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1. INTRODUCTION

The major goals of the extension of NASA Contract
NAS 9-12319 Were concerned vwith building two general purpose .
nunmerical integration schemes into the NASA-JSC computer
system. There were other minor goals associated with the
contract and thése will be discussed in Chapters 5 and 6.

Since most of the work was concernmed with the numerical
integration schemes, the major portion of this report will be
devoted to describing the state-of«themartrqf numerical |
- integration, the particular integrators built.into the JSC
computer system, and the use of the new integration packages.
Those who are only interested in determining how to use the
.integrators nay proceed immediately to the Appendices, Which
are self~contained. o

The remaining portion of the revort is as follows:

Chapter 2 contains commerts about numerical integration in
general; Chapter 3 discusses the extrapolation numerical
integration technigue; Chapter 4 discusses the variable-

order, variable-stepsize Adams numerical integ&ation technique;
Chapter 5 presenfs results concerned with numerical integration
and optimization in the JSC PEACE parameter optimization program;

and Chapter 6 presents conclusions and recommendations.



2. GENWRAL COWMENTS OV NUMTRICAL INTEGRATORS

In this chayier we shall briefly discuss the state-of-the-art
of numerical integpation, especially with respect to the
development of geweral purpose numerical integration subroutines.

purp lnteg o

For additiomnal in{ormation, References 1 and 2 should be consulted.

2.1 General Purtane Intesrators

AS with any ougineering system, the selection of a
numerlcal integration subroutine usuwally involves a tradeoff
between stability and performance. 'waever, in the past few
years a number of gtable (reliable), relatively hlgh-perzormance
general purpose Nuwerical 1nteﬂrat10n subroutlnes have been
developed. It is the purpose of this report to 1ntroduce these

hAR

‘ routines to the Mlasion Planning and Ana1y51s DlVlSlon in as
simple a format as vossible so that the routines will be used.
As noted in Chaptey 1, the-ueer_may proceed directly to the
Appendices if he iz only interested in learning how to ﬁse_ﬁhe'
subroutines. |

The subroutivwes of this report are referred to as general
purﬁose subroutites bhecause the schemes are relatively flexible
and apply to a lavgs class of problens. The schemes derive
their flexibility wadinly from the fact that they are both
variable order anrl wvariable stepsize. This fact allows the
routines to adapt eofficiently to many different physical situa-
tions. In addition, the numerical 1nbcgrat10n routine of |
Chapter 4 (and Ayypengix B) has excel1ent diagnostic capabllltles
which indicate numerical problems, e.g., excessive roundoff errors

2 .
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One of the first questions which must be answered is:
"When should I use a general purpose integrator?" The
integrators described in Chapters 3 and L are véry reliable,
especially DVDQ (Chap.4), and they have been used with ease on
problems from many different discipiines. If a new problem
requiring numerical integration is to be solved, a general
Apurpose integrator will not only prodube reliable answers in
- a short time Cwith a minimum of expensive and tedious human
effort) but usually also'teach the user something about the
physical problem; e.g., the stepsize usualiy coﬁtracts'in'
areas of high acceleration or "action." Thus,lit is advisable
to use a general purpése integrator when solving a physical-'
problen for'the first time.

. As to whether or not one should continue to use & general.
"pﬁrpose'integraﬁor; after fully undersﬁanding the proéess of
' tﬁe physical situation, is problem deﬁendent. ‘That is, since
‘a general purpose integrator is in some sense conservative .
(stable), one could probably invent rules-of-thumb to be used

with a problem-dependent integrator to give a high-performance

integrator for that particular problem. (This, of course,'is
the case with problems in celestial mechanics where many
efficient, problem dependent integration schemes are employed.)
In this process one mﬁst always keep in mind the tradeoff of
-human effort and computer effort, e.g., it would not be

‘ worthwhile to spend many man-houré inventing rules-of-thunb-
for a pafticular problem if the problem is to be solved only a
few times, whereas the opposite would be true if thbusands'of

simulations are anticipated.




2.2 Main Existing Procedures

The numerical integration schemes which are most often
used in engineering analysés are the various fixed stepsize

fourth-order Runge-Kutfa and Adams predictor-corrector

1,2

methods, especially the Runge-Kutta methods. One reason

for this is‘that the Runge-Kutta method is easy to understand,
easy to program, and relatively reliable (once a workable
stepsize has been'selected). Comparable properties of these
two approaches (for fourth-order only) are listed below:
Runge-Kutta: Based on Taylor series expanéion;
seli-starting; requires four function evaluations
per step; functions evaluated on a symmetrical,
but unequal grid; difficult to approximate the

local truncation error, which makes automatic
variable stepsizing difficult.

Adams Predictor-Corrector: Based on interpolation
formulas; not self-starting, usually requires
fourth-order Runge=Kutta scheme to develop the

’ flrst few steps; after the starting phase, requires
two® function evaluations per step; functions

- evaluated on an equal grld relatlvely ease to
approximate the local truncatlon error, which makes .
automatic variable stepsizing relatively easy;
_usually less stable than the Runge-XKutta method.

From the comparisions above, one can see that ther
Runge-Kutta (or single step) and predictor-corrector (or
multistep) methods are basically different, and thus; the
performance of an integrator is problem dependent. Also, at
first glance, the predictor-corrector method may appear to be
faster because it only requires half as many function evaluations

(after startup) as the Runge-Kutta method. However, this is not

*This number may be higher in some schemes when more
than one correctlon is allowed.



-necessarily the case because on some problems a smaller
step-size is required for the predictdr—corrector (because it
is less stable) and/or the !'"overhead" (time associated with
carrying out the requirementé;of the integrator) of a predictor-
corrector scheme is higher than for a corresponding Runge-Kutta
schene.

With regard to a variable stepsizé, which is a necessity
in many problems, one usually uses physical reasoning or a -
halving?ahd—doubling procedure to adjust the steﬁsize in a
Runge~Xutta scheme.  However, in the past few years a more
attractive technique has been developed, and this will be
described in Chapter 2.3. By comparing predictor and'correctof
values in a predictor-cofrector sbheme, it is relatively easy
to adjust the stepsize.

2.3 Recent Developments

In the opinion of this author, fhe'threé main developments'
in'numericai integration in the past eight years have been the
:vfollowing (in chrénological order): | | |

(i) The development of an efficient rationai function
“extrapolation numerical integration scheme;3

(ii) The development of higher-order Runge-Kufta
formulas with relatively efficient means for stepsize
control;4’5 | _
(iii) The development of high-order,. variablé-order,‘
variable-stepsize Adams methods in user oriented |
1,6

subroutine fornm.

This report is based on the advances noted in (i) and (iii).



The higher-order Runge~Kutta schemes, sometimes called
Fehlberg integration, are not included because MPAD already
has a‘capability in this area. |

A1l of the general puquée intégfators use a variable
stepsize (although they can be used with a fixed stepsize).
- The basis for the adjustment of the stepsize.in (i) and (1ii)
ﬁill be discussed in Chapters 3 and 4. The means for éfficient

4,5

adjustment of stepsize in Runge-Kutta schemes i§ as follows.
-Runge-Kutta formulas can be developed for any order of accuracy,
and for a given drder'the formula is not unique. For example,
‘there exist numerous well-known fourth-order Runge-Kutta
fofmulas.‘ It can be shown that the least number of:function
evéluatiOns'required for a Runge~Kutta formula of order four is
four,.of order five is six, of 6rder six is seven, of 6rder

- _Bseven is nine, and so on. Of course, formulas exist for the
‘orders mentioned above which require more than the least number
mentioned, and this is the basis for the efficient estlmatlon

of the stepsize. For example, suppose we wish to deve10p a
' fiffh—order'Ruﬁge-Kutta scheme with a reliable stepsize
:.adjustment procedure, aﬁd we select a fifth—order formula whiéh
‘:requlres the least number of functloﬁ evaluations possible,

i.e., six. A 81xth-order formula requlres at least seven functlon
| evaluations. However, suppose we construct a sixth-order formula
with parameter values which match those of the fifth-order |
formula on the same six function evaluations required by the

fifth-order formula, i.e., we embed the fifth-order formula in

the sixth-order formula. If this is done, then the remaining



terms in the sixth-order formula give an excellent estimate

of the truncation error for the fifth-order formula, which

can then be used to adjust thé stepsize. Fehlbergl'L has shown
that the resultant sixth—ofder formula requires eight function
evaluations (whereas the minimum number for an arbitrary
sixth-order formuia is seven). In sﬁmmary then, for a fifth-
‘order Runge-Kutta formula with the Fehlberg stepsize modification
procedufe, eight function evaluations are required (as opposed

to six for a fixed stepsize fifth-order formula).

To conclude this sebtion, we mention some recent comparative
. studies of numerical integration schemes.?_12 The first
| statément to be made is that it is very difficult to draw
definite conclusions from these studies. For example, the
extrapolation scheme will perform "below par"_with a:very |
f_ poor choice of initial stepsize estimaté, and thus, this
scheme performs very'well_in Refs. 7-10, 12, but relatively
poorly in Ref. 11.. Aisb, some repqrts‘use the specified error
" tolerance as the accuracy indicator wheréas.others compare the
number ofrsignifidant'digits (compared to either an-analyticai
E SOquion or a finely-tuned numerical solution which is assumed
to be exact to a large number of digits). These two methods of
comparison can cause differing conclusions.

Another dimportant point in comparing integrators is the
.accuracy required. For low accuracies, e.g., 3 to L significant.
digits, the sophisticated integration packages will probably
perform poorly.. However, in aerospace applications, high

accuracy is usually desired and the situation reverses.



Finally, a summary of major comsiderations in selecting
or comparing integration schenes is listed below, assuming
comparable accuracies for thejintégfators. |

(1) CPU Time: This is probably the most important

parameter to MPAD users since it indicates how fast the
integrator is, i.e., how mﬁch computer time is involved.

(2)' Number of Function Evaluations: This parameter

jndicates how many times the right-hand sides of the:
differential equations are evaluated in a given run.
In many comparigons this parameter is given the most
emphasis (as opposed to CPU time) with the assumption
that the smaller the number, the better the integrator.
However, the scheme with the least number of function
évaluations may not bé the fastest (i.e., least CPU time)

" because of more overhead.. The importance of the nuﬁber |
of function evaluations parameter increaéés as the |

| complexity of the right-hand sides of the differential
equations increases. For example, an integrator with

" little overhead, large number of function evaluations

" may be best when a spherical earth is assumed in a

gravitational model, whereas an integrator with large

overhead, small number of function evaluations is proﬁably
best if an extensive oblate model is employed.
(3) Overhead: It is hérd to put a number on this
property of an intcgrator because it has to do with the
time reguired to carry-out the logical structure of the

integrator, e.g., checks, rules-of-thumb, etc. bullt into



the integrator. Usually, Runge-Kutta methods involve
less overhead than predictor-corrector methods, and the
DVDg (Chap.qj integrafion-package involves more overhead
than any other method réborted in the comparisons in
Refs. 7-12. However, on many problems it is the fastest
integrétor because of the smail number of function

evaluations required, which is due to the extensive

logical structure built into the progranm.

(4) Storage: In some cases the amount of computer

storage required for an integrator is of importance. As

~ integrators are developed which are gpplicable to almost

all problems, this may be of some concern for small computer

systems (e.g., DVDQ requires much more storage than other

lponular 1ntegrators, see Appendix B)

Aj(5)' Scaling: The scaling of a physical problem can nake

ettt el & Mg

- or break sone integrators. We have found that the routines
- of Chapters 3 and 4 retain many of their desirable

e properties even on poorly scaled problems,_which is not

the case for most other integrators.
(6) Stiffness: A subject of considerable 1nterest in
numerical integration in recent years is "stiff" systems

of differential equatiohs. A stiff system is one which

. possesses at least two variables whose natural time scales

are significantly different (on the order of 103), é.g., a

linear system with characteristic roots of -1, ~1000.

See Refs. 1 and E-for-further discussions of stiff systemns.




| modifying DVDQ to include stiff systems.

Reference 1 contains a subroutine for such systems, and

F. T. Xrogh of the Jet Propulsion Laboratory is currently
13
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%. THE EXTRAPOLATION METHOD

The goal of this chapter and Chapter 4 is not to develop
the uhderlyiﬁg equétions in the integration §ackages since
fhese are readiiy available in fextbook‘form,_e.g., Refs. 1
and 2. Instead we shall mainly discuss the basis for the
‘methods and present simple examples to illustrate the main
features. It is assumed that the reader 1is alreédy familiar
with the bagic concepts of numerical integration, e.g., knowledge
qf the workings of the basic Runge-Kutta and predictor-corrector

schemes.

3.1 History and Basic Motivation of the Method

' °  The simplest formula for the numerical integration of the

scalar differential equation

L]

‘.lS Euler s, formula , S S . .
| xlty,p) = w(t) + ne(tLx), (=01se - ) (3.2)
:'where h is the stepsize and x(tk) denotes the value of x obtalned
at the REE step in the process. This is a first-~order formula,
‘and it can be shownT that the global error (i.e., the difference
. between the true and approximate solutions) can be represented
by | | |

error at t,=x"(t,)-x, (,)=hE(t)+0 (1), (3.3)

~ vhere XT(tk) denotes the true solution, xp(t,) is the nuﬁérical

solution for Stepsize h, and E(tk) is a portion of the error

11

% = £(6,%) 2(t)ex, . RN

. e T T ey e i Wb A e 5




which is a function of the differential equation only if
round-off error is neglected. In 1927, Richardson'¥ noted the
following property: suppose (3.2) is used twice, first with

& stepsize of h and second ﬁiﬁh'a stépsize of h/2. Then, the

error for each calculation must be of the following form:

' (8) = x, (£ )=hE(t,)+0(n?) | [CRY

() = x5 (8= (W/2)E(E )0 (D) . (3.5)
‘Elimination of E(%,) from these two equations results in

X (4225, 5 (1 )=x, (£,)+0(n2) (3.6)

-

i.e., a second-order approximation has been obtained by combining
two first-order approximations. In many cases such a procedure

‘gives higher accuracy with feﬁer.function evaluations. For
- example, consider the integration ofliz-x from t0=0 to tf=1‘ﬁul‘- f?r~~-
with X(O):?. The reéultsT using Euler's formula (i.e., Eq.u(5.2j§
. @nd the "Richardson deferred-approach-to-the-limit" or the

"extrapolation" approach (e.g., Bg. (3.6)) are shown in Table 3.1.

h : Xh(I) Buler's Formula

xh(l) Richardson
(# of fn. eval.) {# of fn. eval.)
1 0.0000000 (1) ——— .
1/2 0.2500000 (2) 0.5000000 (3)
/L 0.3164063 (&) 0.3828125 (7)
1/8 0.3435089 (8) 0.3708116 (15)
1/16 0.3560741 (16) 0.3685393 (31)
1/%2 0.3620552 (32) 0.3680364L (63)
1/64 0.3649865 (64) 0.3679177 (127)
TABLE 5.1 Comparison of Euler and Richardson's Deferred-Approach-

to-the-Limit for %=-x.

P TR | e s
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The true solution to the above problem is x(1):0.5678?9
(correct to six piaces), A simple computation shows that
the extrapolated value corréspondiné fo'fifteen function
evaluations is comparable in accuracy to the Euler value
requiring sixty~-four function evaluations. Thus, in this
case quite a gain is achieved with the Richardson idéé of
~extrapolating valves from results with a decrea51ng sequence
of steps:LZES. ‘ o
Although the above idea appears very attractive,_if was
Véomewhat dormanf until W. B. Gragg studied the method
exXtensively in his doctoral dissertation15 in 1963. The delay
in the_use of the idea wés probably mainly due to the lack of
-a digital computer. Then, based upon the theoretical studies
"~ of Gragg, Bulirsch and Stoér3 developed an efficient numerical
'V'integfaﬁidn schemé'involving this idea. The routine presented
. in Appendix A is a fecently improved version of the Réf 3
;uubrouulne Sinca uhe scheme 15 relablvelj new, comnarea uo ,
l Runge Kutta and predlcbor—corrector methods, a good deal of
| current research in numerical analysis is concerned with the
ﬁundérstanding and applicatién of the extrapoléﬁion method. Thus,
‘thé scheme should be improved even mofe in the near future.

5.2 Motivation for Order Increasing Cavability

As the example of the previous section demonstrated; the
order of approximation was improved by one when the extrapolation
was performed on two integrations of the first-order Fuler
formula,. Actuallj each additional integration of Fulexr's

method, ‘with a monotonically decreasing stepsize, -followed by

13
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extrapolation increases the order of aﬁprbximation by one, as
in the generation of Tabie 3.1. The reason for this is because
the error term for Euler's mejﬁod pdséesses an asympiotic
expansion of the form

P P 20 Mmoo ] '
x(t 3h)2x (tp)fml(tp)h.Ea(tp)h ....+:m(tp)h +0(h™ 1), (3.7

where x(tp;h) is the result of the Euler integration at tp with
. stepsize h, XT(tP) is the true solution at t,, and E;(t.), e
1 Em(tp) are portions of the érror which depend only upon the
differential equation (and not h). In Egq. (3.7), the quantities
k?(tp),E1(tP), e e ey Em(tp) are, in general, unknown.

 Consider the use of Euler's formula on m+1 integrations .
with stepsizes ho> h1> . . '>1%f' Then, neglecting.terms of
order O(E™ 1), Eq. (3.7) could be evaluated with each of the
stepsizes (where the left-hand side of'fhe equation is the value -
of x(tp).determine& by the integrations), and the result is
-+ 1 liﬂéar-equatiohs in the unknowms x?(tp),Ei(tﬁ), . . Em(tn)' .
" The resultant value for XT(tP) is an m& Zorder ;pproiimation )
' of the true solution: - . o
In practice one need not soive the system of linéar equations
- mehtioned above to obfain tﬁe higher—drdér-éﬁproiimatioﬁ df
4XT(tP). The sole reason for presenting the above examplé vas
'to show how successive integrétions increase the order by.one
if the Fuler formula is the base formula.

Of course one may use the extrapolatibn idea with any

integration formula as the basic formula., Thus, the gquestion

arises as to the existence of a best base formmla. The ansyer:

to such a question would involve to some degree finding a



formula which increases the order of approyxination by more than
one with each integration; that is, the formula would pPOSSESS
an error term Wlth an auymntotlc etpanslon of the form:

X(tp;h)zx (tp)= Ezir Ek(tp)h . B (C >1)(3.8)

Gragg15 showed that if the modified mid-point rule is used as
the basic formula, then r=1, c=2 in Eg..(3.8), i.e., the error
for the modified mid-point rule has an aéymptotic expansion'
of the form:

N =]

H X(tp;h) = X (tp) Z'_ uk(t e : .(3'9)

ﬂ:

Gragg'sTs modified mldp01nt rule is as follows:

' hJ._:H/n:.L , .{ni} = set of.even increasing integeré
X, = x(t ) o | o
Cw e wpemeteE) G0
XP¥2 = XP+2h f(t +1,XP+1) s P:O, R ?i“T

x(Hihy) = /1%, o H(1/2)%, /mx,

where H is the basic stepsize (e.g., the output interval). The
:;integers in { .} must be either all even or all odd for |
 ‘theoretical reasons; Gragg has shown that an even get has certaln
advantages over an odd set, and typlcal choices are £2,4,6,8,
12.16,2h,...} and {2,4,8,16,32,6k,...3.7

Finally, one other theoretical result due to Gragg is that
the error between the true solution and the last extrapolated |
value, say‘ﬁi(tp), is of the form

=T T 2.2 2 | '
| %yt )-x (] < mng-- -1 o (3.11)



where h > h > ...>h , if the modified midpoint formula is

employed.

%.% Imolementation Notes

The heart of the extrapoiétion nunerical integration

scheme is a table of valués'which vve shall call the ””ﬁtabie”,
after Bulirsch and Stoer.3 To understand the operation of the
method it is probably best tp consider an example of its operation.
_Ezamgle: As with our previous examples, assume that the base |
formula is Euler's method. In the previous sectlon we showed
that an m2 order approximation could be obtained by solving
a system of m*1 linear eguations. Actually, the solution of the
linear system can be avoided by employing a rebursive extrapola-
tion process due to Aitken.17' Lef us first write the resultanf
:‘table and recursive formula, and'then use a simple Qxample to
mofivate the result. . | -

- Suppose four 1ntegrat10ns w1tn stepsizes h > h1> h2>-h3
are employed -on the interval [t t ] with the resthunt -
 va1ues X(tp;ho), x(fp;h1), x{tp;h ), X(tp,hB). The followlng |

T—table is then constructed by the recursive formula
T; i Té-1.+ (Tt T;—1)/[(h /h1+m (3.12)

prwms o el mem e o
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{—--Order [ column
x{t shy )= To J—-———Order 2 column

\\3~TO i—““——-Order 5 column
//*

%(t_:h, )=T o
Order L column

P10

?(tp;ﬁgD=T§

\/\
/\/
\/2

X(tp By)= Tz//f

FIGURE 3.1, T-Table for Polynomial Extrapolatlon with
. Euler's Method. | T
In the table above only the first column is computéd by
' numerlcal 1ntegrat10n The remaining cplumns are'genefated
rby the algebraic equatlon (2.12). Thus, with four-infegraﬁibhs
of the first-order Buler's method, a fourth—drder_result,‘To,7 )
can be inferred. In fact, if one sets m=3 in Eg. t} 7) aﬁd ._- 7
evaluates the equation at h:ho,h1,h h3, then the solutlon of T
the four equations for XT(tpj will be pre01sely 5, wh;¢hlls_
obtained by a well-defined recursive process. Intuitivély
one would expect thét the solution becomes moré accuraté aé:
one either moves dowvn a column or moves to the right along a
-diagonal. Gragg15 has proved that under reasonable conditions,
the T-table for polynomial extrapolation with the modified
nidpoint rule has the following properties: |
(1) The order n column converges to the solution

faster than the order m column, with n>n.

o et B b e e 7 g =
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(ii) The principal diagonal, i.e., TS,T?,...,T?,...,

A converges to the solution faster than any column.
Thus, one should take the botﬁdm élémént,from-the last coluun
as the best estimate of the solgtion, e.g., Tg in the exanple
of ¥igure 3.1. : | |

To fix the interpretation of the T-table, et us perform
sone simple computations. We shall show why Tg is'a third-
order approximaﬁion, and verify that Tg obtained by the recursive
relation is the same as the value obtained by'solving the
corresvonding system of linear equations.

The minimum number of.integrations for a third-order‘ 
approiimation with Euler's method is three. Thus, assuming
_ho:h,hfh/z,ha:h/q we have (at £ ): | | |

*x(B)=xTHE, b+ E,h%H0 (1) | N |

Cx/2)exTm o) T (A
xR B/ B/ 1640 (1) T
.‘ One éan easily_verify that Eq. (3.12) inplies

10-2x(n/2)-x(h) BT e

T =2x(n/B)-x(h/2), - g L Gaw
;ﬁhich-correspoﬁd fo Eq. (3.6) develdped.earlier. An alternate
-iinterpretation of Egs. (3.14) is that they represeﬁt Eq. (B;TB)A
with E, eliminated and 0(n°) terms neglected. In fact the T
elimination of E, from Fgqs. (3.13) implies |

w1 -2x(h/2)-x(h) +h°E,/2+0 (1) | |

xTe22(n/l)-x(h/2)+h7E,/8+0 (W) . | (3.15)

Then, upon elimination of'E2 from Eqs. (3.15), the folloﬁing
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third-order approximation of x~ is obtained

XT=[X(h)—6x(h/2)+8X(h/4)](5+Q(h?). - (3.16)

This value, of course, corresﬁonds to the value Tg obtained
by repeated use of Eq. (3.12).

Before we consider variable stepsize and order aspects of
ﬁhe method, note that the name “polynomial extrapolation” is
due to the fact that the value of X(tp;O).is obtained by using
a polynomial fit of the data X(tP;ho), x(tp;bﬂ),j... to '
extrapolate the value at h=0. It is not necessary to use &
polynomial fit of the data, and in fact, the Bulirsch-Stoer.
extraﬁolation scheme uses a rational function fit of the data.
In most simuiations to date, the rational function procedure
has given better results. In the case of rational function
extrapolation with the midpoint rule,'ﬁhe form of the T-table
' remains the same, however the recursive formula (3.12) is

replaced by3

ngx(tp;hi) , : | . (5.1.?)
il o
plopitl -1 k-1
=T ey - — . (k2z1)
( By )21_1- k-1 7 T 1
B4 L oLt opdtd
‘ k-1 7 “k-2 |

These are the formulas in the subroutine of Appendix A,



3.4 Variable-Stensize, Variable-Order Considerations

The main reason for using variable stepsize and order
methods is to develop .the mbst‘efficiént scheme possible for a
specifiea accuracy. I'ron the‘previous sections it is apparent
that more than one stepsize.is utilized in the basic 6peration
of the extrapdlétion algorithn, and the only questions with
respect to stepsize have to do with the initial choice and the
final choice, é.gf, h0 and hm if [ho/a,ho/h,...,hm=h0/2ml is
the sequence. '

The comparative studies in Refs. ?—Tf indicate that a
poor choice for.hb can cauge inefficiency in the schenme,

e.g., if h0 is too large the extrapolated values may be
contaminated by round-off and if h is too small it is not
takigg full advantage Qf the extrapolation ﬁrocess. Both the
 scheme of Appendix A and the original version (pp. 96-99, |
Ref. 1) have means for adjusting hO by checking how many values |
are required for the first column of the T-table (i.e., if too
few are required, the stepsize is too small; if too many'aré:
regquired, the stensize is too large). |

The determination of order and the final stepsize, hm’
are somewhat coupled. The algorithm of Appendix A can generéte
six columns, which implies a poésible twelth~order scheme since
the orders of the columns go up by twos with the midpoint formula
(see Egs. (3.9}, (3.10)). The termination of integrations
(pr the determination of hm) varieé from basic step to basic
step. Integration is terminated vhen two'successive approxima-

tions Tﬂ”k and Tﬁ'k+1 differ by less than the specified error

20



tolerance, and the value Tﬁ“k+1 is taken as the best estimate.
This feature is one of the strongest aspects of the schene
since the cutoff is determined'by_comparing successive better

approximations to the solution. One may consult the table

on page 90 of Ref. 1 to see a striking example of this feature.

AT T M { T e, ey i o e s, - T P,
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L, VARIABLE ORDER, VARTABLE
STEPSIZE THTEGRATORS

In this chép?er we shall discuss the basic ideas behind
variable order, variable stepsize Adams predictor-corrector
'methods. Although there exist felativély efficient variable
stepsize Runge-Kutta integrétors, e.g., Ref. &4, there does not
appear to be an efficient way of changing the ofder in &
Runge-Kutta scheme. The two main variable order, variable
stepsize Adams methods are those due to Krogh6 and Gear1.
Krogh's progfam is discussed and listed in Appendix B, whilé
Gear's program is listed on pp. 158-166 of Ref. 1.

4.1 Storage Methods B

Before we discuss means of storing information available
in a predictor-corrector method, let us write the first few

Adams formulas for future reference. With

| . ‘x = £f(t,x), xpex(tp){fp=(tp,xp), hétp+1-tp (4.1)_
we have the following.
'jAdams—Bashforth (Predictors) o _ ' Error
X=X =h £ - (6%/,)%
e x=(/2) (3E -2 ) O (BRP/y)E
' - I (&)
Xy ¥p=(B/12) (238 ~168_,+58, 1) {on™/5, )x
' 5 (5)
%12y (0/,) (B5E =598, (#5378, 5-9%, ) (251077 5p0)% 7"

. . - . .
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Adams-Moulton (Correctors) _ Error
¥pr1 g Tpug o Wi

X mEp= (B/2) (£, 48)) I —(h3/12)3'c'

X g K= (0/12) (58, 1 +82. -2 1) -(hl*/aq)x(”)
Xpuq-sy= (W/24) (92, (+192 =58 142 ) ~(19077,50)x'2)

. . . - -
'
»

- .

The above formulas are used with a s (or k~1) order predictor

_and )A:i:-E order corrector, where a formula is kih order if its

hk+1 X(k+1)_

error term is of the form C + Classically, the

k+1
- Adams " predictor and corrector formulas were written as
k . :

b4 = + h = . . i .
PfT-XP =0 aJ?P‘J L | I(Pred;ctor)(% 2)

= = + .
X1 xp + h o %J fp+1~3’ | (Corrector)(4 3}

and stored in the computer in the form xp,fp,fp_1,4 . "fp—k'

- Actually one loses a great deal of free information by'choosing

this method for storing back information. Iet us first state

fwo other means for storing back information, and then discuss

the advantages of usihg these methods.

Backward Difference Table _ : ,
Store: X5 §7i"1fp - ' S , (4.4)

(Used in DVDQ? the notation.will be explained below.)

Scaled Derivatives

. q |
Store: zp=[xp,hxp, .« .« ,(h /q!)xéq)]T ' (4.5)

" (Used by Gear1 and popularized- by Nordsieck.16)

AT A




Tt can be shovm that well-defined linear transformations connect

1 Ve shall see below, by means

all three means of representation.
of an example, how one would pbnstruct such a linear transformation.
The Adams predictor-corrector formulas written in

backward difference form are

k-1 . , ' L
éf%_xp hE o vt , (22 order) (4.6)
J= - '
x(€) o Jp_ tg+1 s Y O (L.7)
1dxp jzb q x7b P17 ~order B L.7

.where the different order predictor and corrector formulas are
employed since these are precisely the formulas used in DVDQ.

The nqtation is as follows: -

0 1 . R g ) V . . .
vor=t, oo es Vs ¢l Gzo (1.8
o oot =B witle L owlie - ¥t (3z0). (4.9)
PP p+i1’ P+1 ’ P “p+1T TP "p+l p T ;

Let us consider an example which clarifies the notation and
demonstrates how one would construct a linear transformation
between the various means of representation, e.g., between

Egs. (4.2), (4.3), (4.6), and (4.7). | A
Example: Consider the second-order Adams-Bashforth formula, i.e.,

(P) : o
SRS (8/2) (3£~ ). . (4.10)

With respect to Egq. (4.6), k=2, so in backward difference form

(4.10) can be written as

1 R '
X(P) =X + h Z qj va - (4_11)

or

N
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«(P) o
¥peg = Xp v B Lo, VLY

We shall now employ the notation definitions of Ig. (4.8) to

a, V'l (4.12)

write EBg. (4.12) in terns oflfuncfidn evaluations only, and then
determine g, and qq SO that Eq. (4.11) matches Egq. (4.10).
definition: | '
o} 1 0 o o
= = - =f "'f -
Voipmty s Vi Vi Vi sty
Upon substitution into Eq. (4.12), we have

X(P) = X, h[qi‘ q1(f f 1')]
pt1

or

9 = mpmlograta s 1 @)
- Comparison of Egs. (L..10) and (4.13) implies |

Qt 9y = 3/2 5 gy =1/2, | - BN CRTH
which isrthe desired linear transformation between the coefficients
of Egs. (4.2) and (4.6) for the second-order case. | - .

Now that we have seen that the backward dlfference
repfesentatlon of the predlctor- orrector formulas is no more
dlfflcult than the standard means of representatlon, ‘the questlon
arlses,as to wnat we gain out of such a representation. The
answer is given by noting the following'equaﬁibns:

Vofp=fpzxp

1 ~ ‘_ _ | _ . _e _ — LT
Vet =B, =)/ (W] =BG, gk )/ () b

ve f (h /2)X

N, . (.0 -(n+1) , .
v, = 0/, )x I (4.15)




Equation (4.15) has great significance since the major portion
of the local truncation error can be represented by (see Gear,

p. 111)

Crer1

hk+1x£k+1) N O(hk+2), | | (4.16)

. d.e., the higher-order diffefences indicate the local truncation
errors for vérious order integrators since they are proportionai
-to the higher-order derivatives of x at tp. Thus, by employing
this means of repreéentation, or the scaled derivative representa-
Pion, one has the means for not only adjusting the stepsize but -

also for choosing the most efficient order integratlon formulas.

L.2 Variable Order, Variable Stepsize Procedures

In the previous section we saw that by storing back informa-

tion in either backward difference or scaled derivative form,

-;f“we have the means for estimating -the loecal- truncation error at - -

various ordefs with no extra computation. In this sectioh ve
shall present a method due to Gear‘f for adjusting the stepsizé
' ,and order automatically. |

-1Suppbse that the integration'héé préceeded long enough to:i-
generate a suificiently long "tail" of scaled derivatives or
backward differences. Later we shall discuss problems associate&

with starting the algorithms. Suppose we are currently at tP with
th

k== order integration formulas, stepsize h, and scalar truncation

-error parameter E. Use the kﬁh order formulas and stepsize h

to compute x(tn+1), where tp+1=t +h. From our "tail" of bhackward

_ P
differences or scaled derivatives we can easily compute the

truncation error associated with the kih order formula, and make

26



(4.17)

the following check:
Gy I(__ff;” ZE.

If Inequality (4.17) is satisTied, we aééept the computed value
for x(tp+1); if the inequality is not satisfied, we ﬁust‘determine
a smaller stepsize h to compute a value x(t ]) which satisfies
In either case we proceed to the tests below

(4.17). 1
We now wish to either possibly increase the stepsize if

(L.17) was satisfied or decrease the stepsize if (4.17) was

In addition we wish to check to see if the
Define: -
(4.18)

not satisfied.

order should be increased or decreased
zh, z scalar unknown.

' New stepsize
If all quantities were known exactly and the k+l-derivative

of x 1 remained constant, then the optimal stepsize would be
deflned bv (4.17) with the equality, i.e., . _]';
e leet) g, (4.19)

| k+1(Zh Ep+1
Then, solving for z we obtain
‘ kel (k+1) } ket
{5/t < 108y (4.20)
(1) does

However, the quantities are not knowm exactly and x
not, in general, remain constant so a safety‘factor is included
(4.20), e.g., | L o
a = 73 { /101" x(:}f;” }k . en

in Eq.
where the k subscript is attached to z to imply that this is
th order integrafion

the stepsize multiplier associated with the k—
Since we also have backward differences which imply

formula.
(k+2) : .
, we can determine the optimal step31zes at the

(k)
P*T and xp+1



neighboring orders, i.e., at the k-1 and k+1 orders. Operating
in exactly the same wéy as we did in forming Eq. (4.21), we

obtain (with appropriate safety factors)

neq = 7o Lo 1] K (Order k-1) (4.22)
| - 1 -
el T T%E'{E/[Ck+2hk+axé%;2)]} k+2 ._(Order k+1)(4.23)

The safety factors 1.2, 1.5;,and 1.4 are chosen so that we have
the following order of priority: no order change, lower the
prder, and increase the order. The order which ﬁroduces the
largest value of z in Egs. (4.21), (4.22), (4.23) is selected
as the integration formula order for the next integration.

With thé procedure above, an arbitrary value for h may
_résult, and thus to employ the current ﬁtail”-of infbrmation,
-inferpolation must be used to shift the information to the
néw-stéfsiZe. As‘shéﬁn by Géaf1, this may be done by means of
a matrix multiplication. Also, because of the overhead associated
'with implementing the tests and interpolation, the above
Procedufe is not perforﬁed on each step in Gear's program;'see'
page 157 of Ref{'l for a discussion of how the procedure is
implemented.r o | L

| The same ideas form the basis.fof'changing order and stépsize
in DVDQ. However, DVDQ oniy allows halving and doubling of
the stepsize, which Krogh claims is more efficient when the
order is to be varied. Also, DVDY surveys the local truncation -
error at four orders to build more stability into the order

changing procedure.
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4.3 Self-Starting Adams Methods

To.conclude this chapter, we shall present an example
to demonstrate how predictorfcérrecﬁof methods may be used
without employing alternate integration schemes to get them
started, e.g., many existiﬁg fourth-order predictor—corﬁector
subroutines employ a fourth-order Runge-Kutta scheme to
generate the reqﬁired starting vaiues. Before we consider
the exawmple, let us consider an alternate method for estimé—
ting the major poftion of the local truncation error in a
predictor~-corrector scheme. Suppose the predictor and
corrector.are-of-the same order. Then, denoting the true
solution of the differential quation at tp by xg , it can be'

shown that (Ref. 1, p. 111):

C(P)_ T kil (k+1) , mekt2)
¥y = xp Ckh‘ x o+ ok . B (4.24)
Xéc) _LT. T hk+1xék+1) + o(nk*2) o (4.25)

P k

Upon elimination of xg between these two equations, we obtain

e T T S ¢ B W
Xp - %370 = h X (Ck—Ck) + 0(h™ %), (4.?6)
where everything is known to order k+1 except X£k+1). Thus,
solving for Xék+1): |
(k+1) _ 1 (P) _ (O, Kkt (p 7

(I+1)
P

Then, given an estimate of x , we can estimate the differgnce

between the true and corrected solutions from Eq. (4.25), i.e.,

) O] = e ) - (1.28)



where x(k+1) is estimated from Eg. (4.27). Upper and lower
limits, Eu and EL, respectively, are usually specified to

indicate when the stepsize éhoﬁld be halved or doubled, e.g.,

E, => Halve stepsize o (4.29)

r

: ]x(c)—le -
' : < ZEL => Double stepsize | : (4.30)

Let us now use this method in an example which demonstrates a

self-starting Adams  procedure. )

Example: Given %:f(t,x), to,x(to)=x0, and error constants

E

E and E.' Also, an initial stepsize h  must be specified

L Tw?
‘ and this value should be smaller than one would expect to result
.‘ with a fourth-order integration.scheme. For sake of illustration,
assume that only one correction is employed after eébh predictor

step. Consider the first-order Adams predictor and corrector

formulas. Then,

(P) J ' . o
S =on+h0fo , ' | - - (B31)

pEPL )

© _ .,
Xy = x0+h0f[t
We now check to see if the stepsize should be changed by using

Iq. (4.2?) to estimate %, , and then checking

1

E ]}:(C) T|$ Eu

or,

B < |2 (X(P) (C))lﬁ E, . | (L; 33)

After making this test, we either halve, double, or keep the

same stepsize. Let h be the resultant stepsize. We then form the



first components of the backward difference table

[X-EC): Vv Of-!'—‘f«l ’ VT

- B G
f1__f1 £,1. (4.34)
Vle now have enough infbrmation to use the second-order

Adams. formulas. Again using a single correction we formr

i

C
(0

i

/21, x50 + 1,1, (4.36)

- Of course if we are storing backward differences, we would use
the backward difference version of the predictor-corrector

_equations in the actual calculation (i.e., Egs. (4.6), (4.7)).
Given xéc), we again employ Bg. (4.27) to estimate‘Eé, and

check fo,see'if the stepnsize should bhe changed by
ol L0 T . a ‘
BElaglsE G
After this tést, we either halve, double, or keep the same

- stepsize, and then augment the difference tabie to form

1'1"2, Vafa]; . U (438) _

=8, v, v

One then procéeds in the same manner to the third-order formula,
" and eventually the differencé.table will pbssess sufficient |
information to allow a switch over to the automatic order and
‘stepsize changing procedufe described in the previous section.
Of course, if one desifes é Tixed ofder predictor-corrector
method, e.g., fourth~order, the above starting procedures would
be used up to fourth-order and then sufficient information will
exist for the use of the fourth-order formulas.

In Appendix B a listing of DVDQ ié.Presented along with a

sample program.



5. RESULTS VWITH NASA-JSC COMPUTER PROGRAMS

In this section further results involving the NASA-JSC
PEACE parameter optimization program will be discussed. Since
most of the work in this area was done in the first portion of
Vthe contract (as opposed to the éxtension), and is thofoughly
documented in Ref. 18, we shall only discuss recent results.

5.1 Parametar Onfimization

" The main modification to the PEACE prograﬁ involved the
“addition df the Fletcher method with a one—dimensional~search;-
The.method was simulated on the stage-and-half configuration

" used for the simlations in Ref. 18. It was found that the
Fletcher method with a one-dimensional search did not perform
as wéll.as either the DI'P or Broyden algorithms (see Table 5.1).
It appears that the terminal convergence properties are-pgor
because the H-matrix probably becomes ”éontaminatéd” by the
switching of the formulas for the H-matrix. Note that, from
Table 5.1, the rate of convergence df the Fletcher method
Siowed'considerably after the first time that the formulss
were switched. That is, the test within Fletcher's method
implied that the DIP formula should be used until the sixth
iterate when the Broyden formula was used. Thereafter the
convergence wvas very slow. Recommendations for use of the

schemes will be given in Chapter 6.
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Tteration

COST (A1l with 1-D Search)
Number DI'P Broyden Fletcher
0 1611, 1611, 1611.
1 - 271.1 271.1 271.1
2 13.75 13.75 13.75
3 - 2.792 2.792 2:792
Y 1,311 1.311 1.311
5 .8897 .8897 28897
6 2636 2636 .2636*
“ 7 1621 1621 262
8 1563 1563 - .1605
9 155k 155k 1530%
10 L1461 461 1580
12 83 1183 572
1 046 045 L1548
16 .0972 .0967 1872
18 .0923 0921 w70
20 .0883 .0886 L1813

" #(In Fletcher column, *

othervise DFP formula used.

also used on the 15th

indicates Broyden formula used;
The Broyden formula was
and 19th iterates.) :

TABLE 5.1 Comparison of DIP, Broyden, and Fletcher (all‘with

1-D search) on Stage-And-Half Configuration.



5.2 Numerical Integration

The extrapolation numerical integration scheme of
Appendix A has been built into the stage-and-half configuration
version of the PEACL parameté; optimization progran. Since the
program had its former integration scheme_(fourth-ordér Runge-
Kutta) built into the program (as epposed to being subroutined),
the extrapolation_scheme will probablylnot perform as efficiently
as possible. ﬁowever, the resultant inteszrations should giﬁe
| some indication of its efficiency in a problem with a considerable

number of discontinuities, and it should give some indication as

to the accuracy of the RungémKutta integrations'previously obtained.

The computer program will be tested by NASA-JSC personnel.

oh



6. SUMMARY AND RECOIMMENDATIONS

6.1  Summary

Two general purpose numerical integration-computef programns
haﬁe been delivered (and checked out) to NASA-JSC personnel.‘
These are the Bulirsch-Stoer extrépolation scheme (1972 version)
and Krdgh's variable~order, variable-stepsize Adams method.
User's guides and‘listings of the pfograms are presented in the -
Appendices. q

The ?EACE parameter optimization program was modified to
include Fletcher's method with a one-dimensional search and thé
extrapolation integrator. 1In addition, W. F. Powers presented
seven lectures on optimal control and numerical integration to
-Mission Planning and Anaiysis persconnel in August 19?3.

6.2 Recommendations

1.) Vith respect to parameter optimization,.the Broyden
and DFP algorithms are recommended if good terminal
convergence is desired. In this respect; Broycden's

- mefhod has always performed better than DFP, but
not appreciably better. Fletcher's method (without
a 1-D search) appears to work well in the early
stages, and especially on problems Wheré the H-matrix
in the D¥P method is hdving trouble. However,
" because of the H-matrix switching it appears to have

trouble obtaining rapid terminal convergence.
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2.5

'_3.)

4.)

The Broyden method appears to do naturally and
continuously what the Fletcher method does roughly,

i.e., take tendency to singularity of the H-matrix

into account. From a theoretical point of view,

the Broyden method appears to be the most attractive;
With respect to numerical integration, the DVDQ

scheme has the best set of diagnostics and it is
strongly recommended for use on new probléms, The
resultant output should indicate to the user &

natural partitioning of the problem since the

éhanging stepsize and order usually indicate a cﬁange
in physical characteristics of the solution, alsb.

One may then use this information to define fixed-
stepsize, fixed-order formulas in the various phases

of the physical problem if & large number_of production
runs are anticipated. That is, there is no use paying
the overhead of DVDE if all of the'runs will be

similar with respect to physical characteristics.

The extrapolation numerical integration subroutine

has less diagnostic capability than-ﬁVDQ, but appears
to be faster on runs where the right-hand side of the
differential equation is not unduly complicated. This

scheme is relatively new and should be continuously

~improved by research in the next decade. It may be

more optimal for !MPAD problems than DVDE because it
is a one-step method which should not be as adversely

affected by multi-stage problems as DVDJ.

I



5.)

6.)

It is not claimed that the numérical integration
routines listed in the Appendices will speed up
existing programs; which usually enmploy a fixed
stepsize that changes from one well-defined physical
phase of the problem to another. However, they
should speed up the process of choosing optimal
stepsizes and determining accuraté reference cases
which will aid in the development of production
programs. In this respect, the possibility of
including both routines in SVDS should be considered.
Rough rules-of-thumb for choosing a nunmerical
infegration scheme are the followiné:
(i) 4if low accuracy is all that is required'
(e.g.; three significant ﬁigits) and/or there
exists a large number ofrphysical vhases (which
require starting and stopping the'integrator),
then a low-order Runge-Kutta scheme (e.g., order
- one to four) with sufficiently small fixed
stepsize is probably optimal; |
(ii) if high accuracy is required (e.g., five or
more significant digits), then either DVDQ or
extrapolation should be employed. The relative
efficiency of these schemes increases with the
order of accuracy required; To date, comparative
studies?"qg have shown the two schemes to have
the following properties: DVDQ has higher over-—

-head, but smaller number;of function evaluations



than extrapolation, and for ﬁany problems,
roughly the same computer time. In Ref. 9 a
rule for choosing between the tﬁo is proposed:
if the right-hand side of the differential
equation is relatively simple,'eytrapolation
will probably give the 1east CPU time, whereas
DvDQe w1ll give the least if the right-hand- Slde
is lengthy (e.g., if gravitational anomalies

are taken into account).
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APPENDIX A
DIFSYS
USER'S GUIDLE AND LISTING

SUBROUTINE DIFSYS is a double precision rational function
extrapolatién numerical integration scheme. It.is an improved
version of the ALGOL subroutine reported in Ref. 3. The
briginal subroutine is also documented in FORTRAN in Ref. 1
.(pp 96-99). The version presented in this'appeﬁdix was supplied
by ité developer, R. Bulirsch.r Some user's nay prefer to use
theloriginal version (presented in Ref. 1) because -it contains
more comment cards and error checks. However, to date, we have
: ndt encountered any difficultigs with the faster, more stream-
lined version presented in this appendix.

DIESCRIPTION

DIFSYS is called by:
CALL DIFSYS (N, YF, EPS, H, X, Y)

vhere: | | |
N:order‘of systen (number of differentiél equations)

YF-a user supplied subroutine which calculates the
derivatives, and has the fornm

SUBROUTINE YF(X,Y,DY)

o~

Ak

independent variable

dependent variable vector (must be dimensioned
in YF)

v

{1

DY = derivatives (right-hand side of the differential
. equation vector; must be dimensioned in YF)

(Note: YF must be declared in an EXTERNAL statement
in the program which calls DIFSYS.)

Al



EPS =~ stepsize error control (DIFSYS will reset EPS to
107111 the user supplies a smaller number)

maximum integration interval

1§

independent variable

dependent variable vector (must be dimensioned N in

calling program)

The' quantities N, EPS, H, X, and Y(N) must be supplied before
DIFSYS is called. | |
OPERATION | ) - o

This subroutine does onl& one integré%ion step per céll.
\Hence, if the interval of integration is [xo,xf}, where x, may
be defiﬁed implicitly, the user must test for Xp {or the implicit
condition) and adjust H at the end so that X, is satisfied

exactly.

- EXAMPLE PROGRAM

Consider the integration of:
;{..—: —5C2+ tx
| | to,tf,x(to),x(to) 8pe¢1fled. | |
" Define ¥q =%, yz::ﬁ. ' Then, the following program will execute

the integration with DIFSYS.

Lo
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IMPLICIT REAL*8(A-H,0-7)
EXTERNAL YF
DIMENSION Y(2)
READ (5,100)EPS,H,T0,TF, (¥(I),I=1,2)
We2 |
T=1T0 |
CALL DIFSYS (N,YF,EPS,H,T,Y)
WRITE(6,101)T, (¥(I),I=1,2)
IF(T.GE.TF)STOP
IF((T+H) .GT.TF)H=TF-T
o R
100 FORMAT(6D13.6)
101 FORMAT('TIME=',D20.8,'¥(I)=",2D20.8)
- END |
SUBROUTINE YF(T,Y,DY)
- IMPLICIT REAL*8(A~H,0-Z)
DIMENSION Y(2),D¥(2)
DY(1)=T(2)
CDY(2)==Y(2)**2+Y(1)*T
RETURN
o



gudl
Joa?

ARE
QU
ANBE:
Qv
0u07
0008
00039
0010
oull
0012
Qo3
0014
0015
0016
0017
0018
coio
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0C34

0035 -

0036
0a37
Q038
VER
0040
0041
0042
0043
0ouL4

0045 -

0046
0047
€043
0049
$1VoV
6651
0052
0053

0054

- 100

10

110

. Al

SURFOQUTIRE DIFSYSIN,YFsEPSyH XY}

REAL*E YIM} YALLO),YLLLCY,Y{10),0Vi9),02010Y,0Y{10,71},
1 D!?J,S[10},X,XN,H,G.ElerUtVrCrTAfH

REAL 4 EP{4)/70.4E~1,0.,16E-2+0,64E~4,0.256E~5/
LOGICAL™YL KONV,B0O,KL s GR

JTI=0

Fy=1.

ETﬂ=ﬁGS(EPS}' : .
[F{(ETA.LT.1eE-111 ETA=1.E-11

D2 100 I=1lsN : ‘

YA(D )=Y {1}

CALL YF (X,Y,DZ}

AN=X+H :

BO=.FALSE.

DC 110 I=1:N

5(1Yy=0.00 o )

M=1 : S

JR=2 :

J&=3

DO 280 J=1,10

IF{.N0OT .B0) GGTO 200

D(2)=1 777777777177 TTEDC
D{4}=7.11111111111111100

DO I=2.8444444044644444D1

200

201

202

203

21¢

220

GO TC 201 .
0{2)=2.2500

D({4}=9.D0

D6} =3.6D1

IF(J.LE.T) GOTO 202 . _

L=T ‘ - .
DI7I=6.401 - R

G0 TO 203

L=Jd .

O{L}=M%=M

KUNV =1L.GT.3

M=M+M

G=H/V

B=G+C

PG 210 I=1,N-
YL{II=YA(1)

YM{ D I=YALLI+G20DZ(I)
M=M-1

C0 220 K=1,M

CALL YF[ X+K%GsYM, DY)
DO 220 I=1,N
U=YL{I}+B=DY(I)
YL{TI)=YM{I)

YM({I 1=U

U=DABS{U]
IF{ULGT.SHII))Y S{1)=U
CONT INUE

CALL YF (XN,y¥M,DY)
KL=l LT,.2
GR=L-GT.5

‘F5=0.



atrnn
s h
Jun’t
L]L:-’ii;
guse
JJa
0061
Cus2
gu63
Ous4H

0055
0056

cae7
0068
0369
0070
Qo7
0072
Go73
0074
Cu75
Q075
0377
- 0073

JOT9

0080
0081
0oR2
0083

0084

cuas

- 0086

0087
0088
GO39
- 0090

00G1 -

Q092
0093

0094

. 0095
0096
0C97
0093
c099
3100
0101
0102
0103
0104
0105
0105

23C

231

232

233

24C.

A5
DO 233 I=1,.M
V=ilT{Is1)
C=0YM{TyeYL (I} +62DY (]} )40 .500
LT(I,13=C
TA=C
IFERKLY GO TC 233
DO 231 K=2,4L.
RI=D{K}*»V
h=B1-C
w=(C—-V
U=V _
IF{B.EQ.0.DO} GO TO 230
B=W/0 :
u=C*p
C=81%8
v=DT{IsK]
DTLI K} =U
TA=U+TA
IF{.NOTKONYV) GO To 232
IF{RABSIYL{I)-TA)LGT . S{I)=ETAI) KGNV—.FALSE.
IF(GR OR «S{1).EQ.0.D0) GO TO 233
Fv=DaBS{W)}/5¢{1)

- IFIFSLT.FV) FS=FV-

Y{I)=TA : ) :
[F{FS.EQ.0.D0} GO TD 250 ..
FA=FY :

K=L—-1 . '
FY=(EP{KI/FSIF=(1 /(LK) }
IF{L.EQ.2)} GG TQ 240
IF(FY.LT.0.7%FA} GC TC 250
IF(FY.GT.0.7) GO TO 250
H=H*FY

JTI=JTI+1

- IFLJTI.GT.5) GO 1O 30

- 25C

260

20

3¢

340

GO TO 10

IF{KGNV) GO TO 20

D(3) =4.D0

D(5)=1.6D1

B0=.NOT.8C

M=JR

JR = JS

JS=i+M

H=H=C.500

GO TG 10 . S B o
X=XN o SRR o S
H=H*FY S B
RETURN

H=0. D0

DO 300 I=1,N

Y(1)=YALTD)

RE TURN

END



APPENDIX B
- DVDQ
USER'S GUIDE AND LISTING

SUBROUTINE DVDQ is a double precision variable order, variable
lstepsize Adams predictor-corrector numerical integration
sghama developed by F. T. Kfogh of the Jet Propulsion Laboratory.
A one nay see by inspecting the 1isting; the prbgram is
?xtremely Welludocumented and over half of the listing is devoted
to comment cards. -Before we discuss the implementation of the
,deck,_sdme.notable features of the program are listed below:
(i) Maﬁimum integration formula order = 16.
(ii) Halves and doubles for variable stepsize.
(ii1) Only MAIN and DVDQ are necessary, il.e., one
need not employ a separate subroutine for the right-
hand sides of the differential .eguations. |
(iv) Ozxder of the predictor = order of the corrector -1,

(Recall the general property that

l

xT = x(£)+ o(n™* Ty

P .
SR x§ = xéc)’m + oy 4 o™

where k=order of predictor, r = order of the corrector,
m = number of applications of the corrector. This
implies that with k = r or r-1 the same order of
accuracy is obtained for a singlé corrector application.)

(v) Has "GSTOP' feature, i.e., if the trajectory is to

B1
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be terminated by a condition of the form G(tf,zf)mO,
the program can handle it automatically.

Description

DVDQ is called by:

CALL DVDQ(NEQ, T, Y, F, KD, EP, IFLAG, H,

HMINA,lHMAXA, DELT, TFINAL, MXSTEP, KSTLP,

KEMAX, FMAX, KQ, YN, DT) |
Not all of the arguments must be supplied by the user. The
arguments wﬁich must be supplied by the user will be 1isted and -
"briefly discussed below. Further explanation and definitions
of the remaining terms may be found in the general comment
section in the initial portion of the listing.

NEQ = number of differentiél equations

]

independent variable
Y = dependent variable vector
I = right~hand side of the vector differential equation

order of the differential eguation (not %o be
confused with the order of the integration scheme).
For example, if ¥ = £(t,x,X) is to be integrated
directly, KD = 2 ; usually KD = 1 since X = f(t,x)
is the usual trajectory analysis system.

;1:1"
B
H

B

local truncation ezrror indicator. It is an absolute

error indicator in the sense that the local error is

kept less than EP in all components of the differential
equation. If it is desired to control the error on

each component of the vector differential equation .
separately, EP should be specified as a vector of o
negative numbers. The negative values alert the

routine to a vector error specification. See the

discussion of EP in the comment cards for further

options.

H = initial stepsize estimate. (Probably better to
guess smaller than one would expect with a fourth-
order scheme since the routine builds up from &
first-order formula. However, the choice is not
critical since the stepsize is adjusted rapidly.)



HMINA = minimum allowable stepsize

It

HMAXA

il

maximum allowable stepsize

DELT = output interval. Sinée'tge.scheme only halves
and doubles, use DELT = 2™H if possible;
otherwise, it willl interpolate for output values.

TFINAL = final value of the independent variable.

MXSTEP = maximum number of steps allowable between
output points. .

In addition DT(17,NEQ), YN( ), Y( ), F( Y, KQ( ) must appear
in a DIMENSION statement in MAIN. See the.example below 6r the

comment portion of the listing for the particular dimenslons.

-

Operation ‘
Only one call is made to DVDY; thereafter the simple

statement CALL DVDQ1 is used. The heart of operation of vDg
is a computed GO TO statement which is driven by thé parameter
. 'IFLAG, which has values 1, 2, . . ., 8. The full implications
of each value of IFLAG are discussed in the initial comment
section of the listing. Although the overation of DVDQ may
appear complicated at first glance (because of the eight values
for IFLAG), the operation is straightforward with excellent error
detection capabilities. Probably the easiest way to get
acquainted with DVDQ is to study the simple program given below.
Informal commehts are given to explain roughly what each value of
IFLAG is indicating. The listing follows the example.
'Examnle: Integrate ‘§1=x2

| i2=‘¥§+tx1 .
with t =0,t.=2, X1(0)=1.O, ¥5(0)=0.0. The following prdgram

.will gexecute the integration with DVDQ.

B>



FORTRAN G{41336) HAT N

IMPLICIT REAL*8 (A-H,0-Z)
C SINCE SYSTEM IS FIRST ORDER WITH TWO DIFFERENTIAL EQUATIONS,
c Y,¥,KQ,YN ARE OF DINMENSION 2. DT IS ALWAYS DIMENSIONED DI (17,820} .
DIHENSION Y(Z),F(2),DT{17 2) ,KQ (2), YN {2)
NEQ=2
T=0.D0
Y {1)=1.D0
Y {2) =0.D0 _ :
KD=1 ’ _ o .
EP=1.D-5 ' : :
H=1,D~1
HMINA=1.D-4
HMAXA=1.DO
DELT=2.D-1
CPPINAL=2,D0 , : -
MYSTEP=1000 ‘
- CALL DVDQ (NEQ,T,Y,F,KD,EP,IFLAG,H, HHINA,HMAXA,DELT, TFINAL,
. 1MXSTEP, KSTEF,KEMAX, EMAX, KQ, YN,DT)

GO TO 10 I’FLAc.-.-_.-ic-.. 2 - a7t Devarive

20 CALL DVDQ1 ' ‘ 2
~ EvaLuaTion o Tren Catl HVDFL,
10 Go T0 (1,1,3,4,5,6,7,8) ,IFLAG " o
1 R (1) =Y(2) {2=PeenicTor, 2 perECTER)
F(Z}“—Y(Z}**:Z*'Y (1)*!1- M — . . e e e e e e

GO TO 20 : : IFLAg=3 == OuTteuT FoinT;
3 WRITE {6,100) T,(Y{(I).1=1,2) <____/ Arrer Werrme ; Care BDVHRL,
GO TO 20 =1, ,Ens OF
ZFLre= Y = £= T, END
o Sgg;fgts 100} Ty (X (D), I 1.2) «= INTEG R AT 100 'T’NASE CHANGE
N STOP 5 75:{ oR S‘?’OP
g ' STOP & —TFrce T PIXSTEP Arramed y Stor 0o INGREASE MESTEP,
7 . HMINA=HMINA,2.D0 LFLA6=06=5 &f cannoT e Arrames (Poosaety Dub
| GO TO 20 W T Rounsorr) 4 Sroe or dococase €O,
8 ST0oP 8 4 IFMG 7= H< Hrma KEQUIRED » STe@ pe BESET f#MiNA or EF,
100 FORNAT('TIME_ /D23.15/VY (1)= 7, 2023.75) T r1a6=§ = Tiecen. Pavsmsmn
) - END . ' ' - . . ' ] £ Tl NG S'Eq*ur_f,;\(cg =iy ST'DP,
[ISTICS* = SOURCE STATEEENTS = ' 32,PROGRAN SIZE = 1400

"ISTICS* . NO DIAGNOSTICS GENERATED
"IN MAIN '



SUBROUTINE  DOVDQU/NEQ/ /T /2/Y /s /IF/ s JROS o JERP/Z /IFLAG/ s /H/ FHMINA/,
¥ JHMAXA/,/OELT/, !fFINALfp/VXSTEP!,/KSTtP/,/KEMAX/,/EMAX/,
# SRQ/ /YN L /DY) .

DOUBLE PRECISION VARIABLE ORDER INTEGRATION SUBROUTINE
FOR THE SOLUTION OF QRDINARY DIFFERENTIAL EQUATIONS.

ANALYSIS AND CODING BY FRED Y. KROGH, AT THE JET PROPULSION
LABORATORY, PASADENA, CALIF. APRIL 1, 1969.
THIS DECK IN EBCDIC FORMAY.S .

CONVERTED FOR USE DN 360/75 BY MELBA W. NEAD, JPL APRIL, 1970.

AT THE END OF THIS LISTING INSTRUCTIONS ARE GIVEN FOR REMOVING
SOME FEATURES AND FOR ADDING OTHERS. THE GSTOP FEATURE 15
EXPLAINED NEAR THE END OF THE LISTING.‘

VARIABLES IN THE CALLING SEQUENCE HAVE THE FOLLOWING TYPES.
INTEGER NEQsKD(Ll) s IFLAGMXSTEP KSTEP KEMAX, KQll}

REAL EP(1)sHMINA,HMAXA, EMAX

DOYUBLE .PRECISION T Y(ll F{1)4HeDELT, TFINAL YN(l}gDT[l7 1}

1

= PARﬁHETERS HHICHAMUST BE'ASSIGNED VALUES BEFCRE CALLING

DVDQ ARE NEQ, Ty Yy KDy H, HMINA, HMAXA, DELT,
TFINAL, AND MXSTEP.

DVDQ IS USED ONLY ON THE INITIAL ENTRY. ALL OTHER
ENTRIES ARE MADE B8Y CALLING DVDQl. IN ADDITION TD
THE PARAMETERS MENTIONED ABOVE THE USER MUST ASSIGN .
"VALUES TO F (ONCE PER STEP INITIALLY, AND TWICE PER STEP
AFTER GETTING STARTED) AND EP (EITHER INITIALLY, OR DURING
THE INTEGRATION IF A RELATIVE ERROR TEST IS USED).
THE FOLLOWING PARAMETERS GIVE ADDITIONAL INFORMATION ABOUT THE
INTEGRATION AND ARE USED FOR STORAGE. THEY SHOULD NOTY BE
CHANGED BY THE USER. 1FLAGKSTEP,KEMAX,EMAX KQsYNy AND DT.

v.l‘.l.lﬂ..-.-..'.a.o.d‘...l.b’..-..ﬂ‘."“.‘l'o‘.’....."9.,‘99"*Il...

c AN &XAMPLE CF HON ONE MIGHT SET UP THE CALLS TO pvDQ IS GIVEN
.G BELOW.

IMPLICIT REAL#8 (A—H,0-Z)
DIMENS [ON FU2)¢DTL17:2) yY(4),¥YN(&) sKQ(2)

C SET PARAMETERS AND INITIAL CONDITIONS
NEQ = 2 .
KD = 2
MXSTEP = 500
EP = 1.D-6
HMINA = O,

HMAXA = 100.
T = Q.

Yil) = 1.
Y{2) = 0.
Y{3) = 0.
Y{4) = 1.
H=1.

DELT = 1.
TFINAL = 12.

NEVALS



¢ NOW MAKE FLRST ENTRY
CALL DVDOQINEQ, TgY,kgKD,EPyIFLAGpHvHNINA HMAX Ay DELT
1 TEINAL yMXSTEP ;KSTEP yKEMAX ,EMAX,KQy YN,DT)
GO TO 2
C ALL SUBSEQUENT ENTRIES MADE HERE
1 CALL DVDQL
2 GO TO. (10+10530530:50+60550, 50:, LFLAG
o EVALUATE DIFFERENTIAL EQUATLDN, IFLAG = } DR 2
1O R .= Y{1)%%2 4 Y(3)&%2 ' : !
R = R*DSGRT (R)
F(1) = =Y{1)/R
F(2) = -Y(3)/R .
NEVALS = NEVALS+1 ‘
GO To 1 .
o OUTPUT, IFLAG = 3, OR FINISHED, IFLAG = 4

30 PRINT 13,T,Y[1)gY(3);KSTEP,NEVALS !
13 FORMAT(' ', F6.251P2D20.12,215} ‘

I[F {IFLAG.EQ.3) GO TO 1

STOP . :

(u!

ERRDR CONDTIONy IFLAG = 54, 7 OR 8.
50 PRINT 12:T1FLAG.H - L
12 FORMAT (' IFLAG,H=';I3:020.10}

GO TO 30 :

~ EP TOO SMALL, IFLAG = &

60 EP.= 32, %EMAXXEP
PRINT 14, T,EP

L4 FORMAT(® T,NEW EP=",Fb. 2,D15. 6)
GO TO 1 . _
END

Oy
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THE USAGE OF THE VARIABLES 1S GIVEN BELOW.
NEQ=NUMBER OF EQUATIONS (INPUT)
T=INDEP ENDENT VARIABLE (INITIAL VALUE SUPPLIED BY THE USER)

Y=CURRENT VALUE OF DEPENDENT VARIABLE. THE INITIAL
VALUE OF Y MUST BE SPECIFIED BY THE USER BEFORE
THE FIRST ENTRY..THE DIMENSION OF Y MUST BE
AT LEAST AS GREAT AS THE SUM OF THE CRDERS OF
THE DIFFERENTIAL EQUATIONS WHICH ARE BEING
INTEGRATED. IF WE LET KD(1.) DENOTE THE ORDER
OF THE I-TH DIFFERENTIAL EQUATION, THEN Y(J)
IS THE K-TH DERIVATIVE OF THE L-TH CCMPONENT,
WHERE L IS THE SMALLEST INTEGER FOR WHICH
KDO{1)#KD(2) 40 oo +KDIL) 4 GE.J AND K=KD{L)}+J-1-~(KD(1)
+KD(?}+--Q+KD(L} ’1 J=1g2:o-.,(KD{ 1}+KD{2}+¢00+KD(NEQ) ] -
(FOR EXAMPLE, FOR THE SYSTEM F(1l)=UPP, F{2)=VPP, WHERE P
DENOTES A PRIME, Y{(1l)=Uy Y{2)=UPy Y{3)=V, Y(4)l=VP,.)

AN R NN N N N e N e N e N N N e R N o N N N N N el N N N ol N e N N R o N N N e N N N g N N N o R N N o N e N e W W Rl el e F R ol o B e e e Ry

F{I}=KD(T)—-TH DERIVATIVE OF THE I-TH CCMPONENT WITH RESPECT

ik e S I T T =T e T TR AT
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TO Ty I=1352+vee-¢NEQ. THE USER MUST PROVIDE
THE (DDE WHICH COMPUTES F GIVEN Y AND T.

KD GIVES THE ORDER OF THE DIFFERENTIAL EQUATIONS IN THE
SYSTEM. KD MUST BE LESS THAN OR EQUAL TO 4,
{FOR DIFFERENTIAL EQUATIONS WITH DIFFERENT ORDERS SET
KDeLT.0. IF THIS IS DONE IT IS ASSUMED THAT KD IS A VECTOR
AND THAT ABS{KO(I)) GIVES THE ORDER OQF THE I-TH EQUATION.)

EP IS A PARAMETER USED TO CONTROL THE LOCAL ERROR.
IF EP IS POSITIVE THE LOCAL ERROR 1S KEPT LESS
THAN EP IN ALL COMPONENTS OF THE DIFF. EQ.

(THE ESTIMATED LDCAL ERROR IS XEPT LESS THAN EP IN

" THE.(KD{T}~1)~ST DERIVATIVE OF THE I-TH . COMPONENT. THUS
"FJOR EQUATIONS WITH ORDER GREATER THAN UONE, THE ERROR

IN A DERIVATIVE IS ESTIMATED. IN THIS CASE THE VALUE OF
EP REQUIRED TO OBTAIN A GIVEN ACCURACY IN THE DEPENDENT
VARTIABLE DEPENDS ON THE SCALING.)

IF EP.LT.0, THEN IT IS ASSUMED THAT EP

IS A VECTOR. LET K BE THE SMALLESY VALUE
"DF I FOR WHICH EP{I).GE.O. FOR I.LT.K

THE LOCAL ERROR CONTROL IS BASED ON
ABS{EP(1}), AND FOR 1.GE.K IT IS BASED ON
EP(K}. IF GNE WANTS A RELATIVE ERROR TEST——
FOR EXAMPLE, THE LOCAL ERROR IS TO BE KEPT
LESS THAN C*P WHERE € IS A CONSTANT

AND P IS A POSITIVE FUNCTION OF T AND Y,
THEN ONE SHOULD SET EP=C*P WHEN IFLAG=1l.

-IF EP=0 AND HMAXA.NE.O, IFLAG IS SET EQUAL 8. IF EP=0 AND HMAXA =0,

NO E£RROR TESTS ARE PERFORMED AND THE ORDERiS)-AND STEPSIZE ARE
NOT CHANGED. THIS OPTION SHDULD NOT BE USED IF KQ{I)=1 FOR ANY 1.

IFLAG IS USED FOR COMMUNICATION BETWEEN THE INTEGRATOR
AND THE PROGRAM WHICH CALLS. IT. . THE VALUE
OF IFLAG SHOULD NOT BE CHANGED BY THE USER.. - -
-THE FOLLOWING VALUES 0OF IFLAG HAVE THE FOLLOWING MEANINGS. .

-=1 .THE.VALUE .GF..Y .FOR THE CURRENT STEP HAS BEEN ...

PREDICTED. THE USER SHOULD COMPUTE F AND CALL DVDQl.
IF A RELATIVE ERRDR TEST IS USED THE NEW VALUE
OF EP SHOULD ALSO BE COMPUTED HERE.

=2 " THE VALUE OF. Y FOR THE CURRENT STEP HAS BEEN

CORRECTED, THE USER SHOULD COMPUTE F AND CALL DVDQL.

=3 AN DUTPUT POINT HAS BEEN REACHED (SEE DESCRIPTION

- OF DELT), PRINT RESULTS AND CALL DVDQl.

=4 T=TFINAL IF DVDQL IS CALLED WITH T=TFINAL AND
IFLAG=4, IFLAG IS SET EQUAL TO 8. IF THE VALUE OF
TFINAL IS CHANGED THE INTEGRATION WILL COCNTINUE.

=5 KSTEP=KSGUT { SEE THE DESCRIPTICN OF MXSTEP)}.

=6 EMAX.GT..1 AND .IT APPEARS TO THE SUBROUTINE THAT
REDUCING H WILL NOT HELP BECAUSE QF ROUND-OFF ERROR. _
If THIS OCCURS A LARGER VALUE OF EP (0OR OF ABS{EP{KEMAX)) IF
EP IS A& VECTOR} SHOULD PROBABLY BE USED. IF EP IS NOT
INCREASED, TOO SMALL A STEPSIZE 1S LIABLE TO BE USED. (WE HAVE
FOUND THAT REPLACING EP WITH 32.*EMAX:EP WORKS QUITE WELL.)
INCREAS ING EP IN THIS WAY. WILL NOT DEGRADE THE ACCURACY,
HOJEVER IF. . THE NATURE 0OF. THE. PROBLEM CHANGES IT MAY PAY TO
USE A SMALLER VALUE OF EP LATER IN THE INTEGRATION.

=7 ADS(H).LT.HMINA, TO CONTINUE WITH THE CURRENT

- VALUE OGF H, SET HMINA.LE.ABS{(H} AND CALL DVDQl.

IF THE INTEGRATOR HAS JUST HALVED H ONE MAY CONTINUE




WITH TWICE THE STEPSIZE BY SIMPLY CALLING DVDQl. (SUCH

AN ACTIOM IS RISKY WITHOUT A CAREFUL ANALYSIS OF THE

SITUATION.)} IF THE STEPSIZE HAS NOT JuST BEEN HALVED

{ABS(H) LT.HMINA MAY BE DUE TO THE USER INCREASING THE

VALUE OF HMINA OR TO HAVING TOO SMALL AN H AT THE END

OF THE STARTING PHASE.)] THE INTEGRATION WILL CONTINUE

WITH THE CURRENT VALUE OF H AND A RETURN TO THE USER WITH
" IFLAG=7 WILL BE MADE ON EVERY STEP UNTIL ABS{H).GE.HMINA.

=8 ILLEGAL PARAMETER IN THE CALLING SEQUENCE. IF DVDQl
IS CALLED WITH IFLAG=8 THE PROGRAM IS STOPPED.

H=CURRENT VALUE 0OF THE STEPSIZE. IN SELECTING THE INITIAL
.~ VALUE FDR H, THE USER SHOULD REMEMBER THE FULLOWING--
l. THE INTEGRATOR IS CAPABLE OF CHANGING H QUITE QUICKLY AND
THUS THE INITIAL CHOICE IS NOT CRITICAL.
2. IF IT DUES NOT LEAD TO PROBLEMS IN COMPUTING THE DERIVATIVES
. [E.G. BECAUSE OF OVERFLOW OR TRYING TO EXTRACT THE SQUARE
ROOT OF A NEGATIVE NUMBER)}, IT IS BETTER TO CHOOSE H MUCH
.. TOO LARGE THAN MUCH TDOO SMALL.
3. IF HDELT.LE«O INITIALLY, AN IMMEDIATE RETURN IS HADE
WITH IFLAG=8. THE SIGN OF H IS WHAT DETERMINES THE
~ DIRECTION OF INTEGRATION.
~ he IF DELT=H={2%%K) K A NONNEGATIVE INTEGER THEN QUTPUT
.. VALUES WILL BE OBTAINED WITHOUT DOING AN INTERPOLATION.

HMINA AFTER GETTING STARTED: AND WHENEVER H
IS HALVED, ABS({H) IS CCMPARED WITH HMINA.
IF ABS{H),LT.HMINA CONTROL IS RETURNED TO
THE USER WITH IFLAG=T.

HMAXA THE STEPSIZE 1S NOT DOUBLED I#
DOING SO WOULD MAKE ABS{H}.GT.HMAXA

DELT ENABLES THE USER TO SPECIFY THE POINTS WHERE
QUTPUT IS DESIRED. LET TOUT=DELT + THE VALUE OF T THE LAST
TIME CONTROL WAS RETURNED TO THE USER WITH IFLAG=3. {INITIALLY
C TOUT=THE INITIAL VALUE OF T.) CONTROL IS RETURNED TO THE
_JUSER .WITH TFLAG=3 WHENEVER T=TCUT.. 1F TOUT DOES NOT FALL .
ON AN INTEGRATION STEP, DUTPUT VALUES ARE GBTAINED BY '
INTERPOLATION ON THE FIRST STEP THAT {T-TOUT)*#H.GT.0.
INTERPOLATED VALUES FOR BOTH Y AND F ARE COMPUTED.
{NDTE THAT A . RETURN WITH IFLAG=3 IS ALWAYS MADE _
BEFORE TAKING THE FIRST STEP.)} . oo _ T s

TFINAL CONTROL IS RETURNED.TD.THE USER WITH IFLAG=4 WHEN
T REACHES TFINAL. IF TFINAL DOES NOT FALL ON AN INTEGRATION
STEP VALUES AT TFINAL ARE OBTAINED BY EXTRAPODLATION.

MXSTEP ON THE INITIAL ENTRY, AND ON ENTRIES
WITH 2.LT.IFLAG.LT.®& KSOUT IS SET EQUAL TO
KSTEP+MXSTEP.. AT THE END OF EACH STEP KSTEP IS INCREMENTED
AND COMPARED WITH KSOUT. IF KSTEP.GE.KSQUT CONTROL IS
CRETURNED TO THE USER WITH TFLAG=5. {THUS IF DELT IS
SUFFICIENTLY LARGE, CONTROL WILL BE RETURNED TO THE USER
WITH IFLAG=5 EVERY MXSTEP STEPS.)

KSTEP NUMBER OF INTEGRATIDN STEPS TAKEN {COMPUTED . . o e
-BY THE.INTEGRATOR.) - - S C

KEMAX=INDEX OF COMPONENT RESPDNSI&LE FOR THE

T
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VALUE OF EMAX (S5EE BELDW) .

EMAX=LARGEST VALUE IN ANY COMPONENT OF (ESTIMATED ERROR}/EP

" DRDINARILY THE.STEPSIZE IS .HALVED IF EMAX.GTo.l. WITH A
RECENT HISTORY UOF LOCAL ROUND—-DOFF PROBLEMS VALUES OF EMAX AS
LARGE AS 1 ARE PERMITTED. THE STEPSIZE IS NOT HALVED ON ANY
STEP THAT ROUND OFF ERROR APPEARS T(Q BE LIMITING THE PRECISION.

KQ(I)=HIGHEST DRDER DIFFERENCE USED IN TNTEGRATING
THE I-TH EQUATION. [COMPUTED BY THE INTEGRATGR)

YN=A VECTOR WI1TH THE DIMENSION OF Y USED TO STORE
THE VALUE OF Y AT THE END OF EACH INTEGRATION STEP.

DT=AN ARRAY WITH DIMENSION DT(17,NEQ) USED TO
STORE THE DIFFERENCE TABLE.

sNaltNeFeleloNoEnxNa ol aelalvNaReRalel

DOUBLE PRECISION TOUTsTL,TPD,TPD1,TPD2,HH,FAC
DOUBLE PRECISION DD,D;GAM;GAS,PT,TP '
DIMENSION DD{19)+D{28)sGAM{17:4),GA5(17), PT(lB)gFAC{3}
EQUIVALENCE(DD(2),D(1)}
- DIMENSION ETA(15915}

-

DATA KMAXDf4f . ' '
KMAXO IS5 THE MAXIMUNM GRDER DIFFERENT IAL EQUATION

THIS SUBROUTINE WILL INTEGRATE.

O o

DATA FAC/L.D0,.5005.1666666666666666667DQ/
FAC(J)=1/ (FACTORIAL J}y J=1325e-+MAX{2;KMAXO-1)

ao e

'DATA KQMAX/lé/ : '

KQMAX GIVES THE MAX.IMUM ORDER. .

THERE IS LITTLE POINT IN HAVING KQMAX MUCH BIGGER THAN THE NUMBER
OF DECIMAL DIGITS IN THE MANTISSA.

IF KQMAX IS SET LESS THAN 6, OT, Ds AND PT‘SHDULD BE'DIMENSIDNED

AS IF KOMAX=b6.

aCOOeo

DATA RND,KBIT2/8.88E-16,108/

- RND IS APPROXIMATELY 2%%#(3-8) WHERE B 1S

“ THE NUMBER OF BITS IN THE MANTISSA.

© KBIT2=2%B+2 WHERE B IS THE NUMBER OF BITS IN THE MANTISSA.
If THE DERIVATIVES ARE NOT COMPUTED 7O THE ACCURACY EXPECTED
FROM THE WORD LENGTH OF THE COMPUTER (FOR EXAMPLE BECAUSE OF

. CANCELLATION PROBLEMS OR TABULAR DATA), THEN THESE CUNSTANTS
CAN BE CHANGED TO REFLECT THE NUMBER OF BITS WHICH ARE
SIGNIFICANT IN THE COMPUTED DERIVATIVES. {THIS IS NOT NECESSARY,
BUT IS WISE IF THE ACCURACY REQUESTELD IS DIFFICULT TO OBTAIN
BECAUSE THE DERIVAYIVES HAVE SO FEW SIGNIFICANT DIGITS.)

ﬁﬁﬁﬁﬁﬁﬁﬁﬁ.ﬁﬁ

DATA P1,4P0L1 2P254P3EL/elr 01442543/
THE ABOVE DATA STATEMENT CONTAINS VARIOUS CONSTANTS
USED IN THE SUBROUTINE.

.. DATA PT/l D0y2.D0,4.,D0:8.00+216.00532.00,64.00,128.D0.,256. DO;f“
1 512.D0,10624.0042048.00,4096.00,8192. DO 16384.D0 32768 Do,

. 2 65536.00,131072.00/ :

c.. PTlJ}=2%%{J-1), J= 1:21-o-vKQMAX+2

C- - DATA PTSL PTSZ2:PTS3,PTS4+:PTSSsP5/las2e%eyBeylba,ye5/

DATA PTSL.PTS32, PTS4,PTS54+P5/1e22ey Baslbues5/

O,
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DATA GAS/1.D0s—.5D00,~8.333333333333333333D0-02,
— 4, 16666666666666667D-02,-2.63858888883868889D~025
~1,875D-02, C -1.42691798941798942D-02,
-1.13673941798941799D-02,~9.35653659611992945D-03,
—7.89255401234567.901D-03 ;,-6.78584998463470686D~03
~5,92405641233766234D~03,-5,23669325795028507D~03,
—4,67749840704226452D-03 4~4.214952239005472860-03,
~3,82689955321188442D~03,~-3.497349845349917650-03/

GAS{I) GIVES THE I-TH ADAMS-MOULTON CORRECTOR

CUEFFIC[ENTv i 1’2!-.- FKQMAX"'IG- . i

=N b WP

"DATA GAM{Ol,Ol)aGAM(OEyOl),GﬁM(O3 Dl)yGAM(04 OI)SGAM{OSIOl)f
* GAM{O6,0L).,GAM{ 0701} 4GAM{08,0L),GAM{09,01) :GAM(LD 01}«
* GAM{11l,01) sGAM{12,01},GAM{13,01),GAM{ 14,011 +GAM[15,01),
* GAM{ 16,01} GAM{17,0L)/ '
1 1.D0s5D0;.4l6666666666666666T005.375D0,
2 +3486111111111311111D00,.,329861111111121111100,

.3 e 315591931216931217D0:.304224537037037037D00°

4 . .294868000440917108D0,.28697544642857142900,

5 . .2801895964439361722004.274265540031599059D0,
6 .2690288B46773648774D0,.26435134836660651000,
T ..2601363961276010370045.256209456574389153D00,
8 .252812146729039235D0/

DATA GAM(OL,02) 4GAM{ 02,02} ,GAM{03,02) ,GAM{04,02) +GAM(05,02},
GAM{06;02) yGAM{07 ;02) ,GAM{08,02)+GAM{09,02)3GAM(10:02),
GAM(11,02) sGAM{12,02) +GAM(13,02),GAM(14, OZJ;GAM(ISvﬂz)'

g GAM{164+02)+GAM{17,02}/

7 .SDOya166666666666666666700:-125D07.105355555555555555600v
9.375D0~2, 8.561507936507936510-2, :

Te 95717592592592593D -2, 748522527689 594356D-2»

- Te103298611121111110-2,6,785849984634706860D0-2,
6.51646205357142857D-2,6.28403190954034208D~2,
6,080747929154943870-2+5.90093312346Q76062000-2
5.740349329817826630~-245. 59575975255986825D 2
5.46464392325006467D-2/

DATA GAM(01,403) ,6AM{0D2,03) ,GAM{03,03},GAM({04,03),GAM{05,03),

GAM{O@:O3)1GAM(O?7O3}16AM{08703)'GAM{09103}vGAM(10'03)y

GAM{11,03) +GAM{12,03),GAM{13,03),6AM{ 14,03} +GAM( 154031,

‘ GAM[lb,OB),GAMIlT 03)/

-« 1665666666666660666TD0s 4. 166666666666666670-21

2.9166666666666666T0-2,2.36111111111111111D~2,

2.03373015873015873D~-2,1.812996031746031750~2,
1.65181327160493827D-2,1.52772266313932981D~2,
1.42851881914381914D-2,1.34693965531639143D-2,
1.27836579217097570D0~2,1.219703882212389260-2, :

1.16879616455733216D~2,1.12408663352884755D-2, ' ' 2

1.08442182943468791D~-2,1.0489265544178428630-2, ‘ '

1.01692338611494262D-2/

DATA GAM{Dl:04) GAM({02,04) ,GAM{ 03, O4)|GAM(04:04}rGAM(051041v
GAM[06,04) +GAM{07,04),GAM(C08,04)+GAM(0F+04) +GAM( 10,04},
GAM{11,04) ,GAM{12,04)} yGAM{13,04}+GAM{14,04),GAM(15,04)},
GAM{16,04) +GAML17+04)/

4.16666666666666667D-2,8.33333333333333333D-3,
5.555555555555555560-3,4.36507936507636508D-3,
3.,678902116402116400-343.22365520282186949D~3,
2.895447530864197530-3,2.645435335988028432D-3,
2.4473749 1482283149D-3,2.285755438180524160~3,
2.15093669481483635D-3,2.03630871020228334D-3,
1.93741301123433302D-3,1.85102419106078320D-3,

O~ W N o

LN R I R N e B

TNV SN 3 N %



oDheoo

e e gL ees w e Can e g -

B 1. 7747637T4781296400D~3,1.706835646C52587230~ 3,

9 1.64585591005465158D0~3/

GAM{I,d) GIVES THE I-TH ADAMS—FALKNER PREDICTOR
COEFFICIENT FUOR INTEGRATING J-TH ORDER DIFFERENTIAL
EQUATIDNS! I=1ls2ya n-ogKQMAX“"lg J=.1.,2,»--,KMAXO.

DAT A ETALO1,01)+ETA{02,01}+ETA{O3:,01),ETA{O04,01),ETA(O5,01),
* ETALO60L1) sETA{OT ,01) ,ETAIOB,01}ETA(O9;01),ETA(LO+01),
* . ETA(ll 01)+ETA{12,01)4ETA({13,01),ETALL4,0L),ETA(15,0L}/"
L . 3.33333330£-01y 2.50000000E-01,

1 1-13636360E—011 6.73076930E~02, %4.60526330E-02, 3.43749980E-02,
2 2.71381590E-02, 2.22547310E~02, 1.87484580E~02y 1.61123220E-02,

30 1.40603000E-02y 1.24197060E~02, 1« 10802170E-02, 9:96793590E-03, -

4 9,.,03137260E~ ~03/

DATA ETA{OlgOZ)pETA(OZrOZ) ETA[03,02),ETA{Q4,02) ;ETALD05,02),
ETA{Q6,02) +ETA(OT »02) sETA(QB,02)ETA(09,02),ETA{10,021)
ETA(11,02),ETA(12,02),ETA(I13,02),ETAl14,02),ETA[15,02)/

: 2.00000000E-01y 4.00000000E-01+
. 3.40909090E- 019 2 0L923080E~0},s 1.3B157900E-0l; 1.03124990E-01+
~BL.i5144TBOE-02; 6.6T641930E~-02y 5.62453730E-02, 4-83369670Ef021
 4.21809010E-02y 3.T2591170E-02, 3.32406510E-02, 2.93038080E-02
2.70941180E-02/ '
DATA ETA(OL,03),ETALD2, 03195TA(03?03]FETA(04 D3),ETA(05,03)

o o 8

t

oo® CETALO6:03)sETALOT03) sETA(0GB,03) ;ETA{03,03),ETA{1D,03),
RO ETA{11503) ¢+ETA(12+03}+ETA{13,03),ETAl14,03),ETA(15,03)/
% 1.42857140E-01, 2.85T14280E-01,
1 -3.42857T140E-01, 3.46153840E-01, 2.45614040E~01y 1.87500000E-01, ... .~
2 1.50303650E-01, 1.24626490E-01; 1.05873640E-01y 9.15858320E-02,
3 8,03445710E-02y 7.12783130E-02+ 6.38220510E-02, 5.75925170E-02,
4 5.232196800E-02/ '
DATA ETALOL1,04),ETA{02:04) sETALO03,04),ETA(04,04):,ETAL05,04),
* ETA{06404) yETA{OT,04)sETAIDB504) yETAL09+404) sETATIO ;041 4
* ETA(llyD#),ETA(IZ,Gé),ETA(13g04} ETA{14+04),;ETA{15,04)/

* 1.11111110E-01y 2.22222220E-01,

1 2.857142805“011 2+53968250E~01ly 3.07C1l7540E-014 2.50000000E-014

2 2.08755060:£-01, 1,.78037850E-01, 1.54399060E~-01s 1.35682710E-01,

3 1.20516850E~01y 1.07997450E-01, 9.75059080E"02, 8.36038?205—021

& 8.09709320E-02/

DATA ETA(QOL, OSJyETA(OZfOS} ETA{03,05),ETA{D4, 05):ETA(O5 05)!
ETA(06:05) sETAICT »O05) yETA{OB+05) +ETA{DG,:05) ,ETA{10,051) 4
ETA111105)fETA(121D5}'ETA(13 05}, ETA{14,05),ETA{15,05)/

. 9.090%0910E-02s 1.81818180E-01+
2e 42424240E Oly 2.42424240E-01, 1.73160170E-0O1ls 2.50000000E-01+
2.2T7T32800FE~01, 2.05428290E~01y 1.85278B80E~-01; 1.56760B050E-0Q1,
1.52231820E-01ly 1.38853B60E~Cl,y 1.27181620E~-01y 1.16957100E-01,
1.07961240E-01/ '

OATA ETA(O1,06) ;ETA(Q2,06) yETA(O3,06),ETA{04,06),4,ETA(05,06]),
ETA{QGE.06)sETA{OT+06)}ETAI0B8;06) sETA(03,06),ETA{10,006) 4
ETALLLL06) JETA{L2+086)+ETA(L13,06):,ETAL14:06),ETA(15,061)/

T.69230760E-02, 1.53846150£-01,
2.09790210E-01, 2 237762206-01y 1.£8648C190E~-01, 1.11888l1CE~-01,
1.912955506-01, 1.91733070E-01, 1.85278BBO0E~-0)ly 1.7598B8460E-01l,
1.6576353086-01, 1.55516330E-01, 1.45680770E-0l, 1.36449950E-01,
1.27892540E-01/

DATA ETA[OL,07) ,ETA(Q2+07)+ETA{D3,07)ETAL04,07),ETA(D5,07),

* EYALO6,07) ,ETA{OT07)ETA(OB,CT)ETALO9,07),ETAL10.,07),

e ETA{11,:07) +ETA(L2,07) +ETA{13,07)ETA(L4,0T),ETA(L5,07)/

% ' 6. 66666660E-02, 1.33333330&-01,

1

2
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1.84615380£-01, 2.05128200E-01, 1.86480190E-0ls 1.34265730E-01,
6.96192690E~02, 1.39442230E~01, 1.52023690E-01+ 1.56434190E-01,

e ey C L e e n s e, %t TACITY A TRer £ Thatrby e e -



3 1.56012730E-01; 1.52787970FE-0ly, 1.47993160E~-01, 1.42382550E-01,

4 1.364187206-01/

DAT A ETA{Q1,08),ETA{02,08) ,ETA((03,08):;CTA[0%4,08) ,ETA{05,08),
ETALO6;,08) sETA{O7 ;08}ETA(O8,08)yETA{09:08)-:ETA(1050815
ETA{11,08) tETA(12,08)ETA{13,08B) ;ETA{14,08)},ETA{15,081}/

. 5.88235290E-02y 1.17647050E-01,
1.647058806-01, 1. 88235290 E~ Oly, 1.809954T0E~0Ly l.44796380E-01;
9.21431500E-02, 4.21225830F-02y 9.77255190E~-02, 1.14931240E-01,
1.25367380£-01, 1 30961120&—01, 1.33193850E-01, 1.33136920£-01,
1.31546610E-01/

DATA ETA{01,09),ETA{02,09),ETA(03,09>,ETAt04 09} sETAL05,09)
ETALD6409) sETALO7 s09) 4ETA{08,09),ETA[I09,09) ,ETA[10,091},
ETA(L1l, 091'ETA{12s09)sETAIl3 09)ETA(14:09)ETALL5,09)/

5.26315790E-02, 1.05263160FE~01y

1 48606BL0E-01y 1.73374610E-01, 1.73374610E-01; 1.48606810E-01;

1.06692070E~01, 6.09668970E-02, 2.49410030E-02; 6.63064840E-02,

B.35782520E-02y 9.62949390E-02, 1l.05153040FE-01, 1.10947430&—01,

1.14388350E-01/

DATA ETALD1:10),ETA(02:10]), ETA{03,10},ETA(04 10) ETALO0S54510)
ETA(C6,10) ,ETA{O7+10)sETA{0B+10) yETA{09,10)},ETA[L0:10)
ETA(II,IO)cETA(12le)1ETA{13;10),ETA(14,10),ETA(lE,lO)/

: : 4.76190480E~02y 9.52380950E~02,
1.353383506-01y 1.60401000E-01l, 1.65118680F~01, 1.48606810E-01,
1.15583080E-01¢ 7.54828240E-02y 3.,91930050E-02, 1.45159280E-02,
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8.89687070E~-02/
" DATA _ ETA(Olvll)gETAtozvll) ETA{O03:11),ETA{O4,11},ETA(O5,11},
' ETA(O6711) sETA{O7311) sETALOB:1) },ETA(O9,11},ETA{IO,11)
ETA[11911}sETALL2,311)ETA( L3101} ETALL4,11)},ETALLS,11)/
S : %.34782610E~02, B.69565210E-02,
1.24223600E-01ls 1.49068320E-01,y 1.56G14020E-01, 1.46453090E-01,
1.20608430E-01, B8.56148B760E-02, 5.168%3250E-02y 2.46135640E~02,
" '8.33088030E-03; Z2.8B2465160E-02, 4.03201180E—02, 5.13861540E-02,
6.1007T1000E~02/. .

DATA ETA{OL, 12),ETA(OZ,IZ}yETA{OBfIZ}vETA{04112}9ETA(05,12]:

ETA{OA+L2)ETA(OT,12) yETA(O8:12)}yETAL09,12) ,ETA({10,12},

ETA(llng),ETA{lZ 12) 3ETALL3,12)4ETALL14512),ETA{15,12)/ .

. 4. 000000D00F~-02, 7.95999990E-02,

fl.IQTBZBLGE—Ol? 1.39130430E~01, 1.49068320E-01y l.43105590E-01,

1.23020590-01y 9.37299770F-02, 6.20271900E~02, 3.44595500E-02,
1.51622020E-02y 4.72588120E~-03; 1.78691420E-02, 2.69906870E-02,
3.60496320E-02/

DATA ETALOLs13) ,ETALD2513) sETA{D3:13)ETA(04,13),ETAL05,13),
ETA{06,13)+ETALDT ,13),CETA{OB;13)4,ETA{09,13),ETA(L10413),
ETAULL,13)+yETA{12,13),ETA(13413),ETA{14,13),ETALL15,13)/

: ' 3.70370370E~02s T.40740740E-02, ‘
1.06666670E-01y 1.30370370FE-01s 1.41706920E-01, 1.39130430E~01,
1.236715006-01, 9.89371980E-02, 7.02974820E~02, 4.33935080E-02,
2.24625220E-02, 9.18921340E-03, 2.654661L70E~-03, 1.11137880E-02,
1. 7708569 0E-02/

DATA ETAlol,lq),ETAt02,14),ETA(03 14) yETA(O4,14) ,ETA(05,14),

T
B N N 2 A

#

M

K N

IO I SR )

* ETA{O691%4) yETA{OT414)+ETALO8,14),ETALOT,14) sETA(10,14),
* ETALL1Ll 414) 2ETA(12,14) ,ETA{L3,:14);ETA{14,14)+ETA(15,14)/
¥ 3. 44827580E 02y 6.896551TCE-02,

1. 9.96168580E~02y.1.22605360E-01,. 1.34865900E-01, 1.34865900E-01,
2 1.231384306~01, 1.02348820E-01, 7.67616190E-02, 5.11744)120£-02,
3 .2.96272910E-02, 1.43647470F-02y 5.492403406-03, 1.47872400E~03,

- 4 6.81096220E-03/ :

DATA ETA{OLl,15) ,ETALO02,15) +ETA{D03,15),ETA{04,15),ETALO05,15],

% ETALO6415) 4ETA{O7,15) ,ETA{0B+15),ETALO9,15),ETA(10,15},

4.37790860E~024 5.88469080E"02, Y;IQOOZDQOE—OZ,.8.13614340E—029,..
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ETA(LL;15) yETA(12,15),ETA{L3,15),ETA(14,15) ETA(15:15)/
3.22580640E-02y 6.45161290E-02,
9.34371530E~02, 1.15684090E-01y 1.28537880E-01ly 1.30515390E-01,
1.21814360E-01y 1.04412310E-01l, 8.17139820E-02, 5.77775630E-02,
3.63173250€~02, 1. 98094500E—02, 9.035889506-03, 3.24365270£-03,
8.17727570E-04/
ETA{I,J4) 1I=1, Zpoa-tJ IS USED IN THE FIRST MODIFICATION OF THE
I-TH DIFFERENCE DF A J-TH ORDER METHGOD AFTER THE STEPSIZE IS
HALVED.
ETALI,J) J= 192:-..91 1 IS USED IN THE SECOND MDDIFICATIDN DF
THE (J+1)-ST DIFFERENCE OF AN I-TH DRDER METHODs- -~ - - e
TAE Twl MODIFICATICNS OF THE DIFFERENCE TABLE AFTER HALVING THE

"STEPSIZE REMOVES MOST OF THE INSTABILITY INHERENT JIN THE METHOD.,
-USED HERE FOR. HALVLNG .THE | STEPSIZE."”__"” S o . S

IF THE GSTOP FEATURE is ELIMINATEb. REMOVE THE FOLLOWING CARD.

DATA LGSS, LGSD:LGSE!GvaO/ L '

INITIALIZE

KSTEP=—-1.

NE=NEQ . . .
IF {NELE.D) GD TD 1190
HH=H : . _
NV=0

KDMAX=0 .

KDD=KD (1}

KDS=KDD

DO 10 I=1l.NE

KQ(I}=1

DT{1,1}=0.D0

IF (KDS .LE.O) KDD=TABS{KOD{I})

IF ({KDD.EG.0)<OR{KDD.GTsKMAXO)) HH=0.DO
IF (KDD.GT .KDMAX).K.OMAX=KDD . L

NV=NV+KDD

IF ({DELT*HH}.LE 0. DO} GO TO. 1190

ERAMX=P1 .

EMAX=ERND

RNDC=RND*P25

LboUB=0 .

E2HFAC=P 25

LSC=8

LSTC=4 o ' ‘

LSC AND tSTC ARE USED I[N COMBINATION AS FOLLOWS

© LSTC=4, LSC=4 FIRST TIME THROUGH THE FIRST STEP
LSTC=3, LSC=4. SECOND TIME THROUGH THE FIRST STEP

: . {NECESSARY TO CHECK STABILITY}

LSTC=2, LSC=4 THIRD TIME THROUGH THE. FIRST STEP
. : . {ONLY OCCURS IF INSTABILITY POSSIBLE)
LSTC=2, LSC=2 SECOND STEP (IF KQUI)=2 4, I=1l;..eyNEQ)
LSTC=1, LSC=0 STARTING, ONE DERIVATIVE EVAL. PER STEP.

LSTC=1, LSC.GT.0 SET WHEN STARTING TWO DERIV. EVAL., PER STEP
LSTC=-1 LSC.LT.0 SET WHEN HALVING THE STEPSIZE
IN THE LAST TWO CASES LSC IS SET EQUAL TO LSTC#([MAXIMUM KQII)
+1). AT THE END DF EACH STEP IFf LSC.NE.O IT IS REPLACED BY
LSC-LSTC UNTIL LSC=0, AT WHICH TIME LSTC IS SET EQUAL TO 0.
WHEN DOUBLING M, LSTC IS SET EQUAL TO -1 AND LSC TO -3.
UNDER CERTAIN COMDITIONS WHEN KQ{I)=1, LSTC IS SET =-1 AND LSC=-5

D s e e e e ki ke i T At i e e et et e s e R iR



KSOUT=MXSTEP
TauUT=T
1IFt=13
20 TFLAG=L"
GO TO 315
END OF INITIALIZATION

ENTRY DVDQl

T0 DUTPUT VARIABLES IN THE CALLING SEQUENCE REMOVE THE -5

END OF CODE FOR PRINTING VARIABLES IN CALLING SEQUENCE.
IF {NEQ.NE.O) GO TO 28
NEQ=1
22 WRITE(6,5000) T DELTs HMINA,HMAXA KEMAX s EMAX  IFLAG, TFINAL MXSTEP
000 FORMAT(3HOT=1PD24.17,7H DELT=D12.5,84 HMINA=;E10.3,8H HMAXA=,
1 F10.3,8H KEMAX=,12,7H EMAX=E10.3,8H IFLAG=,12/ -
2 9H I KQ KDyTXy&HF([I) 29X s1HI512XsGHY {J} 522X SHYN(JID,
3 1ox THTFINAL=1PD15.8,9H MXSTEP=14}
N DO 24 1= lyNE
1IF. (KDS.LT.0} KDD=IABS{KB(I))
K=KDD
WRITE{6,5001) I,KQ{I} KOD» F(Ii,Jpth),vN[J)
5001 FDORMAT(1H ,12.213 1PD17.8514,2026.17)
© 23 J=J+l
K=K—~1 . .
IE {K.EQ.0) GO TO 24
WRITE(6,5002) JyY(J1,YN{J)
5002 EORMAT{26X, 14 $1P2D26.17)
‘ GO TO 23 _
"24 CONTINUE
WRITE{6,5003) .
5003 FORMAT (3HD 1,15X, L6 HDIFFERENCE TABLE)
DO 27 I=1,NE : :
KQQ=KQ(I)+1
K=MINO{KQQ, T}
WRITE{ 56,5004} 1,(DT(10, 11,10 1K)
5004 FORMAT(IH y [2,1PD19..8,6D16.7)

IF [K EQ KQQ) GD TD 27
K=K+1 ‘
. WRITE(6,5005) (DT{10,1),I10=K,KQQ).
5005 FORMAT{1H , 1PD21.5,7D14.5]
2T CONTINUE :
IF (NEQ.EQ.Q) RETURN
NEQ=0
28  CONTINUE
END OF CODE FOR PRINTING VARIABLES IN CALLING SEQUENCE.

ncwrwhcﬂrwn<ﬁran:ﬁrwncﬁCﬂrxnrﬁ(fnrﬁrwncﬂrar!néﬂrwrmhcﬁrincﬁFSﬁcwcwo<ﬁr1h

IF (2~-1FL) 30:60,320
30 IFf (IFL.GY.5) GO .TO 1180

C o
.C SET STEP STOP
. KSOUT=KSTEP+MXSTEP
IF [IFL-4)} 40,1210,210
C

T T T Y T AT T » e it e e e e Al S S

IN COLUMN ONE. OF .THE FOLLOWING CARDS UNTIL REACHING THE COMMENT .. .



40

50

oMo

OO0 00

60

SET PRINT STOP
TOUT=T+DELT

TPSl ABS{SNGL {DMOD ( {TOUT-T)/HH;2.D0))-PTS1)
LFD=-1 ,
IF (TPS1.GE.P5} LFD 1

LFD IS USED TD INDICATE WHETHER DOUBLING H IS PERMITTED.
IF LFD.LT.0 AT THE .END OF A STEP THEN DOUBLING H IS

NOT PERMITTED. THE SIGN OF LUFD IS CHANGED JUST BEFDRE THE
END OF EACH STEP. IF DELT#H*ZPOWER OF 2< THEN

OUTPUT VALUES WILL BE UBTAINED WITHOUT INTERPOLATION.

GD'TO 200

ENTRY WITH IFLAG=2

# ..

UPDATE DIFFERENCE TABLE .
AND COMPUTE KQM=MAXIMUM VALUE DOF KQ({I)s I=1:;2,e0.sNEQ.

KQM=0

DO BG I=Lle¢NE

70

oo

30

.- 100
110
120

130

140

. 150

KQQ=KQ(1I) ‘

IF {(KQQ.GT.KQM) KQM=KQQ
D{L)=F(1)

DO 70 K=1,KQQ
DIK+1)=DIK)-DT{K, I)
DT{K.I}=D{K]} ‘

DT (KQQ+1,1)=D(KQQ+1)

- CONTINUE

END GF UPDATING DIFFERENCE TABLE

STORE Y{J) . IN YN{J)
DG 90 .J=1,NV

yN{d)=Y{J)
- LFD=~LFD
TL=T

KSTEP= KSTEP+1‘

1F THE GSTOP FEATURE IS ELIMINATED, REMOVE THE 2 FOLLOWING CARDS.

IF {LGSS) 143C,110,1510Q

IFLAG=2 N

IF (LSC.EQ.O)} GO TD 140

LSC=LSC—-LSTC

IF (LSC.EQ.0) GO TD 130

IF (LSTC.NE.{~1)) GO TQ 140

IF (LDOUB.LT.O). RNDC—RND*Pl.

EZHAVE=E 2HMAX

TPS1=PTS1

GO TO 190

IF (ABS{SNGL{HH}}.LT.HMINA) GO TD 1000
LSTC=0 .o . o _
IF (LDOUB.NE. 1) GO 10 150

IfF {(LFD.GT.O}. AND.(ABS(SNGL{HH+HH)).LE HMAXA)) GO TO 1030
GO TD 200
ROMAX=PTSL1/FLOATIKQM+3)
IF {(LSTC.NE.Q)} GO TO 120
TPS1=EZ2HMAX/E2HAVE i
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200 _
- TPDI={(TFINAL-TL)/HH

160
170

180

-190

aixdsleNaNalaNaNaNalaNy

- 210

. 220

OO0

230

- 240

250

260

270

[F {(TPS1-PTSL1) 1604 190,170

F2HFAC=AMAXI{.O7T5E0 ,E2HFAC—RQMAX y EZHFAC*TPS])

G0 TO 180

TPS1=TPS1*TPS1

EZHFAC= AM[Nl(PTSlyEZHFAC*TPSl]

RNDOC=(1.1-E2HFAC)*RND

E2HAVE=P5* [ E2ZHMAX+EZHAVE)

ERRMX=AMAXL{PLlyERRMX~ RQWAX»TPSL]

E2HFAC IS A FACTOR WHICH IS<TAKEN TIMES AN INITIAL ESTIMATE OF
E2H TO GET A FINAL VALUE OF E2H. (E2H=ESTIMATE OF WHAT
{ESTIMATED ERROR)/{REQUESTED ERROR) WOULD BE IF H WERE
DOUBLED. }.

E2HMAX IS5 THE MAXIMUM VALUE OF THE INITIAL ESTIMATE DF £2H OVER..

ALL COMPONENTS WITH KQ{iI}.GTelse . .
EZHAVE IS A WEIGHTED AVERAGE UF PAST VALUES OF EZHMAX. .
THE VALUE OF E2HFAC TENDS YO BE SMALLER WHEN E2HMAX IS
CONSISTANTLY SMALLER THAN E2HAVE. :

CHECK FDR PRINT STDP AND FUR T REACHING TFINAL,
TPD=(TOUT~TL I /HH

IF THE GSTOP FEATURE IS ELIMINATED, REMOVE THE FOLLOWING CARD.
IF (LGSE.LT.0} GO TO 1780 :

"IF (TPDl.LT.FAC{1})} GU TO 1220

IF (TPD.LE.0.DO) GO TO 1280

CHECK FODR STEP STOP
IF (KSOUT.GT.KSTEP) GO TO 210

IFL 5

60 TO 310

CHECK TO .SEE IF ROUND’DFF ERROR I35 PRDMINENT
IF (EMAX.EQ. ERND) GO To 220 :
IT 15~ ,

'IFL 6

{EMAX.GE - Pl} GD T 310

'IF ({LSTC.GE.0) -OR. (LDOUB. EQ. 11) ERRMX= PTSl

IFL 1
T=TL+HH

START A NEW STEP

PREDILCT

J=0

DO 290 I=1:,NE ..

I {KDSLLE.Q) KDD= IABS(KD(i)]
KDC=KDD

KRQ=KQI(T])

TPD=0.D0O

K=KDC

TPD= TPD+DT{KQQ,I)*GAM(KQQ;KDC]
KQQ=KQO-1 :
IF (KQQ.GT.0) GU TO0 26Q

K=k-1

IF (K.LE.D) GU. TD 280

L=J+K

blo
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TPD=YN{L+1}*xFAC{K )+HH*TPD
GO TO 270
280 J=J+l
Y{JI=YN{JI+HHZTPD
KDC=KDC~1
IF (KDC .GT. 0) GU TO 250
290 CONTINUE

o END OF PREDICT
- C IF THE GSTOP FEATURE IS ELTIMINATED, REMOVE THE C IN COLUMN ONE
c OF THE 2 FOLLCWING CARDS o
C. IF {IFL) 20,320,300
. C 300 CONTINUE T
C AND THEN REMOVE THE 2 FOLLOWING.-CARDS. e e
oo IFCULFLY 126033200300 . v e oo IR
...300 IF [LGSD.NE.O}.GO.TO 1520 oo
C.oo. . ‘ : . .
310 IFLAG=IFL . : ‘
315 CONTINUE |
cC - . Sl ‘
o TO QUTPUT VARIABLES IN THE CALLING SEQUENCE REMOVE THE C IN-
C COLUMN ONE OF - THE FOLLBWING CARD.
C IF (NEQ.EQ.Q) GO TO 22
C S -
o ' "RETURN
C '
c . :
C .~ ENTRY WITH IFLAG=1
- 320 EPS=EP(1)
. ERND=0.
. EMAX=0.
) E2HMAX=0.
J 0 - B
 {LDOUB.GE.O) LDUUB*I
| N
C LDOUB 1S SET IN THE LOOP BELow 'AS FOLLOWS
L LDOUB=0  HALVE : .
C 1DOUB=1  DOUBLE _
c ib0ouB=2 . DD NOT DOUBLE
L ‘ . : : . .
c LDOUB,LT.0 AT THE BEGINNING OF THE LOOP INDICATES THE FOLLOWING
C - ==3 STEPSIZE HMAS JUST BEEN HALVED. IF A DISCONTINUITY IS :
C NOT INDICATED MODIFY THE DIFFERENCE TABLE AND REPEAT
C THE STEP. ‘ .
C =-2 STEP AFTER LDOUB=-3. PROCEED AS USUAL (ORDER IS NOT
C CHANGED)
C =-1 STEP AFTER LDOUB=-2. MODIFY THE DIFFERENCE TABLE ONCE
c AGAIN AND REPEAT THE STEP.
C IF LDOUB IS SET EQUAL TO -4 THE ORDER IN AT LEAST ONE COMPONENT
.c HAS BEEN GREATLY REDUCED AND THE STEP IS REPEATED.
C
C ) .
-C IF THE OUTPUT UPTION IS ELIMINATED, REMOVE THE 4 FOLLOWING CARDS.

- 1F . {NEQ.LE.0) WRIYE [64,5020).LSC,LFDyLSTCsKSTEP+EZHFAC yERRMXyHH
5020 FORMAT (19HO I KQQ LRND LDOUB,5X,LlHE,9X,3HEZH,
1 BXy3HEPS 33X 44HLSC=y13,86H LFD=412y7H L5TC=,12,8H KSTEP=,14,
2. 9H EZHFAL=,F4.248H ERRMX=4F4.2,4H  H=,1PD9.2)

2 ksl

C BEGINNING OF LOOP FOR CORRECTINGy, ESTIMATING THE ERROR,
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330

340

. 350

360

3?0
-380
390

: ?OO
410
420

430

440
450

AND ADJUSTING THE NUMBER OF DIFFERENCES USED

DO 790 I=1sNE
IF {KDS.LE.Q) KDD—IAES(KD(I))

KQQ=KQ(T1) )
KQQ GIVES THE URDER OF THE PREDICTOR FORMULA AND KQQ+1l THE

ORDER OF THE CORRECTOR FORMULA.

KQ1=KQQ+1

DI1)=F(I}

FORM THE DIFFERENCE TABLE FROM PREDICTED DERIVATIVE VALUES.
D0 330 K=1,KQ1 .

D{K+1)=DIK] DT{K,I) e e e D e

CONT INUE.-

DIK) GIVES THE (K l)-ST DIFFERENCE FGRPED FRDM PREDICTED
DERIVATIVE VALUES ,
TPS3=ABS({SNGL{DIKQQ+1)}]) : -

IF {LDBOUB.LT.0) GO TO 720 . i

IF (KQQ.NE.1) GO TO 520

KQ(I)=1 IS TREATED AS A SPECIAL CASE

© E2H=PTSZ

TPS5=0T(3;1) ~

IF (LSTC.LT.2)} GO TD 370.

FIRST STEP OF INTEGRATION

IF (LSTC.NE.4) GO TO 350

TP S4=0.

IF [KDD.GT.1) TPS3 AMAXl(TPSBsABS(SNGL(HH*D[l)il}

CLTRS3RTPS3#PL .. o e e e e e
GO TO. 510 » e

DTL2,1)=012) o
D(2)=D{11~DT(5,1)

TPS2=-D{2) .

TPS3=PTS5#ABS{TPS2)

FIRST STEP THAT K@{I)=1
DT(741}=PT(4)

IF (LSTC-2) 420,380,380

IF (TPS5.EQ.0.)} GO TO 360

IF [DT(651).EQ.0.D0) GG TU 400
TPS2=DT(5,1)-DT (1,1}

TPS4=DTl4,1)

TPS1=ABS{TPS4)

TPS&=TPS2%S IGNIPTS2,TPS4) ~TPS5%TPS1
IF (TPS4.GT.(~-TPS1)) GO TOD 410
TPS6=—PTS1

GO TO 450

FIRST STEP AFTER THE STEPSIZE HAS BEEN CHANGED
DT{6,1)=PT(1)}

TPS6=0.

GO TO 450

If (TPS4.LT.TPSL) GO TD 440

IF (TPS1.ED.0.) GO TOD 390

TPS6=PTS1 :

GO TO 450

KQ(I)=2 )

IF (2-LSTC) 510,510,520
TPS6=TPS4/TPS]

TPS4=TPS5+TPS6

IF (TPS4.LT.P25) GO TO 430




460
470
480

- 490

500

aleEe

510

DCOoOOOOOGO,

&N
{

520

INCREASE E2H IF (~-S).GT..25
E2H=PTS4*TP S4

IF {2-LSTC} 460,470,480

LSC=0 _ S

GO TO 510 _

IF {TPS5-P25) 430,460,460

IF {TPS4.GT.PTS2) GO TO 490

IF (TPS4.GT.P5) .D(2)=D(2)%*GAM{2;1)

GO TO 510 y

IF {TPS4.LT.PTS4).G0 TD 500 . .

TPS4=PTS4 -

D(2)=D{2)/PTi3) . : .
THE ESTIMATE GF E (AND HENCE OF E2H) IS INCREASED IF {-S).GE.8.

. IPS3= TPS3%SNGLIDT{741)). e e e e e

GO TO 510
D(2)=D{2)*DBLE(PTS2#(TPS4=PTS1) /{TPS4*TPS4) )

IF [TPS4.GE.P3EL) E2H=E2H*SNGL(DTI7+11)

STORE D(1)=PREDICTED DERIVAT.IVE AND D{(2)}=2%{CORRECTED Y -
PREDICTED Y)/H D{1) AND D(2) ARE USED TO COMPUTE (-$) ON

THE NEXT STEP. . . | |

DT(5511=D{1)}

DT(4,1)=D(2)

D{4)=TPS4 . _ _

STORE. Dl4)= CURRENT ESTIMATE DF {-SJ). [(~S}.GT.3 IS AN INDICATION
THAT THE STEPSIZE SHOULD BE LIMITED BECAUSE OF STABILITY PROBLEMS.
S=H*(ESTIMATE OF EIGENVALUE OF F)=H*(DIFFERENCE BETWEEN PREDICTED
AND CORRECTED DERIVATIVE VALUES)/(DIFFERENCE BETWEEN PREDICTED
AND CORRECTED INTEGRALS OF THE DERIVATIVE. VALUES) '

.THE TREATMENT OF THE CASE KQ{Il=1 COULD BE IMPROVED BY USING A
- SPECIAL METHOD FGR STIFF EQUATIONS WHEN {~-5).GT.3 {MAYBE).

{THE ENTIRE TREATMENT OF THE CASE KQ{l}=1l 1Is fFAR FROM IDEAL.)

DT{3, I}—Dié}

CORRECT . T d'..“m_l_“;n.. 
KDC=0. S
TPD=DXQL)

S J=JdHKDD

530

K=J
TPD=HH*TPD
KDC=KDC+1

- YIK)= YlK}+GAM(KQQ+l KDCI*TPD
K=Kl .

540

550
560

IF (EPS) 540,550,560
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IF (KDC.LT.KDD) GO TO 530
END OF CORRECT

EPS=EP{I)}

IF {EPS.NE.D.} GO TO 560
IF {HMAXA} 1190,780,1190
TPS4=ABS{SNGL(D(KQQ+2)))
TPS2=ABS {SNGL (D(KQQ)})
TPS6&=SNGL{HH) /EPS

E=ABS(SNGL [ GAS{KQQ+1) ) *TPS3#TPS6)
E GIVES ABS{(ESTIMATED ERROR)I/ZEPS}

LRMND=1

MEANS NO ROUND-OFF ERROR

LRND= 1
0 MEANS S50UME ROUND—-QOFF ERRDR

I

e T g g = A, P e s e 31T e e

L



-1 MEANS EXTREME ROUND-DFF ERROR

oo

FRND=RNOC*ABS (SNGL (PTIKQQ+2)%D(1)))
c CHECK TO SEE IF ROUND OFF ERROR IS DOMINANT
S ((TPS3+TPS#) -GTFRND) GO TO 570.
LRND 0
IF {(PTS4%TP52}). LT FRND) LRND——l

570 IF (E.LE.ERND) GO TO 590
. IF [E.LE.EMAX) GO TO 580
EMAX=E o | . - -
: KEMAX=1 o T :
580 IF {LRND.LE.O} GO TO 590
ERND=E
 IF {ERND.GT .ERRMX) LDOUB=0
. 590 IF (LDOUB.LE.0) GO TO 780
TPS1=ABS{ SNGL{DD{KQQ)) ).
TPS5=TPS1
IF (KQQ~2) 6005610, 620
.- 600 E2H=E*E2H
, IF (E2H.LT.POL} GO TO 780 o
"(SNGLID{4)).LT.P3EL) GO TO 770 N
LSTC——l o :
LSC=-5 o .
co 0 BDLTO TTO -
610 TPS1=TPS2 . S
. IF. {LSTC.NE.2) GO TO 620
KQ(T}=3 .
TPS2=0.
TPS4=0.,
.. LRND=0 -
620 LZ2H=TPSZ+TPS3+TP54 : . oo .
. E2H=ABS {SNGLIGAS(KQQ-1)*PT{KQQ+1) ) *E2H*TPSH)
C E2H IS USED AS AN ESTIMATE OF WHAT THE VALUE OF E WOULD BE
Cc IF H WERE DOUBLED. THE ESTIMATE IS CONSERVATIVELY LARGE.
IF {E2H.GT.E2HMAX] E2HMAX= =E2H

.. IF {LRND) 630, 640 660
'C EXTREME ROUND~OFF ERROR-—REDUCE EZH
. 630 K={KBIT2/KQQ)-4
: IF {K.LE.3} GO TOD 640
IF. {KeGT.KQMAX) K=KQMAX
E2H=E2H/PT{K+1) ,
GO 10 650
640 E2H=AMINI{EZ2H EZH*P3E1*E2HFAC§
650 E2H=EZH=Pl

TPS6=PTS4
o GO TO 670
. C .
. 660 E2H=E2H=E2HFAC
. TPS6=FLOAT{KQQ+2)
C-- - TEST TO SEE IF DIFFERENCES DECREASE MORE RAPIDLY THAN. NECESSARY
- C
670 IF (TPS5.LT.{TPS3+TPS6)) GO TO 680
~ IF (TPS2.LE.(TPS4%TPS6)) GO TO 760
C THEY DO INCREASE KQ(I) .
IFf [KQQ.NE.KQMAX) KQII1)=KQL
G0 TO 760 ,
C

- € TEST TO SEE IF DIFFERENCES DéCREASE TOC SLOWLY
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680

690
TO0
710

720

730

740

. 750

ﬂ

o ncﬂochrﬁn‘

170
780

- 190

800

810

TPS6=TPS&6%P25

IF ((TPSLeCGT(TPS3%TPS6}10R.ITPS2.GT. (TPS4%TPS6)) ) GG TO 760
THEY DO

IF (LSTC.LE.O) GO TO 750 . o -

IF {E2H.LT.POLl) GO TO 750

IF {LSC-LSTC) 690,750,770

IF (KSTEP-4} 750,700,710

KQi=L57TC

L5C=KQ1
END OF ONE DERIVATIVE EVALUATION PER STEP

GO 74O 770

AFTER HALVING H. REDUCE KQ(I} 1F A DISCDNTINUITY HAS DCCURRED.

IF (LDDUB.EQ.{~2}} GO TO 340 .

DT {KQQ+11)=D{KQQ+1)

IF (LDOUB.EQ.(—1)) DT!KQQ+1:I)—D[KQQ+2}

K=KQQ o :

IF {(K.EQ.1) GO TD 740 .

IFF ((DABS(DI(K-=1)).GT. (PTIZ)*DABSIDIK+1])TI OR.
(DABS{D{K))«GT{PT{2)*DABS{D(K+2})}})} GO TO 740

K=K-1

G3 10 730

IF I{K+KJ GE. KQQ) GO 1O 780

LbouB=
E2H=0.
KQQ= K+1

DIFFERENCES DECREASE TOOD SLOWLY REDUCE KOEI}.
KQ(I}=KQQ-1 P

.IF (KQQ.EQ.2) DT(3,13=0.D0 N

(E2H.LT.POLl) GO TO 780
LDDUB 2 . .
CONT INUE

IF THE OUTPUT QOPTION IS ELIMINATED, hEWDVE THE 6 FDLLUHTNC CARDS .

IF {(NEQ.GT.0) GO TO 790
TOZ2=MAXO{1, (KQQ-1}}
IN3=102+3

CHWRITE {(6.:5021) [wKQQ,LRf\DwLDUUB’E EZH;EpSr

tio1,D(1I01),101=102,103)

”5021 FORMAT (1H 12,14+215,1PE13.3, ZEll 3,4(3H (9[291H19510.3l)

CONTINUE

END OF LOOP FCR CGRRECTIVG, ESTIMAT ING THE ERROR, ETC.

IF THE INTERPOLATION CAPABILITY IS EL[MINATED REMOVE THE

FOLLOWING CARD. o S P
IF CIFL ek T 03 GO TO 12500 o wn s o e e oo o
CTEST FOR.CHALVING-H o0 oo i o e e o

IF (LDOUB) 80C4950,870
LOOUB=LD0OUB+1

[F (LDOUB+1) 810,870,820

IF [LDOUB.EQ.(-2)) GO TO 820

- DRDER IN AT LEAST ONE COMPONENT HAS BEEN GREATLY REDUCED

820

LDOUB=O
GO TO 220
DO 860 1=1,NE

i



- 870
880

890

- 900 IF

910
Q20
<930

. 940

.. 950

960

970

980

930

1000

1010

1020

KQQ=KQ{ 1)

TP=DT (KQQ+1,1)

IF (KQQ.LE.3) GO TO 860
IF {LDOUB.NE.OG) GO TO 840
DD 830 K=3,KQQ

SECOND MODIFICATION OF DIFFERENCE TABLE AFTER HALVING H .

DT (K I)=DT (K, I)+ETA (KQQ~- 19K 2)*TP
GO 7O 860 . -
DO 850 K=2,KQQ

FIRST MODIFICATIDN OF DIFFERENCE TABLE AFTER HALVING H

DTIK,I)—DT(K,11+ETA(K—1 KQQ-1)%TP . - - .
CONT INUE SR T
TFL=0

GO TO 240

IFL=2

IF {LSTC.LE.O} GO TD 300

IF {2-LSTC) 880:900,940

LSTC=LSTC-1 '

IF (LSTC.EQ.3} GO TD 890

IF (LSC) 920,960,920

1FL=1 -

GO TaQ 300 .
A{LSC-2) 910:;930,920

LSTC=0 S

LDOUB=2

GO TO &0

LSTC=1

L5C=0

GO TO 60

IF (LSC) 300 609300

HALVE H

HH=FAC {2 )*HH

IF (LSTC.LY.2) GO TO 990

ERND=P25¥ERND

IN LOOP TO FIND A NEW INITIAL STEPSIZE
IF (ERND.GE.PL1) GO TO 950

LSTC=4 - .

LSC=4

DB 970 TI=1.NE

KQili=1 - :

IF (LSTC-3) 890,890,1170

ENTRY AFTER IFLAG=T

1F (LDOUB.EQ.O) GO .TQ 990

LsC=1 ,

LSTC=1

GD TO 140

JEST TO SEE IF H IS TO0 SMALL FOR HALVING
IF (ABS{SNGL(HH)).GE.HMINA) GO TO 1040

I[F (IFL.EQ.7) GO TO 1010 '
IFL=7 :

GO TO 1020

HH=HH+HH
IFL=2
H=HH
GO TO 310




ERROR CRITERTA PERMIT DOUBLINCG
HH=HH+HH

IF. {LSTC EQ.1) GO TO 1050

LSC=

LSTC——l

CHANGE THE STEPSIZE

D0 1160 I=13NE

KOQ=KQ{I)

IF {KQQ.NE-1} GO TO 1070
DT{6,1)=0.00 ’ :

- D{3)=DT(3,1)%PT{2)

-1050

oEoO

1870

1080

1090

1150

1160
- I170

OO D

IF {D(3).GT.PT(3}) LSC==6
F.(LDOUB.NE.O) GD TO 1060

KQ#=8 . . '

IF (D(3).GE.PT(5)) DT{7,1)=DT{T,01)*PTC2} '

DI3)=DI3I/PTL3) - o o o
DT{3,11=D(3) - o

60 TO 1160

BEGINNING OF LDOP FOR CHANGING DIFFERENCE TABLE T
CORRESPOND TO NEW VALUE OF H '
DO 1080 K=1,KGQ -

DIK)Y=DT (K I}/ PTIK)

IF {LDOUB.EQ.O) DIK)~= D(Kl/PT{KJ

- KQQ2=KQQ-2

IF (KQQ2) 1160,1140,1090
DO 1130 J=1,KQ02. :
IF {LDOUB.NE.Q) GG T0O 1110

HALVE

K=KQQ

DIK-1)=DI{K—1)+D(K)

K=K~1 S |
IF (K+J-KQQ) 1130,1130,1100

DOUBLE

DO 1120 K=J,K0Q2
DIK+1}=D{K+1}-D(K+2)
CONTINUE

DO 1150 K=2,KQQ

IF (LDOUB.NE.O) DIK}=D(KI*PT{K)

DTIK,I)=DI(K}IFPT (K]

CONTINUE

DIFFERENCE TABLE NOW CDRRESPDNDS TD NEW VALUE OF H.

CONTINUE

H=HH

IF {(LDOUB.NE.O} GO TD 50
LFD=1

IF (LSTC.GE.O) GD TO 220
LDOUB=-3

LSC=LSTC~-KGM

GO TO 220 . A
END OF CHANGING STEPSIZE

IF THE GSTOP FEATURE IS ELIMINATED, REMOVE THE C

IN COLUMN ONE

B25



i C1180
Clisl

| 1180

1190

1200
4000

1210

)

| ol
A
AN
o

X

1280

OOONONDO000 OO

1240

1250

1260

oA 0

1260

1270

OF THE 2 FOLLCWING CARDS

IF {7-TFL) 1181980220

IF (IFL-8) 60,1200,600

AND THEN REMOVE THE 2 FOLLOWING CARDS.

K=IFL-5

GO TO (220,980,1200, 1J70r1570,1720 1720, 60,1480,1450 1630.1570) ¢« K

ILLEGAL VALUE OF PARAMETER 'INTEGRATIDN CAN NOT PROCEED
IFL=8 .. : L :

GO Y0 310

WAITE {6,4000) -

FORMAT (26HOIFLAG=8 IN CALL TD DvVbQl.)

STOP .

IF (T-TFINAL}) 200,1190,200

" IF ONE DOES NOT WANT THE INTERPOLATICN FEATURE, REMOVE ALL CARDS

BELOW-THIS POINT {EXCEPY FOR.THE END STATEMENT)s AND ADD THE
FIVE FOLLOWIMNG STATEMENTS.

iFL=4

If {TPDL.GT.TPD} GO TO 1280

GO 70 310 S

IFL=3

GO TU 310

IFL 4

IF {KSTEP.NE.O} GU TD 1270

TPDZ2=TPD

ESTIMATE ERROR NHEN EXTRAPOLATIUN FRDM INITIAL POINT IS REQUESTED
HH=HH*=TPD1*.75D0.

IF THE GSTOP FEATURE IS ELIMINATED, REMOVE THE FOLLOWING CARD.,
IFLS=IFL . o . . . .

IFL=—1

GO TO 230

IF THE GSTCP FEATURE IS ELIMINATED, REMOVE THE & FGLLOWING CARDS »
({LGSD.EQ.0}.CR.UIFLS.NE4)) GO TO.20. : oL o

LoSE“—l , :

TPD=FAC(1) L S

GO TO 1820 S o

HH =H . .

IF (EMAX.LT.POL) GO TO 1260 : '

ERROR IS.TOO LARGE, REDUCE H AND REPEAT THE FIRST STEP

IF (TPD1.LT.0.D0)} GO TO 1190 . . S

LDOUB=1 _ | | . -

EQND=FAC {11 /TPDL o .

ERND=ERND*ERND*P25

GO TO 950

IF THE GSTOP FEATURE IS ELIMINATED, REMDVE THE C IN COLUMN ONE
UF THE FOLLOWING CARD :

IFL=4

AND THEN REMOVE THE 2 FOLLOWING CARDsa

IFL=IFLS

IF { IFL.NE.4) GO TO 1790

TPD=TPDZ

IFLAG=3 :

IF (TPD1.GT. TPDl GD T0 1280 .

e e Tt
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T=TFINAL

TPD=TPD1

GO TO 1290
1230 T=TOQUT

IFL=3 ' ,
1290 IF ({TPD.EQ.0.DO0)}.AND. {IFLAG.LE.2)) GO TO 310

INTERPOLATE FCR OUTPUT
1300 TP=TPD
D(2)=TP . _
KOQ2=0 -~ e -
KDC=0 . g L
DI1)=PT(1)
DD(1}=PT(1}
DO 1310 K=2,KQM
DD(1)=DD(1}+PT{1) o , ;
TP=TP+PT {1} . . . . ‘ -
1310 D(K+1)=(D(K)%TP)/DD(1) ‘
GO TO 1350

COMPUTE THE INTERPDLATING INTEGRATIUN CDEFFICIENTS

~-1320. KQQ2=]

L=KQM-KDC
KBC=KDC+1
1330 IF (L.LE.Q) GG TO 1350
. TP=0.D0
K L .
=L+KDC

1340 JS J-K

oo O e

néwr:

TP=TP+GAS(K ) *D{JS+1)

K=K~1 - . :
CIF (K.GT.0) GO TO 1340
DLJ)=TP L

D{J4Y IS THE INTEGRATIUN CGEFFICIENT FOR THE INTERPDLATIDN WHICH
CORRESPONDS TO GAM(J-— KDC KBCla

L=L-1
GO TO 1330
END COF COMPUTING INTEGRATION CUEFFICIENTS

PERFDRH THE PART!AL STEP INTEGRATION
1350 4=0
: DO 1420 1= 1:NE
IF {KDS.LE.O)} KDD=1ABS(KDI{ 1))
IF {KDC.GT.KDD} GO .70 1410
_TP=0.00
KQQ=KQ{I)+KQQ2
1360 L=KQQ-KDC
' IF {(L.LE.O) GO TO 1370
TP=TP+D{KQQ}*DT(L,1)
KQQ=KQQ-1
IF {(KQQ} 1390,13590, 1360
1370 K=J+KDD .
L=KDC
1380 L=L-1
IF (L.EQ.Q0)} GO TO 1400
TP= TP*HH+YN(KI*FAC(L)*TPD
K=K-1
GO TO 1380

B ek e TR
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1400
1410
1420

OO0

o0
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o

FL1)=TP

GO TO 1420

Y (K)=YN{K)+HH*TP |
J=J+KDD | -
CONT I NUE

IF (KDC.NE.KDMAX) GO TO 1320

END OF PARTIAL STEP INTEGRATION

IF THE GSTOP FEATURE 1S ELIMINATED; REMOVE THE C TN COLUMN ONE
0F THE FOLLOWING CARD : .

GO TO 310 : C
ALL STATEMENTS BELDW THIS POINTY SHDULD THEN BE REMOVED (EXCEPT

FOR THE E£ND STATEMENT)

IF {(LGSE) 18060,310,1810
SECTION FOR COMPUTING GSTOPS.
ENTRY DVDQG {NG:NSTOP G +GT)

VARIABLES IN THE CALLING SEQUENCE HAVE THE FOLLOWING TYPES.

- INTEGER NG, NSTOP

DIOUBLE PRECISION GI13,GT(1)

A GSTOP 1S DEFINED AS A RETURN HHiCH IS MADE TO THE USER WHEN A

- USER SPECIFIED FUNCTION G PASSES THROUGH ZERQO. THE USER MAY

SPECIFY ANY NUMBER OF FUNCTIONS. G OF TWO TYPES. ZEROS OF THE FIRST
TYPE ARE LOCATED WITHOUT REQUIRING A DERIVATIVE EVALUATION
BEYOND THE ZERQ. THIS TYPE OF GSTOP REQUIRES THAT G BE EVALUATED

. BEFORE FACH DERIVATIVE EVALUATION. ZERODS OF THE SECOND TYPE ARE
CLOCATED USING INTERPULATION, WHICH IS MORE ACCURATE THAN THE

EXTRAPODLATION USED .IN THE PRECEDING CASE AND ONLY REQUIRES ONE

"EVALUATION OF G PER STEP. THUS ONE SHOULD USE THE SECOND TYPE OF

GSTOP IF POSSIBLE. USERS NOT USING THE GSTOP FEATURE NEED READ
NO FURTHER. : S . : ' ' :

- DVDQG IS USED AS A SET UP CALL TO INDfCATE A CHANGE IN THE NUMBER
‘DR TYPES OF GSTOPS. DVDQG SHOULD BE CALLED JUST BEFORE DR JUST

AFTER. CALLING BVDQ IF
1. ONE WANTS TO TEST FOR GSTOPS BEGINNING WITH THE FIRST STEP.

2. A JOB IS BEING RUN AFTER ANOTHER JOB THAT USES THE GSTOP

FEATURE. DVDQG MUST BE CALLED EVEN IF ALL THE VARIABLES IN
. THE NEW J0O8 ARE THE SAME.
IN ADDITION DVDQG MAY BE CALLED AT ANY TIME IN THE INTEGRATION
TO CHANGE THE NUMBER OR TYPE OF GSTOPS.

THE USAGE UOF THE VARIABLES IS GIVEN BELOW.

NG= THE NUMBER OF COMPONENTS IN G.TO BE EXAMINED FOR A ZERQ.
~ IF DVDQRG IS CALLED AFTER THE FIRST STEP OF THE INTEGRATION,

THEN G IS EVALUATED FDR THE FIRST TIME AT THE END OF THE
NEXT STEP AND THUS A GSTOP IS NOT DETECYED IF G CHANGES .
SIGN ON THE.CURRENT STEP. IF .IT IS .IMPORTANT THAT G BE
EVALUATED IMMEDIATELY SET.NG EQUAL TO THE NEGATIVE OF THE
NUMBER CF CDMPONENTS TO BE TESTED FOR A ZERO. SETTING NG
LESS THAN ZERO WHEN CALLING DVDQG BEFORE THE FIRST STEP IS
NOT NECESSARY AND IS LIABLE TOU BE DISASTERQUS. IF DVDQG IS
CALLED DURING THE INTEGRATION THE FOLLOWING STATEMENT SHOULD
BE A GO TD (THE COMPUTED GO TO FCLLOWING THE CALL TO pvDQl).

e e Lo s o
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NSTOP=THE NUMBER OF COMPONENTS OF G THAT MUST BE EXAMINED FOR
A ZER{) BEFDRE COMPUTING THE DERIVATIVES [FIRST TYPE OF
GSTOP). IF NSTOP.LT.O OR NSTOP.GT .ABS{NG) IFLAG 1S SET
EQUAL 8 AND AN IMMEDIATE RETURN IS MADE. IF NSTOP.GT.0.»
G{1)+1Gl2)see-3sG{NSTOP) ARE EXAMINED FOR A ZERO BEFDRE EALH
DERIVATIVE EVALUATION, THE REMAINING COMPONENTS (IF ANY)
ARE EXAMINED AT THE END OF EACH STEP. WHEN A GSTOP I35 FOUUND
THE SUBROUTINE SETS NSTOP EQUAL T0O THE INDEX OF THE
COMPONENT OF G RESPONSIBLE FOR THE STOP.

G= A VECTUOR CONTAINING THE CURRENT VALUES DF THE FUNCTIONS
- - WHUSE. ZEROS ARE TO BE DETERMINED. . : . :

GT= A VECTDR HITH THE SAME DIMENSION AS G USED BY THE
B SUBROUTINE FOR TEMPORARY STORAGE.

RETURNS FROM CALLING DVDQl WITH IFLAG.GT.8 SHOULD BE INTERPETED
AS FOLLOWS. {WE USE NSTOPI TO DENOTE THE INITIAL VALUE OF NSTOP.)
IFLAG . . .
= 9 LOMPUTE G[NSTDPI+1}1»--leABS(NGl} {THE COMPONENTS OF G WITH
ZERQS TO BE LOCATED USING INTERPCLATION). THEN CALL DOVDQl.
. NO RETURN IS MADE WITH IFLAG=9 IF NSTOPI=ABS{NG)}.
=10 COMPUTE G{1)5G{2).+-7GINSTOPI} (THE COMPONENTS OF G WITH
.. ZERDS TO BE LDCATED USING EXTRAPOLATION). THEN CALL DVDQl.
- NO RETURN IS MADE WITH IFLAG=10 IF NSTOPI=0.
=11 G{NSTOP} IS APPROXIMATELY ZEROD. IF THERE ARE NO
.. DISCONT INUITIES SIMPLY CALL DVDQLl YO CONTINUE THE INTEGRATION.
=12 GINSTOP) CHANGES SIGNy BUT THERE IS DIFFICULTY IN CONVERGING
- T0 A ZERG. THE .USER MAY WISH TO FMAKE. A SPECIAL CHECK TO BE

(el la ks R Rl a sl e N N e N N R N e N e e N N e e o R e e N

. 1425

1430

1440

1450

71460

- 1470

- 1480

1490

CERTAIN THAT EVERYTHING IS ALL RIGHT. TO CONTINUE THE
.. IMTEGRATIGN CALL DVDQl. . S -

DDUBLE PRECISION RG
DGUBLE PRECISION GI
DIMENSION GI{2),RG(3)

INITIALIZE FOR GSTOPS

NGA=IABS{NG)
LGSS=-NGA

LGSD=0

LGSE=0

IFLG=-20.

IF (NG} 1425,315,315
IFLG=—TFL .
TFLG=-IFL

LGSD=NSTOP

IF (LGSD} 1190,1450,1440
IFL=15 |

GO TO 1470 :
ENTRY WITH IFL=15
LGSS=0 .
[F (LGSD-NGA)} 1460,1480,1190
LGSS=LGSD+1 .
IFL=14

IFLAG=IFL-5

. 60 TO 315 . |
ENTRY WITH IFL=14

DO 1490 I=1,NGA
GTIII=G(1)

GO TO 1730
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1500

1510

-1520

1540
1550
1560

oot

1570
1580

1590

1600

"B28
END OF INITIALIZATICN FOR GSTOPS ‘

ENTRY TO EVALUATE. G AT THE END OF THE STEP
LGSE=]1 . _ _
[GK=1LGSS

IFLG=0

IFL=9

GO 1O 310 ‘ ’ '
ENTRY TO EVALUATE G BEFDRE EVALUATING THE DERIVATIVES
IFLG=TFL .

IFL=10

IFLAG=10

IGKM=LGSD

IGK=1 :

GO TO 315

IGK=IGK+1 . e . -
IF {IGK. GT.IGKMJ GD TO 1650.. R S
ENTRY WITH IFL=9,10, AND 17 L. ‘

TEST FOR G CHANGING SIGN

IF (G{IGK)*GT{IGK)) 1600,1580, 1590

IF (GT{IGK} .NE.O.DO) GO TO 1600

IF {TL.EQ.TG) GO TO 1560

IF (LGSE.GT.0)Y GT{IGK)I=G{IGK)

G0 TO 1560

G CHANGES SIGN —-. PREPARE FOR ITERATION TO FIND ZERO
NSTOP=IGK... ... W e e
NSTOPI=IGK L S _—

. ITFLGS=IFL

COMPUTE INITIAL VALUE FDR RG {= RATIB DF PARTIAL STEPSIZE HHERE

1618

1620

lalzia e

1630

1640

G IS5 KNOWN/THE INTEGRATION STEPSIZE)V

. IF (IFLG.EQ.0) GO TO 1610
RGI3)=FACIL]) :

RG(2)=0.D0

JIF [{IFLG.EC.2).AND, lIGK.LT LGSS)) RG{2)= FAC[ll

GG TO 1620 . - .
RG{3}=0, D0 |
RG{2}=—FACIL) .

IF-(LGSE.LT.0) RG(3)=TPD

LGSE=-3

GI(2)=GT{IGK) | S o

EP SGS=RND S L i
IFL=16 | S - - o
K=1

63 TO 1640 S | | _ - :
END OF PREP ARATION TO BEGIN THE ITERATION . o 3 S

ENTRY HITH IFL 16

ITERATE TO FIND GSTUP

K=1 .

IF (IGI{Zl*G(IGK)} GT.0.D0) K=2

IF [DABS(GI{K)).GY.DABS(GIIGK))) GO TO 1640
CONVERGENCE PROBLEMS » i
LGSE=LGSE~-] . : -
IF {LGSE.EQ.{-5)) EPSGS=PTS1

EPSGS=EPSGS*PT54

GI{KI=G(ICGK)

R3{K)I=RG({3} '
SECANT ITERATION (GIVES NEW PARTIAL STEPSIZE/H)
TPD= RG(l)-(GI(l)*(RG(Z)—RG(lI))/[61{2) GI{l))
T=TL+TPD*HH

— - o e A s e - " e Tysarde : - e s e =



1650
1660

oo

1670

- 1680

[}

1690

1700

1710

-1740

1760
e T=TL .

o~

i

1750

1770
1780

1790

1800

TEST FOR CUNVERGENCE OF ITERATION

IF {DABS{TPD-RG(3})).LE.EPSGS) GO TO 15690
RG(3)=TPD ?

GO TO 1300

IF {10-1FL) 1660,1700,100

IF {IGKM.NE.NGA) GO TG 1710

IF {LGSE.GT.(-3)) GO TO 1690

IF {LSTC.NE.4} GO TO 1670

ESTIMATE ERROR —— GSTOP IS THE RESULT OF EXTRAPOLATING FROM

THE INITIAL PUINT & :
TPD1=TPD : o
5L3)=TPD

GO 710 1230

IFL=11

-1F. [LGSE. LT.[“#J) IFL=12

IFLAG=IFL

~TEST TO SEE IF GS?DP IS PRECEDED BY. ANOTHER STOP

IF (({T-TOUT}*%HH.LEL0.DO)JAND. ({T~TFINAL)}*HH.LE.C.DD)) GO 7O 1300

IT IS

RG(3)=TPD

IFLS=IFL

GO 70 200

LGSE=1

IFL=1FLG

IF {IFL.LT.0) GU TO 20
IGKM=NGA

- IFL=1FLG

GD TO 310
IFL=17
IFLAG=9
TGKM=NGA
GO Ta 315

ENTRY WITH IFL=11 AND 12

SET PARAMETERS 7O INDICATE A GSTOP HAS BEEN FDUND
GT{NSTOPI}=0.D0 :
LGSE=1

IGKM=NGA

T6=TL S '

IF {IFLG) 174G,1760,1770

{F (IFL.LT.13} GO TO 1750

IF {(IFLG.EQR.[-20}} GO TOQ 100
IFL=~1FLG P I
GO TO 310

HH=H e

GO TO 200 . -
TPD=0.D0

LGSE=-2

GO T0 1300 ‘

1IF (IFLG-3) 220,200,200

1F [LGSE.EQ.{-1)} GO TQ 1790

- LGSE=~-1

GO TO 1220
TPD=RG (3}

- T=TL+TPD*HH . C Lo

IF (LGSE.NE.(-1)] GO TC 1670
IFL=IFLS ,
L3SE==3

63 TO 1680 :

IF {LGSE+2) 1550,1500, 310

T o, T
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1810 [IF
LGSE=-2
1820 [FLG=IFL
IFL=17
IFLAG=9 : o
IF [LGSD .GT. 0) GO TO 1530

»

OO AN ONAONO00CNCONON00nN

(TPD.LE,0.DO) GO TO 310

GO TO 1540 . . :
END OF SECTION FOR .COMPUTING GSTOPS .

IN SOME APPLICATIONS, FOR EXAMPLE M
ONE INTEGRATION SUBROUTINE IS REQUIRED. THIS 1S NOT NECESSARY IF
ALL OF THE VARIABLES ASSOCIATED WITH ONE INTEGRATION ARE SAVED
DUTSIDE OF -THE INTEGRATOR WHILE DOING OTHER INTEGRATIONS, AND..

- .THEN RESTORING . THEM WHEN. NEEDED. IHESE VARTABLES CAN BE RESTDRED
"BY CALLING AN ENTRY WHICH CONTAINS ALL OF THE VARIABLES IN THE
CALLING. SEQUENCE .AND ALL OF THE VARIABLES THAT MUST BE SAVED
WHENEVER CHANGING TO A DIFFERENT INTEGRATION. (THIS ENTRY MUST
BE ADDED BY THE USER AND SHOULD BE FOLLOWED BY A RETURN STATEMENT.
AFTER CALLING THIS ENTRY EITHER DVDQ OR DVDQl SHOULD BE CALLED
DEPENDING ON WHETHER THE INTEGRATION IS BEING STARTED OR NOT.).

- THE VARIABLES WHICH MUST BE SAVED ARES .

T NE SNV, KDSsKDMAX KSOUT (LDOUB sLFD s LSCHLSTC, IFL,IFLS,KQM

- ... ERND3QDEC, ERRMY, E2ZHAVE, E2HFAC, E2HMAXRNDL. (REAL)

. HH,TOUT,TL . {DOUBLE PRECISIOCN) :
IF THE GSTOP FEATURE IS USED, THE E
INTEGRATION, AND THIS INTEGRATION MAY RESULY IN ANOTHER GSTOPr
THEN SOME ADDITIONAL VARIABLES. MUST BE SAVED.

IN MANY APPLICATIONS NE(=NEQ)yNV(=SUM OF QRDERS OF THE
DIFFERENTIAL EQUATIONS) (KDS{=KD),AND KDMAX{=MAXIMUM ORDER OF ANY
DIFFERENTIAL EQUATION) WILL BE THE SAME FDR EVERY INTEGRATION,
AND-HENCE NEED NOT BE SAVED.. :

TC ELIMINATE THE GSTOP CAPABILITY,
541,703,745+ 7S1,1201, 1234,1239,1253, AND 1330.
THIS MAKES THE SUBRCUT INE SHORTER AND REDUCES OVERHEAD A LITTLE.

0 REMDVE THE INTERPDLATION CAPABIL
SEQUENCED 1070 AND 1219.

. .THE GSTOP FEATURE.MUST.ALSO. BE ELIMINATED SINCE IT REQUIRES THE
INTERPOLATION CAPABILITY. IF QUTPUT
{THEY ARE HIT EXACTLY IF HMAXALLE.ABS{DELT}, AND INITIAL H= .
DELTH{ 2%%(~K} )y K=0391s2+0a)9s THEN I
(T-TOUT)*H.GY.0 (SEE THE USAGE OF DELT}. IFLAG IS SET EQUAL TO 4

"ON THE LAST STEP THAT {(T-TFINAL)}=H.

THE OUTPUT COPTION GIVES OUTPUT OF V
INTEGRATION ON. EVERY STEP THAT NEQ.LE.O. [WHICH OF COURSE MUST
BE SET AFTER THE INITIAL CALL TO THE INTEGRATOR} TO ELIMINATE
THIS DPTION, SEE JUST BELOW CARDS SEQUENCED 834 AND 1057.

ULTIPLE QUADRATURE, MORE THAN

VALUATION OF G REQUIRES AN

-INSTRUCTIUNS FOR MAKING CERTAIN CHANGES fN THI'S SUBRDUTINE ARE
GIVEN THROUGHOUT THE LISTING. TO FI
BELOW. ‘ ‘

ND THESE INSTRUCTIONS, SEE

SEE JUST BELOW CARDS SEQUENCED

ITY SEE JUST BELOW CARDS

POINTS ARE NOT HIT EXACTLY
FLAG=3. ON THE FIRST STEP THAT
LE‘O.

ARIABLES USED IN THE

THE CHECK OPTION WHEN ADDED TD THE QUTPUT OPTION OUTPUTS EVERY
C VARTABLE IN THE CALLING SEQUENCE JUST AFTER ENTERING AND JUST

BEFORE LEAVING THE INTEGRATOR WHEN NEG=0. THIS OUTPUT IS

SOMETIMES USEFUL IN DEBUGGING A PROGRAM. TO INCLUDE THIS OPTION
SEE JUST BELOW CARDS SEQUENCED 613 AND 802.

END
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