguage

The NDBECORR¥ orogram employs the IBM PL/T
programming lanquage. The special extension of
that language, called TSPL/T is utilized for all
terminal communications,

0

PAGE 466 570

2. Suggestions and Techniques.

Hot Aprlicable

501

DBCORR {§———Bf DBCORRW

(HanWH(

Figure 1. I/0 Block Diagram

502

GET NEXT
ELEMENT

CREATE
TRANSACTION

Figure 2. Program Flowchart

PAGE #67 4 03

TGELC F.17 RETRIEVAL DISPLAY COMMANT

k.

B,

D

MODULE NAMNE

Betrieval, DISPLAY Commpand {(module 2 of 2)
Progqram~-ID -~ NDBDSPLA
Module-ID - DEDSPLA

ANALYSTS

John A, Lozan
Neoterics, Inc.

EODULE PONCTION

The DISPLAY command allows the retrieval systemr user to
have designated data for a given set tc be displayved on
a terminal. Like the PRINT ccmmand, the user may
specify the format of the output as the citation
namber, the citation, the abstract, or the full text
for any item <contained in a set vwhich has bheen
previounsly selected. Optionally, +the user may
prespecify a format of his own, wusing the FORHAT
command, to govern the DISPLAY command. One set-number
is reserved for special purroses in the systen.
Set-nember 0 1is a logical reference to the entire
anchor file, The PAGE command alse calls the DISPLAY
command in order to create additional displavys,
logically, before and bLeyond the current one, The
calling segquence is: DISPLAY set-number, format, itenm,
type or, alternately, DISPLAY citation#, format,

This module is called by DBDSPL via DBINIT to build the
screen images for the DISPLAY requests,

DATA REQDIREMENTS
1. I/0 Block Diagranm
See Figure 1
2. Input Data Sets
a. Parameter Cards
Rot Applicable
b. Panched Card Input Files
Not Applicable

C. Input Piles

pace asa 50

The anchor and associated files of a dataplex
will be input +to the TDTISPLAY command, The
cosplete descripticn of the files in a
dataplex is found in the Data Set
Specification Section of the Rorkbook,

d, or-~line Terminal Entries

A terminal is the most likely source of the

parameters which are passed to the DISPLAY

command. The parameters available to the-
DISPLAY command are set or citation number,

format, items, and type. The NASIS system

will apply default values to the parameters,

if they are availatle, when nc original

values are entered,

3. OQutput Data Sets

a. Gutput Files
Net Applicable

b. Op-line Terminal Displavys
The DISPLAY comnzand will output a
partially~-formatted display of the items in a
set or for a specific citation number. For
sequential formats, each field is started on
a new line, and the key field 1is always on
the first line below the header information
for a particular display. For columnar
formats, the fields from each record are
arranged acrcss one or more lines in
columns. The content of ¢the display depends

upcn the format code entered as the second
parameter,

C. Formatted Print-outs
F¥ot Applicable
4. Punched Card Output Files
Not Applicable
4, . Reference Tables
a. COLFORH

The DISPLAY command refers to a COLFORE table
when a columnar format is referenced,

PAGE #6945704

b, USERTAB

This table contains user-oriented and status
information,

C. FLLCTAB
The DISPLAY ccmmand refers +to FLDTAB to
locate the appropiate sequential (SECFORN) or
columnar {CCLPCRM)} format tatle,

d. RETDATA

This table centains data fields unique to the
Tetrieval sub-systew.

e, PLEX
The DISPLAY command uses a DBFPFL/T file called
PLEY for all of its retrievals from the
dataplex,

f. SEQFORA

The DISPLAY command refers to a SEQFORM table
vhen a sequential fcrmat is referenced,

E. PROCESSING REQUIRENMENTS
1. Top Level Flowchart
See Figure 2
2. Narrative
A. DBDSPLA

This module is <called by the DBDSPL module
via the DBINIT Transient Module Interface

convention: DBDSPLA uses necessary
information from the COMMON structure
DSPLCTL.,

b. Build Screen Image

This is a ccmmon routine for building a
DISPLAY screen image either for an original
DISPLAY conmand or for a PAGE command,

For a sequential fermat, field names are
taken successively frcn the SEQFORM down to
the number of field names.

Ce

PAGE 470 57)(,

In the most general case, each field consists
of multiple elements and each element value
is s0 long as to require multiple lines of a
buffer, The first line for the first element
of a field is tagged with the fieldname and a
colon., The first live for an element after
the first of a field is tagged with only the
colcn. Successive lines after the first for
an element have their tag entirely
suppressed, The degenerate cases of a single
element field and/or an element short enough
to fit on one line of the buffer are handled,
And if the field is null {no data present),
nothing is posted to the buffer at all for
that field name,

Sutfile resident fields are displayed similar
to multiple elements; however, the first
element of the field per sutfile record has
the field name tag duplicated, and a special
heading is displayed (depending on the "typen
parameter) as each new subfile record is
processed.

If the field names are not all processed
before the bottoem 1line of the buffer is
reached, the 7tToutine is left in such a state
that it will resume vhere it left off if
normal €forward paging is attempted, But if
the field names are all used, then the
rermaining lines are cleared.

For a columnar format, +the opticnal page
aumber, title, and beader 1lines are copied
into the huffer., Then field names are taken
successively from the CCLPORE, and used to
retrieve the field values which are arranged
across a line of the buffer, If there are
any multiple element fields, futher lines of
the buffer are used for remaining elements
until the record's desired £ields have all
been retrieved. If +there are any further
records in the set, the mnext record i= read
and the process regpeated. %When the bhuffer
is full, the rountine is left in such a state
that it will resume where it left off if

.normal or skip paging is attempted. But if

the data is exhausted, +then +the remaining
lines are cleared.

¥rite Screen

Using the €full =creen mode of output, the

PAGE 47+5747]

current screen 1image is displayed onr the
terrinal,

d. Return
Do a normal return t¢ the calling routine.

3. Submodules Required
a. DB - data hase package
b. PSTRAT - save strategy
C. TS - terminal support package
d. DBSETU - set information package
e, DBFLDU - field utilities

Fs CODING SPECIFICATIONS

Ta Scurce language
The LISPLAY command is coded entirely with the IBM
PL/I programmring Jlanguage., The DBPL/I language
extension 1is used to handle all access to the
files in the dataplex,. The TSPL/I langunage
extensicn handles all instances of communication
with the terminal.

2. Suggestions and Techpiques

¥ot Applicable

TERMINAL
ENTRY

DBDSPLA

- |

DATA
BASE

USERTAR

DBDSPL
FLDTAB

TERMINAL

DISPLAY
RETDATA

Figure 1. 1I/0 Block Diagram

e LA e ot

il o L A Rl R

< DBDSPLA >

BUILD
SCREEN
'IMAGE

WRITE
SCREEN

RETURN

Figure 2. Top Level FIOQChart

507

PAGE 434 5/0

TOFLC F,18 - RETRIEVAL FORMAT COHMMANT

R.

B.

D.

MODULE NAEE

Retrieval, FORWAT Conmand (module 2 of 2)
Programn-ID - NDBFORHA
Module~IL ~ DEFORHA.

ANALYST

Garth B, ¥yman
Neoterics, Inc,

HMODULE FURCTION

The DBFOR# module is the first FORMAT command routine,
called by +the retrieval subsystem, whose purpose is to
allow the retrieval system user +to define, revise
and/or display the content and feormat for subsequent

~information retrievals using +the DISPLAY or PRINT

retrieval commands., Secquential and columnar formats
may be defined,

The DBFORMA module is called ty LBFOEN module to handle
the processing of FIFLD and HEALER subcommands. Refer
to DRFORM Program Tesign Specification for farther
details.
DATAR REQUIREMENTS
1. I/0 Block Diagran
See Figure 1
2 Input Data Sets
s Parameter Cards
Not Applicable
b. Punched Card Input FPiles
Not Applicable
Ca Input Files
Hot Applicable

a4, On-1ipne Terminal Entries

A terminal is the post likely source of the
parameters which are passed to the FORMAT

3.

PAGE 435 4//

copmand by the Terwinal Support system. The
fundawental parameters are the format number
and the field names, Tefavnlt values for the
fundamental parameters are unlikely. The
PORMAT command +then accepts the PORHBAT
sukcommands and their rarameters,

Output Lata Sets

A

S N

Ce

d.

Outpyt Files

Not Applicahble

On-line Terwminal Displays
¥ot Applicatle

Formatted Print-outs

Bot Applicable

Punched Card Output Files

Hot BRpplicable

Reference Tables

-)

b.

COL_FORY

When +the FORMAT command gprocesses a new
columnar forewat, it allocates and initializes
a COL_FORM structure and posts its base
address 1in the COL_FORMAT array in FLDTAB,
Hhen the FORHAT conmand processes a TITLE or
HEADER subk~-command or any cther revision to a
columnar format, it uvupdates the appropriate
COL_FORN structure. Thus, a COL_FORH
structure specifies a cclumnar format for use
by the TDISFELAY and BRINT commands,

FLDTAB

The FORMAT ccommard refers to the DATAPLEX
portion of FLDTAR, The FCEEAT command also
posts the SEQ_FORMAT and COL_FORKAT arrays as
it processes new formats,

SEQ_PFORH

when the FORMAT «comgmand TFrocesses a new
sequential format, it allocates and
injtializes a SEQ_FOEM structure and posts
its base address and field name count in the

PAcE 436 571

SEQ_FORMAT array in FLDTAB., Thus, a SEQ_FORM
structure specifies a sequential format for
use by the DISPFEAY and PRINT commands,

4, USERTAR
The FORHAT command checks the

USERTAB.RETRIEVE switch to verify that it is
being called properly.

E. PROCESSING REQUIREHENTS

1.

2.

Top Level Flowchart

See Figure 2 of DBFCRM Design Specification,
Narrative

e FPorpat

The PFORMAT ccunmand is recognized by the
retrieval system director module DBINIT which.
calls the DBFORM entry point, ¥%hen a FIELD
or HEARDER sutkcommand is recognized, the
DBFORMAmodule is called via the DBINIT
Transient Module Interface convention, These
subconmands are described below.

b, Process FIELD command

FLDSPFEC parameter values are ohtained one by
ane from the Terminal Support system and
processed individually. The field npames are
checked for existence in the current database
by a call to +the field utilities (DBFLDU).
If a field nawme or rposition is invalid, a
diagnostic is 1issued and the keyboard
unleccked for re-entry cf that field name with
any options or default for that field to0 be
ignored, ©Normally, for svequential formats,
the field name is gposted in SEQ_FORH, or for
columnar formats the field name, position
{proportioned, if not specified by the user)
and options are rosted ot updated in
COL_FORM.

C, Process HEADER command
If the current format is not coluomnar, the
HEADER command is cancelled with a diagnostic
nessage.

A HDRLINE parameter value is obtained from

PAGE %37 § /3

the Terminal Support system, if the user
entered it explicitly, or by assuming the
next relative header line number. The value
is checked for syntax, range, duplication,
and space in COL_FORM.TOP, Any error is
diagnosed and the user allowed to re-enter
the parameter, For a header 1line deletion,
any lower header line images are shifted up
and COL_FORM.TCPA#HEADERS 1is decremented and
contrel branches to {c.). For a new header
line, any lower header line images are
shifted down and intervening lines blanked in
COl_FORHM,TOP.LINE and COL_PFORA,TOP.#UEADERS
is posted. Thus a cerrent header line is
determined for the following processing,

If no HDRSPEC parameter values were entered
explicitly by the user, every column accross
the current header line has its field name
value centered over it and control branches
to {c.).

Otherwise, HLRSPEC vparameter values are
obtained one by one ficm the Terminal Support
syster and processed individuyally., If only a
literal value is given, it is centered over
the next colurn to +the right, If only a
parenthesized €field pame is given, it is
centered over the column for the €£ield
name, If bhoth a literal value and a
parenthesized field name are given, the value
is centered over the cclupn for the specified
field name, 2Any syntax, field name, or past
rightmost cclumn eITOT results in a
diagnostic message allowing the user +to
re~enter one value ¢r to default for that
value to be ignored,

3. Submodules required

DBFLDU - field utilities
DBUCHER ~ check name routine
GEISFHT <« get stored format
PUTSFMT - put stored format
PSTRAT - save strateqgy

TS ~ terminal support package

Fe CODING SPECIFICATIONS
L Source Landguage

The TPORMAT command is <c¢oded in TBM PL/I. The
TSPL/T language extension is used for all

2e

PAGE &4&3571f

communication with the terminal.
Snggestions and Techniques

The PSTRAT external routine shall be called
vhenever a valid command or subconmand with valid
rarameters is detected,

Subroutine facilities shall be coded to handle the
general case of re-proportioning columns and
re-centering headers. (DUE_COL, RE_PRO_COL,
RE_HEAD).

DRFORM

Figure i;

TERMINAL
ENTRIES

TERMINAL
DISPLAYS

I/0 Block Diagram

5747

SEQ-FORM

~——— 4 FLDTAB

COL-FORM

PAGE 8457(,

TOFLIC 6.1 - ACCUMULATION

A, MODULE NAEE
Statistics Accumulator
Prograw-1ID -~ NDBACCUM
Yodule~IT -~ DERACCUH

B. ANALYST

James A. Hesley
Neoterics, Inc.,

Ce HODULE FUNCTICH

Priparily, this podule 1is wused +to accumulate the
maintenance statistics o¢n thoese data bases which have

already been loaded, This is part of the
initializaticn process for the usage statistics
fanction,

This program reads an existing data base anchor file
and accumulates the numher of records con it. Then, it
rosts this record count tc the STATIC file.
D. DATA REQUIREMERTS
Te I/0 Block Piagranm
See Figure 1
2 Input Data Sets
a. Parameter Cards
Not Applicabdble
| Panched Card Input Files
Not Applicable
C, input Files

The data base ¥hich is te have the statistics
accunulated, and the STATIC file.

d. on=-1ine Terminal Entries

Not Applicable

B, .

3.

4.

PAGE 482 5/7/

Qutput Data Sets
a. Output Files
The STATIC File
b. On-line Terminal Displavs

Nct Applicable

S C. Formatted Print-outs

Not 2Applicahle
Reference Tables

Rot Applicable

PBOCESSING REQUIREMENTS

1,

2. .

Top Level Flowchart
See Plgure 2
Narrative

This orograp 1is relatively simple and the
executicn time should be small, Therefore, any
serious errors will cutput a simple message and
abend the Fob.

The messaqge is as follows:
FREOR O $01 OF 302.

Where:
$01 is the ONFILE,
$02 is the CONCCDE.

The program will accept the data base name as a
parameter and will ovroceed to ccunt the anchor
files records. %®hen this task is conpleted, it
will open the STATIC file for npdate and post the
record count.

The posting of the STATIC data base assumes that
no record for this data rase currently exists,
Therefore, 1if an error c¢ccurs on the LOCATE
Statement for the posting, the new record 1is
posted cover the existing one if that is the ervor,
otherwise the dob is terminated. The key's value
for the locate statement is as followss:

PAGE 483 57Y

A value of "¢ concatenated to the data base
ﬂa%ﬁg%&?Tfil%ﬁﬁqwitﬁﬁ?§§@$° 32 characters.
sy b st & x y a TRt L TR ee s

The field 'ARCCUONT® ie posted with the number
of anchor records.

The field "MAINCATE({1}* is posted with the
4obs tun date, i,e., this is assumed to be
the creation date for statistics,

The field *TOTAL RON' is posted with a 11,

The field ITRANCHNEW® is posted wxith the
nunmber of anchcr records,

The following fields are posted to '0%%:
'TCTALTR¥Y, '"TRANCDREL?, YTRANCUPDY,
*TREINVNEN®, *TPRINYDEL"®, YTEINYOPDY,
*TRSURBADDY, 'TESURDEL', and 'TRSUBUPDY.,

F. CODING SPEICIFCATIONS

1.

2e

Source lLanguage

As much as possihle of the DBACCUM module is coded
in the IEM programming lanquage PL/I, The input
and output coding for access to files in a data
base 1is handled through an extension +to that
language know¥n as DBPL/T,

Suggestions and Technigues

It is important tec remenker that the ezxecutive
error '99' indicates an end of file condition.
Special attention is made for the handling of the
data base executive errors.

579

DATAPLEX
ANCHOR
FILE

. A

'STATIC

DBACCUM FILE

PARAMETER
| PLEX NAME

- Figure 1. 1/0 Block Diagram

DBACCIM

520

OPEN ANCHOR

DATAPLEX BY

PARAMETER

ABEND

=

I

OPEN

COUNT =
COUNT+1

STATIC
FILE

¥

Figure 2.

| -LOCATE
THE
RECORD

POST
FIFLDS,
CLOSE

Top Level Flowchart

PAGE 486 5L [

TOFIC G.2 - REPORT PRINT

B. HODULE BAME
Frint the Retrieval Statistics
Program=-ID - KDBPENTR
Module~ID - DBPRNTR
B, BANALYST
Edward J, Scheboth, Jr.
James A. Wesley
Neoterics, Inc,
Cs. FHODULE FUNCTICN
The purpose of this pregram is to present a detailed
listing of the contents of the STATIC file pertaining
to retrieval statistics. Summaries of various germane
items are made as the nodule develops the reguired
report,
D, DATRA REQUIREMENTS
1. I/0 Elock Piagran
See Fiqure 1
2, Input PData Sets
a. Parameter Cards
Not Applicable
b. Punched Card Input Files
¥ot Applicable
Ca Inpnt Files
The STATIC file, (for full details on this
file =see Secticn ITITI of the Developnent
Rorkbook},
d. On~line Terminal Entries
Not Rpplicable
3, Qutput Lata Sets

B Cutput Files

PAGE 489-4 272

Rot Applicable
b. On~line Terwminal Disvlavys
Not Applicable
C. Formatted Print-outs
The retrieval statistics' report, {(for full
details of thisz report {listing) see Section
ITTI of the Development Workbook),
4. Reference Tables
Not Applicable
E. PROCESSING REQUIRENENTS
1. Flowchart
See Figure 2

2a Marrative

This module performs the fcllowing logic in order
to produce the retrieval statistics' report

a. Open the STATIC file for sequential input
{use DBPL/I}.

b, Fead the STATIC file sequentially record by
recerd and while reading, construct from the
current infermation on the STATIC file the
required listing.

Ce Output the print file required to produce the
retrieval statistics' report,

d, Clcse all files: Terminate.

Note: Xt will be necessary for this program to
accumulate various information so that it
car ontpot the SUMNATY of retrieval
statistics, representing all of the
statistics on the STATIC file.

F. CODING SPECIFICATIONS

1. Source Language

As much as possible of the LBPRENTE nodule is coded
ip the 1IBYW programeing languwage PL/T. The input

2,

PAGE #86-572.3

and ountput coding for access to files in a data
base 1is handled through an extensiorn +to +that
langrage known as DBEPL/TI.

Suggestions and Technigues
Refer to Section III of the Cevelopment aorfbook,

for all data set specifications and all data base
executive errors.

S

STATIC
FILE

DBPRNTR

RETRIEVAL
STATISTIGCS
REPORT

Figure 1. I/0 Block Diagram

TOHC 6.3 -~ USAGE STRTISTICS UPDATE

A,

B,

C.

D.

NODULE NAME

Update Maintenance Statistics
Prograa-ID - NDBUPDST
#odule-ID - CBUPDST

ANALYST

Edward J., Scheboth, Jr.
Janes A. Wesley

Neoterics, Inc.

MODULE FUNCTION

pace 40+ 529

This program updates the statistics file (STATIC) with
the maintenance statistics from the lcad/create program .
{DBLOADY or from the mairtenance mainline {DBRUTN).

DATA REQUIREMENTS

1. I/0 Block Diagram
See Figure 1

2, Input Data Sets
a, Parameter Cards

Not Applicable

b, Punched Card Ivput Files

¥ot Applicable
Cs Input Files

The STATIC Dataplex

de On-1line Terwminal EBntries

Not Applicable
3. Qutput Lata Sets
A Qutpat Files

The STRTIC File

E.

PAGE #92-4.2(,

k. On-line Terminal Displays
Not Applicable
c. Forpatted Print-outs
Not Applicable
y, Reference Takles
Yot Applicable
PROCESSTHNG RECUIREMENTS
1. Top Level Flowchart
See Figure 2
2. Narrative
The parameters are passed via standard PL/X
procedure/procedure linkage key calls from DBNMNTY
and DELCAD,
The parameters which are passed are as follows:
ae Calling prograp identifier character 2.
First Character
C = first call,
M = subseqgnent call,
Second character.,
L = called from LCAD.
anything e€lse signifies - called fron
elsevhere,
k. File being updated.

Co Rurker of new anchor records, character 6,

i 38 Number of deleted ancher reccrds, character
6.

€, Fuepber of vpdated ancher records, character
6.

£ Nuwber of new subfield records, character 6.

d. Numbter of deleted subfile records, character
6.

ha Number of updated subfile records, character
6.

paGE 493527

i Number of new inverted records, character 6.

Yo Nurber of deleted inverted records, character
6.

ks Number of updated inverted records, character
6.

The load/create module (DELOAD) invokes this
module c¢nly once, and this is at the end of the
create run. Therefore, this wmodule opens the
STATIC file for direct {update or output) and
locates the new record, The data is put and the
file clcsed.,

The final call from the maintenance mainline will
have an 'F' posted to the calling program
identifier,

If the updating of the STATIC file is successful,
a YG' is posted to the calling program identifier
upon return; whereas, if +the results are not
successful, a "B' is posted,

If the results of the attempted posting are bad,
the calling programs will resolve the disposition
of the non-posted data.

The details of the contents of the STATIC file can
te found in Secticon IIT of the Development
Workbook,

The follcewing illustrates the parameters passed
and the associated fields which are updated; they
are in the form "parameter ~ static field nage”:
a, Maintenance date - MAINDATE

k. Namber of ney anchor records ~ TRANCNEW

C. Hurkter of deleted - TRANCDEL

d. Number of undate - TRARCUPD

e, Fomber of new subfile records - TRSUBNEW

f. Number of deleted - THRSUBLEL

9. Nurber of updated -~ TRSUBUPD

h. Nunher of new inverted records - TRINVWEW

i. Humbker of deleted - TRINVDEL

PAGE 4944779

3. Number of ypdate ~ TRIRVUED
k. Calling program identifier - *-none-*

It is important to remember that there is a one
for one correspondence hetween all of the
previously mentioned STATIC file fields, For
Example:

If HAAINDATE = '03/16/70" and this is the
actual date of +the maintenance run, then 1if
the RAINDATE value of '03,16/7D* is the third
element in the variable 1length field, then
all updates to the other elemental fields of
the record are pmade to the third element.

The +table which fcllows will help to
illustrate this more clearly.

MAIRDATE O01/1€770 02,16/70 03/16/70 null

TRANCNEW 9 3 1
TRAHNCDEL 18 4 1
TRANCUOPD 3 7 L
TR SUBREW 7 9 1
TRSUBDEL 3 12 6
TRSUBUPD 1 9 2
TRINVNER 16 3 1
TRINVYDEL 4 4 1

7 1

TRINVOPL 12

The fields we are concerned with are: MAYNDATE,
TRANCNEY, TRANCDEL, TRSUBNE®W, TRSURLEL, TRSUBUPRD,
TRANCUPLD, TRIWVNE®, TRBINVREL, TRINVUPD,

These fields are all variable length fields with
multiple fixed 1lenath elements, treated as 13
element arrays. The first element in the array is
used as an accumnlator. Elements 2 through 13 are
used to represent individual maintenance runs,

This is sinple enough--when this wmodule is called
from DBMNTN, it simply locates the maindate which
is the same as the parameter and does the posting
into that given element,

The gquestion is what does this module 4o when it's
called for the £first time from the maintenance
program {(DBMNTN) and the date is not egual to any
of the posted dates and all 13 elements have data
so that there 1is no additional elemental slot
where the data can e placed.

PAGE w9557 F

The solution is as fcllows: First, the second
elemental slot is 'REPUT' to null, ®Rhich causes
the file executive to autcmatically slide all of
the other e¢lements (logically). Then, the new
maintenance data will be *PUTY as the thirteenth
element,

F. CODING SPECIFICATIONS
Te Source Language

As much as possible of the DBUPDST medule is coded
in the 1IB® programming language PL/I, The input
-and output coding fcr access to files in a file is
handled through an extension to that language
known as DBPL/Y. All ¢terminal comwmonication is
handled through the terminal support preprocessor
TSPL/XI.

2, . Suggestions and Technigques
Refer +to Section 13T of the Developrent ¥orkbook

for all data set specifications and all file
executive errors.,

530

MODUT,

el

DBUPDST

STATIC
FILE

Figure 1. 1I/0 Block Diagram

53/

DBUPDST

ANALYZE
PARAMETERS

VALIDATE
ki
ANALYZE
SUMS
AND
VALIDATE

LOCATE NEW
RECORD AND
f POST. COUNT
DATA FIELDS

Figure 2. Top Level Flowchart

PAGE 498434

TOPIC G.4 - CLOCK ROUTINES

a,

B,

C.

HODULE NAME

Clock Routines .
Program~-ID ~ HWTIWMERS
Module~-ID - TIHERS

ANALYST

Edward J,., Scheboth, Jr.
Neoterics, Inc,

MODULE FURCTION

This wmodule initializes two internal clocks, one for
CPU time and the other for CONNECT time, These clocks
may be read at a later time to provide the elapsed time
plus initial values.

LATR REQUIREMENTS

Not Applicable

PROCESSING REQUIREMENTS

1. Top Level Flowchart
See Figure 1

24 Narrative

In the START entry, tke initial values are
assigned to the total clcck value and an even odd
pair of <clocks are started even (0) with task
cption ODPD{1y with real option and two counters
are set with these values, TRt

In the EEAD entry, a flag is set +to on at entry.
The clocks are read and the initialized totals are
updated. The clocks are stopped and restarted to
prevent expiraticn, the valnes are oprovided to
caller the 0O-1 pair of clocks started, the
indicator turned c¢ff and return made to caller,

In the STOP eaentry, the two counters of <clock
numbers are deducted by 2 and each pair of active
clocks stopped.

If either clock shkould expire, the expiration
routing ypost full valuoes to total and starts a
new clock with valuee +2 and retarns.

F. CODING SPECIFICATIONS
1. Sounrce Languvage
Assemnbler
2. Seggestions and Technigues

Not Applicable

PAGE 4994 43

PAGE 56145 34

TOHC G.5 ~ STATIC REPORT

R, BODULE NAWME
Maintenance Statistics' Rerport
Frograwm~ID ~ NDLBPRNTH
Module-ID - DBPRNTH
B. ANALYST
¥dward J, Scheboth, Jr.
James A. Wesley
Neoterics, Inc.
C. MODULE FURCTICN
This procgram opens and reads the STATIC file
{sequential inpat): analyzing, accugulating and
formatting (fcr printing) the maintenance statisticst
information which 1is currently posted. The end result
is a maintenance statistics® report. It has the added
functien of snapshot durp and re-initializing the
seven variable element fields which are the running
totals of the maintenance statistics,
D. EATA REQUIREMENTS
1. I/0 Elock Diagram
See Figure 1
Z. Input Data Sets
a. Parameter Cards
Not Applicable
b. Punched Card Tnput Files
Woet Applicable
C. Input Files
The STATIC file (for detailed and complete
information on this file refer to Section
IITI of the Development HWorkbook).
d. On-line Terminal Entries

Mot Applicable

PAGE 5824 745

3. Output Tata Sets
A Output Files
Not Applicable
b, On-line Terminal Displays
Nct Applicable
<, Formatted Print-outs
The maintenance statistics report ({for
conplete detailed infermation on this listing
refer to Section 1III of the Developrent
Workbook).
4., Reference Tables
Not Applicable
PROCESSING REQUIRENMENTS
Te Top Level Flowchart
See Figure 2

2. Narrative

This module performs the following logic in order
to produce the maintenance statistics' report:

E Opens the STATIC file £for sequential input
{use DBPL/I).

b. Read the STATIC file sequentially, record by
record, and while reading constructs €from
the current information on +the STATIC file,
the required listing.

Ca outputs the vprint file required t¢ produce
the maintenance statistics' rerport,

4, Snapshots the ten variable element fields if
they are full,

a, Close Rll ¥Files: Terwminate,

Note: It 1is necessary for this program to
accumulate variocus information so that it
can output the summary of raintenance
statistics,

PAGE 563 573(,

F, CGDING SPECIFICATIONS
1. Source lLanguage

As much as possible of the DBPENTHE module is coded
in the IBH prograwmsing langquage PL/T., The input
and output coding for access to files in a file is
handled through an extension +to¢ that language
known as DBPL/I., R11 terminal communication 1is
handled through the terminal support preprocessor
TSPL/T.

2. Suggesticns and Techniques
Refer +to¢ Section IXI of the Development Workbook

for all data set specifications and all file
executive errors,

537

STATIC
FILE

DBPRNTM

MAINTENANCE
STATISTICS
REPORT,

A

Figure 1. 1/0 Block Diagram

4 mmboemmesu meli e w ke e

o AR T A b s o .

53¢

OPEN
STATIC
REPORT

READ
STATIC
FILE

FORMAT
ARD
PRINT A

Figure 2. Top Level Flowchart

3

A.

C.

De

TOEC G.6 -~ RETRIEVAL STATISTICS DIRECTOR

MODULE HNAME

Retrieval Statistics Director
Program-ID - NDBSTAT
Module~ID - DBSTAT

ANALYST

James B,

Hesley

Neoterics, Inc.

MODOLE FUNCTION

PAGE 5-9«6—554}

This medule is the heart of tlre retrieval statistics,

It has

an entry point for each

included in the statistics,

DATA REQUIREMENTS

1

2.

3.

I,0 Block Diagranm

See Figure 1

Input Data Sets

- Y

b.

Ce

Parameter Cards

Not Applicable

Punched Card Input Files
Not Applicable

Input Files

Not Applicable

On-line Terminal Entries

Not Applicable

Qutpot pData Sets

de

output Files

The Static Dataplex,

On~-1line Terminal Disrplays

Not Applicable

retrieval

rodule

E.

4.

PAGE 50745 L[4

C, Formatted Print-outs
See CHEPT dumyp

a, Punched Card Output Files
Net Rpplicable

Reference Tahles

The MFCE 1is used +to convert inverted indices to
data base file names,

PROCESSING REQUIREHENTS

1.

2.

Top level Flowchart
See Figure 2
Narrative

Mainline:

The INIT entry checks to see if there was a crash
during the last session ty the existence of the
ONES record and then write one if there wasn’t one
or after Checkpoint Rountine deletes it, INIT
initializes statistics that 1like INIT in the
command system setting up the necessary tables or
pointers for later use, :

Each command entrv, one each for EXPAND, SELECT,
SEANCH and CORRECT, pushes 1its information,
command type, NWASISID O¥NERID and f£ill, into the
stack and then checks to see 1if it is time to
update the statistics by checking the command
count and entry count for critical level,

The DBSTATF entry call on termination of a
session, djust indicates that this is to be the end
and provides strateqy information and branches to
the PUTSTAT routine.

The DBSTATD entry deletes this strategy from the
statistics if it is there.

The PUTSTAT routine always updates +the CPU and
connect time by calling the TINERS routines €for
their values., It also always pops the command
stack and updates each command count and the
set~date for the specified file., The stack is a
FIFO stack, a one dimensicnal structured arravy.
If this is a DBSTATF entry, then the strategy

PAGE 568 454t/

information *STRATSTR,® and *STRATLEN' and usage
information *LASTDATE? are conplete updated, -
Finally, for the DBSTATF entry to update the
storage allecation is freed and the ones record
deleted from STATIC,

Checkpoint:

The initialization entry pcocint of DRBRSTAT enters
the checkpoint routine when it detects the
presence of a record in the STATIC file with a key
that has all *bits on'., This condition indicates
that the system crashed, during the last NASIS
commnand session, tefore Job <completicen, The
initialization module writes the Ttecord with the
key of all 1'bits on' (xX'FF*') to the STATIC file,
either after return from check pointing or apon
detecticn of no record,

The initializaticn module enters the checkpoint
routine after a norral terminal session has been
corpleted,

The NDBCHKPT programs operation is relatively
simple, It will read sequentially from the
beginning to the end of the STATIC file and
perform the checkpoint function, Upon completion,
it will delete the record that had all 'bits on*
for the key's value,

It should he mentioned at this point that the data
base executive returns a '992' walue as an error
code when the end of data is encountered, For the
other data base executive errors, rlease refer to
the data set specs.,

If an error is detected while trying to open the
STATIC file for update (direct), this program will
abend, It w%ill be attempted auvtomatically at the
begqinning of the next terminal session,

The checkpoint function itself is relatively
simple, It consiste of locking at the record,
determining if it needs to be re-initialized and
then either re-initializing amd printing it or
getting the next record. The details of this
process are as follows:

There ate five fields whose field names are
BEXPANDS, #SELECTS, #SEARCHS, #CORRECTS, and
SESSLATE,

These fields are treated as 13 element arrays,

PAGE S04 45442

When there is data in existence in all 13 of these
elements, it is time to re~initialize the record
so that the data from all subsegquent NASIS command
sessions can be pested.

The first element of these fields represents an
accumulator, The second through the thirteenth
elements represent the data from individual WASIS
conmand sessions. o

¥hen the second through the thirteenth elements
have actual data accumulated in them, then, this
program will add each of the elements ({(2-13}
commcn to a particular field into the first
element, The second through thirteenth elements
will then be *nulled?. The snapshot will be
printed for this record upon detection of all 13
elements bhaving data and before the
‘re=-initialization.

The next NASIS ccmmand session will beqgin
accupulating data in the second element. The
first element will NEVER ke deleted,
F. CODING SPECIFICATIONS
1s Source lLanguage
PL/TI and DBPL/I

2. . Suggestions and Technigues

¥ot applicable

5143

STATIC {

DBSTAT # FILE

Figure 1. I/0 Block Diagram

OPEN
STATIC

EXPAND,
SELECT,
CORRECT,
3 SEARCH
. PUSH
_.COMMAND
AND PARAMS
IN STACK

f - FINISH
ENTRY
CLOSE -
STATIC ?L
INDICATE
THIS IS
FINISH
PERFORM
CHECKPOINT
FUNCTION
ks 4
OPEN
~STATIC~

INITIALIZE
AND
ALLOCATE

DELETE 1T

Figure 2, Top Level Flowchart

UPDATE
CPU AND
CONN. TIME
ON STATIC

UPDATE
STRATNME

UPDATE

SESSDATE_FOAI

EACH FILE IN

COMMAND STAQH

v

 STRATSTR

B!

UPDATE

UPDATE
FOR EACH
COMMAND

IN STACK

!

UPDATE
LAST DATE

3

{CHECKPOINT

CLOSE
STATIC

PERFORM

v

ALLOCATIONS

FREE

PAGE $42 545

TO¥IC H,1 « EXPLAIN FACILITY

A,

B.

C.

D,

MODULE NANE

Program-ID - NDBEXPL
Module-ID - DRBEXPL

ANALYST

John A, lozan
Neoterics, Inc,

MODULE FUNCTION

This module allows the user to display the explanation
of a message or term, the origir of a message or the
responses to a prompt, that has appeared on the screen,
or, the text ¢f any of the standard prompting messages
ot the message file,

DATA REQUIREMENTS

1.

2,

3.

I/0 Block Diagram
See Figqure 1
Input Data Sets
a. Parameter Cards
Not Applicabhle
b. PFunched Card Input Files

Not Applicathle

Ca Input Files

Not Applicable h Ep;{f;;'

AL A
.

-~

d, On~line Terminal Entries

Ly

This module receives its input in the "£0Fi of
parameters passed with the EXPLAINW or PROMPT
conmands,

Qutput Data Sets

a. Outrut Files

Not Applicable

4,

b.

Ce

d.

PAGE 51347/,

On-line Terminal Displavs

This module displays the Tequested
informaticn for the user on the terminal.

Forgmatted Print-Quts
¥ot Applicable
Punched Card Output Files

Not Applicable

Reference Tables

¥Not Applicable

FROCESSING REQUIREMENTS

1,

2.

Top level Flowchart

See Figqure 2

Narrative

A

DREXPL

Jpon entry, the program analyzes the
parameter toc determine paging, FPRORPT, or
EXELATR processing. 1t paging, the
precessing continues at 1label DBEXPLP (see
below), 1If PROMPT, processing continues at
label DBEX¥PL2 (see below). Ctherwise, the
program initializes the wvarialtles that
contrel execution and the displaying of data
t0o the user, It also sets up the mechanism
by which paging is to be accomplished.

Next the prcgram prompts for the OPTION and
MESSAGE vpatameters required for the EXPLAIN
function, It verifies that the option
selected is valid, and if sc, branches to the
appropriate routine,

For sinple explains, i.e., message
axplanations, the CFTICN is treated as an
index, verified, and the line nunher set to a
value of 100, If the OPTION is not a valid
index, the request is treated as a tern
explanation., The OBTICY is then treated as a
gualified term and used to construct the
message %Xey which is used to locate the
term's explanation., For response

PAGE SHr4]

explanations the live number is set to a
value of 400,

In each of the above instances, contrel is
passed to a routine which attewmpts to read a
data record. If successful, the record is
written to the screen and the process
repeated, until the data has been exhausted,
or the screen filled, At this time, the
paging cecntrecls are set, the screen is
displayed to the user and the program is
terminated. If ne data was found, the
routine branches to an error routine which
displays a message to the nser and terminates
the program,.

If the original regquest was for a message
origin, the OQFTICN is treated as an index,
and if wvalid, the appropriate message key is
obtained, disglaved to the user, and the
program is terminated,

b, DBREYPL2

At this 1label, the program initializes the
varriables that contrcl executicn and prompts
for the MESSAGE parameter, It then prompts
for the INSERTS parameter list.

Oonce complete, the program attempts to
disvlay the message indicated with the
specified inserts,

C. DBEXPLP

At this label the program re-initializes the
variables that control execution and the
displaying of data to the user. If the
paging status data indicates that nore data
rerains, the progranm uses this data to
reéstore the proper program status and then
branches to the routine which posts data to
the screen, It no data rtemains to be
displayed, the progranm simply terminates.

F. CODING SPECITICATIONS
1. Source langunage

The module is written esing the 1BA PL/TI
langnage.

2 Saggestions and Techniques,

vt b e e cd RE kA LR R R e L L s L L N .

QB_EC_@@\’Q__PAGE BLANK NoT FILMED

5%49

b TRte s et

MESSAGE
} LIBRARY |

Figure 1. I/0 Block Diagram

R A L LTy

sm ks Sy et e ek

FOR
EXPLAIN

INITIALTIZE

550

"

4

POSITION TO POSITION TO LOCATE

LIRE 100 LINE 400 TERM

TO EXPLAIN 170 EXPLAIN “TO BE

MESSAGE RESPONSE EXPLAINED
Y ,

N < I . GET
DATE LINE

¥

GET
MESSAGE
- ORIGIN -

DISPLAY

ERROR
MESSAGE

DISPTLAY
MESSAGE
ORIGIN

SAVE
STATUS DATA

Fioura 7A Tan Townl Flarch vt

PP e .

S

amepde ¥

wit s e LS L

INITIALIZE
- FOR
PROMPT

WRITE
THE
MESSAGE

Figure 2B. Top Level ¥Flowehart

557

INITTALIZE
FOR
PAGING

RESTORE
STATUS DATA

PAGE S¥-4457

TOPIC H.2 - STRATEGY INTERPACE

i, MODUOLE NAME

Frogram-ID - HNDBSTRT
Module-ID - CESTRT

B. ANALYST

John A, LozZan
Neoterics, Inc.

c. MODULE FUNCTION
This module serves as an interface tetween the strategy
data set service Toutines and the rest of the NASIS
system, In addition, it is the module which performs
the functions specified by the FORMATS and STRATEGY
commands, i.e., the 1listing of format and strategy
names, the listing of strategies and the deletion of
strategies,
D. DATA REQUIREBENTS
e 1,0 EBlock Diagram
See Fiqure 1
2. Input Data Sets
a. Parameter Cards
Xot Applicable
h. Punched Card Input TFTiles
Not Applicable
C. Input Files
Not Applicable
d, On=-line Terminal Entries
%#hen serving as the processor for the FORMATS
and STRATEGY <commands, the program reads in
the command and vparaneters specified by the
user to invoke those commands,

3. Output Lata Sets

a. Cutput Files

4,

PAGE 52894 3

Not Applicable
b. On-line Terminal Disrlays
When serving as the prcocessor for the FORMATS
and STRATEGY commands, the program produces
the following formatted screen images,
1. Format names disrplay
2. Strategy names display
3. Strategy disrlay
Ca Formatted Print Outs
Not Applicable
d. Punched Card Output Files
Not Applicabie
BReference Tables
USERTAB~is used to obtain the NASIS-id and to test
the task status as represented by the various bit

svitches,

FLDTAB =-is used to reference the formats currently
defined fer this user,

PROCESSING REQUIREMENTS

1.

Top level Plowchart
See Figure 2
Narrative

A GSTRAT

At this entry point the program initializes
the parameter lists necessary to obtain a
line from the strategy data set, and calls
TSGETRG to do it. If an error occurs, and it
is the first error for that region, a
diagnostic message will be written to the
user, Othervise, the program simply returns
to the caller.

be PSTRAT

At this entry point the parvaqran initializes

C»

L=

PAGE 521 j’j”-{[

the parameter lists necessary to write a line
to the strategy data set, including the
generation of the strategy or format nane.
It then calls TSPUTRG to perform the write.
If PSTRAT is called and the TESTMODE, RERUN
or RESTACT £flags are set, the progran
immediately returns to the caller, If an
error occurs while writing out the record, a
diagnostic messaqge is written to the user and
the TESTHODE switch is turned on. The
program then returns to the caller.

CSTRAT

At this entry pecint the program initializes
the parameter lists necessary to change the
nacre of a reqgqicn., It then calls TSCHGRG to
accomplish the change, If any errors are
encountered, a diagnostic message is written
to the user, The program then returns to the
caller,

DSTRAT

At this entry point +the program initializes
the parameter 1lists necessary to delete a
region of the strategy data set, It then
calls TSDELRG +to perform +the deletion. If
any errors are detected, a diagnostic message
is written to the user. The program then
returns to the caller,

DBSTRT 1

At this entry pecint the program initializes
itself to process the strateqy command, Tt
reads in the CPTICN and STRATEGY parameters,
The program then branches to the routine used
to process the +type cf request specified by
the CPTION parameter, If that parameter is
not valid, the prcgram writes a diagnostic
message and terminates immediately,

If the user requested a strategy deletion,
the program <calls. TSBELRG to delete the
strategy specified, 1If an error occurs, a
diagnostic message is wuwritten to the user.
The program then checks for any additional
nages, and rprocesses each in the same way.
When all processing has heen completed the
precgranm terminates.

If the user requested a listing of the

f.

g

PAGE 522 545

strategy names, the program initializes the
screen and paging centrel data. It then
repetitively «calls TSGETSN¥ to retrieve the
names ¢f the strateqgies, As eachk name is
obtained, it is added to the ocutput line and
the line is written tc the screen. When the
screen is filled or when the strategies nanmes
are exhausted, the screen is displayed to the
nser, the paging status data is posted and
the program is terminated.

If the user requested a listing of a
particular strategy, the vrrogram initializes
the screer and vpaging control data. The
first strategy name specified is selected,
and TSGETRG 1is repetitively called to obtain
the lines comprising the strategy. Each line
is posted to the screen. When the screen is
filled or when the last 1line bhas been
gritten, the screen is displayed to the user,
the paging staters data is posted and the
pregram is terminated. The paging status
data must indicate when a strategy has been
coppletely listed, so that the next name from
the list can be used.

DBSTRT2

At this entry point the program initializes
itself to display the names of the formats
available to the nunser. It 1initializes the
screen and the vpaging statas data, The
progran then extracts the identifiers for all
of the formats currently specified in the
format tables. It then calls TSGETFN +to
retrieve the name of a stored format, It
places the names ¢of the formats on a line and
writes the line out to the screen, The names
are processed alphabetically, and as each
stored format name is processed, a new one is
read in, Stored fcrmats that are also
present in the format tables are only shown
once. %When the screen is filled, or when the
1ist* of names is exhausted, the screen is
displayed tc the user, the paging status data
is posted and the program is terminated.

DBSTRTP

At this entry point the Program
re-initializes itself to the status saved
befcre the last termination. If more data
remains to be displaved, the pregram branches

PAGE 523 45 (,

to the ©proper routine to produce the next
display screen. Yf nc more data remains, a
diagnostic message is written to the user and
the program is terminated,

F. CODING SPECIFICATIONS

1.

Source languagde

The module is writter using the 1IBM PL/I
language.

Suggestions and Technigues

Bot Applicable

A YO Y T

557

DBSTRT

SYSOUT

Figure 1. I/0 Block Diagram : : -

: GSTRAT

LNITIALIZE

4

GET
DATA LINE

INITTALIZE

WRITE
MESSAGE -

5%

PUT
DATA LINE

INITIALIZE

SET
ERROR
SWITCH

A DSTRAT

\

- INITIALTZE

L

DELETE
REGION

|

t

Figure 2A. Top Level Flowchart

PAGE 528557

TOFIC H.3 - STRATEGY ASSEMBLER ROUTINES

A.

C.

D.

MODULE WAMNE

Frogram=-ID - NTSTRAT
Module~ID - TSTRAT

ANALYST

Connie D, Becker
Neoterics, Inc,

MODULE FONCTION
These routines act as the assembler service routines
for the strategy 1library. They permit +the retrieval,
nodification and storing of the saved strategies and
formats,
DATA EEQUIREMENTS
1. I/0 Elock Diagram
See Figure 1
2. Input Data Sets
a. Parameter Cards
Not Applicable
k. Punched Card Inrut FPiles
Yot Applicable
C, Input Files

Strategy data set - 1is wused for input for
hoth stored strategies and stored formats.

d. On-line Terminal Entries
Not 2Applicable
3. Qntput Data Sets
A Qutput Files

Strategy Data Set-is used for ountput for both
stcred strategies and stored forpats.

b. On-1ine Terminal Disyplays

E.

Ca

d.

PAGE $29-4 /4

Not Applicable

Formatted Print Outs

Not Applicable

Punched Card Output Files

Hot Applicable

Reference Tahles

USERTARB~is used to obtain the WASIS-ID,

PROCESSING REQUIREMENTS

1.

2,

Top Level Flowchart

See Figure 2

Narrative

A

TSCELRG

At this entry point the program initializes
itself to delete a strategy or format region.
It cpens the strateqgy data set, if necessary,
and extracts thke region name passed by the
caller. The prograr then proceeds to delete
+the region, c¢ne line at a time, If any
errors are encountered, the region name |is
set to null. The program then returns to the
caller,

TSGETREG

At this entry point the program initializes
itself to get a 1line from a strategy or
format region., It extracts the parameter
passed by the user, and if a null line nuamber
is passed, sets up to read the first line of
the reqion. TIf the high order bit of the
iine numher is off, it sets up to read the
line following +that indicated by the 1ine
number, Otherwise, it rpositions the file ¢to
the line pnumber passed,

The program then attempts to read the line
requested. If successful, it posts the line
nunker, posts the data (with trailing blanks
renoved) and returns to the caller.

If an error occurs, the program sets the

d.

€

PAGE 538 47,/

region name to null tefore returning,
Likewise, if an end-cf-reqion occurs, the
line nunter is set to nall hefore
returning,.

TSPUTRG

At this entry point the prcgrap initializes
itself to put a line to a strategy or format
region, It opens the strategy data set, if
necessary, and extracts the reqion, 1line
nurber and data parameters passed by the
caller. TIf the lipe number is null, it sets
up to add the line at the end of the region,
In any case, it rpositions the file to the
proper region and live within the reqgion,
The program then attempts to write out the
nevw line from the data passed by the caller.
If successful the pregram simply returns to
the caller, 1If an error occurs, the program
sets the reqgion nane to null before
returning,

TSCHGRG

At this entry point the program initializes
itself to chande the name of a strateqy oFr
format region, It copens the strategy data
set if necessary, and extracts +the old and
nev region nares passed by the caller.

The program firsts attempts to delete any
existing region with the new region name, If
an error occurs, other than region unknown,
the vprogram terminates and sets the old
region, reads a line, positions itself to the
nes Tre2gion and writes out the live, This
process is repeated wuntil all of the data
lines have been copied, If any errors occur,
the new region is deleted, the o0l1d region
name is set to null and the program returns
to the caller, If no errors have occurred,
the program deletes the o031d region and
returns to the caller.

TSGETSN

At this entry point, the programs initializes
itself +to get a strategy region nanme., It
opens the strategy data set, if necessary,
and extracts the strateqy name passed by the
caller, If +the mname 1is null, the progran
sets up toc get the first strategy name,

PAGE B3t 41

Otherwise, it sets up to get the strategy
name following that passed by the caller,

The program then attempts to read a line from
the strategqy data set. If successful, it
extracts the region name and passes that back
to the caller., 1If an.error occers, or if anp
end-of-file is sensed, the region name is set
to null and the precgram returns +to the
caller.

f, TSGETFN

At this entry roint, the program initializes
itself to get a format region name., It opens
the strategy data set, if necessary, and
extracts the reqiorn name passed by the
caller, If +the region pame 4is null, the
program sets up to get the f£irst format nanme,
Othervise, it sets up to get the format name
folloving that passed bty the caller,

The prograr then attempts to read a line from
both data sets, IYf an error occurs, or if
both files indicate end-of-file, the region
name is set tc null and the program returns
to the caller, Otherwvise, the program
cempares the region names of the two lines,
It posts the name, lowest in value, in the
regicn name¢ and returns to- the caller,

F. CODING SPECIFICATION
1. Scurce language

The module is written wusing the 0S 360 Assembler
language

2. Suggestions and techniques

Any output operation +to the strategy data set
results in the tewmporary closing of the data set,
to ensure data set integrity in the event of a
system crash,

PAGE 535
504

TOHC H.4 - USER VERE TABLE

i,

B,

Coe

D.

HODULE NAME

Program-ID - NDBUSER
Module-ID - DBUSER

ANALYST

John A, Lozanp
Neoterics, Inc,

HODYLE PUNCTION
This routine uses the currently defined verb table to
locate any user defined commands for that +table, If
any bave teen defined, they are appended +to the list
already existing in the table,
DATA REQUIREMENTS
T, I/0 Bleock Diagram
Not Applicable
2. Input Data Sets
a. Parameter Cards
Not Apnlicable
ba Punched Card Input FPiles
Not Applicable
Ce Input Files
Not Applicable
d. On-~line Terwinal Entries
Net Applicable
3. Output Lata Sets
a. Output Files
¥ot Applicable
b. On-line Terminal Disylays

Not Applicable

PAGE 536445

Ca Yormatted Print Outs
Not Applicable

d. Punched Card Cutput Files

4, Reference Tables

VERETAR
E. . PROCESSING REQUIREMENTS

1. Top Level Plowchart
See Figqure 1

2. Narrative
Upon entry, +the program tests for the presence of
a VERBTAB, 1f none is found, it exits
immediately., Otherwise, the program extracts the
default symbel from the table and gets the default
value for that symhol.
The program then begins aralyzing the data, until
none repains, at which time it returns to the
caller. The data is expected in corwmand-name and
entry pcint pairs, Each pair is extracted from
the data, analyzed for valid construction and then
posted to the next available slot in the table.
If there are any syntax errors, invalid names, or
if the table is filled, the program will return to
the caller, bypassing the remaining entries,

F. CODING SPECIFICATIONS
1. . Scurce language

The wmodule is written using the IRM PL/X
languaqe.

2. Suggestions and Techniques

Mot Applicable

TOHC H,5 « USER PEOFILE ROUTINE

a.

B.

C.

D.

BODOLE NANME

Program-ID - NDBPRO
fodule~ID - CEERD

ANALYST

John A, Lozan
Neoterics, Inc.

HODULE FUNCTICHN

This module performs the processing necessary
implenentation of the PROFILE, SYNRONYE,
SYNONYMS and DEFAULTS cormands,

DATA REQUIREMENTS

1.

2.

3.

170 Block Diagram

See Pigure 1

Input Data Sets

. Parameter Cards
¥ot Applicable

be Punched Card Input Files
Not Applicable

C. Input Files
Not Applicable

da On-line Terminal Entries

The prograr rrompts the user
parameters requiresd by the -
commands.

Cutput Lata Sets
a. Cutput Files
Not Applicable

b. On-line Terminal Displays

PAGE 638 54(

for the
DEFADLT,

for the
variocus

PAGE é&&ﬂ’?

The displavy cf the user's defaults and
sSynonyms produce formatted terminal
displays.

Ca Formatted Print Onts
Not Applicahle

d. Punched Card Output Files
Not Applicadble

b, Reference Tables

USERTAE-the prograr extracts the user's NASIS-id
from the user data tabhle,

PROCESSING REQUIREMENTS
1. Top Level Flowchart
See Fiqure 2
2e Narrative
a. DBPRO

At this entry point the progras analyzes the
parameter value to determine the command to
be processed; the appropriate label bhelow is
branched tc for further processing,

b. DBPROF (PROFILE)

At this label the program simply calls TSPROF
to wMWrite out a copy of the user's current
profile, If any errors are detected, an
appropriate diagnostic message is written to
the user the progran then terminates.

Ty DBDE¥ (DEFADLT)

At this label the program initializes itself
to process defaunlts, It repetitively
pronpts for data and calls TSPDEF to process
the request, If any errors are encountered,
an arpropriate diagnestic message is written
to the nser., The program then terminates,

d. DBESYN {(SYNONYH)

At this label the program initializes itself
to process synonves, It repetitively

L=

P2GE S4947 ¢

trempts for data and calls TSPSYN to process
the request, If any errors are detected, an
appropriate diagnostic message is written to
the user, The program then terminates.

DECEFS {(DEFAULIS)

At this label the program initializes itself
to display the data values corresponding to a
set of default symbols. The program also
initializes the =screen and paging control
data., The program then attempts to read in
the list of syrbols, If no data was entered,
the program sets up to display al)l of the
default values, Otherwise it saves the list
of symnbols entered,

The program then repetitively calls TSGDEF
for each entry im the 1list, to obtain its
default value, The values are formatted and
posted to the screen, Rhen the screen is
filled, or when the list of names 1is
exhausted, the program displays the screen to
the user, posts the paging status data and
terminates,

DESYNS {SYNO¥YVES)

At this 1label the prograpm initializes itself
to display the time values for a set of
synonym terms, The pregram alsc idinitializes
the screen and the paging control data. The
program then attempts to read in the list of
synbols,

If no data was entered, the program sets up
to digplay all of the synonym values,
Otherwise, it saves the 1list of symbols
entered,

The program then repetitively calls TSGSYW
for each entry in the list, to obtain its
time value. The values are forematted and
posted to the screen, ¥hen the screen is
filled, or ghen the list of names is
exhausted, the program displays the screen to
the user, posts the paging status data and
terminates,

DBPROPG (PAGE)

At this lakel +the vprograr re-initializes
itself using the raging status data. If

PAGE 54+ 4549

data rewmains, the prcgram branches to the
proper routine to preduce the next screen
image. Dthervise, the progran writes a
diagnostic message and terminates,

F. CODING SPECIFICATIONS

1. Source lLanguage

The program is written using the IBHM 360 PL/I
language,

2. Suggestions and Techniques

Not Applicable

DBPRO .

Figure 1. I/0 Block Diagram

570

L

i INITIALIZE

GET

I PARAMETERS

WRITE
ouT _ INITIALIZE
PROFILE
GET
PARAMETERS
WRITE PQST
MESSAGE DEFAULT

. POST

1 _ Synonym

Figure 2Z. Top Level Flowchart - DBPRD 7

DEFAULTS
?

INITIALIZE | INITIALIZE

l !

PARAMETERS

GET
DEFAULT
VALUE

) Figure 2B. Top Level Flowchart - DBPRO - . .-

5 |
PAGE 5&5-*5’73

TOPIC H.,6 - USER PROFILE ASSEMBLER RCUTINWNES

R MODULE NAME

Frogram=ID - NTSPRO
Module-ID - TSPRO

8. ANALYST

Connie D. BRecker
Neoterics, Inc.

C. MODULE FTUNCTION
These routines act as the asseabler service routines
for the user's profile. They permit the retrieval,
modification and storing of all synonym and default
values,
D. DATA REQUIREMENTS
1. I/0 Elock Diagranm
See Figyre 1
2 Input Data Sets
a, Parameter Cards
Not Applicatkle
b, Punched Card Input Files
Mot Applicable

c. Input Files

PRCFILE LIERARY is 1ased to initially obtain
a rrofile fcor the user.

d. On-line Terminal Entries
Not Applicakble
3. Output Data Sets
a. Qutput Files
PROFILE LIBRARY - the user's profile will bhe

written out as a menter of this library with
the name of his NASIS-ID,

E.

Ce

£

PAGE 546 5774/

On-line Terminal Distlays

Not Bpplicable

Forratted Print Outs

Net Applicable

Panched Card Output Files

Not RApplicable

Return Cods

A return code will bhe posted with a valne

whose meaning is dependent upon the entry
point called,

Reference Tables

USERTAB-the prograr extracts the auser's WASIS-ID
from the user data table,

FROCESSING REQUIREMENTS

1.

2.

Top Level Flowchart

See Figure 2

Harrative

de

b,

TSPROF

At this entry point the program initializes
iteelf tc write c¢ut the current user's
profile. It first allocates a new list and
mcves over all of the synonym entries not
marked for deletionm, It next moves over all
of the default entries and re-orders the
default data values. The program then
attempts to leccate an o¢ld profile for this
user in the profile litrarv. Yf one is
found, it 1is deleted. The ©program then
writes out the new profile and gives it the
nare of the user's NASIS-ID. If any errors
are encountered the error ceode is posted.
The prograe then returns to the caller.

TSGSYHN
At this entry point the program initializes

itself to retrieve a synonym value. It first
seavrches the synonym entries until it locates

the logical locaticn for the synbol
specified. If the entry 1is present and has
not bheen deleted, or if the entry located is
the syebol vhcse abbreviation was specified,
the synonym value is extracted and passed
back to the caller, If the entry located
did not correspond to the symbol specified, a
null value is returned to the caller.

TSGDEF

At this entry point the program initializes
itself to retrieve a default value, It first
searches the default entries until it locates
the logical locaticn for the symbol
specified, If the entry is present, the data
value offset is located and the data value is
moved into the caller's area. The program
then returns tc the caller.

TSPSYN

At this entry point the program initializes
itself to post a syncnym value, It first
checks to see if this is a delete request,
If not, the precgram builds the new entry. It
then searches the synonyr entries until it
locates the leogical 1ccation for the symbol
specified, If the synbol is +to bhe deleated
and it is nct present, the program returns
inmediately. Otherwise, it performs the
deletion by copying the entries prior to the
deleted entry and those follovwing the deleted
entry, to a new profile similarly.
Similarly, adds are processed by inserting
the added entry between the two list
segments. Modifications, if allowed, are
performed in gplace. If a new profile was
created, the o¢ld 1ist is deleted, If the
request vas not for a deletion, the program
computes the minimum akbreviation length, If
it was a deletion, all synonyms for the entry
deleted are flagged as deleted. The progranm
then returms tc¢ the caller,

TSPLEF

At this entry point the program initializes
itself to post a default value. It first
checks to see if this is a delete request.
If not, the proaram builds the new entry.
The program does a getwmain for 1500 bytes.
If the requested regicn is greater than 1500,

PAGE 547 5745 |

PAGE 5‘“‘8’5"’7&

control is passed to TSPRCF where the content
profile 1is reorganized and entries flagged
for deleticn are deleted and the member is
condensed, If the area ncy required is still
greater than 1500, an error code of 10 is
passed back to DBPRO, otherwise processing is
continued, It then searches the default
entries until it locates the logical location
for the symbol specified. If the symbol is
to be deleted and it is not vpresent, the
preqras returns ianediately, Cthervise, it
performs the deletion by copying the entries
preceding the cne +toc be deleted and those
following it to a new profile, $imilarly,
adds are processed by inserting the added
entry between the +two list segments and
appending the dJdata value at the end of the
profile. Modifications are performed in
place, if possible, if not, the data valune is
sioply added to the end of the profile, The
prcgram then returns tc the caller,

F. CODING SPECIFICATIONS

1.

Source langquadqge

The module is written using the 05 360 Assembler
language.,

Suggestions and Technigues
The entry searching routine should be coded as a

binary search and the 1list nmoving routine should
be coded as efficiently as possible,

TSPRO

[

5] PROFILE {
'} LIBRARY |

5777

he.

TLE 1%y F B
TEEMINAL
DBECMND
MITSUP

DISPLAY |

5719

@———a»-@

(TSWLCM ’

FORM
- WELCOME
MESSAGE

‘ TSDATE ’

FORM DATE
AND TIME

MESSAGE

ISSUE
MESSAGE

{ TSBACK

MESSAGE
INSERT SET
TO 'BACK'

(- RETURN)

' { TSWAIT)

MESSAGE
INSERT SET
0 "WAIT'

{ T8DBUG }

FORM INVALID
COMMAND
MESSAGE

Figure 2.

B>

. FORM 'NON-
SUPPORTED'
MESSAGE

WITH INSERT

" TSUSERS

TSNUSER

TSHELP

0

Top :evel Flowchart

579

TSKA

| FORM INVALID
. NON-MTT
 COMMAND

"MESSAGE

PROMPT FOR
PABAMETERS
IF NEEDED

CALL,
ASMCMND

PAGE 552 4 YO

TOH C H.,7 - IMNECIATE CONMMANDS, INTERFACE MODULE

A.

C.

MODOLE WNAME:

Frogram-ID: NDBCMWD

Hodule~-TD: DRBCMND

Entry Points+ TSHLCH, "SPACK, TSDBUG, TSKA, TSKB,
TSUSERS, TSHNUSER, TSDATE, TSWAIT,
TSHELP, TSHSG

ANALYST

William H, Petrarca
Neoterics, Inc,

MODULE FUNCTION
This module contains the PL/I entry pocints for ten of
the immediate commands. In addition, the TSWLCH
entry writes the '"NASIS WELCOMES YOU' message to the
user terminal at LOGON, The irmmediate commands KA,
KB, USERS, KUSERS, HELP, and HESSAGE are set up in
this module and then processed by the mcnitor {MTTSUP)
via a call to ASHCHND. The immediate commands BACK,
$DEBUG, DATETIME, and WAIT are prccessed by this module
only,
DATA REQUIREMENTS
1. I/0 BLCCK LIAGRAM
See Figure 1.
2. Input Tata Sets
3. Parameter Cards
Hot Applicable
b, Punched Card Input Files ¢
Vot Applicable
c. Input Files

Not Applicable

| ——
Vo
{
'
i
1
t

d. On-Line Terminal Snfries 4 LAk

i - et

The. program prqmptsiﬁerwthe parameters of

the; various applicahle immediate commands,
AT . v g

A rr———

j, Output Data Sets

A

Ce

d.

PAGE -55-3-5—3'/

Output Files
Not Applicable
On-Lipe Terminal Lisplays

The program issues varicus informative and
diagnestic messages to the usert's terminal.

Formatted Print-Outs
¥ot Applicable
Punched Card Output Files

Not Applicable

4, Reference Tables

The progranm references the USERTAE table,

PROCESSING EEQUIREMENTS

1. Top level Flowchart

See Figure 2.

2. Narrative

A

b,

Ce

Monitor-supported immediate commands

The immediate commands serviced by the entry
points TSKA, TSKB, TSUSERS, TSNUSER, TSHELPE,
TSMSG are processed by the monitor via a
call tc ASMCMND., However, the mode of the
current user, MTT or non-MTT, is checked =o
that if a non-MIT user tries to use a MIT
command he is given a diagnostic., A return
is made to the calling progranm.

Unsupported immediate compands

The entry points TSBACK, TS®AIT, and TSDBUG
are diagnosed as unsuprcrted compands,

TSHLCH
This entry point is called by DEMTT when a
user logs on, This entry point provides the

user with the welcome message and the date,

TSDATE

PAGE $544 YL

This entry point performs the DATETIME function
within this module. The LATE function is used
from PL/Y and Zeller®s ccngruence is used to
determine the day of the week. The message is
formed and sent tc the user's terminal, 2
return is then made to the calling progranm.

F. CODING SPECIFICATIONS

1,

2,

Source lLanguage

This program is written in PL/T ({F) using the TSPL/I
preprocessor, _

Suggestions and Technigues

¥ot Applicable

