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2. Statement of Problem

Given a random variable x on a probability space P, let f(x) be the density

function associated with x. Let

F(x) = f(s)ds (1)
-CO

be the cumulative density function associated with x. The problem is:

Given a random sample of size n,([x, ... , x ncan the density function f(x)

be approximated by a smooth function using this data?

The first work done on this problem is by Benova, Kendall, and Stevetanov [4]

in a function space setting. They define an approximation to f(x) called a Histospline

by a homeomorphism of the t 2 Hilbert Space of all histograms to a subspace of a

Hilbert Space of smooth functions. In a recent paper by I.J. Schoenberg [14] he

reconstructs the Histospline in a simpler setting and forms his splinogram with the

variation-diminish ing property using B-splines.

In this paper another approach is taken to approximate a histogram.
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3. Splines

A spline is a mechanical device used by draftsmen to draw smooth curves.

It consists of a piece of wood or plastic with lead weights placed on the points where

it is desired that the spline pass through. These points are called knots. The

differential equations for a bending beam with weights was solved by Holladay in [1.1].

This was one of the most important papers in the development of spline functions.

The solution was piecewise cubic polynomials which had the first and second derivatives

equal at each knot.

Actuarians have been using spline functions since the 1930's for smoothing life

expectancy tables (see Greville [9] for a survey of the early work). Also, in the ship

building industry they have been using these in moving weights around on beams (called

lofting) to get the hull of a ship to match the design (see Berger et, al. [2]). The work

that is the basis for most mathematical investigations of splines is I.J. Schoenberg's

work [13]. For B'-splines Greville [10] is the best reference.

A spline of degree r with m knots

xl x 2 5 ... xm

is a function s(x)

(1) s(x): R-R, where [real numbers =

(2) s(x)(x ,  
= P rj a polynomial of degree r, j 1= , 2, ... , m

3 3+1

(3) s(x) ECr = (f e Rf(r -l ) is continuous].

Note that a spline of degree zero is a step function and a spline of degree one is a

polygon. The advantage of using splines rather than polynomials to fit n data points
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is a polynomial of degree n-I or less is required while a spline of degree r,with r

fixed,can be used and r <<n. A very simple type of spline is the truncated

power function;

m if x > Om

0 , if x s 0

Let Sr (x, ... , xm) be the set of all splines of degree r with m knotes.An important
r m

theorem in the theory of splines is

s(x) S r(X , ... , x m) 3 P (x) (and) c. such that

m
s(x) = P (X)+ E c.(x.- x )r , where P (x) is a polynomial of degree r.

j=1

See Greville [9]. But this form gives rise to ill-conditioned matrices when one actually

solves for the c. and P (x) (see Schumaker[15]). We shall use the B-splines of Curry
] r

and Schoenberg [6]. For equally spaced knots of odd degree r = 2k-i, where k is

a natural number, they are given by

k 2kx= (k (j -x) (3)
j= -k

using the form of Rosen [12]. For k = 2 i.e. for cubic B-splines the graph of pr(x) is

B r(x)

2/3

-2 -1. 0 i 2 x
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For this paper, we shall have k = 2. The function Br(x) is symmetric about x = 0,

bell-shaped and non-negative on the interval [-k, k]. It is identically zero off its support

[-k,k]. The properties of Br(x) are

(a) r(x) > 0 , O< x<k , (4)

(b) ,r(x)= Br(-x) , (5)

(c) r(0) > Br(X) for x 0 , (6)

k-1 m

(d) F fr(i) = P r(i)= j (x)dx = 1 (7)
i= -Cr i=l -k -

It is obvious that these properties make the B-spline a natural candidate for a basis

for a probability density function f(x) such that

(a) f(x) , (8)

(b) f(x) dx = 1 (9)
--CO

What is desired is a function fa(x) that satisfies (8) and (9) and is a good

approximation to f(x). Let fa(x) be this approximating function

m
f (x) = Z a. p.(x)
a J- 3

j=1

where the cp. are B-splines.
3
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4. Algorithm for Histogram

The algorithm for the histogram goes as follows. The "n" observations are

taken from a probability distribution and ordered such that

x x . . . X X . (10)
1 2 n-1 n

Note that if the sample is taken from a continuous distribution then restricted inequality

may be placed between the data points. The next step is to determine where the knots

are to be placed. In this paper they are placed at the integers between the data points

and the first integer greater than xn and the first integer less than x 1 . Number these

knots as follows

x(1) <x(2) . . <x(m) (11)

Next construct the histogram for the n observations Ix. ] on the points
1 i=l

x. = [x(i)+ x(i+1)]/2 . (i = 1, 2, ... , m-1)

x0 =0 1 , =x +1
0 1 m m-i
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5. Linear Programming

There is nothing novel about using linear programmng for smoothing data.

A method of finding the best line to fit data was used as early as 1820 by J.B. Fourier [8].

The simplex method of linear programming was introducedby G. Dentzig in the 40's

[7]. Perhaps the first structuring of a similar problem for linear programming was

by A. Charnes, W.W. Cooper et. al. [5]. The first use oflinear programming for

fitting data was by H.M. Wagner [17]. Much work has beeur done recently by Barrodale

et. al. [1] in using linear programming for fitting data. For unconstrained approximation

function this is the most efficient algorithm devised. The Unme:ar programming

formulation of this paper is after J.B. Rosen [12]. The mai- general reference for

linear programming in this paper is the book of A. SpiveyandR. M. Thrall [16].

With the m points

O m

obtained from the Histogram Algorithm as input make the following definitions:

T
Y = (Y' "" Ym )

and

p(x) = Br(x - x(j)), (j = 1, 2, ... , m) . (14)

Let

T
a = (al , ... , a )

Im
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and

p (x)= (cP1(x) , e 2 (x), .. , epmx), 0 ,]

then the function that approximates these m data points is

T m
fa(x) = a cp(x)= ap (x)(15)

i=1

It is desired to have f (x) approximate the data points in the tO and t1 norm where:

la(x) - y = max Ifa(xi yI (16)
i=1, 2,..., m

m

fa(x) - y l1  Ifa(xi)-Yil . (17)
i=1
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6. & Norm
CO

Now to formulate the Z norm as a linear programming problem let yeR

and (17) is equivalent to

Min(yI-ysfa(xi) - yiy, i= 1, 2, ... , m (18)

a, y

If y is an optimal solution to (18) then

= 1fa(x) -y11

otherwise a smaller value could be found.

Now write (18) as

m
E a C j(x,)- Yi -y
j= 1

(i= 1, 2, ..., m),

m
-, aj.cp(xi)+ y. y  -
j= 1

or
m
E a .cj(xi) + y i

j=1

(i= 1, 2, ..., m). (19)

m

-E aj Pj(x ) + y -Yi

j=1

Now (18) can be formulated as a linear programming problem as

Min y

(19) holds . (20)
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To put (20) in a matrix form make the follow definations

pl(x I ) • ~CP(xm)

F=

epm(xl) . . ~pm(xm)

and F is a m x m matrix.

Note that at this point we could solve the system of equations

Fa = y (21)

to obtain the coefficients (a.Im but this would give no assurance that equations (8)
1 i=1

or (9) are satisfied by f (x). Let

L2a =D ( f(x)l 2 x) 2d/2 ) (22)

It is well known that

2

[x(1), x(m)]

is a Hilbert Space and thus has a well defined inner product. One could obtain the

2 2
projection of the Histogram , which is in L 2  on the L[) functions

[x(1), x(m)]' [x(1), x(m)]

which integrate to one. This would satisfy equations (9) but not necessarily equation (8).

Continuing with the linear programming formulation let



T T T 2m
CT =(y T , -yT) eR

T T m+1
W =(a , y) eR ,

T m+
b =(0, ... , 0, 1)R

T m
e = (1; ... , 1)eR

Define AT to be

AT ee (23)

FT e

and AT is a (2m) x (m+l) matrix. Requiring [a. 0i (20) is

Min bT W

ATw I C (24)

Since W 0 the coefficients Ia.}I are found to be positive and so
1i=1

m
f (x) = a.c.p (x) > 0 (25)
a ~j= 1

and equation (8) is satisfied. We now proceed to show equation (9) can be satisfied

by adding one constraint. Because
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O

f :(x)dx=1 (j = 3,..., m-2)

f 2(x)dx = qp (x)dx = .95833 (26)

f 1 (x)dx J p m(x)dx= .5
-CO

it follows that

Omn m

f a(X)dx = E ajcp (x)dx = Z a. cp(x)dx=
_m _c j=l1 j= 1 -m

m-2
.5a + .958 3 3a + E a.+ .95833a + .5a

1 2 1 rn-I m
j=3

To satisfy (9) it is required that

fa(x)dx = 1

so set

dTW = 1 (27)

where

T m+1
d (0.5, .95833, 1, ... , 1, .95833, .5, 0) E .

If equation (27) is satisfied then equation (9) is satisfied. The complete t, formulation

of the problem is obtained by adding equation (27) to the constraints of equations (24).

The .95803 and .5 arrise from the fact that the two end basis functions have

support outside of [x(1), x(m)].
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7. t1 Norm

For the t1 norm redefine y

Y

y 1

m

Equation (17) becomes

m
Min E Yil - Yi !fa ( xi) - i y Yi  i= 1, 2, ... , m) . (28)

a, y =l

If y is the optimal solution to (28), then

m
Syi= fa(x ) - y C
i=1

But putting a subscript on the y in equations (19) the t1 formulation of the constraints

for equation (28) becomes

m
E a j.cp(xi)- yi yi

j=1
i = 1, 2, ... , m (29)

m
- aj pj(xi) - Yi -Yi

j=1

The complete L1 formulation as a linear programming problem is
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m
Min yi

i=1 (30)

(29) holds

By defining

bT = (0, ... , 0, e) R2m

and

FT  I

and

T T T
WT= (a , y )

equation (24) is the matrix form of equation (30). Adding constraint (27) gives a t1

formulation to obtain fa(x) that satisfies equation (8) and (9).



8. Remarks

T
The B-spline basis functions used gives a sparce coefficient matrix AT

The central B-splines are used even as the end splines with the support outside the

interval [x(1), x(m)]. For equally spaced knots this presents no problem. For m = 7

the F matrix is

4 1 0 0 0 0 0

1 4 1 0 0 0 0

0 1 4 1 0 0 0
F =1/6

0 0 1 4 1 0 0

0 0 0 1 4 1 0

0000141

0 0 0 0 0 1 4

which corresponds to

CP . P Cco C C (P

P. ~ I---4 -6 -" =

x(l) x(2) x(3) x(4) x(5) x(6) x(7)

This formulation has a diagonally dominant, symmetric matrix F, which has a nice

closed form for F - 1 given by

-1 6
F 6 [a ] is the m x m matrix

m
where

b. bm , if i=j

(-1)1b.b 1  , if ji

a.. , if j<i
Ji

whereb = I , b = 4, b =4b -2 , k 2, 3, ... , m. See [19].
0 .1k k-i k-
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This of course makes solving equation (21) trivial. For more knots there will be a

much larger percentage of zero coefficients as the size of the F matrix increases,

hence, the AT matrix will be sparce for large m. The revised simplex algorithm

leaves the zero entries of the initial trableau zero at each iteration. This is not

true for the simplex algorithm. The algorithm of Barrodale uses the simplex algorithm.

Because of its speed perhaps, it could be adapted to include the area matching constraint

(27) and still be very fast.

The 1 formulation of A is a (2m) x (2m) matrix so no computational speed

can be expected by solving the dual of equations (24) and (27). Where as for the o

norm, A is a (m+l) x (2m) matrix and some computational improvement might occur

from solving the dual system of equations (24) and (27)..
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9. Algorithm for f (x)

x

(1) Choose F(x) = f(s) ds

(2) Generate random numbers Z. in (0, 1), i= 1, 2, ... , n.

(3) For each i find F-1(Z i) 
= x , i= 1, 2, ..., n.

(4) Order the (x. In in increasing order.
1 i=1

m
(5) Choose knots {x(i)]i=

(6) Form a normalized histogram of the data with respect to the knots to

m
obtain tx(i), yi)i=1 •

(7) Use the revised simplex algorithm for an 41 or t, fit to

x(i), yi) v with cubic B-splines as basis elements to obtain fa m and hence f (x).

(8) Compare f(x) and fa(x).

For raw data use steps (4) to (7) in the algorithm.

.
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10. Example(Bliss Histogram [3])

This example was used so as to compare what is obtained by this algorithm

with the Histospline [4 ] and the Splinogram [14]. Let

1, if x e [a,b]

X[a, b] 0 , Otherwise,

then the Histogram H is defined by

24
H=E h.i=11 1 [xi , xi+]

where

hI= 1/578 h = 104/578

h2 = 5/578 h9 = 66/578

h 3 = 20/578 h 10= 44/578

h 4 = 38/578 hll = 18/578

h 5 = 50/578 h12 = 10/578

h6 = 110/578 h13 = 1/578

h7 = 110/578 h14 = 1/578

and

(x.=i+ 9. 15
1 i=1

This data is normally distributed. The raw data was not given so the algorithm had to

start from the histogram. f (x) for this example is unimodal.a
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For the t, approximation to the data points, y = .04370 the fai] I obtained were

a(1)= .00144 a(8)= .1;959

a(2)= .00457 a(9)= . 9@850

a(3) = .03130 a(10) = .08739

a(4)= .07663 a(11)= .O'

a(5)= .05337 a(12)= .61032

a(6) = .22587 a(13)= -,0

a(7)= .17713 a(14)= .0

The graph of the function is in Figure 1.

For the ,1 approximation to the data point y = .04223

a(1)= .00144 a(8)= .20002

a(2)= .00457 a(9)= .A9334

a(3)= .03130 a(10)= .09 3 3 4

a(4)= .07663 a(11)= .01777

a(5)= .05337 a(12)= .0 2 13 6

a(6) = .22590 a(13) = 0. 0

a(7)= .17702 a(14) = .00 2 5 8
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Figure 1

Bliss Histogram -el norm
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11. Conclusion

The Histospline of [4] can go negative and is not unimodal, where as fa(X)

cannot go negative and was unimodal for the example of the Bliss histogram. The

splinogram of [14] was called to my attention after this algorithm was completed

but not written up. The splinogram for the Bliss histogram appears smoother than

fa(x) in the . or 1 norm, but fa(x) has one more continuous derivative than the

splinogram. Also, f a(x) could by just changing k in the program have as many

continuous derivatives as desired, however there would be a loss of the tridiagonal

structure of F hence, computing the (ai i=1 would take longer. The AT matrix

m
could be modified to where it had the area matching property at each point x(i)}i=1

like the Histospline and still satisfy equation (8). So this formulation is more versitle

than either of the previous ones. Also, it is not necessary to require a histogram

in the algorithm and alternate methods that by pass this requirement could be substituted.

The algorithm should be tested for recovering several probability density

functions.
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12. Appendix A. Test of Normal Distribution

To investigate the algorithm for the normal distribution, normal random samples

of size 300, 600, and 900 were generated using the algorithm of Moshman [18]. The

algorithm of this paper is then used to obtain the approximating function for these

sample sizes. The graphs of the approximating functions are compared with the

graph of the normal distribution for sample sizes 300, 600, and 900 on pages 23,

24, and 25, respectively.

A bimodal normal distribution is also tested to see how well the algorithm

distinguishes between the unimodal and bimodal functions. The results for this test

is found on page 26.
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