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i. SCOPE AND OBJECTIVES

Aerodynamic noise sources in free shear layers are being studiedby experimentally examining the turbulent fluid fields which are re-sponsible for the sound generation. Primary emphasis is being placed on
expressing the sound source in terms of the turbulent fluctuating pressure
correlation in the Ribnerl* dilitational formulation. The specific flowregimes being studied are the plain and annular two-stream mixing layers
which comprise the high noise source region found in the first few diametersof a simple round jet or the more complex circular bypass jet.The experimental and analytical program is directed to three inter-related efforts. The first is to experimentally determine the pressure andsome velocity space-time correlations in the two-stream mixing layer. Thesecond is to model the pressure space-time correlations in a form suitablefor use in and examination of the Ribner dilitational formulation of noisegeneration. The third is to examine the ability of the model to predictthe intensity and both spatial and spectral distributions of far field soundunder various flow configurations and conditions.

2. SUMMARY OF CURRENT STATUS

Work during the period of this report has been in three areas:
(1) pressure transducer error analysis, (2) fluctuating velocity and pressuremeasurements in the NASA Lewis 6-inch diameter quiet jet facility, and
(3) measurement analysis.

A theory has been developed and experimentally verified to quantify
the pressure transducer velocity interference error. The theory and supportingexperimental evidence show that the errors are a function of the velocity
field's turbulent structure. It is shown that near the mixing layer center
the errors are negligible.

Turbulent velocity and pressure measurements were made in the NASA Lewis
quiet jet facility. Some preliminary results are included in this report.The velocity field results are mediocre but usable for comparison. The lackof precision in these results stems primarily from the less than favorable

*Literature citations are shown by raised numbers corresponding to entriesin REFERENCES.



-2-

measuring conditions and our unfamiliarity with the outdoor facility. The

turbulent pressure results, however, seem to be of excellent quality. The

better quality is due primarily to the ruggedness and inherently stable

sensitivity of the pressure transducer.

3. RESEARCH RESULTS

This section includes details of the research program relating to

documentation of the error analysis of the Pressure Transducer which shows

its adequacy for sound source measurements. In addition, the program of

measurements made on the 6-inch diameter jet is presented and followed by

preliminary data presentation of results from the experiment.

3.1 Pressure Transducer Error Analysis

Use of the much simpler dilatation source model has been hampered by

the lack of a suitable turbulent flow field fluctuating pressure measuring

device. The requirements for such an instrument are rather severe. It

must measure pressure in, and present minimal disturbance to, a flow volume

which is very small compared to the turbulent scales of interest. The fre-

quency response of the instrument should be flat in the range of interest.

Finally, the direct response to the fluctuating velocity field should be

negligibly small. A miniature pressure transducer has been developed which

appears to meet these requirements for turbulent free mixing layers.

The pressure transducer is shown in Fig. 1. The structural and design

details are given by Spencer and Jones . The transducer operates from

bleeding air in laminar flow through a capillary tube from a constant pressure

reservoir. Pressure fluctuations at the capillary down stream end set up

fluctuating velocities in the bleed fluid which are measured by a hot film

sensor mounted across the exit of the capillary tube. The pressure transducer

is fitted with a static pressure tip to minimize response to velocity fluctu-

ations. The bleed fluid flows through the tip and exits via six circumfer-

ential bleed holes.

The pressure transducer meets the requirements that its size must be

much smaller than the turbulent space scales of interest. For example,

Laurence3 shows that within the mixing region of a round jet the transverse

velocity space scale Lr is given by Lr = 0.036x. Here x is the axial distance
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from the lip of the jet. At x = 24 in., Lr = 0.86 in. In comparison the

diameter of the transducer is 0.06 in. and the length from the tip to bleed

holes is 0.15 in. The well contoured, highly polished tip presents a minimum

flow disturbance. The low bleed rate results in a very low volumetric injec-

tion rate of bleed fluid into the free stream (0.001 cubic inches/sec. per

bleed hole). At very low free stream velocities (less than 50 fps) and high

bleed rates (0.003 cubic inches/sec.) the effect of the bleed injection is

seen as thickening of the probe boundary layer which results in a sensitivity

to axial velocity fluctuations. However, at free stream velocities of interest

(above 100 fps) and with lower bleed rates this effect is not discernible.

The frequency response of the pressure transducer is fixed by the size

of the capillary tube and the hot film sensor. The inner diameter of the

capillary was chosen using Uchida's4 results for the response of a viscous

fluid in tube flow to a time varying pressure gradient. The cavity volume

and the diameter of bleed holes in the diffuser tip were sized to avoid

acoustical resonance or filtering within the audio range.

The frequency response of the transducer was experimentally determined

by comparing its response to a calibrated B & K 1/8 inch diameter micro-

phone. The test was conducted within the intense (SPL = 130dB) uniform

acoustic field produced by an audio speaker. The results of the test showed

the response dropping off at about 3 dB/octave above 400 Hz. as shown in

Fig. 2. Here Sp(f) is the sensitivity to pressure as a function of frequency.

Sp(0) is the zero frequency sensitivity determined as the rate of change of

D.C. output with respect to change in the bleed fluid reservoir back pressure.

This sensitivity is constant throughout the operating range. A simple R-C

high pass circuit with required cut-off frequency and slope was designed and

constructed to flatten the frequency response from D.C. to 10 KHz. The im-

proved response using this device is also shown in Fig. 2.

The relative phase lag of two pressure transducers and their RC filter

circuits used for space-time correlations is important. For this reason,

identical transducers and RC circuits were constructed. The flow resistance

of the capillary tubes was determined prior to assembly to insure uniformity.

Finally, with the transducers subjected to a sinusoidal acoustic field, the

phase lag was shown to be less than 10 degrees over the frequency range of

interest.
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The largest problem in measuring 
fluctuating static pressure 

arises from

the interaction of the fluctuating 
flow field with he surface of the instrU

ment. Siddons vestigation indicates 
that this error for our 

pressure

ment. Siddons investigation • ial flow, velocity-to-pressure

transducer can be modeled as 
a quasistatic, ideal flow, velocityto 

ressure

conversion. The analytical and 
experimental results 

which follow show 
this is

an applicable model, 
and that errors from 

this mechanism are small 
near the

center of a mixing layer.

The essential assumptions of 
the model are:

a. The pressure transducer 
measures the pressures 

developed on its

surface due to velocity-to-pressure 
conversion and static

pressure in a linear 
combination.

b. The size of the surface area 
in question is small compared 

to the

scale of velocity spatial variations.

c. The surface pressure due to 
velocity develops in a very short time

and flow separation does not occur.

With these assumptions, the 
surface pressure distribution 

follows easily from

a steady-state ideal 
flow analysis. Since the describing 

equation is linear,

the effects of axial 
velocities and normal 

velocities can be 
separated and

analyzed individually.The functional relationsy.hip between axial velocity 
and pressure at the

The functional -relationship b P dtl. Dean6 shows these

holes of a static pressure 
tube was developed by 

Prandtl.

results can be expressed 
as

- (1)

p _ p = A 1/2 pUA

at the eig hole, U2 is the free stream 
axial

Here P is the pressure at the sensing holes A  he accelerating influence

velocity, and A is the pressure 
coefficient fixed by the 

stem. Using

of the hemispherical tip and the 
stagnating influence of the stem. 

Using

figures in Dean that 
quantify the stem 

and tip effects,

holes were located to produce A 
= 0.

The pressure distribution 
caused by the cross component 

of velocity was

approximated as the aximuthal 
pressure distribution on a 

long cylinder in

ideal cross flow. The solution for the pressure 
distribution is

22 (2)

P -Pm = 1/2pVN [l - 4 sin 
(2)
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Here VN is the velocity component normal to the surface of the pressure

transducer. The angle 0 is measured from the center of the pressure trans-
ducer cross section between VN and the other surface point in question. The

effective pressure sensed is the average pressure of the six holes and can be

shown to be

P - P = B 1/2pVN ; B = -1.0 (3)

It should be pointed out that for 3 or more holes the averaged result does

not depend upon the relative orientation of 0 and the holes. Combining

Eq. 2 and 3 yields an expression for the pressure transducer response to the

velocity field

Ep(t) = S p[A 1/2pUA(t) + B 1/2pV (t)] (4)

E p(t) is the total voltage developed by the axial and normal fluctuating

velocities. S is the sensitivity of the probe to pressure and is a negative

number.

The applicability of the ideal flow model and the actual sizes of A and

B were evaluated experimentally in smooth, steady flow. The coefficient A

was evaluated by orienting the probe for a zero yaw angle and varying the

axial velocity head hA = 1/2pU . Fig. 3 shows the results of this test. We

see the pressure transducer output response increasing at low velocities.

This is thought to be a viscous nose effect. Near 100 fps, the response

reaches an asymptotic value and the coefficient A is zero.

The pressure coefficient for transverse fluctuation was evaluated by

varying the normal velocity component. This was accomplished by yawing the

pressure transducer in a steady flow. For this case, Eq. 4 reduces to

Ep(8) - Ep(0) = Sp(B-A)1/2pU2 sin2 (5)p p p A

6 is the yaw angle and E (0) is the voltage at zero yaw angle. The results

of this test are shown in Fig. 4. This figure shows separation does not occur

and that the form of Eq. 5 is valid for 6<160. For greater yaw angles, the

separation phenomena was observed on an oxcilloscope as a distinctive, inter-

mittant, low frequency phenomena. This phenomena has not been subsequently

observed in turbulent flow measurements. The value of B varied from -1.1 to

-0.85 for the different tests at mean velocities from 140 fps to 500 fps.
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Good agreement with the theoretical value of B = -1.0 is observed. The vari-
ation in the experimental values is primarily from uncertainty in determiningthe yaw angle.

The objective of the velocity model in Eq. 4 is to predict the velocityinduced error. It should be observed that this error is a function not only
of the coefficients A and B, but also of the velocity structure of the turbu-lent field. The mean square error to mean square pressure ratio will beevaluated here for conditions at the center of a mixing layer.

Substituting mean and fluctuating components into Eq. 4 and substractingthe mean component yields the fluctuating error

Ee (t)= E (t) - F(t)

S Ap
= P2- [2uA(t ) -~+  2 (t2 A UA + uA(t) - uAt)]

S Bp 2
+L- [2vN(t) VN + vN(t) - v (t)] (6)

The long time average, denoted by an overbar, of the mean square of Eq. 6 isnow obtained and the following turbulent structural constants are substituted
4 -4 -3

u 4

(uA) 2(v) (u )3/2

(u2)1/2 N 2A 
VN UA;K=- ;R22= N

A 2 VNUA (7)
UA VN uA

212 1/2 2
f 2 N - a

/2pu A 1/2puA K (u2.) 3/2
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The result is:

-2 - 2
E2 =S 2 2 ( 2 4 4S
e p 2 I A

R2
2 2 2 VNUA

+AB(~) (A) [ K ( + R 2 2- 1)] + (8)
VNUA

+ B2  (A)[(F - 1)K 2]

where it is assumed that fN = 0 by aligning the probes axis with the mean flow.

Assuming weak statistical connection between the velocity error and

true static pressure, their ratio can be found.

e 1 2 4  4S
-7 A (2 + I FA - 1) +
2 f I
p R 2

+ ABK (2  + R 2 2 - 1) + (9)
I VNUA

+ 22 (FN - 1)

Equation 26 was evaluated using Spencer's7 (1970) data for the center of a

self similar plane mixing layer. The results are

E
2

e 1 [179 A2 + 1.125 B2] (10)

2 f2
p

or if A = 0 and B = -1.0

E
e 1.125
--- 2 (11)
2 f

p

From our measurements in Figs. 10 and 13, f = 6 approximately. This re-

sults in a first order error approximation of

E
2

e
- , .03 (12)

E2 -
p
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3.2 Measurement Outline

The objective of the measurements at NASA Lewis was to determine the

velocity and pressure fields of the jet shear layer and to record the pressure

and velocity space time correlation data necessary to model the shear layer.

Far field acoustical data was planned by NASA Lewis staff for comparisons.

Although inclement weather prevented taking the full set of data anticipated,

the one point turbulent and mean velocity field of the jet was determined

and the majority of the important pressure field measurements were completed.

The measurements were taken in a cartestan coordinate system shown in

Fig. 5. Most of the measurements were made in the x-r plane in the lower

shear layer. However, to verify symmetry and jet alignment, some impact tube

mean velocity data was taken in the upper shear layer, as well as for "e tra-

verses".

As shown by the Fig. 5 single point mean and axial fluctuating velocities

and fluctuating static pressure were measured throughout the x-r plane in the

lower 1/2 of the jet. Selected points including the center of mixing (r=R)

were recorded and analyzed on the NOVATRONICS spectral analyzer.

Two groups of pressure space-time data were recorded. The stationary

pressure transducer for these groups was at x = 6 in. and x = 24 in., respec-

tively. For several radial positions of the stationary transducer the other

sensor was positioned in a sequence of axial, radial, and azimuthal separations.

Several difficulties were encountered with the hotwires and electronics

during the experiment. Most of the difficulties were rather obvious, (e.g.

flow entrained snowflakes usually break hotwires). Some were more subtle

and, even though in some cases the cause or remedy is not fully understood,

in the interest of current research activities at NASA Lewis the problems are

described below.

A sensitivity drift in hotwire anemometry and an excessive breakage rate

were evident. These difficulties were probably due to contamination of the

large air supply. The drift occured over periods when little ambient temper-

ature change occured that could have caused the electronics to drift. Breakage

frequently occured at times when entrainment of outside particles, probe

vibration, and anemometer instability could be eliminated as a cause. The

pressure transducer did not experience problems of this type because its sensor

is not exposed directly to the jet flow. However, during pressure measurements
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a slow buildup of dirt film on the PT outside surface was observed. This

buildup did not affect its operation but such a buildup would alter a hot-

wire's sensitivity and if the particles were large enough, break the wire.

A high frequency noise (hundreds of KHz) with low frequency repetition

rate (in the hundreds of Hz range) was eliminated by discontinuing use of

the Walkie-Talkie near the anemometry. Addition of preamplifiers prior to

the long transmission to the data center also helped reduce electronic noise.

Anemometer electronic stability was also a problem. On cold days

(T < 20 *F) with the 0.00015 mil tungsten sensors it was found that the

anemometers could not be adjusted for stability. An external checkout

demonstrated that the anemometry system performed well in a heated building

at 650 F. Since low temperatures following high moisture weather was well

correlated, it was thought that condensation within the equipment or cabling

was likely the cause. However, this seems unlikely because no problem was

observed with hot film sensors such as used in pressure transducers and a 'meg-

gering' of the cables showed that they were not moisture contaminated.

Temperature sensitivity was also evident in other electronic equipment.

The Wesson DC voltmeter reading was found to differ 5% on overlapping scales.

This difference occured only on cold days. The linearizer and true RMS

meter took about 3 hours to stabilize when moved to the outside rig. It was

found that the flow entrainment cooling of the equipment was significant,

hence, the last hour of warmup and final adjustments were made with the jet

at operating flow conditions.

As indicated earlier in this section, the purpose of including a descrip-

tion of these experimental difficulties is primarily to indicate the various

problem areas precipitated by conducting detailed flow studies with anemometer

instrumentation in open air facilities under adverse temperature and ambient

conditions. These are in striking contrast to similar studies conducted in

the laboratory.

3.3 Preliminary 6 in. Diameter Jet Results

Only a small fraction of the data has been analyzed. The data so far

analyzed includes that describing the nozzle exit velocity profile and back-

ground turbulence, the point mean and fluctuating velocities, maps of the

point fluctuating pressure, and a pressure space-time correlation.
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3.3.1 Nozzle Exit Conditions

The nozzle exit conditions of immediate interest are the shape

of the exit mean velocity profile, background turbulence intensity, and the

nature of the nozzle exit boundary layer. These conditions were measured

with a boundary layer hotwire probe 0.03 in. downstream of the jet exit plane.

The mean velocity profile shown in Fig. 6 is, for practical pur-

poses, flat. The small rise which commences about an inch from the wall and

maximizes at the boundary layer edge is probably caused by the boundary layer

effectively changing the shape of the nozzle. Although additional data points

would be desirable, Fig. 6 shows that the boundary layer thickness is bounded

by 0.05 in. < 6 < 0.025 in. A crude calculation demonstrates the interesting

fact that the boundary layer momentum defect is compensated by the momentum

increase outside the boundary layer so that U R2 = I 2rU(r)dr.
E o

The background turbulence and the jet lip turbulence is shown in

Fig. 7. The centerline value of turbulence intensity n 0.01 was not corrected

for electronic noise and hence should be considered an upper limit. The

turbulence intensity is observed to sharply peak near the lip. The peak

intensity of 0.05 is much lower than the intensity of 0.15 observed in the

developed mixing layer further downstream. Oscilloscope traces indicate

that the disturbance near the lip is not turbulent but is heavily sinusoidal

and therefore transitional. The dominant frequency at the lip edge (r = 3.0 in.)

was near 14 kHz.

3.3.2 Mean Velocity Field

The mean velocity field was mapped both with a small impact tube

(0.06 in. dia. tip) and a single hotwire sensor. Each of these instruments

has advantages, however, both can be in error. Hence the two sets of readings

serve as mutual checks. The shape of the mean velocity profiles compare well

as shown in Fig. 8. However, a radial position uncertainty of up to r-R = 0.01

is evident. This uncertainty was due to inadvertant shifts in the traversing

mechanism between the days in which impact tube and hotwire measurements were

taken. The shifts were discovered after the velocity data was taken. A

careful daily alignment eliminated the problem for the subsequent pressure

data.

The mean velocity was found to be roughly similar for axial

distances greater than 6 in. This is shown in Fig. 9. The spread parameter
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(U/U.)max
a = / max was found to be a = 11 for hotwire data and a = 11.25r-R

-x for impact tube data. These values agree well with

Liepman and Laufers' generally accepted value of a = 11.0. The scatter in

Fig. 9 is due to a combination of errors from hotwire sensitivity drift,

instrument temperature drift, and probe positioning uncertainties. Based

upon the agreement of a and the scatter evident in Fig. 9 the mean velocities

are believed to be accurate within about 5%.

3.3.3 Fluctuating Velocity Field

The fluctuating velocities were measured with a single hotwire.

The results in Fig. 10 show that the axial fluctuating velocity approaches

similarity for x > 6 in. Laurence's 3 data, for a Mach number of 0.4, com-

pares favorably in both magnitude and shape of distribution. The radial

shift between our and Laurence's results is partially due to a Mach number

effect. Laurence's data indicates an increasing outward deflection of the

mixing layer with increasing Mach number. The shift may also be partially

due to the previously indicated positioning uncertainty.

The spectra of the velocity fluctuations were most satisfying.

Figure 11 shows several spectra near the center of the mixing layer (r = 3.0 in.).

It should be mentioned that the spectral function F(f)Af is defined as the

fraction of the turbulent energy between f - - and f + -. The spectra were

generated from the output of the NASA Lewis 1/3 octave bandpass NOVATRONICS

unit. The scaling of the spectra indicates a certain similarity of the

turbulent structure and the lack of significant periodic noise. The -5/3

slope, indicative of the inertial subrange, is a well established turbulence

phenomena and lends support to the accuracy of the spectra measurements.

The spectra at different radial positions across the mixing layer

are shown in Fig. 11. The velocity used in this figure is twice the local

mean velocity. The factor 2 allows comparison of Fig. 10 with Fig. 11. For

points well within the mixing layer turbulence (i.e. r = 1.5 in., 3.0 in.,

and 4.0 in.) good scaling between the spectra is again observed. This is

consistent with the concept that the turbulent space scales vary slowly with

position in the heavy shear region. The jet centerline spectrum (r = 0) is

quite different from those within the heavy shear region. The spectral peak

near the edge of the mixing layer is similar to that observed by Jones,
8

Hammersley, Planchon and Spencer and may be explained as the convection

of a large scale eddy structure.
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3.3.4 Fluctuating Static Pressure Field

The map of the fluctuating static pressure field is shown in

Fig. 12 and Fig. 13. These results indicate that pressure when normalized

by the jet total driving head (1/2 pU2) roughly approaches similarity. The

peaks of the pressure distributions occur very near the radius of the jet
r-R

lip (.- = 0.0). These peak intensities, as shown in Fig. 14, maximize

near the jet lip then drop off rapidly in the first two diameters downstream.

An asymptotic region is then observed which lasts for the remainder of the

driven region to about 30 in. (or five diameters) downstream.

The pressure power spectral density was obtained in the same

manner as was the velocity spectrum. The results for three axial positions

near the mixing centerline are shown in Fig. 15. Although the spectral

shapes are similar, a scaling like that for the velocity case F (f)U fx

has been examined and found to be only marginally adequate. Tis x U

point requires further investigation. The shape of the spectral curves is

similar also to the velocity spectra near the jet centerline at the end of

the potential cone (compare Fig. 11 for x = 30 in)r = 0 and Fig. 15 for

x = 30 in.,r = 3.0 in.). The peak frequency of the pressure spectrum (fpk = 105 Hz)

is, however, lower than that for velocity (fpk u 315 Hz).

3,3.5 Pressure Space Time Correlations

The pressure space time correlations provide the kernel for the

Ribner theory prediction of far field sound. A description and understanding

of these correlations is consequently very important.

A pressure space-time correlation Rpp(Ax,t) near the center of

the mixing layer is shown in Fig. 16. These results were obtained by fixing

one pressure transducer at x = 24 in., r = 3.0 in. and separating the other

probe axially. The axial distance between the probes is Ax. An aximuthal

offset of 0.15 in. was used to minimize probe interference at small separations.

The failure of the zero axial separation curve to approach 1.0 is probably due

to the azimuthal offset although probe interference at small separations may

contribute. The dotted envelope is the autocorrelation in the convected

frame.

The pressure space correlation indicates the size and distribution

of correlated pressure regions. It is defined as R (Ax,T=o) and is shown in
ppFig. 17. A space scale defined as the area under this curve to its first zero

Fig. 17. A space scale defined as the area under this curve to its first zero



-13-

crossing is Lpx = 1.1 in. In comparison Laurence3 found the transversevelocity scale at x = 24 in. to be LUy = 0.86 in.
Convection velocities of the fluctuating pressure are also

defined by the space time correlation. For each axial separation the delay
time of the convected frame envelope is plotted as in Fig. 18. The slopeof this plot is interpreted as the convection velocity. As shown in Fig. 18,the convection velocity is constant for all axial separations. It is observedthat the convection velocity slightly exceeds the local mean velocity
(Uc/U = 0.635 while U/U = 0.58).

Further analysis of the 6 in. dia. jet data will be reportedlater and will be used to compare ,with information from smaller jets forexamination of geometric scaling parameters.

4. FUTURE RESEARCH

Our future research follows directly from our previously stated objectives.Presently the large amount of pressure data gathered in the NASA LEWIS experi-ment is being analyzed. Concurrently some additional measurements in ourlocal 2-1/2 in. dia. jet facility are being taken. These measurements in awell controlled indoors facility will hopefully provide more precise anddetailed velocity data for comparisons with the associated static pressure
field data.

After the measurements are completed and analyzed the pressure space-time
correlations will be modeled for input into the source term in the Ribnertheory.
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