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Abstract

Electron transport is considered in high density fully

ionized liquid metals. Ionic structure is described in terms

of hard-sphere correlation functions and the scattering is

determined from self-consistently screened point ions.

Applications to the physical properties of the deep interior

of Jupiter are briefly considered.



I. Introduction

We are concerned here with the problem of calculating the

resistivity of dense conducting fluids consisting solely of

massive point ions and a neutralizing gas of interacting

electrons. Several systems of physical and astrophysical

interest are included in a calculation assuming the following:

(i) that the density of the system is such that the electrons

can be treated non-relativistically. If n is the electron
_2

density, this restriction can be stated as r » 10 where
S

r is the usual linear measure of electron density
S

(^ - (*L 33 \'Y
lne ~ V 3 rsao ) ) '

(ii) that the electron gas is degenerate. This is an implied

restriction on the temperature, namely

6xl05 v
T « —2— K >

s

(iii) that the first Born approximation is adequate for the

calculation of electron scattering cross sections from the

ionic system. This condition is satisfied for r < —
S **** £»

(where +Ze is the charge on the point ion) and is discussed

in detail in Appendix A. At lower densities (larger r )
S

the validity of the results must be viewed with the caution

normally attributed to low order calculations in liquid metals;

-2-



-3-

(iv) that the density-density correlation function (static

structure factor) of the ionic-system can be approximated

reasonably well by regarding the ions as an assembly of

impenetrable spheres. In the presence of an electron gas

(and with due account for the effects of exchange, correlation

and the adiabatic response to ionic motion) the effective

ion-ion interaction is characterized at short range by a

steeply repulsive region, and at long range by a weak oscil-

latory tail. At sufficiently high density (r « 1) 9

the interaction between ions is expected to depart from the

hard-core model and approach the simple screened interaction

following from Thomas-Fermi theory (as used by Hubbard and

Lampe );

(v) that the contribution to the resistivity from electron-

electron collisions can be neglected. So long as the electron

system is highly degenerate this assumption is reasonable.

In the following section we outline the basis of the

calculations for the conductivity, and in subsequent sections

estimate the melting temperatures of these fully ionized

systems. The extensions to alloys are also discussed, and

insofar as they apply the results are considered in the context

of the physical properties of the deep interior of Jupiter.



II. Calculation

Within the adiabatic approximation we may write the

resistivity of the dense ionized fluid of N ions in volume ft

as
2

P = m/n e T (1)

where the transport relaxation time T is given by

1 9 1 „ <&' •>1 '̂TT IP '--' i i\ |2, f c C
— = ^*^ ~vT~ ~r\ \ 7 IV(k-k ) PI ill (I~cos91, i )6 (c ~ C i) »
T > « J (2TT)3 ~"~ S£ F *

(2)
with

/• 2 ? c 22
t. , = h k | Z /2m , C_ = h k^/2mk r e

and

3 = _ 2

Equation (1) represents the ensemble average of the resistivity

calculated in Born approximation for elastic scattering from

each configuration of the ions described by the density components

N

Pk-kf = L e ^ ^3)

i=l

where JR. j is the instantaneous set of ionic positions. The

matrix element of the (self-consistently screened) aggregate

electron ion scattering potential V(r) is defined for plane

wave levels |k> by

fl < kjvlk1 > = V(k-k') = J dr e"i(S'b'fe V(r) (4)

n
-4-
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If the scattering is sufficiently weak (Appendix A), Eqs. (1)
3

and (2) reduce, as originally shown by Ziman to

(5)
e o F o

where y = Ik-k'l/Zk,.,, and v(y) is the electron-ion interaction
r*r r*J ' £

scaled to its long wave length limit (2/3 <fp). The quantity

2
a h/e may be viewed as the atomic unit of resistivity and has

the convenient practical value of 21.7 uftcm. S(k-k') is the
>••> r*>

liquid structure factor defined by

S<3> = i << PqP-q >> ' N6
3,o '

 (6)

In the Percus-Yevick model , (for hard spheres of diameter a),

S(q) is a function of the packing fraction r\ given by

= 6 niona ' nion

O

' nion = '

'For most classical fluids near their solidification points,

•n M 0.45.

We are dealing with point ions and the accuracy with which

v(y) can be specified is limited only by the uncertainties in

the dielectric function e (y) . In the neighborhood of y ~ 1

(the regime dominating the integrand of (5)) e (y) is quite well

known and we take the interpolation form suggested by J.

Hubbard so that

v(y) = -0.166 r /(y2 + 0.166 r F(y)) , (8)s s

where
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F(y) = f(y)/(l - 0.166 r f(y)(2y2 + g)'1) ,
o

g = (1 + 0.0262 r )"1s

and

f (y) - 4 + ̂  *.

In practice, the replacement of F(y) in (8) by the Lindhard

function f(y) leads to the same resistivity (to within 270),

but the exchange and correlation corrections contained in F(y)

are important in calculations of quantities involving (— - 1),

such as the effective pair interaction between ions.

3 9rr
Since (r a k ) = ~L we may rewrite (5) (using (8))

S O r 4

as

P/(A) = 38.4 f dy y3S(y)(y2 + 0.166 r F(y))"2
S v S

The utility of this expression is that the right hand side

is, for r < 1, a weak function of r and hence density.s ~ s

Figure 1 demonstrates this clearly. It is worth noting that

the charge Z enters in the structure factor.

To obtain the resistivity as a function of temperature

we require T(TI) at each density. This can be obtained from
o

a variational technique but the method is laborious and for

the present purposes it is sufficient to use the approximate

technique suggested by Ashcroft and Langreth . We evaluate

the pair interaction between point ions from
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0(P) - (0.166 r ) f- J 2
 XSinPX - dx (10)

Jo be + 0.166 r F(x)]s

which gives the pair energy at separation r(r = P/2k ) in

units of CT-, (see Figure 2). If 0 . is the minimum valuer mm

of 0(P), then the melting temperature TM can be estimated

from the relation

0(2k a) - 0(min) = (3/2)kr /£_
* o M r

provided 2k a is evaluated at TI = 0.45. It may be noted that

this procedure gives TM in sodium to within 10%. To find

d-n/dT, we evaluate the slope of 0(p)

F ,„ (IDF lf . 2(18nZT,)l/3

5 2(where Tp = 6 x 10 /r K) and in this way obtain T., (see

Fig. 3) and the values of T appropriate to TI < 0.45. An

alternative method for obtaining TL. exploits the Lindemann

rule (see Appendix B), but the simpler approach outlined above

is no less accurate and is, in fact, more fundamental.

The results of our calculation for fully ionized H, He

and C are found summarized in Figs. 4, 5 and 6. We choose as

a vertical axis the quantity [resistivity x density] since

as noted above this combination, near T.., is weakly density

dependent. It should be emphasized that if our estimates of

T,. are incorrect, the form of the curves presented will remain

substantially correct. We should also, point out that at
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densities for which the element carbon is likely to be fully

pressure ionized, the hard-sphere approximation to the ion-ion
9

interaction may already depart substantially from reality.

Moreover, kTLY£_ ~ 0.05 and this implies a significant non-

degeneracy.

Fig. 7 shows a comparison of our results with those of
2

Hubbard and Lampe . The quantity compared is the conductive

opacity as tabluated in Ref. 2. Our results are seen to

be systematically lower and the greatest difference occurs at

low temperatures where the crude approximation for S(q)

used in Ref. (2) is expected to be least accurate. We cannot,

however, eliminate the possibility that the systematic dis-

crepancy results from a disagreement in the temperature scale.



III. Extension to Alloys

The extension to binary alloys is straightforward in

principle. The result equivalent to Eq. (5) can be written

- 38.4 J - : - j {xS (y)
J *fz ) o ly + 0.166 r F(y)s s

2x*(l-x)*S-(y) + (l-x)S(y)

- cm) .

"if
where x is the fractional number of ions of species 2, Z is

the number of electrons per ion, and S«o» S-«, S.. , are partial

structure factors. These structure factors not only depend

on

_ volume occupied by hard spheres
total volume

but also on

where a, , G~ are the hard- sphere diameters of components 1 and

2.

If a = 1, then Eq. (12) becomes identical to Eq. (9^
•&

except, of course, that Z is a function of x. In this special

case, the results of Fig. 1 can be used to find the resistivity
12

of any alloy at the melting point.

Eq. (10) shows that if 0(p ) = 0 for the interaction between

-9-
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ions of species 1 then 0(P ) = 0 for the ions of species 2.
t

This suggests that a is near unity. However, the species with

higher ionic charge is expected to have a "harder" core (for

13a given value of r ). A detailed calculation suggests that
s

a =0.75 for a hydrogen-helium mixture; that is, the helium

hard-sphere diameter is one-third larger than the hydrogen

hard-sphere diameter. In Fig. 8, we show that this deviation

from a = 1 does not dramatically change the resistivity and

accordingly a reasonable approximation sets all hard-sphere

diameters equal.

There is, however, no simple extension of our method for

obtaining dr\/d1 to the alloy problem. For Z > 2, the tempera-

ture dependence of the resistivity is sufficiently weak that

it may be ignored in a first approximation (for T-. < T « T ).

For a hydrogen-helium alloy, a crude approximation simply

interpolates between the temperature trends shown in Figs. 4

and 5.



IV. Summary and Application

In the limited temperature and density range appropriate

to Eq. (5) and the hard-sphere model, we find somewhat lower

2
resistivities than those previously obtained for fully ionized

liquid metals. This is attributable to the use of a more

accurate electron-ion interaction and a more appropriate

structure factor. A disadvantage of the present method is

the need independently to estimate the temperature scale.

Systems for which the present calculations seem likely

to apply include the interiors of the giant planets, in parti-

cular Jupiter. Most recent models of the Jovian-interior

postulate a central region of dense fluid. Its composition

is predominantly metallic hydrogen, but is augmented by a

small amount of helium (about 107o by number ' ). It is

conceivable that the helium may not be completely ionized

and if not, the electron-helium interaction may be more appro-

priate to that expected of neutral helium atoms. We find that

although it is possible for the resistivity to be enhanced

if the helium remains un-ionized, this enhancement is mainly

a consequence of the small increase in the value of r rather
s

than any substantial change in the scattering cross section

from that expected for fully ionized atoms.

If we choose the central temperature of Jupiter to be

about 16,000°K, then we find that the resistivity of the fluid

-11-



-12-

is expected to range from 4 ta^-cm at the center of Jupiter

to about 8 î ft-cm at the boundary between metallic and molecular

hydrogen. A conductivity characteristic of the deep interior

of Jupiter is therefore

a ~ 2 x 10 esu

18
a result somewhat larger than most previous estimates.

Jupiter is observed to have a strong magnetic field and

in seeking internalmechanisms for its origin it is first of

interest to decide whether the field could be primordial.

If it were, then the quantity of central importance is the

decay time T given in seconds by

T ~ 4na(L/c)2

where c is the velocity of light and L is a typical planetary

9
dimension, which we take here as 5 x 10 cm. The result

9
T ~ 2 x 10 years

may seem to hinge not too seriously on the choice of L. Even

if the value chosen is viewed as unreasonably large, the

result for T remains such that the possibility of primordial

origin is difficult to discount. In complete contrast to this,

it is interesting to record that the high value of a is likely

19to be favorable for a dynamo mechanism underlying the generation

of the magnetic field.

Finally, a straightforward application of the Wiedemann-Franz



-13-

relation yields thermal conductivities for the interior of
o

Jupiter ranging from (in erg/cm-sec-K) 9 x 10 at the center
Q

to 1 x 10 at the metallic boundary. Now the observed internal

20
heat flux is very high , but it is apparent that even con-

ductivities of this magnitude are insufficient to maintain

the measured flux unless we assume a much larger central

14 15
temperature ' . In a situation such as this, the system

is unstable against convection and the planet would rapidly

cool. It would seem to follow that all but a small core of

Jupiter must be convective. The size of this convective

region is an open question.
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Appendix A: Validity of the Born Approximation

An elementary criterion for the validity of the Born
2

approximation is that

o 2 *2 fe
2e < / _h y

Here, the left-hand side is roughly the distance from the ion

within which the interaction energy exceeds the Fermi energy.

The right-hand side is of the order of the electron wavelength.

It follows that

2 227 P 2
£„ > ̂  ; = AZ Rydbergs
i} f £.

me

whence r < — .
S '**' «

An alternative criterion is

ATT a
2

where 4na is the "geometric" cross section. For a single ion

2

where

2TTkI "O " h
r

CO

V(k) = Y- J sinkr V(r) rdr.
o

We calculate OR approximately using Thomas-Fermi screening,

i.e.

\ T t \ trfG CJ o •*"

"\^/ ~ z ®

-1A-
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so
2 2

4rr 7 f» ATT 7 <^
V(k) = ^pj = 2

 4nZe -
k +q x +0.166 r \<-"r.>S S r

where

kx = ̂  •
Thus,

9 1
xdx

a = _1 _ /4nZ \2. 1 p1

0 . 2 V a / /01 N2 J2^ o 2) o

But,

Born . 2 a / /01 N2 , 2,n -..o (2^) o (x +0.166 r )r r S

a - — = 0.64 r^a— q soM

and thus it follows that

2 2
aB 0.27 r ZBorn s
. 2 - (1+0.166 r ) '4ira v . sy

Finally,

Born ^ ^ - i . - i . I / , , - \IT- « 1 implies r < — (as before).. z s ~ Z4ira

However,the Born cross section per ion in the condensed

state is clearly different from that of a single isolated ion.

We can calculate the "apparent" cross section, per ion, in

the liquid by using the identity

naavFT = 1

where T is the "collision time" for an electron and n is the

ion number density.

m
Since P 2

n e T
el
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we have, from Eq. (5)

32 1
aa = ̂-f- I yV(y) S(y)dy

-cm) "i/ rs \
. 7 _KlT92 ) a

2
21.7 JV1.92 J ao

whence

ga n , „ rP(ufi-cm)n , „ rpufl-cm n
- °-1 ZL 21.7 J

where P is calculated from the first Born approximation.

(Note that this formula is valid for any simple liquid metal.)

For hydrogen at r = 1.6, T = TL.,

a
- r- ̂  0.06)

4na

and for helium at r = 1.2, T =
S

a
— ̂ ~ 0-25-
4rra

This suggests (but does not prove) that the Born approxi-

mation may be much better satisfied in the condensed state

than for a single ion. Thus, our criterion r < •=• may be too
S ^̂  £j

stringent. It is clear and expected, however, that the Born

approximation is increasingly well satisfied as r becomes
S

smaller.



Appendix B: The Melting Criterion

A commonly used criterion is Lindemann's rule. This can

21be written as

h(n + 1)
Y = Y - — - f- (BD

, . Mn. CD. .R
kX ion kX o

where y is the mean square amplitude of the ions just below

the melting point and is found, almost universally, to be about

1/16. M is the ion mass, R the interatomic spacing, CD,

a phonon frequency of wavevector k and polarization X and

n, .. is the Bose-Einstein occupation factor.

22For the high-density systems considered, Abrikosov

has shown that it is important to distinguish between the

longitudinal and transverse modes, since the former are primarily

determined by the bulk compressibility of the electron gas

whilst the latter are primarily determined by the Coulomb

forces between ions.

We make a Debye approximation but allow for the longi-

tudinal and transverse "Debye" temperatures to be different.

23Using the method outlined by Trubitsyn we obtain (in K)

2500 Z1/6 r22.1 3.66 7.17 Z2/3

0 -

s

-17-
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(the correlation energy of the electron gas is small and can

be ignored). Eq. (Bl) can then be written

VT

MS,
i,

MS t ' o e - 1
0.47 (B2)

where S , S are the appropriate sound velocities. We anti-* t

cipate TL. < 9 , 9 and so approximate 9 /T, 9 /T by <» in the

integrals. It is easy to show that this is valid provided

2
| e'9/T « 2L- f or 9 = 9^ and 9fc ,

which is satisfied reasonably well for the cases studied.

Eq. (B2) can be written in numerical form, for low temperatures,

as

0.22 r 2 n 5 _ T N 2 -I
L + ^Tvfl J

L J Xy ' J3.66 7.17 Z \ 2
rs

2 2
0.13 r, , 2n / T. 0.13 r, , 2n / T \ -i n ._

A*Z7/6r* "- "̂ e; ^ J -

and is solved to obtain TL. (note that for r « 1, only the

transverse modes are important in determining TL,) . The results,

shown in Fig. 9, give melting temperatures which differ by as

much as a factor of two from those in Fig. 3. Similar results

have been obtained by Pollock and Hansen. The problem

with Lindemann's rule is that an error in y (= 1/16 in the
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above calculation) propagates alarmingly through to the final

calculation of TL., in the case TL, < 9 , 9 . Typically, a

107o error in y will give a 50% error in T^. Moreover, our

estimates of 0 , 9 are only approximate. (Our formula for
t *

9 is, however, in excellent agreement with the 9_ calculated
jff \J

25
by Neece, Rogers and Hoover. ) Note that at sufficiently

high densities, the zero point motion alone will cause the

lattice to melt. Lindemann's rule gives an estimate of the

value of r* at which T^ - 0. Since density varies as (r*) ,
o i l S

the density at which 1 -» 0 cannot be calculated to better

than an order of magnitude using Lindemann's rule. As

Abrikosov observes, only hydrogen and helium will melt at

absolute zero and sufficiently high densities. This is because

the densities required for heavier elements are such that the

sizes of the nuclei become important.

The pressure at which 1L, - 0 may be incorrect by

almost two orders of magnitude.
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Figure Captions

Fig. 1: Resistivity of fully-ionized liquids at T\ = 0.45.

Fig. 2: Effective ion-ion interaction energy in units of

Fig. 3: Estimated melting temperatures.

Fig. 4: Resistivity of hydrogen.

Fig. 5: Resistivity of helium.

Fig. 6: Resistivity of carbon.

Fig. 7: Conductive opacity of hydrogen at two densities.

A comparison of our results with those of Hubbard and

Lampe (Ref. 2).

Fig. 8: Resistivity of an H-He alloy at r =1.0 and r\ = 0.45.
s

The effect of different hard sphere diameters is shown.

Fig. 9: The melting temperatures of metallic hydrogen and

helium according to Lindemann's rule.
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