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A numerical program was developed to compute transient compressible
and incompressible laminar flows in two dimensions with multicomponent
mixing and chemical reaction. The algorithm used the Los Alamos Scien-
tific Laboratory ICE (Implicit Continuous-Fluid Eulerian) method as 1ts
base. The program can compute both high and low speed compressible
flows. :

Point by point corrections were included for the errors caused by
truncating the Taylor series during finite differencing. The removal
of these numerical diffusion errors stabilized computatlons which pre-
viously had diverged catastrophically.

Multicomponent mixing and chemical reaction were incorporated using
an implicit scheme and breaking the time increment into smaller steps.
The mixing was computed over a small time step and was followed by reac-
tion computations over a series of even smaller time steps., This effec~
tively coupled the species equations and gave stable results,

The applicability of the computer program was tested with a variety
- of flow problems in tubes. These included flow startup in an infinite
tube, shock tube flow, cyclical pulsations on a mean flow, uniform
entry, coaxial entry into long and short tubes, flow of a center jet en-
tering a sudden expansion, and steady parabolic coaxial entry with mix-
ing and chemical reaction of trace species. The program was not proven
for problems with strongly coupled flow and reaction., A variety of
computer-drawn graphical output was used to display the results,

The numerical program incorporating the stabilization techniques
was quite successful in treating both old and new problems. Detailed
calculations of coaxlal flow very close to the entry plane were possi-
ble. The program treated complex flows such as the formation and down—
stream growth of a recirculation cell., An implicit solution of the
species equation predicted mixing and reaction rates which compared
favorably with the literature. A recommendation for expanding the pro-
gram capability to include strongly coupled flow and reacticon was made.
A computer program listing was furnished.
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ABSTRACT.
iA-n;merical program wés déveioped to compute traﬁsieﬁtrcompres;
sible and incompressible laminar flowsrin two dimensions with mulgi-
compenent mixing and chemical reaction. The algorithm used the Los
Alamos Scientific Laboratory ICE (Implicit Continuous—%luid Eulerian)
method as its base. The program can compute boph high\and low speed
compressible flows.

Point by point corrections were included for the errors caused by
truncating the Taylor series during finite differencing. The removal
of these numerical diffusion errors stabilized computations which pre-
viously had diverged catastrophically.

Multicomponent mixing and chemicalrreaction were incorporated us-
ing an implicit scheme and breaking the time increment into smaller
steps. The mixing was computed over a small time step and was followed
by reaction computations over a series of even smaller time steps.
This effectively coupled the species equations and gave stable results.

The applicability of the computer ﬁrogram was tested with a var-
iety of flow ﬁroblems in tubes. These included flow startup in an in-
- finite tube, shock tube flow, cyclical pulsations on a mean flow, uni-
form entry, coaxial entry into long and short tubes, floﬁ of -a center
jet entering a sudden expansion, and stéady parabolic coaxial entry
with wixing and chemical reaction of trace species.. The program was
not proven for préblems with strongly coupled flow and reaction. A
variety of computer-drawn graphical output was used‘éé display the

results,
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The numerical program incorporating the stabilization techniques
was quite successful in treating both old and new problems, Detailed
calculations of coaxial flow very close to the entry plane were pos-
sible. The program treated complex flows such as the formation and
downstream growth of a recirculation cell. An implicilt solution of
the species equation predicted mixing and reaction rates which compared
favorably with the litera?ure. A recommendation for expanding the pro-
gram capability to include strongly coupled flow and reaction was made.

A computer program listing was furnished.
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Chapter 1

INTRODUCTION

The use of numerical methods to solve the partial differentiél
equations of fluid flow is a field of great currenf interest. Advancgs
in numerical techniques plus new generations of extremely fast digital
computers permit solutions of complex fiow prqblemsu These solutions
may be run as computer experiments, allowing the quantification of var-
iables that would be difficult to measure in a physical experiment.

The knowledge gained from such computer experiments can be used by sci-
entists to advance the frontiers of fluids research. At the same time
the expanded capability in solving the flow equations permits treatment
of more complex and hence more realistic problems. Thus numerical
fluid dynamics also has increasing value té the engineer,

Barly numerical solutions dealt witﬁ steady laminar incompressible
flows,.steady compressible flows at supersonic speeds, and transient
one-dimensional flows associated with shockrwaves. Many of theée prob-
lems were selected because analytical solutions Weré available for'com—
 parison.

Then problems were run with more complex boundafy conditions. An
inferest grew in obtaining transient solutions and three dimensional
steady solutions. The current generation ﬁf very fast, large étorage

machines can treat some unsteady'problems in three dimensions with



reasonable computation times. However, finding a means to disPIay such
solutions is a formidable problem in itself. |

The mathematical problems of stability and convergence have also
increased with problem complexity. The nonlinear nature of the differ-
ential equations precludes a rigorous analysis to characterize the va-
lidity of the numerical solution. Thus the researcher is often forced
to identify a stable, "reasonable-looking' solution as a valid solu-
tion. This is not always true, but in the absence of rigorous proofs,
it is a reasonable assumption.

Detailed computations of turbulent flows are preséntly unattain-
able. Turbulent flows consist of a myriad of transient, three dimen-
sional fluctuations superimposed on a mean flow. Ignoring the trans-
ient mature of the fluctuations and reducing the dimensionality from
ez to two are already severe approximations to the actual physics
of the flows. The turbulent behavior is dependent upon small scale
motions. The extremely swmall mesh Size{ hence large numbers of grid
points, required to resolve the small-scale turbulent mofion demands
~enormous speed and storage capabilities, |

Many flows of interest to engineers are in the tﬁrbulent region and
these practical problems re&uire solution. The need has béeﬁ met by us-—
ing semi-empirical models and curve fité df data to evaluate the turbu-
lent coefficients: This process uéﬁélly'includes an order of magnitude
analysis to cast éut some stress components. A minimum grid size is
chosen consistent with computer capabilities, and the effects of smaller
scale flows are expressed as eddy viscosities. The methoa éften works

well for steady state problems where the model is valid and within a



parametric range embraced by the data, Extrapolation of such analyses

to a wider operating range is often unsatisfactory., Transient problems
involving the generation, propagation, and dispersion of turbulent
quantities have been formulated, but little has been done in solving
this type of problem, again due to formidable computational problems.

Solutions of the rigorous conservation equations are constrained.
entirely to the laminar region. A‘major current goal in numerical
fluid dynamics is the solution of the complete laminar conservation
equations for various sets of initial and boundary conditions. In add-
ition, combustion and pollution problems have stimulated interest in
reacting flows. And in some cases, such as acceleration of gaseocus
flows to high speeds or pulsatile flows, simplifying assumptions re-
gérding compressibility can not be made. Gas phase reactions can cause
energy release that coufles with the fluid dynamics through compression
effects., Hence a general numerical program to deal with these types of
problems is_of interest and has been pursued in this work.

A major problem iﬁ dealing with transient flows at all speeds is
that the full conservaﬁion equations can exhibit the behavior of the
Vthrée classes of partial differential equations, depending on the nature
of the physical problem belng described. Transient slow flows which are
appreciably influenced by viscosiéy are parabolic in nature. Steady
subsonic flows are described by elliptic equations. Subsonic flows with
wave propagation and all sﬁpersonic flows are hyperbolic in nature. The
difference equations which represent the differentiéi equations gener-
ally require a method of solution that depends upon the class of é%ua~

tion. Thus a scheme that successfully solves hyperbolic equations may



fail in the elliptic region. Mixed flows of variable nature arxe diffi-
cuit to solve numerically.

The conservation equations governing the flow of multi-specie re-
acting fluids are given below in tensor form. ¢ravity forces are neg-
lected, gji is the metric tensor, and the comma (,) denotes covariant

differentiation. Symbols ate defined in the nomenclature.

I TR | : _
Mass: ar = (pv ),j__ (1.0-1)
Momen tum: §£E231-= - { 3 i) - jiP _ At (1.0-2)

um 3t gV v .i £ i p i .
3(pE) h| j h h
Total E : = - E - (P - - .
otal Energy v (ov )’ (Pv ),j q (T 83" ),m
{(1.0-3)
o ,
Mass of Kth Specie: 2CK) = - (nK):l + (r.) (1.0-4)
ot j K
a

The above equations all contain an accumulation term on the left hand
side which is equated to varicus fluxes on the right hand side. The
fluxes are convective or diffusive or arise from the action of pressure
forces and viscous stresses. In the species equation a source ternm
(;K) ig included tq take chemical reaction‘into acecount.

For a compressible Newtonian fluid the viscous stress tensor is,

.3t - _ 2. jim oo mj ni
T FUETV  tug g '(vm,n + vn,m)

which may be substituted inte the momentum and energy equations. These
equations comprise the set.to be solved for various initial and bound-
ary conditiﬁns.

This thesis presents numerical studies of transient, two dimen-

sional, confined £lows with no constraints on fluid compressibility or



flow speed. The basic algorithm was derived at the Los Alamos Scien-—
tific Laboratory (LASL)}. 1The diffusion and reaction of speéies is in-
cluded herein to Hrodden the range of application of the computer code.

The purposes of this thesis are:

(1) Tc develop the partial differential component equations
through finite differewcing and to formulate the algorithm;

(2) To derive and demonstrate a nonltinear truncationrerror correc~
tion to stabilize sglhutions;

(3) To demonstrate the wide applicability of the algorithm by com-
paring numerical solutions with other analytical and numerical solutions
for the following problems: |

(a) Startup of incompressible flow in an infinite tube;

(b) Propagation of shock phenomena after removing a diaphram
separating high and low pfessure gases;

(¢) Development of incompressible flow from rest when the axial
pressure gradient has a mean component and an oscillatory per-
turbed componenr;

(d) Development of the incompreésible boundary layer iﬁ the en-
trance of a tube subjected to a uniform input flow;

(e) Calculation of steady-state flows with trace (decoupled) chem-
ical reactions for fully developed coaxial entry.

(4) To presen% transient and steédy staté solutions of compress-—

ible and incompressible slow speed tube flows with uniform coaxial

entry;



(5) To present transient and steady-state solutions of the incom-
pressible and compressible flow of a slow speed center jet into a con-
fined tube of larger diameter;

(6) To furnish a listing of a computer program for future experi-

mentation with flows strongly coupled with chemical reaction.



Chapter 2

LITERATURE BACKGROUND AND CORCEPTS

A comprehensive review of publications on computational fluid
mechanics would be a major undertaking and inappropriate to the infent
of this thesis. This section will discuss some.papers on concepts of
stability and accuracy of difference schemes plus methods of solving
compressible flows which can extend intc the subsonic region. Some of
the major techniques developed at the Los Alamos Scientific Laboratory
toAtreat compressible and incompressible flows will be discussed, lead-
ing to the ICE technique for flows at all speeds.’

All attempts to produce computer solutions which describe fluid
flows are faced with the mathemafical problems of existence, unique-
ness, convergence, stability and accuracy of the solutions. The prac-
tical application of the numerical computation is to describe a physi-
cal problem. In the case of fluid flows, fhe use of the full conser-
vatioﬁ equations gives the greatest confidence that the physics of the
problem are adequately represented. Since the cénsefvation equations
are a set of nonlinear partial differential equations, the mathemati—
cal problems mentionedrabové have not yet been resoclved.

Roache (45) has considered this problem awnd concluded that physi—
caliintuition! heuristic reasoning, and numerical experimentation com-

prise a reasonable alternate approach. Since a goal of this work is



" to develop and test a program applicable to physieal problems of inter-

est to engineers, the same philosophy 1s adopted here.

-A. Concepts_of Stability and Accuracy

The paper of Courant, Friedricks, and Lewy (12) provided the basis
for constructing stable difference séhémes. Elliptic? parabolic, and
hyperbolic equations were treated. According to Lax (37), the authors
were primarily interesged in proving the existence of solﬁtions te dif-
ferential equations by taking solutions of finite difference equations
to the limit of smallness. Their aﬁalﬁsis of hyperbolic equatioﬁs de~
fined a "domain of dependence," a region of information on space and
time coordinates which must be considered to define the value of a var—
iable at a.point. They showed that th§ domain of dependence of the
difference equation must include the domain of dependence of the dif-
ferential equation. Otherwise numerical indtability will occur. In
SimplerAtermS; instability will arise if the grid spacing AZ is so
large that information can not propagate from one point &0 the next in
the given time increment At.

The above concept is expressed inrthe Courant number. The speed
of propagatién for compressible probleﬁs is the sﬁeed Qf sound, a.

-Then the Courant number restricts
‘a %§-<.l‘
if stability is to be possible. In the case of incompressible flows,
the formulation o% the equations suppreéSes the sonic signals. The
parameter prOpagSting the informétion is the 1oéallfluid velocity,‘U;

Then



is theistability criterion.

The presence of shocks in flows presents computational problems
using the inviscid equations because the pfimary variables are discon-
tinuous over the shock front. This requires a set of internal bound-
ary conditions obtained from the Rankine - Hugoniot equations to con-
nect the variables over the shock fromt. The shock surface is usually
positioned between grid points, and its exact position can be found
only by a trial and error process. Von Neumann and Richtmeyer (51)
introduced the concept of adding an artificial dissipation term to the
equations. This caused the shock front to smear over a few grid
points, eliminating the discontinuocus front and the associated compu-
tational headaches. 8hock strength and pesition automatically arose
“from the fluid flow calculations. A properly defined dissipative func-
tion produces negligible effects on the shock velocity and strength and
no effects outside of the shock region., A real shock is slightly
. smeared due to heat conduction and viscosity effects., If shock spatial
“details are the primary goal of the computational exercise, the artifi-
cial dissipation term would interfere. For most shocked flows this is
nof of interest.

Von Neumann and Richtmeyer introduced the dissipative function, g,
as an additive term on pressure in the momentum andrenergy equations.
For unsteady one-dimensional flow, the equatipns.were

9t 3.
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The dissipation term chosen was
(KAZ)2 ol | &l
= - Akaa) ob ‘_é-i_l (2-5)

VS 9Z
This functional form produced a shock wave of fhickness 0(AZ), satis-
fied the Hugoniot relationships, and vanished aﬁay from the shocked
region.

The theory of the stability of linear difference equations with
constant coefficients was developed by Von Neumann at Los Alamos durihg
World War II. The first detailed explanation of the method was pub-
lished in the unclassified literature by O'Brien et al. (40). The
authors illustrated Von Neumann's method of substituting an exponential
saeries solution into the difference equation and-examining the result
for regions of time and space grid sizes which assured that the expon-
ential terms would not grow with time. This theory will be discussed
in more detail in the later section on stability analysis.

Cheﬁg (11) examined computational stability, accuracy, and consis-
tenéy of difference formulations, His discussion was based on Laxfs
equivalence theorem which states that, "In the limit At - 0 and
AZ + 0, the solution of the difference formulation converges to the
solution qf the differentiql problem if, and only if; (1) the differen-
tial probleﬁ is well-posed, (2) the difference and differential formu-
lations are consistent, and (3) the computation is ééable." Cheng
analyzed the aspect‘of consistency in terms of thé truncation erro%s

inherent in the particular finite difference form. The truncation
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error is a measure of disagreement between the paﬁgia;idifferential
equation and its finite difference equation. Cheng.recognized the
truncation error terms as dissipative, dispersive, and of higher order,
then analyzed stability in a heuristig.ménner, lookinglat the sign of
the dissipative term to determine whether a difference écheme was
stable or unstable. A similar analysis by Hirt (29) is used in this
thesis and is discussed later, Cheng calls the dissipative term a
"pseudo-diffusivity." It is not Von Neumann's artificial viscosity
which is an added term. It is implicitly contained in the finite dif-
ference formulation.

After an analysis of accuracy, Cheﬁg concluded that viscosity con-
trolled problems should have finite differences of second order accur-—
acy which reduce the pseudo-diffusivity. Thus the true viscous effects
would not be masked by numerical error. He also coﬁcluded that steady-
state or slow transient sclutions to the Navier-Stokes equations could
be accurately computed. However, he showed that the sécond—order ac-
curate Lax Wendroff méthod gave appreciaﬁle amplitude and phase errors
when applied fo a rapidly oscillating pfoblem with‘known analytical sol-
Qtion. This specific example indicated that caution is required when
solving rapidly‘changing time~dependent pfoblems.

A more detailed linear analysis of'amplitude and phase errors was

conducted by Fromm (20). He examined the unsteady vorticity formulation

; .
of the incompressible flow equations by substituting a Fourier component
solution and examining the stability of the high frequency components.

He concluded that first order accurate formulations had appreciable

amplitude and phase errors in the smaller modes, and that even second
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order formulations had significant phase lag at the smallest mode, 24Z.
This caused a dispersion and appearance of point-to-point waves. Fromm
proposed a fourth order scheme which sbowed superior error characteris—
tics, He also proposed using a linear combination of two schemes with

opposite phase error to cancel tﬁe error. This promises to be a fruit-

ful area for future research.

B. Compressible Flow Schemes

Some of the schemes currently in use to treat transient compres-
sible flows are briefly discussed in this section. Brailovskaya (5)
presented an explicit differencing scheme for the laminar unsteady com-—
pressible Navier-Stokes equations which was first order accurate in
time and second order accurate in the space variables. The scheme was
three level. Intermediatevalues for mass, momentum, and energy fluxes
were calculated explicitly, then advanced time values were computed us-
ing the intermediate values in the flux and pressure terms while reus=-
ing the old dissipation terms. A computation was shown for a cavity
problem where a wall impulsively started moving across a square cavity,
setting up 2 vortex within the cavity. Little detail was shown, but a
steady-state streamline plot at a Reynelds number of 500 looked similar
to other solutions of this problem. The lowest Mach number of the mov-
ing wall was 1/3. 1t was not stated whether the fluid was considered
to be at rest on the walls.

Kurzrock and Mates (35) presented a method which.they claimed had
storage and computation speed advantages over Brailéyskaia's methoq,

The continuity equation was written implicitly, but the new fluxes were

12



‘palculated explicity from the momentum equations and then used directly
in continuity. Hence the scheme was computationally explicit. In
fact, trial runs with an explicit form of the continuity equation gave
the same stability limits as the implicit form, Evidently stabilitj
was controlled by the momentum and energy equations. The method was
used to calculate a shock propagating inside a tube including boundary
layer effects and for an external flow problem describing the growth of
a shock on the leading edge of a flat plate suddenly accelerated to
supersonic speed. An attempt to run the latter problem at subsonic
velocity was thwarted by instability and long computation times.

A method by MacCormack (39) 1s applicable to compressible flows
and has second order accuracy in both time and space. It is a three
level method of the Lax-Wendroff type, in which an approxzimate set of
values at t + At is calculated from the startiﬁg values using spa-
tial differences that step forward. The approximate values are then
used in the second half of the scheme to calculate the true values at
£ + At from differences that step backward. It has been used with

.supeISDnic and transonic flows. Although this writer has had personal
communications with several researchers who indicated the method could
be used for very slow flowéL publications have not been found to ver-
ify the low speed behavior of the scheme.

The Lax-Wendroff scheme referred to in the previous paragraph de-
gerves further mention. ,IE is used with the inviscid equations rather
than with the full Navier-Stokes equations. The oné”dimensional form-
ulation was presentéd by Laﬁ and Wendroff (38). Burstein (9) exte;aed

the scheme to two dimensions, but found that artificial viscosity was
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needed to stabil<i.. computations. His.sémple calculation of supersonic
flow over a blunt body .hzd a subsonic region which was handled success-
fully. The method is.secpnd order and has superior accuracy. It is a
three level scheme requiring considerable averaging and is difficult to
use,

" Although the i¥:thods discussed in this section have varying suc-
cess in the subsonic region, they are all constrained by the Courant

condition. For onen.mension, this 1is approximately
At :
(Jul +a) ;2 <1 , (2-6)

Thug the time increment is constrained by the large value of the speed

of sound even though the flow velocityrmay be very small,

C. The PIC, MAC, ad&d ICE Methods

The Los Alamos *Scientific Laboratory {(LASL) is a pioneer in the
field of numerical fluid dynamics. Much of the early work performed
there was done in the support of weaponry for World War II, Open pub-
lications began to appear in the 1950's. This section iﬁtroduces three
. of the LASL numerical fluid dynamic schemes, the PIC (Particle-in-Cell)
method for compressible flows, the MAC (Marker—and—Cell) method for in-
compressible flows, and thé ICE (Implicit Continuous-Fluid Eﬁlerian)
method for compressible flows at all spééds. The numerical program
developed in thiélthesis is basedidn‘thé-IGE‘technique.

The PIC method was developed in the 1950's, bqg_a later publica-
tion by Amsden (2) is used for this discussion. The PIC method was a

hybrid scheme which permitted Lagrangian particles to flow through an

Eulerian mesh, carrying with them the conservation properties of mass,
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momentum, and energy. The computational fluid was thus not a contin-
wum, but an assembly of particles. Multiple fluids could be denoted by
different types of particles. The conservation, state, and thermody—
namic properties of the contents of each cell were calculated using the
number and types of particles lying within the cell boundaries. The
number of particles in a cell varigd due to flow and if the mean number
was low, the cell properties cscillated in a bounded manner. The mass
of each particle remained EOnstant, so mass was automatically conserved
by the method. It was thus not necessary to separately solve the mass
equation.

The calculation tcok place in two phases. The first phase was

Eulerian and presumed no particle movement. The steps were:

i) Compute the cell pressure from an equation of state
n M )
P=P (?’ 4 : (2-7)

where n denotes the time coordinate index.
2) Estimate a tentative new velocity U from the equations of motion
with advection terms removed. This step required an artificial viscos-
ity for stabilization.
3) Estimate a tentative new internal energy I neglecting advective
terms in the energy equati;nﬁ This ended the Eulerian phase.

The Lagrangian phase allowed particle movement and included ef—
fects of particles changing cells. The steps were:
1) Calculaté the total momentum (5U)t0t of each cell containing N par-

ticles by



K=1

where m, was the mass of the Kth particle in the cell. Likewise
calculate the cell intermal and total energies.

2) Move the particles by assigning to each anreffective velocity Ueff
which was a weighted average of the surroundiné velocities U: then
translate the coordinate Z by

nt+l

2" = 2" + U bt (2-9)

eti®
3) 1f a particle crossed a boundary, adjust the cells for the changes
in mass, momentum, and total energy. Then calculate the final veloc—
ities by dividing the adjusted momenta by the adjusted masses. Use the
final velocities to calculate the final internal energies from the
final total energies. This concluded‘the process.

The original concept of this method arvse from particulate kiﬁetic
theory, the details having been developed over a long period of numeri-
cal trials. Besides the added artificial viscosity g, the method had
" an implicit dissipative term (Cheng's pseudo-diffusivity) which had the
form -% p}UiAZ in the 2Z direction. This térm stabilized the compu-
tation. At low velocities the implicit damping term became small and
instability resulted. In addition the Courant condition restricted the
time increment size, so the method ceuld not be used successfully for
slow speed flows. |

The method suffered from accuracy not only due te the first order
differentiai épproximations but because a continuum flow was repre-

sented by motion of a small number of particles. It did have the
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capability of treating flows with more than one material and flows in-
volving large fluid distortioms. In additionm, the particles showed the
positions of the fluid, and their discrete translations could be filmed
to pictorially show the fluid motiom. i

Amsden (2) presented calculationé of high speed wakes, shock in-
teraction with a blunt object, explosive burning, and high velocity jet
splash and particle impacts. The pictorial solutions looked gqualita-
tively correct, Evans and Harlow (16) calculated the flow over a cyl-
inder in a channel using PIC. The.cylinder was impulsively accelerated
to steady Mach numbers of 2, 4, and 6.  The streamlineé and shock posi-
tions at steady state compared well with experimental values. Harlow
and Meixner (28) calculated the rise of a hot gas bubble from the
earth's surface, modeling a‘nuclear explosion in the atmosphere. The
solution showed the shock front breaking away from the heated gas front
and vertical stratification within the bubble due to shock—rarefactibn
interactions.

A natural progression of the PIC method was to eliminate'the par-
ticles as carriers of conservative propertieskand to use a continuum.
This was done by Rich (43) and later by Gentry et al. (21). They re-
tained the same calculation sequence as PIC but solved the équations
in integral form, relating the change of the property witﬁin the cell
to fluxes througﬁ cell surfaées. .The equaticn for conservation of

i
mass was required in the second phase of the calculation since the
mass-carrying particles were discarded.” The absence of particles
identifying the fluid made éwo-fluid computations difficult. This

problem was treated by Rich by initially specifying the position of
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the interface between two fluids, then tracking the interface as the
problem progressed. Gentry's scheme, called FLIC for Fluid-in-Cell,
optimized the computation for one fluid and prescribed a treatment for
boundaries that required partial cells. Problems of supersonic flow
over obstacles and diffraction of a shock travelling down a Z-shaped
tunnel compared well with experimental results.

Concurrently with the PIC method for compressible flow, the MAC
{Marker—and-Cell) method was develéped for incompressible flow. A
later summary document is Welch et al. (55).. The differential form of
the comservation equations were used in MAC instead of the integral
form. A Poissomn equartion for pressure was formed by substituting the
momentum equations into continuity. ' The Poisson equation was solved
implicitly by relaxation to a specified degree of convergence to give
the advanced pressure field. A technique developed by Hirt and Harlow
(31) was used to correct for the lack of exact convergence. Pressure
signals in incompressible flows are presumed to propagate instantly to
all other points in the flow field. Thus the pressure at any point is
a function of the entire vélocity field, not just the local field. The
" implicit nature of the pressure equation served to carry the flow in-
formation throughout the pressure f{ield.

After the iteration on the pressure field, the new velocities were
calculated from the advanced time pressure term and the old shear terms.
Then the particles were moved agcording to their weighted average veloc-~
ities acting over the time increment At. The particle concept from the
development of PIC carried cver into the incompressible program, but in

MAC, 1ike FLIC, the particles served only as markers to identify the
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position, type, and motion of the fluids. The presence of a free

liquidégas surface was included, and the brimitive variables of velodf
ity and pressure were retained to facilitate tﬂis capability. Latef
improvements in the MAC numerical code led tolthe simplified MAC or
SMAC method (3).

A fascinating series of numérical problems were plctorially pre-
sented in Welch et al. (55), Barlow and Amsden (26), and Amsden and
Harlow (3). These included a wave breaking on a sloping beach, é wall
of water hitting an obstacle, water flow frcm.a siuice gate, formation
of a hydraulic jump, waterfalls, fountains, and others. Further appli-
cation teo multiple immiscible fluids was demonstrated by Daly (13) who
studied Rayleigh-Taylor instability in a system with a dense fluid in-
itially layered ébove a lighter fluid., Mushroom-shaped spikes of fluid
were formed in the numerical ecaleculatien as the fluids began te invert
to a stable configuration. These spikes were observed experimentally.
Quantitative comparisons of growth of the protuberances'were favorable.
The MAC technique was extended by Hirt and Cook (30) to three dimen-
sions including thermal buoyancy. Using 3344 cubic cells they computed
flows over and around configurations of fectangular solids. Such cal-
culations c;uld be applied to meteoroliogy and atmospheric pollution
problems. They used the cell markers to fﬁllow the dispersiom of a
tracer from a point source. The results were displayed in perspeﬁtive
drawings.

The MAC method haé been used by investigators outside of LASL;
Dogovan (14) cowputed the transient formation of a laminar vortex"in a

rectangular cavity where one wall was impulsively accelerated to a
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constant -velocity. Counter-rotating vortices appeared in the corners
away from the moving wall, and steady state veloclty componeﬁts agreed
with experimental data. FPhillips (42).applied the method to impulsive
and pressure-driven oscillating flows in a sudden expansion and in a
tee. Hgs interests were mainly numerical and although He recognized
the existence of the truncation errors he did not try to remove them.
Experimental comparisons were mnot availablee Fernandez (17) used the
MAC scheme to study pulsatile, incompressible flow in a bifurcation as
a model of arterial flow. A dual grid system was mated at the junction
of the bifurcation to carry the flow off at an angle. ﬁis solution
showed a region of high shear stress at ‘the inner (bifurcation) wall
aﬁd a recirculation eddy at the outer wall which disappeared-during
part of the pulsation. These fluid phenomena were of interest in the
formation of deposits in blood vessels.

The ICE (Implicit Continuous~Fluid Eulerian) method was presented
in 1968 by Harlow and Amsden (27), then revised and improved in a later
publication by the same authors (25). This i1s the only method found
which could treat compress{ble flows at all speeds. The method com-
bined concepté developed through the-evolﬁtion of théfcompfessible and
incompressible methods disc;ssed earlie;. The differential forms of
the equations were used and the pressure field was found implicitly as

in MAC, The calcﬁlation of all other variables then could be performed
i .
explicitly. The Courant restriction applied to local fluid velocities.
The method and program will be described in detail later, The authors

performed in a truncation analysis for the one dimensional unsteady

equations and suggested the additicn of terms to correct: these errors
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and improve stability and accuracy. An example problem of an explo-
Vsion lead{ﬁg to shock waves—(compressible high speed flow) and a rising
hot gas bubble (semi-compressible slow speed flow) was presented.

The problem.of multispecie chemically reacting flows can be ap-
proached in two ways depending mainly on the kinetic models. One ap-
proach is to define a set of detailed kinetic reactions and to con-—
struct a model of blocks describing flow, reaction, and physlcal proc¥
esses such as evaporation. The detail required in each block is
specified according to current modeling capability and computer cap-
acity. These blocks are then coupled together to describe the total
process. The work of Edelman et al. (15) illustrates this approach.
Anéther method is to write the full conservation equations in rigorous
form with a glebal chemical reaction. Seider (47) has done this for
dilute specie reactions. Both Edelman and Seider consider steady prob-
lems only. In his discussion of laminar flow reactions, Williams (56)
points out that neither approach can be verified as the correct one.
This thesis uses the second approach without the constraints of steady
state or trace concentrations of reacting species..

" This concludes the review of literature concepts and LASL devel-
opments pertinent to the present study. Several rexts were used as
sources cof additional information. This includes Richtmeyer and
Morton (44) and Von Resenberg (52). The LASL monograph on fluid dy-
namics {26) and the excellent current text by Roache (43) have provided
much physical and numerical imsight. More information on the numerical

methods developed at LASL may be found in the annotated bibliography by

P



Harlow (24)., The text by Bird, Stewart, and lightfoot (4) was used
extensively to guide the mass transfer formulatien. Much general in-
formation on boundary conditions and numerical methods was found in

Schwab (46).

22



Chapter 3
FORMULATION OF THE PARTIAL DIFFERENTIAL EQUATIONS

A. Tensor Forms

The conservation equations which mathematically describe the class
of unsteady two dimensional problems treated herein were listed in the
introduction as equations (1-1) to (l—Aj; The stress tensor was equa-
tion (1-5). These equations will now be developed into_the conven-
tional notation of partial differential equations. A nonéimensionali—
zation will then be performed which is appropriate to the class of
problems to be treated.

The equation for conservation of mémentum (1-2) requires convari-
ant differentiation of the viscous stress tensor. The differentiation
is performed Bolding viscosity constant, although in the numerical
probliems the viscosity can be varlied from point to point. This is
equivalent to assuming that all spatial gradients of the viscosity co-
efficient make negligible contribution to the momentum viscous terms.
Such an assumption is reasonable for many gas mixing problems. The

differentiation gives

il 1o dim o omid
Li 3 Y8 Vomi TVE Vo

(3-1

Using the identity
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mi_j jim jmp ki s 3-2
g v,mi & V,mi & Epksg ,Mi ( )
in equaticn (3-1) gives
ji _ _ 4 Jim jmp ki s _
T FPE Y g T EE Pk Vo (3-3)

which is substituted into {(1-2).

The equation for conservation of total energy also requires covar-
jant differentiation of the product of the stress tensor and velocity.
With a little manipulation this can be shown to give

(eng) = 3efhe) -vfner) () e
I I p 5T
The 1;St term can be modified by the identity

n 1 ( n )
v v == |v'v
2 n
P

k 1
(“u?), - [o) ) -l

M

Hence

(3-6)
This relationship is then substituted in (1-3).
" The use of eduations (3-3) and (3-6) allows the viscous stress to
be removed from the momentum and energy equations, being replaced by
velocities and velocity gradients. The conduction term may be written

using Fourier's Law,
T . (3-7)

For an ideal gas

I=¢,T - (3-8)
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G, =B (3-9)

This removes temperature as a variable in the energy equation.
The right hand side of the Kth species equation {(1-4) may be ex-

panded using
RPN j -
()™ = (3p)7 + epv (3-10)
For multicomponent mixtures of N ideal gases the mass diffusion term

is

N .
. 2 . :
Gl =-% D, o8> (X (3-11)
K o MRmK KR R
k=1 i
The subscript R as used here does not denote a tensor gquantity. The
reaction rate is written as a generation term. FYor a second order re-
action

_ .+ AB ‘ ‘
(rK) =k pypy (3-12)

This is valid for the stoichiometry of A moles of specie K reac-
ting with B moles of specie L. The rate coefficient k' in mass
‘conpentration units may be related to the rate in molar units by suit-
able ratioé of molecular w?ightsu Equations (3-10), (3-11), and (3-12)
may be used in (1-4). |

With all of the above substitutions, the final set of continuum
equations in tensor form ﬁhich mathematically describes unsteady com-
preséible flow problems.with multispecie diffusion and chemical reéc—

tion is



Mass:
30 _ (ol ' 3-13
ot (pv ),j o ( )
Momen tum:
i . . .
alpv’) _ j i _ 31 4 ji k. 3sp km i
e - T PV e TR P g eET Yy T e liepkig vV, ms
(3-14)
Total Energy:
3 (oE) . 3 Kk im
= - E) . - (Pv + - I,
Bt OBy - VD 3T g, 8 m

2 k m m g 1 mpfn 5 ) 3
+ I; U (v,kv) + 1 (V,qv)' +12 ug (v gnsv,p‘] _ {3-15)

Multicomponent Species:

N
3lpy) .
K - j S js .\ AB
t ("K" ) 3 MR & U S B C)
’ = =y

| ®la

(3-16a)
In some instances the multicomponent diffusion coefficient may be re-
placed by an effective binary diffusion coefficient as described in
Bird et al. (4). The species K 15 assumed to move into a mixture
which may be treated as a single fluid R containing no XK. The mix-
ture is denoted by R minus K (R-K). Then thé conservation of
specie mass is expressed by

Binary Species: .
1

3(p,) P i |
LS 3 € g js ' A B
3t ("K" ) ; * ’EﬁMKMR—K K R-K® (xx);l T Roegep
’ Y=,

(3-16b)
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B. Bimenatonal Component Equations

phe final set of dimensional component equations will be written
in the [l1ght cylindrical system of coordinates to properly describe the
tube [Juwe studied herein. Hereafter sub- and superscripts are not

used af | €nsor notation. Also hereafter overbars will denote dimen-

sioned quantities, and r and 2z are also dimensioned.

2222 (v - R GV (3-17)

a(pv.) 1 9 —-2 9 —_— 3P
) JEC R P - 2
. PP - (rpv P (pv. v )

— or r rz oxr
oL
N P | LA
T3V v TP T TV (o T e (3-18)
3(pV.) 1 3 , —= = 5 {-=2) P
P . 8 _ 8
T T r 3r (rovev)) = 55 \PY, Az
ot
3v — av av
I I 3 A Fpe 2 v 3 3 z
T3 WG [r ar (rvr) + 31:l T ar [ 5z © a2zl . (3-19)
SET) L oL (5 E) - L (55 ) 4L 24 |y 4 kBT
.__(.E.__.) - e (rper) Ty (vaE) +T5E0 T Pv +'6 ;
at - v _
PR PO Vol L1l (,c2 W
r3urb:3r(rvr)+az +§‘“:"}—r— 2vT + v +uvz"g
- = T v
2 35 L, ESL 220 |La z
' Bz Pvz e z 3 HY, [r Br.(rvr) + :}
C
v
av

LLl= o f2 2} o Vs |
{ 7 M (vr + 2vz) + 1.—1v - (3-20)



3D — - Xy
K __1a mv 2 1316 . —=
- r or (ervr) oz (DKVZ) * T °r r.ﬁ MR KR g5y¢
ot R=1
X -
X
3| C TRV R —~1=A-B
A= —_ |+ i-21a
MY o MMPyr 5, | T K RL ( )
=1
3(Py) T - o
K 1 =3 123,88 w7 K
- Tor (rogv ) =57 gv) + 1 5|t - MK R-K 37

S| Cx ¥ & d
— | =1 —A- ~21b
* 9z —-MR~KMKJ9% R-K _f&_ + k'pApB (3 )
M 9z K'L
Two additional equations are needed. The total energy is composed

of internal and kinetic energy. Then the internal energy is calculated

by ‘
T=E~%—(§i+v§) (3-22)
An equation of state for an ideal gas is
P = (y - DI (3-23)
The set from eguation (3-173 to (3-23) includes all equations necessary

- to describe continuum flow. Boundary conditions will be treated later.

C. Dimensionless Component Equations

The partial differential equations will now be made dimensionless.

A set of characteristic values are selected as follows:

Length = Eﬁ the tube oduter radius
Velocity = v vsually a known input velocify
Time =T, the cycle time or period for oscillating flows.

If the flows are not oscillatory, this may be set

to one, or any other time characteristic of the

problem



— _* I3 L
State Conditicns = p , P , , G the conditions of a
reference stream.

These characteristic quantities are used to define dimensionless vari-

ables,
t=t/tm . : (3-24)

V= 5}/?7 | | (3-25)

; U = G;f?i : (3-26)
R = ffiw | (3-27)

Z = z/ﬁw (3-28)

o =5/5 (3-29)

op = Tpl® | - (3-30)

E = B/7° (3-31)

I = T/V? (3-32)

k' = EFE~/(p*)l—A_B (3-33)

P = (P - PP (3-34)

T = (T - T%)/T% . (3-35)

c = ¢/ct | , (3-36)

M= N o (3-3D)

The temperature and internal energy are related by

; * = ﬁbf*/[(y - 1)M¥] | (3-38)

This permits definition of a reference internal energy if a reference

thermodynamic state is specified.

29



" When the set (3-24) through (3-37) is substituted into the compon-
ent equatldns, several dimensionless groups arise. These are defined

as follows:

P
Euler Number NEu = =5 | {3-39)
oV ]
_EP‘E
Prandtl Number N = |—— (3-40)
Pr -
| k
- . = _
Reynolds Number NRe = — (3-41)
. H
Schmidt Number NSc = *E {(3-42a)
P Dy |
or = |—4H—0- (3-42b)
ea
[Pk r-K
Modified Strouhal NSR. = _—Rw~ (3-43)
Number ) __VE..,, ‘

The Strouhal Number as normally defined is

NSSZ. = ZWEEW,’"Q—/'
It éppears in cyclic phenomena such as acqustics, and it ratles the ac-
tion time of a characteristic velocity acting over a characteristic
distance to the time required for a cyclic perturbation. Since E;
corresponds to 1/f, then Ny, is 1/27  times the normal definition

of a Strouhal Number.

4

With these definitions, the dimensionless component equations may

be written,
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Mass: . o
Ny, o2 - ~ 22 mov) - 2 (o) e
R~Momentum: 1
gy Bgi\f) 2"%%( RoV?) __(QVU) Eug% i‘ |
+~ﬁ-f§s§&ﬁ w+ 2255 e
Z-Momentum: )
+ -N;—e e [% = (RV) + %%:] —%-‘,}?ﬁ RH?—V - %}5‘} (3-46)
Total Energy:
NS;;‘;E) = -2 ®oVE) - 5 (ouR)
;%fﬁ IRE—NEU('P DV + [:E.L%
Re Pr
_%(%;; (RV) + g[z])v+%--%(2v2+u)+u 2‘27]

- 1ty 81
+ 579 N (B + DU + [ 5

2 (1 _ag) 1 2 aUI
F\R R (RV) + 5z) Ut 55y (V + 20° ) +V ?’R:lj (3~47)
Multicomponent Speciles: : - 5
NS <A N Ay N S TR '
s% Bt R 3R 3z Pk R 3R | M N_ N__ &R
Re S
' R=l/
\—\N M X | ’
+ 285 lMRMK—-—-—+N k' pAP (3-48)
9z |M N_ N._ a2 se* PrPL
' Re' Se
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Binary Species:
8lpy)

N - ;_ L (Rp, V) ____ (o U) + 15 Q_MR KK BXK
st st~ TR ®% P R 3R N M NN, 3R
Re Sc
+ - MR-KMK EEE— + N k'pApB {3-49)
YA M N_ N. 9z Sk K'L
Re 'S¢
Internal Energy:
1= E -2 (v 4 02] (3-50)
Equation of State:
P = &y -1 ol - 1 _ (3-51)

NEu

A few points should be made about these equations. The equations
as shown are in conservative form, relating the change of a quantity at
a point to fluxes and forces actlng on an 1nf1n1tesmal surface enclos—
ing the point. Cheng (11) has stated that only this form gives satis-
factory accuracy in numerical solutions of the full Navier-Stokes equa-
tions. A complete energy equation using teﬁperatufe as the dependent
variable can not be written'conservatively. Hence total and internal
-energy is used.

-Isothermal incoﬁpressible flow does not require an energy equa-
tion. But calculations of compressible flows must include an energy
equation, and the energy couples with the fluid dynamics through the
equation of state. The state equation used herein applies to idéal
gases, and it and the energy equation are bypassed for incompressible
calculations. Only equation (3-51) need be changed to accoﬁmodate*

non-ideal fluids. Any equation of state which properly describes the

fluid may be used. The LASL monograph (26) discusses some other state



equations, including one describing the behavior of a normally solid
material flowing under ultra-high velocity impact.
The next chapter depicts the finite differencing of the equations

and outlines the method of their solution,
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Chapter 4

FORMULATION OF THE FINITE DILFFERENCE EQUATIONS

U

A. The ICE Cell and Computaticnal Mesh

The continuum eguations are cqnverted to discrete equations by
casting a mesh over the field of interest and defining.the variables
at select locations on the mesh. For the ICE system, the mesh con-
sists of a series of cells, dimensioned AR and AZ in the radial
and axial directions, respectively. These cells are actually cross-
sections of annular rings where angular variations are presumed neg-
ligible. A typical cell is shown in figure 1. The cell coordinates
are indexed at its center, i counting cell rows increasing in the ra-
dial direction toward the wall, and j .counting cell columns increas-
ing in the downstream axial direction. The axial and radial velocities
are defined on the middle of the cell walls, and alllthe other vari-
ables are defined at the cell centeré This system is. also used in the
MAC scheme. The cell aspe;t ratio is | |

| R, = AR/AZ : . (4-1)
There is no constiaint that the cells be squére.
The temporal and spatial cocordinates of each variable is denoted

by a superscript and two subscripts. The superscript denotes time,

with n being the current time t, and n + 1 being advanced time

34



~t + Bt Curréent variables are called explicit, and advanced time vari-

ables are called implicit. The twe subscripts denote radial and axial
positicn, respectively. A typical cell-centered variable such as den-

sity in the (i, j)th cell is pn .. The downstream axial velocity on

is]
that cell is Uz j+1/2° and the radial velocity closer to the center-

line on that cell is V? 1§2,5° If a walue for a variable is required
. ik 1 »

at a location where it is not defined, a simple average is used. Thus

n _ 1l {mn n
Ui, 772 (”i,j~1/_2 * Ui,j+l/2) (4-2)

n 1 n b n n
= 2 + o + 6 -
Piti/2,9~1/2 7 % (D:Hl,j +_D.i,j Fi+1,3-1 °i,j—1) (4=3)

When a differential 1Is required at a location such that averaging is
necessary, the rule is:. form the differential, then perform the aver-
aging. For example,

n n n n

1] n .
ap|” L Para/2,3 T Paeas2,5-1  Paen, 3 Pa 5 7 Pa1 500 7P g1
P2l iv1/2, 54102 Az | 282
(4=4)

The placement of velocities at locations different than the other
variables has a number of advantages. Firsi, it provides a convenient
arrangement for defining centered velocity differences. Consider the
spatial first derivative; 8U/3Z, to be evaluated at the peint (i, j).
Presume that’ all variables are defined at (i, j) inecluding U. Then
the differential may be approximated at least threE'wéys by Taylor éern

ies expansions around the point (i, j).
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SR e i -
i iy T -
Forward EEJ ~ 1,44 EEH terms 0(4AZ) (4-5)
32|, ¥
145
o™ Uiyt Ui
Backward :-'}‘._Z‘ o o~ A7 + terms O(QZ) (4"6)
1,7 )
I n
n | - U, .
) E_q — isj+1 1:3—1 . 2 -
Centered <7 . = 577 + terms O(AZ) | (4-7)

The centered difference has higher accuracy, which is desirable. But
the two values of U are separated by 24Z, and the value of U at
the point (1, j) is not used at all. By defining variables on the cell
as shown in figure 1 the cell centered differential becomes
n n
au| ™ Ui,94172 = Y5, 52172

oZ 1,3 iV

+ terms O(QZ)z (4-8)

and the values of U are separated by only 4Z. Since the valueslare
cioser to the point where the diffevential is desired, this approxima—
tion is better than (4-7). Firsc derivatives of velocity are impor-
tant quantities. With all other variables defined on the cell centers,
ﬁhe opportuqiﬁy to use the form (4-8) occurs frequently,

Another advantage of the ICE variable placemeﬁt is improved sta-
bility. Richrmeyer and Morton (44) show that skéw velocity placement
such as in the ICE method provides less restriction on stable values
of At and AZ than doesrdefining both velocities at the same point.
Therskew scheme is sfren used for hyperbelic equatiégé.

Finally, the variable placement on the ICE cell provides an aid

to visualizing the physical aspécts of the prcblems. The cell centered



properties describe rhe "contents" of the cell. Since the velocities
are defired on the walls, they can be envisioned as carrying the cell
contents threugh the czll walls.
|

The cells fir together to form a grid on the field of interest to
!

the calculation. Such cells are called interior cells. An additional
row or column of cells is added to ea&h béundaryu Thegé cells are ar-
tifieial, in that they exist only to'appiy boundary conditions to the
interior cells. Figure 2 shows the calculaticn mesh with the boundary
célls. Four types of boundaries are shown: wall, symmetrical center-
line, input, and curput. These will beidiscussed later. Since the
first row of cells i =1 is a bcundar§ row, and the tube centerline

is at R = 0, the radial distances to the inside, center, and outside

of cell (i, j) are ) ' .

R, 1jp = (1 - 2R {4-9)
R, = & (2i - 3)4R (4~10)
1 T 7 VT ' : : -
Ri+lj.2 = (1 = 1)AR (4-11)

B. Develcpment of the Poisson Equation for Pressure

With the cell and grid system defined, the finite difference ap-

proximation cf the mass equation is written at the point (i, j) as
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( ntl n) S (R BN B .= S )
Pi,i ~ P34 A Riea2P 4172, 1 av172,3 " Ric1/2P1-1/2,3 712172, 3
N J 37 _ 8

sp T at R IR

( n+l n+l _ n+l Un+l )
o Va,341/2%1, 54172~ P4,3-1/2%,5-1/2
Az
n T I n
PFRI (Ri+1/2°i+1/2,jvi+1/2,j - Ri—l/zpi—lf"Z,jvi-l/Z,jl
R.AR
1
T1 n n ad
(p.c . ’ U. i = P, x_ U. 4 ) n
- (1 - ) 1,3+1/271,3+1/2 - i,j-1/2 i,3-1/2 + (BM) (4-12)

1,3

Note that the mass fluxes are repeated, first implicitly with super-
script n+l, then expliecitly with superscript n. The implicit and
explicit groupings have coefficients 6 and (1 - &), respectively.
Values of € range from 0 to 1 with the value held constant over time
and peeition for a particular numerigal computation., O acts to pro—
portion the amount of implicit versus explicit mass fluxing used in
computing the change of cell centered density with time. If 6 = .5,
the equation is time-centered and certain truncation errors vanish.
The term BM is a correction which appears as an added diffusion term,
It may be used to improve the scheme's stability and accuracy by remov-
ing certain truncation errogs, or if stability is a problem the BM
term can provide additional stability at the expense of accuracy.
£ corrections will be discussed in the'next chapter.

Before finmite differencing the component momentum equations, it is
necessary to define a new variable, which Harlow and Amsden (27) have

called the hybrid function P. The hybrid function is formed from the

equation of state, which has the general functional form
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P = P(p,I) o (4-13)

This function may be expanded over intervals around the state (p,I) to

give
2
P(p + &p, T + A1) = P(p,1) +,(EE) Ap +-(§E) AL + terms O(A)
30 1 3l P
(4-14)
The equation of state in finite difference fofm is
n
(y - 1), . :
Py = ——=2l o0 17 - (4-15)
193 Eu !J ’._j

Equation (4-14) may be wrirten at the point (i,j), and if the Taylor
expansion is understood to be aver the time domain, the differences Ap
and AI are implicit minus explicit valueg. Defining the left side of
equation (4-14) as the hybrid function l?, a tentative implicit pres-

sure, and using (4-15) to evaluate the partial derivatives,

v - 1T
P, . =pP" 4" (??+} SOV B T L T B R @?+% - IT.)
1] 1,;] 1,3 1,7 i,] NEU 1,} 1,] 1,]
(4-16)

The series is truncated after the first order terms, and the isothermal

speed of sound squared is

n 9P 21" (v - 1)2 i} oo :
Ay 4= (5‘) = = I, (4-17)
!3 D I NEU l’J

i,3
The LASL ICE method excludes the first order difference @P+l - Ini j)°
. s

i3

Although most calculations‘performed herein also discard this'differ—

ence, some numerical experimentation is done with the difference in-

cluded. It will therefore be retained in the finite differencing;

Equation (4-16) may be solved for the implicit density. This gives
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.- : /ol

i Q+1 P13 7 B3 n i3 :
PRAABLIER TN SN S 1 Ny SRR R ) : (4-18)
el n i,j o
i,j : 1,3

With the hybrid fﬁ&ctidﬁl P defined, the momentum equations may be
finite differenced., For both the R and Z component equations all
the flux and shear ferms are written explicitly. Only the pressure
term is written both implicitly and expliecitly, and the hybrid function
is used as the implzlit pressure. A proportioning constant ¢ appears
in the momentum equations in @he saﬁe manney as 6 in the mass equa-
ticn,

The radial momentum equation is written at the point (i-1/2,3j) as

——
h

n+l V11+l _.n Vn B _p
. Pi-1/2,3 3-1/2,3 ~ Pi-1/2,9"1-1/2,9| _ _ . 1,9 i-1,3
52 At Eu ¥ AR
”n _ T
- _ i,] i-1,] ! _
gy (1 = @) AR T Bic1/2,3 (4-1%)

' N ' .
Bj~1/2 3 is a collection of explicit tevyms for momentum fluxes, shear
- 3

terms, and a truncation error correction BVR' Likewise, the axial

momentum equation is written at the point. (i,3-1/2) as

pn+l Un+1 _ pP o2 B
N i,j-1/2"1,3-1/2 i,3-1/271,5-1/2] _ N i,5 i,j-1
se At Eu? AZ
] : '
J 1Py T Paal
© = N_ (1 - 2 L= -
' ) .
Di,j—l/2 cqllects explicit flux and shear terms plus a correction"sz

for the axial momentum equation.
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A Poisson equation for P is formed as‘follows from equations
(4-12), (4-18), (4-19), and (4-20). The coefficients (1 - 8) in the
mass equatioﬁ (4~12) ére split into two coefficients, 1 and (-8). Then
the explicit terms multiplied by (-8) are grouped with the implicit
terms multiplied by 6 to produce differences such as

n+l n+l . T n
(Ri+l/2pi+l/2,jvi+1/2,j - Ri+1/2Pi+1/2,jVi+1/2,j>

That‘is, these terms are differences in time at the same spatial posi-
tion. An identical difference is formed at coordinates (i-1/2,j).
Differences of pU at coordinates (i?j+l/2) and (i,j-1/2) are also
formed. It can be seen that if equation (4-19) is written at the point

(i+1/2,3) and multiplied by Ri 2,.the left hand side of the result

+1/
contains the difference shown above times NSEIAt. This is repeated at
the point (i-1/2,j). Equation (4-20) is used at points (i,j+1/2) and
(£,j=-1/2). Thus with a little manipulation, the momentum equations may
be substituted into the mass equation to remove advanced time mass
fluxes while introducing the hybrid fumection P. After these substitu-
tions are made, the only réﬁaining implicit density is in the time dif-

. ference of the mass equation. This may be removed using (4-18). The

result is



! 2 = 5 = 5 o+l
Sp(ar) NEul farry2tien,g T Riaotiy Fagn t Pi,j~1[ L L3
N _‘ R, (4R)Z (a7)* 1 153 o,
5 _ Se i i,
i,] 20 ]
)|, 20N, ( L, )
n 2 2 2
8, N, (R (82)
(4-21)

© Al : . .
The term Gi , groups a number of explicit terms and incorporates the corrector SM.
]

Y C. Final Finite Difference Forms

The finite difference equations are shown in their final form. The radii are written using
equations (4-9) to (4-11), and AZ dis removed using the cell aspect ratio, equation (4-1). When
" a variable is required at a iocation where it is not defined, the necessary averages are formed.
Most averages are btacketéd and easy to detect. Coefficients are extracted Wherevef possiblev
Variables which collect explicit terms are written below. 'The velocity divergence is used

several places and is denoted by QE i
. »

noo_8ifi-1) 0 (A2} 1 n o ® )
%,5 73 K;i Z 3) Vit1/2,3 (2i Z 3) Viciz,3 T2 R (Ui,j+l/2 Ui,j~l/;} (4-22)

The two variables used in the momentum equations are
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! - 1 _ 1 2i -5}y =n n _ 2L -3}y n .n
Bi1/2,3 = GRB; 105 5 =5 Vi1)a,s Ri - 2) P1-1,3"1-3/2, ] (i . 2) Pi,3Vi+1/2, ]

n n . n n n n n n
* 16 (pi,j TP, TRyt pi—l,j—l) (Vi-uz,j t Vi—1/2,j-l) (Ui,j—-lfz * Ui—l,j-l/Z)

n n n n I Tl I n
- (pi,j-i-l TPia,ye TRy, T pi—l,j) (vi-l/Z,j+1 + vi-1/2,j) (Ui,j-l-l/Z * Ui—l,j+1/ZH

2 ’ 1 - n _an 2 n ‘ n _ n
* [aa] P n [(Qi,j Qi—l,j) TR (Vi—l/Z,j+1 *Vic1/2,5-1 2Vi—l/2,j)
M )"+ )
\ e . e, .
: 1,] i-1,]

el

g} . n ’ n n
- R (Ui,j+l/2 T Y1512 7 U2t Ui—l,j—l/Z)jI ARG

i-1/2,j
. and

-D

n - 1 _1l|fi-2 n. n n n \( n ol )
1,j-1/2 T AR Dy 5 /2% |:(Zi—3) (pi,j+pi-l,j+pi,j—l+pi—1,j~ll Vi-i/2,5% Y172, 41
n n i-1 n n n : n I —

(Ui,j-l/2+ Ui-l,j-—l/Z) - (21 = 3) (pi-I-l,j ey g7 °i+1,j-1+-°i,j-1) ‘

n n n n
(Vi+1/2,j + Vi+l/2,j-l) (Ui+l,j-—1/2+ Ui,j—l/2ﬂ

.

+ (NRe

- n n n .n ...Z_J' 1 noo n
+ RS 5e172 (pi,j-lUi,j—3/2—pi,j’Ui,j-i-l/Z),+ [AR:I @ )8 m Ra (Qi,j Qi,j—l)
Re’ . | :
i,] 1,5-1
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{this eq. 1s continued from prévious page)

i - 2 n ; n - { — 1 _
+ 2R, [KZi - 3) (Vi—l/z,j Vi—l/2,j~1) (il - 3) (V?+1/2,j Vi+l/2,j—;ﬂ

2 T i=2\m _.mn | on -
+2 [:(21 - 3) Yiv1,q-172 * @i - 3) Ui-1,4-1/2 ”i,j-l/% + ARGy 12 (4-24)
' 1y

The term which appears in the P Poilsson equation is

n

P. 2 :
noo 1], [ 2006007 - i-1) 0 i-2) _ o0
®5,3 * 71§ Meull @)[Kzi ) F * ( ) Fi1,5 ~ P

i3 7 =3) P, T2 T3 1,3
P |
\ |
. 1 2 ( n n n i - 2) n i-=-1 n
4 o= . - L= e S N S
7 Ry VPig41 VP Bi 51 ZPi,;ﬂ + (21 =3) Bi-1r2,5 T \2r =) Bivis2,;
1 n s At i-2 n n n
= -
5 Ry (Di,j—l/Z Di,j+l/2) MW (21 = 3) (pi,j + pi—l,j) Vi-1/2,3

i n v 1 ( n n ) n
(21 = 3) 1+1,3 te ,3) iv1/2,5 77 B L_pi,j * 05,91/ Yi,5-1/2
i,

]

1sJ

. n

The explicit momentum fluxes in equations (4-23) and (4~24) are written using ZIP differ-
encing, which is a conservative method discussed in the LASL papers. It defines the finite dif-

ference momentum flux through a cell wall so that the flux is arithmetically the same whether

Y



viewed from the donor or the recipient cell. ZIP differencing has fewer truncation errors to be

corrected by BVR and BVZ'

The Poisson equation for P was solved by point successive over relaxationm (S0R) and also
alternating direction implicit methods. These are discussed in detail in Appendix A. The final

form of the P equation is

2 +T
26(At) N '\ . Lo 1ot
— Ey (21. 1)?. .+(—§’-‘:—--2—>P.1.+-1-Rz(§. L+ D, . ) +60 -t L 1-—=d
N (AR)2 ‘ i -~ 3/74i+1,3 i - 3/7i-1,5 2 "AU4, 341 Ti,i-1 i3 "i,3 0
B - St - _ i,j
“15] 260(At) N '
1 Eu 2
n + 2 2 @ * RA)
Ai,j | NSQ(AR)
{(4-26)
The functional SOR form with relaxation coefficient o is
S0+l _ =Q =+l Gtl =Q =Q I n otl n _
By s @ - By e B B g Pl Cup Payp Ty Tyl O

For ADI the equation is made into a pseudo time—-dependent equation with variable x as the

pseudo time. Two equations are required to bridge an increment AX.
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| 2 2 - 2 -
2 2 51 = 3)| Fi-1 23 AX 2 2 i,j 2 2 2i - 3 ’.'L+°l,J
Nsﬂ(AR) NSE(AR) i NSR(AR)
2 n+l
ecp(At) N . . I, .
- Eu A(ﬁ? I oo TP AN W -1 S PN B S EH A (4-28a)
i,i+1 i,j-1 1,] &X L 1,] 1,1 1.] n
N (AR) : A, . 1. .
54 _ i,] i,]
and
2 B R2 2 2]
Bp(at) NE A Q+l B 28p(At) NE A 2 §Q+1 N Bop(AtL) NEURA QFL
i,j-1 AX| T4,j 2 2 i,3+1
NSQ(AR) | NSE(AR) NSQ’(AR)
2 . .
gplat) N : .
kg A (i»g R 289 ) + & (i‘vg - 21’5?].‘/2) (4-28b)
ng(AR) ] % i, %, | .

As with SOR, the ADI method approaches the true P field to a specified accuracy. The super-

script Q refers to the Qth diteration.

The R- and Z- momentum equations yvield advanced values for V and U,

o+l - n a . n at 7 ~ =
Vic1/2,5 © {(pi,j + pi—l,j) Vici72,5 1 R ’_NEuEp(Piwl,j Pi,')

n n+1 n+1
R L R 1/2,3} / ST IRCED
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Un 1,3~

o+l
i,

n | n n 2At - -
-1/2 ~ (pi,j -1,3) 1,3~1/2 +Eﬁ AJ[RANEuw(Pi,J-l Py ,3

n+l n+l
+ R N (l - Cp)(l j-1 - P, ’J) + D ,J 1/2 ]) (4-30)

The total energy equatiom is written with almost all advanced time terms,

n n AL i -2 n+l o+l vl n n+l
= + + - +
pi,jEi,_j 2ARNSR, (21 - 3) (pi,j F’:T.——l,j Ei,j Ei-l,j vi—l/Z,j
bt

(i1 ntl | wtl (n g ) nt+l
(21—3)("1,3-_ Piv1,i) Bi,5 T Biva,i) Vit1/2,3

__J; n+1 nt+l n n ntl ntl o+l n n +1 -L
AN A G AT L SYRR AR | P +Eisj+1)U2,j+1/2—|

nt+l
11,5 +2)Vi+1/2,j

1—2 - < n+l _-f1-1)(‘~ -
,sRN L - P ,j+Pi-l,j+2)Vi—l/2,j \21 < 3 Py g P

l e n+l = 5 n+l _ﬂ
*3 RA (?i,j+Pi,j-l+2)Ui,j-m (Pi,j *Pi,jﬂ*‘?')” ,3+1/§J

ar 0740 ‘
At g 1 - Ti,4 i-1\/(n n i -2\ n
* 2(AR) 2N G * T R A 3) Citl,§ ~T1,4) T\N2L - 3 Yy, 1,5/
S% Re’, | Prf. i
: — 1,] l,J_i.-..

(equation (4~31) continued on next page)
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i-1 n ) n+1 n+l n+l n+1
(21 - 3) [ ( i, +Q1+1,3) Viers2,9 T Viv1s2,5 (Vi+3/2,j "Vi+1/2,j)
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L el n+1 n+1 n+l n+1 ontl n+1l
* wi-_l/z,j( $+1/2,3 Vi—3/2,j) + Z(Ui,j+l/2Ui,j~1/2 B Ui-l,j+l/2Ui—-l,j—1/2)
1 n+l n+l n+l n+l n+l n+l
= + ~
t3 RA(Ui,j+1/2 Uiir,ye172 T % 5172 F Ui—l,j—l/Z) (Vi—1/2,j+l Vi—l/Z,j-l)]
'Yn
+ &g, - 4R, ———Lﬂﬁ—— (I‘.l N S 54 )
4(AR) N (g,) Ny, Fad & &
e .,
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n+1l n+1 n+l n+l n+i )
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n+l n+l ot 1 [ a¥l ntl
* 2Ui,j+1/2 (Ui,j+3/2 - U ,J-—l/Zﬂ 7 Vi, 50172 T Vi, 54102

n+l n+1 o+l n+l s 7 n
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(equation (4-31) continued on mnext page)
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' n+l +1 +1 +1 a+1 n+l
- 2RAK1+1/2 jvn—-l/Z,J Vi+1/2,3-1V2—1/2,J 1) * ZU i,3- 1,/2(U Li+1/2 Ui,j—3/2§{

: /.
1 [,ntl n+1 n+l n+l n+l n+l “1 n+l
"2 (Vi+1/2,j V12, Y Vs 51 Y Vi—l/Z,j—l) (Ui+l,j—1/2 Ui—l,jwl/Zﬂ( /pi,j

L | (4-31)

The internal energy ils simply

2 | 2
ntl _ .o+l 1 n+1l n+l n+l n+l ‘ _
ET I [(Viﬂ/z,j ¥ Vi—llz,j> i (Ui,j+1/2 * Ui,jul/Z)] (4-32)
The above equations (4-22) to (4-32) plus equation (4-15) are sufficient for single fluid

problems. If species diffusion and reaction are required, the conservation of component mass

equation must be included. This is finite differenced as,

' P} )n+l - (0 )n
N PRI1,3 ~ PRIELG] 1 - 1 )n-}-l + (o )n-i-l !
S¢ At 1 - 3 K i+1,j K i+1/2,4

{i-2 n+l n+l n+l 1 n+l ntl| ol -
- (21 = 3)"("1()1,3" * ("K)i—l,j] Vieij2,3 77 AEDK) ETTRLRC O :[ U1,3+1/2

(equation (4-33) continued on next page)
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" The binary form is used in this study. Only tﬁe molecular diffusion
term differs in the mulficomponent version, and its form is easily seen
from equation (4-33). The convective fluxes are written both implicitly
and explicitly with a propsorticning coefficient ¢. As with € and o,
0y <1. The diffusion term is written explicitly, and the reaction
term implicitly. This choice of implicit vs. explicit finite differ-
encing evolved from numerical experimentation performed herein.

The implicit nature of the equatiens tequires‘an implicit scheme,
and the ADI method is used. The equation is solved in a two step fash-
ion, the first step presuming diffusion without chemical reaction and
the second step presuming reaction only. To assure convergence, the
time step At 1s subdivided into smaller increments, Atf, for the dif-
fusion calculation. The reaction step subdivides the increment At'
into even smaller time steps At", This process is necessary because
the characteristic time of reaction kinetics is often considerably
shorter than the characteristic time of fluid motion. A suitable At
for fluid flow may be many times toc large for chemical reaction, re-
sulting in reaction overshoot, errors, and usually numerical instabil;
ity. Equation (4-33) is written over the time increment At, but it is
used iﬂ the computer‘program over the smallér increment 4At', Thus the
superscript notation shown is not exactly correct for an increment
At', In practice the explicit terms are calculated, then the diffusion
without reaction is calculated over At' for each specie. Next thé
reaction is presumed to take place without diffusion in a series of 

time steps At" = At'/Y. This reaction step is done Y times, each



step using the results of the previous reéction.- Then diffuéion is - -
again calculated over the next At’ using specie densities:computed
ffom the last At' in the implicit portion of the equation. The proc-
ess is repeated until the true time step At is bridged.

The ADI formulation used in the diffusion calculatgon across 1in-

crement At' is

_ (L= 2) ¥l (o) ™HL/2 L= 1) ol 1= 2) ot
21 = 3/ 'i-1/2,3] PR 51,5 21 - 3) ‘i+1/2,3 ~ \21 < 3/ '1-1/2,3
o MsgfR o )n+l/2 l‘i - 1) gt (o112
Ac'yp | PK \2i =3/ "iv1/2,3 PR 141, 4

1 +1 1 ol 1 n+l
[2 Ry 3 1f;l PRy 301 lg BpUi,st172 ~ 2 Bali 312

2N AR —
SE n 1 .n n
T ity }"K)i, [ZRA‘H +1/£\(’0K)i,j+l + 5Ky | (4-34a)
_1,3-1/2 pK i J—l i,j-1/2 i,j+1]2 AtTUR ¢R PK
[ n+l _ n+l
T '3”'1/] PR3, 4172 [i i- 1/] (i)Y 1,j-1
~
R e - 4Ngg bR o)
i,3-1/2 1,341/2 © AtTYR, ISEW
— 4N - :
_ gl n _ sS4 n+1/2
+ - Ui, 54172 (r:>1<):-L,,j+1 2 Lr TR (4-34b)

i

The explicit terms in equation (4-33), including the truncation error
correction BMK’ are multiplied by AR/w and collectéd under the térm
ST . .

SK in equation (4-34a)Y The chemical reaction equation is simply '



o+ A£"k' (QK)ZTEY‘].) /Y (D]:_},)jj;y-l)A/Y o a3s)

+y /Y +{y=-1)/Y
S/ L (g OmD!

(QK)

As mentioned before, this is performed Y times in each increment At'.
The full set of finite difference equatiocns for compressible flows

with specie diffusion and chemical reaction has been presented. The

next task is to examine the application of boundary conditions to the

ICE computational scheme.

D. Boundary Conditions

A typical cell and the computational mesh was shown in figures 1
and 2. The ICE system is especially convenient in applying boundary
conditions. In all problems considered here, boundaries are aligned
with cell walls. That is, there are no partial cells with boundaries
passing through the cell interior. As mentioned earlier, the grid has
four types of boundaries: centerline, wall, input, aﬁd output. There
are also three types of boundary conditions. They are based on assump-
tions concerning the bounda;y value of a variable itself, or on its
first or second spatial derivatives.

- The centerline boundary is symmetrical, presuming no radial flux
is possible across the centerline of a tube with flow independent ef
angular position. Assume the cell 1,j dis within the computational

grid and the wall at i-1/2 1lies on the centerline. Then
Vi—1/2,j =0 (4-36)
All other wvariables, such as U, are symmetrical.

= U

Ui—l,j—lfz 1,j-1/2 ' (4-37)



Nonze?o ﬁariablés are ndt defined on the centeriine i - 1/2, making it
unnecessary to write particular equations obtained by evaluating linits
as 1/R -~ 0.

Wall boundary conditions are usually straighticrward. A no-slip
wall means the axial velocity is zero at the wall. But U 1is not de-
fined at the wall. Therefore, an average must be formed at the wall
which is zero, and this prescribes the value of U 1in the artificial
row of cells which impresses boundary conditions. if the cell 1i,j
has its wall at i + 1/2 aligned on the tube wall,

-U (4-38)

Uiti,5-1/2 = ~ Vi, 5-172

If the wall is full slip, the axial velocity radial gradient is zero,

and
Uie1,5-1/2 = Yi,5-1/2 (4-39)
For an impermeable wall,
Vi+1/2,j =0 (4-40)
If the wall is reflective,
Pi+l,j = Pl,j . ’ (4—41)
Vitssz,3 = 7 Vi-1/2,3 (4-42)

Other assumptions may be made to evaluate V, .» These are

_ i+3/2,]
based on the velocity divergence, Qij which is presumed to be reflec-
tive if the density is reflective. Then

Q (4-43)

itl,§ Qi 3

This can be solved for vi+3f2,j if the wall permeability and slip is
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specified. This condition also removes a gradient term at the wall in
the energy equation. For incompressible flows all Q's are zero. If

the wall is insulated,

Ei+l,j = Ei,j (4-44)

Ii+l,j =VIi,j . (4-45)

An especially superior boundary condition can be found on P and
P at the wall if all velocities are known. If the wall is impermeable,
av/at is zero, and this may be used with the finite difference form of

the radial momentum equation to give f- and P. The coefficient ¢ is

arbitrary and may be set to either 1 and 0, leading to

-~ o Fad :

Pivi,5 = Pi,5 ¥ Bivas2,3 Ve (4-46)
Pirt,s = Pa,i T Birs2, i Meu (4-47)

Care must bg taken that the equation of state is satisfied at the wall.
Thus if P and p are specified, I is also known.

The upstream boundary conditien is usually a specified input.
" Again presume the cell 1i,j 1lies in the computational grid with the
cell wall at j - 1/2 coinéident with the input boundary. For all
problems run herein the radial velocity'ié assumed zero. Since V is
not defined on thg input boundary, an average is formed of straddling
axial values, and

v (4-48)

1,5-1/2 = Vi,4+1/2

If P and ‘I are specified, p is-known, U, is calculate&, and

i,j-1/2

Ui 4=3/2 is found by an assumption on Q at the input. Usually this
¥ : . B P
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js not ecritical. The input total energy may be calculated after

U is known. Conversely, if thé input velocity is prescribed,’

i,j-1/2
the axial momentum equation will specify the pressure gradient at the

input and, for arbitrary o,

Byosoy = By = Dy g2/ Ralgy) (4-49)

A similar equation is written for Pi,j~1' Then p may be found from
the equation of state.

The least resoclved boundary conditions are at the output. Often
the pressure is known or may be calculated as a function of velocity,
but other variables are not known. LASL often uses the concept of a
continuative output. This is a boundary condition which does not prop-
agate signals far upstream, since all gradients are set equal to zero.
The problem may be distqrted in the region near the continuative output
boundary, Paris (41) presumes the output boundary is so far downstream
that at steady state a known flow, such as parabolic Poisuille flow,
exists at the output. The output boundary is moved farther downstream
in a series of numerical experiments until no further change occurs in
;he solution. But several problems in the present study have outlet
boundaries that are mot far downstream. It is thus not possible to use
the concepts of Paris in these cases.

The continuative output is desirable for many of the preécribed
input flows, but the possible distortion near the output boundary is
unwanted. 1t is found that a reasonable output flow results when the
pressure is fixed and the remaining variables are aé;umed to have con;

stant first derivatives at, or near the output. Thus the second de-

rivatives are zero.
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: 0 (4-50)
(AZ)
leading to
Ui,54372 = %5 54172 7 Vi, 5-172 (4=31)
and
Pi,441 = 21,5 T PeL51 (4-32)

and so forth,

Note that the (4-52) condition presumes the second derivative is
zero at the center of the last cell upstream of the output boundary,
rather than at the boundary itself. If é zero second derivative of any
cell-centered variable is applied at the output boundary j + 1/2 to
find a value at j + 1, wvariables at both j + 2 and j + 1 arise,
Thus the nuwmber of unknown wvalues is not reduced. The definition
(4~52) applied to all cell center variables uses information at two up-
stream locations and produces a smooth éutput. Heuristic reasoning
suggests that if a zero axial second derivative is applied é half cell
upstream of the true output boundary, it is alsc effectively applicable
at the boundary. Conversely, it must be recognized that a slight dis-
tortion may be introduced upstream of the cutput boundary.

The boundary conditions on specie dénsities offer no new problems.
Symmetry still applies at the tube centerline, the wall radial gradient
is zero to prevent mass transfer through fhe impermeable wall, the in-
put is specified, and the output is continuous in the sense that the

second axial derivative of the densities iz assumed zero near the out-

put boundary. It should be noted that for some variables a reverse



flow from outside of the tube into the downstream end of the tube would

eeuse ne reel pfobleﬁ ielehe computeeiee. Bue fer speeieidensifies
such a flow reversal would be disasterous since the degree of mixing
and reaction outside of the tube is entirely unknown,

This concludes the general description of boundary conditions.
The conditions used for each problem will be discussed in the results
section. The 'same finitemdiffereneed conservation equations apply over
the interior cells for all problems. A specific problem can be calcu-
lated only by impressing suitable boundary conditions. If the bound-
ary conditions are unrealistic, so is the resulting problem. Thus, the

application of boundary conditions must be done with extreme care.

E. Computer Solution of the Equations

An examination of the finite difference equations show a large
number of impiicit terms (assuming ¢ and © # 0). This favors sta-
bility and gives confidence in the time dependent aspects of the prob-
lem. It also can increase certain truncation errors and can lead to
long numerical iterations. 'The implicit nature of the equations is
needed for fluid flows at low speeds. This is because slow flows be-
come incotipressible in behavior and require knowledge of the entire
pressure field. This knowledge is propagated through the grid by the
implicit solution process. ‘

The basic ICE method requires iteration only for P. All other
variables may be calcula;ed in ae explicit manner. If the expanded
definition of the hybrid function as presented by this author is used,

N

, ntl | ) . . . ;
an iteration on I is required. Since the inner P iteration is
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vested within the outer 101 iteration, the é%panded algorithm should
be avoided if possible. Fortunately, this usuaily can be done. The
iteration required by the implicit convective fluxes in the species
equation is not nested with the other two iterations, and it does not
incur a severe computer time penalty.

An outline of the algorithm is shown in figure 3. After an initi-
alization sequence the main time loop is entered. Explicit terms in-
cluding all truncation correcticns and Q, B, D, and G are calcu-

. . o , n+l L L
lated. 1f the outer iteraticon on In is required, T is diniti-

ally set equal to 1". The P iteration commences using either equa-
tions (4-27)} or (4~-2Ba,b). Upon convergence to a suitably small
change, the advanced density pn+l is computed from equation (4-18).
Next Vn+l and Un+l may be calculated using equations (4-29) and
(4~30). At this point the continuity equation is checked to assure
that it is satisfied to at least 3.5X10‘3, a number which LASL found

a minimal for satisfactory accuracy and stability (55). If this test

ig exceeded for any cell, the program performs more P iterations and

“recaleulates o™ . When the continuity test is satisfied, E"'T and
+1 . . . )
" are calculated using equations (4-31) and (4-32). If an outer
. s ) o+l ' ' ~ .
iteration is required on I , the program may return to the P iter-

. . . -+
ation with the improved value of " 1, or the program flow may pro-

ceed. If the fluid is designated as inceompressible, the speed of sound
is set to a large value (1016) and .the energy calculation is bypassed.
If the fluid is multicomponent, the species equation is solved by

computing the explicit term 35 and iterating on (DK)n+1 with a

K!

number of reaction steps after each iteration. After convergence the
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advanced pressure g computed from the equation of state (4-15)
and the time cycle is completed.
Further details may be found in Appendices A, B, and C. Appen-

dix A discusses the SOR and ADI schemes for selving th; P equation,
Appendix B proposes a sequence for scolving the reactio; equations with
strong temperature effects, and Appendix C docuﬁents tﬁe current numer—
ical program which is still in the research phase,

This concludes the development-of the finite difference equation

and the outline of their solution. The next chapter discusses stabil~

ity analyses and the truncation error corrections, 8.



Chapter 5

STABILITY AND TRUNCATION ERROR ANALYSIS

The problem of numerical stability was briefly discussed in the
introduction. This chapter examines the matter of stability in more
detail and presents several methods which can prediet stable bounds on
time and space increment sizes. Also, the Courant-Friedricks-Lewy
necessary condition for stability has been adequately covered in the
introduction. The approach of Cheng mentioned in the introduction is
similar to that of Hirt, but Hirt's analysis is preferred,

A simple equation containing both a convection and a diffusion
term is used to illustrate the methods. The analysis by Hirt is ap-
plied in more detail to siﬁple conservation equations. It is used in
. this thesis with the two dimensional ICE equations.to generate terms
which correct fo; truncation errors that produce instability and loss
of accuracy. The corrections are presented and finite differenced.
Besides the original papers, the excellent pfesentation in the text

by Roache (45) is used heavily in this chapter.

A. Basic Concepts

It is more correct to say that the numerical fluid dynamicisi“is
faced with the problem of instability rather than the problem of sta-

bility. A computation may be stable and incorrect due to unwanted
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numerical diffusion, but an unstable computation is usually cata-
strophicL Stabillity analyses are difficult. Most equations of inter- -
est are nonlinear, whereas most analyées are linear, and their appli-
cation to multidimensional equations which are not simple in form in-
volves ponderous algebra., But linear analyses do provide some insight
into the behavior of the equations, so such analyses are worthwhile in
assisting the fluid dynamicist toward producing a numerical solution
which approaches the physics of the flows.

Two types of numerical instability are found in computations:
static and dynamic. Consider a variable W which is distributed over
a coordinate Z at a time t. Presume that this distribution repre-
sents a steady state solution of W(Z,t). Now perturb the solution in
a point to point manner along Z such that the perturbation oscil-
lates, producing a saw-tooth error curve over Z. Three types of dyn-
amic behavior cam occur at later time steps. The perturbations can
die out, then the finite-difference solution is stable. The perturba-
tions can grow monotonically, the deflection increasing at each time
step so that a positive perturbation remains positive and grows larger.

AThis is static instability. The perturbétioqs can not only grow but
als& change sign, flip-flopping around thé true steady state solution, '
This is defined as dynamic instability. One instance of dynamic in-
stability occurs when a normally stable explicit scheme is yun at too
large a ﬁime step, the la;ge At causing drastic overshoot on all de-
flgctionsu Both static and dynamic instabilities wére encountered‘in'

the present study.



The analyses of the next section wili be illustrated using the fol-
lowing simple partial differential equation in one spatial dimension

with constant coefficients, U and v,

2
Wy, W

3t 37 2 (-1

This equation has a convective and diffusive term on tﬁe_right hand side
‘and thus simulates the form of the conservation equations. The finite

difference form of (5-1) will be taken as

n+l n n n n n
W - u W - W W - 2N+ W

; i +1 j-1 i+ 1 i -1
_J_,[;E,__J:_U_.i it v i3 (5-2)

(42)*

The time difference is forward, the others are centered. The convecting

velocity U dis constant in time and space.

B. Lipear Stability Analyses

a) Method of Positive Coefficients

This is a simple criteria where the equation is rearranged and the
coefficients of each W term examiﬁed. If all coefficients are posi-
tive, the equation is stable, according to Forsythe and Wasow (18).

Rearranging (5-2) gives

bl _far f U, vyl .o B ot Toa, ot fu | vl.n
W, = 2 (-S| W, - 2y e el R
L [f.\z 3 aZIJ 3+ Ll = (A'Z)ij ARl
{ :
| (5-3)
Note the appearance of a Courant number, UAt/AZ, in two of the cceffi-

cients. The conditions which lead to stability are found from the coef-~

ficients in the brackets.- For each W theée are

63



o e 2V - -

Wj+l U< (5-4)
(12)°

Wt bt € S (5-5)

] V]

no _ 2 -

wj_l. U>-% (5-6)

An equivalent equation to (5-4) and (5-6) is

2
(42)
combining this with (5-5) leads to
e <& (5-8)
U
Furthermore, 1f (5-4) is rearranged to give
AZ 1 .
PR -9
and this is used in (5-5), the result is
. At _ _
U <L _ (5-10)

which is the Courant condition. Equations (5-5) and (5-8) describe the
) restrictions on At, while (5-4) aqd (5-6) show the 1imi£s of ]Ul as
a fﬁnction of v and AZ,‘indepgndent of 4t. A large diffusion coef-
ficient or small mesh is necessary to permit a usable velocity range.

A computation for an invisecid fluid (v = 0) wouid be unstable. This
has been verified by Cheng (11) and others for this finite difference

scheme.

b) Method of Discrete Perturbation
This method provides some insight to stabillity phenomena by pre-

suming the solution is at steady state, then locally imposing a
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perturbation of W at a point and examining the requirements which
prevent the perturbed value, W', from becoming unbounded., If W' is
applied at point (j), and the finite difference equation is written at

point (j + 1) to generate information in the convection term,

ntl oo n ( 0 ,) wn' ! (Wn j
- - W AT o o+ W
Y TV Wit LA N , Lyt2 i 3

At 2AZ

(az)* |
(5-11)

To isolate the behavior of the perturbation, assume the steady state
solution gives W? =0 for all j. Then

+1
wnj+1 W W'

=V = +
At 2AZ (AZ)2

(5-12)

For stability to be assured, the response of the system to the normal-

ized perturbation must. be

Wn+1’ )
EhL ! | (5-13)
i
This neans
“151’2&&*“ A <1 (5-14)
(AZ)° .

The right inequality specifies static instability bounds.

AZ

At - (5-15)

£E+_\L
2 AZ
Positive At occurs if U » - 2v/AZ. This is the constraint (5—6)
which arose in the positive coefficient analysis. The left inequality.
in (5-14) specifies.dynamic instability bounds, and it is also saﬁisfied

by (5-6).



If the entire analysis is repeated at'(j.— 1), the restrictions

which arise are

-l_<_~U§Atz+\‘)'At25_1 (5-16)
(AZ)
or i
At < ——2E (5-17)
U Y

This is satisfactory if U < 2v/AZ, which is relation (5-4). Thus the
analysis gives the same restrictions on [U| as the positive coefficient
analysis.

. Equation (5-15) may be examined under the restriction_|U] 2v/AZ

|A

It is seen that the minimum upper limit on At occurs wvhen U = zv/AZ,
and the restriction (5-5) is the result., Hence the discrete perturba-

tion method gives identical results as the positive coefficient method.

"Equation {5-5) can also be produced by the discrete perturbation method -

using two other means; a. zero overshoot assumption and an'anélysis of
.perturbations that are oscillatory'along 7Z rather than located at one
' point. 'These alternate approaches may be found inRocache (45) or the

original papers.

e) Karplué' Method of Electric bircuith;ability_

- A method that is simple to use is the electric. circuit analog of

Karplus (34). Helnoted'thaf the current distribution of a metwork of

electrical resistors arranged in a regular pattern could be written as
a finite difference equation. Conversely, the finite difference equa-

tion could be presumed to have an electric circuit analog. Then

66



concepts of circuit theory that deal with electrical instability can be
applied to finite difference equation instability.
Kirchoff's voltage law expresses the current of loop n, j in

terms of currents in adjacent loops.

Rl(i§+l - i?) + Rz(i§+l - i?) + Ry (i —'12) + Rﬁ(ig—l - i?) =0

(5-18)

The notation here is conventional electric theory notatiom, R being re-

sistance and 1 being current (not to be confused with the index nota-

tion of the fluid dynamic equations). The resistance network is stable
if a current in a loop dies out after excitation is removed.

Application to finite difference equations 1is simple. Arrange the

equations in the form of (5-15), where j 1s a bounded space coordin-

ate. 'If all coefficients (corresponding to Rl,

R2, ete.) are positive,
the equation is stable. If some coefficients are negative, the equa-
tion is stable if the algebraic sum of all the coefficients is negative.

Réérrangiﬂg equation (5-2) and adding and subtracting the term W?

leads to

v - Uaz)(p?+1 - w?)‘+ (v + UAZ)(W?_I - wg) - (?L%%li)(w§+l . wg) -0

(5-~19)
The first and second coefficients are positive only in the range pro-
scribed by inéqualities (5-4) and (5-6). However, the third coefficient
is always negative. Invoking Karplus' second rule fgr stability,

2(82)% g

(2v - UAZ) + (2v + UAZ) - i

0 {5~20)
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which leads to (5-5). Thus the method of Karplus gives identical re-

sults to the other methods presented thus far.

d) Method of Von Neumann

.This method was mentioned in the introduction andtreference {40)
was cited, It is the most widely used and has been exganded and modi-
fied by many researchers. The method‘presumes fhat the solution to
the linear partial differential equation is written as an infinite
Fourier expansion. The growth or decay of a typical component is
studied to determine stability bounds.

Again start with equation (5-2). The Fourier component is

1k, §0Z -
W? = Sne z3 = Sne1jT

(5-21)
where the wave number k, has been related to a phase angle 1. The
quantity 1 1is the square root of minus one. Substituting this into
equation (5-2) gives

Sn+1e131 - Sneijr _ gi; (Snel(j+l)T _ Snel(J—l)T)

+ v —JMLE-(Snel(J+l)T‘— ZSneijT + Snei(jal)T) (5-22)
(AZ)

Some manipulation and trignometric substitution gives

2

Sn+l = |1 -2 —t (1 - cos 1) - iU At sin =+ Sn = HSn {5-23)
(AZ) ‘ AZ

H is a complex amplification factor whose modulusllH] must be <1 for

stability. If this restriction is applied, conditions (5-4) and (5-6)
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again result. Examination of (5—23) iﬁdiéates that 65—55 applies, and
also that U %%-< 1, which is the Courant condition.

As the problem dimensionality and the number of time level in-
creases, the mathematics becomes more coﬁplex. The amplification fac-
tor Hf is then a matrix whose eigenvalues must be <1 if stability

is to be possible. Burstein (9) illustrates the problem for a realis-

tic set of unsteady equations in two coordinates.

e) Method of Hirt
Hirt (29) has provided a heuristic approach for analyzing sta-
bility. The Taylor series for terms -in the finite difference equa-

tion (5-2) are written. For example,

|1

n 2 2
W gae W B8 4 opan3) (5-24)
N J j at . .
i
n 2 .2 |7
Wiy =W Ml D 3 4 open?) (5-25)
J . 3 3271 .
i
R 2 2. " :
n n W AZ d W
Wy =y -z B @D _3IH 4 op(az)3) (5-26)
- i 3Z j

The time difference in (5-2) is céntained in (5-24), the convection dif-
ference is gotten by (5-25) minus (5-26), and the diffusive second dif-
ference by (5-25) plus (5-26).
If these geries are substituted into (5-2) and indices are dropped,
the result is |
A QE_HZ B azw
2

oA aw 272 g™
3t + 2 +o[(at)e] =~y ot ;-2—5+ of(az)31 (5-27)



Omitting the higher order terms and rearranging gives

2 .
(At) BW _ W 1w  USW (5-28)
v v 92

This is a hyperbolic equation with characteristics iﬂﬁf7§§ which mark
off a domain of dependence as discussed in the‘introduction. The dif-
ference equation also has a domain of dependence since data W? at a
point (i) is propagated over the time incremenﬁ At to the nelghboring
spatial point (] + 1). Thus the domain of dependence of the difference
equation is delineated by lines of slope +At/AZ. This domain of de-
pendence must contain that of the partial differential equation accord—
ing to Courant, Friedricks, and Lewy as discussed in the introduction

of this thesis. Then

7 < N3y (5-29)

I>|t>
rt

3=

which is the same as restrictien (5-3).
Another condition of stability is found by differentiating thé ori-
ginal partial differential equation with respect to time and reversing
the order of differentiation.
2 ()2 g (w0, 2 () 530
at \ot 2 3z \3t/ 322 ot
Now the original equation is sﬁbstituted into the time differentials on
the right hand side, and the resulting spatial differentials ave ex-
pandéd. .
azg_= b2 B0y 20w 2 ot

3t a7 2z vl

(5-31)

This is substituted in (5-28), and the third and fourth derivativés
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dropped because (1) they are usually smail, and (2) the second spatial
derivative is the one associated with diffusive damping (or driving).

Rearrangement of the resulting equation gives

2 .
7 \ |
W__y %E_+ v - U2 Aty 3 W . (5-32)
ot 37 2 322 \

A positive diffusion coefficient smears a perturbation in W. If the
diffusion coefficient is negative (physically impossible but not math-
ematically impossible), the perturbation would concentrate and grow.

Thus for stability to be assured,

v - U? Lx0 (5-33a)
or
At < ;2__\5_ (5-33b)
v

This result is the same as {5~-8).

Although constraints (5;4), (5-5), and (5-6) may be combined to
give (5-33b), the converse action may ﬁot be taken. There is no way to
extract {5-4) and (5-6) from (5-5) and (5-33b), unless the bourant Con-
dition (5—10)715 used. The first restriction on At aiso used the
"domain of dependence" concept.

%
[

£f) Application of the Various Methods .
As the preceding developments showed, all methods gave the same
| :
results except that Hirt's analysis did not yield restrictions on |U]|
without assistance from the Courant condition. The example chosen to

- i1llustrate the methods is simple. It can not be concluded that all the

methods would give identical results for a complicated . equation.



The method of positive coefficients is simple to ﬁse but can po-
tentially omit some restrictions. The perturbation method becomes
quite ponderous with two dimensional equations. The electrical ecircuit
analog by Karplus is relatively easy to use. Roache mentions an ambi-
guity in the method but does not explain what this might be. Ghia,
Torda, and Lavan (22) used both tﬂe Karplus and Von Neumann analyses to
determine the stability limits of equations describing steady coaxial
flows. The results were identical and the Karplus method was claimed
easier to use.

The method of Von Neumann is probably the most widely used because
it is well grounded mathematically and conceptually clear. However,
finding the eigenvalues of the amplification factor can involve exten-
sive computation. Tt dis also a linear analysis and strictly applicable
to Cartesian coordinate systems.

Hirt's analysis of tfuncation errors becones ponderous‘with com-
plex equations. It has predicted regions of instability with success.
More important, 1t suggests a means for removing some of them, which is
.%hown later.
| Application of these methods_to non-linear equations is done by
assuming that the equations are iocally linear over small time-space
increments., Then stability becomes a point-to-point matter. Mathemat-
ical bases for non—linear’analyses are lacking. Of the listed methods,
those of Karplus and Hirt have the least restrictidﬁ;, hence the poten-
tially widest applicability. It can be expected that these two mééhods

will be used more frequently in the future.
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C. The Use of Hirt's Truncation Error Analysis

The words '"finite difference approximations" describe the non-
linear algebraic equations which are solved on the computer. These
equations approximate the partial differential equations which de-
scribe the fluid flows. The deviations are dqe to the casting of a
finite sized mesh over the continuum of interest and the replacement
of equations valid at a point with equations épplied over discrete
intervals. The approach of the discretized solution to the true point
solution as the interval approaches zero is the problem of convergencé.
Concern about this problem often overrides anofher consideration: the
solution obtained is further removed from the desired solution by
truncating the infinite Taylor series which are used to construct the
finite differences. The truncations of the series are necessary for
practical application, but they introduce errors of accuracy which may
stabilize or destabilize the solution. Hirt's stability amalysis QUan—
tifies the truncation errors.

An examination of eguation (5-32) illustrates the result of the

. . 2 At 3°W
. truncation amalysis. An adéitional term- -U ??-;;5 plus higher order
differentials not shown are present in addition to the original partial
differential equation. Furthermore, the error is always negative in
sign, hence destabilizing. In fact, although attempting a numerical
solufion‘with At £ 2v/U2; as specified by (5~33b) may give a stable
solution, the second order error is present for any finite At.

Harlow and Amsden (25) suggest that the error may be removed by

including diffusion terms identical in magnitude to the errors but of

opposite sign in the finite difference equations. For example, based
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on the result {5-32), the coefficient v 1in the finite difference

equation (5-2) should be replaced by GJ+-U2 é%), and the error is

automatically removed., Note that the error contains U2 which was
i

held constant for this example. If U2 varied through}time and space,
the correction must be calculated at eachrtime lgvel anq uniquely at
each grid point. But (25) first introduces these as pagtial deriva-
tives in the original differential equations. It seems more appro-
priate to start with the original equations and introduce the correc-
tions after the errors have formed in series truncation. This also
avoids the insertion of corrections on ﬁﬁe corrections.

The application of Hirt's truncation error analysis to the con-

tinuum equations is illustrated by an example of the one dinensional

unsteady equations for mass and mementum.

t 5z PU) ot 5z (U + P+ aq)

where q 1is an artificial dissipation as described in equation (2-3).
Only the stability of the finite differenced mass equatioﬁ is examined.
This is forward differenced in time and uses a centered spéce differ—
ence first explicitly, then implicitly.

The explicit form is

n n n
‘ At T 2z - (5-36)

The left side is Iin a rearranged Taylor series

pn+1 _ pn ) ) 37f
j j=4ap_.,..é.§,~3-g P LAED &p (5-37)
t

At ot 3 6 at3

The right side is



FATSL n
) [pr>j+1 - (pu>j_%} - [é(pu) )

2AZ 9z

6

323

All the above differentials are evaluated at n and j.

these two equations into (5-34) and discarding terms higher than

olst, (AD?1,

3p

2wzl 22

st 3% _ _ .
2

p
— +
t a::z 3z 6

9

823

wn? Pew |, ..

] (5-38)

Substituting

(5-39)

The second derivative with respect to time is found by substituting the

mass and momentum equations

2

at

(oUﬂ

(5-40)

(5-41)

where A 1is the square of the isothermal speed of sound. Performing

the spatial differentiation and retaining only the terms with the dif-

fusion form, the result is

.2 ' 2

2 3 p

2L 2ty 2L
ot . dZ

pikewise

The final result is

o 3 {p) T At 2
— T + — A—
. Y [ 3 (U + A)

(uz)?
2

3U
oz

d

2

az

%

2

(5-42)

(5-43)

(5-44)
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An examination of the diffusive error shows that the first term is
always negative, its magnitude increasing withr At, The second term
depends on the sign of 23U/3Z, and a flow acceierating down a tube is
destabilizing. The general conclusion is that the explicit finite dif-
ferencing should destabilize as At increases, and this agrees with
experience.

The implicit difference form of the mass equation is

nt+l n [ ntl n+l
Py~ By (U, .7 = (o),
i I R 31 j-i (5-45)
At : 2A2
The right difference is a double expansion
n+1 n+l
Uy, - (pU), 2 .3 2
EW5m = D53 e |, wn? P |, ,, Pew |, (5-46)
2AZ Az 6 3 ataZ
9Z
and
2 2 2
o (pU 3 2 9
e R A (5-47)
ot 9z

Except for this term, the rest of the analysis. is identical to that for

the explieit formulation. The result is

' 2 2
3p A(pl) At 2 {(AZ) 8%] ap
el R A Y LT S A - i B -
5t Y [2 S 2 oz ;2 (5-48)

The implicit and explicit truncation errors are identical except for the
sign on the first term. However, this term is now always positive and

thus stable for all values of At. The inherent stability of implicit

methods is well known. Although the truncation errors are stabilizers,
it would be advantageous to remove them (provide& stability is main-

tained) because they are errors.
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The phiediaue example shows the power of Hirt's method in identify-
e -
i diffugﬁ“‘ truncation errors., Since the errors contailn velocities,
ng :

d tieg &ﬁd their spatial gradients, the physical problem may be ex-
ensitiegy "

ined Faf reglons of flow that might cause instabilities. Hirt ex-—
amined far :

ined v 1 abbelf prder space differentials to predict unstable regions in
amined hig

atjon problems. The predictions were verified numerically.
shock prupéf” .

A Tyl af MAC stability was also successfully applied to a problem
fhi analys. ‘

d Ibing f]pw throﬁgh a sluice gate in a dam. Thus Hirt's theory is
escribits _

bst tiate& jin numerical tests.
substanti

D. The Tei pgmensional ICE Truncation Errors
. e

Th CHHﬁﬂPEB discussed gbove were applied to the ICE mass and mom-
o !

¢ wd&imnﬂ: and also to the species equations. The energy equa—
entum eqt _

@mjtpﬂd because, with mass and momentum established, there was
tion was

{ndicek ! nf stability problems in energy until the lasi few xuns
no indicegk?™

of the stuﬁ?f

Vigcuu8 and diffusion terms are of higher order and are not ana-
gob! -
1 d Naﬂwﬁhjlrds’ the algebra is mountainous. The results for the
vzed. L _
Ctr tiotf RrF ysis are listed below. The original partial dif-
uncativ ! :

¢ tial ¢3ﬂariﬂﬂ (OPDE) is on the left side of the equatiom.
erential _

At (AR)Z 3V

[rag - 2 At 13 (.8
Mass OPDE - ]_(ZB D (V * NEuﬁ*) 2 L PR[R 3R (R 3R)
: 2 pe 0?83
+ (20 - 1) (U + NEuA) = T S T (5-49)
B 3z =
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Radial Momentum OFDE = {j [TQJ— l)N pA - 3pV:]

( ) ‘[j A Lt 1 + p !l/--—

\ (5-50)
N . 2 142
At ) B 1.Y:) R T N
Axial Momentum OPDE = l(zq) - DN, pA - 3pU] - oy e 2
{2ng N Eu - 8 .azj -
T .2
- {zgt v + (AR) (AR) [ + LA RN a__z_ (5-51)
L "se RJ| ez
ry® fav | v 32@1{ (AZ) a2 3 leg)
Species Mass OPDE + 7 5 +.i — —
aR 5%
' (5-52)

Equations (5-50) and (5-51) omit the sfabilizing éorrection which re-
sults from outer iteration on In+l. The treatment of-corrections for
time defivatives in the species equation is uncertain and numerical ex-
perimentation usually gave instability. Thus equation (5-52) includes
only spatial truncation errors.

Note that a term in the mass equation has a coefficient (26 ~ 1)
which determines the sign of the term. ' It is stabilizing for 6 > .5
 (implicit), destabilizing for & > .5 (explicit), and it vanishes at
6 = .5 (time-centered). The‘coefficient ¢ performs a éimilar func~
tion in the momentum error equations.

There is no 9ontradicticn tﬂat when 6 and @ =1 and A ~» ¥

} ! : . .
for incompressible flows, an infinite diffusion error takes place.

Instead thig predicts the infinite propagation of pulses throughout

the fluid, which is a basic assumption of the incompressible equations,
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The truncation errors in mass and momentum equations are removed to a specified degre§ by add-
ing a corrector B as mentiomed previously. The corrector B 1is the finite difference analog of
the negative of all truncation errors except those with coefficients that vanish with time-
centerihg. The B corrections follow in finite difference form and include the spatial second
derivatives to be consistent with the equations of Chapter 4. The cell aspect ratio removes AZ,

and coefficients are extracted where possible

-1 no. gt i-~-1 n i -2 n _.n
{8M)1 .3~ 28R {,Hllz,j vi-l/?.,j} (E*i - 3) Piv1,5 T (21 - 3) Pi-1,i pi,;l
+ip - - 2p" (5-53)
2 “A NUi,5+L/2 T Y1,3-1/2 ,J+1 ,3 -1 7 “Pi,3]
(8 ) = J- + Vn __*_g____ n " n
VR 1—1/2 23 AR ,_-, °1 -1,j 1-1/2,3 6L - 2 \Pi,5 " Pi-1,j

n n n n bs | 131

(pi,j - pi-—l,j)} Vi-1/2,3 E’iﬂfz,j T V5372, 2Vi—-l/2,_—1!

AtR ' 2 :
A n n n n n + :9 ,
EMRNS] (pi,j + pi—l,j) (Ui,j+1/2 U5 ger2 T Viaa, 5172 T Ui, -1y

IF

O]t

\__{

+

(this equation (5-54) continued on next page)
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+ ' + UL L + U n n - ol - ot
1,3=1/2 T Yi-1,9+172 T Vi-1,3-1/ (pl,j+1+pi-l,j+l Pi 5-1 = Pi-1,j-

1 {m
64 (Ui,j+l/2 + 0

ool

n n 1 Il 193 n
R T £ U N |
("1,3 91-1,3) (U1,3+1/2 Vi1, 54172 = i, 5-1/2 Ua.-l,j—uz)} RAE'Ti-l/Z,j+l

n . .
+ VI:;-1/2,3--1 - ‘Wi—l/z,ﬂj | (5~54) '

: 3AtR
(8 ) 1 A n + n Un
| v2)y,i+1/2 T IR GO Pi,3 © Pi,3-1]) "i,j-1/2

1 {n n n n n
* Sl(pi,j " "i,j—-l)} RBal1,5-172 Ei,j+1/2 ¥ ,5m302 T zuz,j—lfzil

2
Tl n Il
JEAARN ] 3,9t Pi,j—l) (v13'1.+l/2,j V12,5 T Ve, T VJ‘._-—l/Z,j—l)

L n ' 7l ‘ 1 n n n
v % (v?+l/2,j V172,35 Y V2,50 T Vg-llz,j-l) (pi-I-l,j *Pi41,5-1 7 Pi-1,5 pi—l,j-l)

_l_ n hut ) ( ¢} | - n . Tl
* 16 (pi,j 05 5-1 Vav1/2,5 T Vie/2,341 Vici/2,3 " Vi-1/2,341

(this equation (5-55) continued on next page) :
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1 no n n n n n J
160 - D) (pi,j + pi,j—l) (Vi-l-l/Z,j * Voo, Y Vi-12,5 T Vi-l/z,j-l)}

n

Tl sl
E‘Iiﬂ_,j-—llz t U 1,172 T 2”1,:;—1/11 (5-55)

n _ _1 _ 1 n n on
(wx);,5 = 7R {Vlil-i-l/Z,j Vict/a,3 Y ) (Vi+1/2,j + vi—l/Z,j)} ‘_(_pK)i+l,j

+ R - 2("1{)2,3 * {RA(UI;,j+1/2 - U?,j-l/Zj} ]ﬁpK)r;{,jﬂ R 5-1 - Z(DK)Q,J
(5-56)

Since the error analysis‘is by nature approximate and the correctors must themselves be fin-
ite differenced,‘the use of the full correctoxrs can potentially remove enough diffusion to desta;
bilize the calculatien. To avoid this problem, the collections of terms in_the brackets { } have
coefficients read as input into the computer program. The coefficients can be used in the norimal
sense, zero to full correction requiring coefficients in the range zero.to one.- But a number
greater than 1.0 caﬁ_be used. Then the amount greater than 1.0 is applied to the absolute.vélue
of the terms in the respective brackets { }. This provides a small amount of positive diffusion

to move the problem away from a region of narginal stability.
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As indicated by the ipdices, the corrections are explicit and vary
spatially. The computihg time and storage for the corrections are good
investments if the methﬁd stabilizes the computations. As will be
seen, this is often the case.

Besides the B correctors, stability is assured by setting an up-

per limit on At of

R > a2)?
3 2
(AR)© + (AZ)

At < X2 (5-57)
4 p

This is a two dimensional analeog to equation (5-5). Smaller values of
At were always used in practice, because numerical trials indicated
that they were needed to provide goo@ resolution of the time dependent
aspects of the solutions.

The results of the numerical tests will be presented and discussed

next.
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Chapter 6
NUMERICAL RESULTS AND DISCUSSION

A. Introductory Comments

This chapter presents the results of a seéuence of numérical tests
of the basic ICE algorithm and its modification and extension. This
includes the addition of outer iteration using all first order
terms in the hybrid function, the addition of the A stability correc—
tors, and the inclusion of multispecie diffusion and chemical reaction.
The numerical solutions are compared with analytical and éther numeri-
cal solutions where possible, New transient and steady state solutions
are shown.

The sequence of problems solved proceeds in the direction of in-
c;easing complexity. Initial tests were performed on three transient
'pfoblems that were essentially one space dimension in nature. Thus ap-
pearance of‘significant quaptities in the second spatial dimension
would indicate errors in th; computer code dr alfailure of the algo-
rithm. Both incompressible and fully compressible proglems Were‘run.

The first two-dimensional problem was one describing the boundary
layer buildup in the entrance region of a tube after flow is abruptiy

started. Attempts at calculations of transient coaxial flows led fo-

major instabilities. This prompted inclusion of the B truncation
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error corrections with dpamatic improyen@nt. _Numerical experiments
éhowed the advantages of the ADI method in inverting the P matrice,
and this was adopted.

The addition of multicomponent cépability caused new stability
problems which were treated by developing an implicit s?lntion of the
species equations. Finally chemical reaction was included. Solutions
for dilute component reaction were run without difficulty. Later com-
putations of réactiug flowé with strdng Eoupling between chemical re-
action and the fluid dynamics showed serious instability which could
not be treated within the scope of this effort.

The boundary conditions for each pfoblem are discussed briefly as
a supplement to the detailed presentation in Chapter 4, Values of time
step size, grid size, dimensionless groups, and so forth are found in
Table 1.

As.noted in Chapter 4, the solution accuracy was measured by the
error in the mass conservation equation over one time increment. This

in turn is controlled by the convergence of the P iteration. The

convergence is tested by
%L _ 59|

- < £
59| + |59

(6-1)

The exponent on & specifies the decimal place on P which must con-

-3 -
, P must

verge, regardless of the exponent on P. Thus if € = 10
converge to three decimal places, such as‘2.345x10“8; Generally e

used varied from 10-4 to 10_6.
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B. Computer Facilities and Computer-Drawn Plots

The solutions were carried out on the NASA Lewis Research Center
1BM 360/67 computer. This is a time sharing system (TSS), using vir-
tual memory and a paging system to locate and move data in and out of
core storage. The Lewis computer is duplexed with two central process-—
ing units (CPU) and a combined core storage of 2.57million bytes (4
bytes per word). Virtual storage essentially provides unlimited stor-
age during execution.

The computations were run in double precision, giving approxi-
mately 13 decimal’places of significance. The time sharing mode was
employed to permit pericdic interruption and examination of the pro-
gress of the solution. During the interrupts, values of any variable
could be displayed on the terminal, and certain operating parameters
such as the time step size could be changed. Due to the time sharing
mode, CPU run times cited herein are approximate.

Output was written into datasets during the run which were dumped
onto the IBM 1403 printer an&/or onto a 9 track tape after the run was
done. The tape was later read into a plotting program which used a
" set of library subprograms to geﬁerate plots on a CDC Model 280 cathode
display unit. The video plqts‘were photographed by a 35 mm single
frame camera, and plots weré made ‘directly from the film. The basic
library subprograms are described by Kannenberg in reference (33).

The dependent variable data taped for plotting were triply sub-
scripted to denote R, Z, and t values. Plots were made in the time
shafing mode by first selecting a value for one of the three independ-

ent variables. The plotting program then arranged the appropriate data
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to form a two dimensional array and fitted the array to a surface using
a procedure by Akima (l).‘ This surface of dependent variable values
could be projected as a three dimeﬁsional plot using Canright and
Swigert's subprograms (10). The surface could be sliced horizontally
to produce contour curves plotted by a routine by Lawson, Block, and
Garrett (36). Slices through the other two difections produced X-Y
type plots.

A pictorial plot could be made to display the total velocitj field
at a fixed time. The magnitude and direction of the flow is shown by
the size and direction of arrows distributed over the R-Z field. As
an alternative, only direction is shown to clarify the flow direction
where the magnitude is small. The bases of the arrows locate the posi-
tion of the velocity being represented.

The plotting program was developed parallel with the numerical ex-
perimentation. Thus the figures which describe the eérly computations-
are hand drawn, and the computer plots are used for the coaxial entry
problems. It is emphasized that the Akima surface fit gives a Qery ex—
hgéllent fit which essentially passes through all the input points,

Thus the results are not smoothed by this fitting pr&gedure, but rather

made continuous.

C. Startup of Incompressible Laminar Flow in an Infinite Tube

This problem is characterized by axial velocities which are a func-
tion of R and t only. No radial velocities occut. A constant up-
stream pressure is suddenly imposed on a tube containing an incompfess-

ible fluid at rest. A linear axial pressure gradient results and is
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_maintained. The flqiq starts mopiqn as slgg“flow,Abut the no slip wall
condition causes transition to parabolic Poisieullglflow at large
times._ The analytical solution can be found in any standard fluid dy-
namies or transport text such as Bird,.Stéwart, and Lig?tfoot (4).

This problem was selected as a starting point because (1) the
simplicity of the problem allowed easy tracing of program errors, and
(2) the numerical results could be compargd with the analytical solu-
tion and also with an avaiiable MAC numefical solution, To make the
last comparison, the fluid was specified as blood at 310° K, p = 1,05
gm/cm3, v = .04 gm/{em-sec). The Reynolds number was 205. Boundary
conditions are straightforward, with Q;= 0 due to incompressibilityl
giving the necessary velocities outside the input, output, and wall
boundaries.

The results afe shown in figure 4 as radial profiles of the axial
velocity at select times. The solid line is the analytical solution
and the ICE solution is shown as discrete points. Three cell mesh
sizes were run to check the convergence behavior, which should be sen—
sitive only to the radial solution. Thé cell aspect ratio was ad-
justed to keep the tube length constant. The numerical and analytical
solutions compare very well‘in time and_space. Remarkably,teven the
4 x 4 grid gives a reasonable solution,laithough numerical values are
somewhat higher a£ later times. The coarse grid has difficulcy repre-
senting the velocity gradient near the wall. On the first time step,
bnly the upstream input pressure was specified, andlthe P iteration

produced the correct linear axial gradient. The P convergence cri-

terion was set to the rather severe value of 10_8, resulting in
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negligible radial velocities and continuity errors. . CPU times ranged
from three to eight minutes. This test of ICE on a simple incompress—

ible fiow was fquite successful.

D. The Shock Tube Problem

A fully compressible flow cccurs when a diaphram separating high
and low pressure compartments in a tube is abruptly removed. This
condition exists when the diaphram of a shock.tube is cleanly bhurst.
The gas is air at 20° C. A shock wave propagates downstream through
the low pressure gas and a rarifaction propagates upstream, The con-—
tact surface, a density discontinuity which denotes the original posi-
tion of the diaphram relative to the.gas, moves downstream with the
gas. Initially, the temperature is unifoxm. It rises at the shock and
falls at the rarifactioﬁ.

The fluid dynamics of a shock tube can usually be well represented
as an axial transient flow. Only the formation and propagation of the

waves to the tube ends was computed. The problem was formulated with

no slip walls and reflective ends. A run with zero viscosity gave iden-

htical results over the short time period considered (1/2 miliisecond).
Inviscid theoxy can be used}to predict the positions of the various
waves and the levels that the variables should approach upon passage of
the waves.

The results of the primary variables, P, p, U, and I, are shown
in figures 5a through 5d. CPU time for this run was 3 minutes. Tﬁe
pressure rarifaction should not be a discontinuous wave, but evenrgo;
both the rarifaction and the shock show coﬁsiderable numerical smear-—

ing. The shock shows overshoot and the pressﬁre trailing the
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rarifaction indicates some numerical oscillatioﬁs. No B correctiohs
héd yet been put into the numerical prégram. The oscillations are
prominent in the density profile and especially in the internal energy
profile. The energy oscillations are due in part to the computation
being run with no thermal conduction, It was not realized at that time
that thermal conductivity damped such oscillations as effectively as
viscosity [see Harlow and Amsden (26)]. 1In addition, Hirt (29) predic-
ted that numerical instability could arise in this region due to trun-
cation errors associatedrwith third and fourth order differentials,
Such differentials are important due to the steep gradients in the
shock tube problemn. |

Despite these difficulties, the waves at any position damp as the
fronts moved away. The profiles of all variables show the proper qual-
itative and quantitative behavior. The hensity profile has four levels
due to the contact surface, and the internal energy rises in the com-
pression zone and falls in the rarifaction zone, The positions and
levels associated with the fronts as calculated by the ICE method com-
pare very well with invisecid theory, even if oscillations are present.
qu.discussed in Chapter 2,‘shock calculations_are usually made with an
added artificial dissipatiop. Such a term 1s not used in the present
version of ICE, and some instability is to be expected. Thus the ap-
plicability of the ICE technique to compressible flows seems well
demonstrated.

Additional numerical experimentation was performéd. Figure 6 ghows
thé effect og using a smaller time step size, . The solid line is tﬁé

same as figﬁre Sa, The smaller At provides steeper fronts and better
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stability. A small At offers greater resolution of temporal behavior,
‘hencé-the séeeﬁer froﬁfél This is a valﬁéble chéracéeristip of theﬂICE
méthod. The time step size is chosen to resolve phénomena of interest.
fhus a small At is used to examine shocks, and a large At 1s used
for very slow flows where acoustic behavior is unwantecllu A smaller time
{
step also provides a better computation for an impulsive start as in the
shock tube problem. This affords greéter stability 1apér in the course
of the computation, as shown in figure 6;

The expanded hybrid function which retained the other first order
term In+l was also tested., The results are shown in figure 7. The
scolid curve is the same as figure 5a sihce no iterations on In+l
means " is used, and the extra term ﬁanishes. No discernible dif-
ference of the pressure profile is detected after one replacement of
In+l. Remarkable stability improvement is seen, but the added numeri-
cal diffusion smears the wave fronts, which is undesirable. For this
reason and because even one outer iteration on In+1 almost doubles
the CPU time, the expanded hybrid fgnction was not used for the fe—
mainder of this study, Its use is recommended only as an aid in sup-
pressing numerical instability.

The effect of time centering the eguations by settiﬁg 0= @= .5
is shown in figure 8. Both implicit and time centered pressure profiles
are shown for twoitimes after the diaphragm is removed. As predicted by
Rirt's stability analysis, time centeriné steepens the fronts at the ex-

pense of stability. This is especially true for the region just behind

the shock, .However, the waves do die out at fixed Z positions.J
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Longer calculations would be needed to verify whether or not the num-—
erical oscillations directly behind the shock front will grow un-
bounded;

As a final experiment, a one-dimensional 8 truncation error
correction was inserted in the mass equation to see if the oscillation
amplitude would decrease. Figure 9 displays the results of a time
centered test. The exact correction did not affect the oscillations,
but adding four times the absolute value of the correction cut the
perturbations in half. Such a massive correction is unjustifiable
theoretically, but it did show the nature of the 8 corrector. Note
that only the unstable region of the profile was affected. The shock
and rarifaction fronts are the same, as are the levels behind them.
To properly stabilize the shock tube calculation, mass, momentum, and
energy correctors are necessary, including the important higher order

differentials.

E. Incompressible Tube Flow with an Oscillatory . Upstream Pressure

Perturbation

' This problem was used to test the ICE program with osciilatory
flow., A tube holding an in@ompressible fluid is subjected to an up-
stream axial pressure which has'méan and oscillatory components, The
oscillatory component has an amplitude which is 10% of the mean com-
ponent so no net flow reversal occurs. However, if the mean flow is
subtracted from the total ‘flow, the resulting velocify perturbations

do reverse direction.



An‘analytical solution for the steady cyclical state of this prob-
lem has been carried out 5y Uchida (50). The axial velocity is assumed
independent of Z, making 1inearization possible. The analysis shows
that as the frequency of the pressure oscillation increases, the velo-
city oscillations act more like oscillating plug flows.

The boundary conditions for the numericalisolution of this problem
are the same as for startup of incompressible flow in an infinite tube.
The exception is the oscillatory upstream pressute. The numerical sol-
arion was run first by assuming that the flow was already at the steady
cyclical state, The initial condition on axial velocity was taken from
Uchida, and the computation was carried out for a few cycles to allow
comparison with Uchida's solutionm,

The results-are shown in figures 10 and 11 for dimensionless fre-

quencies of 3 and 10 and a fractional pressure pérturbation of 0.1.
The fluid was air at 45 C. The ordinate is the velocity perturbation
amplitude that is superimposed on the mean flow, normalized by the
fractional pressure perturbation impressed on the flow. A comparison
_ of figures 10 and 11 indicates that the lower frequency produces an
oscillatory flow which is strongly affected by shear stresses, whereas
the higher frequency causeé a flat profiled, plug-type flow that 1s
dominated by inertia effects. In both figuresrthe numerical and ana-
lytical solutions compare well, but for a dimensionless frequency of
10, the numerical solutions near the wall lag slightly.

There are some errors in producing the plots.—wihe ICE program

calculates the total velocity including the mean and perturbation.
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The steady state Poisieulle solution, calculated from another computer
brogram, is then subtracted from the total to give the velocity per-
turbation. Normalization by the fractional pressure perturbation causes

a multiplication by 10, Thus an ordinate value of .0l on figure 11 ac-

tually represents only a 0.1% wvariation of the total f%ow. Therefore

a small difference generated in processing the numbers-gives é sizeable
deflection on figure 11, and in fact the analytical an& numerical solu-
tions compare very well.

Further experiments on convergence showed that a reduction of grid
size from 20 x 5 to 10 x 5 gave a poorer comparison between analytical
and numerical solutions for the lower ﬁfequency. Evidently a AR near
.05 is necessary to represent boundary layer effects. Reducing the
time step size from w/30 to 7/60 improved the higher frequency sol-
ution, but a further reduction in At offered little gain.

An extension to the oscillating flow problém was made by starting
with the flow at rest., The upstream pfessure was suddenly raised to
tbe higher oscillating value, coupling fhe normal laminar startup with
the oscillatdry flow startup. A run starting from rest-and continuing
until the steady cyclic state was reached took 15 minutes of CPU time,
The velocity perturbations were found by subtracting thé.transient
mean flow predicted by an analytical solution.

Figure 12 shows a velocity perturbation,profilé at the same cycle
time, 2nnt, for g reduced‘frequency of 5; The oscillatory component

-

almost reaches the cyclic solution within one cyclé: The steady cycli-

cal numerical values are slightly high. As discussed before, the"
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ordinate scale is egpanded, and the constant difference between the
numerical and analytical values along the tube radius suggests a small
error in data reduction.

Figure 13 shows the final cyclic solution which proceeded from a
flow starting from rest. A number of cyecle times are represented. The
comparison with the analytic solution is good. All numerical values
again are slightly high, indicating a data processing error. In con-
clusion, the ICE method handles oscillatory flows quite well provided
that the grid cell size is small enouéh (AR = ~.05) and a suitably

small time step is chosen to give adequate transient resolution.

F. Transieut.Incompressible Entry Tube Flow

The entry problem is dependent on two space dimensions. A uniform
velocity is abruptly applied to the entrancelof a tube filled with an
incompressible fluid initially at rest. The fluid behaves’like plug
flow at first, but a boundary layer begins té build ﬁp. The boundary
layer trails from the entrance edée of the tube. At steady state the
uniform input flow changes-to Poisieulle parabolic flow for a suffici-
" ently far downstream position. The steady state solution to this prob-
lem has been treated by Hornbeck (32), and Friedman, Gillis, and Liron
(19), among others.

The numerical veréion of this problem is considerably different
ffom the ﬁrevious test problems in another respect. Previously, the
pressure condition was specified and this provided the driving force.

In this and the remaining problems, the input flow is specified. -This

flow drives the fluid through'the tube and the proper pressure field is



computed to accelerate and turn the internal flows. The momentum equa~
tion is applied at the input boundary to compute the pressure gradient
across the input. Thus the mean value at the input can '""float' during
the P dteration until the entire pressure field has the proper.curva—
ture.

To test the ability of the P iteration to give the correct pres-
sure field, an artificial problem was run as follows: the incompress-
ible fluid is initially moving through the tube in axial plug flow. At
t = 0, the entrance and exit are abruptly blocked. By the end of one
At, the fluid should be essentially.stopped. The test was run with
free slip walls. In one At = 10—4, the flow was reduced from 1.000 to
less than 10_3. When the test was rerun with a no-slip wall, the bulk
flow was again essentially stopped. But the asymmetrié boundaries (no-
slip at the wall and free slip at the centerline) caused a very weak
eddy circulating down the axis and up the wall. Although trivial, this
result is not physically inconsistent. The test of the P iteration
was considered a success.

The results qf the entry flow problem are shown in figures 14

" through 18 for air at 45° ¢. Figure 14 shows the steady state axié}
distribution of the axial velocity at severai radii. In Hornbeck's
paper, velocity values are given for different radil, but linear in-
terpolation can be used to give check points at R = .05 and .95.
Agreement is good. The interpolation of the points at the lowest 2
position is the least accurate, and those points show the -most disa-

gréement. Since a horizontal profile means that the flow is constant

S5
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with length, the figure shows the growthlof the steady boundary layer
‘toward the tube centerline as the flow ﬁrogresses-downstreﬁm. -

Figure 15 is a plot of the steady-state radial profilés of axial
§e10city at various Z positions. The transition from the flat input
velocity profile to the parabolic output profile is clearly seen. Much
of the tramsition takes place near the input. Friedma;n et al. (19)
have observed that near the entrance, the profiles show a maximum which
does not occur on the centerline. This effect is seen on the % = .667
profile. Friedmann et al. attribute it to the fact that the leading
edge of the tube propagates pressure signals upstream so the flow be-
gins to turn before coming to the tube, This is nore predominant at
the low Reynolds numbers. A4n input boundary condition cannot describe
these complex upstream effects. If the edge wall boundary condition is
set so0 that the constant input velocity extends to R = 1.0 instead of
R = .95, exactly the same solution results.

The fadial flows at steady-state are shown in figure 16. A pres-
sure spike develeps at the leading edge of the tube to turn the flow
toward the tube axis. The radial velocities decay rapidly with length
. and yanish where the flow is fully parabolic. At Z = .33, the radial
velocity has a maximum magpiéude which is 13% of the input axial

. | . .

velocity. i

Transient axial velocity profiles are shown in figures 17 and 18.
Steady state is achieved quite rapidly near the input boundary and
w
near the wall.” If a plot like figure 18 is comstructed at Z = 20,

the resulting profiles are almost identical to those of figure 15.:



The ICE method works quite well for the eﬁtry_pfobléﬁ. It can
provide additional information on radial flows and transient flows that

simpler analyses cannot provide. CPU time was 26 minutes.

G. Stabilization of Coaxial Flow Calculations by the B _Truncation

Error Corrections

One of the major goals of this study was to incorporate multi-
specle flows. Successful computation of coaxial entry flows was an
essential step to that end and a worthwhile goal in itself., The coax
injector has been a standard mixing device for some time. A number of
studies of steady-state flows such as Ghia et al. (22) and Weinstein
and Todd (54) have supported conceptual designs of gaseous nuclear roc-
kets. Flow recirculation is possible if the ratio of the center tube
.and annulus velocitieé becomes very large or very small. This has been
experimentally studied by Warpiﬁski, Nagib, and Lavan (53). To this
4writer's knowledge, no numerical studies of transient or short tube co-

axlal flows have been publiéhed.

Besides varying the input flows, two extremes of tube length sug-
gest tﬁemselves. An extremely short tube allows resolution of the
-flows very near the entry goint. . This can not be doné for long tubes
due to the limitation on the number of mesh cells which will give.a
reasonable computation time. The other extreme is a long tube of suf-
ficient length such that the oufput flow is parabolic.

Wake effects from the boundary separating the two entry flows have
been studied by Paris (41) for parallel plates. Seider (47) was unable

to use a mesh aspect ratio greater tham .05 without incurring
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instability in this computation of tube flows with coaxial paraboelic¢
entry. He attributed this to wake problems.

A short tube problem was attempted for air at 45° C, with an input
velocity ratio of 2.0, The fluid is initially at rest and is subjécted
to a step coaxial input at t = 0. The center and annular flows were
each uniform. The tube length was equal to its radius. A 20 x 20 mesh
was used with square cells. This mesh is the iargest that could be
used with the available cémputer'speed. Figure 19 shows the cata-
strophic instability which occurred when this problem was attempted. A
long tube run was then tried with RA = .05, A smooth steady state so-
lution was obtained, but the transient solution showed numerical oscil-
lations which eventually damped.

At this point the B corrections were added to the computer pro-
gram and the short tube problem was rerun. Thé.coefficients on BM
and BﬁR = BVZ {(called BV) were set équal to 0 and 1,01, respec-—
tively. The results were vemarkable. All numerical oscillations van-

ished and the problem was computed to steady State.- Figure 20 shows

.07 and .10. The

]

results which may be compared to figure 19 for ¢

scales on these computer drawn plots are set by the graphies program
© ‘\

and differ. It is seen that the stable portions of figure 19 compare

exactly with the similar parts of figure 20. These results were most

encouraging.

H. Shert Tube with Coaxial Entry - Velocity Ratios = 2 and .05,

Velocities = 10 and 20 cm/sec
The next series of coaxial problems (Sections H, I, and J) were

run using air at 45° .C as the single fluid. The coaxial runs were
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identical whether run as compressible or incompressible fluids. At
chese slow speeds the compressibility effects should be negllglble, and
they were. As mentioned before, the uﬁétream pressure was computed by
aﬁplying the momentum equation at the input. The downstream pressure

|
was fixed. 1Input and outplit density was computed using the equation of

|

state. The problems were started at the time steps shown in Table 1,
The time steps were increased throughéut the run using #he TSS mode of
operation. The progress of the run was ﬁonitored to guide the in-
creases on  At.

The formidable problem of presenting the results of these trans-
ient, complex flows was aided by the cohputer plotting routines. About
50 to 100 plots were made for each run.‘ Many of these were difficult
to interpret without extensive cross comparison. It was decided to
show the transient results in a semi-quantitative manner using three-
dimensional (3-D) plots at select times. The steady state plots are
mainly radiél profiles at select axial-positions.

Figures 2la through d’show the axial velocity at several times for
the velocity fatio of 2. The axes of perspective are given by the min-
:ature X-Y-Z coordinate system on the.right. For all 3-D plots the Z
axis denotes the magﬁitudexof the dependent wvariable, thé! Y axis
points in the rédial direction, and the. X axis points in the axial
direction. The maximum and minimum values along each axis are given.
The scale of the figure cHanges from plot to plet. Viewing these fig-

ures in the time sequence shows that initially the coaxial inputs pro-

duce a uniform output. With the passage of time, the high center
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veloclity and low annular velocity move toward the exit while trgns—
ferring momentum at their interface and at the wall.

Figure 22a shows a 3-D pressure plot right after the flow starts,
and figure 22b shows the pressure field at steady state. Note that the
vertical scales differ, and in examining figure 22a, note that the
pressure spike in the center of the input boundary points down. All
the 3-D plots have no hidden lines. A strong gradient is set up at the
inside wall of the annulus, hereafter called the annular edge. The
'gradient forces the high velocity center input to turn outward and
raise the velocity in the annular region. At the same time the leading
edge of the wall is forcing fluid toward rhe centerline,. At steady
state the flow field is established, and the fluid already is acceler-
ated. Then a strong driving force is no longer needed and the radial
pressure gradient is considerably weaker, as seen in figure 22b.

Thé rédial flows a?e so0 complex that it is impossible to find a
figure that can present them properly. In brief, the initial flow is
mostly outward with the maximum at the annuler edge. At steady state,
the center tube radial flow is weakly inward and the annular flow is
strongly inward, which decreases the radial gradient of axial velocity
between tﬁe two streams. : |

- The steady state radial profiles of the axial and radial veloci-
ties are displaved in figures 23a and b for select axial positions.
Figure 23a shows the rapid dissolution of the steep veiocity gradient
separating the two fluids. This region of high she;r stress promotes

rapid momentum transfer. The complexity of the radial flows is seen in
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figdré 23b. The wall isralways moving the fiﬁid inward, but there is a
small outward flow near tﬁe entrance at R = .5 which is raising the
axial velocity in that region. CPU time was 36 minutes.

To further characterize the entry region for coaxial inputs, the
short tube problem was run with the higher velocity entering through
the annulus. Since the wall drag tends to force the fluid toward the
centerline, the velocity ratio of .05 was expected to cause larger
forces to be impressed on the f£luid. This could make the numerical so-
lution more difficult. When the problem was run with B, = 1.0, it be-
came unstable at t = .16. Evidently the £ corrector removed some
stahilizing errors. Some numerical experiments were run increasing BV
above 1.0, since this addé the absolute values of the error corrections,
cancelling negative corrections, and improving stability. Tests were
made with BV as high as‘2.0, which.changed the thi?d significant fig-
'uré in velocity'valﬁeg after the computation had progeeded part way
through the problem. A value of Bv = 1.5 caused a maximum change of

one digit in the fourth place. This B, value was used and the prob-

Vv

iem ran to steady state (t = .26) successfully.

The- results are shown.in figures 24 and 25. Figures 24a through
"~ 24d are 3-D plots of the axial ﬁelocity. 'As with the previous problem,
the initial response of the fluid to the step impulsé input is to move
in plug flow., This is seen in fipure 24a. Progressing from upstream
to downstream, the axial velocity rises in wave aloﬂé the tube center-
line and falls in a wave along‘the annulus centerline. This condi£ion
is the inviscid solution to the initial conditions. As time progresses

these waves convect downstream and the flow slants toward the centerline,



Plots of the steady state velocities are shown in figures 25a
and b. Although the maximum axial velocity in the annulusris increas-—
ing, the mass flow is decreasing. The only outward flow at any time in
the problem occurs just downstream of the annular edge; and the pres-
sure profiles show the wall and annular edge effects. gbout 30% of the
way down the tube, the initial turning of the flﬁw has éssentially been

completed.

I. Long Tube with Coaxial Entry — Velocity Ratios = 2 and .05,

Velocities = 10 and 20 cm/sec

The method was applied next to a long tube using cells twenty
times longer than wide. This provides less detail in the axlal direc-
tion and also leads to smaller radial velocities, since the first com-
puted value is a;ready one tube radius downstream. These radial cross
flows can cause nonlinear instability, so their lessening was expected
to éive favorable stability.

Since the tube leng£h is ten diameters, the exit flow should ap-
_’proach a parabolic profile for the low Reynolds numbers of these prob-
‘lems. The length of ten diameters-is near the practical maximum for
the computer used, &ue to speed and storage limitations. A lower as-
pect ratio would be less accurate. Ifloniy steady state solutions
vere desired, the:appropriate steédy'equations_could be used with a
numerical marchin% technique and any length coulﬁ be used. Ghia et al.
(22) used this method teo follow solutions for over7250 diameters #own-

Btream.
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The results are shown in figures 26 and 27 for a velocity ratio of
2. Transient runs are shown in the series of figure 26, The initial
impulses convect down the tube; but they are overwhelmed by the bound-
ary layer buildup in the long tube and associated flow increase on the
axis. The steady state values are shown in figures 27a through c.

Full parabolic axial flow is almost achieved at Z = 20, and the pres-
sure field becomes almost linear with tube length after Z = 2. CFPU
time was 85 minutes for this run,

No tfansient 3-D figures are shown for the long tube with an en-
try velocity ratio of .05. Figures 21, 24, and 26 provide sufficient
insight into how the flow develops. The steady state values are shown
in figures 28a to ¢ and are consistent with the short tub; results,

Due to the initially low centerline velocity, the axial velocity at
7 = 20 is not yet parabolic, and the centerline velocity is only 90%
of the final value. CPU time was 34 minutes.

In summary, the ICE method with B stabilization allowed calcu-
lation of transient coaxial-entry problem and short tube problems which
were not previously available. Since these flows were quite nonlinear,
the versatility and stability of the method is well demonstrated.

'E
J. Center Jet Flow into a Larger -Tube - Velocity Ratip = »,

Velocity = 20 cm/sec

A complete parametric survey of velocity ratio, area ratio between
the center tube and annulus, and Reynolds number was not run for the
coaxial entry problem, nor was ‘such an effort appropriate for this-' .

study. However, recirculation zones represent another increase in
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complexity of flow and thus are of interest to this studyf Recircula-
tion in coaxial jets was found by Warpinski and Nagib {53) to exist
above velocity ratios of 8 for Reynolds numbers greater than 400. It
was decided to run a coaxial problem with no flow in the annulus.

This gives an infinite velocity ratio and is the same as a jet issuing
into a largef diameter tube. A tube of intermediate length, five radii
long, was chosen. Previous coaxial tests_were made with the fluid as-
sumed incompressible, then checked in part with an identical compress-
ible fluid. The calculation described in this section was run to
steady state for both compressible and incompressible identical fluids
and gave identical results.

The.transient solution is shown in figore 29 as pairs of diagrams
which show the velocity field and the flow direction at four times,.
The figores'labeled "Veloeity %ield" have ar?ows whose magnitude and
. directien refer to floW values locoted at their origin, Tho arrows
"are normalized to the makimum velocity in the field aod that halue is
glven ‘at the base of the flgure. Figures labeled "Flow Direction" uoe
arrows whose lengths are 1ndepondent of the flow veloc1oy to show the
'direction of small magnitude flows. At t'= .04 the local 1mpulse of
the Jet 1s seén dispersed.over the entire tube. But by t = 1 a
'omall amplltude rec1rculatlon ;one was formed ;n the annolor portion
“of the ;ube.' Figores (e) through (h) show the growth of the eddy down
‘the tube. Figure'(h) shows that the jet has filled the tube at steady
state, inasmuch as the edoy is contained within the tube with no back

flow into the tube along the wall at the downstream boundary. However,
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figure 29g shows that most of the fluid fiow is still in the center of
the tube.

The steady state velocity profiles are shoﬁn in figure 30. The
negative axial velocities between R = .6 and the wall indicate the
recirculation zone. No signs of instability occurred during the run,
and the ICE method handlgd the recirculation flows quite easily. CPU

time was about 80 minutes.

K. Coaxial Parabolic Entry Flow with Specie Diffusion and Chemical

Reaction

The success of the stabilized ICE technique with all the problems
previously described enCOuFaged the incorporation of the species con-
servation equations into the algorithm. The study by Seider (47) was
taken as the comparison case. This author examinéd the steady flow of
fully develdped coaxial streams into a larger tube where the fluid was
nitrogen with tracer quantities of hydrogen in the center jet and
ipdine in the annulaxr jet. As the streams mix, hydrogen iodide is
Lfofmed irreversibly. ‘

L{The use of trace gquantities decouple; the- species equation from

the mass momeﬁtum equations since negligible heat is released and in-
consequential density changes occur. Seider transformed the primitive
flow variables to stream fqnctién and vorticity, and rearranged the
iwo'species equations so that the mixing without reaction could be

calculated first, and the results used in a reaction equation. The

latter technique is valid only for two-component reactions.



The sequence used in solving the species equation in the present
program was described in Chapter 4 and is applicable to multicomponent
reactions. This method evolved from numerical experimentation. Ini-
tially it was planned to solve the species equation explicitly over
the full time increment, but this scheme was unstable. Then the equa-
tion was made entirely implici& aud solved repeatedly until the values
converged. It provided more stability, but it appeared that the reac-
tion equation was overshooting on each time step. Finally the algo-
rithm was put into its present form with only the convective fluxes
implicit and the diffusive terms explicit. The matrix is inverted by
the ADI method and the time steps subdivided for more stability.

Seider's problem was run for the conditiqn of total Reynolds
number = 496 (NRe = 248). There wére some inconsistancies in the in-
put condirions whiph were treated by setting ?he pressure quite high
to give .OQS mole inputs of the tracers; The problem was run as an
unsteady case with the péra@olic entry suddenly impressed upon the
tube whose contents were initially at rvest. The initial fluid compo-

sition within éhe tube was arbitfarily set és a core of nitrdgen plus
hydrogen and an annular cylinder of nitrogen plus iodine. After the
problem came to steady—sﬁate, the reaction was “turned on" by reset-
ting an index within the time-sharing computexr mode, and computaéion
proceededlto the new steady-state. CPU times were difficult to esti-
mate under these circumstances but probably ranged from one to two:
hours. -
The results are shown in figures 31 through 34.‘ It is impos-

sible for a 20 x 20 grid to exactly duplicate Seider's entrance
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condition because the axial velocity i;-not defined at tﬁé annular
edge. Hence the value of U for 2 =0 does not go to zero at the
annular edge, and furthermore, the annular edge is located at R = .55
rather than .563 which Seider used. Nonetheless, the axial velocity
profiles appear almost identical to Seider's graphical results. fig-
ure 31b shows radial velocity profiies, which Seider did not report.

The results of the ICE computation of ;hE'mixing of the core jet
were compared with Seider's results for no reaction in figure 32. The
comparison is excellent, giving confidence to both the total fluid
dynamics and the specieé mixing. The results with reaction were less
pleasing. Seider computed a fractional conversion of the hydrogen of
.17 at Z = 20, while the ICE computation gave about .13. In the ab-
sence of comparison witﬂ data, the relative accuracy of the two num-—
bers cannot be discérned.

The steady state concentration profiles with reaction for H2, 12,
and HI are shown in figures 33a through c. Except for Z = 20, the
curves in 33a and 33b look essentially the same since reaction is slow.
éeider did not keeﬁ track of the hydrogen icdide reaction prﬁduct in
his calculations. Figure 33c shows the concentration profiles for this
specie, and some interesting addiﬁional info}mation is contained there,
The peaks of the profiles shift to lower radius values with increasing
Z up to Z = 8 because there are small but appreciable radial flows
toward the axis over that length (see figure 31b). The strange profile
at Z = 20 is due to the longer residence time of the fluid near ﬁﬁé

wall. These fluid elements have more time to react provided that the



hydrogen has reached the wall, which figure 33b shows it indeed has
done between Z = 3 and78. The effect of boundary layer drag on
chemical conversion is élso shown in the contour map of the HI con-
centration, figure 34. The higher values and steeper concentration
gradients in the upper right of the figure shﬁw the wall effect. The
shift of the profile peaks toward the axis maf.also be seen.,

Seider reported that ;nstability resulted when cell aspect ratios
greater than .05 were tried. Teo show the superior stability of the
present method, a computation with RA = ,2 was run and the results
are shown in figures 35 and 36. No stability problems ensued, the re-
sults are consistent with those of the longer tube, and.more detail

i
near the injection point is available. The test was a complete

Sugcess.

L. Attempted Solution of Coupled Reaction and Fluid Mechanics

At this point it was ‘apparent that some intricate computations and
parametric surveys could be made studying the mixing and reaction of
small cbncentrations of reactants in recirculating coaxial flows. How-
éverl it seemed more consistent with the'rest.of the étudy to attempt
‘the last step, that of coupling reaction and flow by computing the mix-
ing and o;idation of carbén monoxide with air. This problem was of in-
terest to pollution, and the .detailed chemical reaction steps had been
studied by Brokaw and Bittker {8). They used a mixture representative
of automobile exhaust with the assumption that the reactants were ini-
tiélly well p%xed. A global rate could be gotten from these calcula-

tions (see Appendix B). A similar mixture was used here and the
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composition is listed in Table 1. Although shly 10% CO was present, a

-

témperature rise of 200-300° F was expected. #his could -accelerate

the compressible flew-:such that the constant Jguwastream pressure as=

sumed for earlier céa%ﬁil runs and justified ift Shapiro (48) might no

longer be valid. However, that assumption wad retainediat the start.

- <I 3
The paper of Brokaw (7) was used as a basis fu gimplifying the compu

tation of mixture transport properties, and thef€ properties were pro-

vided by Svehla (49).. Thermodynamic data wet€ gotten from Gordon and

McBride (23).

It was decided to first attempt a solut et with no reaction. The

problem was started as impulsive uniform coaxlgl Flows of air in the

center tube and the hot gas containing €O i1 f£he annulus. The tube

initially contained air. The calculation pracﬁRJEd very well to

t = .065 when disasterous dynamic instability pceurred.  Figure 37

shows the last temperature profile obtained. (¥ €8 be seen that in-

stability is present in the profile near the mi¥ing zone. Reducing

the time step did not help. At this point thé numerical experimenta-

tion was stopped.

It is felt that there were two prime reagdns for the instability.

First, no truncation error corrections had be€! derived for the energy

equation because of the massive effort it ental l€d and because there

was no indication of dire need. Second, it w48 suspected that more

cells in the radial direction were needed for FRRVETEENCE under the

severe temperature and density gradients posed py the problem. This

difficulty could not be treated within the cgpdeity of the present:

Reproduced from
best available copy.
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computer. These facts plus time restrictions caused the study to be
terminated. However, the superior applicability of the method was

demonstrated and it is this author's opinion that the method can also

be applied to strongly coupled flows.
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Chapter 7

CONCLUSIONS AND RECOMMENDATIONS
The Implicit Continuous Eulerian {(ICE) method has been shown to be

applicable to transieﬁt, two-dimensional caleculations eof beoth high

and low speed compressible flows and to incompressible flows.

The inclusion of truncation error corrections bhased on H#rt's sta-
bility theory provided excellent stability behavior without dis-
torting the numerical results.

The stabilized ICE method permitted computaticn of coaxial entry
problems which were previously impossible due tﬁ wake effects.

The method =zuccessfully treated complex flows such as unsteady re-

circulation zones.

The addition of multicomponment mixing and chemical reaction was
successful for flows without strong coupling between reaction and
fluid dynamics. |

The expansion of the hybrid function to_inqlude cuter iteraticn on
the internal energy caused greater stability at the expense of ex-
cessive numerical diffusion and computer time. The use of the ex-
panded hybrid functiog is not recommended.

The iteration of the pressure field using succeééiye over—

relaxation (SOR) and an alternating direction implicit (ADI)
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techniqug gave identical results. The SOR method was faster for
meshes with square cells while the ADI method was fastef with long
rectangular cells.

The application of the method to problems characterized by strong
coupling between reaction and flow was unSuccessfui.

It is recommended that experimentation with the ICE method continue
with flows strongly coupled with reaction. This iﬁcludes (a) der-
ivation and testing of a truncation error correction for the energy
equation, (b) experimentation with time centering for compressiblie

flows, and (c) use of larger grids.-



Table 1 - Description of Computations

Problem T* P o* M T C*

2 3 /gm-mole cm /sec2 gm-moles/cm

P
Type # Description Fluid "R_ (gm/cm sec”) gm/cm 5

1 Incompressible Startup in an | Blood | 310 1.013x106 1.050 38.66 - -
Infinite Tube

2 | Compressible Flow in a Shock | Air | 293 | 1.013x10% {1.206x107>| 20.00 |2.100x10° ;
Tube

3 | steady Incompressible Cyclical| Air | 319 | 1.013x10° |1.108x107%| 29.00 - -
Oscillatory Fiow

4 Incompressible Transient Air 319 1.013x106 1.108x10'3 29.00 - -
Oscillatory Flow '

5 Incompressible Tube Entry Air 319 1.013x106 1.108x10_3 29.00 -
Flow

6 Coaxial Entry in a Short Tube.| Air 319 1.013x106 1.'1083{10-3 29.00 2.286x109 -

Length=1 radius, Center Tube
Velocity=20 cm/sec, Annulus
Velocity=10 cm/sec

7 Coaxial Entry in a Short Tube.] Air 319 | 1.013x10 1.108x10~3 29.00 2.286x109 -

Length=1 radius, Center Tube
Velocity=10 e¢m/sec, Annulus
Velocity=20 em/sec

8 Coaxial Entry in a Long Tube, | Air 319 1.013x106 1.108x10_3 29.00 2.286x109 -

Length=20 radii, Center Tube
Velocity=20 cm/sec, Annulus
Velocity=10cm/sec

9 Coaxial Entry in a Long Tube. | Air | 319 | 1.013x10% |1.108x1073| 29.00 |2.286x10° -

Length=20 radii, Center Tube
Velocity=10 cm/sec, Annulus
Velocity=20 cm/sec

£ETT



Table 1 - Description of Computations (Continued)

Problem | T* o, B, W ™, o
Type # . Description Fluid °R_{gm/cm sec”) gm/cm” gms/gm-mole cm?sec gn-moles/cm
10 Coaxial Entry in a Center Tube | Air 319 1.013x106 1.108x10-3 29.00 2.286x109 -
with Length=5 radii, Center
Tube Velocity=20 cm/sec
Annulus Velocity=0 cm/sec
11 | Coaxial Parabolic Entry in a |N,, | 716 | 2.586x10° | 1.217 28.02 | 5.312x10° |3.409x10"
Long Tube. Length=20 Radii. trace
Center tube max. velocity = Hz §
31.35 cm/sec with .005 moles/ I
cms Hy. Max. Annulus velocity N2 is
= 27.95 cm/sec with .005 moles/] ref.
cmd Ip
12 | Coaxial Parabolic Entry in a |Nz, | 716 |2.586x10° | 1.217 28.02 | 5.312x10° |3.409x10"
Long tube. Length=5 radii.  |trace
Center tube max velocity = Hy &
31.35 cm/sec with .005 moles/ [ I2
cm3 Hp. Max. Annulus velocity Ny if
227.95 em/sec with .005 moles/ | ref.
em? 1o
13 | Coaxial Enmtry in a tube. Length Air |530 |1.013x10% |1.195x107% | 28.85 |2.126x10° |4.122x107°
=5 radii. Center tube velocity= 1is '
20 cm/sec with air. Annulus Ref.
velocity=10 cm/sec with temp-
erature=1300°F, composition
C0=.1, 02=.1, C02=.1, Hy0=.12,
N2=,58
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Table 1 - Description of Computations (Continued)

Problem R v t {1) Grid L+ Figure
W T
Type # At SR___cm__cm/sec  séc Re Voo Nop mmair A am ¢ 8 s PM By P
1 .002 .25 .25 31.24%3% 1 205 990 .008 4x4 .25 1 4 10 0 0
L0015 .1 .25 31.24(2) 1 205 990 10x4 .1 4
,001 .04 .25] 31.24 1| 205 990 25x4 .04 4
2 .025 L2 1 34294(3) 001 1 34700 .714 029 5x50 .2 50 |5a,b, 11 1|0 0 0
c,d,
6,7,8
.01 .2 1 34294 .0011 34700 714 .029 5x50 .2 50 6 1 10 0 0
.025 .2 1 34294 L0001 34700 .714 029 5x50 .2 50 8 .51 .50 0 0
025 L2 1 34294 L0011 34700 .714 029 5x50 .2 50 G 51 .51 0 0
3 00139 1 .05 .5 17.45 1 50 3.05x102 .029 20x5 .05 2.5 10 1 110 0 0
.00417 ] .05 .5 17.45 .09 50 13.05x10° [.318 20x5 05 2.5 11 1 110 0 4
4 {.00417 .05 .5 | 17.45 36| 5o |[3.05x10°}.080 | 20xs | .05 | 2.5/12,33 }1 {1j0o o [0
. 6
5 Start 10 1 10 1 57.3 9.14x10 .100 10x30 .15 20 114,15,})1 1{0 0 4]
.005, 16,17, ' .
+.02 18
6 .002 .05 2 | 12.5 1 143 5.58x106 .160 20x20 1 2119231 110 1.011 0
+,01 .
7 .002 .05 2 17.5 1 201 2.99x106 .115 20x20 1 224,251 110 1.5 0
-+, 01
8 .002 P
+.02 .05 2 12.5 1 143 5.58x10 " {.160 20x20 .05 40 126,27 11 110 R.1 0
9 002 ) . o 6 ]
-+.02 .05 2 17.5 1 201 2.99x107).115 20x20 .05 40 28 1 110 .2
10 002 .05 2 5 1 57.3 3.66x107 .4 20x20 .2 10 | 29a,b,11 110 .01} O
+.01 c,g,h,
30b
10 .002 .05 2 5 1 57.3 3.66)(107 .4 20x20 .2 10 | 29d,e,71 1 1.051 0
+.01 f,30a

SIT



Table 1 - Description of Computations (Continued)

Problem ﬁw V. t. N (1 N N Grid -R f& Figure
Type # At AR com _cm/sec sec ., Re Eu 51  NRxNL A cm # o ¢ Py By MK
11 .10 05 10,06 |17.18 1 243 7.2x106 586 20x20 .05§201.204931,32,51 11| O §1.01]1.01
. 33,34
12 .05 .05|10.06 117.18 1 248 '7.2x106 .586 20x20 .2 50.12135,36 |11 1 0 {1.0111.01
13 .01 .05 2 12.5 1 {160.6 5.43)(106 160 20x20 .2 10 37 1ij1).99]| .99] .99

(1) This is based on the radius and mean velocity;

(2) Centerline velocity used only for this case.

(3) This is the speed of sound.

Mass mean velocity used everywhere else,

Dimensionless velocity then is Mach Number

911
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Figure 2. - ICE computational grid.
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Figure 3. - Basic flow sheet for the ICE algorithm,
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Figure 4, - Startup of incompressible flow in an infinite
tube. Re = 205 at steady state. '
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Pressure ratio, (P + P9/p*

Axial velocity, U
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Figure 5. - Profile for the shock tube problem, t= 0.5,
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Figure 6. - Pressure profiles for the shock tube pmbiem'with
two time step sizes, =05
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Figuiell - Pressure profileé for the shock tube problem using
I in the hybrid function, t = 0.5, '
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Pressure ratio, (P + P*)/P¥

Density ratio, p/p"
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Figure 8. - Effect of time centering on pressure profiles for the
shock tube problem, t=0.125and 0.5,
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Figure 9. - Effect of the mass truncation error correction, By,
on a density profite for the shock tube problem, The calcu-
fation is time-centered, 6 = @= 0.5,



Relative axial velocity perturbation, UHPY/Pppant

Relative axial velocity perturbation, U'/(P'/Ppean)
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Figure 10, - Radial distributions of the axial velocity per-

turbations for oscitlatory incompressible tube flow,
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Figure 11. - Radial distributions of the axial velocity per-
turbations. For oscillatory incompressible tube flow,
gfzvrf!v R =10, ‘ :



Relative axial velocity perturbation,

Relative axial velocity perturbation, U'/(P'IPpean!
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Figure 12 - Radial distributions of axial velocity per-
turbations for startup of oscillatery incompressible
tube flow, gzmm R=5 '
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figure 13. - Cyclic radial distributions of axial velocity
perturbations for transient oscillatory incompressinle
tube flow, /2rf/fV R =5,
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Figure 14 - Axial velocity development at several radial positions for laminar

incompressible tube entry flow, t= 2
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Figure 15 - Radial profiles of axial velocity at several

downstream positions for laminar incompressible

tube entry flow, t= 2
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Figure 16. - Radial profiles of radial velocity at several
downstream positions for laminar incompressibie
tube entry flow, t=2
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Figure 17. - Axial profiles of axial velocity during startup of laminar in-
compressible tube entry flow, Values > 1for R=0.05; values<1 for
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Figure 18. - Radial profiles of axial velocity during startup
of laminar incompressible tube entry flow, Z = 1. 333,
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Figure 19. - Growth of instability of axial velocity for coaxial entry into a’

short tube. R =0.025, entry velocity ratio = 2,0,
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Figure 20. - Stabilized axial velocity for coaxml entry into a short tube
R =0.025, entry velocnty ratio = 2,0,



CXMIN= 0.0 - - XMAX = 0. 10000E 01 7
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(b} t = 0.04.

Figure 21. - Plots of transient axial velocity for coaxial entry
“into a short tube. Entry velocity ratio = 2, 0.
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Figure 21. - Concluded.
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Figure 22. - Zipis of the transient pressure fieid for coaxial entry

into a shoct fube. Entry velecity ratio = 2.0.
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Figure 23, - Coaxial entry info @ shortfube. t = 0. 24 (steady state), entry
velocity ratio = 2,0.
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Figure 24. - Plots of transient axial velocity for coaxial entry into a
short tube. Entry velocity ratio = 0. 05.
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Figure 24. - Conciuded.
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(b) Radial profiles of radial velocity. -

Figure 25. - Coaxial entry into a short tube. t = 0,26 (steady state), entry
velocity ratio = 0.05. , :
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Figure 25. - Concluded.
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Figure 26. ~ Plots of transient axial velocity for coaxial entry

into a long tube, Entrance velocity = 2. 0.
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Figure 26, - Concluded.
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Figure 30, - Coaxia'l)’entry, center jet only; t = 2.0 (steady statel.
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(a) Radial profiles of axial velocity.
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{b) Radial profiles of radiat velocity.

Figure 31, - Coaxial parabolic entry into a long tube with diffusien and
reaction of trace species.
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Figure 32. - Con{'parison with Seider's no-reaction computation
Z =12, Npg =248, Ng. = 0.942,
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Appendix A

INVERSION OF THE P MATRIX

The finite difference equation for the hybrid function P is
given by equation (4-26). This equation may be solved by several
methods, one being simple relaxation. In this case the new values of
ﬁi,j are found by using equation (4-26) and sweeping through the grid,
computing the (Q + 1)th wvalue of P from the Qth values surrcounding
“it., After the entire net of (G + 1)th values are computed they are
substituted in the P matrix and the process is repeated.

A variation is to control the convergence by multiplying the right
hand ;ide of (4-26) by a factor o while also adding a term which is
}(l - a) times the old value of P. If a = 1, the result is straight
relaxation. If 0 < ¢ < 1, the iteration is termed underrelaxation
which converges more slowly and becomes more stable as o 1is made
-~sﬁaller. For overrelaxation, 1 < o < 2 and convergence is hastened up
‘to a poin;, which for the groblems run here wés a= 1.8, At higher
values of “a, convergence gecomes more difficult or impossible. At
@ = 2 the method is unstable.

Another method which usually accelerates convergence is the imme-
diate replacement with the new value of P. This leéds to the func-

tional dependency shown in (4-27) if the grid is swept through increas-

ing i and j. Successive overrelaxation (SOR) with immediate
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substitution was used up to the tube entr& flow problem. At that point
cells with lower aspect ratio were used énd convergence began to slow.
This prompted examination and use of another method.

A modification of the alternating direction implicit method (ADI)
by Brian (6) was used herein. It has been used by Schwab (46) among
others and appears to offer some stability and convergémce advantages
plus higher order accuracy. Briefly, the time step is split in half
and the finite difference equation is written as a three level scheme.
The equation for the first half time step is written with all the dif-
ferences in one coordinate in implicit form.

For example, given the

simple equation

2. . .2
R e E (A-1)
aR 9z
the first half time step can be written
) n ® ® * " n n
F. - F, F. . — 2F, ¥, . - - 2F; ., + ¥} .
i, 4,3 _ _ifl.j] i,j  i-l.i o, 1,5+ i,] i,5-1
b/2 (6R)* (82)°
(A-2)

This gives a tridiagonal set of equations which may be solved without

- iteration (see any numerical analysis text). Next the equation is

being known.

v
5

. ' #
written implicitly in the other coordinate, the values F

i
E ] * . %k ®E Rk

%ok n

F. , - F, , F, , - 2F, . + F, .. F. .., -2F, ., + P, .

i,i i,3 _ _3+1,j i,j i-1,j, 1,3+l i,3 i,3-1
At/2 (AR)Z (AZ)2

| ‘ _ :
| - ' : {A-3)

Again a tridiagonal system of equations is formed and solved for the

3

F, . wvalues,.

, Finall
1,3 Y
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n+l n #* K. sk % &%
-~ - + .
TR e P T e

R . ()%

(A-8)
which is explicit. 1In practice, the equations may be subtracted from
each other to eliminate F**.

The ADI method was used to solve the implicit species equation. 1t
was also used to invert the P matrix after converting that Poisson-.
type equation to a pseudo'time dependent equation. This was done by
clearing the denominator in equation (4-26), moving all terms to the
right hand side, and replacing the zero on the left hand side with the
finite difference analog to 9P/8X, where "chi", X, is the pseudo-time.
The ADI method was then applied and the equations solved as though the
P variables were moving through the X domain to a steady stafe solu~-
tion which was the set of wvalues Fi,j at n + 1. This was done using
equations (4~28a) and (4-28b). In that sense, the solution of the P
equation was still iterative.

Tests with the entry problem showed thaf SOR converged the P
field faster tham ADI if the cells were square. But the use of long

_rectangular cells, corresponding to low aspect ratio, gave ADI a speed

advantage over SOR which was as high as a factor of five. Numerical

experimentation showed that the convergence rate behaved as shown in
figure 38. A few restarts varying AX and iterating over one At
established the two slopes and the optimum wvalue of 4X. The ADI

method was used for all problems with uniform and coaxial entry f£low,
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Appendix B

OUTLINE OF THE ALGORITHM FOR FLOWS WITH STRONG REACTION

Since the carbon monoxide problem was not completed, this appendix
briefly discusses the planned approach fér dealing with the kinetiecs
and heat of reaction. The detailed kinetic equations for CO oxidation
are quite extensive as shown in Brokaw and Bittker (8). A mass equa-
tion for each specie or radical would bé needed, including data for
the diffusion coefficlents. To aveid tﬁis the computer program used in
reference (8) was run for a series of concentrations and temperatures.
The global-rate equation for a second order reaction was integrated to
give an eéuation predicting a dimensionless concentration as a function
of a global rate and time. The results of the detailed computations
were fit to this equation to get the gldbal rate from the slope. Fig-
ure 39 is an éxample of such a plot. Tﬁe goed fit to a straight line
.indicates the global rate adequately describes CO oxidation for the
temperature and initial coqcentration shdwn. Most fits were good, and
a library of global rates was planned. .

The intended sequence of computations of specie reaction was as

v

follows:
1) Solve the species convectlion and diffusion over the time sub-

step At'.
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2) Compute the enthalpy of each cell b;sed on the new composition
and old temperature.

3) Enter the reaction computation, pick a global rate for each
cell, and react at constant temperature over At".

4) Compute enthalpy based on the new composition and the change
that occured over At".

5) Compute the heat capacities CP and CV and calculate the
temperature change from the change.in enthalpy., Calculate the energy
change.

6) Repeat steps (3), (4), and (5) over all the At" required
until step (1) must again be repeated.

This sequence contains a number of errors. One is that for a

mixture,

B =§ B X, | | (B-1)

where HM is a function of T for each specie M, the reaction causes

both a change in composition and temperature. Thus

1 = )5 (B + %) 3-2)
and the second term has been ignored. The same problem cccurs for in-
ternal energy. TFor small éomposition changes this error may be accept-
able.

The choice of position in ‘the algofithm for the species equation

was arbitrary. But it was felt that computing mixing, reaction, and

T n+
subsequent temperature changes just before calculating Pi % was the
, . _
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most appropriate position. Thus the reaction affects the new pressure,
and the pressure is the variable which couples the reaction chemistry

and fluid flow. The preésure field immediately acts on the flow in the

next time increment.
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Figure 39. - Curve fit of detail kinetic calculations to give a global rate.
Second order oxidation of carbon monoxide. T = 1600; initial mole frac-
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Appendix C

DESCRIPTION OF THE NUMERICAL PROGRAM

The program listed at the end of this appendix is an experimental
program written for a time sharring computer. It is not in a "produc-
tion" form, and it will require some effort to switch the program to
batch mode operation. Much room for streamlining is certainly possible
and desirable,

The program listing represents the status of the last problem at-
tempted, that of carbon monoxide oxidation, The program is scaled for
a maximum grid.size of 20 % 40 and for five species. Lines of comment
within the programs help explain the purpose of the program segments
they block off.

The main program and subroutines will be idenfified. Next the

\impqrtant variable names will be defined. Many other variables are
gself evident and need not be defined. The equation symbols used in
this thesis were chosen by éonventio£ (U = axial velocity) and because
they could be identified with their vafiable.(R = radius). The symbol
system initially employed was more cumbersome and used many Greek sym-
bols. TUnfortunately the computef program uses variable words consis-—
tent with the old symbol system. Some common ones are:

TR

]

radial velocity, V

VZ

axial velocity, U
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TAU = time, t
RDL = aspect ratio, RA
S5IG = deunsity, p
A. Programs
FMIX6 - Main program which controls all flow of information, and per-
forms major calculations. |
INIT - Subroutine which impresses the initial conditions of the prob-
lem, plus sets some constants.
BOUN - Subroutine which provides boundary conditions.
PROPS6 — Subroutine which specifies the properties of the fluids and
computed the reaction.
PADT - Subroutine which performs the ADI iteration of the g equa-
tion.
MASS - Subroutine which solves the species equation.
RESET - Subroﬁtine which permits resetting thg variables in the TS5
mode when all other programs are compiled with the Internal
Symbol Dictionary default, ISD = n. Can be excised in a
batch program. |
ﬁITE ~ Subroutine which w;ites ocutput and'tapés plotting data.
SIMPiE - Subroutine which calculated reaction fluxes by Simpsons Rule,

SQUIG = radius, R

B. Equatidn Variables, Constants and Supporting Information

Al-+F1,
B2, E2j
B ,
BC1-+BC3
BETAK

Coefficients for the specie ADI.

Explicit term in radial momentum equafion.
Constants in boundary conditions.
Input for BMK coefficient.
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BETAM

BETAMT

" BETAV
BETAVR
BETAVZ
BKCOEF
BMCOEF
BVCOEF
ClIN
+C5IN
CloUT
+C50UT
C1lSTOR
+C55TOR
ccl
+CC42
coDv
COK
coMu
CONC
CONC1
+CONC5
CONCUP
CONUP1
+CONUP5
CONOLD
CONT
COTHER
CPIN
CPNZ
CcPo2
CPOW
CPSTAR
CSTAR
CVNZ2
cvoz2
CVSTAR
D

DCHE

bI, EIL,
FI, DJ,
ET, FJ

DSQIG
DTAU
DY
DVSTAR
ENEW
ENG
ENGN
EOLD
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Input for gy coefficient,

Mass truncation error correction.

Input for BVR and sz' coefficients.
Radial momentum truncation error correction.

Axial momentum truncation error correction.
Coefficient for By correction.

Coefficient for Ry correction.

Coefficient for Ryp and Byy correctionsz

Input specie concentrations in center tube of coax.

i
Input specle concentrations in annulus of coax.
Arrays for tape storage
Main equation coefficients.

Curve fit coefficients for diffusion coefficients.
Curve fit coefficients for thermal conductivity.
Curve fit coefficients for viscosity.

Total concentration.

Concentration of the 5 species.

Upstream total concentration.
Upstream species concentrations.

0ld value of continuity.

New value of continuity.

Coefficients for heat capacity.

Center tube input fluid heat capacity.
Nitrogen Cp.

Oxygen Cp.

Annulus input fluld heat capacity at constant pressure.
Reference heat capacity at constant pressure,
Reference concentration,

Nitrogen Cy. :

Oxygen Cy. '

Reference Cy. _

Explicit terms in axial momentum equation.
Pseudo-time step AX.

-

ADT coefficients for P and pg.

Radial cell dimension, AR.

Time increment, At, ' _
Binary-type diffusion coefficient,
Reference diffusion coefficient,
n+ 1 value of total energy, E.

n value of total energy, E.
Normalized value of total ‘energy.
0ld value of energy. '



EULNO
EY

EYE
EYIN
EYEOW
EYOLD
EYSTAR
FREQ
G
GAMIN
GAMMY
GAMOW
I

J

LT
MFINIT
MLES
MLESIN
MLESOW
MMIXIN
MMIXOW
MOLFR
MOLMIX
MOLWT
MSTAR
MUSTAR
MWT
NPR
NRE
NSC
PB -
PBHAF
PHI

PR

- PRANIN
PRANNO
PRANOW
PRSTOR
P51
PSTAR
PUP

Q

RAT1
RAT2
RAT3
RDL
REYNIN
REYNO

REYNOW

RIN
ROUT

Euler number, NE -

Normalized reference internal energy
Internal energy, I.

Normalized internal energy.

Internal energy of annulus input flow.

01d value of internal energy.

Reference internal energy, I*,

Cyclie freguency, f.

Explicit term in P equation,

Center tube input fluid.

Ratio of heat capacities,

Annulus input fluid.

Radial cell index.

Axial cell index.

Total length.

Input mole fraction.

Mixture Molecular weight minus specie K.
MLES for the coaxial center tube input.
MLES for the coaxial annulus input.
Mixture molecular weight for the coaxial center
Mixture molecular weight for the annulus input.
Mole fraction, X.

Mixture molecular weight.

Normalized molecular weight, M

Reference molecular weight, M¥,

Reference velocosity, p¥.

Specie molecular weight.

Prandtl number, Np,.

Reynolds number, Np,.

Schmidt number, Ng..

Pressure, P.

Value of P after first half of ADI iterationm.
Coefficient,

Pressure, P.

Prandtl number for center tube coax 1nput.
Prandtl number.

Prandtl number for annulus coax input.

s Pressure to be taped.

Coefficient, V. .

Reference pressure, p*.

Upstream pressure.

Velocity divergence.

Radius ratio (i - 1)/(21 - 3).
Radius ratie (i ~ 2)/(21i - 3).
Radius ratio (241 - 5)/(i - 2)
Aspect ratio, Rps

Reynolds number for center tube input.
Reynolds number. _

"Reynolds number for annulus input.
Radius of coax center tube.

Radius of coax outer tube, Ry.

tube input.
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S
SGSTAR
SGSTOR
516G
SIGK
SIGOW
SKHAF
SKOLD
SMITIN
SMITNO
SMITOW
SOLD
SO0UN
STRONO
T

TAU
TAUEND
TCYC
TEMPIN
TEMPOW
THETA.
TIME
TPSTOR
TSTAR
UR
UROLD
URSTOR
VIN
vour
VREF
vup

VZ
VZOLD
VZSTOR

Explicit terms in the species equation,
Reference density, p*.

Density to be taped.

Density, p.

Specie density, Pk -

Density for annulus input.

Value of specie density after first half of ADI iteratdion.
0l1ld value of specie density.

Schmidt number for coax center tuue 1nput.
Schmidt number, Ng..

Schmidt number for coax annulus input.
01d demsity.

Speed of sound squared, A.

Strouhal number, Ngp.

Temperature, T.

Time, t.

Time at the end of a run.

Cycle time, the reference time
Temperature of coax center tube input.
Temperature of coax annulus input.
Coefficient in mass equation.

Time value for taping.

Temperature value for taping.
Reference temperature, T¥,

Radial velocity, V.

01d radial wvelocity.

Radial welocity for taping.

Velocity for coax center.tube input.
Velocity for coax annulus input.
Reference velocity.

Upstream velocity.

Axial velocity, U.

0ld axial velocity.

Axial velocity for taping.

C.  Program Control Variables

CELLIN
CONTHI
CORTLO

DTMAX
ERROR
ILES
IMAX
IMIN
IMNI

The nuuber of the last cell within the center tube for
annular flows. : . _

Largest acceptable value of the error on the continuity
equation. If.exceeded, the time step is cut.

Low value of continuity error., If the error is less than
this number for 3 consecutive times, the time step increases.
Maximum allowable. time step.

P convergence error (also ERRORL).
NR + 2.

NR + 3.

NR + 1.

NK

-
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INCOMP
ITERS
TTEST

ITMAX
JEND
JLES
JMAX
JMIN
JMNI
JSTART
JTEST

NANN
NBUG
NCONT
NCOUNT
NFIRST

NFIRPB

NFLU
NIN

NITER
NL
HOUT
NOUTER
NPRITE
NPROB
NR
NREACT
NRITE
NRUN

. NSAVE

NSPECY
NSTOP
NSTART

NT
NTAPE
NTLOOP
NTRITE
NTUBE

NY

If value = x . the fluid is incompressible.

The number of P iterations in that time step.

The radial t¢Jg u'mher denoting the P value being tested
for convergraics : .

The meximum: i}JD"”L10 P iterations in one time cycle
Largest axigi- *ﬂﬂ » for computing U,

NL + 2. '

NL + 3.

NL + 1.

KL.

Smallest axiai “index for computing U.

The axial cell number denoting the P value being tested
for convergence.

The lowest ceil rmyumber within the annulus.

If value is l;.uenug output is written.

Counter on continwity test for increasing At.

Loop counter on writeout test.

If value = 0, the P array calculated in the first &t 1s
saved. .

If the value is 1, the previously stored P array is loaded
at initialization of the problem,. :

Identifies the fluid being used.

Number of At' in each At for the solution of the species
equation,

The P field iteration number.

Number of within-grid axial cells. atl

Nuwber of allowable outer iterations on T .

Outer iteration number.

Counter on P iteration for writeout of P array.

The problem number.

Number of within-grid radial cells.

If value 1, reaction is calculated.

If value 1, printer output is used.

Run number.

Sets the number of At increments between renewing restart
data storage.

Number of species in multlcomponent calculations,

If value = 1, program stops.

If value = 1, a restart is effected by reading dataset with
last restart storage.

Number of time loops.

If value = 1, output is stored on tape for later plotting.
Time loop counter for output. .

Test value for writeout.

Largest cell number within the center tube of coaxial
injection,

Number of At" within each At' £for computing reaction,

1

b. Listigg_of Computer Program

Reproduced from
best available copy.
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ha =

3

COMMCA/NN/PSTAR (SGSTARLFUST AR MCLUWT  TNCCNP

COMMON/OQ /DTA U, TC YL oERRQR G PHT W THE TA (B SE, PETAM REYAV ,RFTAT ,RETAY , NCHT
COMMON/CC/BRCCEF,CC158,0017, {C32,0C33,0024,0035,002%6,0C37
COMPON/RR/ANTRITE, TTHAX G AFRITEZNFLUZNEROP AR 4 ALy KT NITER, NOUT
CCHMFON/SS/TAUENT NRYTENTAPE (NSAVE (NFIRPP
COMMON/TY/CCLC PETAMT, FETAYR ,PETAVT7 , JSTART

COMMDN/Wh /RATLWRATZ

COFFOR/XX/RINGVINGVOLTNTURENAKN
CCMPON/YY/UTOLT L ACTAUL, MTNCLCNYOLE
COMMON/ZAB/METAR ,TSTAR ,CSTARGCVSTARLCC3B, SFFCIF

COMPOR/AC/NRE ¢NPRyGAMMY ,MOL N[ X CONEC

CCHFCNFAC/NEC
COMMON/AE/CC24CCBCCSsCCLEWNPROF NSPECYyhSPECy MULT IR NY 4 NINsRRFACT
COW¥NMCAFRAF/SICK, MOLFR

COMMON /AH/STGKUP 4 SKIIP

COWMON/ IR /CC26,CC27

CCMPONFAL/NLES ¢ ToCAPIM s CAMCH, TEFPOH, ST ZEX

COMMON/AM /VDLFUP,MMT XLP,MLESUP, SNITUP,GAPUP,,SHITIN,SMITOW, =
REYNIN, REYNCOW, REYUP

COVPMOR/AR /BRI XI N MM T XCha FLES TR MLESCW
COMMON/AD JEYECH JENGCH,STGEW s TFOR

FORFPAT(T2 ,"CPUTIVE =*FQ,3,' SECCNECS-*)

FORMAT{ 1H4 ,T4G, SAHXXXXX X X%X X X X X X X X EXAXX/T40, -
50kX X X X X% X XX XX X X X X FT40,-
SOHXXX X X X X x x X X X X X XAXKYX/TLH0, -
ECHY x X X  X¥ ¥x X X X X X X XETa0,—
S0HX XXXXX XXX X X X X X X X OXXXXX AN

FOCRVWAT{T2 s*READ ST7E: SI17ER=CTAUTCYCyRULT4ROL s PHT 4 THET 4,PS T,y ~

ZRET AN, RETAV,; RETAK, TAUEND,COFIERRORT /, T13* ST ZET =T TMAX NTRITE, -
INPRITEJNRNL JNFRCB, NELULNREELCT (KY 4 NINyNOIT 4 KF JRPR, NRITE,NTAPE ,HNRINT}

z
z
z

Py P

[aEui2l

4

100

FORMATIT2 ¢ "DTAU= F10aF 4" TCYC'FBo4 +" RILT='"Fho3y' RCL='F4a7, -

" PHI="F4,2s" THETA='F&4,2,57 PSI=FF4,24"% PETAM=¢F4,2," RETAV=!-

Fho24" RETAK=YF4,2/,T2,'TAUEKE="FRo4,"' C{FI='FI.8, " ERROR=1-

1PC7:10

FCRMAT (T2 s Y ETHAX='T5, " NTRITE="T73, " NPRITE=T"]5," NP="12,% NL=112,~

' NPRCB='12,% KRFLU="11,* NREACT=vI1,% AY=%]2,0 NIN=T{2," MCUT='12/,-

T2y "NFIRPE='T1," NRITES'I1," NTAPE="11,' KRUN='I3)

FCRVAT(T2,14,* ITERATICAS OCOMEs T QUITe')

FOFNFAT(1H]}

FCHRPFAT (1M ,251%)

FORMATA(TZ,"IF THIS 1S & RESTARY, TYPE T4)

FORMATIT24'REAN IN CCWMERTS Ch THTS RUK, FORMAT 129HC-——-—4t')

FORNAY (1Z20+0 -
. 2

FORMATILTY i

FORMAT (T2, *ERROR="I1PLC1IC.4)

CALL CPLTIF {WLSEC)

SFCONE=ML SEC

————— REAC INPUT ANC INITTAL TZE PROALEM--—--
hRLCE=C
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€ FMIXE — RIEBER PRCGRAN FCR UNSTEADY, TWO-DI¥ENSTONAL, MUL TICOMPONENT

C TURE FLOWSe LSFES THF TLE METHID FOR ALL SPELN FLCHS -

C TACLUTES VARTARLE CUTER [TERAYION CAPARTILITY, AUTCMATIC ANJUSTMENT

C CF ACCFEPTARLE ERRCR IN THE PRESSURE FIFLD ITERATICN, MAMUAL

C ACJUSTMENT OF TIME AND WRITEQUT STFPSTYE, AND PERFCRMS THE

C FRESSURFE FIELT YITERATICN AY THE ALTERMATIMG DIRECTICN IMPLTICTT

C TECHNTGCUE USTNG SUPRCUTINF PADI# - MASS ARND VMOMERTUM CORFPECT IOMS IN
Ly RECUTIRES SUBROUTINES INITH#, ROUNH, PPCP#, RITE#, RESET, WASS2, PANLH
C E PADI#, THRCLUDES MIXING ANL REACTICN OF UYP TO & SPECTES

C
C

IFFLICTIT REAL®B(A-H,C-2}

o

CIMEMSICN PR{22,43),SIC{23,42),LR{22,42) v7{23,42),-
{ EYE(23 043 ),ENGIZ3,443)
DIMENSICN QOLD{23,43),6{23,43)
CIFMERSILN P{23:43),0(Z22,43),80LDI22,42)
EIMENSTICN PRI23 4,43} ,CORCLNIZ3:430
CIMENSTION SOUNEZ23:42),0CRT(22,47)
CIFERSICN QU234 431+ ENEWL 224 42)
DIFERSICH RATI{23),RAT2123) ,RATI(2?2}
CIMENSION BFTANMTI22,43),BETAVR( 23,470 ,RETAV7 (23 ,43)
EIMERSICH GCOLU(23,42),FYCLO(22,4310,- :
2 VZICLO(22442) yURCLDI 234431 ,ECLE(23 4431
CIVENSICN AT{Z23)1,CT{221.DI022),E1{2314FT{23),DJ(43) EI[43)FILLT)
CIF¥ERSICN GAPUP 23], CONCI23,43 ), GAMMY( 22,47),7123,43)
DINMEKRSICN SIGK{22,43,5),5ICKUP(23,5),5KUF(23,5}
CIMEASITN STZEX{E}, SHITUP{22,4) REYUPTI Z3),SMITOWIS) SN TINLL)

C .
REALHE L4LTo¥OLWTUS) , MLETARLER,LDRSC4ST2ER{12)
REALHR MOLMTIX (23,47 ),NPR{23,43),NRE( 22,43}
RPEAL®E METADR,MULFRIZ2 42,51 ,A8C123,43,4)
PEALAR MMIXIN MWNIXOW,VLESIN(AT ( MLESCHh{ G} JFLES(2344344)
REAL®R MOLFUP(23,C)y MMINUPT22),MLFSURPLZ32,4)

C
INTECER DAY,ITERSI40GCY,STZET(L15) ,SPECIFLE)

C
LCGICAL ANS

I ‘
MARELIST/SIZ2E/ST2ER,SIZETL

COMMONZAAZTWNT G TNMTR T LES IMAXUNNT JJNTM JLES, JMAX
CCMNMON/RE/EYOLD,L,V7OLT,UROLDLEOLD
COFFCN/CC /FRWSTG URGVIHZEYE, EMG

COMMON /DD /B4R EFRRS ITEST+JTEST NSTCP ,NCCUNT ,FRPRCRY
CCMMENJEE/PRWPTINE,TAY

COMMCANIFF FCELE 46

COMMON /GG /PUP W PURNAX  STGUPy SURMAY OSCTIE, VELUP,VUPMAY RDL 4 FREC
COMMON/FF/R4DySCLEy FUF24SUP2 .
COMFOCM/TTZNPUG s hRUR G FOCATH, T AY

COMBONZ IS AL R T I 4BIZiCT DT o BT oF T4 AdGRUL 4 RI2 T Je NS E Sy FILCCEY 0047
COMNMORN/KE/SSCUN, CONT
COMMCN/LL/EYSTARGFOUT 4L T4 EULNCyREYNC 4 STRONC,SMITND PRANND, VREF
CCHMVWOCR/MV SOy ENFW .



ASTART=0
AEIEFR=0
ANS= FALSF,
WRITE (£%,5)
REAL (694121 ANS {
IF {JACToANSY GC TC 102 ‘ o
KSTART=1 |
101 IF (ASTART.EC,0) €0 TC 107
102 READ {1C) PR4PR VT sUR, SCUNJENGEYE 4SIGTTAUTCYC ,FOUT 4 ROL, PRT, =
7 THETALPSI,BETAM, BETAV,BETAI RETAK,T DCHT ,FRRCR , TAU, TAUENDVUP, VREF y—
7 FUP,FUPZ SICUR jEY aVIN VLT CELL TN RINFRACP, JETART ) ITHAX NTRITE ,—
7 NPRITENR yNL yNPROB ,RFLUSTACCHP g hCUT (NRUN g KTy ARH NTUBE y NANN, NSAVE, -
2 NRITE NTAFE, RTLOOP, NCOUNT yNREAC Ty NY o MIN NSPECY 4 (T TERSI 1] ¢ I=14MKN)
PAUSE *RESTART, CHAMGES CN CTM), DCHI, CR NSAVE?'
0 10 11C
103 BRITE {69,31
READ (54512F)
104 WRITE (6544} STZFR
*RITE (69,5} SIZEI
PALSE ALL CKAY?!
105 ETAU=SIZER{1)
TCYC=SIZER(D)
RCUT=S] FER(2)
RCL=SIZER{4)
FHI=SIZER(S}
THETA=SIZER (&)
FSI=S5IZER(7)
PETAM=STZER(BY
BETAV=ST ISR (5)
RPETAK=STZER(1N)
TALERC=SI2ER(11)
CCFI=SIZER(12)
ERFCR=5TZIER(1 T}
1C6 TTMAX=SIZEJ(1)
NTRITE=STZET{ 2
MPRITE=SIZEI(3)
MR=STZET {4)
NL=SIZEI{5)
MPRCE=STIZEILG}
AFLU=SIZEL(T)
NREACT=SIZET(RI
MY=SIZET(9}
MA=SLZET (1Q)
ACUT=STZET(11)
NFIRPE=SIZET{12}
ARITE=STZET 113} .
ATARPE=SIZET{14) '
KRLKR=STZEI(15) :
€ meme- SET BRITIAG INCICES~a=man
110 IMAM=NR4+3 B
ILES=IMAX~1
IMIN=TMAX~2
IMARI=hR ,
JHAX=N 42 i -
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[ N ]

120
121

124

128

1250

1251
12¢

132

140
141

155

JLES=JM8 x=1

JMINz JHAX -7

JEAL=hL

----- SEY MISC, CONSTANTS===m==
CSCIG=1a/AR

DSCISC=CECICxDECIG

RCLSC=REL®*REL

FREC=1./7TCHC

COMTHI=2,£0-13

CCATILC=5.0C~4

IF {KCLT.EL.Q) ACUT=}

BMCOEF=L,

IF (PETAM T ole} RMODEF=RETANM-1,
EVCCEF=Ca

IF (PETAV.CTsle) BVCCEF=BETAV-1.
BKCCEF=0,

IF (BETAK,GT.lel BKCCFF=RETEK-1,
IF (NSTARTL.FQ.1)Y GO TC 126

hT=0

MNK=C

NFIRET=1

KNTLECCF=0

hCCLNT=C

NSAVE=1

ASFECY=1

INCCHE=C

TaL=C,

ARESET=0

CO 1251 1214000

IF (ITERS{I1.EQeC)t GO IC 12E
ITERSAT =0

CCNTINLE

NITER=Q

KNSANME=0O

NFRLF=C

LF=RSQTE#ROLT /ROL*NL 7

----- GET FLUID PROPERTIES—wm—w
CALL FRCF

IF {(NSTARTLED.O} GT TC 140

IF (ASPECYaEQL1) GC TC 1372

READ (1C) NRE,NER GANMY FCLFTIXy CONCy STCK 4 HOLFRyMLES 4GAMEN,~
CAMCHW s TEWMPCW, SIZEXy MMT XINsMMEIXOW MLESTA  FLESCW MOLFUP JHMFIXUP -
FLESUE,SHITUP sGANMUP (SHITCW, PEYN IN, REYNCW R EYUP j SIGKUP,SKUP, -
MSCyEYECR s ERGOH o SIGLH s TPCh
REWTIANEL IC

GC TC 14l

——me = INT TT ALY ? =

caLL INIT

ETMAR=o CESCETARARLIUTAFLUTENRQISO/ (2 ¥MUSTARKTCYCH (1, +ROL SOV )
————— CALCLLATE DIMERSICAMLESS GRCUPS ANE (r# (CEFFICIENTS~-—--
REYNC=SOCETARRROUT2VREF /MUSTAR
ELULAC=FSTEP/ISRSTARRYREF*YREF)
STRONQ=ROLT /I VREF*TCYCY
SHFITKRC=NMUSTAR/{SCETARYEVSTAR )
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1£¢0
1E8€1

15¢

157

158

159

IF (MSTART,FD. 1Y GO TC 156
1F {INCCFMFGEGLLY GO TC 1558
IF {FRICTaCeT08NTaTHETALGT 099 EC TC 156
PHT =1,

THETA=1,

NRESET=1

CCl=Etat2,

{L2=a5%RTL

CC3=ROL/16,

CC4=26/DS0IG

CCh=2e*RLL

CCE=(2 *THETARDITAURCTALY /{CSCTSUHSTRONCEETRONGD
CCT=EULND¥{ 1c-PHT)
CLB=u5%RLLSE -
CCS=DTAL/ICSAQIG*STROND)
CLI0=2E4RCELACCS
CCli=2e%{C6

CC12=EULNC%*PHI
CC12=REL2CCY2

CCl4=RDL=CCT
CC1E=,25/TS01G
CC16=CC15¢ROL
CC17=BSCIC/PSY
CCrE=STRONC/DTAL
CC1e=THETA/CSQIC
Ce2C={1~-THETA) /CSOICG
CC21l=o5%CLS

CC22=EULALA(C9
CC23=CL21/DECIG
CC24=CL273%CC2

CC25=4,*RCL
CCZE=CTS/(Bo*NSCIGHNTAY
CC27=CL26*RDOLSO
CC2R=,T5%((9

CC28=CCS /€4,

CC30=CC2E7ROL
€€31=CC29*ROL

CC22=2 *NIN/(PEIXCCS)
CC32=(022/CC2
CC24=CL3340033

- CCAE=(1.-P5T) /DEQIG

CCRE=4,/LESCIGHTEQTIE)
CC27=CL36%0CH
CC2E=SOSTARHTEYC=DTALZ(RAYERTN)
CC40=CLH*CC12
CC41=2 o /CCHT
CCa2=,5%CC40%RNDL S0
BTl==0C40-CCHY
PYZ=BI1-4,%CC41
A)=CCa2
PJl=—2.%0082-CC41
RJ2=BJ1 -4, %CC4)
€J=CC4?7
FRI=SIZERL(S)
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aEalxl

1¢0
1€1

162

163
1€4

170

180

a5

18¢&

190

151
182
193
154

158
186

197

158

159

2Cc

TEETA=SITERIED

----- CALCULATE RACTUS CCEFFICIENTS

O0 1é6 T1=2,ILES

¥i=1

XINI=XFa4x1

RATIE0 =(XT=1o) ZEXTXI~2s}
RATZ(1)=l X1=2) (XTI XT =3}
AT({T)=CCA02RAT2{ I
CI{YY=CCACERATLITY

IF (JaFCoZi GO TD 164
RATATI={XIXTI=Bat/ (X124}
CONTYNLE

emeee JNTTIAL I Emm————
CALL PCUM

----- READ IN COMMENTS—~——==
HRITE (69,10

REAL (6511}

———=-READ IN IKITIAL FP FIELD TF RESIRED

If (NSTARTLEQsLY GO TDY 160
IF (RFIRFBR,EC.0) GC TC 190
REAT {14) P&

REWINE 14

————— SET CLC VALUES = INITIAL WALUES

L0 15€ J=1,JMAX
VICLE{1,J1=VI(1,J)
LROLD{T MAY (5 =URIIMAY (1)
LO 165 I=24ILES

VZCLDIT  Jh=vZ LT,
LRCLDLT (Y =R LT L )

ECLTLI, JI=ENGLTod)
EYCLEAT ;) =EYFQT, 4}
SCLO(E, JE=S1GHT )

CONT INUE

CCATINUE

IF {IKCCMF.ECo1) JFRR=JMIN
IF CINCCMPGEQ,0) JENC=JLES
If (NSTARTLFQe0) GC TC 198
NSTART=0

IF (ATATE.EC.0} GO t0 200
ERCFILE 12

BACKSPACE 132

GC TC 200

BRITE (6423

WRITE (€511}

tALL RITE

—===-ENTER MATN TIME {LCP-—---

TAL=TAL+DTAY
NTLDGP=NTLOOP+T
RCCLAT=RCCUNT 41

NCLTER=C | ‘

IF (NPROP.EQ.1} GC TC 21
CALL FRCPC
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oy

zl3EaNaXnl

176

IF (NEPECY.GTe1) CALL BCURR

catLt PCUNE
2C1 IF (KITERLEC.0) €C TC %10
(mmmee—meem CALEULATE TCTAL MASS ERRCR CCRRECTICNS—u——-

202 IF (PETAW.EC.0a) CC TT 21
207 00 2C8 J=Z.JMIN
: Jp=lJ+1
204 LE 208 1=2,1MIN
IP=1+1
CIFFUSCC2L#{URI TPy JYI~LRUT I
CIFFV=COIN#(VIITJF-VZ{T,J1)
205 IF {(BETAN,RTale) GO TC Doe
CIFFU=PETANMRADIFFY
C1FFY=BETA¥XCIFFV
GC 1C 2(7
206 CIFFU=BMCOEFRCARSIDIFFLD
CIFFY=BNCCEFXCARSINIFFY)
207 BETAMTIT 4 J=DTFFUS{RATL{II#S TGP, JYRATZLI)ASIG(T-1,0) -
? “SIC(Ls JIV4DTEFYRISTRE (T, JP )V 4SI6(T,d~11-2.%51G{1 4 J))
208 CCATINUE
F0S CONTINLE
€ ——--- CALCULATE OLFT pau1 OF CENTINU!TY -----
210 £0 215 J=2,JFIN
JP=J+41
J¥=g-1
211 CC 214 1=2,1MIK
P=141
IM=1-1
212 S=SCLOIT 0
CIP=EGLEL P .d)
SI¥=SCLO(IH, J)
SIP=SELOIT 4 JP)
SIM=SOLD T 5 dM)
213 CChtLD!I,Jl“-(Ciﬂ*S*CCzO*[PATIII)*{QID+<\*UDULHIIP,JD—RAT?(I1*(9—
? ESIFIRLPOLD T J 40024 T 1SIP+S IV IDLE{ [, IP )~ {S+SIM2VIOLDIT, Y3~
Z ~CCYERBETANMTIT o )0
214 CCATINUFE
215 CCONTIALE -
. - CALCULATE B £ D-===-
220 CO 230 J=2,JLES
JP=J+1
Ju=y-1
221 LC 229 1=2,ILES
Ip=1+1 )
M= t=~1 \
R1=RATILTI }
R2=RAT2(T)
222 U=UR(I,41
LVIF=URI{IF, 1Y B o . -~
LIF=URLIN 4} :
UJF=UR(T,JP)
LIVM=UR LT 3M)
CIFIM=UR{TF.J¥} .
223 VsVI(T4.3)



[p N N e N W e N T e N e W |

224

225

2252

2260
226

227

228

229
220
221

VIP=V2OTPR L)
VIM=yZ(INM,J}
VIP=VI([+JFP}
VAw=VI(T ¢ J¥)
VIMAP=VI( IV, JP)
$=SIC{T+J)
SIP=CSIG(IE,J}
SIM=SIG( TV, J)
SIP=S1CLT+JF}
SIM=SIG{T 4 JM)
SIPIM=STGIIP ¥}
STREJF=SIGILIV,JP)
SINIE=SIG TV, N}
IF {BETAV.EQoN.) GC TC 22¢
IF (1.EQe2) GC TC 22%0
X12=1-2
VSUNM=VIP+YEVIMIPHYIM
SI=5+51¥
DIFFLR=(CC2BXSTRL4, 1ETEXST/XI244126% (S 5THY IR
CIFFUZ=(CC3T#STAVSUMAVIUMH,C15625%VSUMR[ SJP+ ST W IP-SJM=-STMIM ]}~
4o 1255 TV IP+V INJFay=yIM]} ) *RIL
X[2=[+1-2
USUNM=UTP4U+UTPIM+UJM
£J=S+SJFK
DIFFVR=CC2SASIXUSUMRLELM4, 0156252 USUNEIS IR4STP M-S TH-STMIM) -
42 0E25FSIAUIPHUTPIM-U~UIM I+, 0625%SJeUSUN/XT ]
CIFFVZI={CC30%SIeV4,125% [S=-SJM))2REL *V
IF {BETAVeGYole} GC TC 2252
CIFFUR=FETAVHCIFFUR
CIFFUZ=PETAVRDIFFUT
DIFFVR=BETAVEDIFFYR
CIFFVI=RETAVXCIFFVZ
CC TO 22¢(
DIFFUR=RVCOEF*DAB S{DIFFUR)
CIFFUZ=PVCCEF*DARSICIFFUZ)
CIFFYR=EY(CEF*CABS(CIFFVR)
CIFFVZ=BVCOEF#*NARS{DIFFVZ}
BETAVRIT,JI=DIFFURRIUIP+UIM-U-U 4D IFFUZ* (U JP+ UJH-U- L)
BETAVZ(IJY=DIFFYRE (YIF+VIM=V=V )+DIFFVZH(VITHVIM=V-V}
PROT=(S4+SIV+STHASTMIMIR{ U+ UM = (VYT M)
IF {1.ECe2) GC TC 228
BlI 4 JY=a SHURIRATI{II RS IMHUIF=-S*UIP/R2V4CCIH{PROD-(SIP+S IMIP4S—
HSTIMIF{UIP4UN RO VIP+VIMIP Y1+ CO&R 0T, I =CIIVM  J))4RDLSQR (UJP+UIM-
—Uw U} =RELEIVIP-VINMIP-V 4V THM) J/{NRE (T, JT4NREL TM, J) J4BRETAVRIT .0}
DUE Y=o 125 [ R2ZXFRCD-R1# (SIP+S+SIPUNISIVIZLUIP+UIPINIE(VIP+Y ) I~
ARELAVE(SINEYIM—SEYIP Y+ CCAF(ROL A QL T o J1=C0T JM) Y4 COER(RZE(U-UIH) -~
~RIE(UIF-UIPJIMY 142, #(R1EVIP4R2EVIM-V I}/ (NREL T, JI+NRE(T UM) ) -
+BETAVZ(I )
CCNTIMUE
CCNTIRNUE
BLIMIN,JLF Y =0,
ECILESy JLES)=0.
C{TLES,+JFIN)=20.
C{ILES,JLES)=0,
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241

242
244
288

287

258

28¢
2L0

261

by ¥
263

70
271
212
212
274

200

301
02

i1c
an
317
iTe

3175

CALL PRCPA

IF {(ACLTER AEOY 5 TC 270

e CALCULATE QLD Gom——=—

CC 260 J=2JMIN

JP=3+ !
Jr=g-1 : |
[0 259 I=2,IMTN |
IP=]+1

[LER ]

IF {INCCMEQEQLIY GE TC 255 i

SOUNTT ¢ JY =GAMMY{ T, JYEEYCLDIT 4 3} /EULNC

R1=FAT1I(E)

R2=RATZ2( 1)

P=PR{I1.J}

S=SIC{T.+4d)

SIP=SIGITIF )

SIM=SICITF,J}

SJF=SICtI,JF)

CIN=SIG{I,JF) .
GOLF(!,JI=°ISﬂUN(!.J!+CC6*(CC7*(Rl*ﬂR(IP.J1+P2*PRIIN.Ji-P+CC8*
#(FRII'JPlfFPlEqJN}-P*Fl!492*8(I.JJ‘Rl*ﬁlIP.J)+CC?*ID(T'J)—
-D(I,JP]I)+CC9*lR?*(54§IN1*UF(I.J)-Rl*(S!P+S$*UR(IP.J1+CC2~
#((SiSJN\*VZ(I'J)-(SJP+S}*V7(I,JPD?)+BETnFTII|J!

Gl JI=CCLC(TI+J)

CCNTIMLE

CONTINUE

IF {INCCMFaFEGeL ) GC TC 263

DO 262 1=2+IMIN

SOUKC I, LY=CAMMY [T, 1 )¥EYQLD( 1,1} /EULNC
SCUN(I.JLES!:GAFNY!I.JLES!#EYOLE!I'JLESI!EULNG
CONTINUE

IF (KCUTLEC1) GO TO 2€CQ

————— CALCLLATF TCTAL Cr=r--

N 274 J=2,.4VIN

CC 273 T1=z2,INMIN
G(I.JI=GELD(I.JI-SELC(I,JI*!I.-EYEIInglEYCLD(I,J!)
CONTINUE .

CCANTIMUE

----- PRESSLRE I TERATTI{(p==em==

CALL FADT

IF INSTUORLEC.OE CC ¥C 390

IF (NFIRSTL,EC.0Y GC TC 270

WRITE (14) PB

REWIKD 14

NFIRET=C

----- WRITECUT £ STOP FCR NO PRESSURE CCRKYFRGENCE-=—--
WRITE (€% 6) NITER !

NRUCG=1

CALL RITER

ANN=Nhh+1

ITERSIHNNN I=NTTEFR

WRITE (6.+71 L

WRITE (E&42) (ITERSIK) 4K=1,NMK}

CALL CPLYTIM {HLSEC)
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SECTRC=MLSEC

SEC={ SFCTHO~SECCRE) 71CCCo
WRITE (69,11 SEC

STCE

HNHN=NNN+1

JTERSINNNI=NITER

----- CALCULATF CENSITY-=—-=
L0 404 J=2,4™IN

£0 403 1=2.IVIA

SIGI{TaJY = (PRI o JV=FRIT,JYV/SCUNKT 4 J)+SCLEE Ty I ¥ (2.-F¥YS{T, 1~

FEYOLDU 1. 310}

CCATINUE

CONTINUE

CALL BRCUNP

----- CRALCULATE VELCCITIFS-~===
DL A%E J=2.JEND

Jr=4-1

CC 455 I=2,IMIN

Ip=1-1

IF {JoLT.JESTARTY GO TQ 4%2

VI e 3 = USCLOT T d 1+ SCLTCT s JM) IRV I0LC T, J¥4CCV1RICCI3H{PRIT, UMY~
—PROIs ) JACCLAR{PRIT 2 M) —PRUT I+ 0L o SV IAU(SIGET JE4STGET, 0NN

IF {l.ECa21 GO TO 485
IF {JoECo JLESY €C TC 4%5

LRI JY=(0SORNE T s DI +SCEDCI o I RURCLDIT 4 JI4CCLY *(CCL2*(PRETN, J)~
~PRLl g JII4CCTRPROTING;JI=-PR{T I IHRITIZ IV I/USTGL T JI+STIGIT M, JTY
E CONTTNUE

CONTINUE

Catl PCUNC

=== STCRE CLF Co-=--

IF (NBUG.EUe3 GL YT 2190
IF {KCUTERNEL,O) GT TC 230

IF (FEO{MCCULAT RTRITENILAE, Q) GO TC 517

CC %05 J=1,J4t€%
CC 504 1=2,IL%5
CCLODIT o J3 =CH{L » J)
CCATINUE

s CONTINUE

----- CALCULATE NEW Qmmmm—
£C 514 J=15JLES

JE=Je1

£0 512 I=2,1LES

ClUI,J)=CCI%(IRATICTISUR (T4, I-RATZ2(T1HUR(T ¢ JII+CC22(VIL{T IP)~

748 FRIRY

CONTINUE .
CCKRTINUE i
CITLES 11=C, !
O(ILES; JLES =0,

IF (NITER,EC.0) €€ TC 202

e CALCLLATE CONYIRNUYTY TARCLUNTAG THE AFW PART

€D EE4 =7, JMIN
JP=J¢1
JE=g-1
CC 652 1=2,I¥IN

179



hﬁhﬂnﬁﬂﬁhﬂﬁﬂﬁﬂﬁﬁﬁﬁ(‘\.ﬁn

££8
SEt

567

568

&£00

601

&C2

603

IP=14+]

S=S1C( 1441

CEhTt!.JI*CCNCLE(!.J}#CC18*¢+CC1Q*(QAT1{I)*ISIG(IP.J|+<}*UR($B,J!—
AT2(I ) R(S+SIGIT-L o JYYRUR( T L JI4CC2ACLSTICI T, JP)2S IRV TLT P I-{S~

FSICLT, UMYy Z(T,0)))

COKT INUE

CONTINUE

+~==2==TEST CENT FOR FRRCR ADJLQTHENT -----

KCCANT=C

CO S€E J=2.JMIN

CC 565 1=2,1IMTN

CABS=CARSICONT(T I

IF [CABSACToCONTHTIY GC YL S&7

IF (CABRSCTLCONTLDY ARCCNT=]

CCANTINGE

CONT INUE

GC TC 568

——=—-—REQOLCE PBAR ERPLF TEST==mw-

ERRDR =, S4ERROR

ASANE=D

RRITE {£6,17) ERRLR

GO TC 30¢

[F (INCCHPLFCL1Y GC TC 632

e—===CALCLLATF ENFRGY-——=~ -

EQ €15 J=Z2.JMIN :

JER=J+2

JP=j+1

JH= -1

0 614 1=2,1FIN

1P=141

I¥=T=]

RI=zRATI(I}

RZ=RAT2{ 1}

UsUR( T, J)

CIPP=(R({I+24+4)

UIP=UR(]IEJ)

UIN=UR{ IM,J)

LJIF=UR{T,JF)

LIM=UR LT 4 M)

CUTFJP=UR{IP,JP)

(1]

605

t0é

UIPJM=UR[IP, J¥)
Vv=vZ{I,J}
VIP=VI(iF.J)
VIM=VZITE, 4}
YAFF=VZ{I . JFP}
VIP=VZIT,4P)
YIV=VEILT ¢ J¥)
VIPJP=¥Z7(IPqJP}
VIMJIP=VZ{IN,JP)
LU=LIF*U
VY=VJPxY
§=51C11441%
E=ENC{ 144}

CIJQ{T 4 J}
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alsalel

Py

PPy My ]

[t R ]

ECT

&CH

&09

610

é11

7CC

1C1
702

PRAR=PR{1:J)%2a
Cl1=CTJ+ClIF+J)
Q2=01J40( I¥,J)
Ca=Cras+c{1,JP)
Cas=CIJ+CET 0¥}

FIPST=SGLD(I»JI*EC£DIT1JP+CC21*(RZ*iS+SIC(IMrJIl*(E¢ENG(IF'J))#U—Ql-
SUSASIGUIP ) )HLE4ERGEIP, J I IFUTPHOC2A(IS+STIGU T dMYIHIESENG T ¢ J¥I )~
Y= (S+SIG (T (JOY YR {ESERCIT JFII%VIPY)
SECONC=CC22¢{R2#{PRARHEB (TN, JI}HU-RIX(PRARSPEITIR, ) 1 *YTP4CC2-
H((PEARMPELT ¥ V4V = (FRARSTE(T, JP I 2VIP Y}

THIRD=CC22% (R1* (~OLRUIF 4% UTPE(URL 42 4 J)-U 142, 2(VIPIPXV IP-VV I~
CC2B(VIPIT+VIP+VIPAVIS{ UTPJP-UTPIMI 1482 {025 U—4 o = US{ T P=UTM) =T o~
F(YV=VINJESVIN)=CO2$ LYIPHY INIP YAV IM ) [ JP—UIM) ) +CC IS (GAMMY{T, 51~
4o J/NPROT g V2 {RIZTEYELIP, JI-EXYELT 5 JVI-R2Z#(EYFL{I, JI-EYELT¥M:J) )V )

INRELE, )

FﬂURthiCC?Q*l—CB*VJp+CC5*t(UlPJPtUJF-UU142.*VJP$(VZ(11JPP)—V)!—
o SALUTP JP+USPHLIPHLI#IVTIPIP=VI MJP} 4+ Qax v=CCE® { (U= TPIMRIIM Y-

42 oAV F Y IF-VIM I = SHLUTPHUAUTPINAUI M Y FIVIP=VIMI 4 CC25% [ GAMMY{T 4 3}
1o V/NPRLT ,JEELEYE T, JFI+EYECT, JMI=2 % EYEL ToJ VI )/NRECT 0}

ENER{ T, J}={ FIRST+SECCAD+F THIRC+FCURTH] /X

EYELD 4 JI=ENERLI T4 = 125 LILIP AU IS4 (VIP 4V 27

CCRNTINLE
COMTINUE

ww====RESTCRE CURRENT ENERGY ARRAY

DC €22 J=Z2,4JMIN

D €22 1=2,IMIN
ENGUT v JY=ENER (T4 J}
CCAMTTMUE

CUNTIAUE

----- ENERGY BCS & TNCREASE ERROR TEST

CALL BCUAT
ACUTER=NOUTER %]

IF INDUTERGGELALLTY 6T TO 632

GO T 21C

IFf {NCCRTLEC.QY GO TO £23
hNSAME=C

€0 TO €35

ASAVESNS AME+]

[F {(NSAVMELLTGB) GG TC &35
ERROR=FRANR /o9

NSAVE=D

WRITE (£5,13) FRRCR

1F (NFIRSTLEQL0) GO TC 7€0
WRITE (14) PR '
REWIND 14 !
NMFIRST=0

————— UPCATE FNE-CF-CYCLE VALUES-—-—=

DO 106 J=T1JMAX

VICLD(L J)I=vIL1,0)
CRCLE(IMAX 4 JI=URLIRAX, U}
DC 7CE I1=2,1LES
VICLE(Td)=VZTT,d}

1F {JaECaJMAX)Y CC TC 705
LROLD{T »J)=URII ¢ J}
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i82

TO3 ECLCUIJI=ERGIT, )
EYCLDUT o J)=EYELTJ)
704 SCLU( 1, J1=81G{IJ}
705 CCARTENUE
TCe CONTIMUE
---------- CALC COMPONENT FLUX AND REACTICh-——-=
709 IF {NSPECY (iT-11} CALL MASS
CALL PRCFC
CALL PCUNH
—me—=CALCUL AT E KEW PRESSUAE~—a—=
710 IF [THCOFMPLEQ.CY 6T TC 715
Ti11 B 714 J=2,JM1N
712 CO N3 I1=2,1F1h
PR{TJ)=PR{I,.,J)
713 CCRTIRUE
T14 CCATINYE
GO 10 71¢
715 CC 718 J=2.JHIN
e €O 71T 1=2,TMIN
PR{T,JIZCAMMY (T ¢ JIESTIGLT 4 JYSEYE (T 4 J1/ EULAC=Y,
717 CONTIMUE
718 CCNTINUE

119 CALL BCUNE
—————kR1TE CUTPLT F STCRE FCR PLOTS———-—
150 IF [MOD(NCOLNTeNTRITE)NEL. 0 GO TC 20D
IFIMRITELEC.0a ANLoNTAFELEC.OY GO TO EDC
KT=hT+1
740 CALL RITER
KSEVE=]
AMCLKT=C
----- ADJLSTMENT OF TIME STEP FRCM TERMINL ———m
800 CALL RESET
IF (ARESET.EQs0) GC TC €C1
ROOO TF (NTLDOP.LT.3}) 60 TC 8QOL
KRESET =N
BCCY CCE=THETACCE -
CCT=EULAC*{1a~PHT)
CCI2=EULACHPHI
CC13=RDL*CCL2
CCla=RCL2C(T
CC19=THETA/TSQTC
CC2C0=01a-THEYA) /TSOQIC
BNO? IF (KCTAULEN.0) GO TO 204
€51 TF (ACTALLEC.O) €C TC =00
NETAU=C
B02 RATCT=CTAUL/LTDLT
802 (CE=CCE*RATDY2RATCT
CLS=CCe*RPATNT
CC10=CClO%RATET
CC1i=CCl1*RETRT
CC18=CC1E/RATDTY -
CC21=0C21#RATCY
CC22=CC22¥RATOT



BC4

¢S

B0¢
£c?

ece

900
5C1

MM

s |

5010

sc?
903

904

CC23=CC23%RATLCT

CL24=CL24%RATLTY

CC2€=CC26%RATDTEANTIN/NIACLD

CC2T=CL2&%RTLSC

CL2FE=CC2ExRATDT

CC29=CC2C*RATDT

CCA0=CCINERATCT

CC2Y=CC21xPATCT

CCAz=CC2A2/RATCTANIN/NINOLD

CCA2=CCA2/CL2

CC24=CC23+CCAR

CC3e=CC2RARATCTANINGLE /NINENYOLD/NY
CCa&C=CLexCC12

CCal=20 /OCKI

CCL2= oS AL LAOXRTLSO

PI1=-CL4C-CC41

PIZ2=R1li-4.%CC41]

2J=ECAH2

BIl==2.,%0C42~CC41

8J2=RJ1-4.%CC41

Cr=CC42

DC ECF I=2,TLE®S

ATE Y )=CCaQ0#RAT2(1)

CIT1)=CC402RATIT)

CONTINLE

----- WRITE RESTART DATA AND EXIT WITH FIMAL WRITEQUT=====
IF (MCCINTLCOP,MSAVE)MEWD) CO TG 902 :
BWRITE (100 FRGFPReVZ yUR G STUNSERNGaEYE¢SICs CTAUYCYCHyROUT A ROLyPHT -

THETA PSLsBETAM, BETAV . PEYAY yBETAK s TyDCHI s ERRUP o TAU, TAUERC o VUP o VREF 4 =
PUP,
KPRTTE 4 KR gNL yNPROB 4 NFLU o INCCNP 4 NCLT yNRURN g AT 3 MR NTUBE S NAKKy RS AV E, —
NRITE, KTAPE;NTLODP ¢ NCOUNT yNREACT yNY NI K NSPECY o (T TERS{T Y 4 T2, MNND

PUFZ s STGUF EY 3 VINGVOUT,,CFLL IN;RINyFRACP ; JRTAPT, ITMAX,NTRTTE 4~

IF (NSPECY.EQal) RC TC 9010
WRTTE [1C) NREZNPRGAWMMY NCLFIX,CONCSTORWMOLFR,WLES, GAMIN, -
GAVEW ; TEMFCWy STZEX:MMTIX TN, MM IXOW, MLESTM s MLESOW, MOLF UP 4 M¥T XUP, ~
MLESLP 4 SNTTUP 4GANUP ¢ SEITCH, REYNIN, REYNIW 2 RFYUP, SIGKUP 4 SKUP 4~
MECIFYEOhENGON 2 SIGCR, TFTH

FEWINE 10

ENDFILE &

PACKEPACE €

I¥ (KTAPELEC,0) GC TC €Q2

ENDFILE 12

PACKSPACE 12

NSAVE=200D

FTTEST=1a 12 ( TAUEAN-T ALY

IF {TTESTLCT.DTALY GC TC 2¢C

BPITE (6471} - e
BRITE {£,.€8) {ITERSIK) k=2 MDMA])

CALL CPUTIMIMLSEC)

SECTWO=MLSED

SEC=(SECTRC-SECCAEY /1CCQ,

WRITE (e%,1) SEC

STCF

END ' -
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MIT12 - WIFRER SUBRCUNIRE InIT EQR FMIXS - PRESUMES A TURE WITH

COAXIAL ENTRY % " 77 £ CCMPRESYELF FLUID. THE CENTER TUPE
CCMPCSITION TSY adr il fHE ANNULAR COMPOSTTIAN OF SPECIFS €O,
C2, CC2s H2Cy AZGR2ZTIS REAC INy AS TS THE TEMPERATURE NF THE
ANNULAR STREAM, IAKPUT VELCCITES, COMFCSTTIONS, ARD
TEMPERATURES AQF FELD CONSTANT, DUTPLUYT PRESSURE 1S HELD
CCNSTANT, HEACE FRCALEM IS VALIE CKLY FCOR SUBSONIC FLOWS.
FLUIC IS CCRFINEN BY TMPERMEARLE NC-SLIP WALLS.

e

. T

SUBRROLTINF INTTY
IVFLICTTY PEAL*RIB—Htf‘Z}

2 o
EINENSTON PRE22,642) .30 V03, 42),516123,62),LR122:43),¥7(23,430),-
EYE[22,43) 4ERGIZE3,4T) .

CIMERSTCN COLD{Z3,42):G7 72,42}

CTVERSICR B{23,43), 012243, SOLTL23,430,SKUP(23,5}

OIVMENSTCh SCUN(23,431,CCRT(23.43)

CINMEASION Cl234 62 ¢ ENER({23,42), SMITIN(ALT ,REYUPLZ3)

CIMENSTICR GCLD(23,43) ,FYCLL(23,43),VICLL{23,4%),UROLD(23,43),E0LN(27,43)
TIMENSTON BFTAMT(23,42) ,BETAVRI23,42),PETAVI{23,43)

CIMERSICN SIGKI22,43,51,T(23,43) .

CIMEASTCH CCNCII?B143)pCChC?(23|43?1FGRC’(23.41l'CGNC4(23'41!v

CONCE{ 22,43}

CIMENSICN SIGKUF (23,51 SYITUP (22,4} CAMUP{ 221, SMTITOR( &) (SKINITISY

REALS®R FLSTAR, F‘TAQ,iT.PCLHTISl,”DL"IX!Z?.G?),SI?FV(B‘ STIFX(6Y
REALRB KSCU2344354)4% RU22,43,5),MOLFLUPI223,5MLEST 23,43,4)
REAL*R NRE(23,42) 4NPE 43, CANNY (23,431, CChCI23|43!

REALSE MRIXIN, MMIYXNY ESIN{4 ), MLESORLA) ,FFINTT(5Y

PEAL28 MMIXUPLI23), MLISUP(23,4)

INTECER SFECIEC(ED

WAMELIST/SIZES/S1EY
PAMFLIST/STZEC/STZEX

COMMON AR FTIMNT G INTN ¢ TLES (TMAX  IMRT o JNTH , JLES . JMAX
CONMCA/RBB/EYDLD,,VIOLD,URTLD, EOLD
COMFCN/CC /PR, SIGUR W vE4EYEHERC

COMMON/CD JRCA oBC A FRRSGTTEST 4 JTEST NSTCP {NCTUNT (ERRORL
COMMCN/EE/PByPTIMELTAU

COVFCM/FF/COLE,G

CONMONSEG/PLP +PUPVAN (STIGUP SUFMAX, DQCIG VELUPsVUPHMAX ,ROL,FREG
CONMFON/FE/B Lo SCLT, FUF2, SUP2

CORNMOCH JKIJSCUNSCONRT '

COMMON/LL JEYSTARGRCUT LT, EGLBC'RCYKC.ETRFNC,CFITNﬁyPRANRF VREF
COMFCN/ MU/ CLEREW

CONFEKR/INA/PSTAR (SGSTAR NUSTARMCLHT  TARCCHP
COFMON/QC/RKCOEF,CCLE nglT'CC32|CC3?,FC’Q¢CC3R'CC35'CC1T
COMMCK/TT/GOLD G EETANTEETAVR, BETAVT 1 JSTART
COFNCR/XX/RTRNVIAVOL TN TURE o NAAN
COMFCN/AR/MSTAR, TSTAR4CSTAR ,OVSTAR,,CC2R, SPECIFE

Reproduced fram
best available copy.
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CCMMON/AC/NRE GAFR,GAVYY NCLFMIX, CENC
CCHNCA/ATG/NEC
CCMMCA/AF/STGKFOLFR
CONMMCRZBG/UCNCY s CCNC2 o CONCS o COHCR ,COMNES
CCMMCN/RH/SIGKUP ¢ SKLP
COMPON/ AL /VLES s T GAW A, CAVOW, TEMPOW,STZEY
COMFEN/AM/FOLFLUP oMMIXLF 4 MLESUP, SHITUFsCANUP¢SMITIN,SVITOW, -
4 REYMIN: REYNDW,REYUP
COWMMCN/AN/MMTIXTRAGMMIXCWyMLESTh, NEESCYW
COMMON/AC /EYEDWyENGCR s SIGEUH s TP
C
1 FORMAT(TZ,'REALC TN NIMENSTIONAL INPUT VELCCITIFS AND LAST CFLL OF-
7 INSIDE TUBE AS ST7ES: ST7EV=SVIN,VOUT,CELLIA®)
2 FORMATIT24 WIN="F Bo4&,' VAUT=*F8,4,7 CELLIMN='F3.0}
3 FCREMAT (TZ,*REAF ANMULAR NCOLFE FRACTICNS 25 SYZEC: STZTEX=XCO, XD2,-
I X¥CDZy XF209 XNz, TEMPERATLRE '}
4 FCRMAT (T2+'CO=°F5,2," O2='FS¢3; "' CO2='F 5.2, H20="F% 341 N2=1FS,3,-
4 POTEMP=TYFT2)
5 FORMAT{TZ, *SOCKETULUV®)

C  e—m—— READ 1IN INFUYT VELCCITES ANC LASY CENTER TIEE CELL—===—
100 WRITE (£5,1)
REAT (5 ,577€5)
VIN=STIZEVIDY
VOUT=ST1ZEV( 2}
CELLIN=SIZEV(3]
101 WRIME €S2 VIPVOUT(LELLIA
ATUPE=CELLIN
102 RIN=ROUTRTURE/ TH¥NI
VREF=VCLT¢ {VI A=\NCUT)SRINSRIAN/ (RCUTERCUT)
VIK=VIK/YREF
NCLT=VCUT/VREF
ALF=VIN/VREF
VUPMA X=YGUT/VREF
EY=EYSTAR/ (VRFFRVPEF)
NTLEE=RTURE+]
NANN=NTUBE+]
EULNC=PSTAR/ [SGSTARSVREF#VREF)
REYNC=SHSTAR®VREFXRCLT/FUSTAR
PARTRE=RE YNG#ML ST AR
103 PUP=0,
FUFNAI=C, |
SICUP=1,
SLFMAX=1,
INCCHEP=E
Cmmme = —— SET CENTEP TUBE WOLE FRACYIONS—====
1030 CC 1031 [=2 . NTURE :
¥CLELF(T .1} =00
FCLFUP(1,2)=0042
FCLFUF(TI 3}=04
MOLFUPE T447=0,
FOLFUF{T,5)=1.58
1021 CCATIRUE
Cm—m e — e READ IN ANNULAR CCRCENTRATICNS AKC TEMPERATURE-———-



IC4

1070

1071
1672

1073
108

1£840

1cey
1CE2
1083

1684
1085

1CE6
1087

Cmmmem

109

FRITE (£S,31%
READ (S,S1ZEC)H
RRITE (69.4) STIEX

----- SET AMNNULAR UPSTREANM MCLE FRACTICRS ANC TEMPERATUR E=mm=-e

CO 1C¢ K=1,4%

CC 106 T=hAMA,IFIN

MOLFLPCT pKI=STZEN{RYSSIZEX(X)

COMTINUE

TEWMPCH=2 #{STTEXIAY/TSTAR-1, )

TPCh=TENECH/2¢

----- SET UPSTREAM MIXTLRE MOLECULAR WIGHTS~m==-
FHIXTh= o4 22NCINT [2) 4] S82ENALKHTIS)

MHT XCh=2 = L STTEX (I AMCLRT{LI4SI ZEX(Z IR NCLWT L2} 45T 2EX (33~
FCLWTY 23 STZEX(4) ML LT 4 J4SIZEXI SIAFAOLETIS) Y
CO 1071 1=2.hTUPRE

MM XUR(T ) =M XIN

CONTTINUE

CC ICT3 I=NANN, IMIN

MMIXUP(T }=M¥IXOW

CCATINUE

MLESTKI{L)=FPIXIM

MLE STHNE 23 =2, %¥0LLT( &)

MLESTR{R)=VMMIXTN

MLESTA {4 =VFIXTM

CO 10F1 K=144

SLESCH K I= (MM IXOW=-2FSTIEX(KISMOLWTIKY ) /{1, =-SIZEXI K}
CCAYIMUE

CO 1087 K=1.4

CC 1084 1=2,KNTUPRE

FLESLPI(L yXi=FLESINIK)

CONTINUE

CC 1086 T=KRANN, IVWIN

MLESUPR{T 4K)I=MLESCW(K?}

CONTINLE

CCATIMNYE

——-—eCALL TN FCRFE GAS FRCPERYIES-=—w-

CALL PRDPA

EYECH=2,o¥Bo 2142404 THST2EX(E Y/ (G AMDHAMM INOWKMSTARRYREF *VREF)
ENGUW=E YECkdo SEVOUTH VELTY :
SICCW=EULAC/{GAMOHREYECK)

~~=~SET UPSTREAM SCHMILY NUMRERS —wa—-

o 10‘;5 K=}'4

CC 1062 I=2.NTUPE

SMITUPT T o K)=2,=SNITINM(K)

CONTINLE

CC 1094 I=KANW, IMIN

SMITLRLT K =2 *EFTTCh (K]}

CONTINUE

CONTEINUE :

----- SET UFSTREEY REYNCLES MUMBERS wwveww=

{0 1087 I=z.NTURE )

REYLUPII)I=REYNINHREYNTA

CENTINLE

[0 10SS I=NANN, INMIN

186



113

114

REYLP(T)=REYNCHARFYRCH
COMTINLE
—————— SET 7ERD VARIARLES IN ENTIRE GRID---—-

' L0 118 J=1.JMAX

[Q 117 I=1,TMAX

FRI{TI,JY=0a

FB{I ¢J) =Ca

LR{I4J1=C0

VvZ(1,41=0,

LRCLDIT Y =0

VZOLO{ 1,4 1=Ce

COATLT 241 =00

BETART{! V=0,

BETAVRI 14J)=0,.

PETAVI(I.Ji=Ds

ClEqJ)=Ce

BtIsd =00

CtI,J¥=0s

G(I'J"‘Co

QOLR{ 1, 4)=0.

CCLE(L,01=00 ]
(T 2J}=Ca '
~———~=SET NCOWIERT VARTABLES IN ENTIRE GRIC—=——~
ENGIT JV=E¥

T ENERIY 4 JY=EY

121

EYElTvJ)I=EY
ECLC( T, ¥=FY

EYCLO{L yJ)=EY
NRE(I+J)=REYRC
RPR{LsdY=PRARKT
GANMPMYUI 4 J)=GANIR
FOLMIX{ T,d)=10

SEUNLT, JI=GAMPY {T,J%FY/EULND
CIGIL 4 d)=1a .
SOLE{ I+ d =1,

CONCITyd =10

CONTIMUE

CChTINUE

----- CEFINE SPECIE GUANTITIES FOR FNTIRE CR ID-—e—-
MEINIT(1)=0e
FEIRIT(2)=C.21

MFINITI3 }=Co
MFTMTT{ 4 }=Cs

FEIRITIS I=0.79
SKINIT(1)=C.
SKINITI21=Ce21%NCLRTL2)
SKINIT(31=0.
SKIKITL4)=Ce
SKINITOE ) =CoTSHFOLRTLE)
WRITE (69.+5)

————— STYCRE IN GRID—=---
CO 122 K=1,45
XX=FFEINIT (K

DC 132 J=14JLES

187



122
133

134

125
136

163

200

CC 132 7T=1,1ILES

FOLFR(D »JKY2XX

CONTINUE

CC 135 #=1,5

XX=SKIRIT{KY

0 12% J=1,JLES

LT 135 I=1,ILFS
SIGKIT s JyKI=XX

CONTINUE

CC 137 J=1,JLES

DG 137 T=1,1LES
CONCL(I.J0=0,
CCNE2(T4J1=0,21
CONCAC(T ¢ JY =00
COMCA(TI,0)=0,

CONCS {T400=20,79

CCATINLE

rC 13g K=1,4&

XX=o G*¥LESIM{K)

B0 135 J=1,40€¢

CC 12 1=1,ILES
MLES{Tsd oK }=XX

CONTINLE

"""" LCAC INPUT VELQCITIES————
CO 141 1=2,KTURF
VZ{TIe2i=VvIN

CONTINGE

EC 143 T=NARNA,EWTWN
VZL{T,2Y=v00LT

CCRTINUE

“““ SPECIFY INFUT WASS CCNCERNTRATICAS==-==
L 158% K=1,%

XX=FCLWY (K}/WEIX TN

DG 152 1=7,ATLRE )
SICKUPETKI=MOLFUP (LK) ¥ %X
CONTINUE
XX=MCLRYIRYXSTROCU/NNT ALk
ET 154 T=NENNg IMIN
STCKUP[ T oK L=MCLFUFL T, K ItXY
CORTIALE

CONT ERUE

‘‘‘‘‘ SET SCME UFSTREAN CCNSTANTS—~e=--
DO 1e) T=2,NTUSE

CAMUPITI )=Z,*GAM IN

CCNTINUE

€0 1£3 [=NANM,IMIN
CAVUP({ I )=2 %G AMOW

COMRTIRLE

JSTART=3
ITRCCNE=C
RETLRN
ENE
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€ PCHNG - WIEAER SUPROUTINEG POUN FOR FLOMIX - ERESUMES A NUCT WITH

C COAXTAL FLCW ENTFRY OF A COMPRESSTIBLE FLUIN WITHIN [MPFRMEARLE

C NO-SLTP MALES, THF UPSTHREAM PRESSURE I§ CALCULATELC USING THE

C FOMERNTUM EOUATIONS AND OOWMSTREAM PRESSURE 1[5 HELD CONSTANT,
€ SLETRAPLE CNLY FCR LTW KACH NJIMPERS, CENTER JFET FLUIN TS Al®

C AT 7C DEG £ AND ARMNULAR FLUTID IS AN IrFA( MIXTURE OF CNy 02,

C CC2y F20y AND N2 AT A DIFFERENT TEMPERATUPE, THESE LNNCENTRATICONS
C ARE FFLN COAMSTART, USER IN NPRCPR=13
C
€
C

SUBPCLTIAE PQUN
IMFLICTY REALABL{A-H,0-7)

CIMENEZEION PREZ3.42) oPRI23.62Y,516 (23,470 UR{23,43),V7(23,463),~
z EYE{Z2,43},ENG(23,43)

DIVENSICh B(23 ﬁ?!wC(EBpﬂB!1SELC|23,41)p‘kUP(’S,EI.SI?FX(ﬁ)

CIMENSTION RATI(22),RATZ2(23)

CIMENSTCN STER(23.483, ), SCUNT23:43Y, CONT(22,447)

DIMERSICA CONCUF(23) 4 CONUPL {23) ,CONUPZ (231, CONUPII23 1, CPMIPA (23], ~
7 CoruP Sl 22)

CIMEASICM STGKUPI(2348 1 SFTITUP{23, 41, GAMUP(231, T{22,483),PEYUR(23)

OTMERSICh SPITOWIA) oSMITIN(A)

CIVERSION CONPLE23,421,CONC2{ 23,431 4C0NC {27,431 ,C0NC4123,43) ,-
Z CONCE(23 443

REALSE LT,.MOLMIXI2%, 42 ,MOLFR{23,42,5) y¥CLFLP(23,5)
REAL%A KRF (23431, NPR{Z3:43),CAMMY {27,472, C0ONC(23, 42}
RE AL %P ”L(TﬁRePCLHT(“QNLFSUP(2394‘9N~IXLF(23)

REALZE MLES(23:43:41,N80{23,43,4)

REAL®E KVIh KYCLY

COVMFON/ AR/ IMNT, THIN, TLES, INAX, JMN{.JMTN.JLFQ JMA X

COMMOMN/CL/PRGSIGC S UR VT #FYE, ENG

COMMON/DD/BC4 RCHERREITEST , JTEST,NSTCRNOCUNT ,EPRORT

CCWNOK/EE/ PR, PT ITWE, T AL

COMUON/GG FPUP PLPMAX STCUP, SUPMAX 4 DSCTC, VELUP VUPMAX yRDL,; FPFQ

COMMON/FH/B D, SOLD, PUPZ, SURZ

COMMON/KEFSTUN . CONT :

COFFCN/LL/EYSTARROUT (LT FULRCy REYND, STRCNC  SMITND, PRANNC, VREF

COMMOR/NN/PSTAR, SGETAR G MUSTAR yMOLWT, TROCHP

COMMON/CO/OT AU TCYC , ERRORy O T, THET A, PS I, PETAM, BETAV,BETAL ,RETAK, nrur

COFMON/WW JRATILRAT?

COMPEN/ XX/PIN, VIN VOUT NTURE . NA KR

COCPNMON/AC/RRE JNPRy CANBY, MOLNIX, CONG

COMMON/ AL /RSC .

COWMNON/2E/CC? e CCBCCSoCOLENPROP,NSPEC Y, NEPEC  MULTID MY 4 NTN, NOTACT
COMPON/AF/STGKWCLFR | .
COMMOM/AGZCONC ] CONC2 yCORC3 . CONC4 ,CONCS
COMMONS AR/ S TCKIIP SRR
CONMON/BL/VLES, TohAN TR CAMCH,TENDCW, STZEX
COMMON/AM JFOLEUP  MFT XU, MLE SUP, SMTTUR CAFLP¢S#IT1N SHITOW,~

7 . FEYNEN,REYATR,REYUF
COMMONFAC/EYECW L ERGLN 4 STGOW,TFOW



-

0

Gl
92

S3

<4

G5

101
102

1073

104

1¢5
106

107

201

————— CALLFC AT FMIX6 #1790 -----
————— CALCLLATF RCH CCEFFICIENTSemam=-
X1=1LES

COC=(xTaXI=3, 1/ {0T-1,}

¥i=1MtN

EC1=LL0RRIL
ECP=L0CaXT=20 ) /IXT4XT=T0}
BRC2=4, FROL

EC4=RELFEULRD

pCE=2./RIL

PCE=1a/FULND

PCT7 =4 o*EULND

RCE=Bo®*ELLAC

KW IN=2.%%IN?1,
KVCUT=2 o #VEUTHS TG
EY=EYSTAR/[VREF%YREF)

MFIRST=1

DC S8 I=2,I¥IN

CAMMYL T, 11=GANUP{IY-GarryY (] .2}
CCARTINUE

ENTRY BCLNA

————— CALLEL NEAR FMIXE #232-~=—-

----- CALEULATE FB, PR, UPSTREAM ANC DOWNSTREAM-———-
LD 1CY I=2.IMIN

PR{T 1¥=FR{T,21-C{1,2¥/BC4

FRUTLJLESY=-PE( T JMTN)

CONTINUE

€O IC3 J=7,JLES .

PRITLES Y =PRLIMIN, JI4F{ILEE, ) /RULNC
CORTIANUE

IF (NFIRSYLFOLLY GC TC 200

IF (PHI.FQals b RETURM

CC 1C% I=2, I#IN
PROT11=FR{[,21-0{1.21/8C4

CONTINLE

LC 107 J=2,JHIN

PRITILES ¢ JI=FROINTN, JY4PLTIPIN, JI/EULRE
CONT INUE

IF (hFIRSTGEQ.LY GN TO 20

PETLRA

ERTRY BCUNR A
. i

————— CALLED AT FWTYE #aila=-—- _

----- CALCULATE STIG £ SOLD, UPSTREAM. ANR DODKNSTREAM-—--—-

DO 2CY T=2,¥FTH

CTC(T,11m=CI0(1 214500001 LI +SOEOIT 2) #2,%(PELL,1)4PALT,2}~

~PROF,IV-FRET,2) )}/ ESCUNL T 1I4SOUNCT, 2))

SIGIY pJLES) =2, % STG LT W INI=STELE, JNNTY

CONT INUE -

190



191

Cmmmmm e WALL ARD CEATERLINE———-—

202 €0 202 J=Z,dMIK
SIGEL.+J1=51G12,.4)
CIG{ILES s JI=SIGITNTA )

203 COMTINUE
IF {NFIRST.ECoD} RETURM

204 DO 2C5 T=sRANA,THIN
S1G(1,1)=2,4SI60W-STG(T,2)

205 CERTIAUE

€
ENTEY BLUNC

£

CmmmemmmmerC ALLED AT EWIXE A4EQ-m=m—o

C  -——— CALCULATE VELOCITIES, UPSTREAM AND DCWNSTREAM-~——w

300 EC 301 1=2,NTUy®RE
VIO 2 =KVINZLSIGIT,1)4S16(),2}}

301 CCNTINUE

302 €0 2C3 T=AARR, INTN
VI{T o 2D =KVOUT/LSIGIT p13+SIG LT 42))

303 CCATINUE

304 CC 3C7 I=2,IMIN

205 VI(Ls101=2.%V7(1,2)=VZU1,3)-BC3% (RATLETI®UR (141 ,2 }-RAT2 LIV RUR(T,2))
UR(Ty1)==-URCE, 2]}

306 V2O dMAXI=2% VLT, JLESI-VZ (T, JVIN)
LRIy JLESISURL T (JMIN)

307 CCATIAUE

c  ---— WALL AND CENTERLIRE—==-~

2C8 0 21C J=2,4LES
VIHILES o JV==VZLIFINJY
LROINAY o J) ==URCINT N, I

€S VZOLy31=VZ(2,J)

310 CCATIAUE
IF (MIRSTEC.1) G TC 400

RETURN
c

ENTRY BCUAD
c
Comrmm e CALLET AT F¥IXE ¥£2Q-ewo-
e CENTERLTNE AND WALL——===

400 CC 4C1 J=Z,JMIN
EYE(L,JI=EYE(2,0)
: EYE(TLESoJI=EYE(INTN o J)
» 401 CCNYINUE
Crmrmmmm——— CCWASTREAN ammm-
402 DO £02 1=2,TMIN
EYECToJLESISRCA/(IGAMMY L T, UNINY4GAMMY (T, JLESII*(STG (T4 dMINY—~

z +STG(T e JLESHII=EYELT,JVIR)
ENC(I,JLES}= FYE(I.J91h1+EY¢(1.JLES&+VZ{I.JLES!**2+UR(I.Julnyitz-
7 —ERGIT, JMINY
4C3 CCMTIALE
(=m—~mmmm == UP STREAN=m—mm

404 EC 405 [=2:KTURE
EYECT p 1Y =20 REYR (o 5% (SICIT 1 ) 4STIC{T,2) ) Y##CAMIN-EYE(] 2}
EIN=EYE{ T4 1V4EYEL T 2Y+VT (], 2)%%2



192

ENG(Y s1)=ETR=ERC{I,2)
405 (ONTIMUE
406 TO 407 I=hARR, TWTH
EYERD o 1) =2 %EYECH® (o S (STGIT, 1V 4STGIT 21V 1/ SICOHY#*GANDW-FYE{T, 2}
EIR=EYEL T4 I I4EYF{T o201 4VZ{ T2 )%%2
ENGIT 1 }=EIN-ENG{T,:7)
4C7 COMTINUE
IF (NFIRSTLFQs))} 60 TO £00

RETURN
€
ENTPY BCUNF
¢
e CALLEL NEAR WASS? £260-—=——
I CALC UPSTREAM ANC DOWNSTREAM MASS CONCENTRATIONS—m===
500 £O 502 K=1.4
ECI 0N 5C2Z [=241%IN
STCHI T, 1K )=2 ¥SKUP [ T,K)=SICKIT 2,k }
STGKOT 2 JLESsKI =20 #STCKE Ty J¥TN K ) =5 TCK (T4 IVNTK )
E0Z COMTINUE '
502 [C 505 K=144
€04 LO 5C5 J=2,JMIA
STCK(1odoKI=SIGKI 24K}
SICKLTLFS od s KI=STIGKTININ, U, K}
5CS CONTINLE
RETLRN
c
ENTRY BCUMG
C
L et CALLEC AT MASS2 4712 &ND MEAR FMTXE #201~---w
fmmm e CALC UPSTREAF ANC MCWASTRFAW CUANTITIES—~——m
C-mmmm——m TRIPLE SUBSCRIPT S—mmmm

(00 IF (NFRCTEGEC, 1Y &0 TC O£Q2
DL ECY K=1,5
€000 [0 €0C1 1=Z+KTURE
SKUP{T K=o S5 IGKUP LT KIZX{STRUT,114STI0LT,2))
£COY CONTINUE
6002 CC €0C2 T=KANM, IMIN
SKUPLTsK)I=SICKUB(ToK 1454 (STG(T,1)4SICCT,2))/51GOW
€C03 CONTINLE
€01 CCATTRUE
607 CC €03 K=1,5"
DO €03 1=2,TMIN
STCKUTs 14 KI=2*SKUP{ T,K)=STCK{T,2,K)
CTICKIT s JLES K =2 o #SIGKIT + JNIN K-S IGKI T, JMRT,K)
€03 CONTINUE .
604 [C 605 K=1,% i
CC ECS T=2.IMIR !
MOLFRET 212K Iz HCLEUPLT (K1 =WCLFR{T, 2,K)
MCLFB(T yJLES yKI =2 MCLFR{T, JMIN K} =MOL FR{ T4 JMNT,K )
€05 CCRTINUE .
ECE [0 €07 K=1,4
[T 607 T1=2,IMIN
MLESCT g1 oK = WEESUPLT X ) =M ES{T42,K)
MLESC Iy JEESyKI=2o #MUESE T, UM TN K )=MLE ST, J¥NT LK)



612
614

615
t1¢

€17

CCATINLE

CO €05 K=73,.4

EC 609 T=2,1MIN

NECIT ¢ L oKE=SMTITUP LT o KYI-ASC(T,2,K)

ASCUT JLES K I=2, #NSCLI ¢ JMIN K I-NSC (T, JFNT K]
CONTINUE

----- DCLBLE SUBSCRIPTS=me=ma

CO €11 T=2,YMIN
CORNCUPIT)=2o%(SICIT,1)#SICIT, 21 /MM TIXUP( T}
CCRTINLUE

CC €12 [=2,IMIN

POLFIXT{T 4 )=FVMIXUFTT)=MOLMIXTT,2)

MOLMIX(T o JLESY =25 MCLMI X (T, JNTNI~MOLMTX (T, JFNTY
CONCHEs LI=CONCUPLT)=CONCL T, 2}

CONCUT o JLES)=2a#CONCU T, JFINI=CORCC T4 NNT )Y
CONTINUE :

TC 615 I=2, IMIN
COMUPLII =7 o SKUPLT 411/ NCLEWT(1)
CONUP2{T)=2,%SKUPIT .21 /MCLKTL2)
COMUPBLTI=SZ2 %S KUP{T 2 }/WCLWT ()

CONLPALT ) =2 % SKUP{T 441/ FCLWT (4}
CONUPE(T =2, %SKLPLE S /MDLWTL &)

CONTINRUE

GC €17 I=Z,IF¥IN

CORC1{T, 1)1=CONUPLITI-CONCLI [,2)

COMCL{T o JLESY =2 % CORCI I Ty JMINI-CONELL T4 JWFKT)
CONC2(T 11 =CONUR2{TY=CONC2 (] +2)

COMC2{T4 JLEST=2#CONCZ( T4 JMINI-CONC 21T 4 d0NT )
CONCI(T 1) =CONUFILTY-CONC3(1,2)

CONCRIT, M ESY=2,4CONCALT fJNIM-CONCIIT L INN])
CONCa{ 1, 1)=CONUP4LCTI-CONCEL 1, 2)

CONCA{T s JLEST =2 o #CONCAL Ty JMTRY=CONCA [T, JFNT)
COMCS( T4 1 1=CONMUPELI [} ~CCRC51T47) )

COMCS (T ¢ JLES ) =2o%CONCEUT, JMINI-CONCST T, gwNT )
CCATINLUE

Crmmep—m——— CENTERLINE AND WAEL—-==~
Cremmrm—m—— TRIFLE SUPSCRIPTS-——n=

€3¢

631
22

s vl

o
Fo ]

635
€36

DC €21 K=]1,45

DC €21 J=2z,JMIN
SIGK{L+JsKISSTIGKIZ,d,K)
515"(['.551.}!!)=SIGK{ ININ,JvH}
CENT INUE

CC €33 K=1,5%

DO €23 J=2,JMIN

FCLFR{TLES, JoeKI=MOLFRIIMINy J,K)

 CONTINUE ;

DO 63% K=1,4
L0 625 Js2,JMIN

PLES(Y ¢ J oK) =MLES(240,K)
MLESCTLES 4 JgkI=VLESLINTN G J4K)
CCNTINUE o
[C £37 K=1,4

CO €37 J=2,JMIN -
MSCUTLES oy KI=KSCUININ, J,K )
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194

£27 CONTINUF
g m——— CCURLE SURSCRIPTSmmm—m
A4C CC €41 J=2,0MIN
MOLMIX{ 14 J)=MOLNT XL 2,0}
MOLFIXTILES yJV=MOLMTX CEMEN, J )
CORC(1,JE=CONCL2 400
CONC{ILES, J¥=CORCLTFTIA,JY
441 CONTINUE
447 DO €42 J=2,J¥THN
CONCI{1,J1=CCNC1L2,d)
COMCTUILFS ¢ JV=CORCLLIFIN, I
CORC2(1,J)=CONC2 (2, 4}
CCMCZ(TLES,»J)=CONC2CIMIN, J)
CONC3 (14 J)=CCNCAL2,J)
CONCITILES,J1 =CONCATININ, J}
COMCALL, JISCONCA (2,0
CONCALTLES o JY=COMCE LTHIN, )
CONCS{1.J)=CONCE( 2, J)
CONCS{TILES,JI=CONCSTIMIN, )
43 CONTINUE
IF (NFIRST,EQal) GO TC 700

PETURN
f,

- ENTRY BOUNH

f

¢ wmmmmme—-CALLED NEAR FWTX6 4707 ANN NEAR 820}-wwe-

f rmme===——CALC GAMMY AND TE¥PERATURE UPSTREAM AND DOWNSTREAM-——==

760 CC 701 I=2,IMIN
GAFFTIT 211 =GANRURIIY =GAREV {42}
CAMMY L T, JLEST =2 #GAMMY T o JHINY=GAMMY (T o JVRT )
TUI4JLES ) = (GANMY (T, JV TR D4 GAMMY (To JLES ) )R (MOLMIXE T4 VT N) 4 MOLMT X—
(T2 JLESII R (EVELT w JMIAY4EVEC L, JLES) )/ RCT-2,

701 CCATINUE

N2 CC 703 I=2,NTUBE
TOT 11 =2 %0, 5%( SIGIT, 1I4SIG T (211 ) E2GARTA=-T(1,2)=2,

703 CCNTINUE .

704 L0 T€5 T=hANK, IWIN
TUI s 1 =0 TENPOW4 24 12 Lo SR(STR (Y ;1 14STG(T,2)) /STOOW VESGAMOW=T{ 1,2 1-74

f05 CORTINUE

fuzammm———— CENTERLINE AKD WALL—-———

714 DD T1E J=24MTH

TLE CAFNY (L, J)=CAMMY (2, J})
GAFFYLILES,4)= rapwvt:rlh,Ji
T{Led)=Tlz4d)
TOTLES, JI=TCIMIN,J)

f16 CONTINUE

(uznmem—=—=CALC REQUIRED BRCUNDARY VALUES GF NRf-—me=

417 CC T8 T=2,INIK
MRECT o LI =REYUPLIN—ARE(T42}
NRE(TyJLES)= 24 #NRE (T4 JMINI=NRE( T, JMNT )

#18 COMNTINUE .

416 DC 72C J=2 4 JHTH
MRECTLESsJY=NRE(TMIN, J)

130 CONTINUE



195

IF INFIRST.EQLO01 RETLRN
ENTRY BCUME

---------- CALLEC AT F¥IXE 871G===wn—
——-~—CALCLLATE FR UFSTFEAM ARE COWNSTREAW—=——-

800 CC RO& [=3, IMIN

BOL PREI,1V=(CAMMYL], 11+CBPNY(I.Z)l*IQIG{Tvli*RIC(192I1*(=YE(111)+-
EYE(L 21) /BCT=PRIT,21~2a
FROT4JLESI==PR{T,JMIN}

804 CONTINUE
----- WALL-=—==

805 TC €0& J=2,JMIN
PROILES, J)= (GAMBY CTFTN, J14GAPMY (TLES (118 (STGOININ, 314516 TLES,d1 1=
SCEYE(TMIN JISEYECTLES, JY) /BCT-PRUEFIN,J)-2,

806 CCATINUE
MNFIRST=C
RETLRN
ENE



196

{ PROPSE - WIERER SURROUTINE PROP FCR PRCOPEFPTIFS CF FLUID #4, A MIXTURE
¢ CF CARRUA WNCNOXICE, CXYCEN, CARBNN CICXIDF, WATER VAPOR, AND
c OXYGEK WITH TENMFERATURES YARYING FREV 294 TQ 2007 CEG Ko

C PRESSURE=APRDUT 1 B8TM, MIXTURSES AND GASES ASSUMED TNEAL.

C CO¥PUTES SFECTIFIC FEATS, GAMMA, VISCCSITIES, THERMAL

C CONDLCTIVITIFS, OTIFFUSICh CORRFTICIFATS, AND !

c INTERNAL ENERGIES. CCMPUTES REACTION RATE OF CP + 02 TN ©N02
€ AS B FUNCTICN CF TEVMPERATURE. !

q
'y

SURPCUTIRME FRCF : ' i

™

TPELICTT REAL#R(A-H,0-7)

CIMENSTION STGK([23,67,%)

CIMENSTICN COTHER(Ey SeZ 1, COMULY 51 CORTZ,5}1,000VE4,4)

CIVMERNSTCN DVI4) o SPUTIACGY (SMITOW(S) o XCF(5)y REYUPI231,CP (23,43}
CIMENSTON XFO ) oT{22,43) ,ST7EX{6Y  SMITLP (23 4] ,CAMUP(23)
CIMENSIEN FR{PI443),51C{2344201, UR(Z2447),VI122,442),~
EYE(23442) sENG127,443)

[

PEAL#R KWUSTAR WNSTAR, LT, MCLWT{S},MOLMIX(22,42),MHT(5)
REAL#ZE ASCU123,842:4) JWELFRIZ22443,5)

REAL#E KRE(22,43)1,NPR(22,43),CAVMYLZ2,43),CONCL23,43)
REAE®8 FLWTCW MM IXOW, ¥LRT TN 4MMIXINSMLESDW{ L), MLESIN(S)
REAL#E NSCZ(23,47),MCC2(23, 43!,hSC@tZ%vﬁB)VVLEq123v43yél
REAL#E MCLFUP[22,5) MMIXUP{ 23}, MLESUPI 23,4}

INTEGFR SPECY1/4H CC/eSPECY2/4H D02/ ,SPECY3I/S&H CC2/y -
SPECY4f4r H20/,SPECYS/EE N2/, SPECYESLR AVG/
INTEGER SFECIR{6}

Pl

Y

CATA CCTFER/3I.T10D928T 400y~ 161505 6AD-02 32, £523554D-06~
~20C319LT40-05+2a39533440-13,-1.473562100404,3:6255985N+N0,—
—1eETR21E4D=-0, 70854 6aN-CE,—6aTH25127M-LG542.15559930-12,~-
=1o04T52260402,2.4007T76T0400y BaT25NFCTT- (2o~ Eo607087BD-08,~
PeCC21P6IN=094¢e327403C0 16440 83775270404 ,4,0TH12T7S04+00,~
~1o10RA45CN-03,4,15211€00-C64=2,9637404D-C5,8, 0702103013,
—3.02707220404, 2£T482¢) 400, —1,2081500D-024223240102D~-06,4~
~€a22175550~10,3-222577253C0-135-1oN61 15880403 ,2,9RGOHI5N400, -
104PF912G00 =03, =5 TEGSELE4N-07414CE4STTO-1C0y~£293035K0N-15 4~
~1e42452280404,306219525C400:T7036182F840=~Ch,-1096522780-07,-
3, €20155E0~11,+- 2089456270154 -1c20198250402 44 04608041 T+ 00, —
T, 0GELTISC-02, 123826710~ C€,2.7741328D-1Cs~1e 55259%40-14,~
~boBGE14E20 404 4207167630400, 2. 9451374T~02, 8402243740074~
1aC22EERIN=104— 68472145015 ,=2.990582€040432,8963194T400,-
15154866 0=-03,4=5.T235277C~074+ 558077930~ 11,-£452235550-15,4~
-9, CSBEL1B4T+02/

R R ey ot PN g N g s Y g g e

CATS CCMU/To01429360~C%y 2,.54494T70D~07,=Ce 3TCEE3SD-11,~

£ 164C561T-0545,21216580-07 ¢-1a00452311C-10,3.12541200-05%,~
4e4C210GEN-074-BoONEZ1E10=11,=4,104230FC.05 4 o436TTI0-07 4~
-2 B3994H20=1147.00€52810-05:3,948683A0-07,-6,3514576N=-11/

[ N ]

i



[ BV N

g g ™y

187

CATA CCE/1c4TB2€25C-08, 158677262000y —-155274T7230~11,4~
5415935320062 «0251356C-0T =30 10302780-11,-1c514156R8CN-05,~

- 1eSS15205D=07 ¢~ 2AL112570~11¢~30£95567C0-C54254435983N-07 4~

6257006660 -11,1,P605CEI0-06; 1.5C484R50=-07,-1,1356894N~-11/

CATA COON/=Toa32TETIN-C25 % CT44264N-Ch41.CSTR2520=064~
=6e14438120-11,~9,52705220-C342.447118€0-N4,10656RTETD~064~
=24 EECECERC—104=Ta09R]1EEIC~024:4,TI8RISI[+NEL,1 1313812008,
~1el11164G40=104 1o 731 1CES0-C2e~1a211£2280-044922191841D-0Ey~
-205229710C-10/

CO¥PCN/ARZTIMNT TMIN TLESy IMAX o JFNNT o JMTA 5 JLES s JMAX
COMNON/CC /PRy SIC URL VI FYE,ENG

COMMON/LL /EYSTARZROUT 2L T ¢FULNC,REYNE ,STRONCSMITNG, PRANND, VRPEF
COVFORA/NN/PETAR, SGSTARWMUSTAR, MCL WY, TNCONP

CCFVMCA/CU /L TAL , TOYL sERRCR PRI THET 8, PS T, EFTAM, BETAV,BETAL,RETAK,,NCHT
COMMONFAB/MSTAR s TETARWCSTARJOVSTAR,CCRR,SPECIF
CONNON/BCFRREZNERGCANMY, FOLFT X, CONC

CCH¥CN/AD/RMSC
COMMON/AE/CC2sCCa.CCS 4y CCLESRFRDF NEPECY NEPEC,MULTTIO W NY 4 NT K NPERCT
CCEYCN/ BF/SIGK,FCLFR

CCWNON/AL/WLES T 4CANTR 4CANC Ry TEFPCW,STZEX

COMMONFAMINMOLFLUR MMI XUP ,MLE SUP, SMTITUP,GANLP, qHITIh SEMITOW.—

REYNIK 4REYMCH, REYUF

COMNMUNZAM /PRI KT N MVIXNChyMLESTM, FLESCh

---------- CALLFE AT FPTXE #130-----

----- SET IRITIAL VALUES-=-m-
FWT(1)=28,C10

FuT(21=32.000

METI2Y=44.C10

T (4)=18.01¢€

FeT(S1=2E,C16
SPECIE(11=SPECY]
SPECIE(Z}=SPFCY2Z
SPECTE{2)=5PECY3
SPECIE{4)=SPECYA4
SPECIE(S)=SPECYE
SPECIENR)=EPECYS

NSPECY=E

NSFEC=4

MSTAR=g 21 #PUTIZ2 V14,792 kRT(S)
CO 102 K=1.%

FCLWT(K I=NHTIK ) /MST AR
CCRTIANLE

---------- CALCULATE REFEREACE CP AND GAWMA=1,=-===m

TSTERzG o ¥ (TNe=-2221/9.4273,1
CPL2=)oSETP2*(COTHFR {1 42,11+ TSTARK{COTHEP {242y 1 Y4TSTARX{COTHERL 3, 2,10~
FTSTARM{CCTHER (4425 114 TSTARKXCCTHER{S 42,1100 1))

CYC2=CPLZ-1c9R72

CPA2=1,GB72%[COTHERIL .= vll+TSTAE*(CDTFF“{2 Sy LI+TSTARMCOTHER({ 24 Sy 1=
+TSTAR®(CCTHER 4, 5'I¥+TSTAR*CGTHFR("“71?))l)

CVYN2=CPhZ2-1.%872

CPSTART (o 21%CPC2+s TOH(FR2)/HSTAR



CVSTAR={ ,2180VA24,TIRCYNZ ) SMSTAR
GAWIN=CFSTAR/CVSTAR-1,
Cre—====w-wCALCULATE REFERFACE VISCCSITY ARD THFRMAL CONDUCTIVITY
105 XMUCZ=CCPU(l42)+TSTARSICOMUL2, 2 14 TSTARSCOMUIT,2))
EVUR2=CORL{ Y+ S +TSTAREICOMUIZ ,5 1+ TSTARSCCNU{3,5))
FUSTAR= . 23 9XMUQO 24, TS ERUN2
XKCZ=COKIL 2 ) 4TST RS {CCK (2, 21 +TSTARSCAKL 2,21
XKAZ=COKI1eS  +TETARS{CCKIZ y5 4T STARSCCKI2,5})
¥KSTAR= 2 1% UK 024, TOTXKN 2
10¢ PSTAR=1.C1375046
Commmmrm==R=P, 21434047 (GN-SC CM) /{SC SFC-GWV ﬁFLF-DEG K)—mm—
EYSTAR=B 2143404 7#TSTAP /I GA¥TNRMSTAR)
SGETAR=PSTAR/IGANINSEYSTAR)
CSTAR=SGSTAR/MPSTAR
CSPIT=MUSTAR/SESTAR
Covmmrmm——— CALE CIFFUSTVITIES~mw=m=~
1C7 L0 108 K=1,4
EVIKY=COEVIY s K)4TSTARS{ICODVIZ,K 34+ TSTARS(CONVI A, K )+ TSTAR %=
z CODVI44K) )Y
108 CONTINUE
CYSTAR=CY(2)
EMTTNC=CSNIT/DYSTAR
SHMITINUI)=CSHMIT/DVILY
SHITIRLIZ )=CSMIT/TVL2Y
SHITIN(2Y=CSMIT/CV(Z)
SHITIN(A }=CSHTT/EV(4Q)
109 FRAKNC=CFSTARZMISTAR/XKSTAR
SHITRC=CSFMIT/DVSTAR

NPRCP=0
PLULTIC=1
110 RPATP=DSERT(32.) /28,01
FETUFRN
C
ENTRY PROPA
C
(rmmemnnae CALLEL AT AIT12 #109-—w=—-
Cr=~wwr———-CALC MUy XKy CFy C¥¢ GANMY, FOR AMMCLUS AT START-=-=-

.200 ¥T=1
TP=S1ZEX(¢&)
CRE=ROCUT# VREF*5GSTAR
MLETCW=MMIXOH/ 2,
IF {TPoGTo1000.) KT=22
201 SUMCP=0,
SUNCY=0,
EUFK=Cs
' SUMM=0,
202 EC 205 K=1;%
202 YMU=COMLEL KD+ TRE(CCMU2,,KI+TEHCCHUI3,K) )
XEK=COK{ 1 K F4TPA{COK{ZoK)I4+TPHCOK{ 3,K )}
XCP{KEI=169B T2 (CCTHER L, Ko KT +TP*(COYFER [ 2, K KT 4+ TP %~
7 ACCTHER{ 2 M KT 4+ TPH (COTHER G oK KT+ TEHCOTHER (S yKpKT 1Y) ))
XCV=XCP{KI)-1.9872 :
204 SUMCF=SUMCT+XCPIRIXSTZEXIK)
SUMCVY=SURC V4 XCYEST7EX(KY

198



199

SUNK=SI HaR: - 537X LK)
CUMM=SU" “#X" v 51 7eEX(K)
205 CONTILINUE R ,
---------- CALCUL 1 &7 “UNST AT TNPUT VALUES FOR ANNULUS=--=—-

f%-la
CPLH=SUKCP/ (ML uTORFYMETARY I
20T FRAKCH=CPCHESUMN/SUMK '
RE YNOW=CRE /SLHM i
CSKIT=SUNM/SGST AR !
210 CC 211 K=1,.4
OVIK)=CODVE s K 4 TP (CIDVIZ,KI+TPE {CODVI3 (K I+TERCCOV (4,K) 1))
SHITCNIK I=C R T/ADVIKY
211 CONTIMUE
i CALCLLATE CONSTAMTY IRPLT VALUES FCR LFNTER JET==w==
220 TENMFIN=0, .-~ - .
CPIN=CPSTAR =
PRAN IN=PRANDL
REYMIA=REYAC
FLETTA=1,
RETURN

ENTRY PRCPE

---------- CALLEC AT HASSZ §29C-———-
S it CALC REACTICN RATES——===
200 CO 212 J=Z.JMIN
301 CC 312 I1=2,I%IN
102 VLo dV=GAMEY{T s JIHFCLF IR T JY*EYELT 4 ) /ELLRC-1,
TP=TFMP{I,J}*TSTAR
TEMPYL =8 1GHK{T4+d51)
TEMP z=SIGHRII 4 24210
TEMPI=S[CK [T, 0,2
RATE=CCR3E®T T80 +GRDEXF{~1al526D%4/T0}
303 LO 210 N=1,RY '
[F (TEMP1.LEcDGoDPaTENMP2,1Eals) GO 0 211
204 CELKL=PRATERTEMEL®TENPZ . .
CELKZ=RATHINELK]
IF (CELKI.CTTEMPYY CC TO 3CE
IF (DELK2.GT«YEMP2Y GC TC 306
cao 1o 2ca
105 IF (CFLK2,LELTENFZY) CC TQ 307
TEST=TENFZHTENF?
IF {TEMP1.LT.TESTY GO 10 207
306 CCLK2=TEFFZ
" DELK1=TENMFZ/RATWK
- GC TC 3¢*F
" 36T CELKL=TENFL
PELKZ2=RATMACELK]
308 CELK2=TELK14RELK?
09 TEMFL=TEMFL-CFLK1
TEMPZ=TENP2-DELK?
TEFPI=TEMF24[FLKI4DELK?
31C CONTINLE
211 SIGK[1,0,11=TEMPL

Reproduced from
best available copy.




200

SICKIY 3,2 )=TEVME2
SIGK(I s Je?)=TEVP2
3112 CCNTINUE
312 CONTYRNJE
RETLRN

ENTEY PRCEC

(s CALLELC NEAR FMIXE R201 AND FFIXE HTCT———~—
(remm e CALC GRID FRCPERTIES AT ENC OF TIME STEP BEFDRE 9R:§SURF‘-'-"““"
Commmmrm e CALLC NEW CPy CV,y, GANFY, £ TEMPu-=-wa
400 CC 426 J=2¢JMIN
401 CC 425 I=2,IMIN
KT=1
TPF=(T(TsJ)3+]le}2TSTAR
402 IF (YPoCT 010006} KT=2
4£C2 DO 4C4 K=1,45
XF{KY=FCLFR{TIJ,¥)
4C4 CChRTINKLE
Cmr—meme === CALL MUy XK, CP, CVy GAMMY, £ TENF—m——=
410 SUMCP=Q,
SUNCV=C,
SUMK=Q,
SUKK=0,
411 CC 414 K=1,45
IF (XF{K)olTalaD=7) 6C TC 414
412 XCP{KI=1,9872#(CCTFER {1+ Ky KT I+TPR{TOTHER (24K KT }4TP &~
T (COYHER (3 4Ky KT+ TP (COTHER (4 4K KT }4TFRCCTHER (S, K, KT 1111
XCV=XCP(KI-1s95872
XFU=COMUTL oK) 4T FE{CONUL2, KD ATPECOMU(,K))
XXE=COHEL yKI+TPRICOK(Z ) 4TF2LOK(3 4K
613 SUNMK=SUMK# X XK #XFL{K)
SUMF=SUNPM+XNI*XF{x)
SUMCP=SUNCF+XCPLKI®XF (K}
SUMCV=SUNMC V4 XCVEXF{K)
414 CCATINUE
G15 GAMMY (T ,J)=SUMCE/SUNMCY-Y,
CPULy JI=SUMCP/IMOLMIX( 1, JI¥NSTAR)
TIT oV =CANEY L T JIENCLMIXT Ty JIREYELT y JI/EULNC=],
41€ CSMIT=CSLMM/SGSTAR N
MRECT,JI=CRESSUMM
KPR{T yJY=2CP{T 4 JIXSUNF/SUNK
{=—r——m~v——CALC DV AND NSC-———-
420 CC 423 K=1,44
421 DVEK) =CCDVIL K} 4TPE[COOVI24K)4T X (COCV 2, K 14TPRCODV{4&,K 1))
4273 CONTINUE
426 KRSC{T+d,1¥=CEMIT/LV(LY
MRSC2HT < Q) =CEMIT/CV (2}
ANSC2{ Iy J)=CSMTTACV(2) .
NECL (T J)=CSMIT/LV(4) . N
42% CCATIMUE
626 CCARTINUE B
Lo STCRE REST [CF ASC WUMBERS——mw--=
4320 DO 421 J=2.JMIN



[0 431 T=2,TKIN
NSClTede2)=NSC2(T,.0)
CCATINUE

CC 6433 y=2,J¢IN

DO 4322 TI=22.1FIN
RECITyJe2H=NSC2(T, 01}
CONTINUE

CO 425 J=Z.+JMIN

CC 43% =24 IMIN
MSCUTadoa}=NSCH(T4J}
CONTINUE

MFRCF=1

RETLRA -
ENC :

201



C
C
c
C
C
¢
C

(@)

e~

PADT £ - WIERER SLPRLUTINE FBET FCR FLOMIXS TC PERFORM THE TTERATIONS

100

101

110
200
201

203
202

210

CF THE PRESSURE FIELD — LSES ALTERNATING DIRECTICN [MPLICIT
(ACT} SCHENME OF ERTAN - INCLUDFS TESTING AND INTEOMENTATE
WRITEOUY OF THF FRESSURE FTELE - PRESSURE UPSTREANM TS CALCULATED
USING MOMENTUM ANE PRESSURE OCWNSTREAN 1S HELD CONSTANT -

USEC TN NERCR=13, . ‘

|
SURRCUT INE PACT ‘

IMPLICTT REAL*E{A=H,C=7) ’ .

CIMERETOM CULDI273,42) +61{27,43)

CIMENETON BE 234421 D(Z22,43),5CL0(23,43)

CI¥ERSICN FR(27,471,FF(23,42) ’

DIFMEREICH AI(22),CT022),00123 1, ETU23 1, FI{23},DU{462)+CI43},FI(43)
CIMENSTION PBHAFT 23,471 ,50UN(Z2, 431 ,CCNT(73,43)

CONNMORN/AAZTRAT ¢ ININQILES o IMAY G INNT L AN TR, JLES, IMAX
COMFCA/CL/BLA, BCELERRS G ITESTUTEST NSTCP ¢NCOUNT ERRDR]
CEFNORSEE/ PP+ PYTHE, TAL

COMMON/FF/COLD .6

COHNON/BE /R Dy SOLC,PLP2,SUP2

COPMON/ /AT BTl o fI2 3 CT oY o ETyFT A I ES2,CIy DIy EdsFJ4CCE1,0C42
COMMON SKK ZSCUN . CONT
COMFIA/CL/CTAUSTCYC ERPOR PRI, THETA; PS4 RETAM,BETAV,RETAT ,BETAK ,DCHI
CONMON/RE/NTRITE L ITNAX G NFRITE(NFLUSNPRIP NRyNL, NT, N ITER NOUT

FCEMAY(1:0,T5, 'PE ARRAY, 1=24 TLES J=1,JLES NT='T4,% NITER=']%,~
¥ TAUS'FlCa61
FORMAT(IPICD12,5}
FORMAT(LHO , TS YFRITIZ, 0, "12,9)=91PNY12,%, 7 TRPS-TN13,5)
FORMATIIHC TS *FRANAF ARRAY, I=

'OTAU=F1C.E)

----- PRESSLRE TTERATICK-mmn=
NTER=D
ERRCRI=ERRCR
ATEST=0

RSTCRE=0

11172

JJy=2

PI=P11

BJ=8J1
CC&E=CC 4L

AT FRY=0
TTEST=T11
JTEST=44

TC 207 J=1,JLFS
LC 202 1=2,TLFS
PO LT, )=PRET, )
CENTIRUE
CONTINUE

----- FIRSY HALE CHE STEPw—mma
L0 229 J=2,JMIN :

2eIMIN J=2 s JMTN NT=FfT4,* NITERz=I]5,-

202



211

212
212
il4
215
217

218

219
220

221
222

223
224
2239

220
23t

JP=J¢]

JM¥=g=-1

CO 219 T=241ivih
Iv=1=1
P=PF{TeJ)

CI(I!=-CC42*(PP(I,JF)+FP(I,JPl-P-Piwlftﬁl—l./SOUN(I'Jll*P-G(I;J!

IF {ToNELININ) GC TC 214
CICTMINI=CTOIMINI-CLEIMINI#BCEHRITLES,J)

€0 TC 218

IF ([oNEo2) 6C 10 217

ET(2)=CTL2}/B1

EI(2)=DI(2) /RI

€0 To 21¢

EX4I)=CI(IM/IRT-ATL1)IRET(IM})

FICI) =0T (T)=AT(TVSET{INY )/ (BT=BT(TISET(INY})
€0 TC 219

EICIMINI=0,

FI(ININ)=(EI{IPIhI-AI(IPIN)#FI(I"N{))/(H!+CI(1HIN)-AI(IMIN)*ET(IMNI)i

CCRTINUE

£O 224 K=2,1FTHh

I=IMA X=K

IfF {KeNEo2) 6G TO 223
FREAF(INTR g V=FTLTVIR}

€0 YD 224
FEHAF (1, J1=FI(II-ET(1)#PRHAF(I+1,J)
CONTINGE

CONTINLE

----- SECONE FALF CHI §TEP————-

EQ 249 T=2,IMIN
RO 237 J=2,JFIN
JP=J+1
RLEN

? P=PR{T,J}

PHAF=PRFAF(T,.5)
CJ(J)=CC42*(PDIIoJP)+PP(IwJ"I—P-P!+CC43*(P-PHAF—PHAFI
IF {JeNEs?2) 6T T1C 235
CJ21=0I02)280%CL 1, 2)/BC4
EJE2V=CJU/TAaJ+B I}

FI21=2DJ( 2 2{AJeBJ}

CC TC 237 .

IF (JeECLJFIN) GC TC 234
ESCIY=CI/{BI-AJLEJIINMY)
FJ(J!=(CJ(J|-5J*FJ(JHI!I(BJ~AJ*EJ(JHI)
GO T1C 237

EJTIMIN)=C,
FJIJFIR)=IEJtJMlN)-AJ#FJ(JHN]})/!RJ—CJ—AJ*EJ(JMNIYI
CORTIMNUE ,

CD 244 K=2;JHIK i

JeJRAX-K !

IF (KehEo2) GC TC 243

PRI T, UMIN=FJ(IMIN}

GC TC 244

PBIT ¢ 1 =FJlI)~EJ(JIRFE(T, 051}

CCATINUE

203



204

24 CCOMTINLE
115 CD Y1& I=2,IMIN
FBII+1)=FR{T,23-C(],2}/RC4
PBII . JLESY==PR{Y JVIN}
116 COMTINUE
117 CC 1318 J=Z+JLES
PBITLES, JY=FPR{TPTh, JI4BCEXE{ILES, J)
118 CONTINUE
119 MITER=NITFR+Y
120 IF INTEST.ECa 1Y GC TC 149
----- TEST ERROR ARRAY fOR A FAILIUPE—m—we-
121 U0 128 J=JTEST,JMIN ‘
122 DO 127 T=2,IMIN
PARS=CABS(PB{ T J)}+DARS(PPIT,J))
123 TF {PARS.LToloC~10} CGC TO 127
124 ERRE=(PRIT +J1=PP{l,J})/PARS
IF ICAES(ERRS1.LTLERRORLY GO TO 127
125 KTEST=1
Q=!I
SANERN
IF (NTTER.LToYTKAXY CC YC 121
1250 N5STOP=1
FETURN
127 CORTIALE
128 CONTINLE
129 IF (TTESTWECo 24 ERDoJTESTLEC,2) GO TD 122
12C ITEST=2
JTEST=2
cO TO 121
121 ITEST=IT}
JTEST=444
GC TC 150
122 IF (MTHRU2EGa 1) RETLRH
132 pI=pY2
BJ=pJ2
CCa3=5,%(C41
NTERU=T
ERRCRI=ERRCR/4,
G0 70 1%¢C
A TEST ERRNR AT ONE PDINT FOR FATLIURF-———a
140 FAPS=CRAESCFRITITEST JTEST))4CARS (PPLITEST ,JTEST))
" IF {PARS.GTo1.0=100 GC TO 142
141 ANTEST=0
€0 IC 121
142 ERRS=(PB{ITESTJIESTI~FPIITEST, JTEST)) /P 2BS
IF (ERRS.LY.ERRCR1Y GC TO 121
—===vTFST kRITECLT-==m-
150 IF {NITER.GF,ITMAXY GC TC 1560
TE (MCCEACCUNT ¢NTRITE}oECLOaANDSMODINTTERMPRITE)oEQWT) GO TC 151
GO TO 200
151 WRITE (£,1) NT,NTTER,TAL
E0 152 J=1,JLES
BRITE (642} (PECI,J),1=2,TLES})
152 CCATINUE



205

155 ¥RITE (6432) TTEST,JTEST  PRLITEST W JTEST), FRRS
186 IF (NTTER LY. TTMAX) 0 TO 2C0C
1560 KSTCP=1

RETLRN

ENT



C
C
C
C
C
¢
c

FASS? - WIFRFR SURRCUTINE MASS FOR SOLVING MULTICOMPONENT MASS TRANSFER

FLCWS WITH FMIXS5. CCES RINARY TYPE TRANSFER OF TRACERS TN A
SOLVERT = CCOMPUTFS ALL VALUES NBESCRIPING SPECTE QUANTITIFS.
CORTAINS FRRCP CCRRECT IONS FOR FINTYE DYFFERENCING AND A

SCHEME FOR ELTMINATING NEGATIVE SPFCIE DENSITIES, ADD IMPLICIT,

SUBRCLTINE MASE
IMPLICIT REAL®A{&~H,0~-2)

CIVEASTOR PREZ2443)1:51C123442 ,URT23442) ,V7 (22,430 4
EYFL23,43),ENG(23,43) :

CIMENSION CORCL 22,431 ,CAMNY(23,43),T(23,43) SUM(23,43)
CIVMENSICON RATI(23},RAT2(23)

CIMENSTOR CORCL 234430 ,CONC2E23 442 2C0N02(23:43 0, CONCAT23,42) -
CONCEBL 22,431, STZEX{ &)

CIMERSICA STGKI22443,5 ) CIFFUTIZ3:42,4), S0LD(23,431,5KUPL23,5)
CIMENSICHh TERMUIL23 ,43) <TERMV(23 .43, SKCLTI23,43)y SKHAF(23,43)
CEMENSION AX( 234431 ,B1022,42),01023443),C1(23443},E1(23,:431
CIVERSIOA FL{23.42 . P207 3,42 ), E2( 23,42 ), S(23443),5IGKUP(23,5)
DIFERSICN DIL23)E1{22)4FTI231,C0043),E01431,FI(43)

CIMENSION COEFLU(Z23442) oCOEFZ{ 23,43} ,COFF2{23,42),COEF4(23,443)

REAL%E MXZMUSTARGMCLRT(E)4MOLMTIX(23,43)
REAL®B NSCIZ3, 42,4 MOLFR{22,43,5)
REAL*8 NRE(Z23 443D, AFRE{Z23,43 1, M ES(23,42, 4)

COWFOR/AB/TNNT o IMIN TUES s IMAX o WNT 4 NI Ny JLES, JMAX
COM¥OA/CC /PR SIGoUR V2 sEYE S EMG
COMMON/NN/PSTAR ¢ SCSTAR G VUSTAR G MCEWT s INCCME

COFMON/ OO /DT AU TOYC s ERROR ¢ PHI THETA s PSTPETAM,RETAV BRETAT (BETAK ; DCHY
CONMON/CC/OYCUEF,COY%S ,CO1T 2 LC32,CC32,0C24,0C25,0C36,LC37 .
COMMON /b /RATTILRATZ

COMMOMTAX/RINGVINSVCUT o ATURE ; NANN

COVMONAAC/hRE yNPR,GARNY ,,FOLMIX, CONC

COMMAON/AD /NEC -

COWNMCR/2E/CC2: CCBCCY,LCLE, NPROPy NSPECY,NSPEC,MULTID ;MY ,NTN,NRFACT
COMNCA/AF/SIGK #CLF R

COMMON/AGC/CONCTCONC2 ,CONC 3, CENCACENCS

COMMON/AR/SIGKUP .SKUP

COMMCN/AX/CC26,4,CC27

COMMON/AL JMLESTGAMIA GAMCH, TEVMPCM, ST2EY

COVMMON/ AC/EYECKH « FAGCH s SIGOH S TPOM

----- CALCULATE CCRRECTICA-—m==
IF (BETAK.EC,0e.) €O TC 110

DE 10 J=7JMIA :
JPrm 4] ‘
£C 105 [=2,1¥TR
IP=1+]

XI=1+1-12

TERMULT ¢ J1=CCI52URETIF . JI-UR(T, JI+(URTIP ,JI+UR LI, J} /XTI~
+CC2E8 (URIIP, I 4LRIT o J))ERD

206



103

TERPYLT s J1=COLEtIVI{TodPI=VI(T, ) J4CC2TRIVTL [ JP J4VZIT , J) ) %22
IF (BETAKeGTolal GO TC 104

TERMUL Ty JI=RETAKRTERMLIT 3 J)

TERNVIT ¢ JY=PETAKSTERFV (I, J)

GG IC 1C%

TERMULT, S )=PKCOEFRTARSITERMUL [, )

TERFY (] s S)=BKCCEF*CARSITERMY [T, 01 )

CONTINUE

CONTIAUE k

Cmmmme- ~=~-CALCLLATE ACI ANC S{%,J) CCEFFICTENTS=====

[ R Y

nm

DD 11& J=2¢JMIN -
JP=J+]

JM= -1

CO 11E T=a2,IMIN

IP=f+1

IM=]=-1

" RI=RATI( I}

112

113

114

122

122

124

F2=RAT2(1)

V=VI{Eed)

VIP=VZI(1,JP)

AT, )==R2¥UYRL(T, 1)

Cl(T+J)=RL*URITF,J}

BR{T,J)Y=Cll i db+ALLT,,JV4CC22

Citl.5)=Cc22y

FL{I syt =CC2xV )P

El(IsJ}=F{ 1, J)-DLIL, V-CC2Z

P2{T+4)=V-VIP=CC(23

E2(1 +J)=V-VJP+{L23

KC=CONCE T, J)

XM=MOLMIX (1400

XN=RREAT 4 J)

COEFI{ T4 )=CORErRIAICORCIIP I+ XC) JIFOLMIXE TP JI+XMY/INREL TP, J)+XNY
COEF2(I,4J1=CC364R2%IXCHCONT(IM, JI D/ IXM+MOLMIXEIM, I )/ IXNENRECT M, J1)
CCEF (I ¢ JI=CORTL{CORCITaJPI+XC) /INMOLNTIX{ T JPI+XMI/(NRE{ T, JP }+XN)
COEFAC T I=CO3THIXCHCONCOT o JM) D /UXMBMOLFTI LT o IME) FUXNENRELT 4 JN) )
CONTINUE

CCATINUE

=m=asCALC CIFFYSIDN TERMS==ww-

CC 128 K=1.4%

HX=MCLRWT{K)

CC 127 J=24JMTIN

NLENESY

JH=J=1

L0 126 1=2,IMIN

IP=1+1

I¥=1~1

XF=FCLFRIT, ;K }

AM=MEES (T JyK)

IN=NECET s Je XD

CIFFU2ZET JoKI=MXSICOERFIIT o JI#IMLESIIP Iy K)+ XMYS(MOLFR(TIP, 0, K}~
=XF)/INSCOIPJyRY4XAI—COUEF2 (T4 1R (XM4MLES{ TH, Jy K} )& { XF-MOLFR=
CIM Sy J oKDY /U XNANSCOT M, Jo K} 4CCEE 0T, JIFINEFES{T P K )4 XM 2{ ML FR~
C1gdP 4K )=XF}/ CRSCUTy QR oK Y+ XNY=COEFGI T, 3120 XMEMLESTT o JM K} | % ( XF =

©=FCLFR(I o JF X)) ZIXNERSCII o IM 4K §)
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223
224

225

CCAT IRUE

CCATINUE

CONTINLE

————— UPCATE INPUT MASE FLUXwmwonm

EC 135 K=1,5 5
L0 137 1=7,NTURE _ ?
SKUP{ I, X )=SIGKUPITo K12, 5% STC(T,114SIGIT2}} i

2 CONTINLE
2 CO 134 T=NANN,TFIN

SHUPLE KI=STIGKUP(T,K )2, 5¢(SIG(I'II+SIG(I|2!l/SIGDW
COATINUE

E CONTINUE

----- EATER MAIN LOOP=———w
CC 265 1JE=Y ,KIN

£0 260 K=1,.4

----- SET UP CULL VALUE AFRAY====-=

D0 2C4 J=1,JLES

CO 202 I=1,ILES

SKCLOL o J)I=S1IGKL{TJ, K}

CORTI NUE

CONTINUE

----- CALCULATE EXPLTCIT TERM scl.d)—————

DO 21& J=24JFIN

Jr=yg+1

J¥=4-1

DO 215 I=Z,IFIN

IP=1+1

IH=1-1

RI=RATI(I

R2=RATZ(1}

XS=SKCLBLI 4 d)

FARTL=-CCI5% (RIZESKOLT{TPeJi+X3 15 UR{IP 4y -W2*{XS4SKOLD{ My 1} =
FUR{ T, J 4 CC2% LUSKOLDE T4 dP b a XS aVZlT o P = ( XS+ SKOLDI L 4 J¥)1VZ(TI 1))
FARTL=D .

IF (BETAK.ECo0.} GC TC 214

PARTA=YERMUIT 4 JI2{SKOLE(IP ¢ J}4SKOLN( TN, I} -X5—XS) s TERMY({T )} -
*USKCLO(L s JPI4SKOLE (T4 JVI=X5=%5)
SUI+d)=CCYTHIPARTI+CTFFLUZIT ,J ., K)+PARTE)

CONTINUE

CORT INUE

~=~Z=FIR ST HALF DTAY STEP-=mw--

EQ 227 J=24JdMIN

RELRES ]

JH=g=-1

TC 224 I=2,IMIN

IH=1-1

CILD)=S{ 004D 10T+ JIRSKCLDCT g M) =F1LT, JI4SKOLD(T ,J1=FL{ o 2}-
ESKCLO(T,JP)

DENCHF=BLIT o d) =81{T JIRET(IN)

EICIN=CI(1,J)/DENCH o ' -

FITT)Y=(CIC(])~- AllI|JI*FI€[MIl/CENDH
CORTINUE

SKEAF{IMING, JI=FTI{IMIN}

EC 226 hf391"IN

208



ac3
204

305
0¢

I=1MAX=N

SKHAF{ T JI=FI(D)-FTI(IV14SKHAFEI+1, 0

CORTINUE

CONTINLE

----- SECCAL HALF CTAY STEP—===—=-

DC 23€F 1=241FIN

Cat2l= VZ(!eZl*SKULD(Ivl)+F2lIQZ)*SKCL0(Iq?l-VT!I931*SKULD(I'3!-
—CC34%5 KEAF(T,2)

EJUZ2Y==vZ{T,2) /{R2LT+21-VTI(1,42})
FJI2)=(CI0Z21-2a8VZUT o Z1HSRUPL T KI VIR 2T 420 ~VZ(T 21}
CC 233 J=3,yMnl

JPEJ ]

J¥=J=1

Lath= VT(I:JI*SKCLD(I.JP!+FD([¢Ji*QKCLE(l'J’—VZ(IQJP)-
HSKOLCITo P -CC24%SKHAF LT 5 0}
CENCM=B2(T+J)1=VZIIsJIZEJ(IM)

EJ{JI)=-VI(]l,JP) /DERCH
FJOII=DI0I=VIL{ T4 JYAFJTINY ) /DEROM

CONTINUE

DCIMIN) =VZIT 2 NI MR SKOLO LT s MNTI+E2 (T, JMINISSKOLO (I JUINY=
=VZUT 2 JLES IRSKOLDIT 3 JLES)-CC 4% SKHAFL T s JFIN)
EJOJINTIN]=0g

FJOIMINY s{CJOUMIMI V2T UMTRI4VILT JUES I #FIC(IMNT I/ (R2(T J¥INY -

=20 WWI{Te JLESI-IVT{ T4 JMINT4VZIT (JLFRSHIGE JUIMNIY )
SICK{T o JFINyKI=FILIMIN)

N0 237 A=2, JMIK

J=JKAX~h A

SIGKIT s dyK)= FJ(J) EJIJIASTGK (T, J+1 4K

CCNTINUE
CERNTENUE

LG 233 Jd=2yJFIR
DO 282 I=2.IVMIN -
IF (SICK{I,JaK ol TeCu} SIGKLI Iy J4K)=00
CCRTINLE

CONTINLUE

CCRTINUE

1F (NREACT+CTL0) CALL FRCPB

CALL BDRUNF -

COATINUE

----- CALCULAYE REMATAIAG CUANTITIES cvw—w
€0 201 J=2,.JMIN

CC 301 I=s2+IVMIN

SUMCT 4 Jt =Ca

CONTINLE

- TC 33 K=1,4

DO .3C3 J=2 J¥INK

L0 203 I=2,IKIN '
SU¥€I|JI=SUV(I'JI+SIGK11'JvK)
COMTINUE

£C 2CE J=ZsdMIN

CC 205 1=2,IPIN

SIGK{T vJy h‘PECV!~:[C(I'JI'<LV{I,J!
COMTTAUE .

E0 3 (S J=24J¥IN

209



210

DO 205 T=2,IMIN
307 CONCLAT 4 JI=STGRIT,d, 1 )/NCLWT (1)
CONC2(T s =SIOK(T 4 Jo2 1 /HCLET(2)
COMC2(T,J1=STGK (14,2 )/MDLWTL D)
COMCAT Ty dI=CTGKITod o4 }/MOLWT (4)
CONCELT , U1 =STGRET o Jo 5)/MCLWT(R)
CORCL L JN=CONCLOT3 JY+CONC2U T 0D +CONC2(T , J) $CONCAT T JYSLONC 5L T 4 J)
MOLMIX{T 431 =STCCT ) /CEACHT,y)
ICE MOLFR(T4J,10=CONCIET 4} ZCONC LT 5 J}
PCLFR (Y, 3521 =CONC2E ToJ 3/CORT L, J)
MOLFRIT 40,33 =CORCA LT, JI/CONCET, J)
MDLFR{ 14044 Y=CONCE(T , J) /CONC LT, J)
MCLFRE Ty JeS)=CONCSIT4d)/CONCET, )
209 CCNTIKLE
Commmmnn —~CALC MOL WEIGHTS [F PARTIAL MIXTURE S——mm=
310 €0 31) k=1,4
FX=MCLET (K}
E0 211 J=Z JMIN
T EC 311 T=2,IMIN
FLESCL ¢ d oK) =(NCLFIX T o) =MXAMCLFR T 00K 1/ (10=MDLFR {1 4d K })
211 CONTINUE
312 CALL #CUAG
RETURN
ENC
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RESETIT ~ WIEFER PRCCRAM TC PRESET OpéRﬂTlNG PARAFETERS AND MONITOR
VARTABLE S WHEN PAIN PRCGRAYF IS FCRTEANNEL WITH ISD=N

SURROUTINE RESET
IMFLICIT REAL%B{A=H,C=7)
REBL#*4 RVAVG, SAVG

DIVERSICH PRI23 431 ,ST1C(23,43 1, UR(23+43),VI123,43),-
EYE(23,42 ), ENC(22,43)

CIMEASICH CCLEEZ23,43),C123,42}

DIFENETCA 81234420 ,0(22,43),3CLDI23,43)

CIVERSICA FE{Z3,421,COCNTLD(22542)

CIVENSTCON SCUNIZ3,43) (CNT{23,43)

DIMENSTON QU23,43)Y,ENEW({23,43)

CIFENSTICN RAT1I{231,RATZ2123},RAT2(23)

CIFENSICN BETAWTI(Z23 443),BETAVR{Z3,43 ), BETAVZI(22,43)

CIMENSTION COLDO 224421 4EYCLD(22: 43},

VICLD(22+43);URCLE{23,443), ECLD(Z3442)

DIPEMNSICN Al!ZBl'Cl!2’1,?1(9311EI(23).Fl(231.CJ(43!,EJ(43|1FJ(43I
CIMENSTON SIGK(Z2,42,%),5KUP(23,5)

CIMENSICN CChCl(23;4"1CDNC2(23¢43} CONCA(23,43),CONCA(23,443) -
COMCE(23,47)

CIMENSICR STGKUP{Z3.5),SMITIN(A)

CIMEMSTCN RVAVGI23),5A8VE(43,61, REYUPE23)

DIMENSION T(23,43) . SIZEX(6)SNITUPL23 &lgrﬁNUF(23|13FITUHI43

REAL®E L tTWCLHTIS ) MUST2R,LIRLLERSO,ST7ER(12)

REAL®E MSTAR,MOLKEIX(23,43)

BEALHE NSCU23.43,. 4}, MOLFRI22,43,5)

REAL#E2 NRE{Z23 o431 JKPRUIZIp43 ), CAMNY (23,42 ), CONCI(22,42)
REAL*F WMLESI 2344234 MOLFUP (2251 4MMTELP L2323}, MLESUP (2344}

REAL#B WWIXTR BMIXCW FLESINCA), MLESDHT4)
INTEGER DAY, ITERS(40CCY,SIZET(15) ,SPECIELE)

LCGICAL ANS

COFPCNZARL/IMNT s IMIN g TLES s THAX s UFPNT 4 JMIN, JLES, JMAX
COMMON/BB /EYDLD o VZIOLD jLRCLD,L,ECLD
CEPVEN/CC/PRSTC Ry WZL,EYE, ENC
COMMON/DD/BCE sRCEsFRES L ITEST 4 JTEST.NEYCP, NCDUNT.ERRORl
COMMONJEE /PB.PTIMF, TAL
COMFEN/FF/CCLD, G
COFFCA/GG FFUPLPLFPNAX, SICUP, UFMAK.DSCIC VELUP.VUPNAX ROty FREQ
COMECMN/FE /Ry Dy SCLC.PUP2,SUP 7 :
CCHFCA/TT/NBUG s hRUN, MOCATE, LAY
COMFON/JJ/AT +BT19BI2,(1+01,F1, FI.AJ,PJI.EJZ CJ-DJ.EJ,FJ.CFAl»CC&?
CCHMOA/KK /SOUN CONT
COMFCN/ LL/EYSTAR, RCUT.LT.EULNG,REYNO,STRENOqSHITND,PRANNO.VREF
cnwneN/#Hfo.ENEh

:
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100

212

CONNMCA/NR/PST AR ,SCST AR MUSTAR MOLWT 4 TNCOMP

COFNCA/CC/CTAY . TCYN JERBCR,PHL ,THETAPSTPETAN,BETAV,PET AT, RET AK, DCHI
COMPON/CC/EKCOEF, CC15,CC1TC0 22,00 23,CC24,CC35.0C2£,40C27
COMFON/RRANTRITE, [TMAX JNPRITE NFLU JNPROE y AR NL, NTyNTTER,NDUT
COMMON 7SS/ TAUEND sNRETE JATAPE L RSAVE (AFIRPE
CONMCR/TT/COLDs EETAMT , BETAVRWAETAVIwJSTART
COMFCN/hR /RATL ,RAT2Z

COMMON/ XX /RIN VIR VOLT,KTUBE s KANN
CCENCR/YY/LTOLCoNET AU, NINOLD. NYCLD

CONMMON/AB /M STAR,TSTAR(LSTAR,CVSTAR,CC3E, SPECIE

COMMON FAC /WNRE s NPR,,GANNY , ¥OLNT X, CCKC

COCHMFERSAC/RSC

COMPON/AE/CC2 yCCR4CCOCCLE  NFROPYNSPECY, KSPEC, MULT ID¢NY 4NTN, NREACT
COMMON/AF /SIGK MCLFR

COMWCNFAC/CONCY sCONC 2, CONL 2, CONC4, CONCE

COMFCAFAH JSIGKUF, SKUF

COMNON/AY/RVAVG, SAVE

CCMECASAK/CLR26,00C27

COMMCR/AL FMLESy ToGAN TR JCANCE  TENPOW,STZ2EX

COMMON/EK JMOL FUP 4 MM TXUP 4MLESUP , SMITUP yGANUP ySKHI TI N, SVITOW,~
REYNIN REYMCH,REYLP

COMEON FAN/MFTI XTI NG MHT XCh g MLEST hy FLESCH
COWMENZAC/EYEOW, ENGOW ¢ ST GOW, TPOW

IF INDTAULEQa) RETURN

CTCLE=CT 8V

MIKCLD=MIN

NYDLO=NY :

PAUSE *RESET [DYAU, CCHFI, NINy NY, £ NTRITE,?
RETURN

ENE
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213

WRITIT - WIERER SUBRCUTINE RITE FOR FMTXE £ € PROGRAMS. DISPLAYS EXTRA ARRAYS

CCLDy By Do G» & SCUN TF NPUGSL ~ CCONTAINS HRITF ROUT INES
FCR LATER TAPE STORAGE, WRITES CORCENTRATICN ARRAYS.

SUBRCUTINE RITE

IMFLICIT REAL®B{A-H,C-1)

"REAL24 VISTCRZURSTNRPRSTOR 4 SGSTUR,y TPSTCR,TIME

REAL®4 RVAVG,SAVE
REAL®¥G CASTCR,CISTCRC2STERWCASTCRLCH4STCR,CHSTOR

CIVERSICH FEI23,43),FRI23,431;S1CGI 23,420, UR(23,8314V2(23,443),-
EYE (234431 4ENG{22,443)

CIVERSICN COLE(23442),C(23,43),CONCL23,42)

CINENZICK EB(23,43)0(23,43),5CLL(23,43)

CIMENSTION SCUN[22,42) CCATI223,43) ,EYEN{23,443},ENGNI23,43)
CIMENSTECN VZSTDR(?E;QE;IOOI'URSTUR(23yﬁ3e100)prSTGRI2!'43110ﬂ)v
SGSTCRI23 443,100, TFSTLRI23443,100)

CIMENSION TU23,42) ¢ TIRELLOO) (NTT{10Q)

CIMENSTICH CCNC1(239431vCﬂNC¢(23143)pCUNC’(23;43!,C0NC4(23 43) 4~
CONCEL22,47)

CIMENSICN CASTORI22,42,100),C1STOR{ 23,43,100) ,C2STOR(23443,4100),~
CASTCRIZ23 443,100y C45TCRI23,434 100),LSSTOR( 23443510C)

DIFERSICM CONEZ22,47) ,RVAVG(23),SAVG(43,6)

REAL®A MUSTAR FETARW LT MOLHT A (NOLMIXI 22,431, MLEST23,43,4),5T7EX{ &)
REAL®BE NRE( 234,431 4NPR{Z23,:43) 4GANNMY(23,431

INTECFR DAY, SPECIELS) .
TMTEGER NMAMEL14) /4 Cs&H By aH CetH Ge4HSOUN&H  PB.LKTEMD,
14H PRy 4F SIGy 4K URe&F VI Z4HEYEN, 4HENGK 4 4HCONT /S -

CATA LOWTLOW2/1,27

COMMON/AAZTINRT, TNIN, TLES s TMAX y JFNT VIR, JLES, JMAX
COMMONFCLC /PRy SIGUR VT 4EYELENG

CCKFON/EE/PEyPTIVMESTAU

COWNOMNSFF/CCLT . C

COMMON/GG/PUP 4PUPPFAX, STIGUP o SUPMAX 4OSQTCy VELUF, VUPMAX,RTL,FRERQ
COFMON/HE/EoCSCULT, FUFZ,SUP2

COFPON/TT /MBUG s MRURN S MOMTH,CAY

COMMON /KK # SOUN, CCNT
CCMKMOR/LL/EYSTAR,ROUT 4L Ty EULND, REYNO, STRONO 4 SMITNDy PRANNC, VREF
COFFON/NN/PSTAR,SGETAR FLUSTAR MCLUT,INCONP

COVFCN/CC/DTAL, TCYC L, ERRCR,PHI 4 THE TA 4 PEY yPETAVM,RPETAV,RETAT (RETAK,,CCHIT
COMPCR/RR/NTRITE, ITFAXSNPRITEJNFLUZNPRORB NPy NLy NT,NITER ;NOUY
COWMMOMZSS2TAUEND oNRITEMTAPE (ASAVELNFIRPF

CCOPFCR/XX/RIN, VIN:VOUTHNTURE ¢ NARN

COMMON/ AR/ WST AR, TSTARCSTAR ,CVSTAR,CCAR, SPRECTF
COMMON/AC/NRE ¢y NPRyGAMKMYFOLHNE Xy CCNC

COMMCN/RE/CCZ 084 CLSyCOLLE NPROP NSPECY s ASPEC,MULTIG4NY yNINGNREACT
COMMEN/BC/CUNCY o CONC2 4CONC3 4 CONCE, CONCE

COMMON /AT /RYAVG s SAVG
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CCWMON/ AL/¥LES T'GbPlh.CAMOH‘TEMPDH,SIZEX
COCMMCN/AOJEYECH s ERGER 2 SIGTH f TFOR

2 FOPMAT{IFC, T2, RUK #*]2,!

ON 207 012,0/72'1}

DIMENS IONLESS # S7,-

3 FORMAT{ZHC ,'TNCREMENT STZES DTFENSICMS
TX e *VELCCITIES ' 914X 4"Py RHOW T, 11X, "REFERFNCESY, 7X,*CONTROLS /-
1 P o v - ————— ok o1 il ot - e e ¥
|2. _____________________ —_———— - — - ____-_-l--w—-———yl'—
! wemmwme—-—— -_lj

4 FORMAT(TZ,'0TAL ='1FCID.4,' RIN mINTF6e2, ' EULNO =V1IPDIND.4,~
¥ OVELUP='D10444" MEAN PUP ='[{10o4e' MEAN PSTAP ="D10444-

* FFI ='DPF4,2} .
5 FCFPAT(TEo'DCHI =11FC10.4¢" RCUT s'0PF6.24' STROND='1PTYIN 4y ~
='010a4, " MAX =tD10as 4" MAX SGETAR='DING4 -
* THETA=YOPF&4.2)

& FORFAT{T2+*ERACF ="1PFL10o4+* LENGTH="NPF6.2+" REYND ='1PN10L4,~
' VIN ='C10e4.! SIGUP='D10c 4" WEAN TSTAR ='D1fsb4s~
TOFET =1Q0PF4L21)

T FORMATITZ2,'DSQIG ="1FD10s4+" RCL ='0PFootet PRANNC='1PC106&y~
' OVCUT ='Cl0.4," =TDT044s*% MaX MSTAR =%010,4,—

' OBETAN=Y(OFF4,L2)

¢ FORMAT({TZ+"DETA =*1PDI0.4,"' TCYL ='0PFfs4s" SHMITNON=*1IPN10 4,4~
! VREF ='C10:4.° TUP =1'D10s4y" MFAN CSTAR ='D10s4,~
' BETAVY="CPF&4,2) .

G FORMAT{TZ2,*TAUERD="1FD]0e4s* FREQ =10PFEe2e4TXy"=",1PD10c4y—

v FAX EYSTAR="D10,4, "

ic
IN A% TREINTITE TUEF WITH NC-
GRADIEMT TS5 SFECIFIECS

BETAK=%OPF4,2/T]01,"FYY

SLTP HALLS,y " /T2%,'ND

FPCRLEN W1t/

211P0 10 &)

FORMAT{ 1H4,T25, " INCCMPRESSIBLE STARTUP CF LAMINAR FLLCHW CF BLCCD-
INITIAL PRESSURE-

11 FORMAT( IH4, 725, "INCOMPRESSIELE STARTUP CF LAMINAR FLOW OF BLOCD-

Fh AN FRFINTTE TURE WITH MC=SLEP WALL S

PRESSURE GRADIEMY TS SPECTFY
12 FORFATLIR+,T25,

ECe PRCRLEM #2771

PAT25.%A LINEAR TNITIAL-

TREMOVEL OF & DIAPHRAGK NIVIDING AN UPSTREAM HIGH-

PRESSURE RESERVIIR CF AN JCEAM. CAS ANC A DOWNSTREAMY/T25, 'L0OW-

FRE SSURE RESERVOIR CF THE

SAFE GAS IN A CLOSEC~ENTD SHOCK TUPRE.

PROPLEM #37/)

13 FORMAT(1H 4,725, VINCOMPRESSIALE LAMINAR TURE FLOW WITH A COSTNE-

CYCLIC + MEAM UFSTREAM PAFSSURE,'/T25,'FLOW STARTS AT CYCLIC VALUES,

PROBLEM 47/}

14 FORMATILF#.T25,INCCMPRESSI BEE LANINAR TUBE FLOW WITH A CCSINE-

CYCLIC + FEAMN UPSTREAM PRESSURE,

15 FORMAT(LH+ ,125,
UNIFOR® INPLT ARKD TRITTALLY

16 FORMAT(1H+,¥25,'SUNCEN STOPPING DF AN INITIAL PLUG FLOW IN

Y/T25, 'FLOW:

UNTFCRM CCWN THE TUPREL' /)

STARTS AT REST,
*INCCMFFESSTALE LAMTANAR TUPRF FLOW WITH CONSTANT-

PRCRLEM #5772}

& TURE wWHOSE-

ENTRANCE ANC EXIT 15 ABRUFTLY BLCCKEC*/T25,'USFD AS A T#ST OF THE PRESSURE-

FIELT RELAXATICN,

PEDRLEF #T'/}

L7 FORMAT(IH4,T25,* INCCMPRESSTIELE LAMIMAR TURF FLOW WITH A CONSTAMY COAXTAL~

ENTRY AND IANTTIALLY UNFFRCENL
INCCMPRESSIPLE ANC ICENTICAL

¥ CCAXP AL CCWh THE TUPF,
EXCEPT FOR VELCCITIES.

1/T25:'ROTH FLUIILS ARE-
PRCRALEM #R' /)

18 FORWAT (144,725, INCCHMFFESSTELE LAMINAR TUFE FLOW WY TH CONSTANT-

COAXTAL ENTRY AND INTTIALLY
FLUICS 2RE

IERC FLOW DCWN THF TUBES'/T25,
ICENTICAL EXCEPY FOR VELDCITIES. NO-SLTP WALLS

VAOTH=-
PPORLENM #G1 [}

15 FCRMATILF+,T25,"INCCHFRESSTELE L&MINAR TUPE FLOW WITH CONSTANT-
COAXTAL ENTRY AND TANITYALLY Z7ERC FLLW CCWh THE TUREG! /T25,4'PCTH-

FLLICS ARE ICENTICAL EXCEFT FOR VELOCITIES,,

FREE~SLIP WALLS,

PRCBLEM #I1n 4)
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20 FOPMAT{LFP4,T25, VINCONPRESSTALE LAMTAAR TUFF FLOW WITH CCOASTANT-
PARAENLIC CCAXTAL ENMTRY ANC INTTIALLY PARAROLIC EXIT VELOCTTY.'/T2%,-
' FLLIDS ARE K2 £ N2 Th THE CCRE ARD 12 £ A2 IN THE ANNULUS INTTIALLY.-—

CFURCHILL PROBLEM #1i'/}

21 FCF¥AT(IH+,T25, tCOMPHRESSIPLE LAMINAR TURE FLOW WITH CONSTANT-
COAXTAL ENTRY, IDEARTICAL FLUTDS ' /T25, AN FLUTD INITTALLY AY REST.-
PROPLEM #121'})

22 FCRMAT(IF4,T25, COMPRESSTPLE LAMIMAR YURF FLOW WITH CONSTANT=
CCAXTAL FASS FLCH ENTRY, FLUIC INITIALLY AT REST,*/T25,YCENTER FLUID-
1S AR AT 70 EEC F, OUTER FLUID HAS L8, C2¢ CCZy H20, ANT N2, ANC TS-
HCTs PROBLENM #1377/}

40 FORMATIIHC TS5, *GRINY (16X, Y PREBLEN TYREY (20X, LOGP CONTROLS Y, 1%, -

'WRITE COATROLGI/TE, tmmmme  ——m—mee -— ——
A e M S A A A AT R e e e e o ke e ) e L ]
41 FORMAT(TS ¢ *NR=712,! MPRERRAT 2.t INCCMF='I1," NSPECY='T1l,-
OMULTIE=T1, NIh =112,% NY  =%1Z,T%,"NTRITE="15,-
" ARITE='T1)
42 FORMAT(TS, 'NL=1[2,' AFLU ="T2,' NPRCE ='11,' NREACT=011,-
Y ANEIRPB='11,* NCUT=112," ITMAX=t[5," NPRITE="15,-

T OATAPE=T'LY)

2 FORMAT(IHC, T11, *SPECIE T, SX 4444l 6X, 040

4, FORMATIT114'CCAKC IN Y FOob 414X Flot s 10X " TPOW ="F T 24~
4X4'EYECR="1PN1Co 4)

45 FORNMATITI1.'CONC DUT " FEe b sal X 3F o4 10X, 'SIGON=*FT¢ Sy~
AU VERGEH21PDLI Dot}

50 FORMATIIHCyTE ALY ARRAY T1=%12,4" TC 1124 £ J='12,% TC *12y-
. NT="14, " NITFR=*I&, % TAU=1F10.3)

1 FORFATIIPLODL3.51)

2 FORMAT(IRC,TH.845" AXTAL AVERAGES J='12,' TC *12)

53 FCRVMATIIRO T2,'TOTALS ", 614y =" 1P012, S43X1)

ENTRY RITEA

----- WKRITE INITIAL HELCINGS==——=
100 EWN=EVSTARSIVRAEFAVREFR)

CETA=0SCIG/RCL

TP=(TPOL+ 1 IR TSTAR

WRITE [£42) NRUN.HONTH,DAY

102 GC TC (1020+102141022,1¢23,1624,1025,102¢,1027,1028,1029,1€3,1030,1031},NPROR

102¢ wRITE (£,10}
CC TC 104
1021 wRITE {&,11)
GC TC IC4 -
1022 WRITE {£,12)
€O 7O 1C4
1623 WRITE {&.12)
CC TC 104
124 YRITE (6,141
€0 TO 1C4

11025 WRITE (6,151 -

CC TC 1cC4 .
1C2¢ WRITE L&41€)

CC TC 104
1€27 ¥RITE (641M
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lcae
1029

1032
1C30

1031
104

~CaT k=,

iC5

1050

1C¢
1Ce¢
1c61
1Ce2
10€e3

1ce4
t1oes
1{66

10€7

1€7 WRITE (12} PUPPUPNAXRCUT,CTAUGEULNC (ECHIoSTGUP,SUPMAX LT, ESQIC,~
I PEYNCyFHTVELUP VUPMAX,TCYCRDL,FRRCR s THETA, VREF ,FREQ ,STRONO,BETAM =
2 BET AV FETAI +RETAK 4 SHITAC s VIR, VEUT yRINPSTAR,SCSTAR, EYSTAREYY, TAUFMD 4=
I NTRITELNTAPE ¢NLoITMAX  NFLU +NPRITELNFRCR A REACT 4 NY 4 NIN s NSPECY 4 MULTID ;=

¢t TC
WRITE
¢0 10
WRITE
€ TC
R ITE
GC TC
RRITE
co 10
YRITE

104
{€418)
104
(6419)
1C4
(&42C)
104
(6,210
104
(6.22)

IF (NSPECYsEQol) GC TC 105
ClIN=o5#*(CCNC Rl 24 1YCONCII 2,2))
C2IN=eS®(CONC2{ 2, 114CCNC2(2,2))

SE(CCRC2{ 2,11 4CCENC3(242))

CaTh=e 54 (CONCALZ,114CONCAL2,2))
C5IN=o52 {CCNCE {2411 +CCREST2,20)
cliou —.J*ICDNCIKIPIh¢1l+FChCI{IFIN17Ii
C2CUT=,5% (CONC2{IMTIN 1 }4CONC2{TFIN,21)
CACUTa S (CCACI(TIMTIM, L I4CCNCILTMIN, 21 Y
C4OUT=o SA(CONCALIMIN Q1 I+CCACAITIFING2))

Cs5cu
¥RITE
kR ITE
RRIYE
RRITE
WRITE
WRITE
WRITE
HRITE
WREITE
KR I TE

oS5 (CONCS{INMING I I+CONCSEIMING 21D

(6.3}

CE44) DTAULRIN,EULAC,VELUP;PUP,PET AR, PHT

(645F COHILROUT s STRONCy VUPMAX PUPMAX, SGSTAR, THE TA

{6+6) ERROR LY FEYNC,VIN, SICGUP,TSTARPST

(&, 7) DSQIGROL s PRANND ¢ VDL T, SUPHAX (MSTAR,BETAW

{6281 DETALTCYCSHITHND, VREF, TUP, LSTAR (BETAV

(€4S TAUENDFREC TUPNAXLEYSTARGRETAKLEYY

(& 00}

{681 ) MRy NFROB, INCOMP yNSPECY s PULT 10, NINy NY,NTRITE,NRITFE
(€,42) NL4WNFLUNPROP (KAEACT s NFIRFRGNCUT y ITMAX yNPRITF, NTAPE

IF (RSPECY<EQ.1l) GO TC 106

BRITE
WRITE
WRITE

{6443} SPECIE
{€e¢4) CIIN,C2IR,CATNLCATA CSIM,TP,LEYELH
(6 45) CIOUT,C20UT, C“OUT'C4DUTvC‘GtT'SIGOHgFNGOH

IF (NTAPELEC. QY GC YC 109
CO 1067 N=1,100

CC 1065 J=1443

DC 1CE4 I=1,22
VISTOR{ Iy JeN)=04
URSTOR{T+JeM)=00

PRETCR{I idyf\') =g
SGSTLR(IcJoaNI=10,

TPSTCRIY s JaNY=00 4
COMTINLE i
CCKRTIKUE

IF (MNTTIN)LEQaQ) CGC TC 107
KTT{NI=0 o
TIVFELNI=00

CCANTIMLE
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MRITE AR AFRCF 4 SPECTIE  NCUT hFIRPE(NSAVE, TRCCPF, MONTH, DAY NRUN
ENTEY RIYFE

=—m==hR1TE DEBUG APRAYSe———-
EYY=EYSTAR/{VREFSVREF)
1S TF (ARITECEC.Q} 6C YL S0O : .
110 IF (NBUCSNEol) GC TC 2C0 !
111 BRITE {6,+50) MAFE(T ) LCW2, TLES, LOWL  JLES,NTNITER,;TAU
112 DO 113 J=1,JLES
WRITE €£€3511 (QOULOCToJd)4T=241LESH
113 CChNTINUE
114 BRITE (6,5C1 NANE(2N,LCW2,TLES, anz JLESyATNITER,T AU
115 CC 116 J=2,JLE%
BRITE (651 ) (BUTeJ),T1=2, ILES}
116 CONTINUE
117 WRITE {€+%0) NAME{R ), L0H2,TLES;LOW2JLES NT4NITER, TAU
118 ©FC 115 J=2 4+8LES
WRITE (€4511 (DUY J),1=2,ILED)
119 CONTINUE .
120 BRITE (6,450} hAFEl#)-LCHZ'IFIN'LUHZ,JFIN NT,NITER, TAU
121 €0 127 J=Z,JMIN
WRITE (6051 (G {TsJ)y Iu?,y, IMIN)
122 CCKRTIKLE
IF {INCOMPLEQo1) 6C TC 40€C
123 BRITE (6,50) NANE(S),LUHZ, IMIN,LOW2, JMIN ,NT,NTTER, TAU
124 DO 125 J=Z,JMIN
HRITE (E£5511 {SOUN(T¢J)y1=2,IMIN])
125 CCNTINUE
e VATN GRITECUTm=——u
200 COKTIKUE
201 RRITE (5.:50) AAWE(A ), ECH2, ILES,LOW],JLES:NT,NTTER, TAU
202 DO 203 J=1,JLES
WREITE (E€-51} (PPIT,J)eI=2,ILES)
203 COATINUE
—=—=TRANSFORM VARTAB{ES—=~—= :
300 IF (INCOMF.EQ.1) GO TO 400
€0 3C3 J=14+JLES
201 CO 3¢2 I=1,TLES
EYEM( T+ JI=EYE(I . JY/EYY
ENGAT  JI=ERGLY o JYFEYY
302 CONTINUE
303 CONTINUE
400 TF (RRITE.EGC, 0) GC TC =00
401 WRITE (£450) NAME(B) LOWZ2,IMINGLOKL, JLES ,NT,RITER,TAU
402 CC 403 J=1,JLES -
WRITE (€.%1) (FR(I.JI,I 2,IMIN}
4032 CCATINUE
IF UIKCCMF.EQel} GC TC 407
406 KRITE (€450) NANWE{9Y JLOK2 (I MIKo LOWL 3 JLES AT NITER,T AU
405 [C 406 J=1,.JLES '
BRTTE (£4511 (STIGUIJY,1=2,1FIN)’
406 CONTINUE
407 WRITE (64501 NEHEIIU}vLDHZv!MIN'LDHI;JLE INTINLTER ¢ TAU
|
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4GS
410
411

412

412¢
4121

4122
413
414

459

460
461

4€2

463
464
4ES
LX)
467

468

DD 4CS J=1,JLES

HRITE (£451) (UR[T4JV4I=2,I¥IN}

CCMTIALE

BRITE (£45C) NAFE{11) oLCh2,IBINLOVYy JPAX AT, NITER,TAU
CC 412 J=1.J¥AX

WRITE {6451) (VX{T.d)el=2,IFIN)

CONTINUE

IF [INCOMF.EQ.1) GO TC 422

RRITE {(€45C) NAFEL13),LCHZ  IMTN,LOHY ¢ JLES AT,NITER,TAU
CO 4122 J=14JLES _

WRITE (6,51} (EhGh(I.JI'I=2;I“INI

CCATINLE

HRITE (£,%50) NhMEIIZJvLDHZpIHIN LNW1,JLE €, KT, NTTER , TAU
CC 415 J=1,JLES

WRITE (€451 (EYEN(T oJ).T=2,IMIN)

CChTIKUE

WRITE {&6:50) MAME(T),L0W2,IMTR, LCH1,JLES,NT,NI TER, TAU
DO 418 J=1,JLES

WRITE €&,513 IT{I,J)sI=2,IMIN}

CORTINLE

WRITE (€450 KANEQ14) 4 LCR2 4 IMINGLCHZJRFIRM AT NITER,TAU
CC 424 J=2,JMIN

BWRITE {6451 {COCAT{T 4Jd) ¢I=2,FFIMN}

CONTINUE '

----- WRITE CONCENRTRATICN ARRAYS~m-—-

IF {NSPECY.EQel) GE TC %00

WRITE (£,50) SPECIE(L),LOWZ,IMIN, LBHI;JLF P NT¢NITERTAU
CO 453 J=1,JLES

BRITE {(£4+51F {CONCL(IwJ)1=2,1MIN)

CORT INUE

WRITE (6,501 SFECTE(2)LCH2,IMIN,LOW1,JLES,NTONTTER, TAY
DO 45¢& J=1,JLES

WRITE (£451) {(CONC2(I,JY,122;TMIN}

CONTIAUE

TF (NSPECY,FQo2) GO TC 466

WKRITE (6¢50) SPECTE(3},LCH2, TMIN,LOWL. JLES NT,NTTFR, TAU
DC 459 J=1.,JLES

BRITE (£451F (CCMCR(T o Jt 41 =2,TMTN)

CONTINUE ’

IF {RSPECY.EC. 2} GC TC 466

HRITE (£&,5%0) SPEClthl,Lﬂuz.lMIN,anngLE<,NT,NITFR,TAU
EC 462 Jd=1,JLES

BWRITE (E,5)) (CONCA(E,JYel=2,IMIN) )
CCATINUE :

IF (NSPECYEQae& )} GEC TC 466

HRITE {£,5C) SPECIE(S) LCRZ s ININSLOHL s JLESyNToNITER T AU
CC 4£&5 J=1,JLES

WRITE (6,511 (CCRCH(T4J1,5=2,IMIN)

COMTINUE

WRITE (&,8C} soerlE(e!.an?,IHIN,Lcul,JLES.hT,NITEP,Tnu
€0 4€E J=1,JLES

WRITE (€451 (COCNCUT pJ) 41=2,IFIR}

CORT INUE

Cmmmmmm e CCNPLTE COMCENTRATICN PVERAGES~==-=
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a7
471

472

473
474

475
476
477
478
475
480

481
482

483
4E4

4R5
4B E

453

494

If (NSPECYoFQel} CO TC SO0

CO 48Y J=Z24J¥Th

JP=J+]

CC 474 T=2,THIN

IP=1+1

RYAVOI T Y=o 288 T=1 0% (VIIT s I #VZLIP IV VIT T4 dPYRVILIP ¢ JP)I%DECTG

CCRTINUE

GC TC {SCL44TB44TT:4T6 4TS5 ASPECY

K=5

CALL SIVFLE
K=4

CALL STMPLE
K=3 ‘
CALL SIMFLE
K=2

CALL STMFLE
K=1

CALL SIMFLE
K=6

CaLlL STHFLE
CONTINUE
SUM1=0,
fUMZ=Ca
SUMZ=0e
SU~4=00
SLFE=0,
SUME=Ca

(CONTS, Uy KD
(CONC4, J,K)
{CCrC3,d0KD
(COMC2, 4K
(CONCY,JeK )

(CCRCyd5K)

CC 485 J=2JHIN

SUML=SUMI+SAVEL S 1)
SUMZ=SIMZ$SAVG( . 2)
SUM2=SUNIASAVEL ], 3)
SUBA=SUPATSAVG 4]
SUKE=SUNMS+SAVG U, §)
SUME=SUNMBESAVGL J.6)

CCAMTINLE

SUMI=SURI/JIMNT
SUMZ=SUNZ/ J¥N]
SUNB=SLk2/JINN]
SUM&L=SUM4L/INNT
SUNS=SUNMS/ JMNT

SUMEL=SUNME/JMNT

_____ WRIXTE RANDI AL AVE
BRITE {6452 SPECYRElI4LCW2:IMIN
(SANGEde1) 9 d=2 4 IVIN]
SPECTEL2Y,LOW2sJMIN
(SAVCI 2} 9J=2 ¢ dMIN]
IF (NSPECY,TQ.21 G0 TCO 455

WRITE {6:52) SPECIE(21,L0W2,; JVIN
(SAYGTU93 ) pJd=2 5 JMIN) -

RRITE (£&+51})
WRITE (£,52)
RRITE (6,51}

FRITE (€,451)

IF [NSPECY.EQo.2) GO TC

WRITE (64521 SPECIEL4),LUHZ  JMIN
{SAVG(detd 4 J=2JMIN)
IFf INSPECY.FOe4) GC YO 485

RPITE {6,52) SPECTE{SYyLCWH2Z2,y IMIN

BRITE (6511

RAGE CONCENTRATICK ARPAYS————-
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KRITE (£4511 (SAVGLJa5) 5022, W] K}

495 WRITE (6452) SPECIE(6)y LCHZ, dMIN

WRITE (£:51) (SBVG(J o6t ¢J=2 4 JNIN}

496 WRITE { €553} SPECIE(1},SUMI,SPECTEL2) o SUND, SPECTE (3 ) pSUMI 4=
z SPECIE{4) ySUML , SPECTE (), SUNE, SPECTELG ), SLME \
Lr=wmmmmmmm STCRE VALUES FCR TAPINGmwmam

500 IF {NTAFEoEQ.0) GN TO £0C : S

IF (NT¢ECe0} GO TC 600 |

€01 DO 5C7 J=1,JLES

502 CC SQ& Tsly It ES

502 VISTOR(T.JsNTI=VZ(L,d)

URSTOR{T ¢ JoNT) =LRLT 44}
PRSTCRI T4 JoNTI=PR{T 441

504 TF [INCCHF,EQo1} €C TC S050 . )

5C% SGSTAR(T 4 J«NTI=SIA(T,J} '
TPSTCRIT,JeNTI=TUT,0)

5050 If (NSPECYsLTo2) GC TC 506
CASTORIT ¢ 5o NTY=CONC (1 54}
CISTORETeJyNTI=CONCI{T,J}
C2STCRIT 4 JoATI=CONC2 (1 44)

5051 IF (NSPECYeEGo2)} GC T S06
C3STER{ T, Je NT 1= CONC 3T Ig J)

5C82 IF (NSPECY.FO,3) GC TC 506
CHSTORU L+ (NTI=CONCAIT 54}

"BE53 IF (ASPECYWECo4) GC TC 506

. CSSTOR(T yJohTI =CONCS (T 44)

506 CONTINUE

507 CONTINUE
TINECNT) =T AU
NTTINT)=NT

510 WRITE (12} ATT(KTY,TIME(NT)

S11 WRITE (12} {4VZETOR{T,J,57T} 4121 ,ILES), =1, JLES)
WR ITE (123 [CURSTOR(TI,J,NT) 121 ,TLES), d=1,JLE £}
WRITE {12} {(PRSTCR{TyJoNT )y 1=, ILES Y, J=1,JLES)

€12 IF (INCOMP.EQ.1) GC T€ €14

513 WRITE {12) ((SGSTOR(I.JoNT),1=1,ILESH,d=1,JLES)
WRITE (12} ((TPSTORCIZJoAT )3Tl 4 ILES )y d=lsJLES)

€14 IF (NSPECY«FOol) GG TC &CO
WRITE (12) ((CASTOR{ToJoNT1sI=lsILES),dm1,dLES)
WRITE (12) tUCLISTCRET oJ oNT) 121 s TLES J, d=1, JLES)
WRITE (12) ((C2STORCE4J AT) 4 T=1,TLFS), =1, JLES)

515 1F (ASPECYoEC.2) GC TC £00
WRITE (12) ((C3STCR(T4J,ATH,1=1 3 TLES) =14 JLES)

516 IF (NSPECYeEQo3} GO TO 60C
WRITE (12) ((CASTCRUT,JuNTHeT=1,ILES 1914 JLES)

E17 IF {ASPECYsFCe4) GO TC £00
HRITE €12} ((C5STOR(T+JoNT)3T=1TLES) 2 d=1,JLES)

£00 RETLRN ; :
END



CIMFS -~ WIEBER SUPRCUTINE STIMPLE FOR USING SIMPSONS 1/3RD AND 2/BTHS

100
101
102

102

1C4

1C5
106

RULE TC CALCULATE RADTUS AVERAGE CURCERTRATION FLUXES
SUBRDUTINE SIMELE (CCh,eJd,K)
REAL#*8 CCWN
CIMENSTON RVAVG(23),PLINTIZ2) LCONI23443)5AVGI(43,56)

COMMON/ABR/TWRT, TMIN, TLES s TMAX s JMNT, JM IR, JLES, JMAX
COMMON /AT JRYA VG » SAVG

CC 101 I=2.T¥IN

POINTLI Y =RVAVGITIH(CCM{T o JY4CON(T#L » 1)
CCKRTINUE

Suk¥=0, :

IF (MOD{ILES+2).NFaC} GC YO 103

IFIPST=2

GC TC 1Ca

SUM=, 3T7S2{ 2, ¥POINT(2}+3, *POINTI2) +PCINT {4
IFIRST=5

CO 105 Y=IFIRSTIPNY,2
SSIPOINTII- 1) #a4o *PCINT(I)+PCINT(TI+1 } /3,
SUM=SUM4S

CONTIKUE

SAVED S K )=SUM/T AT

FETURN

END
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