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SUMMARY OF RESEARCH

Avalanche Diodes for the Generation of Coherent Radiation

Work under this grant during the last period was concentrated in two
areas: solid-state devices and characterization, and optimum imbedding
networks for realizing best performance. The BARITT device l(Barrler
Injection Transit Time Diode) has been under investigation, as reported
below. In addition, other work previously reported has resulted in publi-
cations, preliminary versions of which are attached as Electrodynamics
Memos Nos. 28, 29, and 30.

BARITT diodes are under investigation for possible application as
microwave amplifiers and oscillators. Measurements have been made of
diode noise figures in the frequency range of 4-6 GHz. Initial results
indicate that a noise figure of 6-8 dB may be possible., Devices are under
development for operatio'n as amplifiers and sources in the frequency range
2-4 GHz.

We are investigating optimum device structure and fabrication tech-
niques necessary for low noise performance. The possibility of cryogenic
operation is being investigated, with a view toward improving the device
noise figure. '

Models-for-the-device-for-nonltinear-and-small-signal-operation-are
under investigation and optimal imbedding and dexmbedding models are
under consideration. i

A list of publications supported by NASA Grant NGL-22-009-337 1s

attached,
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The lack of notation for derivatives in APL is an important
barrier to its acceptance in many disciplines. This paper des-
cribes a notation for derivatives and a procedure for accurately

evaluating expressions containing derivatives.

Operators and Functions

In describing APL syntax, it is frequently useful to distinguish
functions from operators. Primitive scalar functions, primitive
mixed functions, and defined functions are all "functions.” The
term "operator" is used for a svmbol which acts on one or more
functions or variables, and produces, as a result, a new function.
The new function then acts on its arguments and produces its
results, an APL array. The operator, of course, must act before
the function can, and therefore, the right~to-left rule for eval-
uation in APL may have to be violated.

There are three operators implemented in APL: reduction,

inner product, and outer product. There has been suggested also

a "scan" operator. These operators can, in principle, operate

on defined functions as well as primitive functions, although
they are not now so implemented. The derivative operator, to
be discussed below, can likewise be used on both primitive
and defined functions, but the implementation would probably

be of little benefit if it were restricted to primitive functions.

There are three reasonable expectations for a notation for



derivatives. First, we might expect the notation to denote
(and the implementation to calculate) the result of applying
the new function produced by the operator, to an argument;
that is, to denote the returned array. Second, if the purpose
of such an operator is to return another function, one might
wish the notation to denote (and the implementation to display)
the resultant function. Third, we might expect numerical
differentiation of functions defined only by a table of values.

Of these three expectations, the second is difficult, both
conceptuallv and practically, and the third is prone to numerical
inaccuracv. The notation and implementation given in this
paper fulfill the first expectation but not the others.

One might also expect that it should be possible to devise
a notation for integrals. The integral case appears to be

much more difficult, however.

It may not be out of place to recall the wide varietv of

derivatives that are encountered in mathematically based disciplines.

These include the ordinary total derivative, partial derivatives,
the substantive derivative of fluid mechanics, and the gradient,
diverqence, and curl in field theorv, as well as high-order
derivatives such as scalar and vector laplacians. Derivatives
are taken with respect to anv argument of a function, or with
raspect to anv parameter. ) o -
The nroposed notation not onlv covers all these cases, but

care b further gencralized. Differentiation is allowed not only
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of functions with respect to arguments, but also of functions

or expressions with respect to global variables.

Graphics

Two new symhols are required for the derivative notation,
one for an operator and the other for a function. The svmbols
B and £ are used here, without anv implication that thcy are

optimum.

Notation for Derivatives of Monadic Functions
Consider first a monadic primitive scalar function,
with a scalar argument. The syntax for this function i3 I<«F 4;

the derivative of F with respect to A, evaluated at the

particular value of A, is denoted Fp4. For example, +b2
is equal to 1; £2 1is equal to -0.25: and L$£3.5 1is eaual to
0.

Next, consider any monadic function, such as a primitive
scalar function, a primitive mixed function, or a defined function.

Again, the syntax is Z<«F A. The derivative of F with respect

to__ /A __is_denotedFpA,—and—-is-defined—provided—~A—and—r+r—4

are conformable. The rule for conformability is the same as

the rule for the expression A+F A; that is, either 4 and F A4
have the same dimensions, or else one of them has only one
element, If A 1is a scalar and F 4 is an array, then FbA
consists of the derivative of each element of F with respect
to A, evaluated, of course, at the value of 4 given. For
example, 1if the(telocity V of a particle and its position &

are both functions of time T, and velocitv and position in



3-space are represented by vectors of lenath 3, then the
velocity is the derivative of the position, as expressed by
the eauation (V T) = RRT.

If A and F A have the same dimension, then FbA4A
consists of the partial derivatives of each element of F 4 S
with respect to the corresponding element of A, In general,
each element of the results depends on the values of all the
elements in A, and is, of course, evaluated for the 4
in auestion. This form of the derivative is useful, for example,
in describing waveforms as a function of time: if F T 1is the
function 2xx 5xT which might be the natural response of a
first-order physical system, then FBT would calculate an array
consisting of the derivative of F evaluated at each of the
times in the arrav T.

Finally, if F is a scalar function of a vector.argument
R which might stand for position in space, then FbR 1is a
vector, each element of which is the partial derivative of F
with respect to the corfesponding element of FR; that is FPBR

is the gradient of F. Thus, the relationship between electric

field vector £ and potential PHI in electrostatics can be
written in the form FE = -PHIPR. As another example,
(x/BA)=(x/A)*A except that it works properly even if 0e¢4.
In the last example, note that the reduction operator acts

before the differentiation operator.

Outer Derivatives of Monadic Functions

It is freauently necessary to denote the partial derivatives

of each element of the result of a function, with respect to
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each element of its argument. This concept resembles that of
the outer product, and a similar notation is suggested. Thus,
for a monadic function F, Fo . pA 1is called the "outer deriv-
ative". There are no conformability reguirements; the outer
derivative has dimension (pFe.bA)=(pF A),pA. An example of
the outer derivative is the velocity-gradient tensor in fluid
mechanics, of which the rotation is the antisymmetric part and
the strain rate is the symmetric part. Thus, if the velocity
V is a function of space R, then the rotation is

0.5x(Ve ,bR)-¥Ve bR and the strain-rate tensor is

0.5x(Ve ,bR)+QVo.bR. As another example, +o¢.p1¥N is the unit

matrix of size #,N,.

Inner Derivatives of Monadic Functions

The inner derivative of a function F 1is denoted F+.bk4,
and the conformability requirements are the same as for the
inner product (F A)+.xA. As an example, one of Maxwell's
eguations in electromagnetic field theory states that the

divergence of the magnetic field P 1is zero, or 0=B+.bR.

Generalizations of the inner derivative are possible by

using scalar dyadic functions other than +. For example,
#x,pA. For a function F T of time, its larqgest derivative

at any time i1n a vector T 1is given by F[.k7T.

et s~ e e A e 2T et e+ D e T Sy e e et s S o S i s et e ot

Second and high-order derivatives of monadic functions~

are denoted similarly, with multiple use of the derivative



operator, for exanple FbReT. Thus, [I'e.pe.pd 1is the collection
of all possible second-order partial derivatives of F, and
has dimension equal to (pF 4),(pA),pA.

An interesting second-order example is the Laplacian of
a scalar function F of space coordinates R, which is Fo .b+.bR.
Note that the outer derivative is performed before the inner
derivative; that is, the derivative on the left before the
derivative on the right, in contrast to the normal APL con-
vention about order of execution of functions. If the function
V R 1is a vector function of R, then the vector Laplacian
is Veo.kP+.bR. As another example, consider Newton's law for a
particle, where F is the force, M is the mass, and A is
the acceleration, the second derivative of its position R with
respect to the vector of times T. F=MxRbbT, As another

example, the homogeneous differential equation obeyed by a

series RLC electrical network: O0O=(LxJbbT)+(RxIbT)Y+(I T):C.

The notation for derivatives, inner derivatives, and outer

derivatives_of dyadic_functions is similar to_that_for monadic

functions. Consider a dyadic function F with syntax Z<«4 F B.
The derivative of F with respect to B, denoted A FbB,

must satisfy the conformability constraint suggested by the
operation B+4 F B. The result is the derivative (or partial de-

rivatives) with respect to B or its elements, keeping A4

constant. The result is evaluated for the particular values

of A and B presented.



A dyadic function can also be differentiated with respect
to its left argument. In this case, the symbol ¢ is moved
to the left (that is, it appears between the function name
and the independent variable). The rules are similar and in
particular, for the outer derivative, its dimension is
(pAo .bF B)=(pA),pA F B.

As an example, if functions for current density J and
charge density @ are dyadic, with time on the left and space
on the right, then the egquation for conservation of charge,
which appears in conventional notation as V-.J + %% =0 would
appear in the new notation as 0=(7T J+.kR)+TkQ R. In a similar

way, the substantive derivative, or "total derivative" of fluid
Db_. 3
Dt ot
of space and time: (TeN R)+(T Ne.b R)+.xV.

mechanics + V.V can be applied to a dyadic function N
Some other interesting examples: The derivative of the

maximum function AlPkB 1is equal to B24. The derivative of

the times function with respect to one argument is the other

arqgqument, that is (4kxB)=B. If A 1is a vector then Axo pA

is a diagonal matrix with the elements of A along the main

diagonal.

-t ————— — e e e o e e e i e e ] et . . e i, s 2

The notation so far is suitable for differentiation of
a function with respect to an explicit argument. It may be
desired to differentiate a function with respect to a global

variable, or to differentiate an APL exgression:with E:Spect
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to some variable in the expression. This can often be denoted
by defining an extra function with the desired independent
variable as an argument, but that technique is neither convenient
nor natural. A slight generalization of the preceding notation
is useful.
The derivative of an APL expression F with respect to
a variahle X is denoted EbX . If the expression is more
complicated than a single niladic function, it must be parenthesized.
The variable on the right must be a variable name, perhaps
indexed, but not a constant or an expression. The expression
might involve the independent variable explicitly, as in the
identity (WNxA*xN-1)=(A*N)bA; or perhaps as a global variable in
a function, as in the identity ((4xB)bX)=((AbX)xB)+AxBbX, or
perhaps in both roles.
Outer and inner derivatives of expressions with respect
to global variables are denoted similarly, FEo.bX and E+.bX.
Note that since X must be a variable name rather than
an expression, the following examples are syntax errors:

EbX+2;, FEb(X); Fb-X; EBX,0pC+2; FEbRX+3.

Implementation

The amplementation of this notation appears to be
straightforward, although perhaps demanding of space and time.
The basic idea is that during execution of a function (or

expression) being differentiated, a more complicated procedure

is used. Fvery execution of a primitive function i1s accompanied

by the calculation of the corresponding derivative. Thus, as
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the defined function is executed, line by 1line, not only
are the values of the expressions calculated, but also their
derivatives, always with respect to the original value of
the argument in question. @When the function finally returns,
the value of the return variable is discarded and only the
derivative is used.

This procedure, which is defined in detail below, in

principle can work for any number of derivatives of arbitrary

order.

Details of the Implementation

A new system-dependent function which I will denote here
as 150, is reaquired. Initially, this is set to the empty
vector 0.

Consider a function F whose argument A 1is the independent
variable, with respect to which the differentiation is being
carried out. When the execution of F begins, several things
happen. First, the value for 150 ceases to be the empty
vector and hecomes the vector ,1. Second, the independent
variable is accompanied by +e¢.kA, that is, the outer derivative
of A4 with respect to itself. Other variables, both global
and local, are also considered to he accompanied bv their partial
derivatives with respect to A, 1in everyv case an array of

zeros. Thus, all variables, both global and local, are considered

to be not only their values but also their outer derivatives with

respect to A,

As the function is executed, line by line, each execution
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11
of a primitive function is accompanied bv the evaluation of
the derivative of the result with respect to A; thus, for
every array generated there is also generated another array
consisting of the outer derivative of that cuantity with respect
to A The chain rule of differentiation is used. Naturally,
the derivatives so calculated will all be zero until 4 actuallyv
enters into the calculation.

If another defined function is called within the function
being differentiated, this mode of operation continues and when
this function terminates execution, not only the value of the
return variable but also its outer derivative with respect to
A will be returned.

A given differentiation is completed when the function (or
expression) being differentiated finallv returns, or else is
removed from the state-indicator stack hy the right arrow. when
the function returns, the return variable has both a value and
its outer derivative with respect to A, The value is discarded
and the derivative is returned. 1In the case of the derivative
or inner derivative, appropriate operations are performed to
extract the desired derivative. At the same time, IS0 1is reset
and all global variables have their accompanying derivatives

erased.

when more than one derivative is being considered, a similar
process applies. High-order derivatives with respect to the
same arqument cause values of 2 or more to be inserted into

150, rather than 1, and variables are augmented with both
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the first and second derivative with respect to A,

Derivatives with respect to other variables mav be
encountcred while anv given derivative is pendino. 1In that
case, I50 will contain not only the 1 (or hicher number)
associated with the initial derivative, but also a number
associated with the more recent derivative. Thus, 150 1is a
push-dowr stack, with one entry corresponding to each independent
variable. During execution of functions, not only the derivatives
with respect to each of the independent variables, but also cross
partial derivatives have to be calculated. High-order derivatives
of any order can be calculated recursively by using onlv the
formulas for first-order derivatives.

While a derivative is being calculated, that is, while 150
is not emptyv, the normal APL environment is changed in a few
ways. This can be detected while the function is execguting, or
while it is suspended. First of all, the state of any pending
derivatives can be interrogated by asking for 1I50; pIS50 Qgives
the total number of different independent variebles under consid-
eration, and +/150 gives the highest-order derivative being
calculated. Second, execution of the svstem commands )SI or
)SIV will cause an extra symbol b to be printed next to the
names of functions being differentiated. Third, the derivative
of anv expression F with respect to the Nth independent variable
is denoted by NEB, or for the outer derivative, Neo . EF, or for
the inner Jderivative, #N+.EE. This feature allows functions
to branch according to the values ofiderivétiﬁes,iaﬁé élsb aligws

the displav of derivatives for debugging.
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The symbol E can also be used monadicallv, as in EF
or o .,EF or +.EF to denote the derivative with respect to
the most recent independent variable.

Needless to sav, much space and time will be saved by
adopting the strateqgy of not actually storing derivatives that
are identicallv zero. Thus, if execution is susperded while
a derivative 1is pending, independent calculations can be
carried out without necessarily calculating all the derivatives
which end up eaqual to zero anyway.

It may sometimes be desired to obtain both the result of
a agiven function ard its derivative without re-executinag it, for
example in case the function uses termiral input or makes changes
in glokal variables. This is easilv accommodated with the
proposed notation. The last time the return variable is assianed,
also assicaqr sore alobal variable. wWwhen the function ‘returrs,
the alobal variable will retain the value of the function

whereas the return variable will return the derivative.

Unresolved Problem

The derivative of every primitive function in APL can bhe
written in terms of other primitive APL functions byv use of
the chain rule, with one exception. The exception is the scalar
function '. The derivative of the camma function cannot be
expressed in terns of other implemented APL primitives. Turther-

more, it is not known whether derivatives of arbhitrary orders

can bhe calculated through a recursion formula.
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Conclusions
The notation for derivatives in this paper is convenient,
vet dgereral enough to cover probablv all instances of differ-
entiation in mathematics. It does not, however, perform or
denote numerical differentiation, nor does it indicate the
display of functions which are derivatives of other functions.

The implementation outlined here is believed to be feasible,

and if realized, would lead to a significantlv more useful APL.
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Abstract:

The degree to which a two-port network tightly couples
its input to its output is given a quantitative measure.
This attribute is different from reciprocity, passivity,

stability, symmetry, and other two-port-network attributes.
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Introduction

Several attributes of two-port networks are well known,
including reciprocity, passivity, losslessness, unconditional
stability, and symmetry. Not all two-port networks have all
these attributes, of course, and two-ports can be classified
according to whether each attribute is or is not obeyed. For
example, we have the well known class of reciprocal networks,
or unconditionally stable networks. Many of these attributes
can also be defined for one-port or n-port networks. Each
can be expressed as a constraint on the two-port parameters,
for example reciprocity implies z12 = Z21 and symmetry im-
plies, in addition, le = 222. Each of the above attributes
can be associated with a numerical factor that is either in
a certain range or equals a certain value if the attribute
is present. Other information can sometimes be conveyed by
the value of the factor even if the attribute is not obeyed.
For example, the “reciprocity factor" Zzl/z12 is equal to 1
for reciprocal networks, and if it is different from 1,
its magnitude suggests the degree to which the two-port is
unilateral, with values of « or 0 for the unilateral case.
Similarly, the "symmetry factor" le/z22 for reciprocal two-
ports is 1 for symmetric networks, but if it is not.l, its

value indicates how the impedance level is transformed by the

two;poft.



A new attribute, "tightness," is motivated by the obser-
vation that the two networks in Figure 1 are somehow basically
different, yet their difference is not suggested by any of
the attributes listed above. (Note that they are both -
reciprocal, passivé, lossless, unconditionally stable, and
symmetric.)

A tight two-port network is, intuitively, defined here
as one for which changes in the termination at the input or
the output are greatly visible from the other port. A network
that is not tight in this sense is one in which the output is
more or less decoupled from the input, or vice versa. A use-
ful numerical measure of the tightness of the network is found
by comparing the input impedance Zin for two different load
impedances. For the two loads it is convenient to choose
open and short circuits, and the "tightness factor" TF is de-
fined as the ratio of the open-circuit impedance to the differ-

ence of the impedances. That is,

Z
TP = 9% (1)

Zoc "~ Zgc

A simple evaluation gives this in terms of the Z or Y or ABCD .

parameters as
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TF = _ll_ii

212223
Y1155
¥12Y03

AD

AD - BC

Parker, Peskin, and Chirlianl“6 have observed that the ratio
Zoc/zsc (and therefore the tightness factor) is independent
of which port is regarded as the input.

A tightly coupled network has a value of TF close to 1,
and a network in which either the input or the output is de- °
coupled from the other has a tightness factor of «», This
includes networks in which the input and output are uncon-
nected, like Figure 1l-b, as well as unilateral networks. A
gyrator has a tightness factor of 0.

The tightness attribute, like the others mentioned above,
can be tested at any frequency, and the tightness factor can
be evaluated as a function of frequency, either numerically
or analytically. It is possible for a network to be tight

at some frequencies, but not at others.

The tightness factors for several simple two-port net-

works are given in Figure 2. Note that in the case of a mutual



inductor, the tightness factor is l/k2 where k is the coupling
coefficient. In the examples the tightness factors are all

real, although in general complex values should be expected.

Discussion

This concept resembles in some ways that of compactness7-lo,

but is sllghtly dlfferent, and can be applied to any linear
two-port, whereas compactness is usually restricted to lumped,
or lossless, or RC networks. ?o relate these two concepts,

a network is compact if it is tight at all its natural frequen-
S;es.

Anderson and Ku5 have discussed .the ratio of open-circuit

to short-circuit impedances for n-ports, and their approach
might be useful as a basis on which to extend the tightness

concept to n-ports.

————— -~ PR . .-
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Figure 1. Two extreme examples of two-port networks.

Network (a) is tight whereas network (b) is not.
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Figure 2. Values of the tightness factor for several

two-port networks.
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I. INTRODUCTION

HARTHA is a notation for denoting electrical networks,

and it is also a computer programr which uses this notation.

A, Cenecral Descrintion

In MARTHA, the notation, every network is either an ele-
rent (resistor, capacitor, transmission line, etc.) or else
one or two previously defined networks wired together. The
basic idea is illustrated in Figure 1. In this exarple, S
and P are "wiring functions" and R, L and C are "elcnent

functions". S and P are dyadic; R, L and C are monadic.

The functions used in Figure 1 are sufficient to descrike

any series parallel netvork containing linear resistors, capa-
citors, and inductors. For more complicated networks, other,
similar, functions in MARTHA are used.

As a notation, MNARTHA is an alternative to the widely used
schematic diagram. It carn be used for cormunication from one
person to another (for example, for docurentation purposes),
or from a person to a computer, or from a computer to a person.
It ics useful btoth in analysis progrars (vhere the uscr vrites
it and the cowmputer reads it) and in synthesis programs (vhere
the computer writes it and either the computer or the user
reads it).

MARTHA, the ccrputer program, is a network-analysis program - ——

irbedded in the interactive language APL, and the svntax
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Figure 1. Illustration of MARTFA notation for a model of a
parallel tuned circuit. The functions R, L, and C define
elements, and the functions S and P perform the wiring. The
functions R, L, and C are "monadic" (having one argument,
located on their right), and S and P are "dyadic" (having tvo
arguments, one on each side) . These five functions are suffi-

cient to denote any linear series-parallel RLC network.



resembles that of ApL, in many wavs. The simplicitv and
Versatility of the input lanquage make MARTHA relatively
easy to use, It differs from most of the other programs

in this book in that it is naturally oriented toward ports
rather thaen toward nodes. In MARTHA node matrices are
never calculated or used, so that time-consuminag matrix
inversion is avoided altogether. There are no difficulties
associated with capacitor or inductor loops or tiesets, and
it is never necessary to find the eigenvalues of any large
matrix. Analysis is carried out at all freguencies simul-

taneously, using APL's fast array handling,

B. Canzbilities

The program MARTHA performs freocuency-domain analysis
of l-port or 2;port networks which are made up of l-port
or 2-port linear elerments wired together so that at every
stage in the construction, only l-ports and 2-ports are used.
Exarples of networks of this type are most amplifiers, £il-
ters, and microcwave systems. Networks may be active or pas-
sive, may be recirrocal or nonreciprocal, and may be lumped
or distributed (or a cormbination of both).

Enginecers may use MARTHA for circuit analysis without
knowledge of APL. The simple and uniform notation in MARTUiA

is advantageous- to beginners, as is the interactive nature of.

MARTNKA . However, users who know APL can write their own func-



tions to control MNARTHA. For example, network definitions,
including both parameter values and topology, can be varied
under prograr control., Advanced users can write synthesis
algorithms using #ARTHA notation for the resulting network,
In other words, M4ARTHA can be used as a prograrming language
besides simply as a progran.

Although MART#A is intended for general-purpose network
analysis, different users can make use of rather specialized
portions of MARTHA to make up their own special-purpose analysis
and synthesis systems.

Microwave engineers can use the distributed elements in
MARTHA, and vave variables (with complex, frequency-dependent
nerinalization if desired), and Smith-chart plotting. Aspects
of intercst to amplifier desicgrners include various transisto:r
rodels, calculation of several measures of gain and stability,
and MARTHA's ability to plot Nichols charts and the U/A "gain
plane". Filter designers can make use of MARTHA's ability
to scale frecuency and impedance, and to perform hich-pass and
band~pass transformations. For active filters, there are
four operational-amplifier models of differina complexity.
0f intcrest to exparimentalists is MAZTHA's anility to work
with tebles of rzasured performance, and use them for calcula-
tion and interpretation as elements. Engincers concerned with
mocdel ma¥xing will find an extensive repertoire of basic elerents
including 16 controlled sources, neaative-irpedance convertors,

gyrators, and elerents whose response goes with complex frequcen-

cy to an integral power.
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The user can define meny diffcrent networks, and wire
thero together or analvoe them when desired. Two or more
netvrorks can be analyzed at the same time, and the results
corparcd. There are rore than a hundred different resoonse
functions that can be reocuested. The results of an analysis
can be printed, or plotted vs frequency, or vs any network
parareter (on linear or loo scale), or vs another response.

The response of one network can be plotted against the response
of anothzr network, or against a numerical table of values.
Alternatively, the results can be stored for later display

Or calculaticn, possibly using other results.

MARTHA incorporates an extensive set of tools for de-
fining, editing, maninulating, and interpreting tables of
nurerical values. Such a nuiierical function of frequency
(FOF) can be interpreted as a guantity to be printed or plottad
(alongside the results of a normal MARTKA analysis) or as the
impedance, admittance, or scatterinog coefficient of a numeri-

cally defined element.. f

C. Docurentaticn

YARTHA 1is described in the book, Paul Penfield Jr.,
"MARTHA User's Manual®, The MIT Press, Cambridge, Mass.,
1971. That book completely covers versions of ARTHA
dated 71. For versions of MARTHA dated 73 (and this in-

cludes all versions on cermercial time-sharing computers)




several iroroverents are described in the parphlet, Paul
Penfield Jr., "MARTH#A User's !anual, 1973 Addendum, The

MIT Press, Cambridge, Mass., 1973. Users of /MARTHA can
determine their version date by referring to the line which
starts CIRCUIT ANALYSIS BY MARTHA at the top of each print

or plot: either 71e¢ or 73 appears in that line.

Several other publications describing MARTHA or the ideas
behind it appear in the bibliocgraphy at the end of this
chapter. Sce references 1 - 4,

Besides these publications, there is extensive on-line
documentation in YARTH4; for information on how to access
this, type

YLCAD 100 HOWMARTHA

DESCRIBE

D. Availability

MARTHA is available both from commercial time-sharing
corputer companies, and for use on scparate machines that
run APL. Inguiries should be directed to the Manager of
Software -Services, The MIT Press, 28 Carleton Street, Cam-

bridoe, Mass. 02142,



II. PROGRAM STRUCTURE

In APL, programs are stored in "workspaces". MARTHA
consists of nine workspaces of which one is purely documenta-
tion, and seven constitute the "MARTHA library". The basic
Workspace*, 100 MARTh/A, contains about 70 cooperatina "fore-
ground" APL functions that the user may call directly, several
"background" utility functions called by the "foreground"
functions, and a few global variables. The foreground func-
tions fall into six categories. First are functions which
c;eate elerents, such as the functions 7, L and ¢. Second
are functions wvhich wire networks together, for example S
and P, Third are functions that calculate the respcnse of
the network, for exarmple impedance, admittance, reflectiocn
Coefficient, or VSWR of one-port networks, or any of the two-
pPort parameters or various gain or stability measures of two-
port networks. Fourth are functions which can modify the
response functions by taking the real part, imaginary part,
rmagnitude, etc. Fifth are functions that help specify the
format of the output. Finally, are some miscellaneous func-
tions to aid in definino networks.

The XARTHA library contains additional more specialized,
functions in these same categories. It is a stancdard feature
of the APL vorkspace-storage system that individual functions,
or groups of functions, can be copied into the user's active

workspace; by so doing the user can select those functions

from the library that he needs and leave the rest behinéd, thereby

creatinc his own, personalized, version of MARTIHA.

* On scm2 ccruters, the nunber in the vworkspace nares is
different {rc:~ 100,
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III. NETWORK ELEMENTS

Table I and Figure 2 show the network elements defined

in MARTEA. The two-port networks WR and WTHRU are constants,
and all the others are rmoradic functions. The simple functions
R, L, and ¢ (resistors, inductors, and capacitors) have been
illustrated earlier. The function L, when used with an argu-
ment of length 3 (that is, a vector with 3 nurbers in it),
produces a mutual inductor; thus the function I produces dif-
ferent elements according to the length of its argument. The
same is true of the functions T, WG, and OPAMP. The wave-
guide function WG produces a length of waveguide if its argu-
ment has 3 numbers in it, but if only 2 are present (the
length is absent) the result is the frequency-dependent charac-
teristic impedance of the wavecuide. The waveguide analysis is
valid both above the cutoff fregquency, where the characteristic
impedance is real, and below the cutoff frequency, where it is
imaginary. Examples:
R 40 (resistor, 40 ohnms)
L .015 (15-mH inductor)
L .015 .02 .01 (2-port mutual inductor)
IT 3 (ideal transforrer, turrs ratio 3:1)
WG 1E9 377 (matched load of waveguide with cutoff frequency

1 GHz, 377-ohn characteristic impedance at f = «)
WG 1E9 377 .6 (éb-cr length of waveguide) ‘

WG 1E9 377 90 DEGRZISAT 2E3 (quarter-wave section of gquide)

¥G 1E8 377 .4 FOTDIEL 2.5 (dielectric-filled quide)
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Elements defined in MARTHA.

The

many additional

ELEMENTY

R L

RESISTOR
CAPACITOR
IRDUCTOR

STRAIGAT-THEROUCH
CORRECTION

POLARITY REVERSE

MUTUAL INDUCTOR

IDEAL TRARSFORYZR

OPERATIONAL
AMPLIFIFR

OPFRATIOTAL
AuprIPIZR

opeRr. AMPLIPIER

PIELD-EFPFC
TRARSISTOR MODEL,
CRoUNDED-SOU>ZE

BIPOLAR-TRASSISTOR
MoDEL, GROUNDED-
EMITTER

LOSSLESS TRABS-
MISSION LIRE

TRANSHISSIOR LIRE
CHARACTERISTIC
IMPEDANCE

LOSSLESS WAVTGUIDE
DOMIFART MODE

WAVECUIDE CRARPAC-

TERISTIC IMPEJDARCE

TYPE

1-PORT
1-PORT
1-PORT

2-PORT

2-PORT

2-PORT

2-PORT

2-PORT

2-PORT

2-POPT

2-P0PT

2-POFT

2-PORT

1-PORT

2-PORT

1-P0RT

NAME

WTHRU

¥R

IT

OPAMP

OPAMP

OPAVYP

PrT

AYBRIDPI

TEM

TEM

¥C

In the

library workspace 100 MARTHAEL

elerents.

ARGUYFAT VECTOR
RFSISTARCE RES IN OFPMS
CAPACITARCE CAP IN PARADS

INDUCTANCE IND IR HERRIFS

(RORE)
(RORE)
INPYT SFLP-IRDUCTAWCT L1 I REARIFS
QUTPUT STLP-INDUFTAYCE L2 IN RENRIFS

MUTUAL INDUCTANCF M IN HFYRIFS
TURNS RATIO W

OPFR=-CIRrYIT VNLTART GAI" A
QUTPUT INDPRDANCT  ROUT IN OIS
InpyT IYMPFDANCFE RIYT IR OFY4S

OP=R-CIPTYIT VALTAGFE GATR A
QUTPUT IMBPEDARCFT  ROUT IN O0HMS

VOLTAGE GAIN A

GATE-SQURCFE CAPACITATCT CGCS IR PARADS
GATE-DRAIT CAPACITAVCE CGD IN FPARADS
TRANSCOZDUCTANCE GY IN MHOS

RESISTARCE RY IV OH'S
RTSISTANCE RPI IW 0FY4S
CAPACITANCE CPI IN FARADS
CAPACITANCF C'"U IN PARADS
TRANSCONDUCTANCE CM IN MHOS

CHARACTERISTIC IMPTDANCE
LERGTR LEN IV MFTFRS

Z0 IN ORMS

CRARACTERISTIC IVYPFDARCF 20 IR ORMS

cyTa®P PRTOUTRCY P IV AFRT2Z

INPITITF~PREDUTACY CFARACTERISTIC
IYPEDANCF ZIK® IY OR“S

LFRGT? LEN I7 MFTT2S

CUTOFPP PRFOULRCY
I7P,.=-PPT0R. CHAR.

PCIN HFRTZ
Ivp, ZIN® IN ORYS

REQUIRED

IND=Q

N=0

A=0
RIN=0

A=0

GY=0

RPI=0
GM=0

Z0=0

Z0=0

2IVP=0
~PCeP

2I¥P=0
~FCeP

equations,

contains

EQUATIONS

VsRFSxI
I=SxCAPxY
V=SxINDx]

Vi=v2; I1=-I2

Vi=-v2; I1=I12

Vi=Sx(L1xT1)+MxT2
V2:=5x(MxI1)+L2x]2

Vizgxv2; I1=-T2+¥

Vi=RIPxT1
V2=(AxV1)+ROUT=I2

I1=0
V2=(AxV3)Y+ROUTxI2
I1=0; V224xV1
I1=85x(CCSxV1)+CGDxVi-V2
I2=(GMxV1)+SxCCDxV2-V1

Vi=VPI+RXxI1

IT1=(VPIx(SxCPI)++RPI)+
SxCMUxVPI-V2

I2=(CMxVPI)+SxCMUxV2-VPI

Ase-Jx02x LENxP+3IC8+DIEL=, S
(V2-20x12)=AxV14+20x]1
(V1-20xT1)sAxV2+420x]2

V=20xI

Z0=2INP4(1-(PC4P)*2)e. 5

AsIxLERxZINPxP420x3Z842TTLe.5
(V2-20%xI2)=(2-02xA)xV1+23x1
(V1-20xT1)=(*-02x4)xV2+4203x]2

V=IxZIRP#(1-(PC4P)22)+ .5
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Elements defined in HARTUHA.
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Note the two auxiliary functions, DEGFZESAT and FCRDIEL.
The first is used to smecify an electrical lencth in de-
grees at a reference freaquency (in this case 2 GHz) and

the second is used for dielectrically loaded guides.

The library workspace 100 MARTFAE contains about 50
additional elements and models. One of them is the voltage-
controlled voltage source, VCVS. That is a 2-port elerment,
with the controlling branch on the input and the controlled
branch on the output., Current can be used as well as voltage
for either the controllinag or controlled branch, so there
are three additional elemrents, named VCCS, CCVS, and CCCS.
In addition, if flux linkege or charge are possible as the

1

ot

controlling or controlled variable, there are 12 addition
centrcelled sources, includino for exarvle a charge-controllcd
current source, 0CCS. These are useful for nodeling.

Another function useful for rodeling ir ZPDE. If its
arguvrent is of length 2, the first is an integer and the seccnd
is a coefficient, the result is a l-port network whose impe-
dance is egual to the coefficient tires corplex frequency s
raised to the integer pover. If the integer is 0, the result
is a resistor; if it is 1, the result is an inductor. Values
of the integer from -5 throuch 5 are possible. ZPDE also pro-
duces, if its arcument is of length 3, 4, or 5, a 2-port
similarly defined element where the numbers in the argument

are from the 2-port irpedance matrix. Other functions nared
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YPLE, ¥I"2F, and AECHPDE ovwerate similarly. These are useful
for modeling using a power series expansion.

Other elements in the 17774 library include gyrators,
nulleors, negative-impedarce convertors, and attenuators and
isolators, both for TEM lires and waveguides. Included also
are functions for converting numerically defired functions
of freauency (FOF's) into elements., The FOF can be inter-
Preted as impedance, admittance, or reflection coefficient
of a l-port netwerk, or as impedance, admittance, hybrid,
ARCD, or scattering matrix of a 2-port network.

The workspace 100 MYAPTZAZ contains more elements than
Can be describzed here. Ccrolete docurentation appears in
references 1 and 2.

The library torkspace 100 MARTHAX contains several
avxiliary functions for workxing with MARTHA, many of vhich
are useful nodels. Exarples are functions to calculate
characteristic impedance of coaxial or microstrip transmission
lines, or calculate coaxial discontinuity capacitances, or
calculate cutoff frecuency and characteristic impedance of

conmon waveguides.
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IV, " INPUT LANGUAGE

PARTEA is interactive. The user sits at a cotputer
terrminal and tvpes his input line, and gets an immediate
reply.

Some of the things a user must type have nothino to
do with network analvsis, After the user dials the telephone
numnber of the computer which carries MNARTHA (which may, of
course, be many miles distant) he must log in by identifyinc
himself. He nust also load 4ART~ 4 from the conputer's public
library, and pcrhaps copy scre of the MARTH4 library and
pPerhaps copy scre of his pnrevious results, including pre-
Viously cefined networks or rcdels, or previously calculated
results. 2t any time the user can save his work up tc that
peint, or start over, or log cff the computer,

The rest of the user's tire can be spent analyzing net-
works., A netiecrk can be éefined at any time, and an analysis
Can be reaguested at any tire. The analvsis might be of a
prcviously defined network, or of a newly defined network,
possibly corposed in part of previously defined networks.

The general form of an analvsis reguest in MARTrA is

PRILT
J'PLOT ]
PLOG ,& <outmut list> OF <network>

SMITE
STORE J
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The first wvord used (FRINT, FLOT, PLOG, SMITH, or STOPE) fixes
the basic format of the output; PLCG is used for a plot with

a logarithric scale for the independent variable. The form

of the "outnut 1list" is discussed in Section V. The word OF
is reguired to separate the output list from the nettork
descripticn.

The form of the network description is unique to MARTHA.
Two types of APL functions are used to define networks. The
first create elements, for exarple, resistors, capacitors,
etc., and the second create networks out of other netwvorks,
by wiring them together. Element-definition functions were
described in Ecvticn IIX. An exanple of a wiring function is
S, vhich is Jdyadic and, like all dvadic APL functions, has an
argument on each side. Thus, if 4 and B are l-port (2-terminal)
netiwvorks then 4 S B is the new l-port network formed by putting
the two networks 4 and B in series. Similarly, the function 7
Wires two networks in parallel. Fiqure 1 shows a schematic
diagram and a descriotion in MARTHA notation of a simple series-
parallel network. The functions S and P are sufficient to
vire together all linear series-parallel networks. For more
cormplicated topology, other wiring functions, designed to ork
on 2-port networks, are defined in MARTHA,

There are fourteen wiring functions in MARTFA, includirng
the functicns s and P. These are shcwn in Figure 3. To create
2-port networks out of l-port networks, the functions +»'S anrd ; -~
are usecd. These are ronadic; that is, they have one argu:ont

instead of tvo. The argunent appears on the right of the
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S1 S1 S1 S1
Ot O’
O
O Oy
O — e, n*]
S2 52
_— wp S1 WS 51
S1 P S2 S1 § 52
peeei - O O—i
S1 S2 S1 S1 :__] 51 S2
o—] 0 Onf — o— o—
St WC S2 ¥VT0 S1 WTS S1 S1 WT S2
51 S1
—
O - ooy —0 o — = —Q
S1
o~ md © —o ?— - — —o
52 r _J S2
S1 WPP S2 St WPS 52 WN S1
S1 S1 L
O o o 51
52 52
O —
S1 WSP S2 81 W35S 52 WROT S1

Figure 3.

Viring functions defined in MARTHA.
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functien, as is true of all monadic APL functions. Two
2-port netuvorks can be wired together several ways. The
functions ¥?PP, WPS, WSF, and WSS connect the two inputs
and th: tvo outputs, usinag either parallel or series connec-
tions at ezch port. These are useful in denoting feedback
anplifiers; for example, the function¥SS might be used for
emitter degeneration. The cascade function ¥C is very com-
mon, The ronadic functions Wi and WR0T are useful in convert-
ing grounded-enitter transistors to grounded-base or grounded-
collector configurations, Symmetrical filters can be denoted
easily with ¥y, if the left-hand side of the filter is called
A, then the ovcrall filter is 4 WC ¥ A. Finally, three tech-
nicues for convertinag a 2-port network to a l-port network
by terminating the output port are shown. The outbut port
can be open-circuited (v70) or short-circuited (y7s5) or
terminated in another network (y7). Note that ¥T7¢0 and WTs
are ronadic, but y7r is dyedic, expecting a 2-port network
as its left argurent and a l-port network as its right arcu-
ment,

A precedence rule for the wiring functions must be
established. By that is reant a rule for deterrining which
of the functions are to be considered executed before others.
For exarple, in ordinary algebraic notation, the e:pression

AxB+3, written without parentheses, indicates that the nmulti-

plication is to he perforrmed before the addition. This is an

example of the ccrron rule that expcnentiation is perfcormed
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before rultinlicaticn and divisicn, and those are performed
before additicns and subtractions. By way of contrast, the
languzece 7.2L has a sirpler prececence rule. The rule is thacz
all furctions have ecual precederce, and are executed strictlvy
in the order indicated, from richt to left, unless parenthcecos
are used to delimit expressions vhich are to be evaluated
first. Thus, in APL, ArE+3 would be 4Ax(B+3), rather than
(4xB)+3. The precedence rule for the wiring functions in HARTHA
is the sarme as that of RPL., As a consequence, every ronadic
wiring function takes as its arcurent the entire expression

to its right, and every dvadic function takes as its left

[

rgurent the one object immediately to its left, and as a

o}

richt arguront the entire expression to the right. Paren-

rr

’
{

a
3
-«

heses can, of ccurse, be in the usual ound

el
&)

{

r‘av to sur

H

S

exnressions vhich are to be evaluated first. Parentheses

arc coften regquired for left arugrents of dvadic functions,

but are never recuired (thouch they are permitted) for right

arcurents of functions. As an exanple, the expression

A1 5§ A2 P 43 refers to the network of Ficure 4(a), rather than

the network of Ficure 4(b), which would be written (41 § A42) P ~3.
Scre of the wiring functicas zxpect l-port networks ana

others 2-port netwcrkxs as arcunents. Vhat happens if the wvrorg

kin@é of network is used? For exarple, what happens in 4 ¢ =

if 3 is a 2-port netwvork? In order to allow all wiring functions

to operate.on both l-port and 2-rort networks, two "auzoratic

conversicn conventicns" are adopted in MAPTIA. They are:
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1. If a wirina function expects a l-port net.ork
and encounters a 2-port network then the output
is oven-circuited and the input is used. This

is eauivalent to using the function 10,

2. If a wiring function expects a 2-port network
and encouvnters a l-rort nctvork, then the wiring
function /P is auteratically invoked to convert
to a 2-port netwvork.

r
3]

Several examples of networks are shown both in //*FTEA
notation and in schematic diagrams, in Figure 5. These in-
clude the widely-used Darlincton transistor connection, a
half-ladder and a Vheatstone bridge.

MARTHA incorporates several other functions that are not,
strictly spreckiro, viring functions, althouch they have as an
argument a network and return as a result a network based urcn
the argurment., 21l of thesc opcrate on both l-port and 2-port

networks, and return a netvork with the sare numbef of ports.
The monadic function 4D converts a nctwork to its adjoint -,
wvhich is the network whose irpedance and adrmittance ratrices
are the transposes of the corusesponding matrices for the
oriaciral network. The function 2SCALE is dyadic; its left
argument is a number and the result is a network with the same
topolecoy &35 the net-ork of its right argument, but with all
elerments scaled in irpedarce. Similarly, 7SCALE performs a
freouency scalinag, These functions are useful in filtcer de-
signs, where perhaps a l-ohm, l-Hz prototvpe is known. 1In

a similar vay, *IAVERT performs a lov-pass to hich-pass trans-

formation, and 732 a low-pass to band-pass transformation.
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wiring functions in MARTHA.

) o
. O
(a)
20,000
10,000 A~
e
v °
Q1
500
o— —o

(c)

(A1 S A2) P A3

(b)

Illustration of the precedence convention for

—

Figure 5 (continued on next pace)

1L IL
Y n
o—l—AAM ANA—L— 5
200 200
2 7T $100
(b)
20 40
O]
O—ry
30 50
(d)
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‘ 100 © 1 uF
———ANWWA It
LS
1000 Q
———ANN———— 1 uF
5000 Q It
1Y
o AN ’\ .
+
106 L AANN—
100 Q
© —0
(e)

e =
Qli

1:71 ‘
w L | I'562 "

g -

[

02\

(£) (g)

Ficure 5. Examples of MARTHA notation.

(a) Double-stub tuner with 50-ohm lines and adjustable line
lenaths L1 and 52, and fixed separation 5 inches:

(WTS TE!M 50,L1) 7C (TEM 50,5%x,0254) WC WIS TEM 50,L2

(b) Twin-tee filter, values in ohms and microfarads:
((IS R 200)WC(C 2E"6)/C WS R 200)WPP(WS C 1E~8)WC(R 100)WC WS C 1E™ 6

(c) Feedback arpnlifier:
({1 WSS R 500) I’PP WS (P 10E3) S5 (R 20E3) P C 3E 6

(d) Vheatstone bridge:
((i’S R 40) [’C R 50) KPS ¥R WC (WS R 20) WC R 30

(e) Active allpass filter (reference 5):

(MS(R 100)S C 15'6)WP§(VS R 5000)MC((OPAMP “1E6)WPP WS R 1000)WC
KFS(R 100)P C 1E™ 6

(f) Darlincton transistor connection:
WROT WROT (WROT Q2) ¥C WVROT @1

(o) Falf-lattice network:
(WS S1) VPP (IT ~1) WC WS §2
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The latrer two may ko usced in succession to define a band-
elimination filter. The function ¥(CC returns a neiwork with
every element replaced by its "complex conjugate"; it is
useful in defining ceornjucate-match loads for optirum pover
trenster, Finally, the function "JUAL takes the duzl of a
network, changina tonoloov, and elerment values, and elerent
types in the process.

This last set of functions is useful wvhen ["4ARTHA is
ﬁsed for desion vork. The YAPTHA libraryv contains a function
nared Y#ATI5 vhich prints network descriptions of any
netwvork. Thus , for exarple, if PFOTO is a l-ohm, 1l-lz proto-

type filter, then

,
try

y

SIGH « 1000 IZSCTALE 188 FSCALE PROTO

defincs a 1200-ohm, 1-1¥z filter. Then

~—a

s
.l.’Ir':. -

th
)

y TEIGH
will print its definition, and
PLCT (DB IG OF DESIG!), DB IG OF DESIGHN V€ WS R 8CO

will analyze it (in on2 case after it is wired with another

resistor).



V. OUTPUT SPI'CIFICATIONS

The general form of an analysis request in MARTHA is

PPINT
PLOT
PLOG <outvut list> OF <network>
SIITH
STCRE
In this section the output list is described.
The output list is, basically, a list of response functicns

of the networkx to be calculated. It also can include modifiers

on the response functions, and sore format requests.

A, Response FPunctions

MARTHA can calculate over a hundred different response
functions, of vhich the thirty in Table 2 are thought to be
of wide interest, and the remainder of specialized interest.
The response functions of Table 2 are in MARTHA , and the rest
in the library worksvace 100 MARTHAR.

For l-vort networks, the response functions are the im-
pedance Z, adrnittence 7, normalized impedance Z and admittarce
Y, reflection coefficient SC, and voltage standing-wave ratio
YSKWR. Of these, VSWR is real and the others are complex. If
the network in cuestion is a 2-port network, then (in accordarce
with the autcmatic conversion convention for wiring functions),

its output pvort is open-circuited and the input port is used.
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Response functions in MARTHA.

26 are conmnlex and four real,

Of these 30,

Over 70 additional response

functions are in the library workspace 100 MNARTHAR,

AT o2
z c
Y c
5C c
z11 c
712 %
7221 c
222 c
711 c
Y12 C
y21 c
¥y22 c
711 c
7112 c
H21 r
122 c
S11 cC
512 c
521 c
522 c
217 c
yrv c
SIM c
ZoUT ¢
your ¢
souT ¢
VG c
A R
IG R
7 R
T R

HTENITG

1-PORT J

IMPEDANICE OF A
V=32xT

ADHIZTAIICE 0F A
I=YxV

REFLECTION COE
B=5SxA

IHUPEDRANCE MATRIY
Vi=(211xT1)+(212xT2)
V2=(221xT1)+(222%xI2)

ADMITTANICE MAT3IX
T1=(Y11xV1)+(712%xV2)
T2=(721xV1)+(722%xV2)

HYBRID “1ATRIY
Vi=(A311xT1)+(712xV2)
T2=(H21xI1)+(H22%xV2)

SCATTIRTIG "M "TRPTY
B1=(511%xA1)+(512x42)
B2=(S21%x41)+(522x42)

TRPUT ITYPEDANCE  V1s:I1l

1-PORT NETIIOPX

JPICIENT OF 1-POPT

INPYT ADUTDTLANCE T13V1

IrpyT REFRL
ouTRPUr IMPEICICE

ECTIQN CORFrICI

V2+I2 WUHEQ OQUTPYT EXCITED

QUTpPUT ADMITTAIICE

I2+72 JrEi AUTpyT DYXCITED

QUFRYUTr REPLZCTINI CONF

FPTCIFIT

B2:A2 W:iwn NJCPUT EXCITED

VOLTAGE GAIT? V2:EG
AVATTLARLR KA Dnym
IPSoRCIN GS T

s AV 2RI

POUT(TIRTIORZ)POUT(IUTHARY)

POITR GAIT  POUT:pIN
TRANSDYCER AT

CPOUTEPTI, AV

FnT B1:A1

AV

nToTINS 07

NDTINDRE

MMy 1%
NrTITORK

JETUORI, 27

NETI'NE
NETTI0RY
NEDUNRY

21 Jr

qTTTNRZ, 20T,

JETTIOPY, ZL
r]wnrrn')v’ ZL
a=ssropr, ZL, 27T
NETIORY, 26

neonrr, 26

HrECyNRY, 2%, 270YC

pnoiaey,
nrounvy, 725
nroinry, 2%, ZL

nrcuavy,

A
pnmionv 27, 27
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In calculating SC, VSR, Z, and Y a normalization impedance
is required; in MART#A the normalization irpedance for l-port
networks is known as zZV, and must be set by the user before
analysis., It mav be either an impedance (a real number) or

a real or corplex nurerical function of freaguency (FOF) or
any l-port netvork defined in MARTHA notation (in which case
the impedance of the network will be used).

For 2-port netvorks, there is a wide variety of response
functions. If a 2-port response function is requested of a
l-port network, then (in accordance with the automatic conver-
sion convention for wiring functions) the wiring function WP
is assumed to be invoked. The resnonse functions available
include all the cormon 2-port nararmeters (impedance, admittance,
hybrid, ABCD matrix, and others) and the corresponding matrices
for wave variables (inciuding the scattering matrix and scatter-
ing transnission ratrix). For calculations of the wave-variable
responses, normalization impedances at both the input and the
output are recuired; these are known as ZNIN and ZNOUT, and may be
different both from each other and from 2Z¥, Each of these, like
ZV, may be a real constant, real or complex numerically defined
function, or anv !ART!A l-port network.

Many of the 2-port resvonse functions depend also on the
generator and/or load impedance., A 2-port network is assumed

to be terrinated bv generator and load as showr in Fiqure 6.

the variables 26, ZL, and EG may, like 2Z¥, be specified in
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several different ways, but they rust be specified before
analysis. Examples of resmonse functions include the input
impedance, admittance, reflection coefficient, and VSWR

(these all depend on ZI) and corresponding output cuantities
(these all depend on CG). Other exarmples are various measures
of gain, including power gain, voltage gain, open-circuit
voltage gain, voltage ratio, transducer gain, insertion gain,
insertion voltage gain, unilateral gain, conjugate-match gain,
aﬁd available gain. Also available are various characteristic
irmpedances of the netvork, including imace impedance, itera-
tion imnedance, and conjucate-match impedance, along with
correspondinc admittences, reflection coefficients, and pro-
pagation constants. Also included are stahility factors for
anplifiers, and normalized impedances and admittances. Other
response functions include the input and output voltages,

currents, and wave variables.

The corplex resronse functions aprpear normally in the
form of real and imaginary parts. This mav be changed by the
use of modifiers. Table 3 lists the most important modifiers
in MARTHA. For complex resnonses, the real part, imaginary
part, magnitude, magnitude in decibels, angle, and phase delay

are all useful. The appropriate rodifiers are placed before
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2G
AYAA%
+
. TWO - PORT
_EG INPUT NETWORK QUTPUT ZL
\ J e~
g
GENERATOR LOAD

Figure 6. Termination of two-port networks assumed when
some of the response functions are calculated. The generator
and load impedances ZG and ZL are not part of the network

definition.

Table 3., Modifiers in MARTHA. Of thses six, RE, IM, RAD, PD,
and DEG are ignored if applied to a real response, and DB

is 20x10eMAGNITUDE for cogplex responses and 10x10@ABSOLUTE VALUE
for real responses. If no rodifier is used, the real and
imaginary parts of complex responses will result. Other

modifiers are in the library workspace 100 MARTHAM.

IiODIFIE’Z MFAMNING
RE Real Part
™ Iraginary Part
MAG Magnitude
RAD Phase in radians
DEG Phase in dedqrees
DB Magnitude in @B.
PD Phase delay

REC Reciprocal
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the resvonses in cuz2stion. Example:
PRINT MAG Z, DEG 2 OF (R 1) P L .02

Each of the rodifiers acts on only the one response irmediately
to its right, contrary to the normal APL convention that func-
tions have as their right argument the entire expression to
their right. Thus parentheses are not ordinarily used in

the output list.

C. Formats

Various format recuests can also be inserted in the out-
put lists, generallv at any point in the list. For prints,
the number of significant figures printed can be changed from

its norral value o 5 by the function PLACES. Example:
PRINT 7 PLACES DB IG OF CRYSTALFILTER

For plots, several additional options are available. Plots
are norrially made acainst frequency as the independent variable,
but if desired any one of the responses will act as the independent
variable if it is rreceded in the output list by VS. Alternatively,
if PAIRS appears in the output list, the first response function
will be plotted acainst the second, and the third against the

fourth, etc. Plots are normally 50 spaces wide and 50 lines high,

to fit conveniently on one page (except those_made by the functicen

SMITH which are designed to fit a standard-size Smith chart).
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Other widths and heights can be specified in the output list.
Plotting characters other than the standard ones can be
specified by the function SYYBOLS. Normally MARTHA plots all
dependent variables with different scales, selecting each so
that the scales consist of round numbers, but still sionificant
detail is shown in each plot. The dependent variables will
all have the same scale (with usually some loss of detail) if
S8 appears in the output list. The horizontal and vertical
scales can be set to arbitrary values bv the functions HSCALFE
and VSCALE. This is useful in ragnifying certain critical
regions of the plot; points falling outside the specified
scales are simply ignored.

These plotting format functions are illustrated by some

exarples:

PLOG 'MD' SYMBOLS MAG Z, DEG Z OF NETVORK
PLOT SS 7211, 212, 222 OF FILTER

PLOT T20 20 HSCALE ~180 180 VSCALE DB RR VS DEG RR
OF AMPLIFIER

MITH S11, SIN, S12 OF FILTER

PLOT PAIRS (2 OF AMP1), 2IK, 211 OF A!P2

The third recuest nrints the MNichols chart for the return ratio
RR of the arplifier, and the fourth reguest produces a standard-

size Smith chart.
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Vvi. MODFLS

A cormputation using YARTH¥A (or any other progoram) will
only be accurate if reasonable care is used in modelling the
netvork. Devising suitable models for a network is usually
the most challenging part of any analysis. MARTHA cannot,
of course, do the modelling job for the user, but it does offer
him a selection of elements useful for models, the possibility
of numerically defined elerents, and the opticn of creating

" other elerents in the form of "user-defined elements".

A. Tvoes of Mcdels Allovad

Models in MNARTZA may be any network with topology definable
in the MARTHA notation, using any of the built-in MARTHA ele-
ments, alonc with any liﬁear l-port or 2-port element not already
in MARTHA, for which the user is able to supplv an APL algorithnm
for cormputing its impedance (for l-port elements) or its ABCD
matrix (for 2-port elements).

Note that MARTEA does not distinguish models from elements,
or from networks containing several elements wired together.

If any user 1inds that he uses a given configuration freguently,
then he can write a simnmple APL function that returns that parti-
cular network upon demand. For users vho wish a model that is
not representable by a network made up from built-in MARTHA

elements, MARTHA allows user-defined elements without restriction

as to complexity of the recuired algorithm,
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Several elerents of special interest in mocdelling were
discussed in Section III. MARTHA can also handle numerically
defined elerents, To create one of these, the user types in
a table of values and then calls one of the functions ZFOF,
Yror, SFOF, HFOF, and ABCDFOF to interpret the table as numeri-
cal values of impedance, admittance, or reflection coefficient
for l-port networks, or 2z, ¥, S, H, or ABCD matrices for 2-port
networks. The resulting numerical models are then treated bv
' MARTEA like other elements. Arbitrarv frequency dependence

is available this way.

B, Built-In lodels

MARTHA contains several built-in models, of which the
most important are probably the hvbrid-oi and FET transistor
mocdels, and four sirple models of operational amplifiers.
These are considered as elements in M4RTHA , and were dis-

cussed in Section III.

C. Innut Technicues and Format

For uscr-defined models, a distinction should be made
betyeen those rodels that are networks of MARTFA elerents, and
those that are not. For the forrer, a simple APL function with
an arcument will usuaily suffice. As an example, consider the
ﬁarcuvitz model9 for a wvindou formed from a paif of semi~

circular obstacles alonc the sides of a vaveaquide, Fiocure 7.
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The ecquivalent circuit shown has inductors with inductances

2, c
L, = ( )2
21Tfc 2wch
Z. 2mf D 4
Ly = - ( )
l6tf c
c

Note that Lp is negative. Z_ is the characteristic impedance
of the waveguide at infinite frequency, £, is the cutoff fre-
cuency and ¢ the speed of light. A function that returns this

2-port network is

7 R<ITIDON 4
X<«300000000:(6.28xAL11x4[3])
LA« T2)x(X*2):(6.28%xA[17)
LB+=-a[2]3(( (x4 )x16x3.14x/[1])
B«(IS L LB) /(L LAY /¢ 78 I, LR

7

where the argument 4 is a vector of lencth 3 containing the cutoff

[ Wan Nan Nan'
£ W
[

frequency, the impedance, and the diareter. A relatively small
arount of APL prograrming ability is recuired to read or write
this model. The normal APL function-definition schere is used,
and all APL primitive functions (and !’ARTHA functions) mayv be
used.

MNext, consider the case where the model is so complicated
that a netvork with 4RTHA elements is not suvfficient to descrike
it. The technicue now is to use MARTHA's user-defined-element
capability. Two kinds of functions are reaquired, the first to
define the user-defined element, and the second to actually com-
pute its response at each freauencv. Tpe first fgnctipniis easy

to write: it should return an APL vector of any length starting



~34-

Table 4. Reouired shape and interpretation of matrices

returned¢ by the user-vritten function NEVELEMENT.

NMurber of Colurmns

Colurn 2 6 8
1 Re Z Re A Re A
2 In 2 Im A Im A
3 Re R Re B
4 Im B Im B
5 Re C Pe C
6 Im C In C
7 Re D
8 Im D
Assumned D = (1+BC)
A
Prcoerties l-Port 2-Port 2-Port
of Result . Reciprocal
N D/2 o Y L YL
T L L L
: B I, B
WA -\
//;“\ c ’ °
o s e EQUIVALENT CIRCUIT

TOP VIEW

Figure 7. Syrretrical window between two sericirculayg inductive
posts irn a-vavecuide and the rodel given by Marcuvitz™ . . —



with the number 9. The rest of the numbers in the vector con-
tain the parareters associated with the mocdel. The second
function is more difficult, It must be a monadic APL function’
entitled WEVELZNZNT., It is not called directly the the user,
but instead will be called by one of the MARTHA functions when
analysis is done. At that time the frequencyv is known (it
need not be known during the definition of the network) and
NEWELENENT may refer to it. The function NEWELEMENT must
return either a 2-dimensional matrix accordino to Table 4, or
a MARTHA network, possibly incorporating such a matrix as an
element. The first dimension of the matrix is in each case
the numbher of freacuencies, and the sccond dimension is 2, 6 or
8, depending on whether the netvork is a l-port network, a
reciprocal 2-port network, or a nonreciprocal 2-port ﬁetwork.
As an exanple, consider a length of coaxial transmission
line with skin-effect loss. The TEM lines in M»ARTHA are loss-
less, and the freocuency dependence of the skin-effect is not

given exactly bv any KARTHA element. For this example, the

necessary parameters to svecify the line are the inner and outer
radii, and the length. A function that creates the user-defined

element is very simple:

V B«CODP2T2LTT A
f11 B« 9 2,52777 ,.
7

The argument A is assumed to consist of the inner and outer radii

‘and the length, all in reters. This function meﬁely defines the
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elerent; it does not do any calculations.

Durinc /{7774 analvsis, the function NEWELEMENT is called
when this element is encountered. The real calculations are
perforrmed bv that function. The ABCD matrix for this line is

given by

A =D = ccsh Y2

B = Zo sinn v2

0
i\

(sinh 7YR)

where & is the length and

y =A/(R + §uL) (G + 3wC)

’R+j;L
VA = —————
© G+3j.C

and wvhere the per-unit-length quantities L, C, R, and G are

given by10

u r
L:.ggn__o.

27 padl

i
21:9:0

C =

in ro/:i
G=0

-3 1 1 1
R=2.52x 10 ' VE — (— + —)

21 r r.
o i
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A function NEWELEMEINT that incorporates these formulas is

V B<NITIELTURIT A3 003 LL PRy RO X0 ALPHAL ;3T ™A,

[11] 0C+6.28x%x3.8547 " 12:0A[1]22[3]

(2] LL«27 7xe [ u])24(13]

£31] RR«A[2]x(,Txn.5)x((+A[8])+:4A02])%6.28

fu] RO« (((LL:CC)+(((LL2CC)«2)+4(2P20Cx06.28x,F)%2)+«0,5):2)+0.5

(5] X0«=-RP:0xROXCC%x5,28x%,7F

(6] ALPTAL<A[5]%x7722xP0

£71 Br AL« [ 5])xR0OXxCCx6.28x%,F

[8] B«((p,7),6)p0

{9l BL; 1 2]«8(2 1 o,0BFTAL)Yx 6 5 o ,OALPTAL

[10] B[; 3 4]«®(2 1 o,0BFRPAL)%x 5 6 o ,OALPHAL

11] B[; 5 6J«(BL; 3 ulxr0,[1.51 RO)+R{; 4 3]xx0,[1.5]-X0

[12] BL;5]«PL;51+(X0%2)+P0%2

[13] BL[;6]«3[;612(X0%x2)+R0%2

143 B[; 3 ul«(PL; 3 4lxrR0,[1.5] R2)-B[; 4 31xX0,[1.5]1-X0
7

This function is not trivial, and some familiaritv with 4PL
is necessary either to read or write it.
The nurmber 2.52Z 7 in the function COPPERLINE is a
measure of the resistivity of copper, and is used in line [3]
of VEWELE!IENT. By including it as part of the element definition,
other element-definition functions can use the same function

NEWELEMNENT for other materials, for exarple

Y B<«RIASSLIIR
f11] B« 9 5,015 7 ,4
7

An irportant aspect of everv nmodel is its range of validity.
This includes permrissible values for both parameters associated
with the model, as well as allcized frequency ranages. Users are
advised to have their model-walinc functions check the parameter
values to see that thev are reasonable. To check on frequency

range, !!ARTHA can be made to print a warning whenever one or nore
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freouencies is cutside the permissible range. To set the
permissible range, the network is operated on by the function
FLINITS,vhich is a dyadic APL function with left arqument a
pair of frecuencv vzlues limiting the allowed range. For
exarmple, the rnodel for waveguide window given above is only
valid (accorcding to Iarcuvitzg) between fc and 3f,. If the

function WIND20W had the following fifth line
(s3] B«(4A711,3xA(11)FLIMITS B

then whenever that network is analyzed, if any of the fre-
guencies is outside that rance, that fact will be reported,

but analysis will continue.

[
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VIii. EXAMPLLES

Threce fully worked examples are given in this section.
The first is a transister amplifier which is also treated in
other chapters of this kook. The second is a crystal filter,
and the third a coaxial loir-pass filter. The lines typed by
the user are identified by beinc indented six spaces. The

computer resronse generzlly is not indented.

A, Transistor Amnlifier

Figqure & shows the circuit diagram for the amplifier,
together with the model to be used for thé transistor. The
bias source has been oritted. Eecause of the versatility of
the technique of defining networks in MARTEA, the arplifier
may be defined in several ways. One way which is probably
appropriate for this netuvork is sucgested by Figure 9, where
the input and output counling networks, and the enmitter cir-
cuit, are showvn as sevarate two-port networks. Those circuits
are straichtforwvard, and are defined first (see EXA/'PLE 1).
The hybrid-pi transistor rocdel used in MARTHA is gererally re-
garded as th2 best linear rodel at high frecuencies. This
model (see Ficure 2) can be rade to coincide with the transis-
tor rodel to be used, if PX, CPI, and CMU are all set to zero,
and GM is BZTA+RPI. Then the outnut resistor RS must be added

seperately. The transistor is cdefined using this approach, and
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c1i }//
~ 1/ L A1\ A )
) | o L \>?§ |
b ~
> <
291 CEL—j— Ll‘z
T R3 S =2 ]
) U S -__ o
(a)
Rase Collector R1 50 ohms 8
o R2 20,000 ohms C1
[ L R3 325 ohms c2
_;Il [t = Ry 25 ohms L1
Ry < ~/ 8L, RS R5 2 llegohms
S
e ) (c)

Figure 8.

(c) comnonent wvalues.

(a) Transistor amplifier.

—--‘ ——————
] Y. N L :
< , ; AT i : 1\\‘\' 1
T e T
RN ' TRAN B 9!
: g : j T —— = -5 : ﬁ !
| ! 1 : i ; 1 !
o : t E f% o : : —
INPUT EMCKT ouUTPUT

Figure 9.

wired toagether.

98

10.7 pr
10 urF
1.7 mx

(b) model for transistor,

Transistor amplifier shown as four subnetwvorks



-4]-

note that it is not necessary to separately calculate BETA:RPI,
Since the formula can be tvped in and the calculated result
used as part of the arcurment for the function HYBRIDPI,.

Refer now to IY/"PLE 1, TFirst the workspace containing
MARTHA is recuested from the APL public library. Then, the
four subnetworks are defined, and then wired together and
given the name 4:!*P1. This corpletes the network definition.

Before analysis, the freauency vector F must be specified.
A study of Fiqure 8 reveals no mechanism for limitinag high-
freouency resvense (this is perhaps an unrealistic circuit).
To viev as wide a frecuency range as is necessary, a logarithmic
frequency gweep is vsed. The freaguency vector F is set to 10
raised to the power (the asterisk is used in APL for power) of
a vector ranging frem 0 to 11; this covers all interesting
ranges.

ext, a choice of resmonse function must be made. In
this example, the voltage gain VG is most logical, and the mag-
nitude (in 4dB) and phase (in degrees) are reguested. The out-
put recuest begins with the word PRINT to set the basic format,
and this is follcwecd by the output list, then the word OF and
finally the netvork cdefinition. As evpected, the voltace gain
saturates at high frecuencies at the rather hich value of 138 dB,
and the phase approaches -180 degrees.

These results rust be taken with a grain of salt. Like

21l other network-aralvsis brograms, "ARTYA can give reasonablc
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answers only if reasonable nodels are used, and in the present
Case the circuit is probably not well modelled above 1 MHz.
This fact does not destroy the usefulness of the circuit as

an exar~nle of how to use MARTHA, but it does imply the need
for better models.

As an illustration of the use of MARTHA in judginc
different rodels, sone rather simnle improvements are made.
First, a strav capacitance is placed across the inductor L1,
and the resulting network named 4!//P2. This is, of course,
still a crude model. ESeccnd, the transistor is re-defined
with what micht he tvpical values of RX, CMU, and CPI. The
new networ} is called AI/P3. In each case, the network defini-
tion is easv because the previously defined subnetwvorks are
used.,

The voltage cains in the three cases are compared by
simultaneously analyzing and plottina the gains of the three
networks. To cover such a wide frequency range, a logarithmic
plot is necessary, so the function PLOG is used (the function
PLOT produces a linear plot). Note that NARTHA normally auto-
matically selects the scales, but is here requested to use

the same scale for the three diffcrent resnonses.
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B, Crvstel Tilter

This crystal filter, Figure 10, is adapted from a filter
shown to me privately bv Mr. William B. Lurie, who ascribed
the design to Prof. G. Szentirmai. There are two stages, each
with a half-lattice construction which is modelled with the
aid of an ideal transforrer. The four crystals all have the
same ecuivalent circuit, with different element values. The
filter has a passband about 4000 Hz wide, between 8 "MHz and
8.004 MHz, It is designed to operate between source and load
of 500 ohms. PRefer to EXANMPLE 2, First NARTHA is loaded,
and then the four crystals are defined. Next the two stages
and the overzll filter are defined. Next, the generator and
load irpecdances 2G and ZL are set to 500 ohrs, and the fre-
auency vector set so as to encompass the passband. In speci-
fying the frequency vector, the index generator i1 vas used.

A plot 30 lines high of the insertion cain IG expressed in dB,
anéd the phase of the voltage gain in degrees is recuested.
Next, to see the ripple in the passband a little more clearly,
the horizontal scale is deliberatecly set to the range fron -2
to 0 dB, with the aid of the function ASCALE from the XARTHA
library. This recuest overrides the normal MARTHA practice
of autormatically setting the scale. Note that when a netwvork
is to be analvzed a second time for the same frecuency vector,

the previous_results, saved under the name SALE, cag_bgﬁus§d.
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Figure 10. (a) Crystal filter. (b) model for the crystals
X1, x2, X3, and Xu, (c) corponent values. The element
values in the crystal nodels are not listed since they

appear in EXAMNPLE 2,
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Next, it is desired to inspect the transition region
and the stopband, so the freauency vector is redefined to
cover the upper half of the passband and 4000 Hz above.
The insertion gz:in, phase, and the ragnitude of the input
impedance, are printed.

An interestinc phenorenon is observed at approximately
8.007 !z, The insertion cain passes through a peak and the
phase changes by 180 decgrees. Apparently there is a trans-
mission zero sorewhere in the vicinity, and to view this in
" more detail, the frequency vector is redefined so as to expand
the range between 8.0068 MKz and 8.0070 MHz. The depth of
the notch in insertion gain (105 &B) and étill rather sharp
transition in phase suggest that the zero is very close to the
jw axis, and it is interesting to expand the passband again,
between 8.00691 MHz and 8.00692 MHz. Note that the printing
will not resclve these small changes in frequercy so a larger
number of sicnificant figures is requested with the aid of the
function PLeCZS from the MARTHA library. The frequency sweep
is now in 1-Ez steps, and the high resolution available in
this analysis is cdue to the fact that MARTHA (like APL) uses

double~-precision arithnetic.
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C. Coaxial Lor-Pass Filfcr

The third example, Figure 11, illustrates MARTHA's ability
to work with distributed as well as lurped networks. The originzal
desion of this seven-section low-pass filter vas done by R. Levy

11

and T. L. Rozzi~~, who stated that this filter is not particularly

good except as an example of their design method, which they then

used on a more practical, 23-section filter. Only the seven-
Section filter is analyzed here.

The coaxial discortinuitv capacitances of the filter are
important to its design. These capacitances are models which
should be used at every junction between conductors of different
size, as shown in Figure 12. MARTHA has a function named
COAXDISCAP in the MARTHA librarv which calculates the values
of these capacitors, when supplied with the appropriate radii
of the line. Like all lengths in MARTHA, the radii must be
given in reters, and so a conversion frcem the dimensions in
inches in Figure 11 is necessarv. In EXAMPLE 3, the first four
discontinuity capacitors C1 throuch Cu are defined (the other
fecur are equal because the filter is symmetric), and the con-
version from inches to mecters, and from diameters to radii, are
done during the definitions (multiplication by 0.0254 meters
per inch, and 0.5).

Mext, the individual lengths of transmission line L1
through L4 are defined. In MARTHA a iength of line is specified

by its characteristic impedance and physical length. 1In our
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case we need to calculate the characteristic irpedance from
the dirensicns. The function C0OAX in the MARTHA library is
copied, and then used to do this. It expects as an argument
a vector consisting of the inner and outer radii, and length,
all in meters.

Since the filter is symmetric, it is possible to define
the left side (consistina of the first three lines with the
discontinuity capacitors placed at all junctions), and then
use this definition twice in the final definition of the filter.
Making the definition in this way eliminates the need to enter
the sare nurerical data twice, and therefore tends to reduce
kevboard errors.

The filter is designed to operate from a 50-ohm generator,
and into a 50-ohm load, so the generator and load impedances
ZG and 2L are set to 50, The VSWR at the input is wanted, and
this resvonse function VSVRIN is copied from the MARTHA library.
The freauency vector is set, and a plot is reauested. The
result, of course, in in agreement with the analysis by Levy
and Rozzill.

Filters of this sort are periodic, and have other pass-
bands. In this casec there is another passband centered around
12 GHz, so the stop bard extends from 3 to 9 GHz. Levy and
Rozzi stated that this seven-section filter had poor stopband
attenuation, and the plot of the insertion gain up to 10 GHz
reveals just how true this is. The maximum attenuation is

only about 4 dB.



VIII, LINITATIONS

Every netrorl-analysis prograr has two types of limita-
tions not discussed so far. One has to do with cormputer re-
Source lirits, and zthe other with problems that are ill con-

ditioned.

A. Resource Lirita+ticns

Many programs have limitations on the number of nodes,
Or nurber of elerents, or number of network defintiicns allowed.
These limitations arise frcm the arount of space set asice for
Certain varieghles., ./'i1R7Y/4 hes, for practical purposes, no
such precise liritactions since it is irbedded in APIL, which
uses dynanic gtorace for all veriables. The resource lirita-
tions of MARTF/ are sorevhat rore difficult to describe.

The primarv limitaticn is caused bv the finite size of
APL worksmaces (usually 32X bvtes, each bvte beinag 8 bits).
The MARTHA functions recuire about 1921, leaving about 13K for
the user's netwvork cefinitions and terporary storage of re-
sults. If possible, NARTH:Z automatically analvzes with all
freaquencies at once; if this is not possible, it automatically
selects a sraller nurrexr of frecquencies, and repeats the
analysis as rany tires as necessary, until all frecguencies

are accounted for. Iowever, even this can be insufficient in

some cases with lencihy output lists. ELxperience has shown
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no trouble for analysis with un to fiftyv freauencies, provided
not too much of the available space is taken by unrelated
functions and data. The APL error message WS FULL indicates
there is a problem of this sort. Some of the corputers that
carry MAPTEA have loraer APL vorkspaces, in which case this
Ceases to be a real problem. If it is necessary to analyze
with a larce nurmker of frecguencies and available space cannot
be created@ by erasing unnecessary objects, then /ARTHA has a
function entitled ATATIME which can be used to repeat the ana-

lysis for a srall nurnber of frequencies.

B, Ill-Ccrditioned tletworks

Every netivork-~analysis schere has its own set of networks
for vhich it performs poorly, or perhaps not at all. During
analvsis, ARTHA represents l-port networks bv their impedances
and 2-port networks by their ARCD matrices. Thus MAPTHA is
unable to handle networks for which these reoresentations do
not exist. For l-port networks, this is only open circuits
(or because of overflow or uncderflow problems, networks with

. < . 37
irpedance ragnitudes creater than about 10

10-37

or less than

8]

ohrs). For 2-port networks, this is any network for
which the output voltage and current are related by one ecquaticn
not containing the input voltage or current. This class of
networks are those_which produce no effect at thg ogtgqt when

the input is excited, that is either those with disconnected
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inputs and outputs, or those that are backvards unilateral.
Generally when such a situation exists, it is easy to rece-
the ill-conditioned case.

fine the networl so as to avoid
can lead to

particularly zero,

Certain elerent values,
Tabhle 1 lists several such casecs.

ill-conditioned networks, and
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IX. ERROR DIAGKOSTICS

MARTHA recoanizes two classes of errors. One is errors
SO serious that /JARTHA cannot reasonably proceed, and in the
Other case only scrme of the calcuvlations may be in error and
{'ARTHA continues.

For non-fatal errors, MARTHA prints a warning but continues.
Examples include use of frecuencies outside the range specified
by the function FLINITS and freguencies at which by coincidence
the netwrork is ill-conditioned. Generally in the latter case
trouble is encountered vhen a denominator vanishes: the warning
ressace is AITE/!PT TO DIVIDZ EY ZEFO. This also is printed vhen
& user asks for a resvonse function that is actually infinite,
such as the adrittance of a 0O-ohn resistor., After this ressage,
Some of the results, vt not all, may bhe in error.

Fatal errcrs are caucht either by MARTHA or by APL,
2rong those caught bv NARTHA are the wrong lencth for an argu-
rent for an elerent-definition function. Errors caucht by
FARTHA induce an explanatorv ressace, usually indicatirnec vhat
was erxpected, follouved by the ressace [{ARTHA ERRFOR and a diag-
rostic arrow pointing to the place where MARTHA got into trouble.
These errors ray often be recarded as a useful prorpt, because
bv deliberatelv comritting therm, a user can remind hirself
what is expected. A corplete list of these error messages

anvears in reference 2. _ L o -



Errors not caught
reported by the ressace
of one of the functions

not be infor-atise, but
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by MARTHA, but rather bv APL, are
NAN'E ERROR where NAMNE is the nare
in /1ARTHA. This message may or may

it is followed by an indication of

the place where 47774 ¢ot into trouble.

To reccover frcm an error a user should type a single

right arrow - follo:ed bv a carriage return, and then proceed

after correctinae the source of the error.
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X. REFEPENCES

This chenter has not covered all aspects of using
¥ARTHA:; in particular, no attempt has been made to describe
the //ARTHA library fully, because it periodically gets
additions. Complete instructions for using MYARTHA appear
in references 1 and 2 below. Each workspace in the MARTHA
library has a variable entitled DESCRIBE vhich aives an
up-to~date description of the contents. A succinct summary
of INARTHA usage is available on-line in the worksvace
100 HCWVARTHA.
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