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NOTICE

This report was prepared as an account of Government sponsored work. Neither
the United States, nor the National Aeronautics and Space Administration
{(NASA), nor any person acting on behalf of NASA:

A) Makes any warranty or representation, expressed or implied, with
respect to the accuracy, conipleteness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not
infringe privately ‘owned rights; or ;

B.) Assumes any liabilities wrth respect to the use of, or for damag‘o’s
resulting from the use of any information, apparatus, mothod or.
process disclosed in this report.

As used above, "person acting on behalf of NASA” includes any employee ot
contractor of NASA, or employee of such contractor, to the eiteqr that such
employee or contractor of NASA, or employee or such contractor prepares, dis-
seminates, or provides access to, any inférmation pursuant to his omploymonr or .
contract with NASA, or his employment with such contractor

Request for copies of this report should be referred to

National Aeronautics and Space Administration
Office of Scientific and Technical Information
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Washington, D. C. 20546
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SUMMARY

The purpose of this program was the development of design creep data
on refractory alloys in ultrahigh vacuum. The study was divided into four
topical areas involving investigations of the tantalum alloys T-111 and
ASTAR 811C and pure CVD tungsten. The first and second parts of the study
involved two separate investigations of the creep behavior of T-111 alloy.
One of these involved an investigation of the influence of pre-exposure
to vacuum or to liquid lithium in the temperature range of 1800 to 2400°F
(1255 to 1589°K) on the subsequent 1% creep life. This study showed that
pre-exposure to either environment in the 1800 to 1900°F (1255 to 1311°K)
temperature range caused large decreases in the 1% creep life as compared
to unexposed material. These decreases were more severe in the creep test
temperature range of 1650 to 2000°F (1172 to 1366°K) than at higher test
temperatures. As an extreme example of this effect, a specimen exposed to
lithium for 1000 hours at 1800°F (1255°K) plus 4000 hours at 1900°F (1310°K)
exhibited a 1% creep life of 2 hours at 1650°F (1172°K) and 50 ksi (344
MN/m2) as compared to a life of 938 hours for an unexposed specimen tested
at the same conditions. Exposure to vacuum or lithium at 2400°F (1589°K)
also influenced the creep life of T-111, although the life variations were
not nearly so large as those observed with the lower temperature exposures,
An explanation was developed for the observed creep life variations which
involved two separate effects of long time exposure on T-111 alloy. The
first of these was grain growth, which occurred only at the highest exposure
temperature (2400°F; 1589°K), and which tended to increase the creep life
in the creep test temperature range above 2000°F (1366°K). The second
effect was depletion of residual oxygen from solid solution, either by
direct loss to the environment or by precipitation in the form of hafnium
oxide. This effect was observed at all of the exposure temperatures studied.
The depletion of oxygen from solid solution caused large creep life decreases
at the creep test temperature of 1650°F (1172°K), where an oxygen related
dynamic strain age strengthening mechanism is operative in T-111 alloy.
Above this test temperature, life decreases caused by the oxygen depletion
became progressively smaller. At a test temperature of 2400°F (1589°K) no
significant creep life changes were observed as a result of the oxygen loss.

The second investigation of T-111 alloy involved characterization
of the creep behavior under conditions of continuously increasing stress
and decreasing temperature which simulated the conditions anticipated in
radioisotope capsule service. Results of this study showed that such test
conditions produced creep curves having a highly unusual shape. The most
unusual characteristic of these curves was that creep strain did not in-
crease continuously to rupture as in normal creep tests, but instead reached
a maximum strain value past which creep ceased to be significant. Since none
of the usual creep design parameters, such as rupture life or minimum creep
rate, applied to this unusual creep curve shape, the variable temperature-
variable stress (VTVS) curves were characterized for design purposes by the
maximum strain achieved at a given set of service conditions, which was
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designated as the ''stall strain.' Analytical methods involving both cal-
culation of VTVS behavior from conventional (isostatic, isothermal) creep
results and parametric extrapolation of experimental VTVS data were.
developed to predict long time VTVS creep behavior from short time results.
The parametric extrapolation method showed good promise for this purpose,
although additional experimental data will be required before actual

design specifications can be established.

The third investigation was directed toward characterization of
the vacuum creep behavior of ASTAR 811C atloy in two different conditions
of heat treatment (1/2 hour at 3600°F; 2255°K and 1 hour at 3000°F; 1922°K)
and concluded with an investigation to define a third heat treatment which
maximized the advantages and minimized the disadvantages of the first two.
Results of this study established tentative design data for ASTAR 811C in
the two conditions of heat treatment, Metallographic examinations showed
that the higher temperature annealing cycle produced relatively large grained
carbide free microstructure (average grain size of 0.lum) while the lower
temperature produced a finer grained microstructure (average grain size of
0.01um) containing numerous undissolved carbides, However, additional examina-
tions showed that extensive reprecipitation occurred in the solutioned speci-
mens during heating to the creep test temperature, so that the carbide
structures associated with the two treatments were quite similar during creep
testing., Examination of both pre- and post-test specimens indicated that the
carbides were located primarily in the grain boundaries during testing, although
numerous intragranular carbides were also observed. The creep test results
showed that the higher annealing temperature provided significantly longer
creep lives in the test temperature range above 2200°F (1478°K) but that the
two annealing treatments produced roughly equivalent creep life results below
that temperature range. Metallographic examination of creep tested specimens
showed that grain growth occurred during testing at temperatures above 2800°F
(1881°K) which will effectively limit the use of this alloy to lower tempera-
tures except in applications where excessive grain growth would not degrade
the usefulness of the material. Specimens tested above 2800°F (1811°K) were
also shown to be carbide free, indicating that the near equilibrium carbide
solvus temperature was below 2800°F (1811°K) for this alloy, The presence
of undissolved carbides in the 1 hour at 3000°F (1922°K) annealed micro-
structure thus indicates that an equilibrium structure is not achieved with
this annealing treatment. Analysis of the stress and temperature dependence
of the minimum creep rate showed that the pretest annealing treatment had very
little influence on the activation energy for creep of ‘ASTAR 811C alloy. The
observed activation energies varied with test temperature from a value approxi-
mately equal to the activation energy for self diffusion (100K cal/mole; 3420
J/mole) in the 1800-2000°F (1255 to 1366°K) temperature range to values on the
order of 150K cal/mole (5130 J/mole) in the range of 2400-2600°F (1589-1700°K).
Based on the above observations, a hypothesis was developed which suggested
that the primary role of the carbide is strengthening the ASTAR 811C alloy
was to act as a grain boundary pinning agent, rather than in a true dispersion
hardening role. This hypothesis led to the conclusion that the increased creep
life provided by the higher annealing temperature was probably the result of
the difference in grain size rather than the difference in pretest carbide
structure. Because of the fact that the 3600°F (2255°K) annealing treatment




was judged to be somewhat impractical for commercial applications, additional
studies were conducted to determine if an alternate heat treatment cycle
could be defined which retained the improved creep properties developed by
the higher temperature heat treatment, but offered more commercial promise.
The results of these studies showed that a heat treatment of 100 hours at
3000°F (1922°K), which is within the range of present commercial capabilities,

produced creep lives as good as those obtained with the higher temperature
anneal,

The fourth investigation performed on this program-involved a small
number of tests on CVD tungsten. Results of these tests showed that pos-
sible differences existed between the creep life of this material obtained
from two different sources. However, sufficient data was not generated on
this program to determine if these differences were significant.



INTRODUCTION

The purpose of this program was to study the creep behavior of several
refractory metal alloys which are candidates for appltication in space electric
power system design at the NASA Lewis Research Center. Because of the
sensitivity of refractory metals to interstitial contamination, the anticipated
service environment was simulated by testing in an ultrahigh vacuum at pres-
sures of less than 1 x 10~8 torr.

The specific alloys studies in this program were T=111 (Ta-83W-2%Hf),
ASTAR 811C (Ta-8%W-1%Hf-1%Re-0.025%C) and pure CVD tungsten. The overall
program involved four separate investigations into various aspects of the
vacuum creep behavior of the three alloys. The first and second parts of
the program involved two separate investigations of the creep behavior of
T-111 alloy. One of these involved an evaluation of the effects of elevated
temperature exposure to liquid lithium on the 1% creep life of T-111. This
was a cooperative program between TRW, NASA and the NSP 'Division of the
General Electric Co., Cincinnatti, Ohio, Overall program direction and
specimen procurement were performed at NASA, The exposures were made at G.E.
while the creep testing and data interpretation were performed at TRW., This
investigation was prompted by previous studies at TRW which had shown that
long time elevated temperature exposure to ultrahigh vacuum significantly
reduced the residual oxygen content of T-111, which in turn caused an unstable
creep rate transition to occur during vacuum creep testing. This instability
was observed in the 1200 to 2000°F (922 to 1366°K) temperature range where an
oxygen-related dynamic strain aging phenomenon occurred, This dynamic aging
behavior and its influence on creep of T-111 were well characterized in a
previous paper (1). The occurrence of this deoxidation related creep in-
stability created some concern regarding the proposed use of T-111 for the
containment of liquid lithium, which is known to be a powerful deoxidant for
tantalum alloys, and thus led to the present study.,

The other investigation of T-111 creep behavior involved the problems
associated with the use of T-111 alloy for structural containment in radio-
isotope capsule design. These problems result from the fact that a number of
the proposed isotope fuels generate helium as a decay product, which causes
the capsule liner to operate at elevated temperatures under conditions of
simultaneously increasing stress and decreasing temperature. It was thus
necessary to characterize the creep behavior of T-111 under conditions which
simulated those anticipated in capsule service*, The characterization of

While it is possible to design a vented capsule, it is still necessary to
anticipate the unvented configuration as a safety precaution in case the
vent should become plugged.



T-111 for capsule design was complicated by the safety requirement that the
integrity of the capsule should be maintained for at least 10 half-lives in

the event of accidental system re-entry and impact at a random uncontrolled
location (2,3). The most extreme case of this general requirement occurs

for the PU238 fuel, which has half life of 87.5 years. Thus, while the
anticipated service life of a capsule fueled power system may be no more than
five or ten years, the problem of predicting and/or experimentally characteriz-
ing the liner creep resistance was complicated by the need to develop techni-
ques for extrapolating the observed creep behavior to extremely long times.

A twofold approach involving both analytical and experimental methods was

used to study this problem. The purpose of the analytitcal portion of the
program was to develop mathematical procedures to predict long time variable
temperature - variable stress (VTVS) creep behavior from conventional
(isostatic, isothermal) creep data. The purpose of the experimental part

of the program was to develop experimental techniques for creep testing with
stress and temperature variations which simulated those anticipated in capsule
service and to compare the results of such tests with the analytical predictions.

The third study which was conducted as a part of this program involved
an investigation of the influence of heat treatment on the creep behavior of
ASTAR 811C alloy. ASTAR 811C is a Westinghouse developed atloy having a unique
balance of creep strength, low temperature ductility, and weldability which is
superior to any other tantalum alloy presently available on a commercial basis.
This unique balance of properties was achieved through a combination of solid
solution strengthening provided by tungsten and rhenium with dispersed phase
strengthening provided by the addition of carbon (4)*. ‘Preliminary studies
at the Westinghouse Astronuclear Laboratory showed that the creep strength of
ASTAR 811C could be enhanced by annealing in the 3600°F (2255°K) temperature
range, rather than at the 3000°F (1922°K) temperature more commonly used for
the present generation of tantalum alloys. Unfortunately, the 3600°F (2255°K)
annealing temperature is not highly practical because it exceeds the capability
of the most commercially available vacuum annealing facilities. |t also suffers
the disadvantage that time at temperature and cooling rate are difficult to
control for thick section sizes, The investigation described in this paper
was therefore undertaken to characterize the microstructure and creep behavior
of ASTAR 811C at both annealing temperatures and to determine if a third
annealing treatment could be defined which would be commercially feasible and
still provide the improved creep strength achieved.at:3600°F: (2255°K) .

The fourth part of this program involved a small number of tests
with CVD tungsten which were directed toward measurement of the 1% creep
life of this material as obtained from two different sources.

Hafnium is added to ASTAR 811C primarily for liquid metal corrosion
resistance.




"EXPERIMENTAL DETAILS

Materials

T-111 test material for the lithium exposure program was obtained from
the Wah Chang Co. in the form of 0.020 in. (0.51mm) cold rolled sheel (Wah
Chang Heat 650050) having the composition shown in Table 1. Standard one inch
(2.54cm) gage length sheet type tension test specimens were machined from this
material, All of these specimens were given a duplex heat treatment consisting
of 1 hour at 3000°F (1922°K) plus 1 hour at 2400°F (1589°K) using a diffusion
pumped vacuum system operating at pressures on the order of 10~7 torr., The
3000°F (1922°K) anneal provided a completely recrystallized, equiaxed, single
phase microstructure which is shown in Figure 1. The additional 2400°F
(1589°K) heat treatment was used to simulate the post weld stress relief
treatment which would be applied to a fabricated hardware item. Previous
testing had shown that this additional heat treatment has essentialiy no
effect on the creep properties of T-111 alloy (5).

Exposure of these specimens to lithium or vacuum was accomplished by
incorporating a portion of the specimens in lithium capsules and then attach-
ing the remainder of the specimens to the exterior of the capsules. The
capsules were than exposed at various temperatures for various times in ion
pumped ultrahigh vacuum chambers at pressures below 1 x 10=9 torr according
to the schedule in Table 1l. Detailed exposure procedures may be found in
Reference 6.

Test material for the T-111 VTVStests was also obtained from Wah
Chang in~-the form of 0.030 inch (0.76mm) cold rolled sheet (Heat 650028).
Chemical analysis of the as-received material is shown in Table 1., Standard
pin loaded sheet type tension test specimens having a 2 1/4 inch long x 1/2
inch wide (5.72 x 1.27cm) gage section were machined from the as-received
sheet and were vaguum annealed 1 hour at 3000°F (1922°K) at a pressure of
less than 1 x.107° torr prior to testing. This annealing treatment provided
a completely recrystallized equiaxed microstructure which is shown in
Figure 2,

The ASTAR 811C test material for this investigation was obtained
from the Wah Chang Co. (Heat 650056) in the form of 0.030 inch (0.76mm)
cold rolled sheet having the composition shown in Table 1, Test specimens
were obtained from this sheet using procedures which were identical to those
described above for the T-i11 VTVS specimens. The various annealing treat-
ments and resulting microstructures for this material will be described in
the results and discussion section of this report.



The CVD tungsten which was evaluated in this program was obtained from
two sources. The first lot was obtained from the San Fernando Laboratories
Division of Fansteel Inc. (SFL), and was in the form of 4 inches (10.2cm)
long x .060 inch (1.52mm) thick sheet-type creep test specimens which were
vapor deposited and machined to print by the vendor. Chemical analysis of
a typical specimen is presented in Table I, while a typical photomicrograph
appears in Figure 3. The specimens were of the dupliex type with the cross-
section containing approximately 45 mils (1.14mm) of a structure typical of
the fluoride deposition process, and approximately 15 mits“(.38mm)} of a
structure typical of the chloride deposition process. The annealing treat-
ment for these specimens was 100 hours at 3272°F (2073°K). The second lot
of CVD tungsten specimens was provided by the Oak Ridge National Laboratory
(ORNL) through NASA, and were of the same general configuration as the first
lot. Chemical analysis and metallographic samples were not made available
for this test material. The pretest heat treatment for these specimens was
also unknown.

Creep Test Procedures

The creep test procedures used for all four of the studies involved
in this program were essentially identical, except for the VTVS tests where
special modifications were necessary:to achieve the desired programmed load
and temperature variations. Both the construction and operation of the test
chambers and the service instruments in the laboratory have been described
in detail in previous reports (Appensix 1). Briefly, the creep test procedure
involved initial evacuation of the test chamber to a pressure of less than
5 x 10-10 torr at room temperature, followed by heating of the test specimen
at such a rate that the pressure never rose above 1 x 10-6 torr. With the
exception of the specimens tested in the lithium exposure program, pretest
heat treatments were performed in situ., Complete thermal equilibrium of
the specimens was attained by a two-hour hold at the test tgmperature prior
to load application. The pressure was always below 1 x 107° torr during the
tests and generally fell into the 1010 torr range as testing proceeded.
Specimen extension was determined over a two inch gage length with an optical
extensometer which measured the distance between two scribed reference marks
to an accuracy of *50 microinches (+1.3 um).

Specimen temperature was established at the beginning of each test
using a W-3%Re W=25%Re thermocouple., . Since thermocouples of all types
are subject to a time-dependent change in EMF output under isothermal con-
ditions, the absolute temperature during test was maintained by an optical
pyrometer. |In practice the specimen was brought to the desired test tempera-
ture using a calibrated thermocouple attached to the specimen as a temperature
standard. The use of this thermocouple was continued during the temperature
stabilization period which lasted 50 to 100 hours. At this time, a new
reference was established using an optical pyrometer having the ability to
detect a temperature difference of *#1°F (£0.6°K) and this reference was used
subsequently as the primary temperature standard.




Several modifications were made to the creep test equipment to provide
the required variation of load and temperature for the VTVS tests. Load varia-
tion was accomplished by using a motor driven screw to continuously feed lead
shot into a load pan attached directly to the specimen load train as described
in a previous paper (7). An electromechanical device involving a system of
resistors, stepping switches, cam timers, and patch boards was designed to
program the rate of shot input as a function of time. Because the tests were
conducted in vacuum and the load was applied externally through a metal
bellows, it was possible to adjust the initial weight of shot in the load pan
so that the total weight applied was just balanced by atmospheric pressure on
the bellows, thereby providing a true condition of zero load on the specimen
at the start of each test., The load train was instrumented with strain gage
load cell for measurement of the applied load during testing. The results
obtained with this sytems are shown in Figure ba where the applied load for
a typical test is compared with the loading profile anticipated in capsule
service, Programmed temperature variation was accomplished using a similar
electromechanical switching system to drive an electrical motor attached to
the temperature controller., Typical results from this system are compared
to the anticipated capsule temperature profile in Figure 4b.



RESULTS AND DISCUSSION

All of the creep results generated on the current contract are
summarized in Appendix |l together with similar data from the previous
contracts which were noted in the Foreword. Discussion of these test
results will be divided into four topical sections related to the four
separate investigations described in the Introduction.

I. Influence of Pre-Exposure to Lithium or Vacuum.on T-111 Creep
Behavior

A. CHEMICAL ANALYSIS

Results of pre- and post-exposure chemical analyses for the
interstitials oxygen, nitrogen, hydrogen, and carbon are presented in
Table 111, These results showed no significant variation of the nitrogen,
hydrogen, and carbon levels between the as-received and the exposed specimens.
The oxygen analyses in Table 11l show that the pre-exposure annealing treat-
ments increased the oxygen level of the as-received material from 30 to 104
ppm. With the exception of the 5K-2400 exposure condition*, the vacuum ex-
posures dropped the oxygen level back to the 25-30 ppm range. As anticipated,
the lithium proved in most cases to be a more effective deoxidant than vacuum,
with the residual oxygen levels for the lithium exposed specimens ranging
between 3 and 12 ppm.

B. MICROSTRUCTURAL OBSERVATIONS

The influence of exposure on the microstructure of the T-111
alloy is shown in Figure 5. These photomicrographs show that the high
temperature (2400°F; 1589°K) exposures caused significant .grain growth, .
with the grain size increasing from 28 um to approximately 40 um in 1000
hours and to over 100 um in 5000 hours., Approximately the same amount of
grain growth occurred in both vacuum and lithium, indicating that the growth
was not sensitive to environment., The micrographs in Figure 5 also showed
significant variations in the amount of precipitate relative to that present
in the unexposed specimen. This precipitate was typical of that seen in
numerous other heats of T-111 and has been previously identified as a hafnium
oxide., The short term vacuum exposed specimens showed essentially no change
in precipitate concentration from the unexposed condition (Figures 5b and 5¢),
while the short term lithium exposures caused small increases in the amount
of precipitate (Figures 5f and 5g). The duplex exposures caused large
increases in the amount of precipitate, with the vacuum exposure causing a
larger increase than the lithium (Figures 5d and 5h). Both of the long time
high temperature specimens were essentially clean, with no precipitate
visible at 1000X (Figures 5e and 5i).

Refer to Table Il for explanation of exposure references.



To confirm that the precipitate observed in the photomlcrographs
was indeed the hafnium oxide which has been previously observed in T-111
alloy, the specimen containing the largest amount of precipitate (duplex
vacuum) was subjected to electron probe microanalysis. The results of this
analysis are presented in Figures 6b and 6c, which show simultaneous hafnium
and oxygen X-ray emission intensity scans for a beam traverse across the
precipitate shown in Figure 6a. These traces definitely show the precipitate
to be rich in both hafnium and oxygen, thereby supporting the previous
identification.

A qualitative correlation of the observed residual oxygen
levels with the amount of precipitate present in each specimen indicated
that a significant portion of the residual oxygen remained in solid solu-
tion in some of the specimens. For example, the amount of precipitate
present in the unexposed material was less than that normally seen in T-111
at the 100 ppm oxygen level (i.e., the specimen was ''cleaner'' than normal),
which indicated a substantial proportion of the oxygen was in solid solution
prior to exposure. Similarly, the short term exposure specimens contained
less precipitate than the duplex samples, despite the fact that all three
of the specimens exposed to each environment exhibited similar oxygen levels.
This result indicates that some oxygen must be present in solid solution in
the short term specimens, with substantially more being present in the vacuum
than in the lithium exposed samples. Finally, the 5K-2400 specimens appeared
completely clean and yet showed measurable oxygen levels, again indicating
that these specimens contained at least a small amount of oxygen in solid
solution. These observations are important for the interpretation of the
subsequently observed mechanical behavior because it is the oxygen in solid
solution, and not the total oxygen content, which controls the magnitude of
the dynamic strain aging phenomena in T-111 alloy.

C. CREEP LIFE RESULTS

The initial creep test program for the exposed specimens was
directed toward determination of the 1% creep life in the temperature range
of 1650 to 2200°F (1172 to 1478°K), plus determination of the rupture life
at 1650°F (1172°K). Four test cond|tions were chosen in this temperature
range to obtain 1% creep lives on the order of 500 to 1000 hours for the
unexposed material, as shown in Table IV, As testing proceeded it became
evident that certain of the exposure conditions severely degraded life (by
greater than two orders of magnitude) so that to obtain test lives on the
exposed material which were of the same order as the unexposed specimens,
supplementary test-conditions were chosen which are also listed in Table IV.
In addition, selected specimens were tested at 2400°F (1589°K) in this
supplimentary program.

Creep curves obtained at each of the four basic creep test
conditions are presented in Figures 7a through 7d, while creep curves obtained
at the 2400°F (1589°K) supplimentary conditions are shown in Figure 7e. Curves
obtained at the 2000 and 2200°F (1366 and 1478°K) supplimentary conditions are
not shown as these curves had shapes similar to those presented in Figure 7 at



the corresponding temperature in the basic set. The 1% creep and rupture
life data for each exposure condition are presented in tabular form in
Table V. The 1% 1ife data are also presented in parametric form in Figure
8. These results show that the long time elevated temperature exposure

of T-111 to either lithium or vacuum caused significant and in some cases
even dramatic changes of creep life.

The observed 1% creep life variation showed systematic dependencies
on both the exposure and the creep test conditions*, In almost all cases the
low temperature exposures reduced the creep life (Figure 8a). The life re-
ductions caused by the low temperature exposures were dependent on the creep
test temperature, being largest at the lowest test temperature and diminishing
as the test temperature increased. At the highest test temperature (2L4L00°F;
1589°K)  there appeared to be essentially no significant effect of exposure on
creep life for the two duplex exposures, although these exposures caused the
most severe life reductions at the lower test temperatures. For both the 1000
and 5000 hour low temperature exposures the lithium environment caused larger
life reductions than the vacuum environment. For a given environment, the long
time low temperature exposures caused larger life reductions than the short time
low temperature exposures.,

The creep life variations caused by the hligh temperature exposures
were not as large as those produced by low temperature exposures (Figure 8) and
it was therefore more difficult to separate significant effects of exposure
from the data scatter inherent in creep testing, As with the low temperature
exposures, the high temperature exposure effects were dependent on creep test
temperature. At the lower creep test temperatures, most of the high tempera-
ture exposures caused life reductions; however, at the highest creep test
temperature (2200°F; 1478°K) the high temperature exposures either caused no
change or increased the creep life. Where life reductions occurred the
effects of high temperature exposure time and environment tended to be con-
sistent with those observed at the lower exposure temperatures; that is,
lithium caused larger life reductions than vacuum and for a given environment
the 5000 hour exposures tended to cause larger life reductions than the 1000
hour exposures.

The influence of each of the exposures on rupture life at 1650°F (1172°K)
was essentially the same as on the 1% creep life, and the rupture life
data will therefore not be specifically discussed. All remarks concerning
the 1% creep life behavior at 1650°F (1172°K) may be considered to apply
to both 1% creep and rupture life,




b. RATIONALIZATION OF EXPOSURE EFFECTS

The effects of exposure on the creep life of T-11]1 alloy are
rationalized on the basis of two competing mechanisms; grain growth and
deoxidation., These two effects are separated on the basis of differences
in the effect of creep test temperature on the operation of each mechanism.
Grain boundary sliding is basically a high temperature creep deformation
mode, and the effectiveness of grain growth in increasing the creep life
therefore increases with test temperature. The deoxidation effect, on the
other hand, is associated with the oxygen controlled dynamic strain aging
behavior which is most pronounced in the temperature range of 1600 to 1700°F
(1144 to 1200°K) and decreases with either increasing or decreasing tempera-
ture outside of this range. The creep life degredations caused by deoxidation
should therefore become smaller with increasing creep test temperature.

Grain growth effects were limited to the high temperature exposure
series since no grain growth occurred at the lower exposure temperatures. The
grain growth effects were difficult to separate from deoxidation effects since
both phenomenon occurred simultaneously at the high exposure temperature. The
grain size effect was therefore evaluated at the 2200°F (1478°K) creep test
temperature where this effect was expected to be the largest and the deoxida-
tion effects were expected to be smallest.,

At temperatures where grain boundary sliding contributes signi-
ficantly to creep deformation, the creep rate should be proportional to the
grain boundary surface area per unit volume of material. The surface area
per unit volume of a polycrystalline material is inversely proportional to
the mean intercept grain size, d. Thus, the creep rate ¢ should be inversely
proportional to d; that is,

tad”]

Garofalo reports data which confirm this relationship for lead, tin, monel,
and an Fe-Cr-Ni-Mn alloy tested at high homologous temperatures (8). Pre-
suming that creep life is inversely related to creep rate, the measured

creep life should be directly proportional to grain size. A plot of 1%

creep life versus grain size is shown in Figure 9 for the unexposed and the
four high temperature exposure specimens tested at 2200°F (1478°K). The five
data points on this plot were divided into two categories for analysis; those
representing specimens containing significant residual oxygen (the pre-exposed
and the 1K-2L400 vacuum specimens) and those representing specimens having
relatively low residual oxygen levels (the 1K and 5K-2400 lithium and the 5K-
2400 vacuum specimens). The two sets of data exhibited slopes of +.7 and +.8,
indicating a significant contribution of grain boundary sliding to creep of
both the oxygen containing and the deoxidized T-111 alloy.



The influence of deoxidation on the creep behavior of T-111 was
evaluated by analysis of creep curve shape. The observed creep curves ex-
hibited significant shape variations which depended on both exposure and
creep test conditions. The changes resulting from variations in test tem-
perature are illustrated in Figure 10, where the variation of creep rate
with creep strain is plotted for the unexposed specimens. At the lowest
test temperatures (1650 and 1800°F; 1172 and 1255°K) where the dynamic aging
phenomenon was most pronounced, these curves exhibited an unusual shape
characterized by a complete cessation of creep over a finite period at a low
strain level, followed by a resumption of creep with a steadily increasing
creep rate (Figures 10a and 10b). Previous studies have shown that the creep
cessation in T-111 was associated with the dynamic strain aging phenomenon,
and that the increase in creep rate subsequent to cessation was associated
with vacuum indiced deoxidation which depleted the interstitial species
associated with the dynamic aging (1). It was also observed in previous
studies that after deoxidation the rate versus strain curve eventually became
level over a finite strain interval, indicating the establishment of a steady
state creep rate which was characteristic of the deoxidized alloy. This
phenomenon did not occur in the present tests. This is probably a result of
the fact that the stress levels employed in this program were much higher than
those used previously,

The creep cessation phenomenon did not occur at the 2000 and
2200°F (1366 and 1478°K) test temperatures. However, these curves did ex-
hibit basically the same shape as the lower temperature curves (Figure 10c
and 10d) indicating that the dynamic aging phenomenon may continue to play
a role in the creep deformation of the T-111 alloy up to 2200°F (1478°K).
It was not until the test temperature was increased to 2400°F (1589°K) that
the T-111 creep curve assumed what might be considered a ''normal'' shape
(Figure 10e).

Analysis of the creep curves for the exposed specimens showed
that the majority of the exposures substantially reduced or completely
eliminated the creep cessation phenomenon which occurred in the unexposed
material at the lower test temperatures. This reduction in the effect of
dynamic aging on creep was assumed to be associated with the deoxidation
caused by exposure. To document this association, the shapes of the creep
curves obtained at 1650°F (1172°K), where the dynamic aging effect was most
prominent, were examined in more detail on plots of creep rate versus creep
strain (Figure 11). These curves showed that the only treatments which
completely eliminated the dynamic aging effect were the two duplex exposures
to lithium and vacuum (Figures llc and 11g). This observation may at first
seem anomalous in the case of the duplex vacuum exposure, where chemical
analysis showed a residual oxygen level of 30 ppm. However, this apparent
anomaly may be explained by noting that the dynamic aging phenomenon in-
volves the oxygen in solid solution, and not the total oxygen content. |t
would thus appear that the duplex vacuum spe¢imen’has been deoxidized
internally (in the sense of removing all of the oxygen from solid solution)
by the precipitation of hafnium oxide. The two short term vacuum exposures,
where substantial oxygen appeared to have remained in solid solution, con-
tinued to display the creep cessation phenomenon (Figures 1la and 11b). The
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remaining four exposure conditions did not show a creep cessation, but did
continue to exhibit slight dynamic aging effects, despite the low oxygen
levels (Figures 11d, 1le, 11f, and 11h). This observation indicates that
the dynamic strain aging in this alloy requires only a few ppm of residual
oxygen in solution to be operative.
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. Creep Behavior of T-111 Under Conditions of Continuously Increasing
Stress and Decreasing Temperature

A. ANALYTICAL INVESTIGATION

1. Characterization of Anticipated Service Conditions

Presuming that the capsule operates in an environment where
heat extraction occurs primarily by conduction and/or convection, the difference
between the capsule temperature T and the ambient temperature Ty will be directly
proportional to the rate of isotope decay, which is in turn proportional to the
amount of parent isotope present (N); that is,

T-T_ = oN (1)

where § is a proportionality constant. The ratio of the operating temperature
difference to the initial temperature difference will thus be:

T-T. N W_ (2)

where N, is the original amount of fuel in the capsule. The ratio of N/Ng
decays exponentially with time according to the relationship

=it

N/No =e (3)

where X is the decay constant for the isotope involved. The capsule temperature
will therefore decrease with time according to the equation:

_ - -t
T = Ta + (TO Ta)e (4)

in a conductive or convective thermal environment.

The effective stress o in the capsule is proportional to P
(the internal pressure), which is related to T (the absolute temperature) and
n (the amount of helium gas present) through the universal gas law:

oecD—\B/l- (5)

The amount of helium gas in the capsule is proprotional to the difference
between the initial amount of isotope and the amount remaining at time t:

n=(N_-N) = N_(1-N_/N) = No(l-e'*t) (6)

Incorporation of Equations (3) and (6) into Equation (5) provides an expression
for the effective stress in the capsule liner:

o= F(Ta+(To-Ta)e-At)(l-e-At) (7)
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where the N R/V term has been combined with a proportionality constant involv-

ing capsule dimensions and safety factors into a single effective proportionality
constant F.

Figure 12 shows the variations of temperature and stress which
are predicted by Equations (4) and (7) for operation in still air at 75°F (297°K).
This is the type of environment that the capsule would encounter if an accidental
re-entry occurred in a remote and inaccessible location, and was the assumed
environment for all of the analytical and experimental work performed in this
study. The exponential temperature decay shown in Figure 12 is straightforward
and requires little discussion. However, the variation of stress with time is
more complicated because of the counteracting effects of increasing helium con-
centration and decreasing temperature. These competing effects cause the stress
to increase early in the capsule lifetime, with a subsequent decrease as the
fuel becomes exhausted.

2, Predicted Creep Behavior

a) Specification of Stress Levels

For a given service application, the initial capsule
temperature and decay constant will be fixed and the design parameter which
must be adjusted to provide allowable loading is the stress proportionality
constant F, which may be varied to suit the design requirements by proper
selection of capsule dimensions. Presuming a fixed ambient temperature of 75°F
(297°K), there is a maximum permissible value of F for each starting temperature
which is determined by the approach of the operating stress to the material
yield strength. Calculation of this maximum F value is complicated by the fact
that the yield strength varies with temperature, as illustrated in Figure 13
for the T-111 alloy. Thus, it is not sufficient to adjust F to a value where
the maximum stress achieved during capsule service will not exceed the yield
strength (Curve A in Figure 13), because the applied stress will then exceed
the yield strength at some point in the capsule life prior to the time at
which the stress reaches its maximum (Area C in Figure 13)., The proper adjust-
ment of F for a yield criteria is the one used to generate Curve B, which is
just tangent to the yield strength versus time curve.

Since the tangency calculation for F is made in terms
of half life rather than real time, it is independent of decay constant and
depends only on the initial temperature. Thus, for a specified starting
temperature there is a unique F value for yield tangency which constitutes an
upper limit on F for creep loading. The F values which will cause a yield
tangency to occur in T-111 alloy have been calculated for a range of starting
temperatures and the results of these calculations are presented in Table VI.
The applied stress levels used for the subsequent analytical and experimental
determinations of creep behavior will be specified in terms of the fraction of
the maximum applicable F value for the chosen starting temperature. For example,
at a starting temperature of 2600°F, a specified stress level of .65 indicates
that the F factor used to calculate stress is 65% of 42,4 psi/°F (526 MN/m2/°K)
and that the stress at any point during the capsule lifetime will be 65% of the
value in a situation where a yield tangency occurs.
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b) Predicted Creep Curve Shape

The method used to calculate creep strain for T-111
alloy tested with the stress and temperature profiles illustrated in Figure

12 involved the integration of the steady state creep rate & with respect
to time:

e = [ &dt (8)

The equation used to represent ¢ as a function of stress and temperature was
the hyperbolic sine relationship developed for T-111 alloy by Sheffler et
al (3):

g = 1.65 x 109[sinh(6.6 X 10-50)]3’]7e-90’000/RT (9)

This equation was based on a correlation of conventional (isostatic, iso-
thermal) steady state creep rate data from five different heats of T-111
alloy, and may be expected to predict experimental creep rates of a
specific heat within a factor of approximately 3.

The use of Equation (9) for prediction of VTVS
behavior involved substitution of the analytical .expression forc and T
(Equations 7 and 4) into Equation (9) to provide an expression for & which
could be integrated with respect to time to determine the accumulated creep
strain at any point in the capsule life. The repeated integration of this
function over a range of successively increasing upper limits provides, in
effect, a predicted creep curve for the chosen stress level, initial tem~
perature, and decay constant. A set of hypothetical creep curves calculated
in this fashion using computer assisted numerical integration techniques
is presented in Figure 14, The program used to calculate these curves
included adjustments to the calculated creep strain for both thermal
contraction and elastic strain, so that the creep strain catculated for
any given time represented the extension which would be physically measured
in an experimental test.

c) Selection of a Creep Design Parameter

The most unusual characteristic of the postulated creep
curves shown in Figure 14 was that the creep strain did not increase continuously
to rupture, as normally observed in isostatic, isothermal tests, but instead
reached a maximum strain value which was achieved at the point in time where
the rate of change of mechancial strain was just equal to the rate of thermal
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contraction. Beyond this point the calculated creep rate was smaller than the
calculated thermal contraction so that the net observable rate of dimensional
change became negative.

The selection of a creep design parameter for the rather
unusual creep curves presented in Figure 14 was further complicated by the fact
that the normally used parameters such as rupture life or minimum creep rate
did not apply. While the time to a specified strain level (e.g., the 1% creep
life) might have been used in selected cases, this parameter was not universally
applicable to the VTVS curves since the specified strain level may not be reached
during the course of the capsule life. Because of these:shortcomings, an
entirely new parameter was selected to characterize the VTVS creep curves.

This parameter was the maximum strain achieved during the capsule lifetime and
was designated as the ''stall strain' since it represented the extension at
which creep essentially ''stalled' or ceased to be significant.

d) Predicted Influence of Service Variables on Stall Strain

To explore the influence of the capsule variables
(initial temperature, stress level, and decay constant) on the stall strain,
and also to provide a guide for the selection of test parameters for the
exper imental portion of the program, the stall strain was calculated over the
range of each of these variables. The results of these calculations are pre-
sented in Figure 15, where the calculated stall strain is plotted versus half
life (half life = In 2/decay constant) for a range of stress levels and initial
temperatures. Presuming that these predicted curves did indeed exactly
represent the observed material behavior, the problem of capsule design for a
specified starting temperature and isotope would reduce to a simple matter of
selecting the stress level corresponding to the maximum allowable creep
strain, For example, if the maximum allowable creep strain were determined
to be 1% for a Pu238 capsule (decay constant = .93 x 10~7) which went into
service at 2200°F (1478°K), the maximum allowable stress level (as determined
from Figure 15) would be 0.3 (Point "A'") and the capsule dimensions would be
adjusted to provide an F value which was 30% of the yield limiting value of
53.7 psi/°F (666 MN/m2/°K).

Unfortunately, the subsequently discussed experimental
results showed systematic deviations from the predicted curves, which means
that the problem of creep-limited capsule design will be considerably more
complicated than indicated by the above example. However, the results of the
calculations were highly useful in the design of the experimental program.

The calculated creep curves served to define the creep curve shape which

could be anticipated with VTVS loading, and permitted the critical design
parameter (stall:strain) to be identified in advance of the experimental

effort. In addition, the calculated stall strain data were used to establish
values of the experimental parameters (starting temperature, stress level,

and decay constant) which allowed completion of the experimental effort in a
reasonable time, and also provided data which could be used to explore methods
for extrapolation of the short time stall strain values to longer service lives.
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B. EXPERIMENTAL PROGRAM

1. Program Objectives

The objectives of the experimental program were twofold.
The first objective was to characterize the creep behavior of T-111 alloy
with the continuously varying stress and temperature profiles of the type
shown in Figure 12, and to compare this observed behavior with the behavior
predicted by Equation (8). The second objective was to generate limited
short time stall strain data and to evaluate the usefulness of such data
for the prediction of long time behavior.

The commonly used approaches for extrapolation of short
time creep data are: (a) manual extrapolation of isothermal stress rupture
curves or (b) analytical extrapolation using correlating parameters such as
the Larson-Miller or the Manson-Halford (9, 10). With either approach, the
primary concern with extrapolation is the potential occurrence of creep
instabilities at times beyond the range of experimental investigation. While
there is no infallible solution to the problem of predicting potential
instabilities, one common approach is to examine the creep behavior at tem-
peratures slightly above the anticipated service temperature with the hope
that the occurrence of potential instabilities will be accelerated at the
higher temperatures. In manual extrapolation this approach boils down to
the use of a '"judgment factor' which is developed by visual examination of
the higher temperature stress rupture curves. |In analytical extrapolation,
the use of correlating parameters represents an effort to provide a mathematical
basis for the characterization of temperature effects on rupture behavior.

While none of the conventional extrapolation methods were
directly applicable to the capsule design problem, it was still possible to
make use of the basic principles involved in these methods for design of the
exper imental program; that is, to run short tests at high temperatures which
could be used to predict longer time behavior at lower temperatures. To
implement this approach, experimental values of starting temperature, stress
level, and decay constant were chosen which were significantly larger than the
anticipated capsule service conditions (Table VIl). Increasing these three
independent test variables served to shorten the time required to reach the
stall strain and thus allowed the objectives of the investigation to be ful-
filled within a reasonable expenditure of experimental effort. The calculated
results were used to select test parameters which would provide stall strains
on the order of 1/2 to 5%. The ranges of the independent variables were
selected to facilitate evaluation of the adaptability of such data to correla-
tion methods. |t must be emphasized that the tests conducted on this program
were strictly exploratory in nature, and were not intended to be used directly
for capsule design. However, the results of this study should be highly useful
in the design of further experimental programs directed toward the generation
of specific design data.
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2. Experimental Results

An experimental creep curve having a typical shape is com=
pared in Figure 16 with a predicted curve which was calculated using Equation
(8). These curves were generated using the load and temperature profiles
presented in Figure 4, While the observed and predicted curves did not
coincide perfectly, the shape of the experimental curve was generally similar
to the predicted shape. The experimenhtal data also exhibited the predicted
stall phenomenon. Furthermore, the predicted and experimental stall strains
were quite close for this particular test. Unfortunately, the agreement
between predicted and observed stall strain was not as good for the majority
of the test results as for this particular example, as shown in Table VIIiI,
The experimental stall strains exhibited consistent deviations from the pre-
dicted values, which were dependent on the applied test parameters as il-
lustrated in Figure .17. At the .65 stress level, the observed stall strains
were smaller than predicted, while at the 1.0 stress level the opposite was
true, The observed curves of stall strain versus decay constant also ex-
hibited a lower slope.than predicted, so that the deviations between the
observed and predicted values become larger with decreasing decay constant
at the .65 stress level and become smaller at the 1.0 stress level.

In an effort to determine the cause of the observed
deviations between the predicted and measured stall strains, creep rates
were calculated as a function of time for each test and were compared with
the creep rates predicted by Equation (9) to determine if consistent devia-
tions between the observed and predicted rates were occurring. This
comparison was performed by plotting the ratios of the observed to the
predicted rates as a function of test time, as shown in Figure 18. In order
to rationalize the data from the three tests performed at each starting tem-
perature and stress level, the rate ratio data were plotted as a function of
time in half lives, rather than real time. These data showed systematic
deviations between predicted and observed rates which were consistent for all
twelve tests. These deviations were characterized by a '"U'" shaped plot of
the observed/predicted creep rate ratio versus test time. This behavior was
presumed to be caused by the occurrence of primary and tertiary creep in the
early and later stages of the experimental tests. During the intermediate
stages of testing, where the material substructure was presumably stabilized
to a configuration approximating the substructure which develops during con-
ventional steady state creep, the experimental VTVS creep rates approached,
and actually fell below the values predicted by Equation (9).

While the occurrence of primary and tertiary creep accounts
for the large positive deviations between observed and predicted creep rates
in the early and later stages of the VTVS tests, it does not account for the
fact that the experimentally observed creep rates were consistently below the
predicted rates (i.e., the rate ratios were consistently less than unity)
during the intermediate stages of each test. Analysis of limited conventional
(isostatic, isothermal) creep test data for the Heat 650028 indicated that the
primary cause of this deviation was a difference between the creep properties
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of Heat 650028 and the properties predicted by Equation (9), which represents
an average of the measured creep behavior 'of five other heats of T-111 alloy.
This difference is documented in Table 1X, which shows the experimental

versus observed creep rate ratios for five conventional vacuum creep tests
on Heat 650028,

The rate ratio data presented:-in Figure 18 provide
an explanation for the deviations between the observed and predicted
stall strains, This explanation is based on the fact that the observed
creep rates were different from the predicted values at the predicted
stall time, as shown in Figure 18. For the two sets of tests at the .65
stress level (Figures 18a and 18b) the predicted stall times were within
the range where the experimental creep rates were lower than predicted,
so that the observed creep rate fell below the rate of thermal contraction
sooner than predicted and stall occurred prematurely at a total strain
level which was below the calculated value. For the two sets of tests
at the 1,0 stress level, the predicted stall times fell in the: range
where the experimental creep rates were higher than predicted (Figures
18x and 18D) so that the observed stall times and stall strains were
larger than predicted.

In order to provide a complete .description of the
observed VTVS creep behavior of T=111 alloy, there are two additional
experimental observations which must be discussed. The first of these
involved grain growth and deoxidation which occurred during certain of
the VTVS tests. Oxygen levels after testing were about half of the pre-
test value (Table X). As shown in Table XI the grain growth was confined
to the longer time tests, and was not thought to have a major influence
on the test results. However, it is noted here because it is a factor
which must be considered in the organization of future test programs to
generate specific capsule design data. The occurrence of grain growth
at the higher test temperatures will limit the potential for trade-offs
between time and temperature for the generation of such data.




Another unusual and somewhat disturbing phenomenon occurred
in the two longest tests conducted at the 2400°F (1589°K) starting temperature
(S-152 and 154). Both of these tests exhibited large discontinuous jumps in
the creep curve after stall had occurred. This phenomenon is illustrated by
the data in Figure 19, which show jumps over 1% for both tests. The tempera-
ture and stress at the time of these sudden strain increases were approximately
1050°F (839°K) and L41.7 ksi (287 MN/m2) for test S-154 and 1230°F (939°K) and
40.5 ksi (279 MN/m2) for test S-152. Comparison of the applied stress for
tests $-152 and S-154 with 0.2% offset yield strength data for Heat 650028
showed that the yield tangency occurred at about 1400°F (760°K) for these two
tests, which is well above the temperatures at which the jumps occurred
(Figure 20). It would thus appear that no explanation can be given at the
present time for this highly unusual phenomenon. Since the occurrence of the
jumps was confined to these tests where the applied stress level was considerably
higher than would be anticipated in actual capsule service, this phenomenon was
not considered to be important with regard to capsule design.

3. Design Considerations

As previously mentioned, the primary objective of this program
was characterization of the VTVS creep behavior of T-111 alloy, with emphasis on
the problem of predicting creep behavior at extremely long times. Two approaches
to this problém were studied in this program. The first was analytical calcula-
tion of VTVS behavior from conventional creep results, and the second was .para-
metric extrapolation of short time VTVS experimental results. The experimental
data indicated that the prediction of VTVS behavior from conventional minimum
creep rates was not sufficiently accurate for design purposes, with deviations
as large as 600% being observed between the predicted and observed stall strain
values. Fortunately, the nonconservative deviations (observed stall strain>
predicted stall strain) were confined to the 1.0 stress level, which is well
above the stress levels which could presumably be considered for design purposes.
At the lower stress level studied, the observed stall strains were all below the
predicted values, meaning that a capsule designed on the basis of the calculated
values would be over rather than under designed.

While the present method of analytical prediction was not
sufficiently accurate for design purposes, the experimental data developed in
this study indicated certain areas where the method could be improved to make
it more accurate. The two primary causes of inaccurate predictions were
deviations of the specific heat properties from the average values used for
prediction and systematic deviation of the observed from the predicted creep
rates as a result of primary and tertiary creep. Both of these deviations
could easily be incorporated into the predicting equation to improve the
accuracy of future predictions.

The second approach which was studied for the prediction of
long time VTVS behavior was extrapolation of short time results. To implement
this approach the following correlating parameter was developed using the
calculated VTVS data:



log(HL)-%%t%%g - .75 log(SS) (10)

Parameter

where HL is hypothetical isotope half life in hours, T is starting temperature
in °F, and SS in stall strain in percent. The calculated stall strain data
shown in Figure 15 are replotted in Figure 21 to illustrate the use of this
parameter®., To test the ability of the parametric method for extrapolation

of short time stall strain data, Equation 10 was used to correlate the four
tests with half lives of 400 hours or less at each of the two stress levels
investigated, and the resulting parameter values were used to predict the
stall strains for the 1000 and 2000 hour tests. The results of these predic-
tions are compared with the experimental data in Table X!l. With the exception
of test S-153, the extrapolated stall strains were all within 25% of the
observed values, which is highly encouraging considering the very limited
amount of experimental data which were available for the parametric extrapola-
tion. These results indicate that as a larger data base becomes available, it
should be possible to develop a parameter which can be used with reasonable
confidence for extrapolation to the required design life times.

The data plotted in Figure 21 showed that the three terms parameter did

not provide an exact fit of the calculated data, which deviated systematically
with stall strain over a narrow band. Additional work indicated that a four
term parameter involving a second order polynomial in stall strain would
exactly fit the calculated data:

Parameter = log(HL)-%—E-[%g—o- .73348 1og(SS) - .17861[log(ss)1% (1)

However, the use of :both of these parameters to.correlate the test results
showed that the three term parameter actually provided a better fit of the
experimental stall strain data. As additional experimental results become
available from possible future programs, it should be possible to further

refine the correlating parameter for a more exact fit of real data.
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I, Influence of Heat Treatment on the Microstructure and Creep Behavior
of ASTAR 811C Alloy

A. SELECTION OF HEAT TREATMENTS

The two heat treatments studied in this program were 1/2 hour at
3600°F (2255°K) and 1 hour at 3000°F (1922°K). The former was used because it
represents a standard heat treatment for commercial tantalum alloys. The
latter was chosen more or less arbitrarily to provide the maximum possible
creep strength while limiting grain size to the 100 to 120um range. While
combinations of longer time or higher temperature might have produced even
greater improvements in creep strength, they would also have increased grain
size to the point of limiting the engineering usefulness of the material.

B. MICROSTRUCTURAL OBSERVATIONS

The microstructures produced by each of the two heat treatments
studied in this program are shown in Figures 22 and 23. The 3600°F (2255°K)
anneal produced relatively large grained, single phase microstructure (average
grain size 100um) which was essentially free of carbides (Figure 22), while
the 3000°F (1922°K) treatment yielded a finer grained structure (average grain
size 10um) containing a large amount of undissolved carbide (Figure 23).

The size, snape, and distribution of carbides in the 3000°F (1922°K) specimens
were quite complex. Within the grains both an acicular shaped (A) and a more
rounded type of carbide (B) were found. The grain boundaries contained both
rounded and elongated carbide particles (C) together with a larger carbide
having a fine lamellar internal structure (D) reminiscent of a euctectoid
mixture. The composition of these carbides was presumed to be the same as
that determined by Buckman and Goodspeed who found only the dimetal carbide
TagC in their study of ASTAR 811C (4). No effort was made to confirm this
composition in the present investigation.

C. CREEP RESULTS

Creep curves characteristic of the two structures discussed above
are presented in Figures 24 and 25. Two curves are shown in each figure, one
generated at a test temperature of 2400°F (1589°K) and the other at a lower
temperature in the 1900 to 2000°F (1339 to 1366°K) range. The difference
observed in the shapes of these four curves appeared to be associated with the
difference in test temperature rather than with the difference in heat treat-
ment. Both of the 2400°F (1589°K) curves showed no primary creep and exhibited
a continuously increasing creep rate (Figures 2ba-and 253), whereas the curves.
generated at the lower test temperatures exhibited both first and second stage
creep (Figures 24b and 25b). The temperature range over which this change of
creep curve shape occurred corresponded to the temperature range over which
Harrod, Ammon, and Buckman observed a change in the grain size dependence of
creep life in ASTAR 811C alloy (12). These authors showed that the creep life
of this alloy was grain size dependent at 2400°F (1589°K), but not at 2000°F
(1366°K), indicating that the temperature at which grain boundary sliding
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becomes an important deformation mechanism (the equicohesive temperature) falls
within this range. Thus, it would appear that the observed change in creep
curve shape between 2000 and 2400°F (1366 to 1589°K) may be associated with
this assumed change in the creep mechanism,

One percent creep life data for ASTAR 811C in both condi-
tions of heat treatment are displayed in parametric form in Figure 26. The
range of previously observed 1% creep life data for the commercially available
T-111 tantalum alloy (1) is also shown in this figure to document the improved
creep life achieved by the newer Westinghouse alloy. The ASTAR 811C data in
Figure 26 clearly show the benefit to be obtained from the higher temperature
annealing treatment. However, these data also show that this benefit is con-
siderably diminished at the higher stresses and lower test temperatures, where
the curves for the two different heat treatments tend to merge. All of the
tests conducted at or below 2200°F (1378°K) have been indicated in Figure 26
to show that the temperature range over which the two curves merge coincides
with the assumed equicohesive temperature range for ASTAR 811C. This coincidence
suggests that the life improvement caused by the higher temperature anneal may be
associated with the larger grain size rather than with the difference in carbide
character between the two microstructures. While only limited data were
available in the low stress-high temperature range, it appears from the limited
results presented in Figure 26 that the creep life curves for the two heat
treatments may also be merging in this stress and temperature range. This
apparent tendency is attributed to changes occurring in the microstructure
during creep testing, which are described below.

D. INFLUENCE OF CREEP ON MICROSTRUCTURE

Metallographic examination of specimens tested above 2800°F
(1811°K) indicated that both grain growth and carbide dissolution occurred
during creep testing in this temperature range. An example of this phenomenon
is shown in Figure 27. The observed grain growth was assumed to be responsible
for the apparent tendency of the two creep life curves in Figure 26 to merge at
the lower stresses and higher temperatures. The grain growth phenomenon is
significant with respect to design coinsideration for ASTAR 811C since it means
that service temperatures for this material will probably be limited to values
below 2800°F (1811°K) except in unusual circumstances where excessive grain
growth will not degrade the usefulness of the material.

Metallographic examination of specimens creep tested at lower
temperatures showed that the carbide structure in material tested at 2400°F
(1589°K) was quite similar, regardless of the pre-test heat treatment. The
creep tested structures were characterized by a tendency for carbides to be
located preferentially at the grain boundariés, as shown in Figures 28 and
29, For the specimens annealed at 3000°F (1922°K), the average grain boundary
carbide size appeared to be somewhat larger than before testing, indicating a
tendency for carbide migration and agglomeration of the grain boundaries
(Figure 28). For the specimens annealed 1/2 hour at 3600°F (2255°K), the
carbide tended to reprecipitate preferentially at the grain boundaries
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(Figure 29). An extreme example of this tendency was found in a specimen
which tested for over 20,000 hours at 2600°F (1700°K) and 2 ksi (13.8 MN/m2)
Figure 30). This specimen exhibited a structure which was completely free
of carbide in the interior of the grains, with an abundance of large, blocky
carbides being located at the grain boundaries*.

E. PHENOMENOLQGICAL ANALYSIS

Another approach which was used to study the influence of anneal-
ing temperature on the creep behavior of ASTAR 811C involved phenomenological
analysis of creep rate data to determine the stress and temperature dependence
of the minimum creep rate for both conditions of heat treatment. At the lower
test temperatures where primary creep occurred (Figures 24b and 25b), the
minimum creep rates used for this analysis were measured in the usual way. At
the higher test temperatures where primary creep did not occur (Figures 2ka and
25a), the initial creep rate was used for analysis, since it represented the
lowest creep rate exhibited by the material prior to the onset of tertiary creep.

The methods used to determine the stress (c) and temperature (T)
dependence of the minimum creep rate (&) involved a combination of manual
plotting and computer assisted multiple linear regression analysis to fit the
rate data to the equation

& = Af(g)o H/RT (12)

where A is a proportionality constant, AH is the activation energy for thermally
activated deformation, and R is the universal gas constant (1.987 cal/mole°K).
The three stress. functions investigated were the exponential, the power, and the
hyperbolic sine laws:

f(o) = eBO (exponential law) (13)
f(s) = ¢" (power law) (14)
f(o) = [sinh (ac)1" (hyperbolic.sine law) (15)

The B, n, and a terms in these expressions are arbitrary constants established
by the best fit of the data. Results of a preliminary analysis showed that

the power law did not fit the data as well as either the exponential or the
hyperbolic sine functions, which both appeared to fit the data equally well.
Since the hyperbolic sine law is a more complicated function generally reserved
for cases where neither the exponential or the power law will fit the data
adequately, the exponential function was arbitrarily chosen for the subsequent
portion of the analysis.

It should be noted that the specimen shown in Figure 30 was not from the
same heat of material used for the rest of the study. However, the behavior
is presumed to be! typical of the alloy.
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Activation energies for creep of ASTAR 811C in each of the two
conditions of heat treatment were determined by graphical methods. Using
expression (13) for f(o), Equation (12) was rearranged to the form

In {2¢729} = 1nA - (aH/R) (1/T) (16)
or log {ée-Bo} = log A-(AH/2.303R) (1/T) (17)
so that the value of AH could be determined from the slope of a semilogarithmic
plot of the stress modified creep rate parameter versus reciprocal temperature.

Regression methods were used to determine the values of the stress constant (B)
which are given below:

Stress Constant (B)
Annealing Treatment Tks1) =1 TMN/mZ) =1

1 hour 3000°F (1922°K) .35 .051
1/2 hour 3600°F (2255°K) b2 .061

Using these B values, the creep rate data for each heat treatment were plotted
according to Equation (17) to determine.AH values, as shown in Figures 31 and

32. The results presented in these figures indicated that the activation

energy for creep of ASTAR 811C varied with creep test temperature, as illustrated
in Figure 33. These data also showed that annealing temperature did not signi-
ficantly influence the observed activation energy values, which was somewhat
surprising in view of the significant differences in creep life caused by the

two different annealing treatments.

The variation of AH with test temperature for both heat treatments
was somewhat puzzling. At the lower test temperatures (below 2000°F; 1366°K)
where the deformation mode was presumably intragranular, the measured activa-
tion energies for creep were in the range of the activation energy for self
diffusion in tantalum (~100K cal/mole; 3420 J/mole). At the higher test tem-
peratures, where grain boundary sliding, presumably contributed to creep
deformation, the measured AH values for creep were significantly above the
AH for self diffusion, which is characteristic of a dispersion strengthening
mechanism, This observation would seem to indicate that the carbide strengthen-
ing in ASTAR 811C is effective only where grain boundary sliding is a contribut-
ing deformation mode. This point, coupled with the metallographic observation
that the carbide tends to migrate to the grain boundaries during creep testing
regardless of the pretest heat treatment, leads to the hypothesis that the
primary role of the carbide in strengthening the ASTAR 811C alloy is to act
as a grain boundary pinning agent,
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The above hypothesis; that is, that the primary effect of the
carbide in ASTAR 811C is to pin the grain boundaries, is consistent with all
of the experimental observations developed in this program, and leads to the
conclusion that the increased creep life provided by the high temperature
annealing treatment is probably the result of grain growth rather than solu-
tioning of the carbide. This conclusion is based on the assumption that the
solutioned carbide reprecipitates on the grain boundaries either during the
"two hour temperature stabilization period prior to creep load application or
at a very early point during creep testing of specimens annealed at 3600°F
(2255°K), so that the carbide structure is similar for both heat treatments
during testing. To test this assumption a creep test specimen was annealed
1/2 hour at 3600°F (2255°K), cooled to room temperature, and reheated to
2400°F (1589°K) for the two hour stabilization period. This specimen was
then cooled to room temperature and examined metallographically. As shown
in Figure 34, this specimen exhibited an extensive grain boundary carbide
network, which confirms the hypothesis that the grain boundary carbide dis-
tribution is similar for both heat treatments during creep testing, despite
the significant differences observed in the as~-annealed condition. The
confirmation of this hypothesis in turn lends additional support to the
hypothesis that the difference in creep life caused by the two different
annealing treatments is primarily a grain size effect.

F. DEFINITION OF ALTERNATE ANNEALING TREATMENTS

As mentioned in the introduction, one of the objectives of this
study was to define an alternative to the two previously discussed annealing
treatments. Based on the conclusion that grain size was the primary determinant
in improving creep life, three alternative annealing treatments involving longer
times at lower temperatures were selected to provide an annealed grain size on
the same order as that produced by the 1/2 hour at 3600°F (2255°K) treatment.
The three time-temperature combinations selected were 5 hours at 3450°F (2172°K),
24 hours at 3270°F (2072°K), and 100 hours at 3000°F (1589°K). The grain size
and 1% creep life produced by each of these annealing treatments are compared
in Table XlI1 with similar data from the two previously discussed annealing
conditions. These data clearly show that the improved creep..strength provided
by the 1/2 hour at 3600°F (2255°K) anneal can be achieved by any of the three
proposed alternates. The microstructure produced by the three alternative
heat treatments were (except for grain size) identical to the 1/2 hour at
3600°F (2255°K) structure, with no carbides visible at 5000X magnification.
Based on the fact that the temperature limits of most commercial sized vacuum
annealing furnaces suitable for ASTAR 311C alloy are on the order of 3000°F
(1922°K), the 100 hour at 3000°F (1922°K) annealing treatment was selected as
the primary alternate to the 3600°F (2255°K) heat’treatment. In addition to
being within the range of presently available capabilities, the 100~hour heat
treatment also avoids the previously noted difficulties anticipated in the
application of a short time high temperature treatment to thick section sizes.
However, it suffers from the disadvantage of higher costs associated with
longer annealing time, so that the potential benefit of improved creep life
must be carefully balanced against the increased cost prior to specification
of the 100-hour heat treatment over the one-hour treatment at 3000°F (1922°K).,
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v, CVD Tungsten Creep Results

The 1% creep life results obtained from the two lots of CVD tungsten
investigated on this program are summarized on a Larson=Miller plot in
Figure 35, These data show a definite break in the creep life behavior of
this material which occurred at a stress level on the order of 2 ksi (13.8
MN/m2). No explanation can be offered for this behavior at the present time.
While two of the three test results on the material supplied by ORNL are
clearly above the corresponding SFL results, the third ORNL point would appear
to be equal to or below the SFL data. Based on the available results it is
not possible to determine at the present time if there is a distinguishable
difference between the creep life of the two materials, or if the observed
differences are the result of experimental scatter.
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CONCLUS I ONS

I, T-111 Lithium Exposure Investigation

Long time elevated temperature exposure to vacuum and to liquid lithium
caused large and in some cases even dramatic reductions in the creep life of
T-111 alloy. As an extreme example of this effect, a specimen exposed to
lithium for 1000 hours at 1800°F (1255°K) plus 4000 hours at 1900°F (1310°K)
exhibited a 1% creep life of 2 hours at 1650°F (1172°K) and 50 ksi (344 MN/mZ),
as compared to a life of 938 hours for an unexposed specimen. These results
indicated that great caution must be exercised in the application of T-111 for
the containment of liquid lithium in space electric power systems.

Metallographic and chemical analysis of exposed specimens revealed that
two separate effects were responsible for the observed variations of creep life.
The first of these was grain growth, which increased the creep life in the test
temperature range where grain boundary sliding occurred. The second effect was
depletion of residual oxygen from solid solution either by direct environmental
deoxidation or by the precipitation of hafnium oxide, which reduced the creep
life in the test temperature range where an oxygen-controlled dynamic strain
aging phenemonon occurred.

The effects of exposure on creep life were grouped into two basic cate-
gories, depending on the exposure temperature. At the lower exposure tempera-
tures (1800 and 1900°F; 1255 and 1310°K) only deoxidation occurred and large
creep life reductions were observed. The magnitude of the life reductions was
largest at the 1650°F (1172°K) creep test temperature, where the oxygen con-
trolled dynamic aging effect was most prominent, and diminished as the test
temperature was increased. At the highest creep test temperature investigated
(2400°F; 1589°K) the low temperature exposures caused no significant change in
creep life., The influence of the low temperature exposures on creep life was
sensitive to both environment and exposure time, Lithium proved to be a more
effective deoxidant than vacuum and therefore caused larger life reductions.
For each exposure medium, the creep life reductions increased with increased
exposure time, It was shown that the effect of deoxidation on the T-111 creep
behavior correlated better with residual oxygen in solid solution than with
total oxygen content.

At the high exposure temperature (2400°F; 1589°K), both grain growth
and deoxidation occurred. The operation of these two competing effects caused
the net creep life variations to be smaller than those observed for the low
temperature exposures. As with the low temperature exposures, the effect of
high temperature exposure on creep life varied with creep test temperature.

At the lower test temperatures (1650, 1800, and 2000°F; 1172, 1255, and 1366°K)
the deoxidation effect was more significant than the grain growth effect, and
the net creep life change was therefore negative (life reduction). At the
higher test temperature (2200°F; 1478°K), the grain growth effect predominated
and the post-exposure lives tended to be longer than the pre-exposure lives.

As with the low temperature exposures, the high temperature effects were
sensitive to environment and exposure time, with larger effects being observed
for the longer exposure times and the lithium environment,
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(. T-111 Variable Temperature-Variable Stress Investigation

Vacuum creep tests conducted on T-111 alloy with continuously increas-
ing stress and decreasing temperature variations which simulated the service
conditions anticipated in radioisotope capsule service have shown that these
test conditions produce creep curves having a highly unusual shape. The most
unusual characteristic of these curves was that creep strain did not increase
continuously to rupture, as in normal creep tests, but instead reached a
maximum strain value where the rate of change of mechanical strain was just
equal to the rate of thermal contraction. Beyond this point the creep rate
was smaller than the rate of thermal contraction so that the net observable
rate of dimensional change became negative as temperature decreased. Since
none of the existing creep design parameters such as rupture life or minimum
creep rate applied to this unusual creep curve shape, a new parameter de-
signated ''stall strain' was developed to characterize these curves for design
purposes. This parameter was defined as the maximum creep strain achieved
during the course of the variable temperature-variable stress (VTVS) tests.

In an effort to predict the VTVS creep behavior of T-111 at very long
times, an analytical method was developed to calculate the VTVS stall strain
from conventional (isostatic, isothermal) creep results. Comparison of the
calculated stall strain values with the experimental results indicated that
the analytical method was not sufficiently accurate for design application.
However, the results of these calculations, which were performed prior to the
creep tests, were highly useful in the design of the experimental program.
Without these results it would have been impossible to establish a well
organized program which maximized the information available from a given
expenditure of experimental effort.

Analysis of the experimentally observed creep rates indicated two
primary causes of deviations between the predicted and observed VTVS creep
behavior. The first of these involved the occurrence of primary and tertiary
creep, which were not accounted for in the model. The second was a difference
between the creep properties of the specific heat tested ' and the average
properties used for prediction. Based on these observations, suggestions were
made for improvement of the model by tailoring the predicting equation to the
specific type of creep behavior observed in the preliminary experimental tests
conducted in this study. These suggested modifications would involve adjust-
ments of the proportionality constant in Equation (9) to reflect the creep
properties of the specific heat of material being tested, and the addition of
a half life dependent modifying expression to adjust the creep rate for
primary and tertiary creep.

A second approach to prediction of long time VTVS creep behavior in-
volved parametric extrapolation of short time VIVS data. This approach showed
a great deal of promise and indicated that it should be possible to predict
long time behavior by extrapolation of short time results obtained at tempera-
tures above the anticipated service range. The only major limitation to this
approach appeared to be the tendency for grain growth to occur in the longer
time tests at the higher temperatures. Future experimental programs aimed at
the development of specific design data must be carefully designed to avoid
confounding of the experimental results by this phenomenon.
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One other unusual and somewhat disturbing phenomenon which was
observed during the course of this investigation was the occurrence of
discontinuous jumps in some of the VTVS creep curves. ‘No-expltanation
could be advanced for this phenomenon. Fortunately, the occurrence of
the jumps was confined to tests where the applied stress levels were
considerably in excess of those which could be anticipated in actual
service, so that there should be no major problem so far as design is
concerned.

i, ASTAR 811C

Annealing of ASTAR 811C alloy for 1/2 hour at 3600°F (2255°K) was
shown to produce a carbide free microstructure with an average grain size on
the order of 100 um. Annealing for 1 hour at 3000°F (1922°K) provided a finer
grained structure (average grain size 10 um) containing a wide range of sizes
and shapes of undissolved carbides located both within the grains and at the
grain boundaries. Additional metallographic examinations showed that ex-
tensive reprecipitation occurred in the solutioned specimens during heating
to the test temperature, so that the carbide structure was quite similar for
both treatments during creep testing. Creep test results showed that the
higher temperature annealing treatment caused a significant improvement in
the 1% creep life of ASTAR 811C in the temperature range above 2200°F (1479°K).
Below that temperature the 1% creep life data were roughly equivalent for both
annealing treatments. While only limited data were available above 2800°F
(1811°K), it appeared from a Larson-Miller plot that the creep 1ife data for
the two annealing treatments might also be tending to merge in this temperature
range. Metallographic examination of specimens creep tested above 2800°F
(1811°K) revealed that grain growth occurred during testing, which might
explain the observed creep life behavior. These examinations also showed
the tested specimens to be carbide free, indicating that the near equilibrium
carbide solvus temperature for ASTAR 811C alloy is probably below 2800°F
(1811°K). Metallographic examination of specimens creep tested at 2400°F
(1589°K) showed that'the carbide was located predominantly in the grain
boundaries after testing. Examination of a specimen tested for an extremely
long time (over 20,000 hours) at 2600°F (1700°K) showed a microstructure
which was completely free of carbide within the grains and contained numerous
large, blocky carbides at the grain boundaries.

Analysis of the stress and temperature dependence of the minimum
creep rate of ASTAR 811C showed that the pretest annealing treatment did not
significantly influence the activation energy for creep of this alloy. In
the temperature range of 1800-2000°F (1255-1366°K) the AH values for creep
were on the order of the AH for self diffusion in tantalum (100K cal/mole;
3420 J/mole), which indicates a normal diffusion controlled creep mechanism,
Above this temperature AH rose gradually to values on the order of 150 K cal/
mole (5130 J/mole) in the range of 2400-2600°F (1589-1700°K), which implied
that dispersion strengthening was involved in creep of ASTAR 811C in this
temperature range. These observations were considered somewhat puzzling in
view of work performed at the Westinghouse Astronuclear Laboratory (where this
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alloy was developed) which showed that the creep rate of ASTAR 811C was grain
size dependent at 2400°F (1589°K) but not at 2000°F (1366°K). This observa-
tion, combined with the activation energies measured in this program, implied
that dispersion hardening was effective in ASTAR 811C only in the temperature
range where grain boundary sliding was an operative creep mechanism, and lead
to the hypothesis that the primary effect of the carbide in the ASTAR 811C was
to act as a grain boundary pinning agent. This hypothesis was supported by
the previously discussed observation that the carbide was found to be located
predominantly in the grain boundaries after creep testing, regardless of the
pretest heat treatment.

The above observations lead to the conclusion that the improved creep
life provided by the high temperature heat treatment was probably the result
of the increased grain size rather than the solutioning of the carbides.

This hypothesis would explain why the creep life improvement was observed
only above 2200°F (1478°K) where grain boundary sliding was an operative
creep mechanism,

Because the 3600°F (2255°K) annealing treatment was judged to be some-
what impractical on a commercial scale, additional studies were conducted to
determine if an alternative heat treatment could be developed which retained
the improved creep life but of fered more commercial promise. To implement
this study three lower temperature annealing cycles were selected to provide
grain sizes which were roughly equivalent to that produced by the 1/2 hour
at 3600°F (2255°K) treatment., The time-temperature combinations selected
were 5 hours at 3450°F (2172°K), 24 hours at 3270°F (2072°K) and 100 hours
at 3000°F (1922°K). All of these alternate treatments produced grain sizes
and 1% creep lives which were equivalent to those provided by the high tem-
perature heat treatment and would thus all be suitable for processing of
ASTAR 811C to obtain the improved creep life. Based on the fact that the
temperature limits of most commercial sized vacuum annealing furnaces are
presently on the order of 3000°F (1422°K), the 100 hours at 3000°F (1922°K)
treatment was selected as the prime alternative to the 1/2 hour at 3600°F
(2255°K) heat treatment.

Iv. CVD Tungsten

Preliminary 1% creep life data have been generated for CVD tungsten
from two sources. The data obtained was insufficient to distinguish a
significant difference in properties between the two sources.
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Table |

Chemical Composition of Alloys Being Evaluated in Creep Program

Weight % - <Rzm 5 v
Material. W . Re . Ta Hf C FE o 2 “2 2
CVD Tungsten Bal. ' .0029 5 7 3 12 2
T-111
Heat 650050 7.9 Bal, 1.9 .0033 6 30 1
Heat 650028 8.3 Bal. 2.1 .0030 12 30 2
ASTAR 811C
Heat 650056 7.9 1.2 Bal, 1.0 .025] 14 30 &4
Table ||
Heat Treatment and Exposure Conditions Applied to T-111
Exposure
Time Temperature
Hours °F °K Environment Exposure Code*
1000 1800 1255 Vacuum 1K~1800 Vacuum
1000 . 2400 1589 B Vacuum ~ - 1K-2400 Vacuum
1000 + 1800 1255 o
4000 1900 1310 Vacuum Duplex Vacuum
5000 2400 1589 Vacuum 5K-2400 Vacuum
1000 1800 1255 Lithium 1K-1800 Lithium
1000 2“00. 1589 Lithium 1K=2400 Lithium
1000 + 1800 1255 o el e op e
4000 | ]900 1310 Lithium Duplex Lithium
5000 2400 1589 Lithium 5K=-2400 Lithium

ale
w

Used for reference to exposure conditions in text and subsequent tables and
figures refering to variable temperature-variable stress test results.
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Table |11

Chemical Analysis of T-111 Exposure Specimens

Concentration, ppm*#*

Exposure Code* 0 N - _H C
As-Received 30(6)  6(2) 1(2)  33(2)
Annealed 1 hour 3000°F (1922°K) 104(3) - - -

plus 1 hour 2400°F (1589°K)
(pre-exposure test condition)

1K-1800 Vacuum 24(3) 6(2) <1 36(2)
1K=2400 Vacuum 29(3) 6(2) <] 36
Duplex Vacuum ' 30(2) 7(2) <] 26
5K=2400 Vacuum 4(2) 14(2) <1 24
1K-1800 Lithium 12(3) 6(2) <1 25
1K=-2400 Lithium 3(2) 6(2) <1 38(2)
Duplex Lithium 4(2) 7(2) <1 29
5K=2400 Lithium 6(2) 7(2) <] 2]

* See Table || .
*% 0, N, and H determined by vacuum fusion method: C determined by combustion
conductometric method; numbers in parenthesis refer to the number of replicate

analyses performed to obtain the average figure reported. Analysis performed
at NASA Lewis Research Center.

Table IV

Cceep Test Conditions for T-111 Exposed Specimens

Temperature Stress .
°F °K ksi MN/m*
Basic Set
1650 1172 50 344
1800 1255 35 2l
2000 1366 y1 165
2200 1478 16 110

Supplementary Tests

2000 1366 16 110
2200 1478 10.5 72
2400 1589 5 34

34




Il @1qeL 995

1 09

. . . . . . . . . -A /NN quv
9°61 9°9¢ 6°L1 £°9¢ 8¢l 0°0¢ 0°/Lt 8°9¢ 8°0¢ [4 (Mozl11) 4,0591
juadusd ‘uojlebuo|] aianidny
(LW/NW #HE) 1S3 09
70¢ we 00L 991 S99 8h 9881 (4] [4 1A [4 OloZL11) 3,0591
sidnoy ‘oj17 @24n3dny
sz - . z , z . ANE\Zz :Mv 1) §
£94 0L$ 009 (M.6851) 4,004C
- rA%A - - - Siyl - - 0£€e ANE\zz TL) s 5°0l
(Mo.84%1) 4,0022
- - - - - _ _ (LW/NW OLL) 1Y 91
0£S1 08¢ ¢ (.99€1) 4,0002
(LW/NW OoLl) s 9l
ooll ¢l Ot oLl 988 9st 9%s 62h qth 4 (Mo8LH1) 4.00Z2
(LW/NW 991) !S) 42
002 ol 16 99 s0¢ qs Siz YAl oty 4 (%.99€1) 3,000Z
. y - : . ‘o . (LW/NW HZ) 1Y S¢
05¢ S €zt lg ahl 0t 994 lze 8¢S 4 (%,5521) 4,0081
(LW/NW HHE) 1S 09
081 [ 8k £y ohe Y A4l 29t 8¢6 ¢ 8.2l 11) 4,089
sJnoy ‘2317 dosa) 3Iusduayg LU suol31puo) 3sa] desug
Wwniy3t]  wniyllg o wniylyr] o wniylin wnnoepA  wWNNoep wnnoep wnnoep  @Jhsodx] x@p0) a.4nsodx3
004Z-AS x21dng  00HZ-N| 00g1-31 00Z-39  x2|dng  004Z-%IL 0081-A1 =244 -

AO[LY LLL-1 4

0.s913J49dodd doaa) Syl uo. wniyl1]. 03, pue wWnndep

140

6-

A 3lqel

0l 03 @unsodx3 aJnjesadwd] pa31eAd|3. 3wl ] buoq JO 2duan|ju|

35



Table VI

VTVS Stress Factors for a T-111 Yield Tangency
for Various Starting Temperatures

Starting Temperature Stress Factor (F)
°F °K psi/F°  MN/m2/K°
1600 1144 78.3 971
1700 1200 73.4 9l
1800 1255 68.9 854
1900 1311 64.7 802
2000 1366 60.7 753
2100 1422 57.1 708
2200 1478 53.7 666
2300 1533 50.6 630
2400 1589 L7.6 591
2500 1644 Lk, 9 557
2600 1700 L2.4 526
2700 1755 ko,2 598
2800 1811 38.1 472
2900 1866 36.1 448
3000 1922 34.3 426
Table VII

Test Conditions for T-111 Alloy Exponentially Varying
Stress and Temperature Creep Tests

Starting Temperature Stress Level Half Life Decay Constant ()

Test No. °F °K (Dimensionless) Hours hour ™!
S-145 2400 1589 1.00 400 1.73 x 10_;
$-152 2400 1589 1.00 1000 6.93 x 10_,
S-154 2400 1589 1.00 2000 3.47 x 10
s-110 2600 1700 1.00 100 6.93 x lojg
S=111 2600 1700 1.00 170 4.08 x 1073
$-109 2600 1700 1.00 400 1.73 x 10
s-140 2600 1700 0.65 400 1.73 x 1073
$-151 2600 1700 0.65 1000 6.93 x 10_,
$-153 2600 1700 0.65 2000 3.47 x 10
$-130 2800 1811 0.65 "100 6.93 x 1023
$-133 2800 1811 0.65 170 4.08 x 10_3
$-137 2800 1811 0.65 400 1.73 x 10
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Table VI

Comparison of Predicted and Observed T-111 Stall Strains

- Stall.Strain, . Percent

Test No. Predicted Observed
S-145 0.23 1.719
S-152 1.00 2.484
S-154 2.25 5.177
S-110 .50 1.195
S=111 1.00 1.464
$-109 2.90 3.012
S-140 0.25 0.209
S=-1561 1.10 0.643
$-153 2.50 0,987
S=-130 0.40 0.271
S-133 0.85 0.610
S-137 2.50 1.327
Table |X

Conventional (lsostatic, _§othermal) Vacuum Creep

|
Test Results for T-111 Heat 650028

Temperature Stress
Test No. °F °K ksi MN/m< Rate Ratio*
S-68 2560 1678 1. 6.9 0.648
S-69 1625 1158 30 207 0.246
$-99 2700 1755 0.5 3.4 0.531
S-103 1500 1089 Lo 276 1.670
S=105 1700 1200 35 24 0.189

ale
-

Ratio of the experimentally observed minimum creep rate to that predicted
in Equation (9).
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Table X

Oxygen Analysis Before and After VTVS Creep Testing of T-111 Alloy

Test No. _ppm Oxygen__

Pretest 30
S-145 10
S-152 14
S-154 15
S-110 14
S=-111 N.A.*
S-109 12
S-140 15
S-151 18
S-153 13
S-130 14
S-133 14
S-137 14

* Not available

Table XI

Grain Growth Data for T-111 VTVS Tests

Test Temperature Half Life Grain Size

Test No. °F °K Hours um
Pretest - - - 28
S-145 ’ 2400 1589 400 24
S-152 2400 1589 1000 26
S-154 2400 1589 2000 28
S=110 2600 1700 100 24
S=-111 2600 1700 170 N.A¥
S-109 2600 1700 Loo 28
S-140 2600 1700 oo 26
S-151 2600 1700 1000 29
S-153 2600 1700 2000 39
S-130 2800 1811 100 28
$=-133 2800 1811 170 30"
S-137 2800 1811 400 37

oo
w

Not available

38




Table XI1

Comparison of Experimentally Observed Stall Strains
for Long Time Tests with Predictions Made
From Short Time Tests Using a Three Term
Correlating Parameter for T-111 VTVS Tests

Half Life, Stall Strain, Percent Percent
Test No. Hours Predicted Observed Difference
S-151 1000 0.618 0.643 3.9
S-153 2000 1.553 0.987 57.3
S-152 1000 1.945 2.484 21,7
S=-154 2000 4.891 5.177 5.5
Predicting Equation:

Parameter = log(half life) - 32,200 _ 75 log(percent stall strain)
9 T..rie0 - O

Table XI11

Influence of Annealing Treatment on the Grain Size
and 1% Creep Life of ASTAR 811C Creep Tested
at 2400°F (1589°K) and 15 ksi (103 MN/mZ)

Annealing Treatment Average
Temperature Grain Size 1% Creep Life
Time, Hours °F °K um Hours
1.0 3000 - 1922 10 230
0.5 3600 2255 100 825
5.0 3450 2172 120 848
24,0 3270 2072 150 663
100.0 3000 1922 120 790%*
100.0 3000 1922 120 . 710%*

K8
w

Results of duplicate tests.
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Figure 1.

Microstructure of T-111 Heat 650050 annealed 1 hour
at 3000°F (1922°K) plus 1 hour at 2400°F (1489°K).
Magnification 100X
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Figure 2,

Microstructure of T-111 Heat 650028 annealed 1 hour
at 3000°F (1922°K). Magnification 100X
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Figure 3.

Fluoride deposit

Chloride
deposit

Photomicrograph of CVD tungsten annealed 100 hours
at 3272°F (2173°K). Magnification 50X
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POUNDS

LOAD,

TEMPERATURE, °F
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Loo

300

200
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2200
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1800

1600

1400

1200

1 T T I | I 1 | | I I I T ! | [ | { 1
a) VARIATION OF LOAD WITH TIME

DATA POINTS REPRESENT
MEASURED VALUES OF THE
APPLIED LOAD

SOLID LINE REPRESENTS DESIRED
LOAD CALCULATED FROM THE
EQUATION:

F - At -At)
LOAD = & (TA+(To - TA)e ) (1 - e
WHERE F = 42,4594 PSI/FO (11.0924 MN/m2/K°)
A = .01491 IN.2 (9.619 mm2)

Ty = 759F (297°K)
T, = 2600°F (1700°K)
A= .001733 HR.™!

] i ] 1 i 1 i [l i 1 i I L L
T 1 T T T T T | 1 ] 1 LI | !

—

b) VARIATION OF TEMPERATURE WITH TIME

SOLID LINE REPRESENTS TEMPERATURE CALCULATED
FROM THE EQUATION:

) Y
T = TA + (To - TA) e

WHERE TA

T
(o]

75°F (297°K)
2600°F (1700°K)
.001733 HR-!

DATA POINTS REPRESENT MEASURED
VALUES OF TEMPERATURE

] 1 | ] ] | ] L ] | ] i 1 1 | | L1 ]
Lo 80 120 160 200 240 280 320 360 Loo
TIME, HOURS
Figure 4. Comparison of desired and experimental load and

temperature variation for VTVS Test S-109.
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b)

Figure 5.

1K~1800%
Vacuum

a) Pre-Exposure
0

= 28 104 ppm

Duplex* GS=26 5K-2400% GS=110
Vacuum 0=30 ppm Vacuum 0=4 ppm

.

GS=39
0=29 ppm

1K=2400%
Vacuum

GS=27 c)

0=24 ppm

GS=119
0=6 ppm

5Kk~2L400%*
Lithium

ex* (GS=28 i)

Influence of long time elevated temperature exposure to lithium and to 10 9 torr
vacuum on the microstructure of T-111 alloy annealed 1 hour at 3000°F (1922°K)
plus 1 hour at 2400°F (1589°K). Original magnification 1000X, reduced 50% for
reproduction. Grain size, '"G.S." in um. '"0" refers to oxygen analysis.

= e e e m wm m e m oew Em e

o
w

See Table |l for explanation of exposure codes.
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Figure 6.

a) Specimen Current Image.
Original magnification 1600X.
Enlarged 250% for reproduction.

b) Oxygen X-ray intensity.

c) Hafnium X-ray intensity.

Electron probe results on the T-111 duplex vacuum specimen
and oxygen enrichment in the precipitate.

b5
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9T 7

. 23 e —

J =
DUPLEX

6 VACUUM —

PRE-EXPOSURE

PERCENT CREEP
w
|

DUPLEX LITHIUM -

0 200 Loo 600 800
TIME, HOURS

Figure 7e. Creep test conditions 2400°F (1589°K) and 5 ksi
(34 MN/m2).
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T T T | | | | | T ]
O b—
> b) HIGH TEMPERATURE 4300
Lo EXPOSURE
30 b - 200
20
KEY TO EXPOSURES 100
0 v PRE-EXPOSURE
g F O 1K-2400 VACUUM
8F ® 1K-2400 LITHIUM 4 50
g : O 5K-2400 VACUUM E
- e 5K-2400 LITHIUM =
x 5 ] ) ) i } | | | i ) x
a T T T T T T T T T T A
w 50 F L
o o
oo b a) LOW TEMPERATURE 4300 ~
O w
EXPOSURE
30 F <1200
20 F
KEY TO EXPOSURES 7 100
10 ¢ PRE-EXPOSURE
2F o 1k-1800 vacuum
7F @ 1K-1800 LITHIUM - 50
6 F & DUPLEX VACUUM
s} & DUPLEX LITHIUM
| ] ] i | 1 | | | |
32 34 36 38 Lo L2 4L L6 L8 50 52
PARAMETER = T_ (15 + log t) X 1073
R
Figure 8. Influence of long time elevated temperature exposure to lithium

and to 109 torr vacuum on the 1% creep life (hours) of T-111

alloy.
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1% CREEP LIFE, HOURS

Figure 9.

10

I T lllllll 1

KEY TO EXPOSURES T

- O PRE-EXPOSED -
- O 1K-2400 VACUUM .
i @ 1K-2400 LITHIUM
O 5k-2400 VACUUM

- @ 5K-2400 LITHIUM .

o
LIILJ

i f SLOPE .8

1 1 | 1 1) 9 ll }
10 107!
GRAIN SIZE, mm

Influence of grain size on the 1% creep life of T-111 alloy
exposed to lithium and to vacuum at 2400°F (1589°K) for the
indicated periods. Creep test conditions are 2200°F (1478°K)
and 16 ksi (110 MN/m2).
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CREEP RATE, PERCENT PER HOUR

Figure 10,

ZERO CREEP RATE FOR
92 HOURS AT 0.170% CREEP

-

a) CREEP TEST CONDITIONS

16500F (1172°K)
50 KSI (34b MN/m2)

ZERQ CREEP RATE
FOR 42 HOURS AT
0.12% CREEP

b) CREEP TEST CONDITIONST

1800°F (12559K)
35 KSI (241 MN/m2)

| | 1 L i
0 2 L 6 8 2 L
c) CREEP ' ' r '
TEST d) CREEP TEST CONDITIONS e) CREEP
TEST
NDITIONS
CONDITIONS 22000F (14780K) ) COND I TIONS
20000F 16 KS1 (110 MN/m?) —_—
(1366°K) 2Lo0oF
— ] — L] o] -
24 kS| 1 (;Bile)
165 MN/
(mZ? ! (34 MN/m2)
!
'L.,n—o"’.
| | 1 L 1
0 2 0 2 L 0 2

Influence of creep test temperature on the creep curve shape for

PERCENT CREEP

unexposed T-111 alloy.
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T v T T A T 1 L] L] L]

A= 6:,93 X 105

+9

+8

+7

+6

+5

- -
+h 4

A=2.20x 10

PERCENT CREEP

+3
+2

A = 6.93 x IO-L‘ 1

+1

A= 2.20 x 1073

TIME, HALF LIVES

Figure 14, Calculated variable stress and temperature creep curves for T-111
alloy. Starting temperature = 2400°F (1589°K); stress level = 1

(dimensionless see text, Page 13 for explanation of stress level
specification).
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Figure 15,
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DECAY CONSTANT, HR™'

Influence of decay constant on the predicted stall strain of T-111 alloy for

various starting temperatures and stress levels (indicated on curves).
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PRECENT CREEP

I [ I I T

STARTING TEMPERATURE 2600°F (17000K)
STRESS LEVEL = |
A= .001733 HR.~] -

EXPERIMENTAL DATA

— CALCULATED CREEP CURVE

] 1 | 1

Figure 16,

100 200 300 400 500 600
TIME, HOURS

Comparison of calculated and experimental creep curves for T-111
exponentially varying stress and temperature test S-109, Starting
temperature = 2600°F (1700°K), stress level = 1, decay constant =
.001733 hour-1,
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Figure 21, Three-term parametric representation of calculated T-111 stall

strain data. HL represents half life in hours, T is starting
temperature in °F, and SS is stall strain in percent.
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a) Scanning electron micrograph - 540X (note etch pitting)

b) Transimission electron micrograph of two stage
(cellulose nitrate/carbon) replica. 5000X

Figure 22. Photomicrographs of ASTAR 811C annealed 1/2 hour at 3600°F
(2255°K). Average grain size =0.1lmm,

Lu52 ¢
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a) Scanning electron micrograph - 540X

Figure 23

b)

Transmission electron micrograph of two-stage
(cellulose nitrate/carbon) replica. 5000X

Photomicrographs of ASTAR 811C annealed 1 hour at 3000°F
(1922°K). Average grain size =0.0lmm. Lettered arrows
on micrograph refer to explanations given in the text.
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ASTAR 811C Heat 650056 annealed 30 minutes at 3600°F (2255°K)

As above, creep tested at 2900°F (1866°K) and 1.5 ksi
(10.3 MN/m2)

Figure 27. Illustrating grain growth which occurred during creep
testing of ASTAR 811C alloy at 2900°F (1866°K). 100X
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Figure 28.

a) Scanning electron micrograph - 540X
(Note severe etch pitting)

b) Transmission electron micrograph of two stage
(cellulose nitrate/Carbon) replica. Note
that unusual features within grain are assumed
to be artifacts. 5000X

Photomicrographs of ASTAR 811C alloy annealed 1 hour at 3000°F
(1922°K) and creep tested at 2400°F (1589°K) and 15 ksi
(103 MN/m2).
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Figure 29,

a) Scanning Electron micrograph - 540X

b) Transmission electron micrograph of two-stage
(cellulose nitrate/carbon) replica. 5000X

Photomicrographs of ASTAR 811C alloy annealed 1/2 hour at 3600°F
(2255°K) and creep tested at 2400°F (1589°K) and 15 ksi
(103 MN/m2).,
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Y

b)

Figure 30.

a) Scanning electron micrograph - 540X

Transmission electron micrograph of two stage
(cellulose nitrate/carbon) replica. 5000X

Photomicrographs of ASTAR 811C alloy annealed 1/2 hour at
3600°F (2255°K) and creep tested at 2600°F (1700°K) and
2 ksi (13.8 MN/m2).
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Figure 31. Pseudo-Arrhenius plot of stress-compensated creep rate parameter
versus reciprocal temperature for ASTAR 811C alloy annealed 1/2
hour at 3600°F (2255°K).
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Figure 32, Pseudo-Arrhenius plot of stress-compensated creep rate parameter
versus reciprocal temperature for ASTAR 811C alloy annealed 1
hour at 3000°F (1922°K).
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Figure 34.

i

il s
i oA

540X

5000X

Microstructure of ASTAR 811C annealed 1/2 hour at 3600°F
(2255°K) plus 2 hours at 2400°F (1589°K).
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APPENDIX |

PREVIOUSLY PUBLISHED REPORTS ON THE
REFRACTORY ALLOY CREEP PROGRAM
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SUMMARY OF ULTRAHIGH VACUUM CREEP TEST RESULTS GENERATED
ON THE REFRACTORY ALLOY CREEP PROGRAM
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