
AEROPHYSICS RESEARCH CORPORATION JTN-01
TECHNICAL NOTE

ILE
Y

DIALOG:
AN EXECUTIVE COMPUTER PROGRAM
FOR LINKING INDEPENDENT PROGRAMS

by C. R. Glatt, D. S. Hague and D. A. Watson

Prepared by

AEROPHYSICS RESEARCH CORPORATION

Houston, Texas 77058

for Johnson Space Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SEPTEMBER 1973

PREFACE

This report was prepared under Contract NAS 9-12829, "An
Optimal Design Integration of Reusable Launch Vehicles
(ODIN/RLV) Computer Program Converted to the Manned Space-
craft Center's UNIVAC 1108 Computer System." The study
was carried out in the period from June, 1972, to June,
1973. The study was funded by the National Aeronautics
and Space Administration, Johnson Space Center, and
sponsored by the Engineering Analysis Division, Flight
Performance Section. Mr. Robert Abel served as technical
monitor for the study.

ABSTRACT

A very large scale computer programming procedure called
the DIALOG Executive System has been developed for the
Univac 1100 series computers. The executive computer
program, DIALOG, controls the sequence of execution and
data management function for a library of independent
computer programs. Communication of common information
is accomplished by DIALOG through a dynamically constructed
and maintained data base of common information.

The unique feature of the DIALOG executive system is the
manner in which computer programs are linked. Each program
maintains its individual identity and as such is unaware
of its contribution to the large scale program. This
feature makes any computer program a candidate for use
with the DIALOG executive system. This manuscript describes
the installation and use of the DIALOG Executive System at
Johnson Space Center. Installation on other Univac series
computers would be similar.

TABLE OF CONTENTS

Page

1. 0 SUMMARY 1

2 . 0 INTRODUCTION 3

3 . 0 DIALOG FUNCTIONS 7
3.1 Computer Control Card Assembly 7

3.1.1 Execution of an Applications
Program 7

3.1.2 Creation of a Control Card
Data Base (CCDATA) 10

3.1.3 Execution of a Sequence of
Applications Programs through
Control Card Linkage 12

3.1.4 Repetition of Control Card
Sequences 13

3 . 2 Data Management Function 18
3.2.1 Data Base Information Transfer

System 21
3.2.2 Creation of a Design Data Base....22

3.2.2.1 Adding Information to
the Design Data Base 24

3.2.2.2 Combining Data Base
Information 26

3.2.2.3 Defining Variables and
Reserving Space in the
Data Base 29

3.2.2.4 Identification of Applica-
tions Program Data 29

3.2.3 Communicating Information from the
Data Base to the Applications
Programs 31
3.2.3.1 Modifying Program Input

to Communicate with the
Data Base 31

3.2.3.2 Data Base Communication
through Input 31

3.2.3.3 Combining Data Base
Information in the
Modified Input Stream....33

3.2.4 Communicating Information from the
Applications Programs to the
Data Base 35

4.0 INSTALLATION OF THE DIALOG EXECUTIVE SYSTEM
ON A TYPICAL 1100 SERIES COMPUTER 37
4.1 Compilation and Storage of the

DIALOG Executive Program 38
4.1.1 Data Base Parameters 39

11

Page

4.1.2 Deck Setup for DIALOG Storage 41
4.2 Compilation and Storage of a Library

of Programs 41
4.2.1 Program Modification to Provide

Data Base Information 43
4.2.1.1 Creating a Special Out-

put File 43
4.2.1.2 Format of the Special

Output File 44
4.2.1.3 Use of the NAMELIST

Feature in FORTRAN 45
4.2.2 Storage of an Absolute Element

Program 45
4.3 Assembly of the Control Card Data Base...47

4.3.1 Construction of a Control Card
Sequence for a Data Base Entry....48

-4.4 Storage of the DIALOG Executive System...51

5 . 0 USE OF THE DIALOG EXECUTIVE SYSTEM 54
5.1 Control Directives 56

5.1.1 INITAL Directive 59
5.1.2 RESTART Directive 59
5.1.3 UPDATE Directive 60
5.1.4 DESIGN Directive 62
5.1.5 EXECUTE Directive 62
5.1.6 LOOP TO Directive 63
5.1.7 IF Directive 63
5.1.8 PRINT Directive 63
5.1.9 END Directive 64

5. 2 Communication Commands 64
5.2.1 The ADD Command 65

5.2.1.1 Adding Fixed Element
Information 67

5.2.1.2 Adding Multiple Data
Elements 67

5.2.1.3 Transferring Data
Elements 70

5.2.1.4 Combining Data Elements
with Constants 70

5.2.1.5 Combining Data Elements
with other Data Elements
and Constants 71

5.2.1.6 Adding Arrays 72
5.2.1.7 Adding Constant Arrays...72
5.2.1.8 Adding Mixed Arrays 73
5.2.1.9 Transferring Array

Elements 73

111

Page

5.2.1.10 Combining Array
Elements 74

5.2.2 The DEFINE Command 74
5.2.3 The Comment Command 75
5.2.4 Replacement Command 77

5.2.4.1 Simple Replacement of
Data Base Names 79

5.2.4.2 Simple Replacement of
Data Base Combinations... 83

5.2.4.3 Array Replacement by
Name 84

5.2.4.4 Array Replacement of Data
Base Combinations 85

5.3 Standard Utility Procedures 85
5.3.1 COMPL1/MYPG1: Compile a FORTRAN

Program/Execute the Compiled
Program 86

5.3.2 REPORT: Generates Data Base
Status Report 86

5.3.3 ENDODN: To Save a Design Data
Base for Future Use 89

5.4 Special Options in DIALOG Executive
Program 89

6 . 0 APPLICATIONS 92
6.1 Orbiter Landing Skin Temperature Study...92
6.2 Shuttle Orbiter Wing Design Study 92

7.0 CONCLUSIONS 100

8 . 0 REFERENCES 102

APPENDIX A CONTROL DIRECTIVE SUMMARY 103

APPENDIX B COMMUNICATION COMMAND SUMMARY 104

APPENDIX C EXCLUDED NAMES FOR DATA BASE
VARIABLES 106

IV

1.0 SUMMARY

An executive computing system called DIALOG has been developed
for linking independent applications computer programs to form
an interdependent system of programs for synthesizing engineer-
ing processes.

All elements of the program intercommunication are directly
controlled by DIALOG. The significant advantage to the system
is the rapid response to everchanging synthesis requirements.
The analyst has the choice of model complexity through replace-
ment or addition of functional program elements. The developer
of new program elements is unconstrained by the requirements
of the executive system. New programs may be rapidly incorporated
into the program library.

The DIALOG executive system represents a significant departure
from the usual means of forming synthesis programs as
illustrated in Figure 1-1. Todays typical synthesis program
is a collection of analysis programs merged together into a
single computer program. The data management function is
programmed into the synthesis program. DIALOG controls the
sequence of execution of the independent program elements and
performs the data management function by maintaining a data
base of information. The data base is the common information
link among the program elements. The basic elements of the
DIALOG executive system are:

1. A library of independent applications programs.

2. A data base of control card sequences for the
execution of the independent programs.

3. A language for controlling the execution of a
sequence of independent programs by simple commands.

4. A dynamically constructed data base containing all
interprogram data in an unstructured name oriented
format. These data can be randomly selected by name
at any point in the simulation.

5. A language for automatically retrieving data base
information as input to any of the applications pro-
grams. An advanced information access and retrieval
system is included as an integral part of the DIALOG
executive system.

6. A simple technique for allowing any program in the
synthesis to update the date base. The technique
does not influence the stand alone operation of the
program.

CD
UJ

CO

UJ C/O
X

CO
H—
Q_
UJ

O
(_>

C-P

f> _.!
<?_ CO
c_> uJ

ce:
oo

CD

§
Q_

c_J)
oo
UJ
CD

CD

CO
1 — 2H

UJ •— <
Q 1 — CO

i i 1 (_> <=E
Q_ _ Ci
UJ — 1 CD
O Q- O
^ o_ c£

\

V

— \

^

^

\

V

V.

\ \

\\ — I

2.0 INTRODUCTION

The design of an aerospace vehicle demands the involvement
of specialists from all engineering disciplines. Many
iterations are usually required before a suitable vehicle
design emerges. The design iterations usually require from
one to three months depending on the level of detail employed.
Each discipline involved in the design process generally is
constrained by the requirements of other disciplines, and
much laborious data communication is required at each step.
The interface among disciplines is often ill-defined leading
to untimely or inaccurate information transfer. Under these
circumstances, decisions affecting the usefulness of the
end product can be based on poor or unreliable information.

The above factors have lead to increased use of the high
speed digital computer to expedite the design process and
improve the quality of the design information. Automation
of the individual disciplines has played an increasing role
in the design process for more than a decade. Structural
analysis and system performance have led the way in large
scale computer applications, although nearly every aspect
of the design process has been automated to some degree.
More recently, the merging of the technologies into a single
preliminary design tool has been attempted. One successful
preliminary design tool is exemplified by References 1 and
2. Here a complete synthesis of the design and mission
analysis is contained in a single computer program.

The confidence gained in early simulation attempts has led
to the development of more detailed and complex modules.
References 3 through 8 are examples of recently developed
simulation tools. However, most modern day integrated
design programs tend to suffer from one or more of the
following deficiencies:

a. Lack of depth in the analysis techniques.

b. Insufficient or inflexible data intercommunication.

c. Poor response time to rapidly changing design
requirements.

d. Excessive computer core requirements.

By-and-large the technical depth is available in independent
technology programs. The pattern of development of these
programs has been the generalized multiple option approach
suitable to the analysis of many classes of vehicles, each

class being represented by input data. The problem arises
in combining the technology programs into a design synthesis
program. Computer core limitations require that resulting
synthesis programs be generally more limited in scope than
the individual program. As a result, the synthesis programs
tend to become obsolete very quickly as the design process
evolves. Very often the obsolescence occurs before any
effective use can be made of the synthesis program.

The deficiencies described above have led to the development
of a new design synthesis procedure called ODIN (Optimal
Design Integration) described in Reference 9. The ODIN
procedure shown schemetically in Figure 2-1 is a very large
scale synthesis procedure which allows the selective use of
existing computer programs as elements of a larger more
comprehensive design simulation. Reference 9 exemplifies
the technology modules which have been used with the ODIN
procedure. All the depth of analysis in each technological
area is maintained and the computer core requirement is no
larger than the largest program element selected.

The linking of the independent program elements is controlled
by the executive computer program, DIALOG which also controls
the communication of information among the independent pro-
gram elements. An input language to the DIALOG executive
system provides the user with the ability to formulate the
design problem at the task level in much the same manner as
is currently employed in the design process. As much or as
little of the design process may be automated as suites the
particular application. The design staff directly controls
the specific information being communicated from program-to-
program and from the design simulation to the design staff.

Since the system uses existing checked out computer codes
as building blocks in performing the design tasks, no program
development is usually required. The program elements are
usually in common use throughout the design staff and there-
fore readily usable in the design simulation. No more effort
is required to establish an automated design sequence than
that required to establish a single design cycle by ordinary
means. The same computer codes are generally used in either
case. Once established the automated procedure can be used
many times for design perturbations, and can be quickly
changed to suit changing design requirements. The designer
never relinguishes his option to perform any task by some
alternate means including hand calculation.

The current documentation describes the control and communi-
cation language of the DIALOG executive system. It will
become apparent that the DIALOG executive system is not

ce:

CD
Oi
Q_

CD

LiJ
rr:
I—
CD

t_D
CD

CD

CD

CQ

CD

I
OJ

UJ

CD

specifically tied to design simulation. Although originally
developed to implement the ODIN procedure, the DIALOG
executive system is generally applicable to any engineering
process. Little reference is made to design simulation in
this report. The library programs which DIALOG controls are
referred to as applications programs to avoid the implication
that only technology oriented tasks may be employed.

Indeed there are many "utility programs" used in ODIN which
perform non-engineering tasks but are quite useful in any
process.

Section 3 contains a general description of the DIALOG
executive functions. Much of the programming detail has
been ommitted providing an overview of the system capability.
Section 4 is a detailed description of the installation of
the DIALOG executive system at the NASA Johnson Space Center
Computer Complex. The nature of the DIALOG executive system
requires a close relationship with the operating system on
which it is installed. Although representative of the
installation on other Univac systems, the JSC system
installation is presented as an example. Section 5 is
devoted to the use of the DIALOG languages developed for
the purpose of linking independent programs and communicat-
ing information among them.

3.0 DIALOG FUNCTIONS

Usually the submission of a computational sequence to
the digital computer involves the execution of a single
computer program with possible repetitive evaluation of
successive data cases. When using the DIALOG executive
system, submission of a computation may involve the
sequential execution of many programs to obtain a com-
plete analysis. For example, the repetitive execution
of program sequences will be required for parametric
studies or optimization problems. The use of the DIALOG
executive system also affords the analyst the opportunity
to conveniently communicate data from stratified sources
among the programs in the execution sequence. A dis-
cussion of these two basic functions is presented in
the following paragraphs.

3.1 Computer Control Card Assembly

On a digital computer the execution of a single program
is governed by a set of control cards which provides
instructions to the computer system for compiling and/
or loading the specified program. The control cards
are peculiar to each computer system and installation.
The control cards rarely employ user oriented format.
For example, figure 3-1 presents typical control cards
for an elementary FORTRAN compilation and execution of
the same program on a Univac 1110, CDC 6000 series
computer, and an IBM 360 series computer. Further, con-
trol cards on any computer of a given series or manu-
facturer can vary from installation to installation.
Figure 3-2 shows the control cards to retrieve from
storage and execute a machine language program at two
different installations. Though each installation uses
an 1100 series computer, the differences in compilers,
loaders and peripheral hardware result in entirely
different control cards to perform the same function.

3.1.1 Execution of an Applications Program. - In
actuality, to retrieve and execute an application pro-
gram, several independent programs must be executed.
Collectively the control cards required to execute an
applications program may be referred to by name such as
PGMA or PGMB. These independent program executions which
we call "control cards" are all part of the computer
operating system. System programs of the type called

CDC 6000 SERIES COMPUTING SYSTEM

- RFL,60000,
FTN,OPT=0,
LGO,
7-8-9

SOURCE DECK
7-8-9

DATA DECK
6-7-8-9

IBM 360/67 SERIES COMPUTING SYSTEM

//EXEC FORTGCG
//FORT,SYS IN DD *

SOURCE DECK
/*

//GO,SYS IN DD *
.DATA DECK

/*

UN IVAC 1108 SERIES COMPUTING SYSTEM

a FR5 MAIN
SOURCE DECK

3 XQT MAIN
DATA DECK

SFIN

FIGURE 3-1 TYPICAL CONTROL CARDS TO COMPILE AND EXECITF
A FORTRAN PROGRAM

UNIVAC 1108 EXEC II

3 ASG A = 12012 (PCF TAPE)
3 XQT CUR

IN A
TRI A

a XQT PGMA

j DATA DECK ?

a FIN

UNIVAC 1110 EXEC VIII

aASG,A PGMA (PROGRAM FILE)
aXQT PGMA

aFIN

< DATA DECK 1

FIGURE 3-2 EXAMPLE CONTROL CARDS TO RETRIEVE AND
EXECUTE A MACHINE LANGUAGE PROGRAM AT
TWO UNIVAC 1100 SERIES COMPUTER
INSTALLATIONS,

9

by control cards bear a similar relationship to the com-
puter operating system as do independent applications
programs PGMA and PGMB to the DIALOG executive system,
figure 3-3. This analyogy may be formalized as follows:

"The operating system employs independent system
utility programs to retrieve, compile and execute
a given applications program. The DIALOG execu-
tive system employs control card sets to synthesize
an engineering process."

DIALOG contains a higher order programming language which
carries out the analysis function by linking control
card sets rather than carrying out the individual control
card functions.

3.1.2 Creation of a Control Card Data Base (CCDATA). -
The nature of the computer operating systems with regard
to the execution of applications programs via a sequence
of control cards has led to the development of the con-
trol card data base concept. The data base contains all
the control card sequences required to retrieve and
execute a library of applications programs. Collectively,
any sequence of control cards necessary to execute a
given applications program is referred to by a name.

EXECUTE PGMA

The name, PGMA, is assigned when the control card sequence
is stored in CCDATA. In the remainder of this section
details of the control cards will be omitted. The con-
trol card sequences will be referred to by the name under
which it is stored. The command to execute the control
card sequence:

EXECUTE PGMA

will be referred to as a control directive (i.e. the
EXECUTE directive). Other control directives will be
described, each performing a "control function" in the
execution sequence. Collectively the control direct-
ives form the DIALOG control directive language.

The control directive language is input to the DIALOG
executive program. DIALOG processes all input to all
programs and performs certain functions based upon the
control directives encountered. To distinguish DIALOG

10

OPERATING

SYSTEM

3 3ASG [j
irt*KEKKaea*x*as%

COMPUTER OPERATING SYSTEM

DIALOG

EXECUTIVE

\ PROGRAM

gSfcazascjj

|

PGMC f| PGMD |j

DIALOG EXECUTIVE SYSTEM

FIGURE 3-3 ANALOGY BETWEEN OPERATING SYSTEM AND DIALOG
EXECUTIVE SYSTEM

11

input from the input of applications programs, the con-
trol directives must be delimited as follows:

'EXECUTE PGMA1

The (') is used here to represent a 2-8 punch.

The creation of the control card data base is a function
of DIALOG. It reads from input cards the control card
sequences to retrieve and execute programs from the lib-
rary. The control directive which creates the control
card data base is:

'CREATE CCDATA1

Following this directive, the control card sequence such
as those illustrated in figure 3-1 and 3-2 are entered
into CCDATA by name:

'PGMA =

control
card
sequence

i

Any number of these control card sequences may be entered
into CCDATA, each representing the retrieval and execu-
tion of an applications program. Once established, the
control card data base can be freely accessed by the
EXECUTE control directive without regard to the actual
control card sequence involved. Usually the control
card sequences do not change. However, the DIALOG con-
trol directive language permits the complete replacement
of existing control cards sequences or the modification
of individual cards. The UPDATE control directive is
used for this purpose. UPDATE is described in detail
in Section 5.

3.1.3 Execution of a Sequence of Applications Programs
through Control Card Linkage. - Now consider the problem
of sequential execution of more than one application
program using the DIALOG execution system. Assume the
following three control directives:

'EXECUTE PGMA '

'EXECUTE PGMB '

'EXECUTE PGMC '

12

The function of DIALOG is simply to retrieve the control
cards sequences for PGMA, PGMB and PGMC from the control
card data base, CCDATA and queue them sequentially on
a file called CONTROL. The CONTROL file is then
interrogated by the operating system which performs the
various control card functions. Included in these con-
trol card functions are the executions of the desired
applications programs. Figure 3-4 illustrates the
relationship between the DIALOG executive and the opera-
ting system. Progressing from left to right in figure
3-4, the control directives to execute control card
sequences are read by DIALOG, which "builds" the control
card sequences from information stored in the control
card data base and passes the control card sequences to
the operating system.

The physical link among the control card sequences of
the various applications programs and DIALOG is an opera-
ting system utility called the ADD utility on the Univac
1110. ADD is executed'by a control card which forces
the operating system to read control cards from an
alternate file built by DIALOG. On some system the ADD
file is physically merged with the input stream. In
the DIALOG executive system ADD is used to link the
execution sequences of an applications program to the
execution sequence for DIALOG, then from DIALOG to the
next applications program, then to DIALOG, etc. This
is illustrated in Figure 3-5. So the DIALOG executive
program first constructs the control card sequences to
execute applications programs then through the use of
ADD, provides for the re-execution of DIALOG to process
the application program input and output data. Details
of the operation of the utility ADD are contained in the
Univac 1108 operating systems manual.

3.1.4 Repetition of Control Card Sequences. - Thus far
we have described a capability which permits the execu-
tion of control card sequences in an arbitrary manner
using higher order readily understood commands. This
is achieved by the creation of a control directive
language which replaces the control card sequence such
as those in figures 3-1 and 3-2. However, there are two
additional capabilities which exist in the DIALOG execu-
tive system which are not possible simply by queuing
control card sequences. These include the conditional
branching logic described below and the maintenance of
a design data base described in Section 3.2.

13

UJ

H LU
< H
CC to
UJ >-
Q_ to
O

A

to
_J LU
O O
ce: Q 2:
H a: LU
z < :D
o o a
O LU

CO

LU
X
UJ

tr?

UJ

UJ

UJ
CQ

rsss

j
•|j
i

-^fTJ^C- -ttipzxzzz.
<£>
o_J
<
»— *a

ajggaUc&fe^fcj

•̂
i

Z-ssszi

2: 2; 2:
C9 CD CD
a. a. a.
LU UJ LU

O O (J
LU LU LU
X X X
LU LU LU

CO SI
2T laJ
O I—
• — i GO
I— >-
=a: co
UJ CD

UJ

LU
L!_ D_
CD CD

r̂ LU

h- <c
CO

i
N^>

LU
Cd
r^>
CD

14

@ADD DIALOG

BOSSs

DIALOG

©ADD PGMB

PGMB
gSSBSSSSES

©ADD DIALOG

» DIALOG

@ADD PGMC

PGliC

FIGURE 3-5 ILLUSTRATION OF THE FUNCTION OF THE SYSTEM
UTILITY, ADD

15

The DIALOG executive system permits automatic repetition
of control card sequences by a system of conditional
branching logic. This capability is achieved by exten-
sion of the control card directive language in the follow-
ing manner:

'DESIGN POINT11

'LOOP TO POINT1'

'IF VI .LT. V21

The DESIGN directive establishes an identifier in the
execution sequence where control may be returned (or
skipped to). The LOOP TO directive points to the
identifier to which control is to be returned. The IF
directive is a conditional operator based upon design
dependent logic. If absent, the LOOP TO directive is
a mandatory branching command. VI and V2 are example
values which may be constant or computed in any of the
applications programs. In the latter case such values
must have variable names and be defined in the design
data base. A description of the design data base is
given in Section 3.2.

In general, the DIALOG executive system permits a com-
plicated system of analysis loops for satisfying a
variety of matching constraints. It is not possible
or necessarily desirable to rigidly define the topology
of the system of computational loops. Instead, the
analysis sequence to be performed is defined within
the control directive language. This technique allows
the analyst complete freedom in specifying the com-
putational sequence? no limit is placed on the com-
plexity of the analysis.

Any number of loops can be created using the LOOP TO
and conditional IF control directives and the associated
DESIGN control directive. The IF tests employed encom-
pass the standard set of six tests in FORTRAN; although
the form of the DIALOG control directive language test
differs in form to that of FORTRAN. The six tests are:

16

•IF VI .LT. V21 IF (VKV2)

•IF VI .GT. V21 IF (VI > V2)

•IF VI .LE. V21 IF (VI <V2)

•IF VI .GE. V21 IF (V1>V2)

'IF VI .E0_. V21 IF (VI« V2)

•IF VI .NE. V2' IF (V1^ V2)

As noted previously VI and V2 are constants or variables
constructed in the design data base or constructed with-
in any independent program in the synthesis and passed
to the design data base.

The ability to select alternative program execution
paths based on design dependent logic is illustrated
below:

'EXECUTE PGMA1

'DESIGN POINTA1

'EXECUTE PGM8'

'LOOP TO POINTB'

1 IF VI .EQ. V2'

'IF V3 .LT. VV

'EXECUTE PGMC1

'LOOP TO POIN.TA'

'DESIGN POINTS'

'EXECUTE PGHD'

The above control directive sequence defines the execu-
tion of PGMA and PGMB with a conditional loop (in this
case, skip) to POINTS. If neither of the IF conditions

17

is satisfied, PGMC is executed followed by a mandatory
loop back to POINTA.

In general, both VI and V2 may be defined by the analyst
or alternately either may be a variable computed by any
of the application programs. In the latter case such
variables must be defined in the data base as described
in Section 3.2.

3.2 Data Management Function

The usual manner of transferring information from one
program to another is by use of a structured file.
This simply means program A is coded to create a file
of data in exactly the same format as required by pro-
gram B. In the sequential execution of the two programs,
the structured file created by A is passed to B via
control card procedures.

In the DIALOG executive system the above means of trans-
fer of information is possible and often employed.
However, in the communications of information from one
program to another, it is not always possible or even
desirable to create a structured file of input data for
each program. Often only a few stratified bits of
common information are required for each program.
Usually a different set of data and a different order
is required for each program. The DIALOG executive
system maintains a name-oriented data base containing
an unstructured set of data accessible by all programs.

The data base file of information can be dynamically
constructed and altered by DIALOG as the analysis
proceeds. Construction of the design data base involves
the following tasks:

1. Search to see if the variable name exists in
the data base.

2. If not, locate a vacant location in the data
base and install the information and the name.

3. Otherwise, replace the information associated
with the name.

Additional information can be added or existing informa-
tion may be updated by the analyst or by an applications
program at any point in the analysis (data base limits
are discussed in Section 4). Updating the data base by

18

the applications programs involves tasks similar to
those described above. Figure 3-6 illustrates the data
interplay among the applications programs. Consider
a. variable stored by the name, WEXPAR. Assume WEXPAR
is computed in program A (PGMA) and subsequently used
by program B (PGMB). Schematically this is illustrated
in figure 3-6. Any number of subsequent programs may
access WEXPAR or alternately update the value of this
variable. All interface between the applications pro-
grams and the design data base are performed by the
DIALOG executive as illustrated in figure 3-7, The
same is true of the interface between the analyst and
the data base. All data requests are addressed to the
DIALOG executive.

Data base information may be accessed by the analyst
for placement into the input stream of any of the
applications programs. The DIALOG tasks in perform-
ing this function are:

1. Search to see if the variable name encountered
exists in the data base.

2. If not, ignore the access request.

3. Otherwise, retrieve the information associated
with the name.

4. Replace the variable name encountered with the
data base information.

The technique employed in the storage and retrieval of
data base information is discussed in the following
paragraphs. They involve the extension of the control
card directive language described in Section 3.1 as
well as the creation of a new intercommunication language
for passing design information from one applications pro-
gram to another.

The new language contains a simple set of instructions
which will be referred to as communication commands.
Communication commands are physically inserted into the
applications programs input data. In general, these
commands are either removed entirely or replaced with
data by the DIALOG executive program before the input
stream is processed by the applications program.

19

VALUE

PGMB

PGMC

-IWEXPAR 12.451

PGiMD DATA BASE

FIGURE 3-6 DATA INTERPLAY AMONG APPLICATIONS PROGRAMS

r
PROGRAM!

DATA
BASE y/'d

FIGURE 3-7 DIALOG EXECUTIVE CONTROLS ACCESS TO DATA BASE

20

The communication commands form the basis by which
unstructured information is passed from one applica-
tions program to another. The communication commands
are delimited in exactly the same manner as the control
directives. Complete syntax rules for the language
are given in Section 4.

3.2.1 Data Base Information Transfer System. - Data base
information transfer is accomplished through a rapid
search by name. Search speed is obtained by the use of
"hash" and "collision" methods of reference 10. This
approach is more efficient than the more usual linear
sequential search which starts with the first name in
the table and proceeds sequentially until the desired
name is located and the corresponding value is retrieved.

The hash and collision data transfer system operates in
the following idealized manner:

1. Take the variable name and treat the binary
representation of this word as an integer.

2. Find the remainder when the integer representa-
tion is divided by the number of elements in the
data base. This is equivalent to the FORTRAN MOD
function which is a very rapid machine operation.

3. Use the remainder as the nominal location or
"hash" location of the variable within the data
base. This assures the location derived will
fall within the data base limits.

4. Check to see if the location is in use since more
than one variable name may hash to this location.
If this location has already been used for another
variable name store the new variable in the next
vacant location and provide a pointer to this
location in the data base entry originally
searched. This pointer is called a "collision"
pointer. Each entry has associated with it a
name, a value, a hash address and a collision
pointer.

5 The retrieval process operates in the same manner.
The name is converted to nominal retrieval loca-
tion. If that location contains the wrong name,
the specified alternate location is searched for

21

the desired name, etc. until the desired name is
found and the variable value is retrieved.

Figure 3-8 illustrates the hash and collision method.
Suppose the binary representation of three variables A, B
and C are identical to a fourth variable stored in the data
base. Upon initial entry, the name A "hashes" to the
occupied location. After unsuccessful comparison with the
existing name at that entry, a new location for A is defined
and a collision pointer is stored at the original entry
forming a link to the new location. Once a location is
established for A, the information (value) is stored or
retrieved. The name B is also "hashed" to the original
location. An unsuccessful comparison with the existing
entry sends B to the location where A is stored via the
pointer described above. An unsuccessful comparison with
A causes the next available location to be defined for B.
A pointer to the newly defined location is stored at the
entry for A forming the link to B. This chaining process
described can be continued to the limits of the table.

In numerical experiments with a 2000 word data base filled
approximately 75 per cent, it was found that the average
name can be retrieved in less than two attempts (fetches).
This would compare with 750 fetches using a linear search
for information retrieval. In practice using DIALOG,
approximately 9000 values per second may be retrieved on
the CDC 6600. This figure varies but is less affected
by the amount of data stored than by the internal numerical
pattern produced by the variable names stored. It is
difficult to control numerical uniqueness since the data
base names are arbitrarily chosen by the user. However,
in all past experiences with DIALOG collisions have never
exceeded 20 per cent. The access time is essentially
unchanged with data base size, while the linear search
technique increases in access time in proportion to data
base size.

3.2.2 Creation of a Design Data Base. - The design data
base, DBASE, is created in much the same manner as the con-
trol card data base. The two data bases are similar in
construction and occupy the same computer core locations
but at different times. The data bases consist of two
distinct parts, a free storage array of packed information
and a directory of names and pointers to the actual data
in the free storage array. Space in the free storage array
is allocated as required by the user and/or the applications

22

A,B,

B,C

FULL

FULL

FULL

ENTER A

FULL

FULL

VALUE A

ENTER P ! VALUE B

FULL

ENTER C VALUE C

I + 6

I + 10

I

I + 1

I + 2

I + 3

I + 4

I + 5

1 + 6

1 + 7

I + 8

I + 9

I + 10

FIGURE 3-8 IDEALIZED INFORMATION RETRIEVAL SYSTEM

23

programs. As the information is stored in the free storage
array, the directory is constructed as described in Section
3.2.1. Access to the data base is always through the
directory. Both the directory and the data base have cer-
tain attributes which distinguish them from one another.
Among these are:

• Total number of data base entries.

• Number of computer words per data base entry.

• Total number of directory entries.

• Number of words of descriptive information associated
with each name.

For example, CCDATA elements are 8 computer words (8 words
= one card) in length since CCDATA is used for storing
control card sequences. DBASE elements are two computer
words in length since DBASE is used for storing design
type data in BCD format.

The construction techniques employed in creation of the
design data base as well as the control card data base are
easily extendable to a multiple data base involving many
combinations of attributes such as data type and technology
origin.

The design data base, DBASE, is created with the control
directive:

'INITAL DBASE1

This directive is followed by a file of information contain-
ing the necessary communication commands to initially
establish the data base. These communication commands are
described below. It is not essential that any information
be initially placed in the data base. The dynamic nature
of data base maintenance permits information to be added
at any point in the execution sequence.

3.2.2.1 Adding Information to the Design Data Base. - The
basic communication command available to the analyst is the
ADD command;"not to be confused with the ADD utility program
discussed earlier. It permits a variable name and value
or values to be placed in the data base:

'ADD name = value, value,1

24

Any number of values may be added for a given name. The
number of values associated with the name is also the num-
ber of locations reserved in the data base for that informa-
tion. Later modifications to the information can not
create more data base space. The values may be real,
integer, hollerith or logical. The data type is immaterial
since the information is stored in coded or character for-
mat.

A single ADD command may be used for creating or updating
many information sets.

'ADD VI = 25., V2 = 30, V3 = ALPHA, V4 « .TRUE.,

A = 10., 15., 20., 25., I = 4, 5, 6'

The data type is specified by the input. Any of the four
common types of variables may be entered into the data
base. The format of the ADD statement is patterned after
the FORTRAN NAMELIST feature and indeed has the same
characteristics and utilization rules. For example, all
name/value sets are separated by commas (,); all elemental
values of an array are separated by commas; the entire
statement (command) is delimited. In the case of NAMELIST,
the delimiter is a dollar ($) sign; in the case of ADD
command the delimiter is (')-

However, the ADD command has additional capability not pre-
sent in the FORTRAN NAMELIST feature. The value associated
with the ADD name may be a previously defined data base
variable name:

ADD VI = V2,

The affect of the above command is to transfer the informa-
tion associated with V2 to the data base space assigned to
VI. VI may or may not exist prior to the ADD command. If
VI did.not exist, space will be created in the data base
as the information is transferred. If VI did exist, then
the information in VI will be replaced by the information
in V2. The transfer of information from one data base loca-
tion to another is generally limited to scalar quantities.
Complete rules are given in Section 5. Finally, the ADD
command may be used for transferring multiple constants in
the data base:

'ADD VI = 5 * 0.,'

In the above illustration, VI will be a data base array
name. Five zero values will be stored.

25

3.2.2.2 Combining Data Base Information. - The ADD command
capability thus far described includes the addition or
modification of data base information with either constant
or variable type information. The ADD command may also be
used for combining existing data base information with
other data information or constant information:

'ADD VI = V2 * K,'

or

'ADD VI - V2 * V3,1

In the above statements VI, V2 and V3 are data base var-
iables and K is a constant. VI may be a new or existing
data base variable. The operation illustrated above
indicates a multiplication of the two numbers on the right
side of the equal (=) sign prior to transferring the result-
ing information to the space allocated to VI. Any algebraic
operator may be employed as follows:

+ addition

- substraction

* multiplication

/ division

** exponentiation

More than one operation may be "performed on the right side
of the equal (=) sign.

'ADD VI - V2 + V3 * K,'

Up to ten operations may be performed within a single ADD
command. However, the hierarchy or order of the operations
is not the same as FORTRAN. For example, in the above
illustration, V3 is added to V2, then the sun is multiplied
by K. This is a significant departure from the hierarchy
employed in FORTRAN. The basic rule in combining variables
with the ADD command is:

"The operations are performed in a serial manner
analogous to that employed in a hand calculator."

The operations start from the equal sign and progress to
the right. The first variable is combined with the second.
The result of that operation is combined with the third.

26

The result of that operation is combined with the fourth,
etc. It is very important from the outset that the
analyst understand this principle.

In summary, the ADD command gives the analyst the ability
to add, modify and combine information in the data base at
any point in the execution sequence. The only constraint
is that its occurrence must be within an input data set for
an applications program or as a result of a CREATE or UPDATE
control directive for DBASE. Figure 3-9 illustrates the
possible locations for ADD commands. ADD commands can not
be mixed with control directives. It may be noted that the
ADD command serves as an instruction only to the DIALOG
executive and is not a part of the normal input data to
the applications program. As such, the ADD command is
removed from the input stream as it is processed.

The combining of variables is very useful when coupling
computer programs from independent sources. One example
is the matter of units conversion. Very often computer
programs use different unit systems. When coupling such
programs the output of one computer program may not pro-
vide compatible data for the input to another. The ADD
command gives the analyst an immediate means of providing
that essential data compatibility without modifying any
applications programs. The DIALOG executive system does
not preclude the possibility of automatically providing
data compatibility among applications programs at a future
date.

The ADD command is also useful for performing simple inter-
face transformations. Indeed, a limited FORTRAN capability
exists as part of the communication command language. How-
ever, it is not intended to replace FORTRAN or other
languages. It simply augments existing analysis tools.
Later discussions will show that full FORTRAN (or any other
common language) capability is immediately available within
the DIALOG executive system for complex data transformation
problems.

27

(A) ADDING DATA TO A NEW DATA BASE
'INITAL DBASE'

'ADD VI = 25,, V2 =30,,'

'VN = 60, /

EF

(B) ADDING DATA TO AN EXISTING DATA BASE

'UPDATE DBASE'

'ADD VI = 25,'
• 1 1 1 1 1 1 1 1 1 1 1
EF

(C) ADDING DATA DURING THE EXECUTION SEQUENCE

'EXECUTE PGMA'
t i t , i i , i i i i i

'ADD VI = V2,'

EF

FIGURE 3-9 POSSIBLE LOCATIONS FOR THE ADD COMMAND

28

3.2.2.3 Defining Variables and Reserving Space in the
Data Base. - It is often desirable in using the DIALOG
executive system to reserve space in the data base before
the information is actually generated. The DEFINE command
was developed for this purpose. As with the ADD command,
the DEFINE command may be employed anywhere within the
execution sequence. However, it is most likely to be used
in conjunction with creating or updating the data base.
The format is as follows:

'DEFINE VI = n, description,1

VI is a new or existing data base entry. The number of
locations reserved is n. If VI is an existing variable,
n is ignored. If n is absent from the command, one is
assumed. The description is a short hollerith description
briefly describing the variable VI. The length of the
description is typically three computer words. This is
not a hard limit and can be altered with the alteration of
a dimension statement in DIALOG. The description is printed,
together with the data name and value when the control
directive:

'PRINT DBASE1

is employed. Figure 3-10 is an illustration of a printed
data base.

3.2.2.4 Identification of Applications Program Data. - In
addition to the ADD and DEFINE commands, there exists a
special "command" for identifying data. The format is:

'. comment1

No action is performed as a result of this command. It is
useful only as an identifier for other data. For example,
consider an application program which uses formatted input
(i.e. numbers with no identifiers or names associated with
them). The comment command may be used to identify the
data elements within the input data stream. The affect of
processing this command through DIALOG is that the command
is simply replaced with blanks. If the resulting card is
entirely blank, then the card is "removed" from the input
stream.

The affect of using the comment card with the execution
sequence is to provide some self documentation. It serves
to identify data which is not generally recognizable as it

29

o

*
*

S

F
O

L
L

O
W

S

»

»

*

UJ

i

! i?
or*
<t

i ^—

i
!

r-H

I

i >-
t _J
i |_

; tu
o:

u
UI
cr

T

0

<•

o

1 o

2
C

G
T

N

O
F

S
C

M
IP

T
I

»— i

a
o

C
U

R
R

E
N

T
V

A
LU

E

-r

L
J
./

.T
IC

is
l

O
r M

E
M

S
 1

C

ta

^

C 4->
0 3

•M Q,
*> 4->

•z » E °-5 v . o a •
? ti iill 9 w *« w 01

5 o c n ^ C """' ° §
z in H - . - X . C C ' »- v * w o E
c a r . •* u. •-< -i H- v- re .i: in •-.•• Q Son
— j - ' O 2T :?•->—< «• .v U,1 'JJ " too
i— >— •— n. o _i ;j <•. •- ct 2: cj cj •— •- x * a -o c!
<r iij H- } •— «; LJ a c 'u; uj »- o o </• »— cj o ,0 w

5 < o 2 o -J .u o u .v -"n ~ I'* r Ji o r. 5 *J « 5 tj
>• .r r< r. r. o a ..: .v > > x o < <• ^ p, "3 o
i/< a. _j o «• u h- >-j~ o i- j.. c; i— c; o u. u. * *d o)

^. ̂ <t >• - x -• 7: ^ o o UJ " -P o g
r _i D i- cr > o -i i- -• c -^ u v — ~ r * i; S 5 -P ! ^
>-" o iC a. -i .ii •• -i ;r >-< o o ~ J t.i H- i- H- ĵ rH w

a. t; -t _i vn k». — i- "^ < ••- T x » c co H
o r- r^ i- a i o .j t- <i H- »- c% i- s- ̂ . c ic t> *S "H c! I c=-
u ^ o .T. < in --t u_ '- ^r u v •" '• Ji v »-• >-" o * c --i e H
U". C3 >- a •- -1 -t > -i •— O C > UJ UJ n Si 0 0 "Z_
DO ox o !<J t_j ijj _i ^ u '-> rr a: :--•-. a <i -^ > -H o> r7

>-> i/> in Q. _ \ »-* It.' UJ aJ 'i -P *J fi
a a. s î .' uj _j o .̂; *- _) _J :r H- i- IT in o <= P- "° "2 S 2 -..
oo < o o a <i ̂ - o a r. -i ^ ~ (/- >-« ./i tn _i •£ § § g c £)
tr. o-> j; o: D c v- u *r. o u •— i— «.- o '- o o >- » o g g o -p ""^
LJ uj >- < < t; n i „• u n. c — c 2. c .: ~< cr < w e R <« o

Q 0 o -H M o

* H £ C
LJ t- W liJ -J U (- V- U H- Z

u. :/» u. c; u. •— • u. ji to ci to. £.) £ o c -J o o o •> "* ~ aj
i.i L> it c u :• :u u. it! r u c 'i c >- !- i- H- K
C <C Q -i Q >-< O -J »t '-f O -i Q '•' — 1.1 ;= S ~=" * " <

* E-1

o rv, c,- in c- o :r- r^ *c. . g
01— • r > ">o ' r i ooo l A <>- C!

C- o c- o • ̂ .; ic N i/l u, j i-7

^T1 *"' f^ O. O *— * 17 fO O r^ cj ^

rt o C- <? -i o vT -- -•< •> ̂ t -, £<
o o o •> ui •— o r "7- TV n -o <i +> c
o + o '^> IT — • o r- .> x o f os o t
•^ til o c cr* h- s ̂ . f ~* r^ iv i -S ^ tH f-~-
u IT o iv o » f> c; o r »r o o -g
in «-i _J o~ r 2 f' •"- >- j" ' - .»? c; a; « c E
t\; t~- >- 'a i » - < r - o o ^ < « r « c — •<-! o ^< Hj
cr t\j «j • ^- c; -r — > .fi v> r>- r^ r~ n 3 f-i o • i— i

ooon ~ ^ r j - - - " O f \ ; ? v f c j i n o o o o o * r,5) ?1
» | <

g o c o
, a o •
-1 o c -^i . •"*

n c o -p I
^ rt 0 H C5 rO

,0 -H n B
,-, -tJ c >Hv cl d o o r-1

C> r^- c^ •-* *-• (*"* i'̂ L^ r^- c^ r- * o f^ i/* o r~* *— * i.*̂ f^ 4^ o j- ^-i *^
p^ r— f> »-i (% X »-< fvj i*3 *" 1 I\ C*^ •—< •— * fV» ^ rt O •-• H . • — '

Q rH t) -M [ZJ

C1 O
H0 &

* g
w

>- * 3
i\ a '-. j • i - r :r »- r. o o ,5

01 _i u- r: A * - "i ^ • • J1 ' • . . - , ' . ** "* > rt o

30

stands. The comment command is somewhat analogous to the
comment card in the FORTRAN language.

3.2.3 Cummunicating Information from the Data Base to the
Applications Programs. - The three commands described
above, the ADD command, the DEFINE command and the '.'
command (comment), basically provide user interface with
the data base. This paragraph and the next paragraph deal
with applications programs interface with the data base.

In this section the passing of information from the data
base to the applications programs will be discussed.
Section 3.2.4 deals with the passing of information from
the applications programs to the data base.

3.2.3.1 Modifying Program Input to Communicate with the
Data Base. - Development of the DIALOG executive system
is based on the premise that independent applications pro-
grams can be made to communicate with each other without
significant modification through a data base. By follow-
ing this premise a method of communicating data base
information into each program has been devised. No modi-
fication to the program input data code is required by this
method. The input data prepared by the user, however, is
modified to indicate data base inputs. The modified data
input does not affect the applications program since the
DIALOG executive program inspects the data input prior to
execution of the applications program. DIALOG combines
the required data base information with the basic program
inputs, then prepares automatically a file containing the
modified input format for the applications program and
provides for the execution of that program in the nominal
manner. This is illustrated schematically in figure 3-11.

It should be noted that the applications program may still
be executed in the normal manner as a stand-alone program
independent of the DIALOG executive system.

3.2.3.2 Data Base Communication through Input. - Data base
information is entered into the applications program input
by means of the special delimiters ('). Any data base
variable name may be entered between the delimiters. The
DIALOG executive program will replace the variable name
by its data base value and rewrite a normal card image to
replace the modified input cards. The value is placed
within the closed region which includes the delimiters.

31

r
o
2
H
2
M

EH
2
O
CJ

w
to
<
CQ

EH
CO D
2 Ai
02
M M O Q M
EH 2 EH
< S H EH <;
U < Q 2 S

EH 2
O

tJ S Oi O O « t<
H O (X d 2 D 2
PH 2 < A! H O M

2
O
H
EH

U
H

D
O

O
O

<

•

' \j '

\
)

CO S EH
2 >* W ^
O CQ EH O
H CO W
EH Q N EH
< W CO S
U EH &

I H D W
tn1 o > <:
A) W H EH
A, X EH <5

W < W D Q

Iv \ H
 v -\ a co u £\ \ EH \ \ W M X 0

^ — ~x R >> — x £^M 2
1

I\\

*^^

W
X
H

gj I

0 (2 \

f£ 0 \

H <| U H

D K O
00^ U
S O < £
2 « H J-j
3 PU Q £

H
\ 1 H & \ . ' Q

Q A. Q
1 , EH S
A ' A to o D
(\ • / \ 2 X 2 W 2 A i &
\ \ \ \ O < H 2 M 2 0

\

i.\ 1 . \ H S O CO M PM
N l |\ EH W Q hJ P

I < S P W <C >-q Q
EH 1 1 U <C EH (X < O

Ai tH « i - ^ O t - 5 U 2 2 n E"1

rr t* 1 1 r /~i u. i M ^T* r^ T1 t33^< I J P< (J M W R. <5 «i. f^
M Q i A i C 4 E H X E H < O S

II < P< CO W CO S 2• a u ^ -)
^ r . __ i

v . . \ £ 3 \~.̂ x T
!i>,Li._\ S y !N~--r2\ rf "

1\\\
i (4 Q co :

M ^g" i!
? co < \:
£j 2 O CH \
2 o H « \
H M W \

B § 1
O< ^ H
^ t-i ^
M HO

\ tH l-l CH \ .— ,.

V~J SHS V-J °g
H CM Z M

.J H W
Oi Q CO
Aj O ^
< S CQ

32

Therefore, namelist-like inputs, rigid format input and
special input procedures can be accommodated by the general
input modification. For example, in a true namelist input,
a 'data base variable would be entered as follows:

NAM1 = 'VI' ,

NAM1 is the name of the NAMELIST variable. VI is the data
base name. The delimiters specify the field width to be
employed in replacing the data base name with the correspond-
ing data base value. Similarly for a formatted input where
all that normally appears on a card is a number the data
base input procedure is simply:

The delimiters are placed at the appropriate card columns
defining the field for the data element.

Additional capability is available when namelist input is
used by the applications program. Entire arrays may be
transferred to the input stream.

NAME - 'VARRAY1

where VARRAY is a data base array. If the data in VARRAY
is more than three elements, additional 'cards' are created
to pass all the information in the VARRAY to the input
stream of the applications program.

3.2.3.3 Combining Data Base Information in the Modified
Input Stream. - Data base variables and constants may be
combined much like the capability described for the ADD
command in Section 3.2.2.2.

For example, the operation may be performed:

'VI * V2'

The above example illustrates how the multiplication of
data base variable VI by data base variable V2 can be per-
formed prior to replacing the delimiter set with the product
of the multiplication. A new data base variable represent-
ing the combination is not created. The product never
resides in the data base, only in the modified input stream.
VI must be a data base variable but V2 may be a data base
variable or constant.

33

The operation illustrated above indicates a multiplication
of the two numbers enclosed in delimiters prior to replace-
ment of the delimited command with the product. Any
algebraic operator may be employed.

+ addition

- substration

* multiplication

/ division

** exponentiation

More than one of the above operations may be performed
within the delimiters.

'VI + V2 * V31

Up to ten operations may be performed within a single
command. The hierarchy of operations is the same as that
described for the ADD command.

In general, array elements may be used in the replacement
command:

fVl(5) '

or

* V2(6) '

One exclusion from this capability is the first element
of an array:

'Vl(l) '

The above illustration is not an acceptable statement to
the DIALOG executive for transferring the first element.
Any other element of an array may be employed. A conven-
ient means of avoiding the above limitation is the follow
ing two cards :

'ADD NEW = VI (1) •

'NEW

The ADD command defines a new location which will contain
VI (1) the replacement command will place the variable NEW
(i.e. Vl(l))in the modified input stream.

34

A special feature of the replacement command is the
element-by-element combining of entire arrays with con-
stants. As an illustration, consider the example:

'VI * V21

where the data base variables VI and V2 are arrays. The
above command specifies the element-by-element multiplica-
tion of the arrays. If one array has fewer elements than
the other, the combining of elements ceases after the
shorter array is exhausted and the rest of the longer
array remains unchanged. The variable V2 may be a con-
stant or data base name.

3.2.4 Communicating Information from the Applications
Programs to the Data Base. - The communication of informa-
tion from an applications program to the data base
generally, but not always, requires modification of that
applications program. This modification is usually trivial
and involves little programming knowledge to accomplish.
Further, a mechanism is available within the FORTRAN
language which further simplifies the task. This mechanism
is the NAMELIST output feature. A more detailed description
of the modification procedure is described in Section 4.
The objective of the modification is to generate a special
file of information available to the DIALOG executive system,
which contains the desired information in the proper format.

The special file is interrogated by DIALOG for name oriented
information in the following format:

$name name = value, value,$

Note the similarity between the above format and the FORTRAN
NAMELIST feature.

In generating the file within the applications program, the
analyst has the option of using NAMELIST (in FORTRAN pro-
grams only) or simply simulating NAMELIST by following four
basic fules.

1. Separate name and values with equal (=) signs
(N = VI) .

2. Separate name/value sets with commas (,)
(Nl = VI, N2 = V2).

35

3. Separate values (as in an array) with commas (,)
(N3 = VI, V2) .

4. Delimit multiple name value sets with a delimited
ADD like "command" ($name $) .

Once the coding for placing the desired information on the
special file is completed, and the modified program is
stored, the modified program can be used within the DIALOG
executive system.

36

4.0 INSTALLATION OF THE DIALOG EXECUTIVE SYSTEM

ON A TYPICAL 1100 SERIES COMPUTER

The DIALOG executive system can be installed on any
Univac computer which has an operating system contain-
ing control card linking capability. The linking
capability is provided by an operating system utility
program which directs the system to read from a user
specified file other than the input file.

For computer installations not having this capability,
a system modification must be performed. At Johnson
Space Center (JSC), the control card linking utility
installed is called ADD. Similar utilities are avail-
able at other installations where the DIALOG executive
system is in use.

The description of the installation of the DIALOG
executive system is strongly dependent upon the com-
puter operating system in use. Each computer complex
has unique operating system features not generally
available at other computer complexes. System
differences are reflected in the control "cards.

As a specific example, the discussion in this section
is directed toward the installation of the DIALOG execu-
tive system at Johnson Space Center. Therefore, the
control cards described (including ADD) will be peculiar
to the Univac 1110 Exec VIII operating system employed at
the JSC facility. The DIALOG executive system is also
available on the Univac 1108 Exec II system at JSC but
the example illustrated in this section is for the 1110.
Complete detailed information for control card usage at
JSC may be obtained from the literature available upon
request from the JSC computer complex.

Before installing the DIALOG executive system the stor-
age devices for the independent programs must be chosen.
This affects both the procedure in storing the program
library as well as the entries into the control card
data base. The program storage devices can be either
disk (online) or tape (offline) at JSC. The two device
types may be mixed if so desired. However, the disk
is the most commonly used at JSC and considering the
number of programs involved, the use of disk assures a

37

smoother operating system. Therefore, disk storage will
be discussed exclusively in this section.

In general terms the installation of the DIALOG executive
system involves four basic tasks:

1. Compile and store the DIALOG executive programs.

2. Compile and store a library of independent
programs.

3. Create a control card data base containing the
control card sequences of each independent
program.

4. Store the DIALOG executive system including
the control card data base.

When all of the above tasks have been accomplished, the
use of the DIALOG executive system may commence as
described in Section 5. The above tasks will be described
in detail in this section.

4.1 Compilation and Storage of the

DIALOG Executive Program

The objective of this paragraph is to describe first
the compilation and storage of DIALOG, a brief descri-
ption of how DIALOG fits into the DIALOG executive system,
a discussion of data base parameters and finally a deck
set up for storing DIALOG.

The DIALOG executive has two main programs:

DBINIT - initialization

DIALOG - language processing

DBINIT is the DIALOG executive system initialization pro-
gram, DBINIT is called only once when a new design data
base (see Section 5) is being created, but performs no
language processing function. DIALOG is the language
processing program. DIALOG is executed initially to
establish the execution sequence of the independent pro-
grams; then is called after the execution of each
independent program to process the data for the independ-
ent programs.

38

4.1.1 Data Base Parameters. - Before compiling the
executive programs the design data base size must be
established through the data base parameters. These
parameters control the number of names and number of
data elements which can be stored in the dynamic data
base as described in Section 3. They also control the
length of the description for each entry. All data base
parameters directly affect the core storage require-
ments for the DIALOG executive system.

As an example, for a data base size of 3000 data elements,
200 names and a description length of three computer
words, the core storage requirement for the system is
55000 (base 8). The above parameters are the standard
values for the DIALOG executive system. Unless there
are specific requirements for the data base parameters,
they may be left as they are. However, they are usually
set such that the core size matches the core size of
the largest independent program anticipated for the
system.

The alteration of the data base parameters requires
changes to the following programs or subroutines:

DBINIT - data base initialization program

DIALOG - language processing program

DBLOAD - data base loader subroutine

INITL - DIALOG initialization subroutine

The data base consists of two parts, a packed array for
storage of data elements and a directory of names and
pointers to the data element locations. Both the number
of names and number of data base elements may be altered.
The directory also includes provisions for a description
array for each name. The data base parameters involved
in changing the data base size are:

length of the data base (i.e. the packed
array of data elements)

directory length or number of name entries
possible in the directory

DBLEN

DIRLEN

DIRWID - directory width

39

The directory width consists of the following elements
or words:

1. One word for the name.
•

2. One word for the value (pointer).

3. One word for the "hash" table.

4. One word for the "collision" table.

5. One word for the update command.

6. A variable number of elements for-the description.

The minimum directory width is five which allows no space
for descriptive information in the directory. Therefore,
the variable DIRWID may be computed as follows:

DIRWID = 5 + number of words of description

Once the three data base parameters are established, the
parameters and dimensions may be set in the four affected
routines:

DBINIT:

COMMON /DTBASE/ IDATA(2*DBLEN)

COMMON /DIRECT/ IOPR(50), INUM(60), ID(DIRLEN*DIRWID)

DIALOG:

COMMON /DTBASE/ IDATA(2*DBLEN)

COMMON /DIRECT/ IOPR(50), INUM(60), ID(DIRLEN*DIRWID)

DBLOAD:

COMMON /DTBASE/ IDATA(2*DBLEN)

COMMON /DIRECT/ IOPR(50)f INUM(60), ID(DIRLEN*DIRWID)

INITL:

DATA KEYLEN /!/, DBLEN /DBLEN/, DIRLEN /DIRLEN/,

DIRWID /DIRWID/

The underlined parameters are the only ones requiring
alteration by the user.

40

4.1.2 Deck Setup for DIALOG Storage. - The DIALOG
executive programs are stored in source form and reloca-
table binary elements (LGO file) on tape and in absolete
element form on disk. The control cards, excluding the
"accounting" cards, are discussed in Appendix A. It is
assumed the reader is familiar with the above mentioned
"accounting" cards. (See JSC computer usage manuals
for complete details.)

The deck setup for compiling and storing DIALOG and
DBINIT is shown in figure 4-1. This deck setup assumes
space on disk has been preassigned.

The sequence of utility operations is:

• Compile the source code.

• Store the source and relocatable binary on tape

• Map the absolute element program.

• Store the absolute elements on disk.

Source and relocatable binary are stored on a tape
using the system utility COPOUT. All programs stored
on tape must have a "label" supplied by the JSC computer
programmer. This label is placed on the tape by the
systems operator. All disk storage must be preassigned
by the computer operations personnel before information
can be secured on permanent file.

4.2 Compilation and Storage of a Library of Programs

Since the DIALOG executive controls the sequence of
execution of a library of independent programs, each
program in the library must be stored in the computer
system. The library includes not only user supplied
programs but also system programs such as the compiler
and the data base storage and retrieval programs.

The manner in which the programs are stored is analogous
to the storage of the DIALOG program depicted in figure
4-1. However, there are two additional points to con-
sider in preparing an analysis program for use with the
DIALOG executive system:

41

3FOR,IS DBINILDBINIT

(SOURCE CODE)

aFOR,IS DIALOG,DIALOG

(SOURCE CODE)

3FOR,IS WRTUE,WRTUE (LAST SUBROUTINE)

(SOURCE CODE)
3ASGJ DLOG,8C,AOOOOO
3COPOUT TPF$,,DLOG,

8MAP ODLOG,ODLOG
INSERT DIALOG

aMAP ODBIW,ODBIN
INSERT DBINIT

3ASG,A ODIN
aCOPY ODLOG.ODIN.DLOG

aCOPY ODBIN,ODIN,DBIN

FIGURE 4-1 DECK SETUP FOR INITIALLY STORING DIALOG

42

1. The program may require modification to pro-
vide a special output file of data base
information as briefly mentioned in Section
3.

2. The program may be stored in absolute element
form for high speed loading and reduced core
requirements.

4.2.1 Program Modification to Provide Data Base Informa-
tion. - The communication of information from an applica-
tions program to the data base generally, but not always,
requires modification of that applications program.
There are a number of analysis programs available which
generate files of information suitable for use with the
DIALOG executive system, either directly or through an
interface program. An interface program is often the
most convenient means of extracting data from an analysis
program.

The interface program obtains its input from a file
generated by another program. The output will be pre-
cisely as specified in the following paragraphs. In
this sense, the interface program is simply another
analysis program in the program library.

Whether the original program is modified or an interface
program is written, the generation of the data base out-
put file is usually trivial and involves little program-
ming knowledge to accomplish. If FORTRAN is the program
language, a mechanism is available which further simpli-
fies the task. This mechanism is the NAMELIST output
feature of FORTRAN. The use of NAMELIST is briefly
discussed below.

4.2.1.1 Creating a Special Output File - The objective
of the modification is to generate a special file of
information available to the DIALOG executive system,
which contains the desired information. This is accom-
plished with an additional file.

WRITE (14,- - - - -

43

In the above illustration, the file unit 14 is the
special file which is read by the DIALOG executive pro-
gram. The file number is optional and may be any avail-
able unit. However, unit 14 has been adopted as the
standard on the 1100 series computers. The information
placed in this file is interpretted and then transferred
to the data base by the DIALOG executive program. The
mechanism by which the file is passed from the applica-
tions program to the DIALOG executive, is referred to
as file substitution. The file substitution is accom-
plished with the control cards stored in the control
card data base. As an illustration of file substitution
technique, consider the execution of PGMA above. Prior
to the execution control card for PGMA would be:

©USE 14, NMLIST

The above card specifies that unit 14 will be the system
file name NMLIST. These files are addressed internal
to PGMA by the loginal unit number 14, but addressed
externally by the system file name, NMLIST. They are
sometimes referred to as internal and external names
respectively. DIALOG recognizes NMLIST as a file
containing potential data base information.

4.2.1.2 Format of the Special Output File. - NMLIST is
interregated by DIALOG for name oriented information in
the following format:

$name name = value, value, $

Note the similarity between the above format and the ADD
command described in Section 3.2.1. Also it is identi-
cal with the FORTRAN NAMELIST feature.

In generating the NMLIST file within the applications
program, the analyst has the option of using NAMELIST
(in FORTRAN programs only) or simply simulating NAMELIST
as discussed in Section 3.

Generally the name selected is one which is similar to
the program name such as:

$PGMAO

for PGMA output. The advantage of using this naming
convention is apparent in the actual data base construc-
tion. The name PGMAO is stored in the data base identify-
ing which program or "command" which last updated the
value or values stored.

44

4.2.1.3 Use of the NAMELIST Feature in FORTRAN. - If
the applications program is written in FORTRAN, the
analyst can use the NAMELIST feature to write the spec-
ial data base output file. For example, to transfer
the variables ANAME, BNAME, CNAME II, 12, JNAME and
associated values to the data base, the following modi-
fication to PGMA is required at or near the exit point:

NAMELIST/PGMAO/ANAME,BNAME,CNAME,11,12,JNAME

WRITE (14,PGMAO)

The format of unit 14 for the above illustration is shown
in figure 4-2. The DIALOG executive program interrogates
unit 14 after the execution of the applications program
to find variable names and values to be entered into the
data base.

4.2.2 Storage of an Absolute Element Program. _ In per_
Terming a given analysis, the applications program user
usually compiles and loads the relocatable binary ele-
ments. These operations require the use of the operating
system compiler, FOR and the operating system loader,
XQT in the following manner:

@FOR,MAIN

@XQT

The standard loader must reside in core while it loads
the program. Further, the loader requires an addi-
tional space allocation for "loader tables." The
additional space requirements depend upon the particular
program involved, but the total space for loader and
tables varies from 5000 (base 8) to 15000 (base 8).
The space required by the loader must be added to the
space required by the resulting applications programs.
The total space for both the loader and program is the
central memory field length required for the job. The
field length is automatically reduced after the program
is loaded (i.e. the loader space becomes available to
the system for other uses).

The above method of analysis results in two disadvantages:

1. More central processing and peripheral processing
time used to compile and/or load.

45

$PGMAO

ANAf-'iE = VALUE,

BNAME = VALUE,

CNAFE = VALUE,

11 = VALUE,

12 = VALUE,

JNANE = VALUE,

SEND

FIGURE 4-2 FORKAT OF THE NKLIST OUTPUT FILE
46

2. Job turn around suffers from the increased
field length requirements.

The disadvantages illustrated above both result in
reductions in efficiency and productivity of both com-
puters and analysts. In the DIALOG executive system,
most programs are compiled and stored as absolute
elements. An absolute element program is one generated
by the MAP program. The absolute element program is a
self contained program which includes all the system
routines called for by that particular program. The
advantages of storing the absolute element program are
that it:

1. Reduces the field length requirement for the
program by the size of the loader and loader
tables.

2. Considerably reduces the load time required
for the program. All external references are
resolved. This means all operating system
routines called by the program are stored in
the absolute element.

One disadvantage of storing an absolute element program
is the disk storage requirements are increased by the
space required for system routines. This is not con-
sidered to be a serious disadvantage. Another dis-
advantage is that updating of an absolute element program
requires remapping of the entire binary program. The
above are not considered major disadvantages.

4.3 Assembly of the Control Card Data Base

The control card data base, CCDATA, contains all the con-
trol card sequences required to retrieve and execute the
library of independent programs. After the independent
program is stored and prior to creation of the DIALOG
executive system, the control card sequences must be
assembled. It is also desirable to assemble a series
of utility procedures for the purpose of data disposi-
tion. These procedures enhance the usability of the
DIALOG executive system.

The creation of a control card data base is a function
of the DIALOG executive. DIALOG reads the control card

47

sequences from input cards and stores them in CCDATA. The
delimited control card directive which creates the control
card data base is:

'INITAL CCDATA1

One and only one space may appear between the words INITAL
and CCDATA. This directive is followed by a file of
information containing the control card sequence for the
various applications programs and utility functions as
illustrated in figure 4-3. The first entry, name must have
an opening delimiter immediately before the name. A clos-
ing delimiter must appear after the last entry on a separate
card as shown. The file must be terminated by a EF card.

The following paragraphs describe the formation of a single
entry in the control card data base for a hypothetical
applications program.

4.3.1 Construction of a Control Card Sequence for a Data
Base Entry - An illustration of a data base entry is shown
in figure 4-4. The essential features are:

a. A name for the control card sequence followed by
an equal (=) sign.

b. A retrieval card is the first card in the sequence.

c. An execution card.

The name is selected by the analyst at the time the control
card entry is constructed. The name will be used to retrieve
the control card sequence. The EXECUTE directive is used
for this purpose.

'EXECUTE PGMA1

Common practice dictates the use of the acronym associated
with an applications program such as AESOP for Automated
Engineering and Analysis Program. Most applications pro-
grams have such an acronym associated with them.

Application program execution sequences require an @ASG
card first. If no application program is being used in
the execution sequence, the first card may be a:

@LABEL:

where LABEL may be any label made up of 1-6 characters.

48

'CREATE CCDATA'

'PGHA =

CONTROL

CARD

SEQUENCE

PGf'iB =

CONTROL

CARD

SEQUENCE

PGMC =

CONTROL

CARD

SEQUENCE

EF

FIGURE 4-3 ILLUSTRATION OF A CONTROL CARD DATA BASE
CREATION FILE

49

PGMA =

QASG,A EX42-00002*ODIN-PGriA

(OTHER PRE-EXECUTION CONTROL CARDS)

SUSE 14,NMLIST

3EX42-00002*ODIN-PGMA

(POST-EXECUTION POST CARDS)

FIGURE M SAMPLE CCDATA ENTRY

50

Following the @ASG card any utility functions required by
the applications program prior to execution may be specified.
One example could be a USE for some file needed by the
applications program. The execution card begins with the
file name from the @ASG card.

4.4 Storage of the DIALOG Executive System

The final task in the installation of the DIALOG executive
system is the storage of the executive programs and special
procedures. When this task is accomplished, simulations
can begin. The DIALOG executive system consists of two
FORTRAN programs discussed in Section 4.1, the control card
data base discussed in Section 4.2 and 4.3 and the initializa-
tion procedure shown in figure 4-5.

DIALOG executive system initialization procedure

DIALOG executive programs

Control card Data Base, CCDATA

The entire system is stored on a disk as source or binary
records. The independent procedure is stored as source.
The purpose is two fold.

1. Minimize the number of operating system control
cards required to start a simulation.

2. Provide a convenient means for modification of the
initialization procedure (as in the use of a
restart capability).

Two control cards (other than JOB and USER cards) are
required to start a simulation:

@ASG,A EX42-00002*ODIN-LUI

@ADD EX42-00002*ODIN-LUI

The ODIN procedure then 'boot straps' the rest of the
DIALOG executive system in from the disk storage. Modifica-
tion of the ODIN procedure may be accomplished by the usual
methods at the JSC computer complex.

51

@FREE TPF$.

@ASG,T TPF$,F/50//1000

©DELETE,C NMLIST

@ASG,CP NMLIST,F2

©FREE NMLIST

@ASG,A NMLIST

@DELETE,C LUSOP

@ASG,C LUSOP,F2

©FREE LUSOP

@ASG,A LUSOP

©DELETE,C COPY5

@ASG,C COPY5

©FREE COPY5

@ASG,A COPY5

©DELETE,C DBASE

@ASG,CP DBASE,F2/50/TRK/100

(3FREE DBASE

@ASG,A DBASE

@QUAL B

@ASG,A *MODIN

@FREE,D *MODIN

@ASG,CP *MODIN

@FREE *MODIN

@ASG,A *MODIN

@QUAL A

@ASG,A *MODIN

@FREE,D *MODIN

@ASG,CP *MODIN

@FREE *I-1ODIN

@ASG,A *MODIN

©DELETE,C CCDATA

FIGURE 4-5A DIALOG EXECUTIVE SYSTEM EXECUTION
INITIALIZATION PROCEDURE,

52

@ASG,C CCDATA,F2/50/TRK/100

@FREE CCDATA

@ASG,A CCDATA

©DELETE,C CONTRL

@ASG,CP CONTRL,F2/5/TRK/10

©FREE CONTRL

@ASG,A CONTRL

@USE 14,NMLIST.

@USE 25,DBASE.

<§QUAL EX42-00002

@USE T,*ODIN-DIALOG

@T.ODBIN

@USE £2,*ODIN-LUI.

@USE 23,LUSOP.

@USE 24,COPY5.

@USE 25,DBASE.

@QUAL A

@USE 27,*MODIN.

@USE 28,CCDATA.

@USE 29,CONTRL.

@T.ODLOG

@FREE EX42-00002*ODIN-DIALOG

@FREE *MODIN

@ADD,P *MODIN.

@FREE *MODIN

@ADD,P *MODIN.

@FREE *MODIN

@ADD,P *MODIN

FIGURE 4-5B DIALOG EXECUTIVE SYSTEM EXECUTION
INITIALIZATION PROCEDURE,

53

5.0 USE OF THE DIALOG EXECUTIVE SYSTEM

The discussion in Section 4 centered around the installa-
tion of the DIALOG executive system including a control
card data base. The present discussion deals with the use
of the DIALOG executive system with a library of independ-
ent applications programs. Figure 5-1 illustrates how the
DIALOG executive system is set up and used. There are four
basic steps in using the system. First the task must be
defined, which includes a consideration of the technology
areas to be included in the analysis. Further the depth
of analysis in each technology area must be selected. The
depth of analysis and subsequent program selection will
have a direct bearing on the computer resources which will
be required. The second task is the selection of the
applications programs and the sequence which will be execu-
ted. This requires some understanding of the basic data
required by each program and the information each program
generates. The above tasks may be a team effort if the
simulation is large and/or requires many programs.

A survey of the existing ODIN library programs will aid in
the selection process. If a suitable set of programs is
not available, one of the following procedures may be
employed:

1. Locate the necessary programs from an outside
source.

2. Develop the necessary programs to serve the purpose.

In either of the two above cases, the program modification
for use with the DIALOG executive system as discussed in
Section 4 may be required.

The third task is the definition of the interprogram data
which will be stored in the data base. Included in this
definition are the study parameters, those elements of data
which drive the study either through a parametric variation
or an optimization process. Additionally, the performance
criteria must be defined. The performance criteria is the
desired study output information such as the weight or cost
of the system under study. Often there are study constraints,
those conditions which must not be violated in an acceptable
solution. The study constraints and performance criteria
are the basic information used in guiding the selection of
values for the study parameters.

54

1, DEFINE THE SIMULATION TASK
" TECHNOLOGY AREAS TO BE CONSIDERED

DEPTH OF ANALYSIS

2, SELECT THE APPLICATIONS PROGRAM SEQUENCE

SURVEY THE AVAILABLE PROGRAMS

UPDATE THE PROGRAM LIBRARY

DEFINE THE EXECUTION SEQUENCE

3, DEFINE THE DATA BASE ,INFORMATION

STUDY PARAMETERS

PERFORMANCE CRITERIA
STUDY CONSTRAINTS

LIBRARY INTERPROGRAM DATA

MONITORING INFORMATION

4, DECK SETUP
SETUP NORMAL DATA FOR ALL PROGRAMS

INSERT THE CONTROL DIRECTIVES

INSERT THE COMMUNICATION COMMANDS

FIGURE 5-1 PROCEDURE FOR THE USE OF THE DIALOG EXECUTIVE SYSTEM

55

Interprogram data must also be defined in the data base.
These data include intermediate results produced by one
applications program which are used by other applications
programs. Finally the data base may include information
which may be used for monitoring the study.

The fourth and final task is the actual deck setup. Deck
setup is the task which is addressed in this section. The
implication is that the other three tasks have been per-
formed; the remaining objectives are to set up the normal
data for the selected applications programs then insert
the proper control directives and communication commands
to perform the desired simulation. This section is divided
into discussions of control directives and communication
commands. Control directives are instructions to DIALOG
for the control of the sequence of execution of the independ-
ent applications programs. Communication commands are
instructions to DIALOG for the merging of data base informa-
tion with applications program data. Finally, the use of
standard utility procedures will be discussed.

5.1 Control Directives

The use of the DIALOG executive system requires that the
DIALOG executive programs and procedures"be available on
disk before the DIALOG control directives can be employed.
Figure 5-2 is an illustration of the operating system con-
trol cards at JSC required to access the DIALOG executive
system. Following the four control cards shown, all remain-
ing information is processed by the DIALOG executive. As
such the rules governing the use of the DIALOG executive
system apply.

The general arrangement of the input data to the DIALOG
executive system is shown in Figure 5-3. Here a hypothetical
simulation is setup which illustrates the use of all control
directives and alternates. Each control directive in.this
illustration will be described in detail. A summary of con-
trol directives is given in Appendix A. Generally speaking,
the control directives have the following format:

"directive name1

The directive is enclosed by DIALOG delimiters ('). No
space is permitted between the first delimiter and the
directive. One and only one space is permitted between
the directive and the name. The delimiter for the JSC
system is a 2-8 punch.

56

3RUN

SQUAL EM2-00002

aASG,A *ODIN-LUI

3ADD *ODIN-LUI

DIALOG
CONTROL
DIRECTIVES

3FIN

DIALOG
INPUT

NOTE: *ODIN-LUI CONTAINS THE ODIN INITIALIZATION
PROCEDURE,

FIGURE 5-2 SYSTEM CONTROL CARDS REQUIRED TO ACCESS
THE DIALOG EXECUTIVE SYSTEM,

57

'RESTART'

'INITAL DBASE' OR 'UPDATE DBASE'
[FILE OF DATA INPUT TO THE DESIGN DATA BASE]

EF

'UPDATE CCDATA' OR 'INITAL CCDATA'
[FILE OF DATA INPUT TO THE CENTRAL _CARD DATA BASE]

EF

'DESIGN START' (OPTIONAL DESIGN IDENTIFIER)
'EXECUTE PGF1A'

[FILE OF INPUT DATA FOR PGMA]

EF

'LOOP TO START' (CONDITIONAL BRANCHING LOGIC J
'IF VI, LT, V2'
EF

'EXECUTE PGMB'
[FILE OF INPUT DATA FOR PGMB]

EF

'PRINT DBASE' (OPTIONAL PRINT COMMAND]
'END'

9FIN

FIGURE 5-3 EXAMPLE OF A HYPOTHETICAL EXECUTION SEQUENCE
ILLUSTRATING THE USE OF ALL CONTROL DIRECTIVES,

58

5.1.1 INITAL Directive. - Initially the INITAL directive
is used to establish a design data base.

'INITAL DBASE'
•

file of data
to initially
establish DBASE

b •

EF

The INITAL directive is followed by a file of data to
initially establish the design data base. Initial data is
not essential to the operation of the system as data may
be added at any point in the execution sequence. However,
the EF end-o'f-file mark is required regardless of whether
data is entered. Data is always entered via the communica-
tion commands described in Section 5.2.

The INITAL directive is also used to create a control card
data base.

'INITAL CCDATA'

File of control
card data base
entries

NOTE: Control cards start in
column 7 (shifted by
one computer word)

EF

The control directive illustrated above creates a new con-
trol card data base, overwriting any existing one. The
creation of a control card data base is described in detail
in Section 4. Usually this directive is not used in a
routine simulation since a control card data base already
exists.

5.1.2 RESTART Directive. - The INITAL DBASE directive must
be the first directive in the sequence unless the simulation
is the continuation of an earlier run. In the latter case,
the following directive is used in place of INITAL DBASE:

'RESTART'

For the illustrated command to be effective, the data base
created in the earlier run must have been saved by use by
the ENDODN procedure described below. Further, the DIALOG
executive system initialization procedure differs in case

59

of a restart. Figure 5-4 illustrates the restart procedure,
Here the execution of DBINIT is replaced by a @ASG control
card for the retrieval of the previous design data base.

5.1.3 UPDATE Directive. - The UPDATE directive is used
for updating existing information in the data base and has
the following format:

'UPDATE name1

file of data
to update existing
data base

EF

The name associated with the illustrated directive can be
DBASE or CCDATA. The directive may be used for DBASE after
a RESTART directive for updating information in an existing
design data base. Often the UPDATE directive is used with
CCDATA to alter an applications program procedure. A card-
by-card update may be performed in the following manner:

'UPDATE CCDATA'

Following this control directive, the analyst lists the
desired modifications.

'PGMA =

new control
card
sequence

The above example illustrates the complete replacement of
a control card sequence. If, however, the analyst desired
to change only one card in the sequence, the following
cards must be employed:

'PGMA (3) =

I replacement control card I

The above example illustrates the replacement of the third
card in the sequence. The third and fourth card could be
replaced in the following manner:

60

QRUN

3QUAL EX42-00002

aASG,A *ODIN-LUI

8ASG J RESTARTS

aDATA *ODIN-LUI, RESTART

-43,43

aASG,A OLDATA, (STORED DATA BASE)

aCOPY OLDATA,DBASE

8END

aADD RESTART

FIGURE 5-4 ILLUSTRATION OF THE RESTART PROCEDURE,

61

'PGMA (3) =

I replacement for third card
replacement for fourth card

The requirement for updating the control card data base
stems from the fact the library programs are often modified
or replaced as a result of revisions or new versions. Often
more than one version of the same program exists. This is
particularly true during periods of program development.
During these periods of development, the analyst may wish
to evaluate a test version of a program in the DIALOG execu-
tive system. The UPDATE directive affords the individual
analyst the opportunity to make termporary control card
modifications to the DIALOG executive system without affect-
ing the other users of the system.

5.1.4 DESIGN Directive. - The DESIGN directive is used to
establish a point in the execution sequence to which con-
trol may be returned (or skipped to) via a LOOP TO direc-
tive described below. The DESIGN directive is analogous
to a statement label in a FORTRAN program. The format of
the DESIGN directive is:

'DESIGN name'

The name may be any name up to 6 characters but must not
duplicate an existing data base name.

5.1.5 EXECUTE Directive. - The EXECUTE directive is used
to execute a sequence of control cards from the control
card data base. The format is:

'EXECUTE name'

[data file for the 1
I applications program I

EF

The name may be any name assigned to a control card sequence
in the control card data base. This is the basic command
for the execution of applications programs. The data file
is the data for the applications program involved. The EF
card is required even if no data is involved with the execu-
tion.

62

5.1.6 LOOP TO Directive. - The LOOP TO directive is used
to transfer control to another point in the execution
sequence.

'LOOP TO name'

In the above illustration, control is transferred to name.
Name must be the name associated with a DESIGN directive
described in Section 5.1.4.

5.1.7 IF Directive. - The IF directive is a conditional
branching directive used in conjunction with the LOOP TO
directive in the following manner:

'DESIGN START'

'LOOP TO START1

'IF VI . LT . V2'

EF

In the above illustration, control is transferred to START
if VI is less than V2. VI and V2 are design data base
variables or constants. Multiple IF directives may be
associated with any LOOP TO directive. When multiple IP
directives are used, any condition specified will trigger
the LOOP directive. If no conditional IF directives are
used, the LOOP TO directive is mandatory. A EF card is
recommended after OP TO directive sets.

5.1.8 PRINT Directive. - The PRINT directive is used to
print the design and control card data bases DBASE and
CCDATA. The format is:

'PRINT DBASE1

or

'PRINT CCDATA'

This command may be placed ahead of an execution directive.
It cannot be intermixed with a file or applications program
data.

63

5.1.9 END Directive. - The END directive is used to signify
the end of a simulation. It has the following format:

'END '

All simulations must be terminated with the END directive.
A summary of the control directives is given in Appendix A.

5.2 Communication Commands

The communication commands provide a means 'of transferring
information to and from the data base. The following types
of transfer are included:

1. Transfer of information from the analyst to
the data base.

2. Transfer of information from the data base to
the applications program.

3. Transfer of information from the applications
programs to the data base.

In the transfer of information from the analyst to the data
base, three coirjr.ands are used:

1. ADD command for adding or updating information in
the data base.

2. DEFINE command for defining data base variables
and reserving space in the data base.

3. . (comment) command for identifying applications
program data.

In the transfer of information from the data base to the
applications program, the basic command is the replacement
command for replacing data base names and data base name/
value combinations with values from the data base.

In the transfer of information from the applications pro-
gram to the data base, a special extension of the ADD
command is employed. The "ADD-like" command is used in
generating a special output file which can be placed into
the data base.

Each of the above commands will be described in detail in
this section. Examples covering most objectives will be
presented.

64

5.2.1 The ADD Command. - The ADD command is the basic
communication command available to the analyst for adding
or updating information in the data base. The general
format of the command is:

'ADD name 1 = value 1, name 2 = value 2,

name 3 = value 3, value 5, value 5,

value 6, name 4 = value 7,'

It may be used in creating data in the data base as well
as for modifying the data base at any point in the execu-
tion sequence. The ADD command must appear within the
file of information following one of the control directives:

'INITAL DBASE1

'UPDATE DBASE1

'EXECUTE name1

The ADD command may be used for adding any type of informa-
tion to the data base (i.e. real, integer, hollerith or
logical) the data type being determined by the actual -data
entry. The information may be a single element or an entire
array of information. Arrays may be of mixed types under
certain circumstances. Combinations of data base variables
and constants using the five common operators (+, -, *, /,
**) may also be employed within the ADD command. However,
mixed mode arithmetic is not permitted in combining data
base variables. Specific rules and exceptions will be pre-
sented in the examples below.

The following list of rules of syntax or pattern of con-
struction apply to the ADD command:

1. The opening delimiter (' or 2-8 punch) may be in
any column.

2. No spaces may appear in the character string 'ADD
(including the delimiter).

3. One or more spaces must appear between the ADD
and the first name.

4. One or more name = value combinations may appear
on each card.

65

5. The 'ADD command may be continued from card to
card* Any number of cards may be used.

6. A card must be terminated with a comma (,} or a
DIALOG delimiter (').

7. A continuation card may start with a name or value,

8. The 'ADD command must be terminated with a DIALOG
delimiter (').

9. The closing delimiter may be on a separate card.

10. The last comma (,) before the closing delimiter
is optional.

11. The maximum number of names and values (including
the command) is 20 per card.

The most common SYNTAX errors result from failure to comply
with rules 2, 6 and 8. Attention is specifically drawn to
these rules.

The following pages present some examples. Each example
is discussed. In addition, a sample data base printout
for all examples will be given. Discussion of
the examples is presented in the following format:

OBJECTIVE: A concise statement of the analysis
goal to be achieved by the command.

SYNTAX: Pattern of formation of the command.

EXAMPLES: A list of one or more examples.
Sometimes incorrect examples are
given and are noted as ILLEGAL. In
these cases the results are either
incorrect or unpredictable for the
objective stated.

RESULT: A brief description of the data
base entry which will result from
the use of the exemplified command.

RESTRICTIONS: In some cases restrictions in addi-
tion to these described above will
be given.

66

All of the ADD command examples presented in this section
are illustrated in figure 5-5. These examples are listed
from cards which were actually processed by the DIALOG
executive program. The delimiter (^) shown in the
illustration results from the particular character set
employed by the printing device. The data base entries
which resulted from the examples in figure 5-5 are
illustrated in figure 5-6.

5.2.1.1 Adding Fixed Element Information. _-

OBJECTIVE

SYNTAX:

EXAMPLES:

RESULT:

ADDITIONAL
RESTRICTIONS:

To add or update elements of informa-
tion to the data base.

'ADD name = value"

'ADD A = 10.'

'ADD B = 2'

'ADD C = ALPHA1

'ADD D = .TRUE.'

Four data base locations will be
created or updated in the data base.
Each of the four basic data types are
represented. The data type is determined
from the actual number. There is no
implicit type assumed from the data base
name (as in FORTRAN).

1. Hollerith information and logical
variables which are to be stored
in the data base cannot be data
base names.

5.2.1.2 Adding Multiple Data Elements. -

OBJECTIVE:

SYNTAX:

EXAMPLES:

To add or update a series of elements
to the data base by a single ADD command.

'ADD name 1 = value 1, name 2 = value 2'

'ADD A = 10., B = 2,

C = ALPHA,

D = .TRUE.'

See Restrictions

67

Ann STATifMEiviT EAAMPLES

r>n A = K-. *

r = q
n = A

J = i o. » ? • - • »? 30.

M - . r jur» ' -i •

o = ?• 5. » 6. 35
D = J{ 1) 3-

o - v (?) /
P - A- OC1) ^
S - j (3) * 0 '?)

NOTE: THE DELIMITER (-r) RESULTS FROM THE LISTING
EQUIPMENT USED,

FIGURE 5-5 ADD COKMAND SUHnARY

68

2
O

or
oi/>
UJ
a

UJ
ra

UJ _J UJ
z> <r r>
_j > _j

UJ < <
z> > x >

• a:
(\i a< a: — -i

> u_! o: <
O UJ O r>J rr\ o

_ J U J _ ! — # * • » - _ >
< r t - _ i o < n c < (r ; < : <
uj ar c o ii i, ii it » u;
< X " X - J u i u , o x > — or

o:
n:

c£.
UJ
o
iu

o:
UJ

o
X

UJ
a
I

I
o
o

o
UJ
X

o
<
o

Qi
o
X

UJ
D.

Q
UJ
X

*— *s:

Csl
*w

^- o

-> ii < -5
II Ii II II

Q. & & IS.

CD

2-

O
—« OOOCCC.OOOQ

2
UJ
a:
a:
—^o

o
o

o
c

o
a

0

o
.— 1

—<

O

O

0
0
o
0
0
o
o
o
o
o
o
o

• o
< LU O
X Z) 0
c. o.: «.
-I 1- O

(V < t ,-(r\i

-^ »-4 ~ ^W «— 1

o
o
o
0
o
o
o
o
o
o
0
o
o
o
o
o
o
*o

rv

_f

O '
o
o
o
o
0
o
o
o
c
o
o
0
o
o
o
o

• < * «
o o o o

in -o •-« tx m

— ' f-4 fT,

<\' v'-

a *-
_' U-'
<« r*~•

a
o
<

O 0
0 O
0 0
o o
0 0
0 0
o o
o o
0 0
o o
o o
o o
0 0
0 0
0 0
0 0
0 0
o o

C- a> co &

•i-

o a
o o
< <

o
o
o
c
o
o
0
o
o
0
o
o
o
o
o
o
o

*

C^ f\J lA >-0 r-»

ro i-<

o o a
0 C 0
<: «s <i

o o
0 0
0 0
O 0
0 0
0 0
0 O
o o
o o
C- 0
0 0
0 0
O 0
0 0
O 0
o o
0 0

« *
O f A

It »

^ o r>

.-« r-(f-J

Q_

<=C
X

UJ
rr:

00
UJ

oo

LU
s: oo

2
O rn

IA in

c. o a:

LO
I

UJ

a,
3T U.

69

RESULT: Four data base locations will be created
or updated in the data base. The value
stored will be those presented by the
information to the right of each equal
(=) sign.

ADDITIONAL
RESTRICTIONS: 1. Hollerith information and logical

variables which are to be stored
in the data base cannot be a data
base name.

5.2.1.3 Transferring Data Elements. -

OBJECTIVE: To create or update a data base variable
by equating (transferring) one variable
name to another.

SYNTAX: 'ADD name = name1

EXAMPLES: 'ADD E = A1

'ADD F = B'

RESULT: The variable E and F'are created or
updated. The information (real or
integer) is transferred from A and B
to the new locations for E and F.

ADDITIONAL
RESTRICTIONS: 1. A and B cannot be hollerith or

logical variables.

2. Neither E or F can be an array name.

5.2.1.4 Combining Data Elements with Constants. -

OBJECTIVE: To create or update a data base variable
by combining a data base variable with
a constant using an arithmetic operation.

SYNTAX: 'ADD name = name * value1

EXAMPLE: 'ADD G = A * 2.' (real)

'ADD H - B + 3' (integer)

'ADD G = 2. * A1 (ILLEGAL - See
Restrictions.)

70

RESULT:

ADDITIONAL
RESTRICTIONS:

Two variables, G and H, will be created
or updated in the data base whose values
will be the combinations indicated.
Any of the common arithmetic (-f, -, /,
*, **) operations may be performed. Up
to ten operations may be performed.

1. The combination of a variable with
a constant cannot begin with a con-
stant.

2. Neither G nor H can be an array name,

5.2.1.5 Combining Data Elements with other Data Elements
and Constants. -

OBJECTIVE:

SYNTAX:

EXAMPLE:

RESULT:

ADDITIONAL
RESTRICTIONS:

To create or update a data base variable
by combining other data base variables
and constants.

'ADD name = name + name * value1

'ADD I = A + G * 2'

The contents of A will be added to the
contents of G. The results of that com-
bination will be multiplied by 2. The
result of that combination will be trans-
ferred to I. Up to ten operations may
be performed.

1. The operations are serial in nature
(like a hand calculator). Each
operation is performed on the result
of the previous operation (s).

2. The combination of variables must
begin with a name.

3. The name, I cannot be an array name.

71

5.2.1.6 Adding Arrays. -

OBJECTIVE:

SYNTAX:

EXAMPLES:

RESULT:

ADDITIONAL
RESTRICTIONS•

To create or update arrays of informa-
tion in the data base.

'ADD name = value, value, value1

'ADD J = 10., 20., 30.,

K = 2, 4, 6,

L = ALPHA, BETA, GAMMA, (hollerith
constants)

M = .TRUE., 3,5.'

Four new or existing arrays will contain
the information indicated. Mixed arrays
of real and integer values may also be
used. Logical arrays (more than one
element) cannot be entered.

1. No data base name may appear on the
right side of the equation (= sign)
as array elements.

2. Logical and hollerith variables may
not be mixed with any other type.

3. Hollerith may not be the first entry
of an ADD card. (i.e. 'ADD L = ALPHA,
BETA, GAMMA,)

4. No more than one logical variable
per array may be entered.

5.2.1.7 Adding Constant Arrays. -

OBJECTIVE:

SYNTAX:

EXAMPLES:

To add or update an array of constant
information to the data base.

'ADD name - n * value, value'

(ILLEGAL)

'ADD N = 2 * 8., 9. , 9.'

'ADD N = 8 . , 8. , 2 * 9. '

72

RESULT: N will be a new or updated array of
four elements/ each containing values
of 8., 8., and 9., 9.

ADDITIONAL
RESTRICTIONS: 1. The integer n must be next to the

equal (=) sign. Multiple entries
can only be performed on the first
n elements.

5.2.1.8 Adding Mixed Arrays. -

OBJECTIVE: To add or update a mixed integer/real
array of information.

SYNTAX: 'ADD name = value, value, . ..'

EXAMPLE: 'ADD 0 = 2, 5., 6.

RESULT: The # array will be added or updated.
It will contain the integer 2 followed
by the real values 5., and 6. This is
useful in some applications programs
for defining table sizes in the same
arrays as the tabular data.

ADDITIONAL
RESTRICTIONS: 1. The array elements cannot contain

hollerith or logical information with
the integer and real information.

5.2.1.9 Transferring Array Elements. -

OBJECTIVE: To update or create a data base variable
from an element of a data base array.

SYNTAX: 'ADD name = name (n)'

EXAMPLE: 'ADD P = J(D,

Q = K(2), '

'ADD Q = K(B),1 (ILLEGAL)

RESULT: The contents of J(l) and K(2) are trans-
ferred to P and Q respectively. The
element number being transferred must
be a constant.

73

ADDITIONAL
RESTRICTIONS: 1. The element number cannot be a

data base name.

2. The element cannot be hollerith or
logical in type.

5.2.1.10 Combining Array Elements. -

OBJECTIVE:

SYNTAX:

EXAMPLES:

RESULT:

ADDITIONAL
RESTRICTIONS

To create or update a data base variable
combining data base array elements.

'ADD name = name (n) * name (n)

'ADD R = A * Q(3),

S = J(3) + Q(3)'

The data base variables R and S will
contain the combinations indicated.
Any of the arithmetic operators (+, -,
*t /i **) may be employed, up to 10
operations may be performed.

1. The element number cannot be a data
base name.

2. Mixed mode arithmetic cannot be per-
formed (i.e. integer * real).
Unpredictable results will occur.

5.2.2 The DEFINE Command. - The ADD command described in
the previous paragraphs is the most useful in the communica-
tion command language. However, the DEFINE command described
below will be useful for two purposes:

1. To reserve space in the data base for data bases
variable before the data is actually entered.

2. To provide a brief description of the data base
variables. This description is stored in the data
base.

As with the ADD command, the DEFINE may be used anywhere
within the execution sequence. However, it is most likely
to be used in the creation of a design data base for reserv-
ing space or providing definitions for new or existing
variables.

74

The format of the DEFINE command is:

'DEFINE name = n, description,1

The following SYNTAX or formation rules apply to the
DEFINE command:

1. The opening delimiter (') may be any column.

2. No spaces may appear in the character string 'DEFINE.1

3. One or more spaces must appear between the DEFINE
and the name.

4. The n is a number of data base locations to be
reserved. If omitted, one will be assumed. If
previously defined n will be ignored.

5. A comma must separate the name = n set and the
description.

6. The description may be up to 30 characters (see
Section 4 to change this number).

7. The description must be terminated with a comma (,).

8. The DEFINE command must be terminated with a DIALOG
delimiter (').

More than one variable may be defined by a single define
statement. Any number of continuation cards may be employed.
Although more than one variable may be defined on a single
card, experiments have shown unpredicable results can occur
from this practice. The usual technique is to define one
variable per card and use many continuation cards. The
most common SYNTAX errors result from failure to conform
to rules 2, 5 and 8. The reader's attention is specifically
drawn to these rules.

Figure 5-7 illustrates the use of the DEFINE command. They
define the example variables used in Section 5.2.1. The
definitions appear on the sample data base printout on
Figure 5-6.

5.2.3 The Comment Command. - The comment command is used
in applications program data for identification only and
as such, the comment performs no functional operation.
The form of the comment:

75

STATf'E'-'T

'JE A, PEAL vtLn^
NE 8. INTF.oE1-' VALUE
MF r, HOLLERITH
MF o.

J=I'

FTJE 0=?. ", I^F-) T Y f ' E
F l^ i f P. P= j(1 }
FT JF 0. O-K (?)
F T ' l F ,~> , ^ - z / . " 0 { n

r y vf h« S- j f ̂) - '} (,'')

NOTE; THE DELIMITER (r) RESULTS
FROM THE CHARACTER SET USED

ON THE LISTING EQUIPMENT,

FIGURE 5-7 DEFINE CO!W,i!D EXAMPLES,

76

1 . comment'

The SYNTAX rules for construction of a comment command are:

1. The opening delimiters and closing delimiter may
appear in any column.

2. No space may appear between the delimiter (') and
the dot (.) .

3. At least one space must appear between the dot (.)
and the start of the comment.

4. The comment may be any number of characters.

5. The comment may appear on the same card with data.

6. The comment may not appear on the same card with
another command (i.e. ADD or replacement command).

7. The comment may be continued on many cards so long
as the comment does not start on the same card as
data.

8. A comma (,) may not be used in a comment.

9. The comment must be terminated with a delimiter (*).

The SYNTAX rules which are most often violated are 2, 3,
6 and 8. The attention of the reader is drawn spacifically
to these rules.

The DIALOG executive program replaces the comment and
associated delimiters with blanks as they are encountered.
After processing the comment, DIALOG checks to determine
if the card is all blank. If blank, DIALOG "removes" the
card from the input stream.

Examples of comments are given in both figures 5-5 and 5-7.

5.2.4 Replacement Command. - Data base information is
entered into the applications program input data by means
of the replacement command. As the name implies the replace-
ment command replaces delimited data base names with the
corresponding values. Any delimited data base variable
name may be placed on a data card of an applications pro-
gram. The DIALOG executive program will replace the
delimited name with the value (s) from the data base.
Therefore, nearly any input procedure can be accommodated.
The general format of the replacement command is:

77

1 name1

The name is any data base name, combination of data base
names and constants. Further, the names may be names of
single variables or arrays. The results from the two types
of replacement are different and will be treated by example.
Figure 5-8 illustrates the use of the replacement command.
The general rules governing the replacement are as follows:

1. The opening and closing delimiter (') may be
placed in any column.

2. No space may appear between the opening delimiter
and the first data base name.

3. Any combination of data base variables, array
elements and constants may be used.

4. The first variable must be a name.

5. A maximum of 20 characters may be used between
delimiters.

6. A maximum of 10 operations may be performed.

7. The number of significant places of the replaced
number will be the maximum allowed by the space
between (and including) the delimiters.

8. The opening and closing delimiter must be on the
same card.

The most common SYNTAX errors result from failure to comply
with rules 2, 4 and 5. Attention is specifically drawn to
these rules. One additional problem may arise by not allow-
ing enough space between delimiters to obtain the desired
number of significant places.

'A'

In the above illustration/ the number of significant places
of the replacement value would be reduced to three places.
The recommended replacement technique would be:

'A '

with sufficient space between delimiters to provide the
desired significant places.

78

Figure 5-8 is hypothetical input stream, each line repre-
sents a card input. Delimited data base variables are
placed on the card representing data base variables or
combinations of data base variables, arrays and constants.
The data base information comes from the data base of
figure 5-6. Figure 5-9 shows the results of the replace-
ment commands in figure 5-8. The following paragraphs
discuss each of the examples with regard to objectives and
results. The format of the descriptions follow the general
format outlined below:

OBJECTIVE:

SYNTAX:

EXAMPLES:

RESULT:

ADDITIONAL
RESTRICTIONS;

A concise statement of the analysis
goal to be achieved by the command.

Pattern of formation of the command.

A list of one or more examples. Some-
times incorrect examples are given and
are noted as ILLEGAL. In these cases
the results are either incorrect or
unpredictable for the objective stated.

A brief description of the data base
entry which will result from the use
of the exemplified command.

In some cases, restrictions in addition
to those described above will be given.

5.2.4.1 Simple Replacement of Data Base Names.-

OBJECTIVE:

SYNTAX:

EXAMPLES:

To replace a data base variable on an
input card with a data base value.

1 name1

'A '

'B '

'C '

'D '

'K(2) '

79

or MODIC~YJ'.'<"; APPLICATIONS DPOG^V-<
HASH IN

", i ~ CO'-'^IN;A' I0\"
f.
•3
C

~ P iC

r, ; * P . i ft * P ,

T
J

j<i > * JH) *
-; (? » -/ K (;> 1 -/

<'' - ̂ (3 ' / A'%0 ' 3)
j(l)40(c> ^J(^)*n
•-,r-J iM-"-J*

J--:-M ij'-'i.'i

fi<J *A*J*
,'. < J -/ A * I i

J « A / J * A *

J/A /J/f.*

NOTE: THE DIALOG DELIMITER RESULTS FROM

THE CHARACTER SET USED ON THE CARD

LISTING EQUIPMENT,

FIGURE 5-8 ILLUSTRATION CF REPLACEf€NT COMMAND,
80

ABCS OF MODIFYING A P P L I C A T I O N S PROGRAM INPUT

D A T A BASE INFORMATION

N'AME C O M B I N A T I O N

A .

B

C

D "

E A

F B

G A*2,

H B-s-3

0. 0000 O C O C O O O O O U 000

L
GAM'- 'A

VALUE (S)

10.000

2

ALPHA

.TRUE.

10.000

?.

20.000

5

60.00000

10 « 00 0000 30 00 00 00000 , ? 0 «, 000 30 0 JOOOO 00 00 C 3 ,

2 t XT 1

ALPHA ,BETA

M .TRUE.
9. 0000000 OOC 00000000 r

3r

N 3,000000000000000000, 8. Q O O O O O O O O C O O O G O O C O r
9. 0000000 O O O C O 000 000 f 9. 000 00 000 000 00 00000 i

0
6 . 000000000000000000 ,

2,5. 000000000000000000 .

P J(l) 10.00000000000000000,20.00000000000000000,
30.00300000000000000,

Q K (2) 4

FIGURE 5-9A 'RESULTS OF THE REPLACEMENT COMMAND,
81

0 R A * 0 (3)

s j (3) + o (2 >

N*J
270.000UCOOOOOOOOOOO,

J*N
270.0000000000000000,

J*2.
60.00000000000000000,

J*A
300.0000000000000000,

A*J
300.0003000000000000,

A + J
40.00000000000000000,

J-f-A
- tO . COO 00 00 00 00 300 000,

A / J
. 3 3 33 33 33 3333332 14:91,

J /A
3 .00000000-0000000000,

60.00000

35.00000000

80.00000000000000000,160. 00 000 000 00 03 00 00 ,

80.30000000000000000,160.0000000003000030,

20.000000000000000.30,40.00000000000000000,

1 00. 3 000 0 00 00 0 000000 f 2 00. 00000 000 000 J 00 00,

1 00. 0030 00 000 000000 0,2 00. 0000 0000 000 000 00 t

20.00000000000000000,30.000000000000000005

20.00000000000000000,30.00003300033030000,

1 . O O O O O O O ' J O O O O C O O O O O f 2 . 0 0 0 0 0 C J O O O O O O O , JL 'JOr

FIGURE 5-9B RESULTS OF THE REPLACEMENT CO.'rAiiD, (CONTINUED)

82

RESULT: The delimited data base names will be
replaced with the values in the data
base as follows:

10.000

2

ALPHA

.TRUE.

The values may be real integer, hollerith
or logical. The maximum number of
significant places defined by the
delimiter will be used. Integers are
right justified in the field. All others
are left justified.

ADDITIONAL
RESTRICTIONS: 1. The first element of an array cannot

be used.

5.2.4.2 Simple Replacement of Data Base Combinations. -

OBJECTIVE: To replace a data base variable combina-
tion with the computed value.

SYNTAX: 'name + valuel * name2'

EXAMPLES: 'A * 2.'

•B + 3'

'A + G * 2.'

'A * 0(3) '

'J(3) * 0(2) '

RESULTS: The delimited data base x^ariable or
array element combination will be
replaced with the computed values
as follows:

20.000

5

60.000

60.00000

35.00000000

83

ADDITIONAL
RESTRICTIONS:

The arithmetic operations are performed
in a serial manner (as on a hand calcu-
lator) from the left.

1. The item adjacent to the opening
delimiter must be a name.

2. Mixed mode arithmetic is not per-
mitted (i.e. real * integer)
unpredictable results will occur.

3. The first element of an array cannot
be used.

5.2.4.3 Array Replacement by Name. -

OBJECTIVE:

SYNTAX:

EXAMPLES;

ADDITIONAL
RESTRICTIONS:

To replace an array name with an array
of information from the data bas .

'name' or 'named)1

'J' or 'J(l) '

'K'

'L1

•M1

The arrays are placed on the card start-
ing at the first delimiter using 20
characters per element, three elements
per card. Elements are separated by
commas. Continuation cards are created
as required with data starting in column •
2. The position of the closing delimiter
is immaterial. 'J1 or 'J(l)1 produce
the same result. Integers are right
justified in the field, all others are
left justified.

1. Array replacement is generally limited
to NAMELIST or special input pro-
cedures. It is probably not suitable
for formatted input.

84

5.2.4.4 Array Replacement of Data Base Combinations. -

OBJECTIVE:

SYNTAX:

EXAMPLES:

RESULTS:

ADDITIONAL
RESTRICTIONS:

To replace a data base combination on
an element by element basis.

'namel * name2'

'N*J' {array * array)

'J*2.' (array * constant)

'J*A' (array * data base variable)

'A/J1 (constant/array)

The operation is performed on an element
by element basis. If one factor is a
data base variable or constant, the one
number is used as an operator on every
element of the array. If both are arrays,
the resulting array is equal in length
to the shorter one. Division of a con-
stant by an array results in an element
by element division of the constant by
the elements of the array. For multiple
operations, an element by element serial
arithmetic is performed.

Reference to the first element of an
array refers to the entire array.

A summary of the communication commands is given in
Appendix B.

5.3 Standard Utility Procedures

The purpose of maintaining a program library for use with
the DIALOG executive system is primarily for ready avail-
ability of applications programs. However, during the
development and subsequent applications of the system, a
set of utility programs or procedures has evolved for per-
forming such tasks as:

1. Compilation and execution of interface programs.

2. Disposition of data files.

3. Report writing.

85

4. Executing arbitrary control card procedures.

These procedures are stored in the control card data base
in exactly the same manner as applications program pro-
cedures. They are called into execution with the EXECUTE
directive. The following paragraphs provide a brief
description of the use of the standard utility procedures.
Some have associated data and some do not.

5.3.1 COMPL1/MYPG1: Compile a FORTRAN Program/Execute
the Compiled Program. - COMPLl compiles the program while
MYPRG1 executes the compiled program. The data associated
with COMPLl is the FORTRAN source code. The data associated
with MYPG1 is the input data for the compiled program. The
execution sequence is as follows:

'EXECUTE COMPLl1

FORTRAN Source Code

EF

'EXECUTE MYPG11

Data for Compiled Program

EF

5.3.2 REPORT: Generates Data Base Status Report. - Usually
the submission of a computation to the digital computer
results in the generation of detailed information about
the process involved. The results as well as intermediate
information are printed by the normal output channels. The
submission of the same computation using the DIALOG execu-
tive system involves the generation of the same information
plus some summary type information which is usually a small
subset of the total output of the applications program.
The summary information is placed on the special output file
discussed in Section 4.

The information on the special output file may be placed
in the data base after which it is generally available for
printing through the REPORT procedure.

'EXECUTE REPORT1

report data

EF

86

The report data is a sequence of punched cards much like
the input data to an applications program. However, the
report data is not processed by any computer program but
simply printed by the DIALOG executive program.

The report data is formatted by the analyst to provide
any descriptive information desired. Further the report
data may contain data base information through the use of
the communication commands described in Section 5.2. An
example card in the report might be:

WEIGHT OF THE SYSTEM IS 'WGT' POUNDS

In the above illustration, WGT is a data base variable.
The DIALOG executive program replaces the data base name
and delimiter 'WGT' with the information stored in the
data base. The report is printed after processing the
report data. The result is a "stylized report" specifi-
cally tailored to the needs of the analyst. The report
may contain "carriage control characters" in column 1 of
the report data cards.

1 - eject a page before printing

0 - skip a line before printing

Any number of reports may be generated during a simulation.
Usually during the initial phase of coordinating of large
simulation using the DIALOG executive system, the staff
selects subsets of the data base information to be communi-
cated to each staff member for analysis. The format of the
individual reports is tailored to the needs of the indivi-
dual receiving the information. Once the format is
established, it is keypunched on data cards with data base
information being identified by name in the manner described
in Section 5.2. These data cards become a report file.

A mini-report exemplifying this technique is shown in
figure 5-10. Any of the features of the DIALOG language
including scaling and adding data base information are used
in a completely free field report format. The first column
of each card is reserved for printer carriage control pro-
viding a convenient means of paging and spacing for report
clarity. Figure 5-10 also shows the printed results of
the report file with data from the data base.

87

/KXFJUTC i*hPO-*T t
4. DATA fO''-1 c,M''l'.A.VY

PAGE 1

sin;-<.',;>r r'^E^oi'T FO-/ OUJN/K-LV
M.J; r Y f l . C f M tLAPSCD T1"F = JLLTIf iE' ' CPU SECOf.D

<,' = AYLO /- LHS # ; P A Y L O = K ^ KI
'EIGHT #'-.C,H()S'' X LHS

n-'-UTcP Vr. IiiHT je-lfj^i^O / LHS /'.T,ROSO'-K? K I L O G R A M S
'.T«f.L <~OST xtt, 1 MILLIO'.'S

M'->osU.° COST -" i<TCOSTr t * MILLION'S
C-?-1 ' ! [."•> COST < # T C O S T M V '-tlLLloNS

:«iT'-r I'.'-, V ' .L '^CITY ^ V ^ T G . J # KPS #VSTGa /Xi \V Kl,'OT5
- F f- ̂ 11 c. V'-C"!i" THRUST #7'tr<iJST * LHS
t - n s s i f - * :-'ASS c ' T : 0 *.... # 4 L P H A (^) 4
?i,)n «" = JJ-TC.T#

.•i-Fsy CvCLE = ̂ JJ°fSr^. Thp /K ' *2 - } ^TH StCO,-^0 OM FILE O l ' T S A V . N=#Ni

L'-in OF ODI t J / ^LV SUHMA.7Y
» KtPORT
1
- o o:': c o 0100 c c- ^ o o r. ••) o ft o o

PAGL 1

PblO T I "C = 5 ^ . < ? 6 5 C O C?U

»; .v p - i " 1 P.'-ri ") '0 n • - < c , . - > ' • / ' i L-tS I •»/!"+.'"JOG <ILOC- J A"S
*-ro",T-. -•j;-,'-r ? r >7) n ? . • > / i-s '
' • -••MTr r- • -:r-~r /n i ' -c .^M L-<S

T O T - I C^'^T j ' i7-')c ' .T-i < ; . ' 'ILLIO'.S
r-' cobi"i-1- »s. -> j r'-i .-.n.i. n^'s
^ «-'_.ST - in1;'/... 3-3^',' ' I L L I ' J ^ b

T' v?-?. , ' ')] ->• ' •-"-'S

T --"SI S?S.-"." . <• •<'> L'<S

. -T i l •>. "'r"r • '•••" . ' . 0

1« ThL HH »<; .. '-•'i; O' F" ILL

- I1 ', r' ;••)!' /- l.V VT" ,,^Y i-

FIGURE 5-10 ILLUSTRATION OF REPORT GENERATION CAPABILITY,

88

5.3.3 ENDQDN: To Save a Design Data Base for Future Use. -
Usually the execution of the DIALOG executive system
requires the creation of a design data base which is used
and modified during the simulation process but not saved
at the end of the run. It is sometimes desirable to save
the design data base and restart the simulation at a later
date. Examples of this requirement would be a very long
simulation involving many program executions or an optimiza-
tion involving repetitive evaluations through a series of
application programs.

The ENDODN procedure allows the analyst to save the data
base in the precise configuration required to restart the
simulation. The control card sequence follows:

ENDODN =

@ASG , CP DATAB . , F

@COPY DBASE., DATAB

It is not essential (nor required) to execute this procedure
using the EXECUTE directive. If the ENDODN procedure is
stored in the control card data base, it will be executed
at the proper time (after the END directive) . The data
cell location must be specified by the analyst and retrieval
as part of the initialization procedure. The retrieval is
discussed in Section 5.1.2.

5.4 Special Options in DIALOG Executive Program

Generally any name, except communication command names, may
be used to identify data base information. However, there
are a few additional exceptions. The excluded names are:

BUILD

DBDUMP

ELTIME

INDUMP

OUTDliP

PAGDMP

which represent special commands to DIALOG. The data base
variables are stored with the ADD command (i.e. 'ADD BUILD').

89

If present in the data base, DIALOG will perform special
functions as described in the following paragraphs.

The BUILD option is associated with the dynamic construc-
tion of the design data base by the applications programs.
Two values have significance to the DIALOG executive pro-
gram.

BUILD = 0

BUILD = 1

The zero value specifies that previously undefined variables
will not be defined by an applications program. A value
of one specifies that all information from the previous
program will be stored in the data base regardless of its
previous data base status. The value of BUILD may be
changed from program-to-program by use of the ADD command:

'ADD BUILD = nr

in the input data of the applications program. The change
in the BUILD option becomes effective for the program where
it occurs and remains effective until changed again.

The BUILD option only affects data coming from applications
programs. It has not affect in ADD commands or other user
coirjnunication commands.

D3DUMP is a DIALOG option which specifies that the entire
data base be printed after each applications program
execution. An example of this printed output is shown in
figure 3-11. It should be noted that this option is manda-
tory when selected. Selective printing of the data base
is accomplished by the PRINT directive.

'PRINT DBASE1

The directive illustrated above is discussed in Section 3.1.

ELTIME is a timing option. It is selected by a setting
ELTIME to an initial value:

'DEFINE ELTIME = 7, description,'

When selected, a timing routine in DIALOG will be activated.
This routine monitors the individual and cumulative computer

90

processing parameters for the applications programs. The
parameters are identified on the printed output.

INDUMP is an optional data base name which specifies the-
printing of the modified input stream for the applications
programs. The modified input stream represents the input
file in exactly the form the applications program will read
it. The INDUMP option is useful in the early phases of
linking programs for debugging purposes.

OUTDMP is an optional data base name which specifies the
printing of the special data base output file, NMLIST,
which contains all the information available for entry
into the data base. Details of the NMLIST file and how
it is used are discussed in Section 3.2.4. The OUTDMP
can be used to determine what information is available
from a given applications program or simply as a debugging
aid in the early phases of the analysis.

PAGDMP is an option available to the programmer for detec-
ting errors within the DIALOG executive system. It has
little use to the analyst using the system. It is mentioned
only because PAGDMP is an excluded data base name which has
special significance to the DIALOG executive system.

A summary of special options and additional restrictions
is given in Appendix C.

91

6.0 APPLICATIONS

The DIALOG executive system was developed to provide the
program linking capability required in the Optimal Design
Integration (ODIN) procedure of Reference 9. Two applica-
tions were used to demonstrate the ODIN capability and are
presented here to illustrate the use of the DIALOG execu-
tive system in linking independent programs. The ODIN
application program library is shown in figure 6-1. This
library was used to perform the analysis presented in this
section. The results indicate that the DIALOG executive
system has unlimited potential in solving a wide variety
of engineering problems. The examples presented were per-
formed on the CDC 6600 at Langley Research Center.

6.1 Orbiter Landing Skin Temperature Study

An example of a small ODIN problem is shown in figure 6-2.
A study was required to determine if landing performance
or stability and control might be affected by the presence
of excessive skin temperatures on the Space Shuttle Orbiter.
This problem was formulated in ODIN to determine skin tem-
perature time histories using the various ODIN technology
programs. the MINIVER (a mini-version of the MDAC JATO
Aerodynamic Heating Program) and ABLATOR (reference 11)
programs required were quickly integrated in the ODIN
system. MINIVER was used to obtain convective heat rates
along the entry trajectory and ABLATOR enabled calculations
of the associated skin temperature variations over the
orbiter surface. Formulation of the problem required the
combined efforts of a group of engineers with technological
backgrounds in materials, flight dynamics and aerothermo-
dynamics. The deck setup for the problem is shown in
figure 6-3. The problem was solved approximately one week
after its conception. The results, shown in figure 6-4,
indicated that no excessive temperatures were present on
the orbiter skin during approach and landing using either
reusable or ablative material.

6.2 Shuttle Orbiter Wing Design Study

A somewhat more complex demonstration of the ODIN system
is summarized in figure 6-5 for a shuttle orbiter wing
design study. The purpose of this study was to provide
an orbiter wing which would achieve hypersonic/subsonic
compatability. Study guide lines were chosen in accordance
with those from NASA's Shuttle Request for Proposal in

92

O

<C
-7 ce

££
z'z]
<=> 1/1
O t-J
UJ 01

0(

CO

<
CD
CD

Q_

00

CD

OO

Si

CD
CD

CD-

CO

CD

D_
Q_

CD

CD

cr: LU-

LU c5
SI CD
O
LU
CD

C3 a. CD
LU — (C D !—
I— LU I— a_ co i—
1— —~ CJ) CD UJ CO
LU <: LU H^ di O

r̂ "~- l~

cc:

UJ

oo
CD

CD Q_ rr
CD <: oo i—i
r̂ co co I—

>—- > oo I—
t\J CD

LU
f—
I—
CD

I
D_

LU
CD

oo Q_

CD

CO
CD

SI D_
O CD Q CD
c_> < nr <:

CO
UJ

CO
co i — a_

CD

LU O I—

CD 00
Ci
LjJ

3 El CX CD >—.
- <c oo :PJ: zs:

•=cc=:cr) ir:cc:<: CDCOLU .—.»—!
re h— ~r cDrs>" r3oo<n; I— 51

a_
CD
oo

LU
00

LU D_
CD

I
CD

LU
CcT
ZD
CD

93

0
o
T;
l\
'•A

0
••̂ ••M

O
£
N

•—
C.
o

k \

i-
r:
oL_

O
L-:
q
c •
c —

[

o

Q
O
«. •

u
I'J

O
c:

O
u

H
_J

01

Q
O

LU
I—

CD

CD

00

LU

ro
O

O v_
O O

C O

o ̂ ^

r C
O rj

13 S
S 2

ra
L.
GJ
O.

G
o

C

o
75
"3
o
(O
O

LU
D_

C3.

O

q
Q_

CO

--̂ "~"̂ *^
£ o

o

Cj
O
cu

CNJ
I

CO

94

EXEDJIE PLOTTER

EXECUTE R3LRTCR

1^7-8-9 C^?

JOS,1,

'7-G-3 (.R^D
CU.'.'K.ODi.,1.
CH.q .5PR— ,J3Q7H.C3iN,. .X.
.f,-LnTT ,C •'»
2 J3. 77000,3000-

FIGURE 6-3 DECK SET UP FOR ORBITOR LANDING SKIN
TEMPERATURE STUDY

95

cc
o
H
(/>

X

UJ

s
LU „
O. oo
S ^
HI

GO

LU

LU
D_
LU

00

LU

cc
o
Hg
15
Xg

UJ ,-<

s"

CO

CO
LU

U_

96

ca

00

CO

CD
OO

1
LD

c
c

•»

«d
 o

ut
n

JC
.a

l»
P

dl

S
C

T£

!

97

February, 1972. The orbiter wing geometry was perturbed
over a matrix which yielded design data for 37 possible
configurations. The ODIN design sequence progressed down-
ward in the figure for each wing design and ended with
aerodynamic data plots, a configuration drawing and a
summary report of geometric and aerodynamic performance
data. The technique allowed the users to converge rapidly
on a viable orbiter wing design which was subsequently
proven with the aid of minimal wind tunnel development.
Figure 6-6 illustrates the type of results from the
orbiter wing design study.

98

» t
S!
II 5
H!
f I 3 *

35 h

£ i • I 1

i fe
X

CO

CO

^/^-"• — *-^ _

_ _

! 1 ! 1« * * - ^
4T3J

1

*2 ^^
C _5

t:
D_

UJ
1

_
Ou:c.

yJT
Q

~ §
§ «

CD

CD
cr:

CO

oo
UJ
en

ex.

uJ
1/3
UJ

LO
I

UD

LU
cr:
ZZ)
CD

99

7.0 CONCLUSIONS

A very large scale synthesizing system for engineering
processes has been described. The elements of the system
are a library of independent applications computer pro-
grams, an executive computer program and a data base which
forms the common information link among the independent
applications programs. "The programs can be used by
individuals for small problems or the operation can employ
the design team approach. In the latter case, the design
team defines the program sequences, data interfaces and
matching loops required to achieve the desired design
objective. The system provides the users with the ability
to formulate the computer aided design problem at the task
level in much the same manner as is employed in the
industrial design process.

The executive computer program DIALOG controls the sequence
of execution of the independent program elements and per-
forms the data management function through the maintenance
of the data base of common information. Each program is
executed sequentially and as such is "unaware" of its con-
tribution to a larger engineering process. DIALOG inter-
rogates the data into and out of the independent programs
and performs data manipulations according to "instructions"
embedded in the data. The "instructions" are user supplied
and form the control and communication language which are
input to the DIALOG executive program. DIALOG restructures
the input stream based on the instructions. The result is
a flow of information which is not unlike the normal flow
of individual jobs.

The greatest single advantage of the DIALOG executive system
is that it allows full use of virtually all past develop-
ments in engineering technology for the synthesis of engineer-
ing processes. Any existing checked out computer code can
be easily incorporated into the system library and the
developer of new technological modules is unconstrained by
requirements of the DIALOG executive system. Little or no
programming knowledge is required to incorporate a program
into the system for the first time.

The control and communication language consists of a simple
and easily understood set of instructions which provide the
capability of creating a network of computer programs for
analysis at any level of detail. All synthesis processes
and data intercommunication are performed at the program

100

input level. Conditional branching logic is provided for
creating sizing and/or optimization loops within the
synthesis. There is no effective limit to either the
number of programs used or the complexity of design loops
created.

The manual data transfer from technology to technology may
be drastically reduced using the DIALOG executive system.
Further, the chance of data error, data misunderstanding
or data misrepresentation is virtually eliminated. All
factors dealing with "engineering judgment," "design mar-
gins" and "non-optimum analysis" may be employed and are
visible to the design team.

Data visibility has been a key requirement in the develop-
ment of the DIALOG executive system. Report generation is
an integral part of DIALOG. User generated reports based
on data base information can be generated at any point in
the sequence of program executions. A variety of graphical
capability is available in the program library.

Finally the DIALOG executive system provides a true build-
ing block approach to the synthesis of engineering processes,
Applications programs may be added, deleted or replaced to
suit the design objective. This provides a responsiveness
of computer aided design techniques never before available
to the designer. All or any part of the design process may
be synthesized but when using the DIALOG executive system,
the designer never relinguishes his option to perform the
analysis by alternate means, including hand calculation.

The software associated with the DIALOG executive system
is written in the FORTRAN source language and is relatively
machine independent. Machine dependent and system depend-
ent code is used only when absolutely essential to the
proper function of the DIALOG executive system. Where
used the machine dependent code is isolated for quick con-
version to other machines and other systems. Versions of
the DIALOG executive system for CDC 6000 series and Univac
1100 series computers have been developed.

101

8.0 REFERENCES

1. Gregory, T.J., Peterson, R.J. and Wyss, J.A.: Perfor-
mance Trade-Offs and Research Problems for Hypersonic
Transports. AIAA Journal of Aircraft, July-August
1965.

2. Peterson, R.H., Gregory, T.J. and Smith C.L.: Some
Comparisons of Turboramjet-Powered Hypersonic Aircraft
for Cruise and Boost Missions. Journal of Aircraft,
September-October 1966.

3. Gold, R. and Ross, S.: Automated Mission Analysis Using
a Parametric Sensitivity Executive Program. AAS Paper
68-146, presented at the AAS/AIAA Astronautics Special-
ist Conference, September 1968.

4. Wennegal, G.J., Mason, P.W. and Rosenbaum, J.D.: IDEAS:
Integrated Design and Analysis System. SAE Paper 68-
0728, presented to SAE Aeronautics and Space Engineering
Meeting, October 1968.

5. Adams, J.D.: Vehicle Synthesis of High Speed Aircraft,
VSAC, Volume I, USAF AFFDL-TR-71-40, 1971.

6. Oman, B.: Vehicle Synthesis for High Speed Aircraft,
VSAC, Volume II. USAF AFFDL-TR-71-40, 1971.

7. Lee, V.A., Ball, H.G., Wadsworth, E.A., Moran, W.J. and
McLead, J.D.: Computerized Aircraft Synthesis. AIAA
Journal of Aircraft, September-October 1967.

8. Herbst, W.B. and Ross, H.: Application of Computer
Aided Design Programs for the Management of Fighter
Development Projects. AIAA Paper 70-364, presented
at the AIAA Fighter Aircraft Conference, March 1970.

9. Hague, D.S. and Glatt, C.R.: Optimal Design Integration
of Military Flight Vehicles - ODIN/MFV. AFFDL-TR-73-
123, 1973.

10. Morris, Robert: Scatter Storage Techniques, Communica-
tions of the ACM. Volume II, No. I. January 1968.

11. Swann, R.T., et al: One-Dimensional Numerical Analysis
of the Transient Response of Thermal Protection Systems.
NASA TN-D-2976, 1965.

102

APPENDIX A CONTROL DIRECTIVE SUMMARY

* 'EXECUTE name1

* 'INITAL name1

* 'UPDATE name'

'DESIGN name'

LOOP TO name'

'IF naive.OP. narre'

RESTRT1

'PRINT narre1

A directive for executing a sequence
of control cards by name. Any name
for which a prestored set of control
cards has been defined is legal.

File handling directive for initializing
files; the two acceptable names are:

AESOP - parameter optimization file

DBASE - design data base
CCDATA - control card data base

File handling directive for updating
files. The two acceptable names are:

DBASE - design data base

CCDATA - control card data base

Control directive defining a point in
the execution sequence for which control
rray be returned. The name cannot be
the sai?e as a data base variable.

Branching instruction referring to a
design name. It can be conditional or
unconaitional.

Condition for branching. Any number
of conditions may be specified on
separate cards after a LOOP directive.
If more than one condition is specified,
the logical .OR. is implied. That is,
any one of the conditions satisfied
will trigger the branch instruction.

Means use the existing data base. It
must nave previously been defined and
stored.

File handling directive for printing
files DBASE and CCDATE are optional
nar.es.

OP is a conditional operator (LT,LE,EQ,GE,GT)

* Data is expected; end of record (789) is required.

103

APPENDIX B COMMUNICATION COMMAND SUMMARY

'ADD A = B, ...' Used to create a ncv; data base
entry or alter the information
associated with an existing
data base entry.

A is a new or existing data base
entry, scalar or vector.

B is the update information
which can be real, integer
or logical constants,
variables or scaled combina-
tions of scalar or vector
elements.

Multiple commands can be
executed with a single ADD
statement.

'DEFINE /• = n, description/ Used to define new or existing
entries in the data base.

A is the new or existing data
base entry.

n is the desired number of dat-a
base locations. It is ignored
if the entry exists, the
default is 1 if omitted.

description is the Hollerith
information associated with
the variable A.

' . coFjrent1 Used for placing descriptive
information in the data strear,
DIALOG replaces the comment
and associate delimiters with
blanks in the applications
program data deck.

104

'A Used to replace data base names
and delimiters on an input card
with data base information.

A may be a sealer or vector data
base entry of real, integer,
hollerith or logical type.

A may be a combination of real or
integer data base variables,
array elements or constants.

105

APPENDIX C EXCLUDED NAMES FOR DATA BASE VARIABLES

Generally, the user of the DIALOG Executive System is free
to specify names for data base variables and arrays. How-
ever there are certain names which are excluded. The
excluded names are those used by the DIALOG executive
system for option specification and by the analyst for
'DESIGN identifiers.1 Certain other miscellaneous names
are excluded.

DIALOG Executive System Options

BUILD

DIVIDE

DOLLAR

ELTiriE

EQUAL

EXi-ON

MINUS

MLTPLY

KOTEQL

INDUMP

OUTDUMP

PAGDMP

PLUS

Option for dynamic construction of the
data base.

Symbol used for divide (/) in the
operator directory.

Symbol used for DOLLAR ($) in the
operator directory.

Total elasped simulation time used in
timing option.

Symbol used for equal (=) in the
operator direction.

Symbol used for exponentiation (**)"-
in the operator directory.

Symbol used for subtraction (-) in
the operator directory.

Symbol used for multiplication (*)
in the operator directory.

Symbol used for a data base delimiter
(&) in the operator directory.

Option to print the modified input for
every program

Option to print the special data base
output file from each program.

Option to print the internal string
processing information

Symbol used for addition (+) in the
operator directory.

106

DESIGN Identifiers

The specification of a DESIGN identifier by the control
directive:

'DESIGN identifier'

results in the identifier being stored in the data base.
Once used the identifier is excluded from use as a data
base variable name.

Miscellaneous Exclusions

Generally, the names listed above are the only exclusions
the analyst need be concerned with. However, it is
recommenced that the communication command napes and
control directive names be excluded also.

ADD Add command.

DELETE Delete command.

DEFINE Define command'.

comment ' comr.and'

INITAL Create directive.

DESIGN Design directive.

EXECUTE Execute directive.

IF If directive.

LOOP TO Loop To directive.

RESTART Restart directive.

UPDATE Update directive.

107

APPENDIX D - DIALOG EXEC II SYSTEM

Introduction

A version of the DIALOG executive system is tailored to the
EXEC II operating system on the Univac 1108. The applica-
tions programs comprising the system were installed and
tested with two ODIN test problems.

Two new programs were developed for the storage of "catalogued
procedures" and the storage of simulation data. Catalogued
procedures are standard control card sequences and are stored
in the "PCF" areas. The procedures are executed with the
ADD software now available on the EXEC II system.

Simulation data which usually is quite cumbersome for large
simulations can be stored on magnetic tape and recalled
later for the performance of simulations. Further, the data
can be updated by card with a procedure similar to that
available for updating FORTRAN programs stored in the PCF.

108

THE DIALOG EXECUTIVE SYSTEM

The DIALOG executive system is uniquely structured to perform
a data linkage between independent applications programs •
sequentially executed in the same computer run. The Univac
1108, EXEC II version developed specifically for the JSC
computer complex, is similar to the currently operational
EXEC VIII described in this report. However, hardware and
software differences dictate some departure from that system.
Figure 1 shows the structure of the EXEC II system at JSC.

The following paragraphs describe the system (as currently
configured) and its use. In figure 1 the data flow is down-
ward, each block representing a major control function.

In operation the CUR utility is used to load the ODIN library
into the PCF from a magnetic "simulation tape" file. Although
not essential to the operation of ODIN, the recommended pro-
cedure is to store the programs in absolute element form
for highspeed loading. The use of a simulation tape (SIMTAP)
accomplishes two objectives:

1. Reduces the number of tapes required to run an
ODIN simulation.

2. Reduces the number of PCF elements in the PCF area.

The source and relocable binary files for the ODIN programs
are maintained separately on other tape files and used as
required to create or update the SIMTAP. The SIMTAP approach
has been used before but is usually not required where on-
line permanent file storage is available. The actual creation
of a SIMTAP will be discussed in a later section. More than
one SIMTAP may be required and some users of ODIN may elect
to maintain his own SIMTAP (s) even though some programs on
his tape may duplicate existing programs residing elsewhere.

After the ODIN library is loaded the MAING program is executed.
MAING performs a data editing function with the ODIN input
data. The input usually stored on tape is read by MAING
and transferred to the logical unit (22) used by DIALOG for
reading input data. The ODIN user has the option of modify-
ing the input data in a manner similar to that for FORTRAN
programs stored in the PCF. The procedure for performing
updates as well as initial storage of the data is described
later.

Referring again to figure 1, the DIALOG executive system is
initialized by the program DBINIT. The primary functions
are the initialization of the data bases.

'INITIALIZE THE
DIALOG EXECUTIVE
SYSTEM.

*"~j XQT DIALOG j

e ADD -MODIIJ TO
THE IKPUT STREAM.

READ ODIN PROGRAMS
FROM TAPE AND STORE
IN PCF.

• TRANSFER AND UPDATE
Sill. DATA FROM TAPE TO
DIALOG INPUT UNIT.

o BINARY COPY OF
SIMULATION DATA

« ODIN INTERCOMMUNICATION
DATA BASE.

• ODIN CONTROL CARD
DATA BASE.

» EXECUTION SEQUENCF
FOR THE FIRST ODIN
PROGRAM (SEE DASHED
OUTLINE BELOU).

e ODIN CONTROL FILE OF
EXECUTION CONTROL CARDS
FOR CURRENT SIMULATION.

o AESOP DATA BASE

E:;D

MODIFIED INTERCOMMUNICA-
ION DATA BASE.

EXECUTION PROCEDURE
FOR THE NEXT ODIN
PROGRAM (DASHED OUTLINE)

• ADD r'ODIK TO THE INPUT STREAM

MODII.Y1 FILE

FIGURE 1 STRUCTURE OF THE DI7LOG
EXECUTIVE SYSTEM QN THE 1108

(EXEC II)

110

On the initial DIALOG execution the simulation data is
read from LUI, the DIALOG input file. Based upon the
instructions contained in LUI, DIALOG constructs several
files. COPY5 is a binary (fast read) copy of the simulation
data which will be used during the simulation to construct
input files for the simulation programs. DBASE is an
unstructured file of name oriented data which is initially
constructed by DIALOG and maintained throughout the simula-
tion. CCDATA is similar in construction to DBASE but con-
tains control card data for the execution of ODIN programs.
CCDATA is used by DIALOG in the construction of input files.
It may be constructed during the simulation or saved from
simulation to simulation. The CONTROL file is a list of
control cards for the execution of the program sequence.
This file is constructed during the initial pass through
DIALOG and used (in conjunction with COPY5) to construct
input files for simulation programs. MODIN contains the
input data for the next program or sequence of programs.
This file is constructed each time DIALOG is executed
and contains the following information:

• control card (s) for next program

• data for next program

• control card (s) for the reexecution of DIALOG

An example of a MODIN file is shown in figure 2. MODIN is
stored in the PCF by DIALOG so it will be available to be
"added" to the normal input stream. LUSOP is the AESOP
data base. This file is initialized on user command when-
ever the parameter optimization program, AESOP is used in
a simulation. A separate LUSOP file must be maintained for
each AESOP loop created in the simulation.

After the initial pass through DIALOG the MODIN file for
the first program will have been constructed. The next con-
trol card (shown in figure 1) is an ADD card. This control
card adds the contents of the MODIN file to the input stream
such that the operating system immediately begins executing
from that file. Upon processing of the contents of MODIN,
the usual procedure is to return to the control cards on the
input file. However, the unique feature of the MODIN file
is that it contains a control card for the reexecution of
DIALOG, which constructs a new MODIN file, and an ADD card
for the new file which DIALOG just built. This scheme is
illustrated in the lower portion of figure 1 by the dash
outlined region representing MODIN. The simulation sequence
is 'bootstrapped' along by DIALOG based on instructions con-
tained in the simulation data. ,,,

001'.' 11 OB EXEC 11 V E R S I O N A P R I L 1, 1973

LIT N01) J N/J .1 • 730331 , 67^)3

OCOL'Ol

PL'UUt-2

0 0 Q U '') 3

0 ODD 0'*

0 n u o G i

000006

OCUOQ7

000009

-N XQT * 0 ? C W » i< 0 Z fc. (,'

SRB.?OKl

X=-2.0CC'0 U 0 0 i

•Control card for next
program execution

Input data for next
program.

ss XQT OCLOG

y XQT Ct'K

-L Ii I I (.-I; I ;.•/ J

'? Apo MOLM.N/1 -^

LCC 1 102-C3Vf, L<?

Control cards for the
re-execution of DIALOG.

Control card for adding
the next KODIM file to input.

FIGURE 2 ILLUSTRATION OF THE (MODIFIED INPUT FILE,
112

USE OF DIALOG EXEC II VERSION

The DIALOG executive system is user oriented and requires
little more knowledge to use than to use the individual pro-
grams involved. The user simply sets up the input decks
for each simulation program which he intends to use, places
the interface data into the input stream and replaces the
normal control cards with DIALOG control directives. The
objective in using DIALOG is to link the independent programs
and communicate information among them. There are a total
of twelve instructions available to perform the linkage.
These instructions are summarized in Appendixes A and B but
a more detailed description is presented in Section 5. This
section is presented to aid the user at JSC in setting-up
a simulation on the Univac 1108 (EXEC II) computer. Some
knowledge of the control and communication language is a
prerequisite to actually using the DIALOG executive system.

Usually the submission of a simulation requires con-
trol cards similar to those shown in figure 3. The assign
cards shown are for the simulation tape (SIMTAP) and the
data tape (DATAPE) containing the stored input data for the
simulation. The creation of a SIMTAP will be discussed
below. An example of the contents of a data tape is shown
in figure 4. Data tapes may be created within an ODIN
simulation as described below. The CUR operation (figure
3) loads all ODIN programs into the PCF from the simulation
tape.

The first ADD card (INPUT/DATA) prepares the ODIN input data
for use in the simulation. The second ADD card (ADD ODIN/XQT)
transfers control to the DIALOG executive system. All
further computer operations are controlled by DIALOG based
upon the instructions encountered in the simulation data.

Manipulation of ODIN Input

The ADD INPUT/DATA control card (figure 3) executes the
MAING program which permits modification to the ODIN input
data. For example, suppose the user'wished to alter the
equation for computing F (card 25 - figure 4) and to add
a data base print command after the report (card 46). The
modifications to the ODIN input on C (figure 4) would be
as follows:

113

8 ASG B = _ (Simulation Tape)

1 ASG C = (Data Tape)8 --

g XQT CUR

TRK B

IN B

TRI B

* 7' ADD INPUT/DATAb
I
MODIFICATIONS TO

ODIN INPUT ON C

' ADD ODIK/XQTo

NOTE: On3y one space is permitted between the
master space and the ADD.

FIGURE 3 EXECUTE AN ODIN SIMULATION
114

s.-1XEC-J r-vcFsi ON—r:i5*PR'IL~r.~ 1173 ~ -———— ̂ -^— j j o37

— F . C . ; -
JJ.'^O,

i-

tf 0 " f ^ h • "~9~
i' FOR 00 i K:> I J0

i j~j~

C« XST Or!:.'p! J?
C'G11 -- ' --- 1 3~

t! XCT OOLOG 1 H

L I S T hC;if./j | &

-<CD~f PBii./! - ~ ----- 1 7~
HICO'.'e 18

TCf -- T-T
20

t c 'JT r -

SENO-

I DU-.OS uoi rir c z TEST CYCLE
0 — CO" PI LI— *f(B-£>£c^Tr~FC°Tr-t!;-rROC!!/>t

RR1 TC (! S t 10) 26
0.5 ---- - - — - --- ^7-

28
; --- ----- - -- • -- 2 9~

61,05 JjJ = JJJ»l£, 32

~0 X n—fc X"~ 6 if f"

Y« tY £ .,2
~ C r e ~ ~ C r C ^^3~

HDD ;«!•!., Y = Y * I « 6 S ^
_, g. -

JEFS Hfc

< IF JJJ.L7. 36 S 8

tEl 0 0;I',£, ..n

FIGUKE 4 ILL'JS7RATIO:;- OF A DATA TAPE

115

-25,25

F = X**2+2.*Y**2

-46

SPRINT DBASE&

-ENDEND

If no modification to ODIN input is required, the user need
not put any data in after the ADD INPUT/DATA control card.
The data will simply be transferred as is to the DIALOG
input file. If the user wishes to read in all data, the
data tape need not be assigned. The following procedure
would apply:

70 ADD INPUT/DATAo

-UNITS

5,22
logical units for input will be read
(INPUT = 5, OUTPUT = 22)

ODIN input

data

-ENDEND end of DATA

In the above illustration, the input unit is 5 (or cards).
The output unit is 22 (the unit on which DIALOG expects
the data).

If the user v/ishes to store the data for the first time on
a data tape before the simulation starts, the data tape (C)
would be assigned and the following procedure would be
employed:

70 ADD INPUT/DATAo

Transfers new data to Tape C

Transfer data from Tape C to DIALOG
INPUT UNIT (22).

The data would then be ready for use by DIALOG.
116

In summary, each time the control card:

7g ADD INPUT/DATA

is used, data will be transferred from one unit to another
with possible user modification. The input and output units
may be specified by the user. If not specified, units 3
and 22 respectively will be used by the program.

Two data tapes have been created at JSC for use in testing
and demonstrating the ODIN system. These a're tabulated
in Table I.

Manipulation of ODIN Programs

The established procedure for using ODIN on the Univac 1108
(EXEC II) system requires the use of a simulation tape
(SIMTAP). The SIMTAP must be prepared before simulation
may begin. As a minimum, SIMTAP must contain the following
programs:

DBINIT

DIALOG

MAING

Any other user programs called for in the simulation must
also be stored on SIMTAP. Usually the ODIN programs are
stored in absolute element form for fast loading. This is
particularily true of DIALOG which is loaded into a computer
core many times in a typical simulation. Further, any loop-
ing or repetitive execution of user programs would result
in the saving of computer time if stored in absolute element
form on SIMTAP. This is true for repetitive executions in
different jobs or the same job on different days.

Figure 5 is an illustration of how one sets up a run to
create or update a SIMTAP. Units A and B are assigned as
the new and old SIMTAP1s. One tape could be used but it
is usually advisable to use two in order to avoid losing
previously stored programs in case of error. Unit C is a
PCF tape .containing the program or programs which are to
be added to the new SIMTAP.

The first step in adding a new program to SIMTAP is to read
the program tape for the desired program into the PCF using
CUR. Those subroutines which need modification or have no
relocatable binary elements must be compiled (recompiled).

117

TABLE I ODIN SIMULATION AND DATA

TAPES AT JSC

TAPE

A11772

A05442

(SAVE)

A05989

(SAVE)

CONTENTS

ODBIN

ODLOG

OASOP

OI-iAING

OWAATS

OWETED

OPCFKT

ODIN/XQT

INPUT/DATA

ODIN/SAVE

AESOP/RBROC

LOOP TEST

ODIN UING

DATA

X

X

X

SOURCE

X

X

X

CODE ABS

X

X

X

X

X

X

X

118

7
8

7
8

7
8

7
8

7
8

7
8

7
8

ASG A = New Simulation Tape

ASG B = Old Simu

ASG C = Program 1

latior. Tape

to be Added or
Updated (NEWPRG11)

ASG D = D Scratch Unit

XQT CUR

TRW C

IN C

TRI C

(PROGRAM MODIFICATIONS)

.

ABS NEWPG1I, NEWPGM (Create Absolete Element)

XQT CUR

TRW D ^
1 © Temporarily store absolete

OUT D, 2 , element for new or modified
TEF D) program.

ERS

TRW P '\
" I © Load old simulation tape.

IN B) Not essential for new tape.

TRI B)

TRW D \

IN D > ° Load new

TRI D) tape'

TRW A ,

OUT A I

or modified program

u

TEF A f © Create new simulation tape
OUT1 A ? ^2 files) . This function

| may be performed by the
TEF A' 1 control card below. if the
TRI / element exists.

TOC I ADD 01
o)IN/SAVE

FIGURE 5 ADD OR UPDATE AN ODIN PROGRAM
119

Next an absolute element must be created using the control
card:

70 ABS NEWPGM,ABSPGMo

NEWPGM is the name of the main program or loadable segment
(for an overlayed program). ABSPGM is the absolute element
program which will ultimately be added to SIMTAP. Any num-
ber of absolute elements programs may be created (or
recreated) in the PCF. Once all the desired absolute element
programs are created (or recreated), they are temporarily
stored on Unit D, a scratch unit assigned for this purpose.
A CUR operation is performed for this purpose.

OUT D, 2

places only the absolute element programs from PCF onto
the scratch unit. Next the PCF is erased and the contents
of the old SIMTAP (Unit B) are loaded into the PCF. Then
the new programs stored on D are loaded into the PCF. Any
programs already stored (in PCF) will, of course, be replaced.
Now the PCF contains all the programs including the new or
replaced ones in absolute element form. The next CUR opera-
tions are to place the contents of the PCF onto the new
SIMTAP. One SIMTAP created at JSC for test and demonstra-
tion is shown in Table II.

Modification of the Control Card Data Base

The addition of new programs to the SIMTAP requires a
modification to the control card data base (CCDATA) before
the program can be used in a simulation. Most computer
installations where ODIN is used utilizes a stored file
called CCDATA which is retrieved each time the DIALOG
executive system is used. At JSC, the EXEC II system on
the Univac 1108 does not have a convenient means of stor-
ing CCDATA. For the EXEC II system, CCDATA will be created
each time a simulation is initiated as illustrated in
figure 4. Therefore, the modification of CCDATA will be
performed on the data tape (figure 4, cards 8 through 20).
The above data set describes the execution procedure for
each program available on SIMTAP. When a new program is
added to SIMTAP, a new execution procedure must be added.
The "procedure" may be a single control card or several
control cards:

MYPGM =

70 XQT ABSPGM
8 120

E

II

U
N

IV
A

C

1
1
0
8

(E

X
U

C

II
)

U
N

IT
S

C
O

M
P

A
T

IB
IL

IT
Y

C

H
A

R
T

i-t
P3

L
O

G
IC

A
L

U

N
IT

S

^

x

X

'3-

>

D

£H

•jy

•%'

3.

=•

O

2

S

J

*

^

^

-

J

^

-

^

O

3

<;

S
CO

CN'

CN

LT
CN

CN

PI

CN
CN

i —
CN'

0
CN

r-\

CO

r-

r-t

in

1-1

£
c.

rH

^

O
r-i

CT.

CO

>^

0

L-!

m
CN

•H

i

-,
1-1

to

rH

1

-1

,-.

-
tl

"*

i
I

1

rH

t-l

r-4

.

|

1

1

*

i-IKn iOld i '1
1 f '

r-l , r-i 0

1

; to

i
i

*

i

:

to

o

CN

i
o

CN

1

<
s
•

I
e

w
1
t

i 1

idfiO indifiO ilTdifiO
iLfldKI tLna;JI ifJcill

1 1 I °

1 i '

w
0
G

O
O

Hi •J
IA

L
O

G Q

•? i

to
c-t

C-i
•J

p

i

H
A

IN
G

1

1 PC
FE

NT
— .

—

D Q

Q Q
2 0 0 W
M U O U

Q E-i Q <J

y o < u

n u u u
0 iH CN tO

121

The actual control card must start in column 7 (shifted by
one computer word). The shifted control card or cards must
be preceded by a user selected name unique to CCDATA by
which the stored procedure will be referred during an ODIN
simulation. For example:

&EXECUTE MYPGM&

The new procedure may be placed between any of the existing
procedures. For example, it may be placed after card 10,
12 or 17 in figure 4. The order does not matter since they
are recalled by name.

Units Compatibility

The use of ODIN at JSC on the Univac 1108 (EXEC II) system
requires that any unit which has data stored on it and
which will be used by another program or the same program
upon reexecution must be "reserved." That unit number can
be used by no other program in the simulation. Units com-
patibility is not required on the EXEC VIII system since
logical units can be simply reassigned. Users of EXEC II
systems must assure units compatibility among programs in
in the simulation. This can be done conveniently by a
table similar to the one shown in Table II. Here a list
of several programs is tabulated in the left column and
the units each uses is identified along the top. Several
codes are used depending upon how the unit is coded and
used.

Hard coded into the program such that major modifica-
tion would be required to change the unit number which
it uses.

Soft coded into the program such that the unit number
is a variable name which is set in a data statement
and could be changed with a simple modification.

Read into the program as input data such that no
program modification would be required to change
the unit number.

Scratch units such that the unit is used in the
programs only as temporary storage.

A careful study of a units compatibility chart such as the
one shown in Table II will be required to determine the
modification, if any, which will be required to use a pro-
gram in ODIN.

122

CATALOGUING PROCEDURE

The DIALOG executive system uses many program procedures
in the course of producing a simulation. Among these
are the CCDATA file, the MODIN file and the COPY5 file.
These files are catalogued procedures which are employed
as required by the DIALOG executive to "create" a simula-
tion based on user instructions. Similarly, the user of
the DIALOG executive system has need for catalogued pro-
cedures when repetitive control card sequences are used
over and over. The PCFENT program provides a means by
which the user can enter procedures (including data) into
the PCF to be used later via the ADD control card. Examples
of this procedure are:

70 ASG L,S,T,U,V,Y,Zo

ODIN/XQT =

?„ HDG - - - - -

70 XQT ODBIKo

70 XQT ODLOGo

70 ADD HODIN/1o

used in the initialization of the DIALOG executive
systen:

INPUT/DATA = f8 XQT 1-iAING

used to modify input data on a data tape, and

ODIN/SAVE =

TRW A

OUT A

TEF A

OUT A

TEF A

TRI A

used to write a PCF tape of ODIN programs and files.

123

Use of PCFENT

Elements are entered into the PCF through the PCFENT
program as follows:

70 XQT PCFENTo

NAME/VERSION (free field)

7g XQT NAME1 (control cards starting in
column 7)

(Other non-control cards \
start in column where 1
used. /

Control cards start in column 7. They are shifted to
column 1 by the PCFENT before being stored in the PCF.
PCFENT uses unit 8 for a scratch unit.

Use of Catalogued Procedures

Once stored in the PCF, catalogued procedures may be added
to the input stream at any time as follows:

7g ADD NAME/VERSION

The effect of the illustrated control card is to process
the contents of "NAME/VERSION" before returning to the
input stream for more data.

124

