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ABSTRACT

Testing and Analysis activities are summarized which were conducted under
Phase III of NASA/Langley Research Contraét NAS 1-10860, Evaluation of a
Metal Shear Web Selectivity Reinforeed with Filamentary Composites for
Space Shuttle Application. Three large scale advanced composite shear
web components were tested and analyzed to evaluate application of the
design concept developed in Phase I to a Space Shuttle Orbiter thrust
structure. The shear web design concept comsisted of a titanium-clad
+45° boron/epoxy web laminate stiffened with vertical borﬁn/epoxy rein-
forced aluminum stiffeners. The design concept was evaluated to be
efficient and practical for the application that was studied. Because
of the effects of buckling deflections, a requirement is identified for
shear buckling resistant design to maximize the efficiency of highly-
loaded advanced composite shear webs. An approximate analysis of pre-
buckling deflections is presented and computer-aided design results,
which consider prebuckling deformations, indicate that the design con-
cept offers a theoretical weight saving of 31 percent relative to all
metal construction. Recommendations are made for design comcept options

and analytical methods that are appropriate for production hardware.
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FOREWORD

This report was prepared by the Research and Engineering Division, Boeing
Aerospace Company, under NASA Contract NAS 1-10860, Evaluation of a Metal
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1.0 INTRODUCTION

This report presents the results of the third and final phase of a pro-
gram for the development of a practical advanced composite shear web
concept which is a candidate for near-term application to primary flight

vehicle structure. The program consists of three phases:

Phase 1 Shear Web Design Development
Phase II Shear Web Component Fabrication
Phase III Shear Web Component Structure Testing and Analysis

In Phase I [1], the Space Shuttle orbiter main engine thrust beam struc-
ture was selected for the shear web application study area because of the
high shear loading occurring in this area. The center-loaded thrust beam
was selected for study from an early orbiter configuration and has basic
dimensions of 40 in. deep by 200 in. span (1 m x 5.1 m). Design develop-
ment was then performed which involved computer-aided design and analysis,
detailed design evaluation, testimg of unique and critical details, and
structural test planning. Particular emphasis was placed on computer—
aided design to screen candidate concepts. Various web design concepts
having both boron/epoxy reinforced and all-metal construction were

synthesized by a computer-aided adaptive random search procedure.

A practical shear web was identified by the design concept evaluation
study in Phase I. This concept had a titanium-clad +45° boron/epoxy

web plate with vertical boron/epoxy reinforced aluminum stiffeners.



Detajled thrust beam drawings using the B;E reinforced design concept

and an all-titanium construction were prepared in Phase I. Weight trades
showed a 247 savings with the selected concept relative to an all-metal
construction, Cost per pound of weight savings was estimated to be less
than $250 (551 $ US/kg). Critical details and reliability considerations
for the B/E reinforced design were identified and structural element tests
were made to substantiate the design details. Cyclic load and tempera-
ture design environments were simulated in some of the element tests, A
significant outcome of the element test program was the determination of
titanium cladding reinforcement required to preclude failure at joints
and fastener holes. Two small scale shear web elements 18 in. by 25 in.
(45.7 cm x 63.5 cm) were tested to demonstrate the performance of the

basic web laminate details.

Phase II [2] activities were oriented primarily toward the fabrication
of three large scale B/E reinforced shear web test components. The test
webs were 36 in, high by 47 in. long (0.9 mx 1.2 m). Test fixtures

for the shear web test elements and the large scale web components were
also fabricated during Phase II. The center-loaded beam test fixture
was configured so that the test web components could be installed in

one half of the beam for each test. The test fixtures were fabricated

from available standard extruded aluminum sections and plates.

Phase III was concerned with structural analysis and testing of the
three B/E reinforced shear web components. The first web design was
established from the baseline B/E reiﬁforced shear web design developed

in Phase I. Slight changes were made in web depth and stiffener details
2



to simplify fabrication of the test web. Based on the static test
results of the first test web, improvements in analysis and fabrication

procedures were made to enhance shear buckling resistance.

The second test web was tested to demonstrate fatigue resistance; 400
loadings to a simulated limit load level were applied with no apparent
fatigue damage resulting in spite of high prebuckling deformaticns.
After post-test analysis, the second test web was delivered to the

Langley Research Center.

The third test web, shown in Figure 1 (frontispiece), was redesigned
using an imﬁroved computer-aided design procedure. Provision for longi-
tudinal stiffening and buckling analyses based on discrete stiffening
were added to the OPTRAN code used in Phase I; weight trades conducted
with the code indicated that longitudinal stiffening would be beneficial.
The static strength test results for the third web indicated that per-
formance of the design concept was significantly improved by the addi-
tional stiffening and was strongly dependent on shear buckling resistance

qualities.

Because of the importance of prebuckling deformations to leoad carrying
performance, an approximate prebuckling analysis procedure was studied
and incorporated in the Boeing OPTRAN code for the B/E reinforced web
concept, Weight trades were then conducted using OPTRAN code to
establish correlation with the third test web and final weight compari-

sons between the B/E reinforced concept and all-metal construction.



2.0 SUMMARY

The titanium/clad B/E shear web concept is evaluated to be practical and
efficient for the Space Shuttle thrust structure application that was
studied. This assessment is based on the test and analysis of three 36
in. high by 47 in. long (0.9m x 1.2m) shear web components having
titanium-clad +45° B/E web plates stiffened with vertical B/E reinforced
aluminum stiffeners and, in the case of the third web, a longitudinal
aluminum stiffener. The results of the shear web component tests, sum-
marized below, indicate shear web effiéiency is improved by shear

buckling resistant design:

MAX IMUM
LOAD
LB
TEST WER (M) . RESULTS
1 540,000 o Failed by composite panel
(2.4) fracture in post-buckling
condition.
2 530,000 ¢ No failure at maximum load
(2.36) after loaded 400 times to
400,000 1b (1.78 MN).

o Web had large prebuckle
strains during fatigue
loading.

o Web was in post-buckled
condition in final
loading.

3 575,000 o Stiffening optimized by

(2.56) computer-aided design.

o Failed by composite panel
fracture in a panel that
was in a prebuckled con-
dition.



A computer-aided design methodology, employing the OPTRAN code, was found
to be partially effective In establishing the final test component design;
the design ultimate load was 600,000 ib., (2,67 MN). A suitable (quick
execution) prebuckling analysis method was developed for incorporation

in the shear web OPTRAN code to treat the design comstraints of composite
and metal cladding strain in prebuckled panels. Based on a correlation
with the third web test and other design optimization cases, the ultimate
allowable composite strain in prebuckled panels will generally govern the
strength of highly loaded stiffened composite shear web configurations

of the type studied in this program. Because of the importance of pre-
buckling deformations and related hazards of low post-buckling strength,
the composite reinforced design concept will require more sophisticated
structural analysis than in the case of conventional metal webs for a
production hardware application. The nominal weight savings (without
weight penalties for edge joints, etc.) predicted using the final version
of the shear web OPTRAN code is 31% for a titanium-clad +45° B/E web

with B/E reinforced aluminum stiffening relative to a titanium web with
aluminum stiffeners. Replacing the B/E reinforced stiffeners with inex-
pensive all-aluminum stiffeners reduced the weight savings slightly to
28%Z. The all-metal stiffeners are recommended for first generation
hardware because of their expeéted lower fabrication cost and inherent
straightness (absence of residual thermal strains) after fabrication

which simpiifies shear web assembly.



3.0 TEST WEB COMPONENTS

3.1 DESIGHN

The three test web components were designed to simu;ate the design"
features and internal loads associated with the thrust structure appli-
cation shown in Figure 2. ' An objective in selecting the ;est web con-
figuration was to have large size and realistic design details se that
evaluation of the design concept could.be made without scaling problems.
The test components were sized 36 in. high by 47 in. long (0.9 m by

1.2 m) and had the general stiffener and web laminate details illustrated
in Figures 3 and 4. The test components were installed in one-half of

a center-loaded beam fixture for testing; the assembled test beam assembly
is shown in Figure 1 (frontispiece). Desipn criteria for the test and
webs are given in the Phase I [1] Report; a basic design requirement was
that the webs be buckling resistant. Detailed design drawings for the
test hardware may be found in the Phase II [2] Report and in Appendix D

(test web 3).
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Figure 5 summarizes the design approacﬁes taken for each test web, 1In
each test the goal was to exceed 600,000 1b (2.67 MN) and the rasults
would then be used to predict the performance of a production web which
would be designed for a higher beam chord strain than achieved in the

test fixture.

Test web 1 was configured with details from the baseline B/E reinforced
web design developed in Phase I [1]}. The analyéis methods, which were
used in Phase I as part of the shear web OPTRAﬁ code, indicated a failure
load of 640,000 1b (2.85 MN) whereas the actual failure load was 540,000
1b (2.4 MN). While the analysis methods were simple with respect to
allowing early incorporation with a computer-aided design procedure,

they were incomplete since they did not treat coupled plate/discrete
stiffener buckling. The assumption made of smeared stiffening in com-
puting general instability and the neglect of discrete stiffening require-
ments resulted in intermediate web buckling and failure by composite
fracture due to high membrane and bending panel strains in the post-
buckling condition. The results from the first web test clearly indi-
cated the requirement for shear buckling resistant design for maximum

composite shear web efficlency.

Test web 2 was designed to have higher buckling reéistance than test
web 1; the web laminate thickness was increased by addition of an addi-
tional adhesive filler ply at the mid-plane and stiffener bending
stiffness was increased by additional flange material. This test web

was tested under repeated loading to the effective design limit shear

10
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MAX

PREDICTED

TEST INITIAL SHEAR
TEST BIFURCATION| RESISTANT SHEAR RESISTANT DESIGN ANALYSIS APPROACHES
WEB LOAD BUCKLING | FAILURE
LB (MN) [LOAD LOAD
DESIGN SIMILAR TO FULL SCALE DESIGN (PHASE | REPORT) EXCEPT
FOR REDUCED SIZE AND STIFFENER. DESIGN GOAL WAS TO
DEVELOP MEMBRANE STRAIN OF 4710 ue IN NOMINAL LAMINATE
FAILURE AT BJE.
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LOCAL PANEL BUCKLING ANALYSIS BASED ON SIMPLY SUPPORTED
PANELS WITH HEIGHT SAME AS NOMINAL LAMINATE.
PREBUCKLING EFFECTS NEGLECTED.
NO FAILURE
AT 525,000 SAME AS ABOVE EXCEPT PANEL HEIGHT ASSUMED SAME AS WEB
(2.34) 425 000 215,000 CLEAR HEIGHT (INCLUDES REINFORCED WEB EDGES)
2 |AFTER 400 ' . RESULTING iN INCREASES IN STIFFENER AND WEB LAMINATE
cycLesto | (189 (3.18) STIFFNESSES REQUIREMENTS,
400,000
(1.78) ,
DESIGN ESTABLISHED BY COMPUTER-AIDED DESIGN APPROACH |
(OPTRAN CODE).
DISCRETE, NONECCENTRIC STIFFENING ASSUMED.
FAILURE AT gg4 gp0 600,000 | CLADDING LANDS ADDED TO STIFFENER ElI.
3 ?272230)00 (2.58) (2.67) COUPLED PANEL/STIFFENER GENERAL INSTABILITY. EFFECTIVE

SIMPLY SUPPORTED PANELHEIGHT ASSUMED SAME AS NOMINAL
PANEL HEIGHT.
PREBUCKLING EFFECTS NEGLECTED.

Figure 5: TEST WEB DESIGN/ANALYSIS APPRGACHES



load (Nxy) level. Except for a different assumption of effective web
panel height, the second web was analyzed similar to test web 1. Signi-
ficant prebuckling deformation developed at the limit load level such.

that the fatigue test conditions are categorized as 'worst' case.

Test web 3 was designed to be buckle resistant at an ultimate design
load of 600,000 1b (2.67 MN). An improved version of the shear web
OPTRAN ccde was used to establish the design. An analysis was included
in the OPTRAN code for coupled plate/stiffener buckling considering
discrete transverse and longitudinal stiffening. Discussion of this
analysis and related assumptions is given in the Design Analysis Methods
Section (Section 9.0). The test failure load of 575,000 1lb (2.56 MN)
was less than the design load; however, the web was in a prebuckled
condition (shear resistant) at the time of failure. The reduced pre-
buckling deflections and improved performance of this test web verifies
that the general design requirement for buckling resistance is necessary
for efficient highly loaded composite shear webs. This test alsoc demon-
strated the need to treat prebuckling deformations as they are influenced
by initial imperfections; this area of analysis is discussed in the

Design Analysis Methods Section.

12



3.2 TFABRICATED DETAILS AND DIMENSIONS

Detajls of the test webs are shown in Figures 6 and 10. The webs have
similar details except for the third web which has closer transverse
stiffener spacing and a longitudinal central stiffener. Detailed design

drawings of the third test web are included in the appendix.

Detail dimensions of the test webs are given in Figures 11 to 13. These
dimensions were determined from measurements of the fabricated hardware.
The values shown for laminate part thicknesses are average values; small
variations occurred due to chem-mill tolerances, resin flow and stock
material tolerances. Since the variations were small, the structural

analysis results reported herein are based on the dimensions shown.

3.3 TEST BEAM FIXTURE

The center—loaded test beam fixture was designed to provide (1) a
convenient means of testing the shear web components, and (2) realistic
web-to-chord attachment details. As can be noted in Figure 10, standard
7075-T6 aluminum sections and high streﬁgth steel fasteners were used in
the fixture. Cover plates with wvarying lengths were used to provide
uniform strain conditions at the web edges. Due to the expected
repeated use of the fixture, the chord strain due to beam bending was
limited to approximately 1,500 ue along length of the beam. During the

three web tests, the beam fixture functioned in a satisfactory manner.

13
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Figure 5: TEST WEB 1 ASSEMBLY
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Figure 7: TEST WEB 2 ASSEMBLY
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TEST WEB 3 SUBASSEMBLY

Figure 8




Figure 9: TEST WEB 3 LONGITUDINAL/TRANSVERSE STIFFENER CROSS-OVER DETAILS
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TEST WEB 3 ASSEMBLY

Figure 10
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4.0 TEST PROCEDURES

, Figure 14 lists the test beam loads applied in the three shear web com-
ponent tests. All testing was done at room temperature. The first and
third tests were conducted to failure. The second teét was terminated
in the 411th loading when strain gage data indicated that proportional
limit strain was reached in the titanium cladding of the web laminate.
This web was then examined for fatigue damage and later shipped to

NASA/Langley.

The test webs were instrumented to record Moiré fringes (buckling dis-
placements), strains, vertical and lateral deflections and acoustic
emissions. A summary of the test instrumentation used in the first test
is given in the test plan contained in the Phase I [1] Report; the
instrumentation used in the second and third tests was essentially the

same as in the first test.

The general test set—up is shown in Figure 15 and 16. The test beam
was laterally supported at the ends and at the center where the loading
was applied. Rollers were used to provide simple supports at the beam

ends.

The test web responses were monitored by a particularly effective method
known as the Moire fringe technique (3). Equipment used to acquire Moire
fringe data appears in front of test web side of the beam. A light

source (the box with focusing lens) directs a strong light beam to a
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TEST WEB 1
STATIC STRENGTH TEST

TESTWEB 2
LOW-CYCLE FATIGUE TEST

TEST WEB 3
STATIC STRENGTH TEST

1. 250,000 LB
(1.11 MN)

2.t0 102. 100 CYCLES TO
400,000
(1.78)

103. 540,000 FAILURE
{2.40)

4. to 404,

405,

406.

200,000 LB
(.89 MN)

400,000
{1.78)

400,000
(1.78)

400 CYCLES
TO 400,000
(1.78)

436,000
(1.94)

449,000
(2.00)

407.

408,

409.

410,

411.

450,000
(2.00)

425,000
(1.89)
490,000
(2.18)
490,000
{2.18)
530,000
{2.36)

NO
FAILURE

1. 200,000 LB
(.89 MN)

2. 575,000 FAILURE
(2.56)

Figure 14: TEST BEAM LOADINGS
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SHEAR WEB COMPONENT TEST SET-UP

5..

1

Figure



Figure 16: MOIRE FRINGE INSTRUMENTATION SET-UP



mirror located on the floor which reflects the beam to g mirror mounted to
the glass Molre grid panes mounted on the test web component. A camera
was positioned in front of the web to record the Moire fringe patterns

developed during testing.
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5.0 TEST DATA SUMMARY

The observed test results are summarized in Figure -17. These results
will be analyzed and discussed in detail in the following sections. The
results that are unique or important to the evaluation of the composite

design concept are:

Lack of post-buckled strength
High low—cycle fatigue resistance

Evidence of time dependent lateral web deflections

5.1 LOAD/DEFLECTION DATA

The load/center deflection responses are given in Figure.18. The non-
linear response is due to slippage in the test beam assembly and web
buckling deflections. The stepped response of test web 3 is a result

of time-dependent lateral web deflections which occurred in load hold-
ing periods during the final loading; this response will be discussed in

the Time Dependent Response Section (Section 6.4).
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TEST WEB MAXIMUM LOAD COMMENTS
540.000 LB FAILED BY COMPOSITE FRACTURING IN POST-
1 @ 1 MN) BUCKLED PANELS AT A 1.5 MAX, LOAD TO
° BIFURCATION BUCKLING LOAD RATIO
LOADED 400 CYCLES TO 400,000 LB (1.78 MN) -
WHICH PRODUCED 0.1 IN, (2.54 MN)} MAXIMUM
PANEL PRE-BUCKLING DEFLECTION
530,000 LB
2 (2.36 MN) WEB WAS IN POST BUCKLED CONDITION AT
MAXIMUM LOAD
NO APPARENT DAMAGE OCCURED
FAILED BY COMPOSITE FRACTURING AT HIGH
PRE~-BUCKLING PANEL STRAINS
3 575,000 LB FAILURE OCCURED WHILE HOLDING MAXIMUM
(2.56 MN) LOAD (2.1 MINUTES)
EVIDENCE OF SMALL TIME-DEPENDENT LATERAL
WEB DEFLECTION RESPONSE

Figure 17: SHEAR WEB COMPONENT TEST RESULTS SUMMARY
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Figure 18: LOAD/DEFLECTION RESPONSES



5.2 STRAIN DATA

Principal strain data from strain gages at or near critical panel deflec-
tion areas are shown in Figures.l9 to 21. The other strain data that

was recorded is presented in Appendix A, The strain data reflects the
increase in buckling resistance obtained in going from test web 1 to 3.
Web laminate bending (buckling) deformation is indicated in the plots by
a deviation of the respective strains from the back-to-back gages. The
influence of initial imperfections is apparent in the case test web 1
(which had the highest initial flatness imperfection) wheré the web
bending response initiated at low load. Test web 3 was relatively

buckle resistant until near the fallure load.

5.3 MOIRE FRINGE PATTERN DATA

The Moire fringe patterns recorded at selected load levels are pre-
sented in Figures 21 to 25 for test web 1, Figures 26 to 29 for test
web 2 and Figures 30 to 34 for test web 3. Patterns for test web 2

and 3 at other load levels are given in Appendix B.

The instrumentation parameters for each test are listed as follows and
are defined in Reference [3]. The grid density was decreased after the
first web test to improve pattern resolution at high deflection

magnitudes.
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fWeb/grid : Lateral

separation Grid Incidence deflection
Test Web gap density angle sensitivity
inch . lines/inch inches/fringe order
(om) (lines/mm) degrees (mm/fringe order)
1 0.17 100 61° 0.0055
(4.32) (3.94) (0.140).
2 0.75 33-1/3 58° 0.01875
(19.1) (1.31) (0.476)
3 0.75 33-1/3 60° _ 0.01730
(19.1) (1.31) (0.439)

The attachment points of the glass grid‘panes can be seen in the figures;
a three point mounting arrangement was used for each pane to isolate the
pane from the central web deflections., Glued pane splices were used and
they can be seen along the web centerline. The shadows from these
splices are indicators of the buckle deflections. In the second test,
horizontal tape stripes and short posts bonded to the stiffeners cast
shadows which assist in defining the deflection state. The post shadows
indicate stiffener rotatiom in terms of shadow movement from an initial

reference mark,

The Moire fringe patterns for the first test web at zero load after 100
load cycles (Figure 22) indicate a level of imperfection on the order

of +0,016 in (0.406 mm) deviation from a mean flat surface. This
imperfection resulted, as described in Reference (2), from unsatisfactory
aluminum built-up shim stéck placed between the stiffeners and the web
laminate (shims used on the second and third webs were molded plastic

material). Several perbutations are visable in the pattern where shim
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layers ended and the web laminate was distorted by fasteners in areas of

partial shim contact.

As the first web was loaded, the resulting Moire fringe patterns indicate
severe buckling deflections. Coupled plate/stiffener buckling is evident
by the intersecting of panel fringes with stiffeners. The critical
buckle area is in the center panel; a set of rosette strain gages is
located at the center of this panel close to the buckle peak. Because

of high buckle deflections, the glass grid panes came in contact with

the web and were fractured at 500,000 1b (2.22 MN). 1Initially, the

panes were spaced 0,17 in (4.32 mm) from the web panels.
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Figure 22: TEST WEB 1 MOIRE FRINGE PATTERN AT ZERO LOAD AFTER 100 LOAD CYCLES
T0 400,000 LB ( MN)
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Figure 23: TEST WEB 1 AT 300,000 LB (1.33 I!N)
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1.82 MN)

0,000 LB (

TEST WEB 1 AT 41

Figure 24
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Figure 25: TEST WEB 1 AT 497,000 LB (2.21 [IN)
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The second test web is shown in Figure 26 at zero load. Initial flatness
imperfections were also introduced in this web during final assembly.

The imperfections grew slightly during load cycling to about level of
+0.014 in (0.356um) deviation from a mean flat surface. This growth in
imperfection is attributed to slippage between the stiffeners and the web
laminate (the fasteners were non-hole filling and were torqued to low
level to avoid laminate crushing). At the cyclic load level of 400,000
1b (1,78 MN), the maximum prebuckling panel deflection is on the order

of +0.1 in (2,54 mm) or about one-half laminate thickness. Coupled
plate/stiffener pre— and post-buckling is clearly displayed in Figures

28 and 29, respectively. Significant stiffener rotations are indicated
by movement of the post shadows. A set of back-to-back rosette strain
gages are located close to the critical buckle in the upper part of the

panel second from the left.
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Figure 26: TEST WEB 2 MOIRE FRINGE PATTERN AT ZERO LOAD BEFORE LOAD CYCLING
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Figure 27: TESTWEB2 AT ZERO LOAD AFTER LOAD CYCLING
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Figure 29:
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Test web 3 displayed high stability during loading until about 500,000

1b (2.22 MN) when buckle-like deformations initiated in the upper parts

of the two right most panels (Figure 32). As loading proceeded to failure,
the critical prebuckiing deformation developed in the second right panel
with evidence of coupled plate/stiffener response. The estimated initial
imperfection in this area is +0.003 in (0.076 mm) based on measurements

and the initial Moire fringe data. There was a slight thickness under-

run of the web laminate in the critical buckle area (2) and this, along
with the proximity to the loading area, is believed to have triggered

the buckling response.

Non-linear strains were recorded by a strain gage just above the panel
third from the left (on the reinforced laminate area, 5G-19 in Appendix

A). These strains and the Moire fringe patterns shown in Figure 34
indicate that buckling type deformations were extending into areas near

the chord angles; e.g., the effective panel height was greater than the
nominal laminate panel height. An assessment of the effective panel height

is given in the Buckling Analysis/Test Correlations Section (Section 8.3).
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Figure 31: TEST WEB 3 AT 400,000 LB (1.78 MN)




(2.22 [IN)

TEST WEB 3 AT 500,000 LB

Figure

48



(2.45 MN)
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TEST WEB 3 AT 550,

Figure 33.
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TEST WEB 3 AT 575,

Figure 34
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5.4 ACQUSTIC EMISSION DATA

High and low frequency acoustic emissions were recorded during the web
component tests, Unlike the results obtained in tension element testing
in Phase I [1], the web component emission data was difficult to
interpret. Emissions having a signature like composite fracture did
occur momentarily at failure. The test beam assembly was noisy during
loading due to local slippages and the webs responded as microphones to
background laboratory noise. These annoyances made analysis of the
recorded emissions difficult but it is believed that damaging composite

fracturing did not occur in any test except when failure occurred.

5.5 ©POST TEST INSPECTIONS

Inspections of the web components after testing revealed no areas where
local design detail improvements would be necessary. The joint and
reinforced laminate areas appear to have functiomed properly. Figures
35 to 37 show the first and third webs after failure. The "brittle"
nature of failure of this type of construction is apparent in the
figures, Fracturing extends into the edge joint areas although the

failures originated in the buckled pamnels.

Ultrasonic scans were made of the second test web (fatigue test compo-
nent) before and after testing and the scan recordings are shown in
Figures 38 and 39, There are essentially no differences in the signa-

tures except for those due to a change in sonic scan power level. In
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Figure 35: TEST WEB 1 AFTER FAILURE




Figure 36: TEST WEB 3 AFTER FAILURE (FRONT SIDE)
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Figure 37: TEST WEB 3 AFTER FAILURE (REAR SIDE)
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Figure 39: TEST WEB 2 ULTRASONIC SCAN AFTER TESTING
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the post-test scan X's appear on signatures of tape stickers used for
marking purposes; these signatures should be disregarded. Along the
edge areas of the web laminate delamination signatures occur around
certain holes, These delaminations were produced when the holes were
drilled, as discussed in the Phasg IT Report [2]. Overheating and
up—lift foreces produced by the drill bit resulted in some delamination
of bond lines between the metal cladding and s;ep—lap joint details.

Testing did not aggravate any of these delaminated areas.

X-rays taken of the corners of the third test web indicate that the
step-lap joint details performed satisfactorily. The B/E reinforced
transverse stiffeners also appear to have functioned without premature

failure in all testing.
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6.0 TEST DATA ANALYSIS

6.1 FAILURE MODE ANALYSIS

Based on analysis of the strain and Moire fringe data, the first and
third web components failed by composite fracturing in the critical
laminate panel areas. The strains in the extreme B/E plies in the
principal compression direction due to membrane and bending exceeded
the assumed desigﬁ allowable B/E strain of 6000ue. The associated
surface strains caused the titanium-cladding to slightly exceed the

proportional limit for biaxial strain conditions.

6.2 FORCE/STRAIN ANALYSIS

The force/strain (F/S) data plotting procedure was emploved to estab-
lish the bifurcation buckling loads of the test webs; these buckling
loads are correlated with analytical predictions in Section 8.3. This
' procedure, also referred to as the force/stiffness technique [4], was
an effective data analysis method for the shear webs that were tested.
Bifurcation buckling (sudden buckling)} did not actually develop in the
first and second webs because large deflection effects produced a

smooth transition from pre-buckling to post-buckling conditions. The
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use of the F/S technique allowed definition of the classical theoretical
bifurcation buckling load in these tests. The F/S plots also served to
define the bifurcation buckling loads in the third web test in which a

post-buckled condition did not develop.

Figures 40 to 45 are the F/S plots for the initial and final loadings

of the web components. P/e, is plotted against P where P is the beam

B

load and Ex is the web laminate bending strain determined from the
principal compression strain given in the Strain Data Section (Section
5.2). The bifurcation buckling load ié defined as the linear extrap-
olation of the prebuckling response to the load axis for the initial
load condition. For correlation with analytical buckling predictions,
the initial load condition 1s used wherever possible rather than the
final loading.‘ The final loading response is.generally different
(gives a higher extrapolated buckling load) because of cyclic load
effects on initial imperfections and internal load distributions. The
development of large deflection and post-buckling résponse is clearly

diéplayed where the F/S plots diverge from the linear prebuckling

condition.’

During load holding periods, the third web developed time-dependent
response which appears as steps in‘the F/S plot, Figure 44. The inter-
esting aspect of the F/S plot is that loading after a given hold period
produced a return to a hypothetical curve associated with a steady
loading rate. This behavior is attributed to creep response occurring
in a different mode than the elastic plate flexure mode. As loading

is continued, the elastic mode of deformation is restored as the
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Figure 40: FORCE/STRAIN PLOT FOR TEST WEB 1 INITIAL LOADING
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dominant mode causing a return to the.hypothetical curve. Figure 44
is shown here to illustrate the time dependent response which will be
discussed in Section 6.4. Figure 45 is & magnification of the final
portion of the F/S plot and is the basis of the bifurcatién buckling
load definition.. The earlier response shoﬁn in Figure 44 is not
appropriate for buckling loa& definition because of the remoteness of

the strain gages from the critical buckle area.

The F/S plot can alsc be developed directly from Moire fringe data;
Figuré 46 is a F/S plottfor the third test wéb. The plot was consfructed
by counting fringe orders (%) from a reference point to the critical
buckle peak and then using N as a bending index in place of bending

strain, eg, used previously.

66



L9

300 |-

200 -

REFERENCE N = 0 AT
GLASS SUPPORT POINT

—— Nth FRINGE
ORDER
.

580,000 LB :
(2.58 MN)

| | |

400 500

BEAM LOAD P 103 LB

25

Figure 46: FORCE/STRAIN PLOT FOR TEST WEB 3 FINAL LOADING



6.3 MOIRE FRINGE ANALYSIS

The Moire fringe patterns from the web tests were analyzed by a curve
fitted procedure to establiah the strain conditions precisely at the

critical buckle peaks. This strain data complimented the strain data
obtained from the strain gages in close proximity to the critical |

buckles and was used in subsequent analysis activities.

Figure 47 shows the critical buckle area in the third web at fhe faiiure
ioad. The deflected surface was Surve§ed in the principal compression
strain direction to establish coordinates of the fringe orders; both
manual surveying and electronic data digitizing equipment (Bendix
Digitizer) were employed in the surveys. The coordinate and fringe
order calibration data were fitted to a deflection function of the form
shown in the figure; the fitting was done by manual and computer aided
methods. A wavelength of 1ﬁ5 times the stiffener spacing was an assumed
deflection function parameter. By differentiating the defleétion func-
tion twice, the panel bending curvatures were established; local strains
in the laminate were computed from the product of bending curvature and

a coordinate of the material from the neutral laminate surface.

Figures 48 to 50 show strains computed for the test webs. As shown in
the figures, the total strain at a given point in the laminate is the
superposition of membrane and computed bending strain from the Moire
fringe daté. In tests one and two, the membrane strain response is
taken as fhe initial linear strain gage data. For test web 3, the

membrane strain response was computed from data generated using the
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NASTRAN code; this was done to account for increased internal loads
near the loading area whefe strain gages were not applied. Good

agreement was obtained between the comﬁﬁted strain response and the
strain gage data. In general, the computed strains are higher than
the measured data because the strain gages were not applied exactly

at the peaks of the panel buckles.

6.4 TIME-DEPENDENT RESPONSE

During load holding periods in the third web test, time—dependent web
deflection response was evident. Figure 51 shows the load-time history
of the final loading. During the hold periods, the various test data
were raeviewed prior to resumption of loading., The time dependent

response is revealed in the F/S data (Section 6.2) and in other data.

Figure 52 represents lateral panel deflection versus load measured by a
deflection indicator (linear differential transformer type). The steps
in the response indicate lateral deflection growth occurring during load

holding periods.

Figure 53 shows the Moire fringe pattern at the beginning of the holding
period at 500,000 1b. (2.22 MN). The growth in deflection can be noticed
by comparing this pattern with the pattern at the end of the hold period,

Figure 54.
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Figure 54: TEST WEB 3 AT 550,000 LB (2.45 [MN) AFTER 5 MINUTE LOAD HOLD PERIOD
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While the existence of timemdependent.response is not of concern in the
thrust structure application, the response may be important to other
applications and therefore a brief study of the source of the fesponse
was conducted. The time-dependenf respﬁnse was concluded to be primarily
due to inter-laminar shear creep in the polymeric parts of the web

laminate and, to limited extent, to slippage at stiffener interfaces.

An approximate transverse shear analysis in the critical buckle area was
conducted based on the Moire fringe pattern at the failure load (Figure
34) and the principal compression load resultant from the NASTRAN code
(discussed in Section 7.0). As illustrated in Figure 55, the critiecal
buckle area can be ideazlized by a simple corrugated mode whose para-
meters can be determined by analyzing the fringe pattern. The maximum
plate surface slope can then be found by first differentiating the

mode slope (deflection function) or by direct calcuiation of the
deflected surface slope. The transverse plate shear is approximated by
the product of slope and compression load resultant; this gives a

value that is below the actual shear because biaxial and curvature
effects are neglected., The maximum inter-laminar shear stress éomputed
from the tramsverse shear using classical laminate analysis is on

the order of 3,300 lb./in.2 (22.7 MN/Mz). It is believed that the
actual shear stress level is above 3,300 lb./in.2 level and that it
would then be sufficient to promote creep response in the B/E plies and
the adhesive plies in the web laminate. The largest component of the
creep response is probably contributed by the adhesive plies; the

aggregate adhesive ply thickness was 0,045 in. (1.14 mm) versus a
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combined B/E thickness of 00,0816 in. (2.07 mm) so a substantial amount
of unreinfdrced adhesivelmaterial was present in the third web laminate.
Shen and Rutherford [5] found METLBOND 329 adhesive was susceptible to
viscoelastic and micreyielding response at low stresses particularly

under shear loading.

In order to establish sensitivity to inter-laminar shear creep, several
laminate test specimens were cut from remnants of the first test web.
The specimen configuration was rectangular and is shown in Figure 56.

A typical inter-laminar shear failure appears along the edge of the
tested specimen. The specimens were tested in the manner illustrated
in Figure 57. The specimens were tested similar to conventional inter-
laminar shear techniques except that a two-point loading was used and
specimen size and load points were selected to develop measurable
deflections, A typical deflection-time test data plot is showm in

Figure 57.

Data from the specimen tests were analyzed in terms of shear strain

rate as defined in Figure 58. Several load holding time periods were
used in the testing and the respective results are plotted in the
figure. In keeping with the characteristic response of cross~linked
polymers like the epoxy materials in the web laminate, the average
strain rate decreases with increasing hold period. The data indicates
that measurable creep response can occur at inter-laminar shear stresses
down to 3,000 lb./in.2 {20.7 MN/MZ) and in load holding periods such as

experienced in the third web test.
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(5.08 x 12,7 CM,)

Figure 56: INTERLAMINAR SHEAR CREEP TEST SPECIMEN
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7.0 FINITE ELEMENT STRUCTURAL ANALYSIS

Finite element analyses were conducted to compute membrane strain condi-
tion in the test webs. The NASTRAN code, level 15 [6], Boeing Computing
Services version with SAIL input preprocessor was used for this purpose.
Element properties that were input are shown in Figures 59 and 60 (the

elements shown are specifically for test web 2).

Figure 61 presents computed strains for test web 1; the strains agree
with measured strains in the initial linear region. The mean computed
strains deviate from the linear finite element analysis at higher load-
ing reflecting the development of large deflection (''diagonal tension')
effects. The membrane strain results were useful in subsequent analyses

of the prebuckling deformations as described in Sections 6.3 and 9.3.

Figure 62 illustrates linear analysis deflection results obtained for
the second test web; the deflection pattern is characteristic of a shear
web. In comparison with the load/deflection test data (Sectien 5.1),
the predicted stiffnesses of the test beam assemblies are within 5% of

the actual test wvalues.

Finite element buckling analyses were also conducted using the NASTRAN
code. Computed buckling loads for a single panel of the test web 1
orthotropic laminate were reasomably accurate only with a fine ideali-
zation consisting of triangular elements (CTRIAL); computed buckling

loads are compared to an analytical solution by Sekerzh-Zen'Kovich [7]
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in Figure 63. This same idealization w#s used in the test beam assembly
models. However, as indicated in Figure 64, the computed buckling loads
for variocus stiffening eccentricity assumptions were in consjderable error
relative to the extrapolated test bifurcation load defined by the F/S data
in Section 6.2. A plot of the computed critical mode shape for test web 2
appears in Figure 65; the plotted shape has gimilar mode inclination as
the mode displayed by the test Moire fringe pattrns given in Section 5.3.
The finite element buckling analysis was not pursued further because of

excessive computing cost associated with the large test web model.
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8.0 BUCKLING ANALYSIS/TEST CORRELATIONS

The results of the three web tests were correlated with the results from
computer—aided buckling analysis of simplified web configurations. The
purpose of this study was to determine criteria for effective web height

and effective stiffening which might be useful to other applications.

8.1 STRUCTURAL STIFFNESSES

The structural stiffnesses used in the buckling analyses are presented
in Figure 66, These stiffnesses were computed by classical laminate
analysis [8] and conventional engineering analysis. Bending stiffness
tests were conducted on specimens cut from the first and third test
webs to verify selected computed values. Also, bending tests were per-
formed on selected stiffeners from the test webs to verify the computed
bending stiffnesses, The calculated torsional stiffness for the
stiffeners on the first test web was verified by torsion testing. In
calculating stiffener stiffnesses, none of the web laminate nor web-to-

stiffener eccentricity effects were included.
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Figure 66: STRUCTURAL STIFFNESSES USED IN BUCKLING ANAL ?SES




8.2 RITZ BUCKLING ANALYSIS

An existing Ritz energy buckling solution was adapted to the analysis of
the test webs, This solution was developed in support of the Boeing SST
Program for use in computing bifurcation loads of transversely stiffened
orthotropic shear webs [9, 10}, Coding for this solution was extended
to treat the conditions shown Iin Figure 67. The modified code is

called the WEBBUC code and was verified by analyses of the design con-
figurations shown in Figures 68 and 69. The accuracy of the buckling
solution is dependent on the number of terms taken in the assumed
deflection function in the Ritz method; consequently, numerical tests

of the type shown in Figure 69, which pertain to an analysis of test

web 1, were conducted to establish requirements for the size of the
computed buckling determinant. Since the Ritz method is presented

in the literature, discussion concerning its theoretical aspects will

not be given in this report.

8.3 BUCKLING ANALYSIS/TEST CORRELATIONS

Numerous analyses were performed using the WEBBUC code in which the
height of an effective, simply supported web was varied. Figures 70 to
72 show the computed critical shear buckling loads versus effective web
height for the respective test webs. Also shown are the test shear
loads given by dividing the bifurecation buckling loads, defined by the

F/S data (Section 6.2), by the total web height.
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Both test webs 1 and 2 appear to have effective web heights on the order
of the nominal laminate panel height. The reason for this 'is buckling
Occurs in the central portion of the high aspect ratio panels and is

not significantly influenced by the web edge conditions.

Test web 3, having a longitudinal stiffener, had smaller panels and the
test data indicates panel deflections occurred near the beam chords,
therefore the effective web height lies between the nominal laminate
height and the clear height between chord angles. Because of the large
cut-outs that were present in the longitudinal stiffener, the stiffness
of this stiffener was not fully effective. Assuming a 507 longitudinal
stiffener effectiveness results in an effective web height of 29 inches
when comparing the test versus the predicted buckling loads in Figure
72. This correlation is, of course, subject to interpretation. In a
future analysis situation, one would be conservative by computing the
buckling load based on the full clear web height and some reduced

effective longitudinal stiffener stiffness.

In all of the correlation studies, it was found that satisfactory
correlation could only be obtained when stiffener stiffnesses were
calculated on the basis of an uncoupled stiffener section, neglecting
the web laminate parts and web-to-stiffener eccentricity. "An explana-
tion of this is that the stiffener/web assembly fasteners were non-
hole filling and were not tightly torqued (to preclude damaging the
web 1amiﬁate) which does not provide a strong shear-tie. During

buckling deformation, slippage probably occurred between the stiffeners
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and the web so that the stiffeners were loaded primarily in bending.
In a production program, studies of fastening methods should be under-

taken to improve stiffener/web interaction.

As indicated in Figure 72, beam bending loads were included in the
buckling analyses for test web 3. The effects of beam bending on the
test results was determined to be insignificant in a shear/bending load
interaction study. Figure 73 shows the results of this study. While
the test webs had low beam bending loads, the effects of load inter-
action must not be neglected in buckling analysis of "shear resistant"

production webs which will frequently have high beam chord strains.

In Figure 71, linear buckling analysis results from the STAGS code [14]
are shown. The STAGS code which is based on a finite difference energy
solution approach, became operational later in the program and its use
in analysis of production hardware is recommended. A particular
advantage of the STAGS code is its capability to perform non-linear
pre—- and post-buckling analyses in an efficient manner. For the
analyses shown, the input structural properties (orthotropic laminate

stiffnesses, etc.) were the same as used in the WEBBUC code analyses.
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‘9.0 DESIGN ANALYSIS METHODS

Design Analysis methods were established in Phase III to provide a basis
for analyzing the composite reinforced shear web concept in applications
different from the test conditions in this program. The methods pre-
sented In the Phase I Summary Report, while suitable for design
screening purposes were revised and amended to include treatment of all
important responses experienced during the web component tests. The
methods given herein are approximate and are reported with the intention
of providing guidelines for analysis of preliminar& designs for other
applications of the design concept. While the methods were used in

this program in a computer-aided design code {OPTRAN), the methods are
suitable for manual analysis. Appendix C presents all of the analyses
that are required for preliminary design analysis; the following

discusses the methods developed in Phase IIT,

9.1 SHEAR BUCKLING ANALYSIS

The shear buckling analysis method given in Phase 1 (in which smeared
stiffening was assumed) was found to be inadequate on the basis of the
test results and therefore was revised to treat single central longi-
tudinal stiffening and discrete stiffening. The analysis, givén in
Figure 74, was developed by curve fitting the data of Cook and Rockey
f12]. Fof a given design, the shear buckling coefficient is first
found for the case of no longitudinal stiffening (KSI). This coeffi-

clent is then multiplied by a magnification parameter (n) to produce
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the shear buckling coefficient for the case with longitudinal stiffening
(KSTL). The buckling coefficients are a function of effective web
depth (Hp), trangverse stiffener spacing (Ss), transverse stiffener
bending stiffness (EIT), longitudinal stiffener bending stiffeners

(EIL), and web plate bending stiffeners (D A comparison of the

ll)'
fitted-equations with data from Cook and Rockey [12] for cases with and
without longitudinal stiffening are shown in Figure 74: also shown is
the equation used to calculate critical shear buckling load. While

the data fit is reasomably good for preliminary analysis of the shear
web configurations studied in this program, the fit should he checked

for other cases against the original Cook and Rockey data or data from

annother scurce (for example, the STAGS code).

9.2 BENDING BUCKLING ANALYSIS

The analysis of local panel buckling under beam bending loads is accom-
plished with the data given in Figure 75. The WEBBUC code described

in Section 8.1, was used to compute buckling coefficients for high
panel aspect ratios not treated in the literature {(Bleich [15]). As

in the analysis of shear buckling, the computation of critical bending
buckling load is by a relatibn from isotropic plate theory. This
simplifying approach is slightly conservative for the metal-clad
laminates developed in this program because the metal-clad laminates
have exceés twisting stiffness (D33) compared to isotropic plates

with equivalent bending stiffnesses.
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9,3 PRE-BUCKLING BENDING STRAIN ANALYSIS

The problem of pre-buckling bending strains can be treated in a wmanner
analogous to the imperfect column problem. That is, given an initial
mode shape, find the resultant deflected shape under load. The method
is simple for a column, but in the case of a shear web, it is compldi-
cated by (1) the presence of initial imperfections unlike the critical
mode shape, (2) need for critical mode shape definition, and (3) large
deflection effects. An approximate analysis was established for the

purposes of this program by adopting the following assumptions:

1. The initial imperfection has the same shape as the critical
theoretical bifurcation buckling mode.

2. The magnitude of initial imperfection of a fabricated panel is
the deviation from a mean flat surface.

3. The critical buckling mode is a skewed local panel buckling mode
(stiffeners are unbuckled and form the vertical panel nodal lines)

4, The pre-buckling magnification of initial deflection is a function

of the critical theoretical buckling load interaction criterion.

Figure 76 illustrates the skewed mode shape model that was adopted;
this mode shape has been used in classical shear plate buckling analy-
sis (Timoshenko [13]). The associated plate bending curvatures are
obtained from the deflection surface equation by double differentiation
with respect to the panel coordinates; the important maximum curvatures

cccur at the buckle peak.
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The resultant curvature strains are given by the product of initial

curvatures and a magnification factor of the form:

where - the first term is the load function and the (-1) term compensates
for the unloaded initial condition. The use of square root with the
critical buckling load interaction criterion parameter (R) is required
because of the squared terms in the classical shear + bending inter=-

action relation (given in Appendix C).

The total strains in the laminate materials are found by superpoesition
of the membrane web strains and the curvature-induced strains, as shown
in Figure 77, taking into consideration the material coordinate from the
laminate's neutral surface. Strains in the composite plies are calcu-
lated in the respective ply coordinates by classical l§minate analysis.
Stresses in the metal-cladding are given directly by the product of the

elastic coefficient matrix and the total cladding strain vector.

The prebuckling strain analysis method was checked with the web compo-
nent test results. Figure 78 lists the estimated local panel buckle
parameters used in the analysis. WI’ Ly anq f were determined for each
test web from the Moire fringe patterns at final load levels. The

PCr values are the extrapolated bifurcation loads from the F/S plots

1/2

and are used in place of R in the magnification factor. The material

coordinates (ZM) were established from the data in Figure 11.
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P
TEST | WIN | LyIN | Ly IN cr
i Y Zm IN 3
WEB | mm) | mm) | mmy | ¢ DEG (MM) 10° L8
(MN)
0.016 6 18 00911 CLADDING | 460
1 (0.406) | (152.4) | (467.2) 66 (2.31) SURFACE (2.05)
0.014 6 19 0.0966 CLADDING 518
2 (0.356) | (152.4) | (482.6) 65 | (2.45) SURFACE (2.30)
0.003 5 14 0.0543 EXTREMEB/E | 580
3 {0.076) {127.0) (355.6) 60 (1.38) SURFACE (2.58)

(A"

Ly (ESTIMATED FROM MOIRE FRINGE PHOTOGRAPHS)

L
le——2—p ASSUMED EQUAL TO STIFFENER SPACING

Figure 78: ESTIMATED LOCAL PANEL BUCKLE PARAMETERS



Figures 79 to 81 show the predicted prebuckling strains compared to the
actual strains (computed from the Moire fringe data and presented in
Section 6.3) for the respective test webs. The agreement between the
predicted versus the actual strain is good in the pre-buckled regimes
of each test (before large deflection effects appear). In the case of
the third web, the comparisons suggest the initial imperfection level
is on the order of +0.003 in. (0.076 mm). A reduction in initial
imperfection, while producing a proportional change in bending strain,
does not produce a large change in load at a constant critical strain

level of, say, 6000uc.

9.4 BEAM CHORD CRUSHING LOAD

"

An analysis was included for.transverse web "crushing" loads due to
beam chord curvature associated with beam flexure. The analysis
requires an assumption of chord load which is used with chord strain
and web depth in a simple relation (shown in Figure 86}, to yield the
transverse web crushing load. The web crushing lcad is used, as shown
in Appendix C, in the computation of web material stresses and strains

but is not considered to be important in the analysis of web buckling

loads.
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10.0 COMPUTER-AIDED DESIGN WEIGHT TRADES

10.1 MODIFIED SHEAR WEB OPTRAN CODE

The OPTRAN code for stiffened metal clad composite shear webs emploved
in Phase‘I for concept screening [1, 16] was revised with the analysis
methods discussed in the preceding section. The revised code was then
used to study the behavior of the third test web and to establish final
weight trades for production hardware. Figure 82 summarizes the fea-
tures of the modified OPTRAN code. Details concerning the OPTRAN code
may be found in the FPhase I Report and the analyses that speclalize the
code for stiffened metal-clad composite webs are presented in Appendix
C. The OPTRAN code was selected for use in this program's computer—
aided design activities because of convenience; other multivariable
optimization codes in use by various organizations (such as AESOP [17]),
may alsc be adapted to perform the type of studies conducted in this

program.

The genmeral shear web model that was treated by the computer-aided
design méthod, as followed in this program, is illustrated in Figures
83 to 85. The OPTRAN code is used to optimize the "long" web model for
minimum weight consistent with a prescribed set of material properties,
failure mode constraints and fabrication dimension limits. Longitu-
dinal stiffening (a single metal central stiffener) or all-metal
construction are design problem options. In the final form, the shear

web model has a maximum of 9 design variables that can be optimized.

" 117



3TT
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- APPROXIMATE PREBUCKLING BENDING STRAIN ANALYSIS
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IMPROVED CODE MODULES
-~  MEMBRANE LOADS
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Figure 82: MODIFIED OPTRAN CODE FEATURES
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Only the nominal design section details that are shown are optimized and
weights are computed assuming the web has a depth equal to the full depth
H. Design details normally considered as weight penalties, such as edge

joints, are not optimized,

The central location of the longitudinal stiffener is dictated by the
dominance of shear buckling in the application that was studied. Other
applications in which bending loads are dominant would benefit from a,
say, 1/5 height location of the longitudinal stiffener (as is commonly
done in bridge girder webs)., An all-metal stiffener section was adopted
for the longitudinal stiffener because composite reinforcement of the
stiffener would net offer significant overall web weight savings.
Aluminum was selected for the metal parts of the transverse stiffeners,
as discussed in the Phase T Report, and the longitudinal stiffener

because of light loads in these parts.

Another point concerning modeling philosophy is that the model shown
here represents a compromise between manufacturing practicality, analysis
capability, and minimum weight objectives. Weight savings by means of
other detail options are certainly possible (for example: tapered
cladding gage, alternate composite ply orientations, tapered stiffeners).
However, the additional development efforts required by othér options

are not believed to be warranted in view of the high efficiency already
offered by the model in the specific application studied in this

program,
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Figure 86 shows the 'shear resistant' web loads that are input data to
the OPTRAN code. The bending strain loads at the beam chords are
corrected linearly to levels at the assumed edge of the nominal laminate

panel and at interior panel points for use in structural analyses.

Figure 87 illustrates the assumed deflection mode shape that is used in
the pre-buckling strain amalysis. The pre-buckled strains are analysed
at a location shown in Figure 88; this location was selected based on
recognition of beam bending loads and their possible influence on
shifting the panel buckle towards the compression chord (as occurred

in the third web test, see Figure 34), In addition to the buckle peak
area, strain analysis is conducted at the nominal laminate panel edge
where the membrane strains are maximum. Out-of-plane web plate bending

strains are assumed to be zero at the nominal panel edge.
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10.2 COMPUTED DESIGN/TEST WEB CORRELATIONS

Comparisons of the third test web with designs generated by the modified
OPTRAN code appear in Figure 89. The computed optimum designs are con-
strained at various stiffener spacing values; the third test web

spacing was 5 inches. Designs were generated with and without longitu-
dinal stiffening; the option having longitudinal stiffening offers least
weight. The longitudinal stiffener section was comnstrained to the actual
test section and a 50% effective stiffness was assumed for this stiffener
in the optimizations. The treatment of discrete ply set thickness
(number of fabrication subassemblies are defined by the use of the
integer variable NPS) produces the discontinuities in the optimum weight

plots.

A number of combinations of effective web height (nominal laminate
height) and initial imperfections were studied to arrive at the test/
computed design correlation shown in Figure 89. The data from only one
test makes a highly quantitative correlation difficult because of the
number of structural parameters and complex response that are involved.
However, the correlation that is shown appears reasonable based on the

following considerations:

1. The effective web height of 26 inches (66.0 cm)} that was used in
the computations is close to the 29 inch effectrive web height
carrelation at 50% longitudinal stiffener effectiveness given in

Figure 72.
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2. The assumed initial imperfection magnitude of 0.003 in. (0.076 mm)

is within the fringe order sensitivity for the Moire fringe

pattern in the critical panel area at zero load shown in Figure

30, After web assembly, surveys made with a feeler gage and a

straight edge in the critical area indicate that the deviation

from flatness was on the order of the assumed imperfection level.

3. The computed optimum design weight is slightly greater than the

actual weight of the nominal test web section.

The weight

increase is due to an increase in stiffener material which results

in a computed design that is conservative.

The structural analysis data associated with the computed optimum design

that correlates with the third test web is given in the following

listing. The analyses coded in the OPTRAN code that produced the

structural data are presented in Appendix C.

DESIGN CONDITIONS

Total web height H 36 in.
Nominal Laminate panel height Hp 26 in.
Ultimate shear load V 287500, 1b.
Chord Strain o 1500 ue

Initial panel imperfection parameters

Magnitude wi=0.003 in.
Mode skew angle parameter 9=60" .
Mode wave length Ly=l3 in.
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MATERIALS
Web Laminate:

6AL-4V mill annealed titanium cladding

B/E composite in +45° ply sets of 8 plies each

METLBOND 329 adhesive plies
Transverse Stiffeners:

7075-Té6 aluminum J=-section

B/E undirectional reinforcement
Longitudinal Stiffener:

7075-T6 aluminum channel section

OPTIMUM WEIGHTS ;Ef Lineal -
Web Laminate:

B/E 2.56 (37.4)
Nominal Cladding : 2.63 (38.4)
Cladding Reinforcement

at stiffeners 0.94 (13.7)
Adhesive plies 1.23 (18.0)
Transverse Stiffeners:

Aluminum section 3.48 (50.8)

B/E reinforcement 0.19 (2.77)
Longitudinal Stiffeners 0.61 {8.9)
Total Weight | 11.64  (169.9)
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MARGINS OF SAFETY

Buckled nominal laminate pamel area:
Cladding yielding .08
Composite strain 0.00

Unbuckled nominal laminate
panel edge area:

Cladding yielding 0.26
Composite strain 0.24
General web instability 0.08

Web tearing at stiffener
fastener holes 0.21

OPTIMUM VARIABLE VALUES

Web laminate:

Number of ply sets NPS 2
Cladding Thickness TCL 0.019 in, (0.48 mm)
Cladding Reinforcement TCLR 0.030 in. (0.76 rm)

Trangverse Stiffener

Spacing SS 5.0 in. (12,7 cm)
Height HS 1.74 in. (4.42 cm)
Gage TS 0.25 in. (3.18 mm)
B/E thickness TSR ' 0.021 in. (0.53 mm)

Longitudinal Stiffener

Height HLS 1.75 in. (4.45 cm)

Gage TLS 0.125 in. (3.18 mm)
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ANALYSIS DATA

Nominal laminate stiffeners:

[ 1.42- 0.77 0 7
Membrane Aij = 106 0.77 1l.42 0 1b/in
|0 0 0.87_
[~ 2.49 1.35 0 7]
=10% | 135 2.9 o |ww
Lo 0 1.52 ]
T 4414 1711 0 7
Bending Dij = 171} 4414 D ib/in
L 0 0 1968 |
[ 498.92 193.3 O 7]
= 193.3 498.9 0O N/M
0 0 222.3
Transverse Stiffener
E1, = 2.53E6 1b/in’ (7261 M%)
EAy = 5.04E6  1b/in (14464 M%)
Longituciinal Stiffener
100% EL, = 2.41E6 1b/in® (6926 M)
Total nominal laminate thickness 0.165 in. (4 .19mm)
Total nominal cladding thickness 0.038 in. (0.97mm)
Total adhesive thickness’ 0.045 in. (1.14mm)
Total B/E thickness 0.0816 in. (2.07mm)
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Net percentage of B/E in nominal laminate
E = 76.9%

Net percentage of B/E in reinforced laminate
at stiffener fasteners

R T 45.67%

Buckled panel curvatures:

kK. = 0,00457
X

k= 0.,0446
¥
© = ()

Xy

Coordinates from neutral laminate surface:
Cladding

ZCL = 0.0823 in. {2.09mm)

Extreme B/E ply

ZBE = 00,0543 in. {1.38mm)

Transformed strains in extreme B/E ply in critical buckled panel area

[T=-4658 7]
brane S 4501 e
membT an Epp u
292
[~13357)
. -B
due to bending €Rp = -1335 LE
[ 1087 _|
[~ ~5992 7]
bined  Ei, = 3166 e
combine Epp i
1378 |
Maximum composite strains
Buckled panel ~5992 ue
Panel edge ~4822  ue
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von Mises effective cladding stresses
Buckled panel 116990,  1b/in®  (806.6 N/M)
Panel edge 100200. lb/in2 (690,9 N/Mz)

Shear buckling analysis parameters

a = 5.20
A= 1,11 B = 802.8 n = 0.33
YTO = 737 |
vp = 114.5 vp = 12.3 Kep = B4
n = 1.56 Mook = 1.69 Kepr = 132
Critical shear buckling load
N = 8540 1lb/in (1.50 MN/M)

Xycr

Critical bending buckling load
{maximum panel load at nominal panel edge)

pxer T -4580 1b/in (0.80 MN/M)
Panel Shear load
NXY = 7972 1b/in (1.40 MN/M)
Panel Bending load (maximum)

pr = 1082 1b/in (1.89 MN/M)

General Instability Interaction

R, = ﬁzz__ = 0.934
XyCr
NK
Ry = EE“—' = 0.236
Xper

2 2
RS+ Ry™ = 0.9275 < 1.0

Composite strain in reinforced laminate near stiffener fastener holes

€ < 3220
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10.3 SHEAR WEB WEIGHT TRADES

After establishing the test/analysis correlation, weight trades were
conducted with the OPTRAN code for conditions more representative of
production hardware; these conditions are shown in Figure 90. The
essential differences between this study and the test/computed design
correlation study discussed in Section 10.1 is that (1) a higher chord
Strain level was assumed, and (2) the longitudinal stiffener section was
allowed to vary. In addition, the options of all-aluminum transverse
stiffening, all-metal web construction and other design perbutations were
included as optimization cases. In all weight trade cases studied, an
aluminum longitudinal stiffener was specified and an effective web height

of 26 in. (66.0 em) was assumed.

Figure 90 shows the computed results that compare composite reinforced
and all-metal construction. At the same level of initial imperfection,
the composite-~reinforced shear web concept, which is similar to the third
test web design configuration, offers about 31% savings in nominal web
weight at the test shear load level. The composite design cases that
the pletted curve represents were all governed by the (1) failure mode
of composite fracture in the pre-buckled panel areas and (2) minimum
titanium cladding gage of 0.019 in (0.483 mm). The all-metal webs
were governed by yielding in the pre-buckled panel areas as defined by
the von Mises effective stress equalling the 0.2% offset vield stress
for the titanium web plate (defined in the Structural Analysis Equa-

tions Appendix C).
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Figure 91 presents weight trades for composite-reinforced design options
having (1) very small minimum cladding thickness constraint, (2} dif-
ferent initial imperfection levels, {(3) different chord strains, and

(4) all-aluminum stiffeners. The design conditions were similar to those
in the test/computed design correlation study except for the parameters
shown and that all web variables were allowed to be eoptimized. For the
case with relaxed constraint on minimum-cladding gage (Case 2), the
decrease in nominal weight from the baseline case {(Case 1) is 0.9% which
is small. For the perturbations studied of this type, in no case did

the cladding gages tend to eptimlize at ''zero" thickness. In addition

to having a fabricable cladding gage on the order of 0.020 in (0.508 mm),
the baseline case requires 33% less B/E in the web laminate than design
cases which allow thipner cladding gages. This large difference in B/E
requirement is partly due to the use of the discrete ply-set variable
NPS in defining the OPTRAN web laminate model; NPS changes from 2 to 3

in going from Case 1 to Case 2,

As indicated in Figure 91, an order of magnitude change in the initial
imperfection level produces a significant change in nominal web weight.
The design case (Case 3) having an initial imperfection of 0.030 in

(0.762 mm) has 8.8% greater weight than the baseline case. The sensi-
tivity to initial imperfection was found to be greater in other design

cases having higher beam chord strain levels.

The use of all-aluminum stiffeners does not significantly alter web

weight. As shown in Figure 91, the all-aluminum stiffener design case
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DESIGN CASE PERBUTATION LB/FT | VALUES OF SELECTED
CHANGE OPTIMUM DIMENSIONS
(N/M)
(1) BASELINE CASE:
Ti-CLAD B/E WEB LAMINATE
MIN Tgp = 0.019 IN (0.482 mm) NPS = 2
w; = 0.003 IN (0.076 mem) 11.4 - Tcp = 0.019 IN (0.482 mm)
€c = pe (166) =5.36 | 6
B/E REINF. ALUM. S5=56.36 IN (13.6 cm)
TRANSVERSE STIFFENER
ALUM. LONGO. STIFFENER
1.3 NPS = 3
(2) MIN. Tg = 0.0001 IN (0.0025 mm) (164) -0.9% TcL = 0.003 IN {0.576 mm)
‘ Sg = 5.01 IN {12.7 cm)
. 12.4 TcL = 0.025 IN (0.635 mm)
(3) W =0.03IN (0.76 mm) (soy | TB8% Sc = 5.29 IN (13.4 cm)
4 W =0.06 52 12.7 NPS =3
(4) W;=0.06IN (1.52 mm) (1685) +11.4% S - 6.8 IN (17.3 cm)
_ 12.2 NPS =2
5) e = 4000
(6) < He a7e) | tT0% Sg = 4.61IN {11.8cm)
NPS = 2 _
(6) ALL ALUM. STIFFENERS 1.9 +4.4% ToL = 0.023 IN (0.584 mm)
{173} Sg = 5.39 IN (13.7 cm)

Figure 91: SHEAR RESISTANT WEB OPTRAN PARAMETER TRADES




{Case 6) has 4.4% greater nominal weight than the baseline case having
B/E reinforced transverse stiffeners. In comparison with an all-metal
shear web case, the composite web having all-aluminum transverse stif-
feners offers 287 nominal weight saving whereas the case having B/E
reinforced transverse stiffeners gives 31% weight saving. The reasons
for the low sensitivity of design weight to B/E stiffener reinforcement
are (1) the lack of extensional coupling between the stiffener and the
web plate that is assumed in the analysis, and {2) the relatively low
combined stiffener weight. The effectiveness of composite stiffener
reinforcement could be enhanced by (1} providing additional composite
reinforcement in the attachment leg area, (2) altering the stiffener
section configuration, and/or (3) increasing the stiffener/web inter-

action by using interference fit fasteners.
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11.0 EVALUATION CONCLUSIONS

As suymmarized in Figure 92, the general evaluation conclusions of the
titanium-clad B/E reinfoxrced shear web design concept are that it is
practical and efficient for the specific application that was studied.
The metal-clad web laminate is an interesting concept because of the
protection offered by the cladding to the polymeric laminate parts
and the low-cost tooling and inspection operations needed in its
fabrication. The element test results of Fhase I and the web compo-
nent tests indicate that the concept will be reliable in service with
respect to low-cycle fatigue and flaw growth resistance. However, the
concept has low post-buckling strength and therefore, its use in
production hardware will require that special analytical and element
test techniques be employed to accurately predict design strength.
Specifically, improved pre-buckling analysis methods and design aids
must be developed before the concept can be routinely applied in

structural designs.

The theoretical nominal weight savings of the baseline composite-
reinforced design (test web 3 concept) is about 31% relative to all-
metal titanium/aluminum construetion, as determined by an optimization
method in which the different design concepts were treated in a uniform
analyticgl manner. Based on analysis of detailed design drawings in
Phase I, this weight saving is reduced by penalties for edge jolnts,
ete,, to 24%. The weight saving could be improved somewhat by
development of alternate stiffener fasténing methods, alternate stif-

fener configurations, and tapered laminate concepts, although the
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TI-CLAD BORON/EPOXY SHEAR WEB CONCEPT I5:

o PRACTICAL

WEB LAMINATE 15 EASY TO FABRICATE
LOW-COST TOOLING

INSPECTABLE
METAL-CLADDING PROTECTS COMPOSITE PARTS IN FABRICATION AND SERVICE

o RELIABLE IN ORBITER DESIGN ENVIROMMENT

FATIGUE RESISTANT
NOT FLAW-GROWTH CRITICAL
ELEMENT TEST PROGRAM EFFECTIVE IN ESTABLISHING DESIGN CONFIDENCE

o  EFFICIENT

31% NOMINAL WEIGHT SAVINGS RELATIVE TO A SHEAR RESISTANT ALL-METAL
WEB FOR THE TEST WEB AND CONFIGURATION DESIGN CASE

248% WEIGHT SAVING FOR DETAILED DESIGNS

STRUCTURAL EFFICIENCY OF COMPOSITE REINFORCED WEB LAMINATE DEPENDENT ON
PREBUCKLING DEFORMATION

o CONSIDERABLE ANALYTICAL EFFORT REQUIRED

o PREBUCKLING ANALYSIS METHODS NEED TO BE DEVELOPED AND/OR EVALUATED

COMPOSITE REINFORCED STIFFENER DESIGN OPTIONS NEED FURTHER EVALUATION
1IN A PRODUCTION PROGRAM

o RESIDUAL CURVAT (JRE PRESENT ASSEMBLY PROBLEMS
o OPTIMUM REINFORCED CONFIGURATION IS A FUNCTION OF ATTACHMENT METHOD

o FIRST GENERATION HARDWARE WOULD BE COST/EFFECTIVE WITH ALL-ALUMINUM
SECTIONS IN MANY CASES

28 % NOMINAL WEIGHT SAVINGS FOR THE TEST WEB -3 CONFIGURATION
DESIGN CASE

Figure 32: EVALUATION CONCLUSIONS
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cost-effectiveness of these approaches is doubtful. The use of all-
aluyminum stiffening in lieu of B/E reinforced transverse stiffening is
attractive for near—-term production hardwére because of anticipéted
reduction in fabrication problgms and costs at the expense bf a small
reduction in weight savings (the 317 weight saving indicated for the
web with B/E reinforced stiffeners reduced to 28% with all;aluminum

stiffeners).
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APPENDIX A STRAIN GAGE DATA

Presented in this appendix are the strain gapge data that were acquired
in the final loadings of the web component tests. The data for each web
is preceded with a schematic showing the gage locations. Data given

for the rosette gages were processed Into principal strain form. Cer-
tain low level strain data contains discontinuities because of recerding
interruptions, data system noise, and/or time dependent structural

response,
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APPENDIX B MOIRE FRINGE DATA

The sequential moire fringe patterns for the final loading of the

second and third test web components are given in this appendix. The
loaded patterns are preceded by zero biased patterns which were produced
by shimming the lower glass supports 0.25 in. (6.35 mm) outward. The
biased patterns are used for establishing fringe order calibration

factors and initial web imperfections.
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Figure B-2: TESTWEB 2 AT ZERO LOAD BEFORE LOAD CYCLING
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TER LOAD CYCLING
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Figure B-7: 97000 LB (0.43 MN) IN 409TH LOADING
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Figure B-8: 196,000 (0.87 MN) IN 409TH LOADING
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Figure B-9: 297,000 LB (1.32 MN) IN 409TH LOADING
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400,000 LB (1.78 MN) IN 409TH LOADING

,é NZ%; iy k&f w = 341:‘& : °,,, v = P
Figure B-12: 450,000 LB (2.00 MN) IN 409TH LOADING

207



™ e

Figure B-14: TESTWEB 2 AT 491,000 LB (2.18 MN) IN 409TH LOADING
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Figure B-15: TESTWEB 2 AT ZERO LOAD PRIOR TO FINAL 410TH LOADING
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Figure B-17: TEST WEB 2 AT 400,000 LB (1.78 MN) IN 410TH LOADING
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Figure B-18: TEST WEB 2 AT 500,000 LB (2.22 MN) IN 411TH (FINAL) LOADING
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Figure B-19: TESTWEB2 AT 525,000 LB (2.34 MN) IN 411th (FINAL) LOADING

!

i B

Figure B-20: TEST WEB 2 A

-~ ¥ - a i 1R
iy - e !

T 530,000 LB (2.36 MN) MAXIMUM LOAD IN 411TH (FINAL) LOADING
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Figure B-22: .' TEST EB 3 AT ZERO LOAD PRIOR TO FINAL LOADIN

e g V4 &
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Figure B-23: TEST WEB 3 AT 100,000 LB (0.44 MN) IN FINAL LOADING

Figure B-24: TEST WEB 3 AT 201,000 LB (0.89 MN) IN FINAL LOADING
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Figure B-26: TESTWEB 3 A T400;000 LB (1.78 MN) IN FINAL LOADING
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Figure B-29: TEST WEB 3 AT 476,000 LB (2.12 MN) IN FINAL LOADING

i L

Figure.B-.?a' TS T WEB 3 AT 501,000 LB (2.23 MN) IN FINAL L
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Figure B-33: TEST WEB 3 AT 551,000 LB (2.45 MN) AFTER 5 MINUTE LOAD HOLD PERIOD

b;. i ; : - 3 o ; Ly -
Figure B-34: TEST WEB 3 AT 576,000 LB (2.56 MN) FAILURE LOAD
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APPENDIX C STRUCTURAL ANALYSIS EQUATIONS

This appendix presents the analysis equations that are coded in the
OPTRAN code for the '"shear resistant" stiffened metal-clad composite

shear web design concept.

CONFIGURATION

Configuration details and variables are defined in Figures 83 to 88
of Section 10,1. The basic configuration parameters are:
Total web height H

Nominal laminate panel height H
(effective web height)

Stiffener spacing Ss

The coordinate notation used in the analyses is:

—_— )

MATERIAL PROPERTIES 1. Y. 2

The room temperature material properties used in the structural analy-

ses are given in Table C-1.
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BORON/EPOXY TITANIUM
DHE
UleRECHONAL?METLigED 6AL-4V  |ALUMINUM
PLIES (RIGIDITE 329) MILL 7075-Té
5505/4) ANNEALED
E
6 g 30 0.5 16 10.3
10° 1b/in
E
s 1.0 0.5 16 10.3
10° Ib/in
va 1 0,2
.0 . 6.2 3.9
102 Ib/in’
"y 0.25 0.4 0.3 0.33
PLY THK. In. 0.0051 0.009 - -
MIN, THK - - 0.019 0.019
VOLUME
FRACTION 50 - - -
%
UNIT. WT.
3 0.0725 0.0635 0.16 0,1012
Ib/in
E
uL
_67 6000 - - -
10 7 IN/IN
F
ty - - 126000 67000
|b/in2
Table C1:

ROOM TEMPERATURE MATERIAL PROPERTIES USED IN STRUCTURAL ANALYSIS
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ELASTIC STIFFNESSES

Web plate:
Membrane Aij
i, =1, 2, 3
Bending Dij

These stiffnesses are computed by classical laminate analysis for

an orthotropic plate [8].

Transverse Stiffeners:

Bending stiffness El. Y — EE ’ M

{(about y-v meutral axis)

. vmE

Stiffener stiffnesses are computed by conventional analyses.

Longitudinal Stiffener:

Bending stiffness

No web laminate parts are included in the stiffener stiffness

analyses.

LOADS ARD STRAINS

Apblied uniform shear load

Web shear strain (membrane web strain)

&, = & 2 —
TOTPT AL,
221



Applied chord strain due to beam bending: £o
BPeam bending strain (membrane web strain) at the nominal laminate panel

edge

Web load, at the panel edge
pr = A'Zﬂ. ePX

The web is assumed to be in plane strain in the y direction to
produce a conservative value for Nx.

Beam bending strain at the peak panel buckle area

. 2
'Ean T3 er

Applied chord load due to beam bending: P

Web "crushing'" load
P €¢
Ny= Nz = 47z
Web strain due to chord crushing
-1
Exy = €, ° A'J.‘.l NY

-l
where ﬂ\is is the inverse of tAas , the web is assumed to be in

plane stress in the X direction to produce a conservative value

for €Y .
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STRATN TRANSFORMATION

The following transformation gives the composite strains in the ply

coordinate systems.,

- !
- ) o
CLADDING STRESSES
d‘ = a‘_)f-) L)J = (,2’5

where AL') are the cladding elastic modulus properties

a,, = Qy, E/(l"\rl) dg;‘G

O|q_=a1‘ --*If’t-'l,. Ch-,f-d-_,,: aggf-am'-'a-

FAILURE MODES

CLADDING YTELDING

Von Mises vield condition [18]
Fe = LGT + S -GG, + 30‘.;‘]"" = Fyy
COMPOSITE STRAIN
1€l
=N

€ Allowable (in the filament direction)

)]

& Allowable
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WEB SHEAR BUCKLING

A preliminary analysis method to treat shear instability was incorpor-
ated in the OPTRAN code. This analysis is based on Cook and Rockey
[12] and Bleich [15]. The shear buckling coefficient data developed
by Cook and Rockey was replotted and an expression was fitted that
relates the shear coefficient for a longitudinally and transversely

stiffened isotropic web (K_.,) to the coefficient for a web with only

SLT

transverse‘stiffening (K , as ‘a function eof the ratio of the stiffen-

ST)
ing parameters and panel aspect ratio. Aspect ratios of 1, 2 and 5
were treated. The resulting equations are:

~ Web Without Longitudinal Stiffening (Stein and Fralich [11]

data fitted by Bleich)

¥r 1
_ 2
KST - 5.34"‘(5.59( -0.63 [—;’-;-QJ 3 y_‘_ < X,To
| EIg
T 540,
By, = 477~ 8)
x = 8P
Ss
2- -
Kers 474 + S5 3 )’Tz ¥ye
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- Web with Central Stiffener
k5rr = q KST

where n is the Ks magnification factor which is applied to

Bleich's KST to account for the central stiffener.

EL,. _ 3 _
When YL = ;‘-—;—b“ = O 5 I’7 = |.O
7f|.. 0,0747
o . V) = { 84-[——"
When 31. > ¥r
1f 7> Nuax 5 7= Tuay

= A ; fT &5
-0,%%7
where A = 12 X
2.2
R S ’
8263
vy = O0.232 04

As shown in Figure 74 of Section 9.1, the equations may be
unconservative in certain cases and therefore comparison of com~
puted buckling coefficients with the original referenced data is

necessary in all cases. Since the maximum panel aspect ratio
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treataed by Bleich and Cock and Rockey is 5.0, use of these fitted

equations for higher panel aspect ratios is not reccmmended.

The critical shear load is given by:

2
k:ﬁd:r w I%.
He

Nyyer =

WEB BENDING BUCKLING

The critical web buckling load due to beam bending is analyzed by using
a form of the classical panel buckling analysis given by Bleich [15].
The critical compression load at the edge of the nominal laminate panel
on the compression side of the web is:

Ka w? D,

» =
(aial =128 fS;

The buckling coefficient KB is a function of the subpanel aspect ratio:

- =
He/2
Values for KB were computed for a range of aspect ratios and are

shown in Figure 75 of Section 9,2, Fitted equations for the computed

values are:

rl.858 -
Kg = \co[ t,'/::).ul,--:v."s] 3 015 € 5 ¢ozs
~{.8%8
Ko~ 88.57[8/a1a2s] +4.886 - 65855 + 10.85 E?
3
~ %5688 3 025§ < 1S
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Because of the dominant effect of shear lead in buckling interaction,
the stiffeners required to preclude shear instability are assumed to be
adequate for development of the critical panel load for bending. There-
fore a coupled plate/stiffener buckling analysis is not conducted with
respect to beam bending loads. In both shear and bending buckling
analyses, some conservatism is present due to the use of isotropic

plate theory. The metal-clad web laminate is actually drthotropic and
has excess twisting stiffness (D33) compared to an isotropic plate with
equivalent bending stiffnesses (D

11 D1z Dyl

BUCKLING INTERACTION

The criterion for general instability failure is given by the classic

relation:
2 2
R = RS + Rl’b = 1.0
where N"-Y
Ry =
Nyxvycr
Npx
Ra =
Mpx¢g

The buckling interaction parameter R is used in the prebuckling panel
strain analysis. The effects of NY are omitted from the interaction

analysis since this load is small relative to the shear load.
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PRE-BUCKLING PANEL STRAIN ANALYSTIS

The pre-buckling web panel deflection shape is assumed to develop from
an initial imperfection of the following form which is characteristic.

of the buckled shape of long shear panels [13].

Y
Ww= W, Srro — St IE‘ ( X "4"f3 -t—llf———-
L L\r Li
X
¢ = Taw & /1 \J\G >
~
|
Ly
7
e
~
~
~
/f""“‘{:___lld%

vyr 1

The characteristic modal parameters are initial peak imperfection
magnitude Wi, wave width Lx’ wave length Ly’ and skew angle 0O,
The wave width is assumed equal to the transverse stiffener spacing

and wave length is assumed equal to the subpanel height:

L < ¢=‘€hs
Ly= Heg
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The skew angle is assumed to be 60° for webs having the given configura-
tion (Test Web 3):
o

6 = Go

At zero load, the panel curvatures K, are maximum at the peak buckle
o
area:

2

’on’=’€to = = W [ %;;]

by, wha, [ (T~ (TY]

Kxfn 3. = O

The curvatures at a given load level defined by the buckling inter-

action parameter R are:

4= -0 (B [T ]
4o+ -wi [ (B (LY [

The strains due to bending at a material peint in the web laminate are

given by:

EE, = ki

f:w\ 4 m

where Zm is the coordinate to the material point of interest

from the neutral surface of the laminate.
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The total atrain at a point in the web laminate is:

T M =
Cim €, + ef'-m

[
where €‘- are the membrane web strains at the analysis location.
™M
For example,éfi would be given by GEBPE which are the buckled panel

membrane strains defined previously.

M Sapx
= é . =
ét' B8Py Sy
ex\/

In the case of composite strain analysis the total strains are trans-
formed to the ply coordinate system:

- A
€, = Ti

[ ]
&

L
The compression strain is the maximum absolute strain which is compared
to the allowable compogite strain in the filament direction in the

computation of margin of safety for this failure mode.

FAILURE AT REINFORCED HOLES FOR STIFFENER FASTENERS

Allowable Strain:

€an = Gooo-(éoao—\%o)§R (/_,_é>
where ER’ is the net filamentary composite fraction in the reinforced
laminate (less adhesive plies). The allowable strain function appears

in Figure 19, Section 4.1, Reference [1].
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Actual Diagonal Tension Strain:

~ =\

Ar,,

- =\

where D Ry and A " are terms

from the inverted membrane stiffness matrices transformed to the & = 45°
orientation for the reinforced and nominal laminates, respectively.

For an all-metal design case, the allowable e, is arbitrarily selected

R
to be 65% of the proportional limit tension strain to produce a pad-up

in fastener hole areas,.

The calculation of margin of safety for failure at reinforced holes is

based on the comparisoni

CONSTRAINT ON STIFFENER GAGE

This relation is based on unpublished design data for shear resistant
titanium webs [19] which requires that Tg = O.l 1, . The
clﬁdding reinforcement is assumed to act as effective stiffener
attachment leg material, Ty; is the web laminate structural thickness

(less adhesive plies) and T, is the stiffener gage.

5
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WEIGHT ANALYSIS

. Nominal weights are computed and summed for the following items in
termsg of weight per unit length of web,
Nominal cladding skins
Adhesive plies
Filamentary composite plies
Cladding reinforcement along stiffener fastener lines
NMominal transverse stiffener section
Transverse stiffener composite reinforcement
. Transverse stiffener metal flange cladding

Longitudinal stiffener

A depth of H (full web depth) is assumed in the analyses. Weight
allowances for fasteners, radii, edge joints, reinforced cladding edge
areas, cutouts, stiffener end details and manufacturing tolerances are

not made in the OPTRAN weight analyses.
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APPENDIX D  TEST WEB 3 DETAIL DESIGN DRAWINGS

233



. iy . =Y
_ - PRECERING PAGE BLANR NOT #TLMED
r NOTES AEV STATUS Eiulslms
i Yo ] (R CERRIFTHOR GATE ] abroveD)
1. SPECIFICATIONE AND NTANCARDE FO THE COMTROL OF MANLS ACTURING DFE R ToOhl [AF APPLICANLE):
EURFACE RIUGHNELX FYMBOLY FEN RACT) X8T PART MAA KNG FEA RAC 67
WELDI MG AND BRAZ MG FYMBOLE MR RACD 2822 BOLT & NUT (NFTAL LATION PER RAZ G008
FORM, STAAIGHTER & FIT METAL PARTE PER BAC 5300 FINUSM CODER MR DOCUMENT DI4008
WATERLL, FRETITUTIOME & EQLUVAL ENTY FER RAD REE Il‘l!lmﬂllmlmﬁlw“
~f T CLBD SXiW <30
\ B ey ﬁ?; [C> CHEMIERYL ML PER BAC SBAZ D
IR = (> CHEMMCAL ML, PER BAC SEAL . HEDL RS ETCHED, BUE T0 TWIKNESS VRRIATIONS  AONG
St A o S :5= SRR -2 THE STOCK DUEET, THE MELLLD NOMSROL DWCHNESS TANEWSINT SHONN WEY YARY £ n03
I th T ’ﬁ: MONG B STEP BT AT AMY CROSS SECTION TRE STEP-T0-STEP THICANESS VARINTION Mot
I -1 ] NOT EXCEEDR .0O0%% = .001 W
-7 ' O BECIRNEE aer T LRy o SELTAM 54,24
Cod = LT L i PEATL TOP-CENTLR WY [E> CLemn ITIANMWNG DETRLS vER Db ¢384LTH 3 A2 d.
-B-6 - -\\\{:ﬁ“ Ve A9 PRELIAED, Apobunble /— E> BOND PIR Ub-23B4VTN SECTON b.8.2.7
- ey . SUBASLEMENY 3 -
\5;@- R : T D5 WA GRP VRO TRPE TND E> FARWCATE PER DL-73541 1N SELTICN LA 3.4
/ dooh e D NEXT STEP (TYP)
- SECTAON  B-A A e - - [E> SURFRLE SMRLL BE FLAT WTWIM DDLU IN/IN BND WM ANY CASE ONMLY REAUIRE FNGER PRESSULAT
ROTATTh 90° T - TO GIE CONTIMUOLS CONTACT OF THE METING SURFRCED
o SCMEY '\ T> THRUUN LAL AV SIEET - ML MINEMED (03« 500 » 42.00)
-9 —1
r. A - C \ TITAMIUML (oiL-4Y SHEET - WL ANKEBLED (063 £S.00 « 3,007
SR (5> TITANAIN GAL-4Y SWELT - Ml ANNTALED (063 »36e00£47.00)
-3 @ )==2 N :
| T | A N \ [T NERMLO METLBOND 328 ATWESIVE
o] o] o] o] o o] o] =] e} o] 5] 8] Q Io ] o] o o] O [#] 8] o} O x| LZARCED) — -8 - . —
! - — 0,270 MDK, : < Sils PUVES 1OTRL URYOR i ) RSSDY
o o o o 6 o o 5 o © o 6 o o 5 olole o o o o o o o o o o o Pch?\%(ﬁgha 0,270 HDM, AP > RIGIOITE 950574 B/E PREPREG [BPL :
i e ~o [T> STIFFENER LACNTED - DRWL STEFENER BTTAUANMENT HOAES 10 RT0w
777777777777777777 |
. ! I 3 T
Lo Bt - e — - - -~ ———FAa—— T ——— =T -————- b [ 1
I I | -7
rl ——ee = _ e ____yeL_________ o o |____ 1 o
| - ARG (SLALE
e T ey cobie ] STED LD TRAME )
o L,y R ) T T T g WTT JOHT
} . o o o o o o | : byt (4 PLALES) c
O‘ \I i \I | [ ! | 1@ »
o 1, ! Ly Vo APLESY
i I a o o a o o ! [
sl A P o
by P [ / 500
ool el e
OI ol : o e} o o o o ! : oy
' 0
pol : I Ly ‘I : 4‘ — =
o 1y [ ©
|
ol | Ll ¢ ° ¢ ° ° ° B g o _/ TOHED RBDWS —/
o 1 R -l (ZPLOCES) -3 ASSY el
Lo o o o o o o o ; | | e A 1
ol gl Pl STEP LAP TREME -FAR SIDE B s vl
o bl T B (SCME 144 JUTER 1L
OI I o o =] & s} o b | lg
o : | o b : [
o J [ _ase - P! ! o _
RN o o o R s o o BEN w0 - SHCTION B8
Qg ! Pl M@ P ND DIALES
| i
° l : : | o o o | Ay e | o o REREEE 3600 8 PENEL TOP- CENTLR INKEX
ol ! o [ } Ilg P
SR AR -
oo [ [ = BT
v, | o o o o o o | STEP U PR
0! : b b : lo BTt T —-_ [ 7 B
n Lot I A N tan ~ —
AR o =S I ) o o [ —
5 : o \ : ! o
| [ | |
a o _
A : o o o o o o 1 Pl i £ 14 PUES) [ P o
a0 b 1o
P! [ ‘l [ o —
SR I : o o Q o o o i ‘ 4‘ U
ol L : IO -7 4RO m
c i bl o B (2 PLALES ) — ] 1
| ! [ :
| ‘ | o] =] =} Q [s] o | |
o | - — L1 o .
g e ] — - e L — — v 2 10 CLADTANG SMEET e
ST b e sonvfzaz
[y T [o- "~~~ I R = - - I I B -8 A FIES) 160 - -2 BOMD ASSY =) —
o ——_——e——_e—-_-————— Y — - —_—+ —— — — = - —_ = = — ———— = - | o Bl
VI | TIIT L] e . vl e -8 RORON/EPXY o>
o | T ™ ‘J o A\_
TL o o 26 6 een o o2& i soa 6 o0ds o oeo TE5TH o ¢ i S g L il MREINE
c o o 0o | o | 9ECY -
c o) o o o fo! o o o o ) [s) o ‘ o ‘ {© 5] o o o < o o o,‘\ o —— S z -l 51 EFLRP DREAIL B
= v 2 5 STEP LRP DETAIL E>3>E
suz-soas—na—u-zx—x } \ vz -4 CLADDMNG SHEET (> => (2>
{GPALES REND A5 YRl odc R -
.00 e - l ] v - wr| i -3 CRANME B55Y - TAR [ fe>
! v ~ ||t -2 FRAME A59Y - NERR [
‘ |1 - BOWD RS E> A
- ASDOEMBL Y -+ NIEW C-C _ecemates — . ey ey I SO E ) rT— TR T
(90LALE 1LY “2 Ab % Y 2-3]-2]-1 PRATS _LIGT 1
(SCALE 121 = P T M b L NAS s D8 L0 v SFDEING
- COMPANY
STE'P .\-ND FRBN\‘;— _NmR S)\DE U, SPECIFED FYRGET STy S':u'\ﬂl[-\a W OFFxEl BEATTLE, WASMINGTON set
. MNONS ash (oTh A . ;
(SCAE vy e i VTV CLID BORON/ROXY |k
secmus s, 03 WL oniTH (Ao, JRLRR WEBR TEST O PRNEL |
AIVET & BOLT EDGE WARGIN2.08 e LA ESOlL 2. —BPOSEHRLY ]
o e FREIEET APPRAL ]
- TEST OWWY WETAL CORNER ARDH CHANG L TE NOWBER . L0
KE.&)SS-I |? PART WERT AREY, aEo o EFFECTOITY wr w1 ur.a: L4
.E- ] m A ATHICATION FASTERER Co0ES l
] 7 4 6 | ' 4 | 3 2 B -5520 1
‘ e 235
FOTDOUT FRAME j POTHOUT FRAME FOTDOUT FRAME ; 5;5



BT v11-0808-Sy

FOLDOUT FRAME f

[-] -[ 5 4 * 3 l 2 | m1 oS
; L] TRAERPTVON T Gare | AMvED]
D
2l oM WOLE, 178 INES)
a0 ——mmM8M - — =
- 3D.00
(o BTN, SPRLES)
1 1 735 — =125
o] < Q ] + + + + + + + + + + + + o+ o+
O o] o + + + - + + + + L4 - +
550 i | 2 CENTER WK w .
l t ( TS [ | 7
215 5 s + . o = aw i | |
r + s
l } . ! ‘ I L.m,a NOMN. J — 050 0 L.azof-g%?)
[+] __ﬂ + ,’— r + f + 5 -\ [v] R
I o SECTWON A-hA
4 R SLALE
) + + + ° @
+ -
- + B
|, |4 | + ' o : F
, 10 .
N @ + + t o o '
B5 -
; N 1
o -+ 2 { ) o \ =
R )
.25 —
T [} QRZEDF | 050 REF.
o + o o] o fad
B l=
N | o R T 2800 + CSECTION B8
N \ 4N vy i ! (14 EQUIRY. SPREES .00 UL SLALE
2600 S o s & o o o o o o ° [ a a a G o @ 200 TYALAL) (; Eu\m%rm‘;.n
W00
* d W ' A 0 ™ ! TWCAL B0TH ENDSY B
¥
o - o ke (o] [} ]
+- 1
»
o] + [¢] o] g o
| ] I8
- . L T
] [+ Lol - —] 0
+ * + I e Eo”}
Tl 5
+ . . . ) . . o eoe
- ' (|1 sy P~
, | B =Y —
5 + o I3 0 o — 1
+ t J 4 LO
4 LAORED 1 X
i o J vl L om o s Jed ) . J— ﬁ:;% Tl WOLE. I%
* | T Uas eLagEs g\z
o,— LOORRD + 9 o -] o— 7 -
+ A =T
o / . o, O 7 ‘2
s < a O + + + | o} [ + f + o ] O o O ] Q O——T—} 250
? o] [s] e} oo+ + 0 o O + + ¢ G o O 0 o ] =] ] T SLT(P;L 1|
LS50 TR A
A5[TYR) — SEE SHEET 1 FOR PARTSLIST AMDMOTLE c{)-;l
DaTa REVIEW ‘mﬂ""nl HLARE R
e ALEINEG s
4_(\‘:()%1_ - ND‘%\ \OBLO :mu::::u natlli,igl!mrm:L -1
%0 —- 42,00 —— e - [ et o i TITINWNG O B/E. SWNR | | ==
Do owmte pos)  NED TEST PANTL £ [
-10 R T L AAKSOIE 57 NG 3 H (S
FRORCT AP RGYAL 17 JooDE DiNT MO] 1z
Y\“\\\\\\)\hﬂ\_}ﬁu\\\ll} DREER ] e 3 “m Ji 5%25085 [|7 |é 8
AT T ~ EETnan| [+ 2 o3 H Lﬁg
¢ 5 4 4 3 T 12 re I . S
-~ e
g 236
) S FOLDOUT TRAME




| 7 ¥ 6 4 3 ¥ 2
S T
HOTES |REv surus‘ !mj_ ‘Mnnmﬁﬁﬁ e
r"\-/-'/ -] WPECIFICATIDNS AMG FTANDARGE FOR TWE COMTRGL GF WA FALTUWIFHE GPEARTIGM (AR AFPLICALL ) .
BURFACE ROUGHSE I Y RBOLE MER RACO 2087 PART obh N KIMG FEN RAL LY
WELDIWG AND BRAZING SYMBOLS PER RACT 33 WOLT & MUT (NSTALLATION PER BAC 5008
40.00 fi -‘[ FOMM, ETAAKLNTEN B FiT METAL FPARTE MR JAC KXX P I COOEL PER DOGUME KT 08300
.| ‘l & MATERIAL SURSTITUTOME B €OLA VAL ENTYE PEA RAC S0dS. RIVET (NETALLATION & EYmeOLE PER BAC 5004
— [ IS — - 3.50
e20.73 n Sx R 508518 2 ARSY
SHE-SOBG-1BE ASSY SenSORE B2 ASSY = 10,75 /_\Lav,mtwvj D
____________ . S e .
—a -3
SKE-50BS11-D
ASS
- SK2-50BS-1B -2 / SKE-HOE5-U8-2 ASSY S BORS-118-2 ASSY
ASSY
X2 SORE-IS2 ASSY Sk 2-508S -118-2 ASSY e S0pE — 150" \
l ON 87 he-z ASSY LOWCTUD AL, STIEFENER _ ke SDES-T- O ASSN
SE WIoWT OETAL
Beas: 12} - X —_ SLALE: 1/
?f—f;‘?ﬁ?sy K2 TOBS-\1B-2 ASSY -~ - SK2-50B85-15-£ ASSY 5\(2-*5»:155-1%3T 2 ASSY (TYPIchL 2 P
-
——— 5%l DA NOLE
SK2-SOB5-V8-2 ASSY LOCATE 0 MRTICH
/ ERE-SOBS-1I1T-2 ASSY
N (3> PLRCETD)
E . L a1 T
S c oeo o ¢ ©eo G o oeca o ¢ o o o B / / WNoa-E
Io! o o) o] o) o o o G o o o o o o o o E W (35 PLMCES)
o o | SIDE VIE _
o ‘ a (=EmE: 1 2) (" Y c
F——— Q — o o | Q =] 0
a oo a0 oo o0 o +
) - o — — - —_—
a r ™ a ‘g ™ o \ o ' o - o 'd - _q}
o Q
© =] ° 4]
o =] o o
a o} il [
o o]
=] =] a o o 5] "’#
(o] O
o [#] a =] e [=] o sl ‘?‘F |
o =l
o ,
o o o o © -
o <
o)
o : ° ° R % o o +
Tt o ’__1____|. S [ L S | PRSI S B |l Ty S NS | & — L - Z L — S S N
I . b .k —5—5 o— —a0 b.— a -— -ﬂ@{ ﬁ— v /_ﬂ £ ;I:F—H
Q L”[***4"‘ -- T (S N T B | R T S ‘ F‘z’\ k] " o
° o B/ 4
=3 o =] o
. o 7 =3 + B
o) ]
il [+]
. 5 I3 9 o / @ é 4# & NASOA-B BOUT
o o - u7? MAS WO -G 2OoUT
o o Q [s) —
) ] o 4 - - -
a . . :ZE%bD‘p*m @ ¢ R + 2 PLACES) L] 21 MADS GTIA AW RMUTS | N
o ° \_oc..;\'ga TD?%A‘\'%% -4 1
SK2-BOBS-117- A | 1
5 S0BS NEed @ PlLacEs)
o @ o NASVOA -6 —— @ é © 4
= NASE 7D AN 110
o (19 PLARCES) -
e o B, — " 0
o ° A PASN — J y ’;"L"“Ag‘é‘?,‘é . % N % \H__r_‘ N .t 7 52-BOBSB 2 | TFFENER AGSY
& PLACES)
] SK2-SOBSNT-3 | PANEL ASDY
o 0o o c0 o \ske] o 12 Q) . -3 Y & . "
o { J 1
o o
o o o o o a a a o o o o o o o o o C © o ©c o o0 O |4 o o e o 0 e 0 o o G o4 2 -4 BRI ST AER8T5 202416 AL
o a o e 0 o) s} D 0 O Q o} o o O o] o} s} o] e} o} o o [} o O|4|o o} o] © o o la} s} ) ] P B A O L LS A T 2OEE - TE B -
o« o / A N, h, | z 3 S QI . N
_ NN O 7 1 ¥
N see-s083- ! 2 STATFENER Phra TEE) MDA fOoLe
TSRSSY : ST 0 A
- -7-
—‘ A5 SEMBLY SKB-E0B5-11B-2 ASSY eSS 2RSS - l A SSEM B\__\{ [ EEA s Aton| NES ot OENTIZ o mumeaEn NOMEMCLATUAE OR DESCRIFTION | zows WATERLAL AND SPECIFIEATION [ o e “Ju-ﬁfﬁ.’
BS-NR-2 ASSY S 2-S085-118-2 ASSY SR Z-S0ESAI8-2 ASDY e PLACES) L = DIWERSIDRING & TOLERANCING TATA REVTEW PARTS LISIACT HOMBER ETAL ]
PFER ARS) (US| TTA.E N Oy QUAL - THE
FRONT VIEW REAR VIEW s S N T L .
Y
(SCALE: \[2) EErE ) e ey s - The SERTITANUMCLAD BORON/EOOW. |,
oRCIMALE KX LT W it | OHEAR WER TEST COMPONENT |
OECIMALS XN T LRI = : %
AIVET 8 BOLT £QE MARGMs o8 "“JH.LAAKfD‘i-BD-?}ASSEMBL\f UEST WER N,os) §
et i commpnmags [T w;c’;mmm I 2 B
TART WERT DS on EFFEGTIVITY owesH e T et ext.o B b 5( -ms-\ 8 E
[ o H

N l >

»

PPLECATION

WusmER |LTA

o S—
FASTENER CODES

2

SCALE T :

2

DWQ ORI
BY [0AG]

2-5520

1

wOTDOUT FRAME

FOLDOUT FRAME,_ 25

P

237






