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AN IMPROVED METHOD FOR DESIGN OF EXPANSION-CHAMBER
MUFFLERS WITH APPLICATION TO
AN OPERATIONAL HELICOPTER

By Tony L. Parrott
Langley Research Center

SUMMARY

An improved method for the design of expansion-chamber mufflers is described and
applied to the task of reducing exhaust noise generated by a helicopter. The method is an
improvement of standard transmission-line theory in that it accounts for the effect of the
mean exhaust-gas flow on the acoustic-transmission properties of a muffler system,
including the termination boundary condition. The method has been computerized, and
the computer program includes an optimization procedure that adjusts muffler component
lengths to achieve a minimum specified desired transmission loss over a specified fre-
quency range. A printout of the program is included together with a user-oriented '
description.

A field test of a muffler designed with the aid of this method was conducted on a
helicopter with a known exhaust-noise problem. When the exhaust noises of the helicopter
with a standard exhaust system and a similar helicopter with a muffler system installed
were compared for hover flight conditions, the muffler system was found to reduce the
exhaust noise by approximately 11 dB(A). No significant degradation in the engine per-
formance was observed. ) ‘

INTRODUCTION

There is an increasing awareness of noise pollution on the part of the general public,
especiaily noise caused by aircraft. In particular, users of certain types of general avia-
tion aircraft may be compelled to restrict operations and/or modify their aircraft to com~
ply with existing or forthcoming noise legislation that will specify upper limits on external
noise levels (ref. 1). In addition, measurements have indicated that internal noise levels
of 11 light, twin-engine, fixed-wing aircraft exceed the currently accepted damage-risk
criterion for hearing loss. Analysis of this noise indicated that engine-exhaust noise was
the primary cause of both unacceptably high cabin-noise levels and radiated far-field

noise (ref. 2).



The commonly accepted solution for excessive reciprocating-engine exhaust noise
is the installation of an appropriate reactive-muffler system. Reactive-muffler design
efforts in the past have relied upon acoustic-transmission-line theory as a design guide.
However, these efforts have been characterized, for the most part, by trial-and-error
techniques. Since trial-and-error methods tend to be expensive and inflexible, there is
a need to provide a more rational basis for muffler design.

The aircraft-muffler designer must achieve a number of goals. The primary goal
is to achieve a specified exhaust-noise reduction over a selected frequency range. Other
goals include the minimization of power loss due to back pressure and the muffler volume.
Factors of importance are the total weight, weight distribution, geometrical layout of the
muffler and exhaust system, and the service life. Thus, to produce a viable muffler sys-
tem requires not only a knowledge of applicable acoustic theory but also a knowledge of
various operational constraints and their interrelationships.

This paper describes an improved analytical design method for expansion-chamber
mufflers and indicates how the method is applied. The method, which was developed by
Alfredson (ref. 3), includes the effect of mean exhaust-gas flow. In the present paper the
theory has been formulated as an extension of the standard transmission-line theory whose
primary shortcoming has been thought to be the failure to account for mean-flow effects

“(refs. 3, 4, 5, and 6).

The second objective of this paper is to describe a computer program that was
originally developed by Alfredson. A discussion is also given of the application of the
computer program to the problem of designing an expansion-chamber muffler for an air-
craft engine. The paper concludes by presenting the results of this application to a
helicopter.

SYMBOLS

Values are given both in SI Units and in U.S. Customary Units. Measurements and
calculations were made in U.S. Customary Units.

Ak,iBk, i
C. .D elements of impedance-parameter matrix
Cy 5Dy
337K,
‘Dy,Dy denominators of elements of impedance-parameter matrix
c average sound speed in exhaust gas
f; ith harmonic of engine firing frequency



N1:Ng

N3,Ng

enthalpy

acoustic intensity

imaginary unit, \I-_l

wave number, 27/A

length of expansion-chamber component
average Mach number

final component of expansion-chamber muffler system
numerators of elements of impedance-parameter matrix

average total or fluctuating pressure over cross section
fluctuating pressure at station i

reflection factor

cost function (eé. (29))

cross-sectional area at station i

entropy

temperature

time

average total velocity over duct cross section
fluctuating ve_locity at station i

transformed variable corresponding to component lengths



Z specific acoustic impedance

Y ratio of specific heats

0 irreversible pressure loss

A wavelength

In : series multiplication

p mass density of exhaust medium

z series summation

¢ | phase angle between incident and reflected wave
w circular frequency

Subscripts:

b branch pipe

f presence of mean flow

i station designation, matrix-element index

k,j identification of impedance-parameter element
o] stagnation value

t termination value

Superscripts:

(_+) wave propagating in forward direction

(-) wave propagating in negative direction



Notation:

amplitude of fluctuating quantity

- normalization by pc

Abbreviations:

dB sound pressure level in decibels (ref. 0.0002 dyne/cm?2)
_ dB(A) A-weighted sound pressure level (ref. 0.0002 dyne/cm?2)

MAP manifold pressure

PWL acoustic power level

TL acoustic transmission loss
MUFFLER DESIGN METHOD

Review of Transmission-Line Theory

An improved muffler design method has been developed which is an extension of
transmission-line theory to include the effects of flow, termination impedance, extended
inlet and outlet pipes, and yielding walls. The details underlying the development of this
method are given in references 3, 4, and 5. In this section the method is described
through the use of the concepts of transmission-line theory. Then, in the following sec-
tion a description of the computer program and its use will be given. The reader con-
cerned only with the application of the computer program may proceed to the section
"Computer Program' without loss of continuity. ‘

The application of the electrical transmission-line analogy to acoustic filter design
was successfully accomplished in this country by Stewart in 1923 (as discussed in ref. 7).
The applicability of this design tool to mufflers for reciprocating engines used in aircraft
was investigated experimentally in the early fifties by Davis, Stokes, Moore, and Stevens
(ref. 6). Original.credit for the development of the transfer-matrix approach to four-
terminal (or two-port) physical systems is due to Strecker and Feldtkeller (ref. 8). The’
widespread use of the transfer-matrix approach in mechanical, fluid, and thermal sys-
tems is largely due to the contributions of Pipes (ref. 9). In Japan this approach was
extended to engine-exhaust muffler systems by Igarashi, Toyama, Miwa, and Arai
(refs. 10, 11, and 12). Although transmission-line theory is well developed, it is of



interest to review briefly the fundamental ideas and assumptions of this theory to place .
in better perspective the improved design method discussed in this paper.

The key assumptions underlying transmission-line theory in its simplest applica-
tion to muffler design are

(1) Fluctuating pressures are small relative to the average pressure in the system.
(2) The duct and muffler walls are rigid.
(3) Only plane waves are propagated (i.e., p(i) = d:pcV(i)).

(4) The temperature of the medium is constant with time and spatially uniform
throughout the muffler.

(5) The average velocity of the medium is zero.
(6) Viscosity effects at the duct and muffler walls are negligible.

(7) Fluctuating quantities are decomposable into sinusoidal components of the form
fJ ej wt.

Operating principle.- Reactive mufflers, of which expansion chambers are a special
case, function by causing reflected waves to be propagated back toward the acoustic
source. In the case of expansion chambers, these reflected waves are generated by
abrupt changes of cross-sectional area. The objective in design of expansion-chamber
mufflers is to arrange combinations of duct area changes in the most propitious way for
reflecting acoustic energy back into the source over the desired frequency range. The
simplest practical expansion-chamber muffler is shown in figure 1. It consists of two
cross-sectional-area changes separated by a length L. The amount of acoustic energy
associated with the reflected pressure wave pl(‘) is a function of the cross-sectional
area ratio S9 /Sl, whereas the length L determines the acoustic frequency at which the
maximum reflection occurs,

Muffler performance.- The ratio of fluctuating pressure to fluctuating volume veloc-
ity of a forward-going plane wave averaged over a duct cross section through which the
wave is propagating is a useful quantity for describing the noise-reduction performance
of a reactive-muffler system and is called the analogous characteristic acoustic impedance
of the duct, or simply the characteristic impedance when the meaning is clear from the
context. At an isolated discontinuity in duct area, the change in characteristic impedance
of the duct is related to the amount of acoustic energy reflected at the discontinuity. The
total impedarnce change associated with a series of discontinuities may be calculated from
an appropriate set of boundary conditions relating fluctuating quantities across the dis-
continuities, or it may be determined from laboratory tests. When all the impedance
changes in a muffler system are known, the input impedance at the muffler inlet may be
calculated by starting at the tailpipe and working systematically backward to the inlet. If

6



the source impedance is known, the total radiated power of the system may be determined
and compared with the radiated power before the muffler system is attached. This com-
parison is accomplished by taking the ratio of the radiated power before the muffler is
attached to that after the muffler is attached. This ratio is called the insertion loss of
the muffler system, in analogy with the electrical filter theory. The insertion loss, as a
function of frequency, completely characterizes a muffler system insofar as its noise-
reducing ability is concerned.

Source-impedance effects.- If the amplitude of the incident wave arriving at the
muffler inlet from the source is equal to the amplitude of the incident wave when the
muffler system is absent, then the source is said to be nonreflecting and the effective
source impedance is equal to the duct impedance. For reciprocating-engine exhaust sys-
tems in general, this condition seems unlikely to hold for all frequencies of interest; how-
ever, experimental and/or analytical studies to date have not provided reliable information

on source impedance. In its absence, the muffler-system designer is forced to rely on
transmission loss as a measure of muffler-system performance.

Transmission loss.- Transmission loss is the ratio of the incident acoustic power
to the transmitted power through the muffler. It is a single number (for each frequency
of interest) and does not permit the prediction of acoustic performance of a complete
engine and exhaust muffler system. Furthermore, transmission loss is not directly mea-
surable and is influenced by the termination boundary condition. Its advantages are that
it is conceptually simple and does provide a figure of merit when comparing muffler sys-
tems with identical terminations, hence the traditional propensity for its use. Also, to
the extent that the source can be considered nonreflecting, the transmission loss is an
indication of the insertion loss to be expected.

Matrix analysis.- The algebraic complexities involved in the analysis of muffler

performance make the use of matrix methods attractive. These methods have been taken
over from transmission-line theory and can be easily adapted to high-speed computers.
Also, the concept of the "impedance-parameter matrix' provides a better understanding
of system component interaction. The impedance-parameter matrix relates the total
fluctuating pressure and velocity at one station in a muffler system to the total fluctuating
pressure and velocity at a different station in the system. For example, the inlet and out-
let total fluctuating pressures and velocities for the expansion chamber of figure 1 (i.e.,
the sum of the respective forward- and backward-going wave pressures) can be related

by a matrix equation of the form !

Pe| |Ak,j Bk,j||Pj
= (1)



The elements of the square matrix can be related to the impedances of the system at the
stations where the fluctuating pressures and velocities are observed. Such a matrix is
built up from similar matrices characterizing the behavior of the muffler elements. For

instance, continuity of pressure and volume velocity for the simple area discontinuity
shown in figure 2(a) gives ’

Sl ) (2)

and for a section of constant-diameter pipe of length L, the appropriate relationship is

Py cos kL jpc sin KL{|py

=1 ' (3)
\'Z} % sin kL cos kL [|Vq '

For a branch component (see fig. 2(b)) that can be treated as a lumped branch impedance
Zy,, the fluctuating pressures and velocities are related by '

P3 1 0-1 plj
= Li H (4)|
pc S S '
va| |=— S—l Vi
L J L% $L

If there are N sections in series, then the fluctuating pressure and velocity at the inlet
section N can be related to the pressure and velocity at the outlet section 1 by an

impedance-parameter matrix which is equal to the product of all the component matrices
as follows:

10 BNl g A Biag
. =1 : (5)
Cn,1 Pnjal 210G Diag

Transmission-loss calculation.- For transmission-loss calculations it is convenient
to express the fluctuating pressure and velocities throughout the system in terms of the
fluctuating pressure amplitude associated with the incident wave at the tailpipe termina-




(+)-

tion Py
exit

By using the boundary condition for the radiation impedance at the tailpipe

Py = P2V ' (6)

the fluctuating préssure and velocity at the exit may be expressed as

Py Zt

Zi +1

V]. 1/pc

The radiation impedance Et may be calculated (ref. 13) or measured; however, assum-
ing Zy is known, equation (7), together with the impedance-parameter matrix given by
equation (5), implies a knowledge of the fluctuating pressure and velocity at the muffler

system inlet from which the pressure associated with the incident wave at the muffler
inlet can be shown to be simply

. (+) _1 : ‘ '
== + pcV : 8
Pn' " =2 N, ’ (8)
: ) Y \ \
The transmission loss is given in terms of the areas and incident-wave pressures at the
muffler system inlet and termination as
+)

S oy (+) 2 >~

PN =20 log. 2N, 101 9
5 = 0210 — + Oglo's—l‘ (9)

Sl[fﬁ‘”} P1

TL = 10 log;,

Since pN(+) is proportional to {)1(+)’ the transmission loss is independent of p1(+)
and any convenient numerical value, say unity, may be assumed for f)l(+) for computa-
tional purposes. '

Inadequacies of transmission-line theory.- The laboratory data of reference 6 indi-
cated good agreement between measured and calculated transmission losses for expansion
chambers applicable to aircraft engines. These data were taken at room temperature,
with no mean flow, and with a loudspeaker capable of producing a pure-tone sound pres-
sure level of approximately 140 dB in the muffler inlets. Also, nonreflecting terminations

9



were used for the muffler outlets. When similar mufflers were tested on an aircraft
engine, the exhaust-noise reduction fell short of that predicted from the transmission-
loss calculations (ref. 6). The authors of reference 6 believed that the discrepancies
were related to mean-flow effects and the violation of the small-amplitude assumptibn of
linear acoustics. The recent work reported in references 3, 4, 5, and 14 suggested that
for expansion-chamber mufflers, the nonlinear effect due to large acoustic pressures was
negligible for design purposes. Further investigations reported in references 3, 4, and 5
suggested that the effect of mean gas flow on the termination boundary condition and other
impedance discontinuities was the most significant factor neglected in the standard
transmission-line theory. Consequently, mean-flow effects were included in the analysis
of expansion-chamber performance. The results of this analysis will be summarized in
the following section. '

Effect of Mean Gas Flow on Muffler Performance

The improved muffler design method described herein involves the effect of the
mean flow on the impedance changes at duct-area and branch discontinuities. Also, the
effect on the tailpipe termination impedance is included. The effect of flow on the inter-
nal impedance changes is a étraightforward extension of transmission-line theory using
the linearized equations for energy, mass, and in some cases momentum conservation
across area discontinuities. The single most significant effect of the flow is associated
with the radiation characteristics of the tailpipe.

Tailpipe radiation.- In a duct with a termination characterized by the unflanged-pipe
reflection factor R, the relation between the incident-wave pressure amplitude p *) and
the reflected-wave pressure amplitude ﬁ(') is given by

ﬁ(') = Rej ¢ﬁ(+) ‘ (10)

where ¢ is the phase angle between the incident and reflected wave. Thus the net
intensity in the pipe is given by

2
1=[i2(;)c]—(1-32) " : (11)

where f)(+) is the pressure amplitude of the forward-going wave. For a mean fiow with
Mach number M, the acoustic intensity becomes '

2
== = - - .

10



In this equation (see ref. 3) the reflection factor becomes a function of Mach number. An
increase in acoustic radiation occurs as a result of the mean flow. To appreciate this
effect, consider the ratio of I; to I expressed in decibels:

It (1+ M2 - (1 - M) R2(M)

Increase in PWL = 10 log T° 10 log (13)
1 - R2(0)

where R(M) is now a reflection factor which depends upon the Mach number of the mean
flow. The measurements of reference 12 suggest a 3- to 5-percent increase in the
reflection factor and no change in phase angle for Mach number and wave-number ranges
typical of exhaust systems. Thus R(M) in the numerator of equation (13) can be
replaced\by the reflection factor for zero mean flow R(0) with a maximum error of
approximately 2 dB. Thus, to a good approximation, the increase in the radiated acoustic
power level relative to that for zero mean flow is given by ’

gu+MF-(1-MﬂR%m

Increase in PWL ~ 10 lo (14)

1 - R2(0)

This equation is plotted in figure 3 with the Mach number as a parameter. From this
plot it is seen that the radiated power increases significantly relative to that for zero
mean flow when the reflection factor approaches 1 and as the mean-flow Mach number
increases. Typical exhaust-pipe diameters, exhaust-gas sound speeds, and exhaust-
noise frequencies are such that the reflection factor is greaterbthan about 0.975. For a
typical exhaust-flow Mach number of 0.1, the plot of figure 3 implies an increase of 8 dB
or more in the radiated acoustic power over that for zero mean flow.

Area contraction.- References 3 and 5 indicated that a one-dimensional description
of wave propagation on either side of a duct discontinuity would be adequate for muffler
design provided that the mean-flow effect was included. For flow area contractions the
isentropic energy-balance equation was linearized to obtain one equation relating fluctu-
ating pressure and velocity on either side of the discontinuity. This resulting equation is
given as

Py + pcM2V2 =pp+ pchVl (15)

where the subscripts 1 and 2 denote the downstream and upstream stations, respec-
tively, as indicated in the schematic of figure 4(a). From mass conservation across the
area discontinuity a second linearized equation is found to be

11



Szsz2 + pcSsz = SlMlpl + pcS, Vv, ' (16)

If these equations— are formulated in a matrix format and solved for the upstream fluctu-
ating pressure and velocity, there results

I o T T
S
121}
So/ |
S
251
1-M,%=
,1<Sz>
- (17)
\' 0 S oM \'
2 Sz 2 1
2/51
I‘Ml——
S

Thus, the effect of the mean flow is to introduce a new element into the impedance-
parameter matrix and a correction for the element which relates the velocities. Clearly,
when the Mach number becomes zero, the matrix reduces to the form of that in equa-

" tion (2).

Area expansion.- Experimental evidence discussed in reference 3 suggests that the
energy relation connecting fluid state properties across a sudden flow area expansion is
nonisentropic. However, an adiabatic condition can be assumed to hold. Hence the stag-
nation enthalpy would be conserved across such a discontinuity; that is, '

dh0=Tds+@+VdV=o (18)
P :
The entropy term T ds has been shown in reference 15 to be given by

Tds ~—30 (19)

p(y - 1)
where 6 can be regarded as an irreversible fluctuating pressure loss due to the non-

isentropic nature of the process. Also, the isentropic relation between the fluctuating
density and fluctuating pressure no longer holds, but instead is replaced by

12



p+9o
c2

p= (20)

By using the relation (19), equation (18) can be integrated across the discontinuity from
the downstream to the upstream side, as indicated in the schematic of figure 4(b). There
results after linearization

Py + PCMyVy = py + pcM,V, - y—f—l (21)

From mass conservation and the use of equation (20) to eliminate the fluctuating density,
SZMZPZ + PCSZV2 = SlMlpl + PCSIVI + SIM16 . (22)

Because of the introduction of the unknown quantity 6, a third equation must be derived.
This can be obtained from momentum conservation across the discontinuity, which gives
after linearizing and the use of equation (20)

2 2 af 2

) (23)
where the momentum source term due to the discontinuity has been taken to be
pz(S1 - Sz>, which is based on experimental evidence indicated in reference 3. When this

0

equation is solved for 6 and substituted into equations (21) and (22), the upstream fluc-
tuating pressure and velocity can again be related to the corresponding downstream
quantities by an impedance-parameter matrix whose elements are given by -

2

1 S
L+fl=1(r-1) -2y — +y|My
Sy Sy

.= 4
Ak,] By (24a)

2

pcda(t - M, + (- 1) §—1—2-2§—1-+1M3
So 1+ So ° Sy 1
Br,j = By _ . (24b)

13



(24¢)

D, . = ‘ - (24q)

where

. ; )
| AVEENS s,\/s

Dy=14+{(y-D1+{=2) | +2HZL - 2y)pny? + | - D) (22 - 1), (24e)
Sg/ | S2\82 | Sa/ \S2

Again, these equations are seen to reduce to a form equivalent to equation (2) when the
Mach number approaches zero.

Area contraction with a branch.- Practical expansion-chamber mufflers usually
have extended iulet and outlet pipes, as shown in the schematic of figures 4(c) and (d).
Such geometrical arrangements perform acoustically as a side branch with impedance
Zy,. The side branch is indicated as region@ in figures 4(c) and (d). The value of Z,

which is specified at the junction of regions @, @, and @, is controlled by the rigidity
of the end wall and by the branch length. The branch impedance Z}, is related to the
reflection factor Ry, and phase angle ¢y, at the branch entrance by the equation

i%p
— 1 + Rye
7 = b

b= ——
oy,
1- Rbe

(25)

If the reflection factor and phase angle at the end cap are denoted by R and ¢, respec-
tively, then R =R for no energy dissipation between the entrance and end cap. -Also,
bp =9 - 2kL, where L is the branch length and the coordinate direction is that shown
in figures 4(c) and (d). By the appropriate selection of the various branch lengths in a
muffler system, the transmission-loss characteristic can be tailored to specifications
within certain limits. For a branch impedance associated with a flow area contraction
shown schematically in figure 4(c), the impedance-parameter matrix for the simple area
contraction can be generalized to include the branch impedance. The result is

14



2 \2
S; 8 S 8 S
1- L2120 (22 m? ek f- (22 My e 2 22222
Z, 5353 S3 53 Zy, 53 83
P3 2 2 P1
S
1-(=2) M2 1- (21 m;2
S3 3
= (26)
S s s S
1721 L (2 22y 4 2L vy 2
pc B3z, 53 \z, S3 S3
v v
3 5 5 1
s s
1-(21) my2 1-{21) pry2
S3 S3

Note that if Z;, approaches infinity (i.e., the end wall becomes rigid and the branch
length becomes zero), then the impedance-parameter matrix reduces to that of equa-
tion (17). Furthermore, if the mean-flow Mach number approaches zero, then the result
becomes equivalent to that of equation (4).

Area expansion with a branch.- If the muffler inlet pipe is extended, then a branch
impedance becomes associated with an area expansion. When this impedance is included
in the boundary condition for an area expansion, the elements for the impedance-

. parameter matrix relating upstream and downstream fluctuating pressures and velocities

become

S; S S
2 2 3 1 4
— 4IMm - DM —
S5 53 17+ (- DMy +S3M1
A .= ‘ 27a
k,j Dy + Dy ' (27a)

1
N + —
1 Z

s
pc S1 2[: 2
N - — s z—[2M3 '()’-1)M]
Z, S3 53 1

B, .= 27b
k,] Dj + Dy (270)

S

N3 - 1 Sz (1 + ')/M12>
chb 3

C,..= 27¢c

k,] Dji + Dy (27c)
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1 Sp

D, .=
k] D; + Dy

(27d)

where Nj, No, N3, and Ny are the respective numerators of equations (24a, b, c,
and d), and D;j is given by equation (24e). The quantity Dy is associated with the
branch impedance —Z-b and is given by

; 2
.1 SelfS S
Zp S3\S3 S3

Again, when Z;, becomes large, these equations are seen to reduce to equations (24),

as expected. It was found by the authors of references 4, 5, and 6 that yielding walls
could significantly affect muffler performance; consequently, in references 4 and 5 the
impedance of the end caps was altered in a trial-and-error procedure to force the mathe-
matical models for the branched elements to conform with measurements. For a flow
area contraction the reflection factor and phase angle of the branch impedance at the end
cap were taken as 0.8 and 0.01 radian, respectively, whereas for flow area expansion the
reflection factor was taken to be 1.0 and the phase angle as 0.01 radian. The lower
reflection factor for area contraction was used because the isentropic flow condition
across that type of discontinuity does not allow the occurrence of acoustic energy dissipa-
tion, which in fact is known to exist but to a much lesser extent than for an expansion type
of discontinuity. This completes the formulations of the impedance-parameter matrix
for the various discontinuities encountered in a muffler system consisting of a series of
cascaded expansion chambers. '

Finite-length section.- To relate the fluctuating pressure and velocity at the
upstream side of a discontinuity to the fluctuating pressure and velocity at the down-
stream side of the next discontinuity joined by a constant-diameter duct (see fig. 5) car-

rying a mean flow with Mach number Mg, equation (3) is modified as follows:

1- M32 1- M32
- | (28)
Vy J gin[—EE ) cos[—KL__ vy
pc 2 2
1 - M3 1- M3

16



Clearly, for the typical mean-flow Mach numbers of 0.1 encountered in exhaust systems,
this correction is relatively insignificant.

Model comparisons.- Figure 6 shows a comparison of transmission loss calculated
by the theoretical model described in this paper with the standard transmission-line
theory discussed in reference 6. The muffler configuration chosen for illustrative pur-
poses is shown in the sketch in the figure along with relevant geometrical data. Note that
there is a significant reduction of transmission loss in-the frequency range 200 to 350 Hz
due to both the mean-flow effects and the yielding end cap (reflection factor 0.8 for flow -
area contraction). On the other hand there is an increase in transmission loss above
350 Hz over that for no mean flow.

COMPUTER PROGRAM

A computer program called EXRSIL has been written that incorporates the effects
of the mean flow as well as estimated reflection factors for the muffler end walls associ-
ated with flow area contractions. This program will enable a user to design expansion-

chamber mufflers of up to four stages. To increase the usefulness of the program as a
' design tool, an optimization subroutine has been included that will adjust all muffler com-
ponent lengths to approach a specified minimum transmission-loss characteristic within
imposed component-length constraints. The physical meanings of the inputs are
described in this section and the detailed formats are described in appendix A. Appen-
dix B contains a listing of the program. '

Program Inputs
Input quantities for the computer program consist of the following:
(1) Desired minimum transmission loss at three waveiengths
(2) Acoustic sound speed and wavelength in the exhaust system
(3) Gas-flow Mach number in exhaust tailpipe
(4) Opfimization attempts
(5) Number of expansion chambers
(6) Length constraints and initial lengths for all expansion-chamber components
(7) Cross-sectional areas of expansion chamber, annular region, and tailpipe

Desired transmission loss.- The desired minimum transmission-loss character-
istic in decibels is deduced with the help of narrow-band analysis of far-field exhaust
noise over the relevant operating range of engine load and rotational speed. The engine
should preferably be equipped with an exhaust pipe of the same length as the final com-
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plete muffler system. A representative narrow-band spectrum of exhaust-noise- )
dominated helicoptef noise is shown in figure 7. Prominent engine-bank firing frequen-
cies are labeled in the figure as fy, fg, and so forth. The test conditions for this spec-
trum will be discussed in the section "Application to Helicopter.”" The frequency range
over which the muffler is to be effective and the amount of transmission loss desired at
each frequency are largely a matter of engineering judgment. Since the low-frequency
noise éomponents are less objectionable, it is important to transform the narrow-band
noise levels to A-weighted levels to reduce the required minimum transmission losses at
the lower frequencies. To see how the minimum desired transmission loss is specified,
the bar graph of figure 8 should be studied. This bar graph represents the important
exhaust noise components of the spectrum shown in figure 7.

In figure 8, the shaded bars répresent the abstracted narrow-band levels associated
with the engine firing frequencies shown in the measurement represented in figure 7. The
overall level associated with the exhaust noise was found to be 96 dB. The solid bars
represent the A-weighted levels for which the overall level was found to be 82 dB(A). The
arrows represent the desired levels to which the lowest, intermediate, and highest fre-
quency A-weighted components are to be reduced. These desired exhaust noise levels are
decided upon from a determination of the levels of other dominating noise sources and,
possibly, other considerations such as volume and weight. The computer program con-
structs by linear interpolation the desired transmission-loss characteristic as a function
of logyq A, as shown by the solid line in figure 9. This interpolation is based upon three
pairs of numbers consisting of transmission losses and wavelengths corresponding to the
firing frequencies indicated by the arrows in figure 8. The dashed line in figure 9 is the
computed transmission loss for an optimized muffler which will be discussed in the sec-
tion "Application to Helicopter."

Wavelength and Mach number.- The wavelengths at which the designer specifies a
desired transmission loss must be calculated from the speed of sound in the exhaust gas
estimated from the mean temperature distribution throughout the proposed muffler sys-
tem. Gas-flow Mach number must likewise be measured or estimated for the tailpipe of

the proposed muffler system.

Optimization attempts.- This input specifies the number of different directions of
the gradient vector taken in cost-function space (see section '"Optimization Subroutine')
to achieve a minimum cost function. If a zero value of the cost function is achieved, then
the number of optimization attempts should be increased and/or adjustments to geometric
constraints considered.

Geometrical inputs.- The remainder of the inputs concern the geometry of the muf-
fler system. The volume and shape constraints are specified by the number of expansion
chambers, the muffler stage component lengths, and the cross-sectional areas of the tail-
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pipe, chamber, and annulus. It should be noted that the cross-sectional areas cannot be
varied within a stage or between stages. There are four component lengths per muffler
stage as indicated in figure 10. Constraints on these lengths are specified independently
for each stage together with an initial length for each stage component.

Program Outputs
Program outputs are the following:
(1) Input data listing
(2) Computer-generated desired minimum transmission-loss characteristic
(3) Record of optimization attempts
(4 Optimizéd component lengths
(5) Computed transmission-loss characteristic

Input data listing.- This section of output simply tabulates the minimum, initial, and
maximum values of all component lengths working from the tailpipe to the inlet. Also

given are the cross-sectional areas and tailpipe Mach number.

Desired transmission loss.- The minimum desired transmission-loss character-
istic is listed along with the frequency and wavelength as determined from the mean tem-
perature of the exhaust gas. ‘

Optimization attempts.- The next listing shows a record of the optimization attempts
which consists of the cost functions and the corresponding component lengths at a partic-
ular point in the optimization process. The message NEW POINT indicates the change of
direction of the gradient vector in the cost-function space.

Optimized component lengths.- This listing shows the component lengths for the
final configuration together with the final cost function.

Computed transmission loss.- This section of output lists the computed transmis-
sion loss of the final configuration at the same wavelengths and frequencies as was done
for the desired transmission loss.

Engineering Judgments

Reduction of low-frequency exhaust noise generally deteriorates with decreasing
expansion-chamber length. Thus it is mandatory to establish the maximum muffler length
available if low-frequency noise is a problem. Most practical muffler systems will incor-
porate flow-reversing bends to achieve necessary compactness, as shown in the schematic
of figure 10. The transmission loss of such bends is estimated to be less than 2 dB when
transmitting into a nonreflecting termination over the frequency range of interest in
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reactive-muffler design. Thus, the effect of smooth bends should be relatively unimpor-
tant for design purposes.

The muffler geometry also affects the back pressure at the engine exhaust ports.
Since an increase in mean back pressure has been found to correlate roughly with degra-
dation of multicylinder-engine performance, mean back pressure is conventionally used
as an indicator of possible loss in engine performance. Mean back pressure is minimized
in purely expansion-chamber mufflers by making bends as smooth as poSsible and by
alining inlet and outlet pipes, as shown in figure 10. No attempt is made in this program
to compute magnitude of mean back pressure.

All component-length constraints should be mutually consistent and compatible with
the space requirements. If some component lengths must be held constant, constraints
must still be specified to bracket the initial length so that a significant variation cannot
occur. Maximum lengths of mternal pipes should not be such that their separatlon is less
than 1 pipe diameter and preferably 1 chamber diameter.

Optimization Subroutine

The transmission loss of a muffler system is treated by the optimization subroutine
as a function of 4N variables, where N is the number of muffler stages. By systemati-
cally changing the various component lengths and comparing the resulting transmission
losses with the desired minimum transmission losses at 151 equally spaced values of the
logarithm of the wavelength, the subroutine attempts to minimize a cost function. This
cost function is defined by

151 ‘

2 _
S(LI,LZ,. . L4N Z ‘:TL)d ) - (TL)( ﬂ (29)

where (TL)y(}j) is the desired transmission loss at the wavelength ); and (TL) M)
is the computed transmission loss at the same wavelength for some given configuration.
If (TL)4(n) S (TL)o(r) for a particular wavelength, then that term is omitted.

The cost-function independent variables L; must all have boxlike constraints
imposed on them, that is, '

Lmin < Li < Lpax (30)

min

On the other hand, the optimization procedure must operate with independent variables
that are unconstrained. This condition is fulfilled by defining a new set of variables Xj
by means of the transformation :
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Li ~ Lmin

sin?X; =
Lmax - Lmin

(31)

The details of the process by which the procedure systematically alters the com-
ponent lengths are discussed in reference 3 and will not be given here; however, the
process is basically a modification and extension of the steepest-descent method that
results in an improved rate of convergence. From the user's standpoint, he can regard
the subroutine as a minimization process that operates by following a prescribed direc-
tion vector in the cost-function space until a minimum is achieved; then the direction
vector is changed or updated whereupon a search for a new minimum will begin. This
event is signified in the output listing by the heading NEW POINT. The number of new
points (or optimization attempts) to be taken is set by the user by reading in a value of
the integer variable NO, which is usually taken to be between 5 and 10. It is the nature
of the optimization procedure to find the minimum cost function which is nearest the ini-
tial configuration of component lengths. Since other more significant or preferable min-
imums may exist, several different sets of initial configurations should be tried. At the
end of the last minimum search, a normal return of control to the main program will be
indicated by the message SEARCH COMPLETED, NORMAL RETURN.

This completes the description of the computer program and its use. In the
remainder of this paper an evaluation of the results obtained upon applying the program
to the design of a muffler for a helicopter will be given.

APPLICATION TO HELICOPTER

The purpose of this section is to describe the design and to present the measured
noise-reduction performance of a muffler for a helicopter engine exhaust. The muffler
design was accomplished with the aid of the previously described computer program.

Apparatus and Methods

Test helicopter.- A photograph of the test helicopter for which a muffler system
was designed is shown in figure 11. The physical characteristics are given in table I.
The aircraft was powered by a six-cylinder, horizontally opposed engine. The exhaust
gases from each bank of three cylinders are routed through a manifold and then out a
straight stack to the side and rear of the helicopter, as shown in the photograph of fig-

N¢ X rot, speed
ure 12. The engine fundamental firing frequency is defined to be 120 for a
2

four-stroke operating cycle, where N, is the number of cylinders. For the manifold
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geometry of this particular engine, it was convenient to correlate the exhaust noise com-
ponents with harmonics of the engine-bank fundamental firing frequency, in which case
Nc was taken as 3.

Acoustic measurements.- Initial base-line acoustic measurements were conducted
for the helicopter with the engine equipped with the standard exhaust manifold system
shown by the photograph of figure 12 and hereinafter called the standard helicopter. The
acoustic signals emitted by the helicopter were measured with commercially available,
piezoelectric, ceramic-type microphones and were recorded by a multichannel, frequency-
modulated tape recorder at a tape speed of 0.76 m/sec (30 in/sec) and a center frequency
of 54 kHz. The frequency response of the complete measurement system was within 3 dB
over the frequency range 12 Hz to 12 kHz.

The microphones were positioned at a radius of 30.5 m (100 ft) from the aircraft
every 18° over one quadrant. A complete 360° noise survey of the helicopter noise was
obtained by hovering the helicopter first at 09, then 909, 180°, and finally at 270°. The
measurements were conducted over flat terrain at the approach end of runway 17 at
Langley Air Force Base.

Muffler Design and Installation

Design procedure.- The computerized analytical muffler design method and required
engineering judgments have already been described elsewhere in this report. In this sec-
tion specific design considerations for the test helicopter will be discussed.

Weight and volume limitations indicated that a single muffler that would handle the
exhausts from both engine banks would be preferable to-a muffler for each bank. Also,
it was anticipated that the Y-connector used for combining the two streams of engine
exhaust gas would provide some noise reduction of the engine odd-harmonic firing fre-
quencies and some amplification of the engine even-harmonic firing frequencies. This
possibility permitted a muffler design with a less demanding transmission-loss perform-
ance at the engine-bank fundamental firing frequency. This relaxed performance require-
ment is evidenced by the 9 dB desired minimum transmission loss at the engine-bank
fundamental firing frequency indicated by the arrow in figure 8.

Back-pressure considerations.- Engine back pressure produced by the muffler sys-
tem was not computed or measured; however, an effort was made to minimize back pres-

sure by making the total exhaust-pipe area as large as was practical. Also, the inlet and
outlet pipes in all the chambers were arranged so that the center lines coincided insofar
as was practical. Finally, sudden flow-direction changes were avoided as much as
possible.
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Muffler configuration.- The computer-generated component lengths and a sketch of

the corresponding geometrical configuration are shown in figure 13. It is important to
understand that the general configuration is determined by the designer. The designer
must specify constraints on the overall lengths, cross-sectional areas, relative arrange-
ment and number of chambers, and the handling of the internal flow. The computer pro-
gram adjusts the various component lengths within imposed constraints to achieve as
nearly as possible a desired transmission-loss characteristic. The configuration shown
in figure 13 produces the transmission-loss characteristic shown by the dashed line in
figure 9, which compares favorably with the minimum desired transmission-loss char-
acteristic shown by the solid line in figure 9. The muffler system was designed to pro-
duce an exhaust-noise reduction of 15 to 20 dB(A).

Installation.- The installation of the Y-connector and muffler is shown in figures 14
and 15, respectively. - The exhaust gases were combined with the Y-connector then led
into the muffler inlet, as shown in figure 15. This particular mounting arrangement
allowed minimum disturbance of the aircraft weight balance and prevented operating
problems relative to the high-temperature exposed surfaces. The muffler volume was
0.057 m3 (2.0 £t3) and the weight of the entire system was 21.3 kg (47 1b).

Results and Discussion

Exhaust-noise reduction.- Total radiated noise from the helicopter' was measured
with the muffler system installed (hereinafter called the modified helicopter) as was done
for the standard helicopter configuration. The narrow-band (4-Hz) spectrum of the noise
from the modified helicopter is shown,in figure 16 by the solid curve, and the narrow-band
spectrum for the stand'ard helicopter from figure 7 is shown superimposed in figure 16 by
the dashed line to facilitate evaluation of the muffler-system effectiveness. Clearly, the
dominant components of the exhaust noise have been eliminated. At the low frequencies,
rotor noise now appears to dominate the spectrum. In the higher frequency range, 320 to
520 Hz, there is a 3 to 5 dB increase in the spectrum floor which may be attributable to
self-noise (see ref. 16) generated by the muffler system. The overall exhaust-noise
reduction obtained was approximately 11 dB(A), whereas the desired reduction was 15 to
20 dB(A). '

Estimated muffler insertion losses.- The $pectrum information shown in figure 7
and similar data with the Y-connector only installed were used to estimate the insertion
losses of the muifler at the engine-bank firing frequencies. These insertion losses are
listed in the last column of table II. Also listed are the measured sound pressure levels
under comparable test conditions corresponding to the standard exhaust system,
Y-connector only, and Y-connector with muffler. From these tabulations the estimated -
muffler insertion losses were obtained. It is important to note that the listed insertion
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losses are lower bounds on the actual muffler insertion losses because of possible con-
tributions from other discrete-frequency noise sources radiating at approximately the
same frequencies as the tailpipe exit.

Estimated transmission losses.- If at a particular frequency the amplitude of the
incident wave in the exhaust pipe outlet is not changed by the addition of the muffler, then
the insertion loss is equal to the transmission loss at that frequency. Assuming this con-
dition to hold, the estimated insertion losses of table II were equated to muffler transmis-
sion losses and plotted on the computed transmission-loss curve for the muffler. The
results for the first four engine-bank firing frequencies are shown in figure 17. For fre-
quencies 2, 3, and 4 the computed transmission losses are high by 5 to 15 dB. For the
higher engine-bank firing frequencies, the estimated insertion losses are negative, indi-
cating that the muffler is amplifying at these frequencies by 9 to 14 dB. Plausible expla-
nations for this behavior include both source-impedance effects and self-generated noise
by the muffler at discrete frequencies (ref. 16). The mathematical model described in
this paper fails to account for these effects.

Engine performance loss.- Accurate back-pressure measurements for the modified
exhaust system were not obtained; however, the aircraft operator did not observe any
significant degradation of engine performance for hover flight conditions.

CONCLUDING REMARKS

An improved design method for expansion-chamber mufflers has been described
and applied to a helicopter exhaust-noise problem. The resulting three-stage expansion-
chamber muffler together with the exhaust-pipe Y-connector for combining the exhaust
gases from all cylinders reduced the exhaust noise by 11 dB(A). Experimental compari-
sons between the noise levels for the standard and modified exhaust systems indicated
that the muffler was generating self-noise and/or interacting with the source impedance
to result in an amplification of 9 to 14 dB at the fifth and sixth engine-bank firing
frequencies.

The muffler volume was 0.057 m3 (2.0 ft3) and the weight was 21.3 kg (47 1b),
which were within the limits for a flightworthy system. There was no significant loss of
engine performance as judged by the aircraft operator.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., June 12, 1973.

24



APPENDIX A
COMPUTER PROGRAM EXRSIL

Language: FORTRAN

Purpose: To compute transmission loss at 151 values of wavelength for multiple-stage
expansion-chamber mufflers. The program makes a specified number of attempts to
optimize the transmission loss in accordance with a desired minimum transmission-
loss characteristic. The effect of mean flow is included in the program.

Use: Data cards are prepared to be read by statements shown below:

READ 8, N¢J, C

READ 10, S1, 82, S3

READ 10, AMACH

READ 10, XYZ(1,1),XYZ(1,2)

READ 22, NUMBER

READ 10, G, (1),X(1),H(1)

8 FORMAT (110,F10.3)

10 FORMAT (3F10.5)

22 FORMAT (15)

Input variables are

N@ Number of optimization attempts

C Sound speed in exhaust gas of proposed muffler, ft/sec

S1 Tailpipe cross-sectional area, £t2

S2 Annular cross-sectional area, £t2

S3 Chamber cross-sectional area, ft2

AMACH Mach number of mean flow in tailpipe of muffler

XYZ(1,1) =1=1,2,3 Wavelengths, ft (minimum, intermediate, maximum)

XYZ(1,2)I=1, 2, 3 Desired minimum transmission losses at above wavelengths,

: dB

NUMBER Number of stages in muffler system (should not exceed 4)

G(I),X(I),H(1) 1=1,2,3,4 Minimum, initial, and maximum lengths of muffler-stage
components starting at tailpipe and working toward
inlet, ft (note that there will be four lengths per
chamber)

Restrictions: Tailpipe Mach number should be in the approximate range 0.05 to 0.15.
The ratio of expansion-chamber cross-sectional area to tailpipe cross-sectional area
should riot exceed approximately 6. The number of expansion-chamber stages should |
not exceed 4.
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APPENDIX A — Concluded

Method: The theoretical basis used in this program is given in references 3, 4, 5 and
described briefly in this paper.

Accuracy: Within the limitations of the theoretical model, the accuracy of the computed
transmission losses is for practical purposes a function only of the accuracy of the
input data.

References: Sée references 3, 4, and 5 of this report.
Run time: 200 to 600 sec
Storage: 42,000g (CDC 6000 series)
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APPENDIX B — Continued
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TABLE 1

PHYSICAL CHARACTERISTICS OF THE STANDARD HELICOPTER

Main rotor;:

Diameter, m (ft) . . . . . . . . . . . e e e e e e e e e e 11.3 (37.13)
Number ofblades . . .. ... ... .. ...... e e e e e e e e e e e e 2
Blade chord, m (in.) .. ... ... ......... e e e e e e e e 0.28 (11.0)
Airfoil . . . . L L e e e e e e e e e e e e e NACA 0015
Blade area, m2 (ft2) . . . . . . . . . e e e e e e e e e 3.18 (34.27)
Diskarea, m2 (ft2) . . . .. . . . . . . ... ... 100.8 (1085)
SOLAILY .+« v v v e e e e e e e e . 0.0314
Tip speed, m/sec - (ft/sec) . . . . . . . . . . . .. .. ... ... 2103 690
Design operating speed, rpm . . . . . . . . .. . 0L h h e e e e e e e e e e 356

Tail rotor:

Diameter, m (ft) . . . . . . . . . . . . . e e e 1.7 (5.67)
Number of blades . . . . . . . . . . . . 0 i e e e e e e e 2
Blade chord, m (in.) . . . . . . . . . . .. .. e e 0.10 (4.13)
Blade area, m2 (ft2) . . . . . .. ... 0.209 (2.25)
Disk area, m2 (ft2) . . . . . . .. ... ... ... 2.35 (25.3)
Design operating speed, rpm . . . . . . . . . .00 h e e e e e e e e e e 1920
General:
Normal gross weight, kg (Ib) . . . . . . . ... .. ... ... ... 1111  (2450)
Empty weight, kg (b) . . . . . . . ... ... .... e 716.6  (1580)
~Overalllength, m (ft) . . . . . . . . . . .. .. . . e, 13.29 (43.62)
Power, KW (hp) . . . . . . . . o e e e e 194  (260)
Maximum level airspeed, knots . . . . . . . . . .. .o Lo Lo 85

Gear ratios:

Main rotor mast . . . . . . . . . .. L i e e e e e e e e e e e e e e e 0.111
Tail rotor . . . . . . . . e e e e e e e e e e e e e e e e e e e e 0.6
Cooling fan . . . . . . . . . . . . . e e e e e e e e e e e e 1.5
Engine characteristics:
Number of cylinders . . . . . . . . . . . o o s e e e e e e s 6
Operating cycle . . . . . . . . . . . 0 o i e e e e e e e e e e e e 4
Exhaust-gas temperature at MAP of 48 cm Hg, K (°F) . .. ... .. 1090 (1500)
Gas-flow Mach number at MAP of 48 cm Hg and area of 0.0045 m2 ...... 0.1
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TABLE II.- ESTIMATED INSERTION LOSS OF MUFFLER OBTAINED FROM
MEASURED SOUND PRESSURE LEVELS OF STANDARD AND
MODIFIED EXHAUST SYSTEM

Sound préssure level, dB, for -

_Engine-bank ) Esti;nated
Emenle™® | Tnt | ecomector | Yocomesor | TGOS
system y and muftier
1 94.5 81 69.5 11.5
2 83.0 94 69.5 24.5
3 88.5 65 56.5 8.5
4 7.0 74 64.2 9.8
5 66.6 54 68.0 -14
6 2.5 60 69.5 -9.5
7 76.2 --- 69.5 | @ ---e-

8 70.0 - 64.2 ' emee-
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