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SUMMARY OF RESEARCH

Avalanche Diodes for the Generation of Coherent Radiation

Work under this grant during the last period was concentrated in two

areas: solid-state devices and characterization, and optimum imbedding
i

networks for realizing best performance. The BARITT device (Barrier

Injection Transit Time Diode) has been under investigation, as reported

below. In addition, other work previously reported has resulted in publi-

cations, preliminary versions of which are attached as Electrodynamics

Memos Nos. 28, 29, and 30.

BARITT diodes are under investigation for possible application as

microwave amplifiers and oscillators. Measurements have been made of

diode noise figures in the frequency range of 4-6 GHz. Initial results

indicate that a noise figure of 6-8 dB may be possible. Devices are under

development for operation as amplifiers and sources in the frequency range

2-4 GHz.

We are investigating optimum device structure and fabrication tech-

niques necessary for low noise performance. The possibility of cryogenic

operation is being investigated, with a view toward improving the device

noise figure.

Models-for-the-device-for-nonlinear-and-small-signal-operat-ion-are

under investigation and optimal imbedding and deimbedding models are

^ under consideration.

A list of publications supported by NASA Grant NGL-22-009-337 is

attached.
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The lack of notation for derivatives in APL is an important

' _ barrier to its acceptance in many disciplines. This paper des-

cribes a notation for derivatives and a procedure for accurately

evaluating expressions containing derivatives.

Op e_r a_t o r s_ _a_nd_ _Tum c t i q n s_

In describing APL syntax, it is frequently useful to distinguish

functions from operators. Primitive scalar functions, primitive

mixed functions, and defined functions are all "functions." The

term "operator" is used for a svmbol which acts on one or more

functions or variables, and produces, as a result, a new function.

The new function then acts on its arguments and produces its

results, an APL array. The operator, of course, must act before

the function can, and therefore, the right-to-lef t rule for eval-

uation in APL may have to be violated.

There are three operators implemented in APL: reduction,

inner product, and outer product. There has been suggested also

a "scan" operator. These operators can, in principle, operate

on defined functions as well as primitive functions, although

I they are not now so implemented. The derivative operator, to

bo discussed below, can likewise be used on both primitive
t ,

and defined functions, but the implementation would probably

be of little benefit if it were restricted to primitive functions.

There are three reasonable expectations for a notation for



derivatives. First, we might expect the notation to denote

(and the implementation to calculate) the result of applying

the new function produced by the operator, to an argument/-

that is, to denote the returned array. Second, if the purpose

of such an operator is to return another function, one might

wish the notation to denote (and the implementation to display)

the resultant function. Third, we might expect numerical

differentiation of functions defined only by a table of values.

Of these three expectations, the second is difficult, both

conceptually and nractically, and the third is prone to numerical

inaccuracv . The notation and implementation qiven in this

paper fulfill the first expectation but not the others.

One might also expect that it should be possible to devise

a notation for integrals. The integral case appears to be

much more difficult, however.

T vp_e_s__o f _ _ _ _ _ _ _ _

It May not be out of place to recall the wide varietv of

derivatives that are encountered in mathematically based disciplines,

These include the ordinary total derivative, partial derivatives,

the substnntnvo derivative of fluid mechanics, and the gradient,

divergcncr, and curl in field theory, as well as high-order

derivativos such ns scalar and vector T.aplacians. Derivatives

are taken with respect to any arqument of a function, or with

ronpoot to any parameter.

The proposed notation not onlv covers all these cases, but

cnii h-- further generalized. Differentiation is allowed not only



of functions with respect to arguments, but also of functions

or expressions with respect to global variables.

Two now symbols are required for the derivative notation,

one for an operator and the other for a function. The symbols

fe and fe are used here, without anv implication that they are

optimum.

No ta_ t ipJl_f.or_ J^r_iva_tji v_e_s__qf__Mona_d_i_c _Fu_n_c tî on s

Consider first a monadic primitive scalar function,

with a scalar argument. The syntax for this function is "<-F A;

the derivative of F with respect to A , evaluated at the

particular value of A , is denoted FM . For example, +fe3

is eoual to l; *fe2 is equal to "0.25; and Lt3.5 is eaual to

0 .

Next, consider any monadic function, such as a primitive

scalar function, a primitive mixed function, or a defined function

Again, the syntax is Z+-F A. The derivative of F with respect

_t o _ A _ i s_d e n o-t e d — £M-,— and— ̂ i-s— d e-f-in e d— pr ov-id ed — A — a n d - F— A -

are conformable. The rule for conformability is the same as

the rule for the expression A + F A; that is, either A and F A

have tho samo dimensions, or else one of them has only one

element. If A is a scalar and FA is an array, then Ffe/l

consists of the derivative of each element of F with respect

to A, evaluated, of course, at the value of A given. For

example, if the welocity V of a particle and its position /?

are both functions of time T, and velocity and position in



3-space are represented by vectors of lenath 3, then the

velocity is the derivative of the position, as expressed by

the eouation (V T) - RtT.

If A and F A have the same dimension, then F^A

consists of the partial derivatives of each element of F A

with respect to the corresponding element of A. In general,

each element of the results depends on the values of all the

elements in Ar and is, of course, evaluated for the A

in auestion. This form of the derivative is useful, for example,

in describing waveforms as a function of time: if FT is the

function 2x*~5xy which might be the natural response of a

first-order physical system, then F^T would calculate an array

consisting of the derivative of F evaluated at each of the

times in the arrav T.

Finally, if F is a scalar function of a vector.argument

R which might stand for position in space, then Ffc/? is a

vector, each element of which is the partial derivative of F

with respect to the corresponding element of R- that is F^R

is the gradient of F. Thus, the relationship between electric

~fie~ld~vec~tor£ anc3 poten~tia:F~Pff.Z"in electrostatics can be

written in the form E = -PHIkR. As another example,

( x/M ) = ( x/A ) r/i except that it works properly even if Oe/l.

In the last example, note that the reduction operator acts

before the differentiation operator.

Outer^JDejriva_tiye_s of Monadic Functions

It is freouently necessary to denote the partial derivatives

of each element of the result of a function, with respect to



each element of its argument. This concept resembles that of

the outer product, and a similar notation is suggested. Thus,

for a monadic function F, F° .M is called the "outer deriv-

ative". There are no conformability recruirements; the outer

derivative has dimension ( pF° .M ^ = ( pF A ) t p A . An example of

the outer derivative is the velocity-gradient tensor in fluid

mechanics, of which the rotation is the antisymmetric part and

the strain rate is the symmetric part. Thus, if the velocity

V is a function of space B, then the rotation is

0 . 5x( i/o .^7?) -!s?v° . b f f and the strain-rate tensor is

0 . 5x ( v° . k/? ) + § K ° . \>R . As another example, t ° . [ ? i # is the unit

matrix of size N , N .

Inner Derivatives of Monadic Functions

The inner derivative of a function F is denoted F+.M,

and the conformability requirements are the same as for the

inner product (F A~) + .*A» As an example, one of Maxwell's

equations in electromagnetic field theory states that the

divergence of the magnetic field P is zero, or 0=5+. fe/?.

Generalizations of the inner derivative are possible by__

using scalar dyadic functions other than + . For example,

r'^.fexi. For a function F T of time, its largest derivative

at any time in a vector T is given by F[ .bT .

- Y J i l t l - ^ Monadic Functions

Second and high-order derivatives of monadic rfunctions~

nre denoted s i m i J n r l y , with multiple use of the derivative



operator, for cxanple FbfeT. Thus, F°.fe°.k/l is tho collection

of all possible second-order partial derivatives of Ff and

has dimension equal to ( pF A ), ( pA ) , p/1 .

An interesting second-order example is the Laplacian of

a scalar function F of space coordinates /?, which is F°.k + .b

Mote that the outer derivative is performed before the inner

derivative; that is, the derivative on the left before the

derivative on the right, in contrast to the normal APL con-

vention about order of execution of functions. If the function

V R is a vector function of Rr then the vector Laplacian

is V°.b + .k/?. As another example, consider Newton's law for a

particle, where F is the force, M is the mass, and A is

the acceleration, the second derivative of its position R with

respect to the vector of times T- F=M*Rb±T. As another

example, the homogeneous differential equation obeyed by a

series RLC electrical network: o=(LxJtfeD+ (R*IkT)+(I T)*C.

Derivatives of Dyadic Functions

The notation for derivatives, inner derivatives, and outer

_d er.i_va_tiv_e s_o f_dy_ad i c_f unc.tions_i s_s im i 1 ar—t o—th a t—f o r—mon adi c

functions. Consider a dyadic function F with syntax Z+-A F B.

The derivative of F with respect to B, denoted A F^B,

must satisfy the conformability constraint suggested by the

operation D+A F B. The result is the derivative (or partial de-

rivatives) with respect to B or its elements, keeping A

constant. The result is evaluated for the particular^ values ~

of A and B presented.
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A dyadic function can also be differentiated with respect

to its left argument. In this case, the symbol fc is moved

to the left (that is, it appears between the function name

and the independent variable) . The rules are similar and in

particular, for the outer derivative, its dimension is

(pAo .feF S) = (p/l) ,PA F B .

As an example, if functions for current density J and

charge density 0 are dyadic, with time on the left and space

on the right, then the equation for conservation of charge,

which appears in conventional notation as V«J + ~jf = 0 would
a t

appear in the new notation as 0 = (T J+.kRl+TkQ R. In a similar

way, the substantive derivative, or "total derivative" of fluid

mechanics -- = ~-r- + V.V can be applied to a dyadic function I

of space and time: (TkfJ R)+(T N° . & R)+.*V.

Some other interesting examples: The derivative of the

maximum function AfkB is equal to B2.A . The derivative of

the times function with respect to one argument is the other

argument, that is (A^^B~)=B. If A is a vector then A*° ,^A

is a diagonal matrix with the elements of A along the main

diagonal.

The notation so far is suitable for differentiation of

a function with respect to an explicit argument. It may be

desired to differentiate a function with respect to a global

variable, or to differentiate an APL expression with respect

\



to some variable in the expression. This can often be denoted

by defining an extra function with the desired independent

5 variable as an argument, but that technique is neither convenient

nor natural. A slight generalization of the preceding notation

is useful .

The derivative of an APL expression K with respect to

a variable X is denoted EfeX . If the expression is more

complicated than a single niladic function, it must be parenthesized

The variable on the right must be a variable name, perhaps

indexed, but not a constant or an expression. The expression

might involve the independent variable explicitly, as in the

identity ( N*A*N-1 ) = (A *N) fe/5 ; or perhaps as a global variable in

a function, as in the identity ( (A*B) fe X) =( (AbX)*B )+A^D^X- or

perhaps in both roles .

Outer and inner derivatives of expressions with respect

to global variables are denoted similarly, E*.±X and E+.kX.

Note that since X must be a variable name rather than

an expression, the following examples are syntax errors:

E\>X + 2; Kk(X)i Ek-X; EIX ,OpC«-2 ;

The implementation of this notation appears to be

straightforward, although perhaps demanding of space and time.

The basic idea is that during execution of a function (or

expression) being differentiated, a more complicated procedure

is used. Every execution of a primitive function is accompanied

by the calculation of the corresponding derivative. Thus, as
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the defined function is executed, line by line, not only

are the values of the expressions calculated, but also their

derivatives, always with respect to the original value of

the argument in question. When the function finally returns,

the value of the return variable is discarded and only the

derivative is used.

This procedure, which is defined in detail below, in

principle can work for any number of derivatives of arbitrary

order.

D e t a i_l s__of__the_ Implementation

A new system-dependent function which I will denote here

as i50, is reouired. Initially, this is set to the empty

vector i0.

Consider a function F whose argument A is the independent

variable, with respect to which the differentiation is being

carried out. When the execution of F begins, several things

happen. First, the value for 150 ceases to be the empty

vector and becomes the vector ,1. Second, the independent

variable is accompanied by +°.M, that is, the outer derivative

of A with respect to itself. Other variables, both global

and local, are also considered to be accompanied bv their partial

derivatives with respect to Af in every case an array of

zeros. Thus, all variables, both global and local, are considered

to be not only their values but also their outer derivatives with

respect to A .

As the function is executed, line by line, each execution
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of a primitive function is accompanied by the evaluation of

the derivative of the result with respect to A; thus, for

everv array generated there is also generated another array

consisting of the outer derivative of that cruantity with respect

to A. The chain rule of differentiation is used. Naturally,

the derivatives so calculated will all be zero until A actually

enters into the calculation.

If another defined function is called within the function

being differentiated, this mode of operation continues and when

this function terminates execution, not only the value of the

return variable but also its outer derivative with respect to

A will be returned.

A given differentiation is completed when the function (or

expression) being differentiated finally returns, or else is

removed from the state-indicator stack by the right arrow. iVhen

the function returns, the return variable has both a value and

its outer derivative with respect to A. The value is discarded

and the derivative is returned. In the case of the derivative

or inner derivative, appropriate operations are performed to

extract the desired derivative. At the same time, 150 is reset

and all global variables have their accompanying derivatives

erased.

tfhen more than one derivative is being considered, a similar

process applies. High-order derivatives with respect to the

same argument cause values of 2 or more to be inserted into

ISO, rather than 1, and variables are augmented with both
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the first and second derivative with respect to A.

Derivatives with respect to other variables mav he

encountered while anv given derivative is pendina. In that

case, 150 will contain not only the 1 (or hiaher number)

associated with the initial derivative, but also a number

associated with the more recent derivative. Thus, 150 is a

push-down stack, with one entry corresponding to each independent

variable. During execution of functions, not only the derivatives

with respect to each of the independent variables, but also cross

partial derivatives have to be calculated. High-order derivatives

of any order can be calculated recursively by using onlv the

formulas for first-order derivatives.

While a derivative is being calculated, that is, while 150

is not emptv, the normal APL environment is changed in a few

ways. This can be detected while the function is executing, or

while it is suspended. First of all, the state of any pending

derivatives can be interrogated by asking for 150; pi50 gives

the total number of different independent variables under consid-

eration, and -(-/ibO gives the highest-order derivative being

calculated. Second, execution of the svstem commands )5I or

)5Jl/ will cause an extra symbol k to be printed next to the

names of functions being differentiated. Third, the derivative

of any expression K with respect to the Nth independent variable

is denoted by N^B, or for the outer derivative, K°.^ft or for

the inner <'onva t i ve, tf+.feE1. This feature allows functions

to brnnch according to the values of derivatives, and also allows

the displnv of derivatives for debugging.
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The symbol t can also be used monad icallv, as in ^E

or o.fetf or + .tF to denote the derivative with respect to

the most recent independent variable.

Needless to sav, much space and time will be saved by

adopting the strategy of not actually storing derivatives that

are identically zero. Thus, if execution is suspended while

a derivative is pending, independent calculations can be

carried out v/ithout necessarily calculating all the derivatives

which end up ecrua] to zero anyway.

It may sometimes be desired to obtain both the result of

a given function ard its derivative without re-executing it, for

example in case the function uses terminal input or makes changes

in global variables . This is easilv accommodated with the

proposed notation. The last tine the return variable is assigned,

also assign sone alobal variable. '.Vhen the function 'returns ,

the alobciJ variable will retain the value of the function

whereas the return variable will return the derivative.

The 'Derivative of every primitive function in APL can be

written in terns of other primitive APL functions by use of

the chain rule, with one exception. The exception is the scalar

function ! . Tho derivative of the aamma function cannot be

expressed in termr, of other implemented APL primitives . Turther-

more , i t is not known whether derivatives of arbitrary orders

can he calculated through a recursion formula.
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Conclusions

The notation for derivatives in this paper is convenient,

yet aer.eral enough to cover probably all instances of differ-

entiation in mathematics. It does not, however, perform or

denote numerical differentiation, nor does it indicate the

display of functions which are derivatives of other functions.

The implementation outlined here is believed to be feasible,

and if realized, would lead to a significantly jpore useful APL,
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Abstract:

The degree to which a two-port network tightly couples

its input to its output is given a quantitative measure.

This attribute is different from reciprocity, passivity,

stability, symmetry, and other two-port-network attributes.
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Introduction

Several attributes of two-port networks are well known,

including reciprocity, passivity, losslessness, unconditional

stability, and symmetry. Not all two-port networks have all

these attributes, of course, and two-ports can be classified

according to whether each attribute is or is not obeyed. For

example, we have the well known class of reciprocal networks,

or unconditionally stable networks. Many of these attributes

can also be defined for one-port or n-port networks. Each

can be expressed as a constraint on the two-port parameters,

for example reciprocity implies Z.2
 = Z21 an^ symmetry im-

plies, in addition, Z,, = z?2* Eaqh of the above attributes

can be associated with a numerical factor that is either in

a certain range or equals a certain value if the attribute

is present. Other information can sometimes be conveyed by

the value of the factor even if the attribute is not obeyed.

For example, the "reciprocity factor" Z2i/zi2 *s e(5ual to ^

for reciprocal networks, and if it is different from 1,

its magnitude suggests the degree to which the two-port is

unilateral, with values of » or 0 for the unilateral case.

Similarly, the "symmetry factor" zii/Z22 for reciProcal two-

ports is 1 for symmetric networks, but if it is not 1, its

value indicates how the impedance level is transformed by the

two-port.



Tightness

A new attribute, "tightness," is motivated by the obser-

vation that the two networks in Figure 1 are somehow basically

different, yet their difference is not suggested by any of

the attributes listed above. (Note that they are both -

reciprocal, passive, lossless, unconditionally stable, and

symmetric.)

A tight two-port network is, intuitively, defined here

as one for which changes in the termination at the input or

the output are greatly visible from the other port. A network

that is not tight in this sense is one in which the output is

more or less decoupled from the input, or vice versa. A use-

ful numerical measure of the tightness of the network is found

by comparing the input impedance Z. for two different load

impedances. For the two loads it is convenient to choose

open and short circuits, and the "tightness factor" TF is de-

fined as the ratio of the open-circuit impedance to the differ-

ence of the impedances. That is,

zoc " zsc

A simple evaluation gives this in terms of the Z or Y or ABCD

parameters as



TF =
Z12Z21

V Y
*11X22

es ———
Y12Y21

AD

AD - EC

Parker, Peskin, and Chirlian "" have observed that the ratio
z«/-*/z<,,, (and therefore the tightness factor) is independentoc sc
of which port is regarded as the input.

A tightly coupled network has a value of TF close to 1,

and a network in which either the input or the output is de- '

coupled from the other has a tightness factor of <». This

includes networks in which the input and output are uncon-

nected, like Figure 1-b, as well as unilateral networks. A

gyrator has a tightness factor of 0.

The tightness attribute, like the others mentioned above,

can be tested at any frequency, and the tightness factor can

be evaluated as a function of frequency, either numerically

or analytically. It is possible for a network to be tight

at some frequencies, but not at others.

Examples

The tightness factors for several simple two-port net-

works are given in Figure 2. Note that in the case of a mutual



2
inductor, the tightness factor is 1/k where k is the coupling

coefficient. In the examples the tightness factors are all

real, although in general complex values should be expected.

7-10This concept resembles in some ways that of compactness ,

but is slightly different, and can be applied to any linear

two-port, whereas compactness is usually restricted to lumped,

or lossless, or RC networks. To relate these two concepts,

a network is compact if it is tight at all its natural frequen-

cies.

Anderson and Ku have discussed -the ratio of open-circuit

to short-circuit impedances for n-ports, and their approach

might be useful as a basis on which to extend the tightness

concept to n-ports .
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Figure 1. Two extreme examples of two-port networks.

Network (a) is tight whereas network (b) is not
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Figure 2. Values of the tightness factor for several

two-port networks.
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I. INTRODUCTION

MARTHA is a notation for denoting electrical networks,

and it is also a computer program which uses this notation.

A. General Description

In MARTHA, the notation, every network is either an ele-

irent (resistor, capacitor, transmission line, etc.) or else

one or two previously defined networks wired together. The

basic idea is illustrated in Figure 1. In this example, S

and P are "wiring functions" and Rt L and C are "element

functions". 5 and P are dyadic; R, L and C are monadic.

The functions used in Figure 1 are sufficient to describe

any series parallel network containing linear resistors, capa-

citors, and inductors. For more complicated networks, other,

similar, functions in HARTHA are used.

As a notation, MARTHA is an alternative to the widely used

schematic diagram. It can be used for communication fron one

person to another (for example, for documentation purposes),

or from a person to a computer, or from a computer to a person.

It is useful both in analysis programs" (where the user vritos

it and the computer reads it) and in synthesis programs (where

the computer writes it and either the computer or the user

reads it).

MARTHA, the computer program, is a network-analysis - progran

imbedded in the interactive language APL, and the svntax
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R 2

0.01 H

0 .01

2) S (L 0 .01)

— \V\A-

(C l£-~6) 2 ) 5 (L 0 .01)

Figure 1. Illustration of MARTHA notation for a model of a

parallel tuned circuit. The functions R, L, and C define

elements, and the functions 5 and P perform the wiring. The

functions R, L, and C are "monadic" (having one argument,

located on their right), and 5 and P are "dyadic" (having tvo

arguments, one on each side). These five functions are suffi-

cient to denote any linear series-parallel RLC network.
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resembles that of APL in many ways. The simplicity and

versatility of the input language make MARTHA relatively

easy to use. It differs from nost of the other programs

in this book in that it is naturally oriented toward ports

rather than toward nodes. In MARTHA node matrices are

never calculated or used, so that time-consuming matrix

inversion is avoided altogether. There are no difficulties

associated with capacitor or inductor loops or tiesets, and

it is never necessary to find the eigenvalues of any large

matrix. Analysis is carried out at all frequencies simul-

taneously, using APL's fast array handling.

B. Capabilities

The program MARTHA performs frequency-domain analysis

of 1-port or 2-port networks which are made up of 1-port

or 2-port linear elements wired together so that at every

stage in the construction, only 1-ports and 2-ports are used.

Exarples of networks of this type are most amplifiers, fil-

ters, and microwave systems. Networks may be active or pas-

sive, nay be reciprocal or nonreciprocal, and may be lunped

or distributed (or a combination of both).

Engineers may use MARTHA for circuit analysis without

knowledge of APL. The simple and uniform notation in MARTHA

is advantageous to beginners, as is the interactive nature of

MARTHA. However, users who knov; APL can write their own fur.c-
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tions to control t'.ARTHA . For example, network definitions,

including both parameter values and topology, can be varied

under program control. Advanced users can write synthesis

algorithms using MAPT HA notation for the resulting network.

In other words, MARTHA can be used as a programming language

besides simply as a program.

Although MARTHA is intended for general-purpose network

analysis, different users can make use of rather specialized

portions of MARTHA to make up their own special-purpose analysis

and synthesis systems.

Microwave engineers can use the distributed elements in

MARTHA, and wave variables (with complex, frequency-dependent

normalization if desired), and Smith-chart plotting. Aspects

of interest to amplifier designers include various transistor

models, calculation of several measures of gain and stability,

and "lARTHA's ability to plot Nichols charts and the U/A "gain

plane". Filter designers can make use of MARTHA's ability

to scale frequency and impedance, and to perform high-pass and

band-pass transformations. For active filters, there are

four operational-amplifier models of differing complexity.

Of interest to experimentalists is KAP.TJ1A 's anility to work

with tables of measured performance, and use them for calcula-

tion and interpretation as elements. Engineers concerned with

model making will find an extensive repertoire of basic elements

including 16" controlled sources, negative-impedance convertors,

gyrators, and elcrrents whose response goes with complex frequen-

cy to an integral power.
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The user can define many different networks, and wire

the- e together or analyze them when desired. Two or more

netvorks can be analyzed at the sane time, and the results

compared. There are rrore than a hundred different resnonse

functions that can be reouested. The results of an analysis

can be printed, or plotted vs frequency, or vs any network

parameter (on linear or log scale), or vs another response.

The response of one network can be plotted against the response

of another network, or against a numerical table of values.

Alternatively, the results can be stored for later display

or calculation, possibly using other results.

MARTHA incorporates an extensive set of tools for de-

fining, editing, manipulating, and interpreting tables of

numerical values. Such a nuiaerical function of freauency

(FOF) can be interpreted as a quantity to be printed or plotted

(alongside the results of a normal MARTHA analysis) or as the

impedance, admittance, or scatterina coefficient of a numeri-

cally defined element. <

C. Documentation

MARTHA is described in the book, Paul Penfield Jr.,

"MARTHA User's Manual'', The MIT Press, Cambridge, Mass. ,

1971. That book completely covers versions of XARTHA

dated 71. For versions of MARTHA dated 73 (and this in-

cludes all versions on commercial time-sharing computers)
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sevcral improvements arc described in the pamphlet, Paul

Penfield Jr., "UAF.THA User's nanual, 1973 Addendum, The

MIT Press, Cambridge, Mass., 1973. Users of HARTHA can

determine their version date by referring to the line which

starts CIRCUIT ANALYSIS BY MARTHA at the top of each print

or plot: either 71° or 73° appears in that line.

Several other publications describing MARTHA or the ideas

behind it appear in the bibliography at the end of this

chapter. See references 1 - 4 .

Besides these publications, there is extensive on-line

documentation in MARTHA', for information on how to access

this, type

)LOAD 100 HOUMARTHA

DESCRIBE

p. Availability

MARTHA is available both from commercial time-sharing

computer companies, and for use on separate machines that

run APL. Inquiries should be directed to the Manager of

Software Services, The MIT Press, 28 Carleton Street, Cam-

bridge, Mass. 02142.
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II. PROGRAM STRUCTURE

In APL, programs are stored in "workspaces". HARTHA

consists of nine workspaces of which one is purely documenta-

tion, and seven constitute the "MARTHA library". The basic

v.'orkspace*, 100 l-'.AF.ThA, contains about 70 cooperatina "fore-

ground" APL functions that the user may call directly/ several

"background" utility functions called by the "foreground"

functions/ and a few global variables. The foreground func-

tions fall into six categories. First are functions which

create elements/ such as the functions P, L and C. Second

are functions which wire networks together, for example 5

and P. Third are functions that calculate the response of

the network, for exanple inpedance, admittance, reflection

coefficient, or VSWR of one-port networks, or any of the two-

port parameters or various gain or stability measures of two-

port networks. Fourth are functions which can modify the

response functions by taking the real part, imaginary part,

magnitude/ etc. Fifth are functions that help specify the

format of the output. Finally, are some miscellaneous func-

tions to aid in defining networks.

The MARTHA library contains additional more specialized,

functions in these sane categories. It is a standard feature

of the APL workspace-storage system that individual functions,

or groups of functions, can be copied into the user's active

workspace; by so doing the user can select those functions

from the library that he needs and leave the rest behind, thereby

creatinc his own, personalized, version of MARTHA*

* On sort-2 rcr-utcrs, tho number in the v/orkspace nares is
different frc:- 100.
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III. NETWORK ELEMENTS

Table I and Figure 2 show the network elements defined

in MARTHA. The two-port networks WP and WTHRU are constants,

and all the others are monadic functions. The simple functions

Rf Lt and C (resistors, inductors, and capacitors) have been

illustrated earlier. The function L, when used with an argu-

ment of length 3 (that is, a vector with 3 numbers in it) ,

produces a mutual inductor; thus the function L produces dif-

ferent elements according to the length of its argument. The

same is true of the functions TEM, WG, and OPAMP. The wave-

guide function WG produces a length of waveguide if its argu-

ment has 3 numbers in it, but if only 2 are present (the

length is absent) the result is the frequency-dependent charac-

teristic impedance of the waveguide. The waveguide analysis is

valid both above the cutoff frequency, where the characteristic

impedance is real, and below the cutoff frequency, where it is

imaginary. Examples:

R 40 (resistor, 40 ohns)

L .015 (15-mH inductor)

L .015 .02 .01 (2-port mutual inductor)

IT 3 (ideal transformer, turns ratio 3:1)

WG 1£9 377 (matched load of waveguide with cutoff frequency

1 GHz, 377-ohn characteristic impedance at f = °°)

WG 1E9 377 .6 (60-cr lengt-h of waveguide)

WG 1F9 377 90 DEGP.IESAT 2E9 (quarter-xv'ave section of guide)

WG 1E9 377 .1* FOrDIEL 2.5 (dielectric-filled guide)
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Table 1. Elements defined in MARTHA. In the equations,

S is j2irf. The library workspace 100 MARTHAE contains

many additional elements.

EtSIEUT

RESISTOR

CAPACITOR

inDUCTOR

STRAlGflT-THVOVaa
connECTion

POLARITZ REVERSE

MUTUAL INDUCTOR

IDEAL fRAnSFOtHER

OvrRATlOflAl
A'lPlttirR

OPERATIONAL
A •'PLWZR

OPER. AMPLIFIER

PIELD^FFfCT
TRAn?ISTOR MODEL.
GROU^SED-SOU'CS

BIPOLfiR-TRA 1SIST01
MODEL • G10U.1DED-

TIPE

1-PORT

1-PORT

1-PORT

2-PORT

2-PORT

2-PORT

2-PORT

2-PORT

2-PORT

2-POPT

2-POPT

2-POPT

HA ME

R

:

L

UTHRU

VR

L

IT

OPAHP

0°AHP

OPA1P

P"T

HTBRIDPI

ARGU" f nT VECTOR

RFSISTAHCE RES in OP1S

CAPACITAnCE CAP in FARADS

innurrAncE ino in BEHRIFS

(.noflE)

(notiE)

ItPVT S rLF-lnnVCTA'!CF LI It HE/!"IFS
OUTPUT SrLP-I'!Dl/r~/(iCE L2 1,1 RE1°IFS
MUTUAL IVDUCrAVrr V 7V JIFIIIFS

TU1PS RATIO n

0'°Fn-CI'""JIT Vr>L?Ar,* GAT-J A
OUTPOT 7"!>r3/!VJ ROUT IH 0/7"S
IlPUf I'lPFDAVF Hi'! in OP'IS

OP^n-Ct'""JIT WLTAIF GAI1 A
OUTPUT I'">EDtnrr ROUT If! OH"S

VOLTAGE GAin A

GATZ-SOU1CF CA"ACITA-!C" CGS in FARADS
GATE-D^f l l CA^ACITA'ICE CGD in FA1ADS
TRAflSCO r.DUCTA'ICE C" in "HOS

RESISTANCE P.T 11 OH-'S
RrSISTAtfCE RPI 7V Or ' fS

REQUIRED EQUATIONS

V=RFS*I

I*S*CAP*V

ino*o v*s*inD*l

V1-V2-. 71 = -72

V1--V21 11=12

H*0 Kl=Sx( t l«71)+/ l fxJ2
V r 2=5x(Wx71) + i2x72

11*0 Vl -n*V2; 7l = -72»ff

A*9 V1*RI**I1
Rln*0 V2=(A*V1)+ROUT*I2

X»0 71=0
C2 = (j(«('l)+S0£;rx72

A*0 71=0; V2*A*V1

G"*0 I lzS ' tCGS'VD-tCGDxVi-Vl
72 = (C«f«Vl)»SxCCOx/2- l ' l

flP7»0 V1 = VPI*RJ[*I1
/•w* ft r^ 9 1 vo r» / c « ^ * p r \ ^ * P P T I *tfW*0 J 1 3l Vfl. * l^> « u fi )+ t *r trl ) +

CAPACITA/ICE C"I IH Ff lADS
CAPACI7AHCF C"U IH F A R A D S
TRAXSCOnDUCTAnCE G." IV MHOS

S*CMU*VPI-V2

TRANS-
Mission Lins

TRAHSHfSSIOH LIHE
CHARACTERISTIC
IHPSDAHCE

2-PORT TEH

1-PORT TEH

CRAtACTERISTIC IWDAUCE
LEHGTB LEN 7V MFTFtS

CHARACTERISTIC

zo in onus zo«o

ZO If> OflVS Z0»0

Ae*-J*02*LSN*Pt3EBtDIEL*. 5

v=zo«r

LOSSLESS VAVG'JIDE 2-PORT VC
DOMINANT MODE

DZ CKAPAC- 1-PORT VO
TERISTIC IHPE3ANCS

cu?n°p ffoijfnci PC rv HFtTZ
irtpniTF-FRsaurxcf CPAPACTE^ISTIC
I1PEDAHCF ZIK* IT OH-'S
IFVGT" LEU II MFT"S

ZIIP*O

CUTOFF PtrOUrnCY FC IH HF3TZ
iiF.-p°ro. CHA". i»p. zin" in onvs

ZI1P*0
-peep

*2)«.5
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RES ^ CAP IND

R RES

o

C CAP L HID

-o o-

-O o-

L L 1 . L 2 . M IT N

OPAMP A

ROUT

V I A * V l ~

-o o-

OPAMP A .ROUT

ROUT

RIN< VI A*V1(~,

OPAMP A . R O U T . R I N

X
CGD

\ i

\ + IV A
CGS'Zr. V\ GM*V\\Q

VTHRU FET CCS,CGD,CM

RX

RPI •

CMU

r
l CA/xl/l|Q

-o o — C

zo
-o o

20

J—o

HYBRID PI R X , h P I ,CPI ,Cf!U ,GM TEM Z O , L E N TEM ZO

LEN

FC ZINF

WG F C , Z I N F , L E N

Figure 2. Elements defined in 11ARTUA .

Z O ( F )

WG FC ,ZI le'
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Koto the two auxiliary functions, DECPEESAT and FCRDIEL .

The first is used to soecify an electrical lenath in de-

grees at a reference frequency (in this case 2 GHz) and

the second is used for dielectrically loaded guides.

The library workspace 100 I'AP.THAE contains about 50

additional elenents and models. One of then1 is the voltage-

controlled voltage source, VCV5. That is a 2-port element,

v.'ith the controlling branch on the input and the controlled

branch on the output. Current can be used as well as voltage

for either the controlling or con-trolled branch, so there

are three additional elements, named VCCS, CCVS, and CCCS.

In addition, if flux linkage or charge are possible as the

controlling or controlled x'ariable, there are 12 additional

controlled sources, including for example a charge-controlled

current source, OCCS. These are useful for nodeling.

Another function useful for modeling ir ZPDE. If its

argument is of length 2, the first is an integer and the second

is a coefficient, the result is a 1-port netv;ork whose impe-

dance is equal to the coefficient tiires corplex frequency s

raised to the integer pover. If the integer is 0, the result

is a resistor; if it is 1, the result is an inductor. Values

of the integer from -5 through 5 are possible. ZPDE also pro-

duces, if its argument is of length 3, u, or 5, a 2-port

similarly defined element where the numbers in the argument

are from the 2-port impedance matrix. Other functions named
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ypCE, HTDE, and A5CPPDE operate similarly. Those are useful

for modeling using a pov.-er series expansion.

Other elements in the 'i \RTHA library include gyrators,

nullors, negative-ir.pedar.ce converters, and attenuators and

isolators, both for TEM lines and waveguides. Included also

are functions for converting numerically defined functions

of freauency (FOF's) into elements. The FOF can be inter-

preted as impedance, admittance, or reflection coefficient

of a 1-port network, or as inpedance, admittance, hybrid,

ABCD, or scattering matrix of a 2-port network.

The workspace 100 VAFTHAE contains, more elements than

can be described here. Ccrplete documentation appears in

references 1 and 2.

The library workspace 100 VARTHAX contains several

auxiliary functions for working with MARTHA , many of which

are useful models. Examples are functions to calculate

characteristic impedance of coaxial or microstrip transmission

lines, or calculate coaxial discontinuity capacitances, or

calculate cutoff frequency and characteristic inpedance of

connon waveguides.
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IV. 'INPUT LANGUAGE

I'ARTHA is interactive. The user sits at a conputer

terninal and types his input line, and gets an immediate

reply.

Some of tho things a user must type have nothing to

do v:ith network analysis. After the user dials the telephone

number of the computer which carries XAFTHA (which may, of

course, be many miles distant) he must log in by identifying

himself. He must also load HART''-: A from the computer's public

library, and perhaps copy sere of the MARTHA, library and

perhaps copy scne of his previous results, including pre-

viously defined networks or models, or previously calculated

results. At any time the user can save his work up tc that

point, or start over, or log off the computer.

The rest of the user's tire can be spent analyzing net-

works. A netrcrk can be defined at any time, and an analysis

can be requested at any tine . The analysis might be of a

previously defined network, or of a newly defined network,

oossibly composed in part of previously defined networks.

The general form of an analysis request in WAPT!:A is

PLOT
J PLOC > <output list> OF <network>
A SMITH :

[STORE j
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Th c first word used (FPIf!Tf PLOT, PLOG, Sl'ITU, or STOPE) fixes

the basic format of the output; PLOG is used for a plot with

a logarithrric scale for the independent variable. The form

of the "outout list" is discussed in Section V. The word OF

is required to separate the output list from the network

description.

The form of the network description is unique to MARTHA.

Two types of APL functions are used to define networks. The

first create elements, for example, resistors, capacitors,

etc., and the second create networks out of other networks,

by wiring then together. Elenent-definition functions wore

described in Scv^icn III. An example of a wiring function is

S, which is dyadic and, like all dyadic APL functions, has an

argument on each side. Thus, if A and B are 1-port (2-teminal)

networks then A 5 B is the new 1-port network formed by putting

the two networks A and B in series. Similarly, the function ?

wires two networks in parallel. Figure 1 shows a schematic

diagram and a description in !'ARTHA notation of a simple series-

parallel network. The functions S and P are sufficient to

wire together all linear series-parallel networks. For more

complicated topology, other wiring functions, designed to work

on 2-port networks, are defined in MARTHA.

There are fourteen wiring functions in MARTHA, including

the functions 5 and P. These are shewn in Figure 3. To create

2-port networks out of 1-port networks, the functions «'S and ;-. r

are used. These are n.onadic; that is, they have one argument

instead of two. The arguncnt appears on the right of the
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SI

52

Q

51

52
Wl1 e

51

> 1

5

VS 51

1

51 P 52 51 5 52

51 52 51 52

51 UC 52 VTO 51 UTS 51 51 fcT 52

•î HBW

p- ̂

51

52
••

-o o—

-0 O-
'-

C1

«79

1
I
H H '

51
r— O O— i r— — n |

1

1 1

51 WPP 52 51 W5 52 UN 51

51

52

-o o-

_o o-

51

52

r=
-0 51

....... — In
51 V5P 52 51 V55 52 VKOT 51

Figure 3. VJiring functions defined in M A R T H A .
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function, as is true of all monadic APL functions. Two

2-port networks can be wired together several ways. The

functions V?P, VPS, WSF, and f/SS connect the two inputs

and ths tvo outputs, using either parallel or series connec-

tions at eaich port. These are useful in denoting feedback

amplifiers; for example, the function WSS "might be used for

emitter degeneration. The cascade function WC is very com-

mon. The ronadic functions "/.' and WROT are useful in convert-

ing grounded-eriitter transistors to grounded-base or grounded-

collector configurations. Symmetrical filters can be denoted

easily v;ith p/.v. if the left-hand side of the filter is called

At then the overall filter is A' VC &'/.' A. Finally, three tech-

nicues for convertina a 2-port network to a 1-port network

by terminating the output port are shox-m. The output port

can be open-circuited (:-,'TO} or short-circuited (P'TS) or

terminated in another network (j.,'21) • Note that ~fiTO and UTS

are ronadic, but j/r is dyadic, expecting a 2-port netv:ork

as its left argument and a 1-port network as its right argu-

ment.

A precedence rule for the wiring functions must be

established. By that is meant a rule for determining which

of the functions are to be considered executed before others.

For example, in ordinary algebraic notation, the expression

AxB+3, \\ritten without parentheses, indicates that the multi-

plication is to be performed before the addition. This is ar.

example of the ccrron rule that exponentiation is performed
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bcfore rultiplication and division, and those are performed

before additions and subtractions. By v:ay of contrast, the

languace 7.?L has a sirpler precedence rule. The rule is tha-

all functions have eaual precedence, and are executed strictly

in the order indicated, from right to left, unless parentheses

are used to delimit expressions vhich are to be evaluated

first. Thus, in APL, Ay3+3 would be Xx(B+3), rather than

(X*5)+3. The precedence rule for the wiring functions in MARTHA

is the sane as that of APL. As a consequence, every nonadic

wiring function takes as its argunent the entire expression

to its right, and every dyadic function takes as its left

argurent the one object immediately to its left, and as a

right arguTont the entire expression to the right. Paren-

theses can, of course, be used in the usual './ay to surround

expressions v:hich are to be evaluated first. Parentheses

are often required for left arugrents of dyadic functions,

but are never recuired (though they are permitted) for right

arguments of functions . As an exanple,the expression

Al 5 A2 P A3 refers to the netv;ork of Figure 4 (a) , rather than

the network of Figure 4 (b) , which would be written (A\ S A2) P A3

Sere of the wiring functions expect 1-port networks and

others 2-nort networks as argunonts. Vlhat happens if the wrcr.g

kind of network is used? For example, what happens in A £ F

if B is a 2-port network? In order to allow all x-;iring functions

to operate on both 1-port and 2-port networks, two "auroiratic

conversion conventions" are adopted in VAPTIIA. They are:
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1. If a wiring function expects a 1-port netvork
and encounters a 2-port network then the output
is opon-circuircd and the input is used. This
is eauivalent to using the function '-'TO.

2. If a wiring function expects a 2-port network
and encounters a 1-port nct-./ork, then the wirinq
function ,• P is automatically invoked to convert
to a 2-port network.

Several examples of networks are shown both in r.'FTHA

notation and in schematic diagrams, in Figure 5. These in-

clude the widely-used Darlington transistor connection, a

half-ladder and a VTieatstone bridge.

MARTHA incorporates several other functions that are not,

strictly speakir.a, wiring functions, althouoh they have as an

argument a network and return as a result a network based upon

the argument. All of those operate on both 1-port and 2-port

networks, and return a network with the same number of ports.
6-3

The monadic function WAD converts a network to its adjoint ,

which is the network whose irpedance and admittance matrices

are the transposes of the corresponding matrices for the

orioiral network. The function ZSCALE is dyadic; its left

argument is a number and the result is a network with the same

topology as the net'-ork of its right argument, but with all

elements scaled in impedance. Similarly, FSCALE performs a

frequency scalinn. These functions are useful in filter de-

signs, where perhaps a 1-ohm, 1-Hz prototype is known. In

a similar vay, I-IM'EP.T performs a low-pass to high-pass trans-

formation, and F3P a low-pass to band-pass transformation.
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A 2

-Ul_ j —'

A\ S .42 P A 3

(a)

•Us !-

Ul 5 /2) P A3

(b)

Figure 4. Illustration of the precedence convention for
wiring functions in MARTHA .
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>

= > 100
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(b)

10,000
20,000

iu,uuu ,-̂ vNA^

_^\AA^—

500

(c) (d)

Figure 5 (continued on next page)
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O

100 Q
A A A A

1000
.... AAAj

5000 Q t\
A, A A , -»^«.
V v V

4.

u
U

Q

] \ir

If11
\
^

100 Q

(e)

( f )

1 : 1
-! 52

(g)

Figure 5. Examples of KARTHA notation.

(a) Double-stub tuner xs'ith 50-ohm lines and adjustable line
lengths LI and LI, and fixed separation 5 inches:

(,WTS TEM 50, LI) UC (TEf-J 50, 5x. 0254) WC WTS TEM 50, LI

(b) Tvin-tee filter, values in ohns and microfarads:

((US R 20Q)VC(C 2ff"6)f/C- WS R 20Q)WPP(WS C 1E~S)VC(R 100)f/C WS C 1E~6

(c) Feedback arplifier:

/? 5 0 0 ) VPP WS (P 10E3) ( /? 20E3) P C1 3£~6

(d) Vheatstone bridge:

(((VS P. 40) r/C1 /? 50) I-/ PS VP VC (WS R 20) WC R 3-0

(e) Active allpass filter (reference 5) :

(WS(R 100 )S C lT~6)I/PP(f'S /? 5000)FC((OP/1/.'P
f/SCS 100 )P C 1E"6

(f) Darlington transistor connection:

WROT »'ROT (WROT 02) l-.'C VROT 01

(g) Half-lattice network:

U'S 51) 'f'PP (IT ~1) f/C1 fv'5 52

P/S 1000
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The latter tv:o ray be vrsed in succession to define a band-

elimination filter. The function 1-fCC returns a network with

every element replaced by its "complex conjugate"; it is

useful in defining ccr.jurate-natch loads for optirum paver

trt.ncier. Finally, the function '\')UAL takes the dueil of a

network, changing topologv, and elenent values, and elerent

types in the process.

This last set of functions is useful when I'ARTIIA is

used for design work. The y.APTHA library contains a function

nared '.iHATIS vhich prints network descriptions of any

netvork. Thus , for exarple, if PPOTO is a 1-ohn, 1-llz proto-

type filter, then

DESIGii •*• 1C 00 ZSCALE Ice FSCALF, PROTO

defines a 1000-ohir, l-:iHz filter. Then

11 •' t rr -~ r* nr^r^r/^i'if n /i^j-C J ̂ ^ J. (ju

will print its definition, and

PLOT (DB 1C OF DESICi") , DB IG OF DESIGN \!C MS R SCO

will analyze it (in one case after it is wired with another

resistor).
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V. OUTPUT SPI'CIFICATIONS

The general form of an analysis request in UARTHA is

<output list> OF <network>

In this section the output list is described.

The output list is, basically, a list of response functions

of the network to be calculated. It also can include modifiers

on the response functions, and sore format requests.

A. Response Functions

MARTHA can calculate over a hundred different response

functions, of which the thirty in Table 2 are thought to be

of wide interest, and the remainder of specialized interest.

The response functions of Table 2 are in MARTHA , and the rest

in the library workspace 10 o MARTHAR.

For 1-port networks, the response functions are the im-

pedance Z, adnittence 'I, normalized impedance Z and admittance

J, reflection coefficient SC , and voltage standing-wave ratio

VSVR. Of these, VSUR is real and the others are conplex. If

the network in question is a 2-port network, then (in accordance

with the autor-atic. conversion convention for wijring functions^,

its output port is open-circuited and the input port is used.



-25-

Table 2. Response functions in MARTHA. Of these 30,

26 are complex and four real. Over 70 additional response

fxmctions are in the library workspace 100 I'ARTHAR.

7/'-7

Z

7

SC

Zll
Z-12
Z21
Z 2 2
711
712
721
722
7/11
7/12
7/21
7/22
511
512
521
522

ZJ7
yjv

51''

ZOUT

YOUT

SOUT

VG
AC,
IG

PG
1 '/

Cl?

C

c

c

c
c
c
c
c
c
c
r
C
C
C
C
C
C
C
C

c
c
x->

c

c

c

c
R
R

R
' R

//'7/71-ff DE^E'^S 0''

II 'PEDAUCE OF A l -PORT NET'JORK FET'"1RK
7=2x1

ADMITTANCE, OF A l-PORT UET'JOPX NETWORK
1=7x7

REFLECTION COEFFICIENT OF 1-POPT NETl'ORX, Z'l

T'lpEDAIICE ' ' J ^^TY NE^l'^IF
V1 = (Z1 1 x 1 1 ) + ( Z 1 2 x J 2 )
7 2 = ( Z 2 1 x J l ) - t - ( S 2 2 x J 2 )

ADMITTANCE '">TRIX HET' rORy
Il = ( . 7 1 1 x 7 1 ) + C 7 1 2 x 7 2 )
J2 = ( 7 2 1x71 )+( 7 2 2 x 1 / 2 )

HYBRID '1ATRIX NETWORK
71 = ( 71 IxJl ) + ( / 712x72 )
12 = ( 72 IxJi ) + ( 7 / 2 2 x 7 2 )

or A /7"7Trin) TTTC Ff " TP T*v *?T^ 'n*T/0 ^ ?r 7 " r *7 7 fl O ,Vi ^ O / i _ — / . j. i i r ' . J. 1 J. /\. ** - ' . i . .f c / . — ' / j ^/' '-'-

Z ? l = ( 5 l l x / l l ) + ( 512x /12 )
2?2 = (521x/ll ) + ( 5 2 2 x / l 2 )

IHPUT I ' iPEDA-lCE 71*11 IlETr 'OPy, ZL
IJ1PUT AD''TTT/.nCE Jl*71 VET r'OP.", ZL
r/rpyv r>E"LEC r ~' T OU C O E F ^ T T E V ™ R - l t A l IJE^'.'Opy , ZL, Z 7 T 7
OUTPUT I-<PED.'!!CE HET'.'ORX, ZG

72*12 VV.EU O U T P U T EXCITED
OUTPUT AD'HTTAUCS UETl'OP'.:, ZG

12*72 'JI'Ell OUTPUT EXCISED
OUTPUT REFLECTION COEFFICIENT UET'.'nRy, ZG , Z f i r > U T

S2*/12 1/I'Ell OUTPUT EXCITED

VOLTAGE GAI-1 V2*EG flET' . 'O^X, ZG, ZL
A V f l l L - W L E GSJU P O U T . A V t P I " ,-* V Jl^T'.'O^X, ZG
INSERT I Oil G/I" llET'JnPY., ZG, ZL

POUT( "'ETUORX ) * POUT ( I/THRU )
Pfl.7"".? GAIN ~ O U T ± P T 7 1 7/r^".'O°'Tf, Z7,
TPtUSDUCFR IfT ' l ' POilT*vi'i t /1 7 VET't^R'' , ZG, 7.T.
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In calculating SC, VS'.'R, Z, and Y a normalization impedance

is required; in MARTHA the normalization impedance for 1-port

networks is known as Zll, and must be set by the user before

analysis. It may be either an impedance (a real number) or

a real or complex nurerical function of frequency (FOF) or

any 1-port network defined in MARTHA notation (in which case

the impedance of the network will be used).

For 2-port networks, there is a wide variety of response

functions. If a 2-port response function is requested of a

1-port network, then (in accordance with the automatic conver-

sion convention for wiring functions) the wiring function f/P

is assumed to be invoked. The response functions available

include all the common 2-port parameters (impedance, admittance,

hybrid, ABCD matrix, and others) and the corresponding matrices

for wave variables (including the scattering matrix and scatter-

ing transmission matrix). For calculations of the wave-variable

responses, normalization impedances at both the input and the

output are recmired; these are known as ZNIN and ZIJOUT, and may be

different both fron each other and from Zll. Each of these, like

Zli, may be a real constant, real or complex numerically defined

function, or any UAPTI'.A 1-port network.

Many of the 2-port response functions depend also on the

generator and/or load impedance. A 2-port network is assumed

to be terminated by generator and load as shown in Figure 6.

the variables ZG, ZL , and EG may, like ZU, be specified in
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several different ways, but they rust be specified before

analysis. Examples of response functions include the input

impedance, admittance, reflection coefficient, and VSWR

(these all depend on ZT>) and corresponding output Quantities

(these all depend on ZG) . Other examples are various measures

of gain, including power gain, voltage gain, open-circuit

voltage gain, voltage ratio, transducer gain, insertion gain,

insertion voltage gain, unilateral gain, conjugate-match gain,

and available gain. Also available are various characteristic

impedances of the network, includincr image impedance, itera-

tion impedance, and conjugate-match impedance, along with

corresponding admittances, reflection coefficients, and pro-

pagation constants. Also included are stability factors for

amplifiers, and normalized impedances and admittances. Other

response functions include the input and output voltages,

currents, and wave variables.

B. Modifiers

The complex response functions appear normally in the

form of real and imaginary parts. This may be changed by the

use of modifiers. Table 3 lists the most important modifiers

in MARTHA. For complex responses, the real part, imaginary

part, magnitude, magnitude in decibels, angle, and phase delay

are all useful. The appropriate modifiers are placed before
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ZG
-A/W-

INPUT

GENERATOR

TVVO-PORT
NETWORK OUTPUT ZL

LOAD

Figure 6. Termination of two-port networks assumed when

some of the response functions are calculated. The generator

and load impedances ZG and ZL are not part of the network

definition.

Table 3. Modifiers in MARTHA. Of thses six, RE, IM, RAD, PD,

and DEG are ignored if applied to a real response, and DB

is 20*1COMAGNITUDE for conplex responses and IQxlOeABSOLUTE VALUE

for real responses. If no modifier is used, the real and

imaginary parts of complex responses vill result. Other

modifiers are in the library workspace 100 MABTHAM.

MODIFIER

RE

IM

MAG

RAD

DEG

DB

PD

EEC

MFAUING

Peal Part

Imaginary Part

Magnitude

Phase in radians

Phase in decrees

Magnitude in dB.

Phase delay

Reciprocal
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the responses in cuastion. Example:

PP.HIT HAG Z, DEC Z OF (R 1) P L .02

Each of the modifiers acts on only the one response immediately

to its right, contrary to the normal APL convention that func-

tions have as their right argument the entire expression to

their right. Thus parentheses are not ordinarily used in

the output list.

C. Formats

Various format requests can also be inserted in the out-

put lists, generally at any point in the list. For prints,

the number of significant figures printed can be changed from

its normal value of 5 by the function PLACES. Example:

PRINT 7 PLACES DB IG OF CR?STALFILTER

For plots, several additional options are available. Plots

are normally made against frequency as the independent variable,

but if desired any one of the responses will act as the independent

variable if it is preceded in the output list by VS. Alternatively,

if PAIRS appears in the output list, the first response function

will be plotted against the second, and the third against the

fourth, etc. Plots are normally 50 spaces wide and 50 lines high,

to fit conveniently on one page (except those made by the function

SMITH which are designed to fit a standard-size Smith chart).
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Other widths and heights can be specified in the output list.

Plotting characters other than the standard ones can be

specified by the function SYMBOLS. Normally MARTHA plots all

dependent variables with different scales, selecting each so

that the scales consist of round numbers, but still sianificant

detail is shown in each plot. The dependent variables will

all have the same scale (with usually some loss of detail) if

55 appears in the output list. The horizontal and vertical

scales can be set to arbitrary values by the functions KSCALE

and VSCALE. This is useful in ragnifying certain critical

regions of the plot; points falling outside the specified

scales are simply ignored.

These plotting format functions are illustrated by some

examples:

FLOG '/•/£' SYMBOLS MAG Z, DEC Z OF NETWORK

PLOT 55 Zll, Z12, Z22 OF FILTER

PLOT "20 20 HSCALE "180 180 VSCALE DB ER 75 DEC RR
OF AMPLIFIER

SMITH 511, SIN, 512 OF FILTER

PLOT PAIRS (Z OF AMPl), ZlfJ , Zll OF Af!P2

The third request prints the Nichols chart for the return ratio

RR of the amplifier, and the fourth request produces a standard-

size Smith chart.
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VI. MODELS

A computation using MARTHA (or any other program) will

only be accurate if reasonable care is used in modelling the

network. Devising suitable models for a network is usually

the most challenging part of any analysis. l-'.ARTHA cannot,

of course, do the modelling job for the user, but it does offer

him a selection of elements useful for models, the possibility

of numerically defined elements, and the option of creating

other elements in the form of "user-defined elements" .

A. Types of Models Alloyed

Models in l-'ARTHA nay be any network with topology definable

in the MARTHA notation, using any of the built-in MARTHA ele-

ments, along with any linear 1-port or 2-port element not already

in MAPTHA , for which the user is able to supply an APL algorithm

for computing its impedance (for 1-port elements) or its ABCD

matrix (for 2-port elements).

Note that l-'AETEA does not distinguish models from elements,

or from networks containing several elements wired together.

If any user linds that he uses a given configuration frequently,

then he can write a simple APL function that returns that parti-

cular network upon demand. For users who wish a model that is

not representable by a network made up from built-in MARTHA

elements, MARTHA allows user-defined elements without restriction

as to complexity of the required algorithm.
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Several elements of special interest in modelling were

discussed in Section III. MARTHA can also handle numerically

defined elements . To create one of these, the user types in

a table of values and then calls one of the functions ZFOF,

ypQF, SFOF, HFOF, and ABCDFOF to interpret the table as numeri-

cal values of impedance, admittance, or reflection coefficient

for 1-port networks, or z, Y, S, H, or ABCD matrices for 2-port

networks. The resulting numerical models are then treated by

MARTHA like other elements. Arbitrary frequency dependence

is available this way.

B. Built-in Models

MARTHA contains several built-in models, of which the

most important are probably the hybrid-oi and FET transistor

models, and four simple models of operational amplifiers.

These are considered as elements in MARTHA , and were dis-

cussed in Section III.

C. Inout Techniques and Format

For use. r-def ined models, a distinction should be made

betveen those models that are networks of MARTHA elements, and

those that are not. For the former, a simple APL function with

an argument will usually suffice. As an example, consider the
9 - - — _ _ _ _ _ _ _ _

Marcuvitz model for a window formed from a pair of semi-

circular obstacles along the sides of a waveguide, Fioure 7.
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The ecmivalent circuit shown has inductors with inductances

T _
i, _

2rrfcD

27Tf D

16irf

Note that Lg is negative . Z^ is the characteristic impedance

of the waveguide at infinite frequency, fc is the cutoff fre-

quency and c the speed of liqht. A function that returns this

2-port network is
7 P-t-UI''DOU A

[1] Z+ 3 0 0 0 0 0 0 0 0 ^ ( 6 . 28x/.[ l]x/.[ 3])
[2] i / ^ / r 2 ] x ( ; i T * 2 ) * ( 6 . 2 8 x x ! m )
[3] L3*-J [2 ]* ( ( Y * U ) x l 6 x 3 . l « * x / [ l ] )
[4] B*(f/5 L 7,B) ,7^7(7, L / l ) \JC ,75 7, L7?

7

where the argument A is a vector of length 3 containing the cutoff

frequency, the impedance, and the dianeter. A relatively small

arrount of APL programming ability is required to read or write

this model. The normal APL function-definition scheme is used,

and all APL primitive functions (and I'.ARTHA functions) may be

used.

Next, consider the case where the model is so complicated

that a netvork v?ith t'APTHA elements is not sufficient to describe

it. The technique now is to use MARTHA'S user-defined -element

capability. Two kinds of functions are required, the first to

define the user-defined element, and the second to actually com-

pute its response at each frenuencv. The first function is easv

to write: it should return an APL vector of any length starting
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Table 4. Required shape and interpretation of matrices

returned by the user-vritten function VEVELEt'EKT.

Nurber of Colunns

Column

1

2

3

4

5

6

7

8

2_

Re Z

In Z

_6_
Re A

Im A

Re B

Im B

Re C
Im C

•

(1+BC)

A

8

Re A

Im A

Re B

Im B

Pe C

Im C

Re D

Im D

Assumed

Properties 1-Port 2-Port 2-Port
of Result . Reciprocal

LB LB
-JLA

TOP VIEi:
EQUIVALENT CIRCUIT

Figure 7. Syrrctrical window between two sericircula^ inductive
posts in a vaveguirle and the rodel given by Marcuvitz" . _



with the number 9. The rest of the nunhers in the vector con-

tain the paraneters associated with the mocel. The second

function is more difficult. it must be a monadic APL function"

entitled UEVELE'.'.EllT. It is not called directly the the user,

but instead will be called by one of the MARTHA functions when

analysis is done. At that time the frequency is known (it

need not be known during the definition of the network) and

NEWELEHEHT may refer to it. The function HEWELEMENT must

return either a 2-dimensional matrix according to Table 4, or

a MARTHA network, possibly incorporating such a matrix as an

element. The first dimension of the matrix is in each case

the number of frequencies, and the second dimension is 2, 6 or

8, depending on whether the network is a 1-port network, a

reciprocal 2-port network, or a nonreciprocal 2-port network.

As an example, consider a length of coaxial transmission

line with skin-effect loss. The TEM lines in MARTHA are loss-

less, and the freauency dependence of the skin-effect is not

given exactly by any l-'.ARTHA element. For this example, the

necessary parameters to specify the line are the inner and outer

radii, and the length. A function that creates the user-defined

element is very simple:

V Z?«-C10??rY3L7"':7 A
[11 3+ 9 2 . 5 2 7 7 ~ 7 ,.1

7

The argument A is assumed to consist of the inner and outer radii

and the length, all in reters. This function merely defines the
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elcrent; it docs nor do any calculations .

During ::>\ZTHA analysis, the function NEWELEtJENT is called

when this element is encountered. The real calculations are

perforr.ed by that function. The ABCD matrix for this line is

given by

A = D = ccsh Ye

B = ZQ

C = (sinh Y£)

where £ is the length and

Y = '\R + 3wD (G + juC)

Zo =

and where the per-unit-length quantities L, C, R, and G are

given by

V -

2ir r.

c-

G = 0

- 1 1 1
R = 2.52 x 10'7 /f — (— + —)

271 ro ri
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A function HEWELEMEUT that incorporates these formulas is

fK!'? -I ;CT;Z,L;"-'7; .7?0 ;.YO ;ALP'1A I, ; B^T 'L
[ I ] CC+G. 2 8 x 3 . 8 5 H r 7 ~ l 2 T » / 1 [ H ] T / 1 [ 3 ]
[2 ] LL+-27 7 x e 9 . ' C u ] * . ' , [ l ]
[ 3 ] Stf-tvi [ 2 ] x ( , T * 0 . <3 ) x ( ( v/1 [ 4 ] ) + T/t [ 3 ] ) v G . 2 3
f U ] J?0«- ( ( ( £ L * C £ H ( ( ( £ £ * < " < ? ) • * 2 ) - t - C ? ' - > - C C x G . 2 3 x , F ) * 2 ) * 0 . 5 ) * 2 ) - * 0 . r i
[5] ZO^-PP : - 2 x / ? O x C < 7 x 5 . 28x ,F
[ G ] / ! L ? 7 / I Z , « - / 1 [ 5 ] x ? 7 v 2 x P O
[ 7 ] Z?r 2Y.L«-/ [ 5 ] x ?? o x £C"x 6 . 2 8 x , F
[ 8 ] B « - ( ( p , F ) , G ) p O
[9] 3C ; 1 21^(2 1 o.oJ?Fr/IL)x 6 5 ° . oALPIAL
[10] 3[ ; 3 U]«-l9(2 1 » . oSF.r/lL) x 5 6 • .oALPUAL
[II] F[ ; 5 6]*-(3[ ; 3 U] x/?o , [ 1 . 5 ] /?0) + ̂ [; 4 3] x^O , [ 1 . 5 ] -,YO
[12] S[ ;5]*-P[ ;5] v(,YO*2 )+70*2
[13] 5[ ;G]<-."[ ;G] v(.7Q*2 )+.r?0*2
[14] 3[ ; 3 U]«-(P[; 3 4]x^o,[1.5] 7?0)-5[; 4 3] xJQ , [ 1 . 5 ] -70

7

This function is not trivial, and sone familiarity with APL

is necessary either to read or write it.

The mirier 2.522~7 in the function COPPERLIKE is a

measure of the resistivity of copper, and is used in line [3]

of HE'JELEUEHT* By including it as part of the element definition,

other element-definition functions can use the sane function

NEUELEMENT for other materials, for example

7 D+mASSLIH" A
[1] 3«- G 5.01*7" 7 ,

7

An important aspect of every model is its range of validity.

This includes permissible values for both parameters associated

with the model, as well as allowed frequency ranges. Users are

advised to have their model-~aVir.r functions check the parameter

values to see that they are reasonable. To check on frequency

range, HART*!A can be made to print a warning whenever one or more



-38-

frcouencies is outside the permissible range. To set the

permissible range, the network is operated on by the function

FliIt.'ITSt T,;hich is a dyadic APL function with left argument a

pair of frequency values limiting the allowed range. For

example, the r.odel for waveguide window given above is only
Q

valid (according to y.arcuvitz ) between f and 3f . If thec c

function Vi::DOW had the following fifth line

C5j B + <A : i3 ,3x/ l [ i ] )FLrWJ7 7 S r B

then whenever that network is analyzed, if any of the fre-

quencies is outside that range, that fact will be reported,

but analysis will continue.
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VII. EXAMPLES

Three fully worked examples are given in this section.

The first is a transistor amplifier which is also treated in

other chapters of this book. The second is a crystal filter,

and the third a coaxial low-pass filter. The lines typed by

the user are identified by being indented six spaces . The

computer response generally is not indented.

A. Transistor Amplifier

Figure 8 shows the circuit diagram for the amplifier,

together with the model to be used for the transistor. The

bias source has been omitted. Because of the versatility of

the technique of defining networks in MARTHA, the amplifier

may be defined in several ways. One way which is probably

appropriate for this network is suggested by Figure 9, where

the input and output coupling networks, and the emitter cir-

cuit, are shown as senarate two-port networks. Those circuits

are straightforward, and are defined first (see EXAI'PLE 1) .

The hybrid-pi transistor model used in L'APTHA is generally re-

garded as tha best linear rodel at high freauencies. This

model (see Figure 2) can be made to coincide with the transis-

tor model to be used, if PX, CPI, and CMU are all set to zero,

and CM is BETA^RPI. Then the output resistor P5 must be added

separately. The transistor is defined using this approach, and
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.?!

Base
o

Enitter (b)

Collector

fl5

50 ohms 6
20,000 ohms C\
325 ohms C2
25 ohms LI
2 Ilegohms

(c)

98
10 .7 pF
10 yF
1.7 mH

Figure 8. (a) Transistor amplifier. (b) model for transistor.

(c) corr.ponent values.

" 1
1
i
X

5
Xr
ii

'/ i• ^ iiiiiiit
i

TRAll

A\V-

—c

IKPUT Ef'CKT OUTPUT

Figure 9. Transistor amplifier sho\/n as four subnetworks

wired toaether.
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note that it is not necessary to separately calculate

since the formula can be typed in and the calculated result

used as part of the argument for the function HYBRIDPI.

Refer now to E"(/"PLE l. First the workspace containing

MARTHA is requested from the APL public library. Then, the

four subnetworks are defined, and then wired together and

given the nane x.VPl. This completes the network definition.

Before analysis, the freouency vector F must be specified.

A study of Figure 8 reveals no mechanism for limitina high-

freauency response (this is perhaps an unrealistic circuit).

To view as wide a frequency range as is necessary, a logarithmic

frequency sweep is used. The frequency vector F is set to 10

raised to the pov.'er (the asterisk is used in APL for power) of

a vector ranging frcn 0 to 11; this covers all interesting

ranges.

Next, a choice of resnonse function must be made. In

this example, the voltage gain VG is nost logical, and the mag-

nitude (in dB) and phase (in degrees) are requested. The out-

put recuest begins with the word PRIKT to set the basic format,

and this is followed by the output list, then the word OF and

finally the network definition. As expected, the voltage gain

saturates at high frequencies at the rather high value of 138 dB,

and the phase approaches -180 degrees.

These results rust be taken with a grain of salt. Like

all other network-analysis programs, "ARTU.A can give reasonable
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answers only if reasonable models are used, and in the present

case the circuit is probably not veil modelled above 1 MHz.

This fact does not destroy the usefulness of the circuit as

an example of hov to use MARTHA, but it does imply the need

for better models.

As an illustration of the use of MARTHA in judging

different models, sone rather simple improvements are made.

First, a stray capacitance is placed across the inductor LI,

and the resulting network named Al'.PI . This is, of course,

still a crude model. Second, the transistor is re-defined

with what might be typical values of RX, CUV, and CPI. The

nev; network is called A11P3 . In each case, the network defini-

tion is easy because the previously defined subnetworks are

used.

The voltage cains in the three cases are compared by

simultaneously analyzing and plotting the gains of the three

networks. To cover such a wide frequency range, a logarithmic

plot is necessary, so the function PLOG is used (the function

PLOT produces a linear plot). Note that HARTHA normally auto-

matically selects the scales, but is here requested to use

the sane scale for the three different resnonses.
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B. Crystal

This crystal filter, Figure 10, is adapted fron a filter

shown to me privately by Mr. William B. Lurie, who ascribed

the design to Prof. G. Szentirmai. There are two stages, each

with a half-lattice construction which is modelled with the

aid of an ideal transfomer . The four crystals all have the

sane equivalent circuit, with different element values. The

filter has a passband about 4000 Hz wide, between 8 MHz and

8.004 I.Hz . It is designed to operate between source and load

of 500 ohir.s . Refer to EXAMPLE 2. First MARTHA is loaded,

and then the four crystals are defined. Next the two stages

and the overall filter are defined. Next, the generator and

load impedances ZG and ZL are set to 500 ohrrs, and the fre-

auency vector set so as to encompass the passband. In speci-

fying the frequency vector, the index generator x was used.

A plot 30 lines high of the insertion gain 1C expressed in dB,

and the phase of the voltage gain in degrees is reauested.

Next, to see the ripple in the passband a little more clearly,

the horizontal scale is deliberately set to the range fron -2

to 0 dB, with the aid of the function H SCALE from the MARTHA

library. This request overrides the norr.al MARTHA practice

of automatically setting the scale. Note that when a network

is to be analyzed a second time for the same freouency vector,

the previous_re suits , saved under the name SAM^E , can be used.
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Figure 10. (a) Crystal filter. (h) model for the crystals

XI, XI, X3, and X^. (c) component values. The element

values in the crystal nodels are not listed since they

appear in EXAMPLE 2.
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Next, it is desired to inspect the transition region

and the stopband, so the frecuency vector is redefined to

cover the upper half of the passband and 4000 Hz above.

The insertion goin, phase, and the magnitude of the input

impedance, are printed.

An interesting phenorenon is observed at approximately

8.007 Illlz. The insertion gain passes through a peak and the

phase changes by 180 degrees. Apparently there is a trans-

mission zero somewhere in the vicinity, and to view this in

more detail, the frequency vector is redefined so as to expand

the range between 8.0068 MHz and 8.0070 MHz. The depth of

the notch in insertion gain (105 dB) and still rather sharp

transition in phase suggest that the zero is very close to the

jw axis, and it is interesting to expand the passband again,

between 8.00691 MHz and 8.00692 MHz. Mote that the printing

will not resolve these snail changes in frequency so a larger

number of significant figures is requested with the aid of the

function PLACES fron the HART HA library. The frequency sweep

is now in 1-Kz steps, and the high resolution available in

this analysis is due to the fact that MARTHA (like APL) uses

double-nrecision arithmetic.
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C. Coaxial_Lov-Pnss Filter

The third example, Figure 11, illustrates MAPTHA's ability

to vork with distributed as well as lumped networks. The original

design of this seven-section low-pass filter v'as done by R. Levy

and T. E. Rozzi , who stated that this filter is not particularly

good except as an example of their design method, which they then

used on a more practical, 23-section filter. Only the seven-

section filter is analyzed here.

The coaxial discontinuity capacitances of the filter are

important to its design. These capacitances are models which

should be used at every junction between conductors of different

size, as shown in Figure 12. MARTHA has a function named

COAXD1SCAP in the MARTHA library which calculates the values

of these capacitors, when supplied with the appropriate radii

of the line. Like all lengths in MARTHA, the radii must be

given in meters, and so a conversion from the dimensions in

inches in Figure 11 is necessary. In EXAMPLE 3, the first four

discontinuity capacitors C\ through C4 are defined (the other

four are equal because the filter is symmetric), and the con-

version from inches to meters, and from diameters to radii, are

done during the definitions (multiplication by 0 .0254 meters

per inch, and 0.5) .

Next, the individual lengths of transmission line LI

through l^> are defined. In MARTHA a length of line is specified

by its characteristic impedance and physical length. In our
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case we need to calculate the characteristic irrpedance from

the dimensions. The function COAX in the MARTHA library is

copied, and then used to do this . It expects as an argument

a vector consisting of the inner and outer radii, and length,

all in meters .

Since the filter is symmetric, it is possible to define

the left side (consistina of the first three lines with the

discontinuity capacitors placed at all junctions), and then

use this definition twice in the final definition of the filter.

Making the definition in this way eliminates the need to enter

the sane numerical data twice, and therefore tends to reduce

keyboard errors.

The filter is designed to operate from a 50-ohm generator,

and into a 50-ohn load, so the generator and load impedances

ZG and ZL are set to 50. The VSWR at the input is wanted, and

this response function VSVP.IU is copied from the MARTHA library .

The freauency vector is set, and a plot is reauested. The

result, of course, in in agreement with the analysis by Levy

and Rozzi

Filters of this sort are periodic, and have other pass-

bands. In this case there is another passband centered around

12 GHz, so the stop band extends from 3 to 9 GHz. Levy and

Rozzi stated that this seven-section filter had poor stopband

attenuation, and the plot of the insertion gain up to 10 GHz

reveals just how true this is. The maximum attenuation is

only about 4 dB.
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viii. Li

Every net'-ork-ann lysis prograr has two types of limita-

tions not discussed so far. One has to do with computer re-

source lirits, and The other with problems that are ill con-

ditioned .

A. Resource Liritations

Many programs have limitations on the number of nodes,

or number of elem.er.rs, or number of network defintiions allowed

These limitations arise frcrt the amount of space set aside for

certain variables. :'.ARTHA has, for practical purposes, no

such precise limitations since it is imbedded in APL, which

uses dynamic storage for all variables. The resource limita-

tions of VAP.TPA are somewhat more difficult to describe.

The prinarv limitation is caused bv the finite size of

APL workspaces (usually 32K bytes, each byte being 8 bits) .

The MARTHA functions require about 19K, leaving about 13K for

the user's network definitions and temporary storage of re-

sults. If possible, y.AP.TF.A automatically analyzes with all

frequencies at once; if this is not possible, it automatically

selects a smaller nurber of frequencies, and repeats the

analysis as many times as necessary, until all frequencies

are accounted for. However, even this can be insufficient in

some cases with lengthy output lists. Experience has shown
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no trouble for analysis with up to fifty frequencies, provided

not too r.uch of the available space is taken by unrelated

functions and data. The APL error message f/S FULL indicates

there is a problen of this sort. Sone of the computers that

carry t-'.APTKA have larger APL workspaces, in v.'hich case this

ceases to be a real problen. If it is necessary to analyze

with a large number of frequencies and available space cannot

be created by erasing unnecessary objects, then MARTHA has a

function entitled ATATIf'E v.'hich can be used to repeat the ana-

lysis for a snail nunber of frequencies.

B. Ill-Ccr.ditioned Hetvorks

Every network-analysis schere has its own set of networks

for which it performs poorly, or perhaps not at all. During

analysis, ,'.'ARTHA represents 1-port networks by their impedances

and 2-port networks by their ABCD matrices. Thus MAPTHA is

unable to handle networks for which these representations do

not exist. For 1-port networks, this is only open circuits

(or because of overflow or underflow problens, networks with

irpeciance ragnitudes greater than about 10 or less than

10 ohrs). For 2-port networks, this is any network for

which the output voltage and current are related by one equation

not containing the input voltage or current. This class of

networks are those_which produce no effect at the output when

the input is excited, that is either those with disconnected
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inputs and outputs, or those that are bnckvards unilateral.

Generally x;hen such a situation exists, it is easy to rede-

fine the network so as to avoid the ill-conditioned case.

Certain elerent values, particularly zero, can lead to

ill-conditioned networks, and Table 1 lists several such cases
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IX. EPROR DIAGNOSTICS

MARTHA recognizes two classes of errors. One is errors

so serious that t'ARTHA cannot reasonably proceed, and in the

°ther case only scr.e of the calculations nay be in error and

MARTHA continues.

For non-fatal errors, l-'.ARTHA prints a warning but continues.

Examples include use of freauencies outside the range specified

by the function FLIHITS and freqviencies at which by coincidence

the network is ill-conditioned. Generally in the latter case

trouble is encountered when a denoninator vanishes; the warning

message is ATTEMPT TO DIVIDE BY ZEPO. This also is printed when

s user asks for a response function that is actually infinite,

such as the admittance of a 0-ohrt resistor. After this ressage,

sone of the results, but.not all, may be in error.

Fatal errors are caught either by MARTHA or by APL.

Anong those caught by 'MARTHA are the wrong length for an argu-

ment for an elenent-definition function. Errors caught by

VAPtTHA induce an explanatory ressace, usually indicating what

w?s expected, followed by the ressage i'ARTHA ERROR and a diag-

nostic arrow pointing to the place where MARTHA got into trouble .

These errors ray often be regarded as a useful prorrpt, because

by deliberately conr.itting then, a user can remind himself

what is expected. A complete list of these error messages

— appears in reference, 2. _
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Errors not caught by MARTHA, but rather by APL, are

reported by the ressare AM "5 ERROR where I1AHE is the nare

of one of the functions in HARTHA. This message nay or nay

not be informative, but it is followed by an indication of

the place where !!AF~r!A got into trouble.

To recover frcn an error a user should type a single

right arrow -> followed by a carriage return, and then proceed

after correcting the source of the error.
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