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NOTICE

This report was prepared as an account of Government-sponsored
work. Neither the United States, nor the National Aeronautics and Space
Administration (NASA), nor any person acting on behalf of NASA:

A.) Makes any warranty or representation, expressed or implied,
with respect to the accuracy, completeness, or usefulness of
the information contained in this report, or that the use of any
information, apparatus,. method, or process disclosed in this
report may not infringe privately-owned rights; or

B.) Assumes any liabilities with respect to the use of, or for
damages resulting from the use of, any information apparatus,
method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any
employee or contractor of NASA, or employee of such contractor, to the
extent that such employee or contractor of NASA or employee of such
contractor prepares, disseminates, or provides access to any information
pursuant to his employment or contract with NASA, or his employment with
such contractor.
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PREFACE

This report summarizes the results of the tasks conducted in support
of NASA Contract NAS10-7679, "Space Shuttle Structural Integrity Test and

*Assessment. " The study was conducted by the Space Division of North

American Rockwell Corporation for the John F. Kennedy Space Center of
the National Aeronautics and Space Administration. The Kennedy Space

Center's Contracting Officer's Representative is Mr. Rocco A. Sannicandro.

The following individuals contributed to this report: F. H. Stuckenberg
and W. McMahon of North American Rockwell.

For convenience and econom., the report is divided into two parts.
Part I includes the report, the glossary, and bibliography. Part II is made

up of three appendixes showi g the microphone and accelerometer response

curves from the noise tests. Distribution of Part II. is limited to those

persons requiring that level W detail.

- iii -0
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INTRODUCTION

Ultrasonic nondestructive evaluation (NDE) has been recommended as one

of two candidate methods for on-board assessment of advanced space vehicle

structures. Acoustic emission NDE is the second method that has been

recommended for structural monitoring of structures and assemblies. Both

of these nondestructive technologies have been shown in the laboratory to
have the capability for flaw detection in larger structures from stationary
locations.

Acoustic emission is currently being studied as an on-board structural

monitor for S-II cryogenic storage containers under contract to the Marshall

Space Flight Center. In addition, some effort is being expended in develop-
ing ultrasonic NDE to support S-II Advanced Technology.

Earlier contractual effort with the Kennedy Space Center (NASA
Contract NAS10-7250, "Methods of Assessing Structural Integrity for
Space Shuttle Vehicles") surveyed the NDE field and recommended, among
others, that ultrasonics and acoustic emission be prime candidates for fur-
ther development. Acoustic emission was recommended as an area monitor

to provide data from large surfaces; ultrasonics was selected as the prime
method for localized area monitoring. Further development of these meth-

ods was recommended for follow-on effort.

In studying the results of the initial program, the NASA/KSC manage-
ment team, in concert with NR study team personnel, selected the develop-
ment of on-board ultrasonic structural monitoring technology as the subject
of a follow-on contract. For the first time, specific parameters that would
ultimately define an on-board monitoring device for basic shuttle structure
would be formalized. Specific points to be studied during the follow-on
effort would include ultrasonic transducers and couplants, structural flaw
analysis, the effect of standing members, surface roughness, material
thickness, background noise on ultrasonic propagation, and the postulation

of on-board system design parameters.

-1-
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OBJECTIVE

It is the stated objective of this study to demonstrate and evaluate
the ultrasonics technique for assessing the structural integrity of the
primary structure of the space shuttle vehicles.

- 3 -.
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SUMMARY OF RESULTS

A comparison of shear and surface wave modes of ultrasonic propaga-
tion conducted during this study showed that more favorable flaw responses
with respect to distance, sensitivity, and resolution were achieved using the

Rayleigh or surface wave mode. The frequency ranges selected for ultra-
sonic testing purposes were 2. 25 and 5. 0 MHz. Transducer orientation with
respect to flaws is critical when using current narrow-beam transducers.

Liquid and bondable couplants were selected. The liquid couplant
selected is Cakurd, an NR-developed, viscous water-soluble solution.
Lefkoweld 109 was selected as the bondable couplant from the eight adhe-
sives evaluated.

Standing members do represent a restricting factor upon the usefulness
of surface wave ultrasonics, the magnitude of the problem being proportional

to the number and location of the standing numbers.

Surface roughness below 100, as measured in microinches root mean
square (RMS), has no adverse effects upon the propagation of ultrasonic
surface waves.

Background noise from ambient levels to 160 decibels has no detri-
mental effects upon flaw monitoring.

Initial factors of cost, weight, power, and schedule requirements have
been postulated for an ultrasonic flaw detection system to be established
on-board a Space Shuttle vehicle.

Assessment of the state of the art of several current NDE technologies
has been completed. Those technologies assessed are: acoustic emission,
ultrasonics, holographic NDE, thermography, fiber optics, and radiography.

5-
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CONC LUPSION

The tests conducted within the confines of this study and the results
from other related NR programs have shown that ultrasonic techniques,
using various beam propagation modes and instrumentation, can be utilized
as an on-board monitoring system. Although such a system possesses the
necessary potential for implementation on board a shuttle vehicle, specific
limitations are evident that would restrict its application. These limitations,
such as standing members, structure configuration, probable defect location
and orientation, present sensor capability, etc., indicate that such a system
would be best utilized on only specific critical, highly stressed members
rather than large or complex structures. Even in these localized areas,
in-depth analysis of many factors would be required prior to system
deployment.

Cost, weight, power, and schedule factors relative to three types of
postulated systems were developed during this study. This analysis indicated
that a ground supported system, wherein only the system sensors and cables
were installed on board the vehicle, possessed the highest merit as a struc-
tural monitoring system.

Current instrumentation technology has been used as a basis for cost
and schedule considerations because it reflects many similar requirements
and applications; operational implementation of a nondestructive evaluation
system should be part of the vehicle instrumentation system on the basis
of cost effectivity.

-7-
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STUDY APPROACH AND RESULTS

GENERAL

FIGURE 1 illustrates the study logic and presents the relationship of

the specific tasks to be performed. Tasks 1 through 5 serve to develop the

data necessary to demonstrate the ultrasonic method for assessing the struc-

tural integrity of the primary structure of a space shuttle vehicle. Task 6

is a parallel effort designed to provide NASA/KSC with a current overview of

the NDE state of the art with respect to those methods that could be used in

performing structural integrity monitoring of a shuttle vehicle. Each opera-

tional task will be discussed in detail in ensuing sections of this report and

a special section on state-of-the-art assessment will be included.

NASA

CONCURRENCE

TASK1

TRANSDUCER

EVALUATION

I TASK 2

STUDY TRANSDUCER _ MID TERM

PLAN COUPLING REPORT

EVALUATION

TASK S
TASK 4 TASK 3

FLAW TEST STRUCTURE ULTRASONIC TEST.

ANALYSIS FABRICATION DATA D ISPLAYDATA DISPLAY

TASK 6
FINAL

STATE-OF-ART REPORT
MONITOR

Figure 1. Study Logic Flow Diagram

-9-
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Nondestructive Testing

Ultrasonic nondestructive testing was performed by NR Space Division's

Ultrasonic Technology laboratory. A Sperry Reflectoscope was utilized for

transmission and reception of ultrasonic surface waves and, initially, stand-

ard laboratory couplants were utilized to transfer the ultrasound into the

workpiece. Ultrasonic data was taken in an A trace mode where flaw signals

appeared as a function of amplitude variable displacements along a time

baseline on an oscilloscope. Data recording was provided by photographing
the oscilloscope pattern, utilizing a Hewlitt-Packard Model 196B oscilloscope
c amer a.

Special Specimen Pr epar ation

It became apparent during the course of the study that standard frac-

ture mechanics considerations for shuttle-type structures could not be

utilized due to unavailable loading and configuration data. It was decided

that special dogbone specimens would be made with predetermined-sized
flaws grown into them, based upon calculations for the dogbone configuration.

Additional plates of the selected test thicknesses would be fabricated into

which would be machined flaws of varying depths in increments of 0. 005-inch

to 0.010-inch depending upon plate thickness. Correlation would be estab-
lished between actual flaw response from the dogbone specimens and the

response from the artificially produced flaws in the test plate. The partic-

ular flaw depth giving the same response as the corresponding dogbone flaw
was selected to be machined into the final test specimens for acoustic

conditioning during ultrasonic testing.

Fatigue-type flaws were grown into the specially fabricated dogbone
specimens utilizing two special laboratory testing devices. The first, a
Sonntag Universal Fatigue Bending machine, as shown in FIGURE 2, intro-
duced a cyclic bending moment into the specimen. After a predetermined
number of cycles at a prescribed load, cyclic tension was introduced
utilizing a Tinius-Olsen Cyclic Tensile Fatigue machine, as shown in
FIGURE 3. Final crack growth was achieved and, subsequently, all starter
notched were removed by machining.

Environmental Testing

Implementation of Task 5, Ultrasonic Test Data Analysis and Display,
required that the effect of high-intensity acoustic noise be introduced as a
variable into the test specimens during ultrasonic testing. The required
acoustic environment was provided by NR's Dynamics Test engineering
group. A Ling Acoustic Reverberant Chamber and its associated electronic
control equipment was used to provide the acoustic environments.

10 :
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Figure 2. Sonntag Universal Fatigue Bending Machine

TRANSDUCER EVALUATION

S-II Technology Data Evaluation

A basic requirement for conducting the follow-on study was to secure
applicable data developed during the performance of the MSFC study men-
tioned previously. All primary information regarding the design of the
ultrasonic transducers for the study was to come from the*MSFC effort. The
S-II Advanced Technology Study No. 4, "On-Board Checkout of the Structural
Integrity of Cryogenic Tanks" is being directed towards the development of
an on-board acoustic emission and ultrasonic inspection system as applied
to cryogenic storage containers. A major task of the ultrasonic development

SD 72-SH-0001
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*

Figure 3. Tinius/Olsen Cyclic Tensile Fatigue Machine

program was the definition of specific transducers small enough to be con-
sidered for permanent installation within a shuttle structure, yet powerful
and responsive enough to provide reliable data about flaw initiation and
propagation. A requirement existed at the beginning of the subject study
that as much data as possible from the MSFC program with respect to trans-
ducer development be utilized. It was felt that the depth of transducer
development being conducted for that program would most certainly provide
all of the the design data necessary to conduct the initial transducer design
and development necessary for the current study.

A review of the transducer data generated during the S-II Advanced
Technology, Study No. 4 revealed that a broad range of transducers

-12 -
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(longitudinal, shear, surface, etc.) and the design of the transducer (strip

type, point source, multiangle, rotating, etc.) had been investigated.

A trade table containing various attributes of performance of the trans-

ducer types and design factors was developed. The ratings established by

this matrix revealed that point source shear wave propagation possessed the

largest potential for use in the S-II No. 4 study.

Based upon the transducer evaluations conducted in this S-II Study, the

utilization of transducers that would produce a shear wave mode of propaga-

tion were initially pursued.

Transducer Design Factor s

Various 5.0 MHz and 10 MHz standard shear wave transducers, with

beam propagation angles of 45, 60, 70, and 80 degrees, were obtained for

preliminary testing purposes. These transudcers, as shown in FIGURE 4,
contained lead zirconate titanate piezoelectric elements with an effective

active element area of 1/4-square inch.

Figure 4. Shear Wave Transducers

13 -
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To facilitate initial testing of the transducers, five test specimens, as

shown in FIGURE 5, were fabricated from a 7075 aluminum sheet. These

test specimens measured 2 x 36 inches, with individual thickness of 0. 032,

0.050, 0.063, 0.090, and 0. 125 inch. Simulated defects were introduced

into each of the five test specimens to provide a means of monitoring the

resolution capability of the ultrasonic beam being propagated by each of the

transducers. One of the artificial defects consisted of a 0. 047-inch diameter

hole located one inch from the end of each specimen. The other defect con-

sisted of a 0.002-inch-wide slot located one inch from the opposite end of

each specimen.

To obtain basic data regarding optimum transducer frequency ranges

and beam propagation angles, preliminary tests were initiated utilizing the

aforementioned transducers and test specimens in conjunction with a Sperry

Reflectoscope, Model 700. The results of these tests revealed that although

defect detection was possible with all four beam propagation angles, the

maximum transducer-to-defect distance at which detection was possible

varied. It was shown from the tests utilizing the 60-, 70-, and.80-degree

transducers that, as the beam propagation angle of the transducer increased,

the transducer-to-flaw distance at which response was obtained also

increased. It was concluded from these tests that the desired ultrasonic

response was the result of a Rayleigh or surface wave rather than a shear

wave. The transducers with the 45-degree propagation angle, which produces

primarily all shear waves into the test structure, provided minimal distance

cap ability.

As the beam propagation angle increased, a larger percentage of the

ultrasonic energy introduced into the specimens was in the form of surface

waves and increased distance coverage was achieved. These tests also

revealed that the 10-MHz frequency range was generally more effective in

the thinner specimens, 0.032-, and 0.050-inch, while the 5.0 MHz range

was superior in the 0.063-, 0. 090-, and 0. 125-inch specimens. The maxi-

mum distance of detection as a function of beam propagation angles is

illustrated in TABLE 1. Typical ultrasonic responses obtained during these

tests, as displayed on the CRT presentation, are shown in FIGURE 6.

Based upon the data obtained from these initial shear-wave transducer

tests, four 90-degree surface wave transducers, with frequency ranges of

2.25, 5.0, 10. 0, and 15.0 MHz, were procured from Automation Industries,

Inc. These four surface wave transducers are shown in FIGURE 7.

Utilizing the 90-degree surface wave transducers, supplemental

tests were conducted on the artifically flawed test specimens to establish

distance capability of these units. The results of these tests using the 2. 25

and 5. 0 MHz transducers are also shown in TABLE 1. No photographs of

the CRT presentations during these tests were taken.

14 -
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Table 1. Detection Distance Versus Beam Propagation Angle

DETECTION DISTANCE (INCHES)

ULTRASONIC TRANSDUCER - PROPAGATION ANGLE

2. 25 MHz
5 MHz 5 MHz 5 MHz 5 MHz 10 MHz 5 MHz

45 deg 60 deg 70 deg 80 deg 80 deg 90 deg

0.032 No No No 2.75 15. 5 36*
response response response

w 0.050 No 4 9 6 15 36*z
response

0.063 1 6 9.5 21 15 36*
z

0.090 No 6 9. 5 34 21 36*
response

0.125 1 5 9 21 15 36*

*Maximum specimen length

Figure 7. Surface Wave Transducers

- 19-
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Frequency Optimization

A new series of transducer evaluation tests utilizing the 0. 002-inch
slot was initiated to establish the optimum frequency range of the surface
wave transducers with respect to the material thicknesses being investigated.

The need to optimize beam angle was not required since all the surface wave

transducers utilize a 90-degree beam propagation angle.

The results of these tests indicated that ultrasonic frequencies of
2. 25 and 5. 0 MHz provided excellent power, sensitivity, and resolution
to detect flaws in the 2-inch by 36-inch aluminum test panels. The 10. 0 and

15.0 MHz transducers suffered a large loss in all these parameters but still

were able to detect the simulated flaws when placed in relatively close
proximity. This loss of power in the 10.0 and 15.0 MHz surface wave

transducers compared to the original shear wave units used in the initial

tests was attributed to the reduced active element area of piezoelectric
elements.

These tests demonstrated the ability to transmit an ultrasonic surface

wave in simple structures. To establish extended distance capability, the
transducers were used to monitor the edge of an aluminum strip from the

opposite end. The sheet edge was clearly detectable at 10 feet (maximum

sheet size) with less than 50 percent gain.

Utilizing the five aluminum specimens, tests were conducted with the

transducers placed at 22 inches from the slot type flaws to obtain comparative

data on the gain required at each frequency to achieve a 50-percent scope

amplitude response from the flaws. The overall power requirements for each
individual test were obtained by dividing the gain value by the percent of
reject or dampening used. The results of these tests are listed in TABLE 2.

Table 2. Surface Wave Transducer Flaw Detection Capabilities

(Gain)-Frequency Versus Material Thickness

Material

Thickness
(in.) 1.0 MHz. 90 deg 2.25 MHz. 90 de, 5.0 MHz. 90 deg 10.0 MHz, 90 deg 15.0 MHz,. 90 deg

Gain + T: Reiect = Gain - ;' Reject = Gain - ' Reject r Gain -% Reject = Gain + 'o Reject=
Total Gain Total Gain ro:al Gain Total Gain Total Gain

0.032 No response (. OX .4) 0.8 = 1. 8 (1. OXI.2) 1. = 1.2 (10. 0X8. 0) 0. I = 800 No response

0.050 No response (. IX.8) - 0.25 = 0.32 (. 1X8.4) 0.25 = 3. 3 (10.OX10. 0) 0. = 1000 No response

0.063 No response (. 1XIO.0) - .0 = 1.0 (1.0X7. 0) 1.0 = 7.0 No response No response

0.090 !No response (. X8. 0) 0.5 = 1.6 . IXIO.0) 0.25 = 4.0 No response No response

0.125 No response .(. IXIO. 0) 0. 8 = 1.2 (1.0X5.) 0) . 8 =6. No response No response

- 20:-
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1. ) c2:::i:~ ,:c i ed the excellent power, sensitivity, and resolution

capabilities c:- 7.: c . -.  and 5.0 MHz transducers. As can be seen from the

test results, the 2.25 MHz transducer has generally better power and

distance capability. It should be noted, however, that the scope presentation

is much cleaner when using. the 5.0 MHz transducer, especially in the

thinner specimen thiclukness (0. 032- and 0. 050-inch).

TRANSDUCER COUPLING EVALUATION

During the transducer coupling evaluation task, two separate groups

of materials w-re evaluated: liquid couplants and semipermanent or bond-

able couplants. The primary consideration was the ability of the couplant
materials to provide optimum signal coupling between the transducer and

the test specimens. Results obtained from this task have indicated the

liquid couplant that will be used for the laboratory tests and the bondable

couplant that will be used for the tests to be conducted during the background

noise evaluation.

Liquid Couplants

Prior to initiating the ultrasonic evaluation of the liquid couplants, a

selection of various greases and viscous water-soluble solutions was obtained

for evaluation. The initial selection of candidate liquid materials included

Cakurd (an NR-developed viscous water-soluble solution), Krytox-2 4 0

grease, Kel-F-Oil, Halocarbon-1425-E Oil, tap water, and a dry lube film.

To determine the ultrasonic coupling characteristics of these materials, a

test was conducted using a 2. 25-MHz, 90-degree surface wave transducer

and an 0. 125-inch thick aluminum plate. The transducer was placed at a

standard position of 12 inches from the specimen edge, and tests were con-

ducted with each couplant to determine its ultrasonic coupling ability by

establishing the gain required to achieve an edge response equal to a set
amplitude level on the CRT presentation. The ultrasonic responses obtained

with the various couplants were basically similar with only slight variations

in signal stability. These variations were attributed to couplant migration

from the transducer to specimen interface. Tests also were conducted

using no couplant; these resulted in good signal response, provided proper

transducer-to-defect orientation and adequate hold-down pressure was
achieved. A summary of the gain values required for each couplant material
during these tests is shown in TABLE 3.

Since the results of these tests showed only minimal. differences in the

couplants tested, no additional materials were evaluated. It was surmised
that if any reasonable degree of transducer-to-specimen coupling is achieved,
an adequate surface wave can be generated. A general requirement was
established during this evaluation that no couplant can be tolerated in the
frontal area of the transducer, due to resultant damping of the surface wave
propagated by the transducer.
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Table 3. Ultrasonic Gain Values for Selected

Liquid Couplants

Couplant Scope Gain Settings Edge Distance

Cakurd 1.0 x 1. 0 = 1. 0 12. 0 in.

Krytox 0. 1 x 6 .0 = 0. 6  12.0 in.

240 Grease

Kel-F No. 10 1.0 x 1.0 = 1.0 12.0 in.

Halocarbon 0. 1 x 9. 0 = 0. 9 12..0 in.

1425 E

Water 1.0 x 3 . 8 = 3 . 8  12. 0 in.

No couplant 0. 1 x 2. 9 = 0.29 12.0 in.

The liquid couplant material selected at the conclusion of these tests

was the Cakurd viscous water-soluble solution. This decision was based

on the fact that consistently good results have been obtained in the past at

the Space Division with this material. In addition, the viscosity of the solu-

tion can be varied to meet the necessary test requirements, and post-test

cleaning is simplified since the material is water-soluble.

Bonding Couplants

Since the limited number of available transducers could not be per-

manently attached to test specimens for this evaluation, candidate adhesive

bondlines were fabricated on test plates to specific requirements. These

requirements included stability, low temperature curing, low bondline thick-

ness (approximately 0.003 to 0.005 inch), final bond line homogeneity, and

a straight frontal edge of the bondline to allow liquid coupling between the

transducer and adhesive. Based upon these basic adhesive requirements,

a series of bondable materials was selected. The resultant list of materials

for testing included epoxy polyamide, Epon 954, Lefkoweld 211, Lefkoweld 109,
Stabond U-135, AG filled epoxy type 1, Class A, and AG filled epoxy type 2,

Class A. A set of bondlines using these adhesives was prepared on aluminum

plates for use as ultrasonic test specimens.

Pertinent data regarding adhesive curing characteristics are detailed

in TABLE 4.
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Table 4. Adhesive Curing Requirements

Couplant Remarks

Epoxy Polyamide Epon 828 and Versamid 115. 50% to

50% by weight,deairate in vacuum bell

jar, 24-hour room temtperate cure.

Epon 954 27 parts by weight of component A to

100 parts by weight of component B.

Catalyze component A with component B,
24-hour room temperature cure.

Lefkoweld 109 Modified epoxy system, low temperature

properties (-200 F to 250 F). 100 parts

by weight of base component to 74 parts
by weight of catalyst, 24-hour room

temperature cure.

Lefkoweld 211 Modified epoxy system, elevated tem-

perature properties (RT to 300 F).
3 component system.
100 parts base
0.77 parts LO-2 by weight
9.9 parts LO-1
24-hour room temperature cure.

Stabond U-135 100 parts by weight of base to 12.5 parts
by weight of catalyst.

12-hour room temperature cure followed

by 4 hours at 160 F.

AG Epoxy, Class A, Type 1 Strain gage adhesive, MITHRA No. 200
(silver).

Equal parts by weight of component A to

component B.
Spec requires cure for 16 hours at

175 F.
Test sample-room temperature cure
only.

AG Epoxy, Class A, Type 2 Epibond 8246
100 parts by weight of component A to

10 parts of component B.

5-day room temperature cure.
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Prior to actual ultrasonic coupling tests, the thickness of the bondlines

was measured, using a sheet metal micrometer. The thickne,ss of each
adhesive sample is shown in TABLE 5. As can be seen in the table, the

Lefkoweld 211 and AG filled epoxy, Type 2 Class A samples were much
thicker than considered desirable.

Table 5. Adhesive Thickness

Overall Plate Adhesive

Thickness Thickness Thickness
Adhesive (in.) (in.) (in.)

Lefkoweld 211 0. 155 0. 131 0. 024
Stabond U-135 0. 136 0. 127 0.004

Lefkoweld 109 0. 138 0. 127 0. 011
Epon 954 0. 138 0. 127 0.011

Epoxy Polyamide No. 1 0. 134 0. 130 0. 004
Epoxy Polyamide No. 2 0. 136 0. 130 0. 006
AG Filled Epoxy

Class A, Type 1 0. 140 0. 130 0.010

AG Filled Epoxy
Class A, Type 2 0. 171 0. 131 0.040

Following the appropriate curing of the adhesive samples, a series
of ultrasonic tests was conducted utilizing a 2. 25-MHz transducer to deter-
mine the coupling characteristics of each adhesive. These tests were con-

ducted by coupling between the transducer and the adhesive with the Cakurd
liquid couplant selected earlier. Gain settings required to obtain a pre-
determined level of amplitude response from the plate edge were used as
a measure of the signal coupling characteristics of each adhesive. The gain
settings obtained during these tests are shown in TABLE 6. Based upon these

test results, and the adhesive data obtained from the S-II technology study,
the Lefkoweld 109 adhesive was selected as the optimum material to be used

as the couplant during the acoustic tests that will be conducted during the

remaining phase of this program. This material provided optimum bonding

and signal coupling parameters.

TEST STRUCTURE FABRICATION

A machined waffle aluminum panel with intersecting ribs on four-inch
centers was selected as the basic ultrasonic test structure (FIGURE 8).
From this basic configuration, three specimen types were evolved.
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Table 6. Ultrasonic Gain Values for Selected Bondable Couplants

Adhesive Scope Gain Settings Edge Distance

Lefkoweld 211. 0.1 x 3 . 6 = 0.36 8.75 in.

Stabond U-135 0. 1 x 6 .5 = 0.65 8.75 in.

Lefkoweld 109 0.1 x 1. 1 = 0. 11 8.75 in.

Epon 954 0. 1 x 1.8 = 0. 18 8.75 in.

Epoxy Polyamide 0. 1 x 1.6 = 0. 16 8.75 in.

Epoxy Polyamide 0. 1 x 4.2 = 0.42 8.75 in.

AG-Epoxy 8. 75 in.

Class A, Type 2 10. Ox 1.0 = 10. 0

AG-Epoxy 8. 75 in.

Class A, Type 1 0.1 x Z.5 = 0.25

Series A

FIGURE 9 depicts a series of five individual test specimens which

comprise this set of test structures. Each specimen has a constant thick-

ness base upon which are five integral, equally spaced, standing members

four inches apart. Base plate thickness for the specimens was machined to

be 0.030, 0.045, 0.060, 0.090, and 0. 120 inches, respectively. These

specimens were used to support the ultrasonic test progranm conducted

during Task No. 5.

Specimen B

FIGURE 10 illustrates the test specimen that originally was to be used

to determine the effect of surface roughness on Rayleigh or surface wave

detection of flaws. Initial tests with this specimen revealed that the standing

members had an adverse effect upon the ultrasonic response and negated the

use of this specimen for the roughness tests. This panel was then recon-

figured into five individual test specimens, measuring 22 inches in length
with base plate thickness of 0. 030, 0.045, 0. 065, 0.090, and 0. 125 inch,

respectively. Three of the five original standing members were removed

so that only two standing members 8 inches apart remained. These speci-

mens, shown in FIGURE 11, were then utilized to establish the effect of

standing members upon the propagation of Rayleigh or surface waves.

Roughness Specimen

Since the original specimen to be used for these tests was unsatis-

factory, and was reconfigured for use in the standing member tests, an
additional surface roughness test specimen, as shown in FIGURE 12, was
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-
.

Figure 11. Initial Standing Member Test Specimens (Two-Ribbed)

fabricated from an aluminum plate. The surface of this specimen, which
measured 24 x 24 inches with a constant thickness of 0. 135 inch, was
machined to various finishes in five strips across the plate. The five finishes,
shown in TABLE 7, are measured in microinches (RMS).

No flaws were introduced into this specimen. The specimen edge
was utilized as the ultrasonic response point to determine the effect of
surface roughness.

Specimen C

FIGURE 13 illustrates the first specimen type used to obtain data
indicating the effect of high acoustic noise levels on the transmitted ultra-
sonic signal. No specific flaws were introduced and ultrasonic response
was monitored from a standing member echo.
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Figure 12. Surface Roughness Test Specimen (Final Configuration)
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Table 7. Surface Finish Values

Roughness Value

Finish Number Microinches - RMS

1 60(-)
2 60(+)
3 75(+)
4 85(+)
5 100

6 5 (as received)

Fatigue Crack Specimens

As part of the flaw analysis task of the study, three fatigue

crack specimens were fabricated using present fracture mechanics data

to determine the flaw dimensions.

These specimens, as shown in FIGURE 14, were fabricated utilizing

the following procedure:

1. Machine three specimens to final configuration from 2219

aluminum alloy 0. 250-inch thick.

2. Introduce appropriate starter notches with a fly cutter.

3. Grow fatigue cracks to a predetermined size by the application

of tensile loads.

4. Machine the specimens to remove the starter notches with the

final thickness of each specimen to be 0.030, 0.065, and

0. 125 inch.

Concurrently, three aluminum plate specimens of 0.030, 0. 065, and

0. 125 inch were prepared with a series of varying depth simulated slot

defects. These test specimens are shown in FIGURE 15.

Flaw Introduction

Optimum flaw introduction methods include, primarily, those tech-
niques that create "natural" cracks within the test areas of assemblies.

Specific operations that must be performed in order to create natural cracks

include cyclic bending and tension conditioning. These processes are time-

consuming and extremely expensive when only a relatively few cracks are

to be created. During the course of this study, for example, three natural
cracks were initiatdd and grown, which required an average expenditure of

20 man-hours per crack.
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Figure 15. Aluminum Plate Test Specinens-Incremental Artificial
Flaw Depths
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Consideration was given to utilizing the electrical discharge machining

method (ELOX) for producing artificial defects in the test pieces. This

method has been used for many years to introduce artificial cracks in

ultrasonic test standards for shear and surface wave inspection of tubing.

Cracks produced by this method range in width from 0.010 to 0.015 inches.

It was felt that for thepurposes of this study, ELOX-produced cracks would

be too wide. In service, shuttle structures would be subject to fatigue-type

cracks that are inherently extremely tight, with both sides of the crack area

in intimate contact with each other.

No other method for artifically producing cracks in aluminum was

readily available or apparent. A small effort was undertaken within the

scope of the study to produce an artificial crack from 0.001 to 0.003 inches

in width using a mechanical approach. As a result of this effort, a cutter

was developed that was able to continually produce cracks up to 0. 0025 inches

in width. The cutter was made from a 0.010-inch-thick, 1. 25-inch-diameter

cobalt steel disc. This disc was mounted on a pregroumd magnetic chuck

and reduced to a thickness of 0.002 inches using a special lathe. After thick-

ness reduction; 78 teeth per inch were ground into the circumference of the

disc with special machining techniques. A flute depth of 0. 150 inches was

attained. A low-velocity manual-feed technique was employed to produce

the artificial cracks. The cutting compound used was a specially prepared

combination of sperm oil and beeswax. FIGURE 16 shows a typical disc

used as the cutter wheel.

FLAW ANALYSIS

Effort scheduled during this task was to establish specific locations

of crack-like flaws and their dimensions for introduction into the test speci-

mens. These criteria were to be primarily based upon current fracture

mechanics data available for the Space Shuttle vehicle. Upon completion of

this task, the flaws were to be introduced into the test specimens using the

low velocity machining method described in the previous section.

The initial plan to establish flaw sizes from fracture mechanics analysis

data proved impractical due to the lack of information as to the specific load

factors applicable to the test structure. A decision was made to establish

standard flaw sizes and configurations in laboratory-fabricated, fatigue-type

specimens to correlate actual fatigue-crack response to artificial-crack

response in the primary test specimens. In fact, ultrasonic calibration

standards were fabricated to properly compare the basically unknown response

from the artificial defects.

The first task in the revised approach involved the preparation of three

actual fatigue-crack specimens using present fracture mechanics data to

determine the flaw dimensions.
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Figure 16. Artificial Flaw Cutter Wheel

size of 0. 091 inch.

Figure 16. Artificial Flaw Cutter Wheel

Three, 0.c249-inch-thick 2219 aluminum specimens were prepared for

crack propagation by machining starter notches 0. 040 inch deep and 0.600 inch
wide (cutter radius = w. 14 inches). Cracks were initiated in the specimens

through bending fatigue, followed by tension fatigue to a normalized crack
size of 0. 091 inch.

Upon completion of the crack growth phase, the three specimens were
machined to the desired thicknesses of 0. 125, 0.065, and 0.030 inch

respectively. These fatigue crack specinens are shown in FIGURE 14.

Preliminary tests were conducted using these specimens to determine

the response of surface waves to the fatigue cracks. The results of these

tests confirmed the detectability of the natural fatigue cracks by ultrasonic

surface waves. This ultrasonic response is shown in FIGURE 17, photos
of the reflectoscope presentation obtained during these tests.

Concurrently, three aluminum specimens containing varying depth
artificial flaws were prepared. These specimens, with thicknesses of
0. 130, 0. 097 and 0. 033 inch, are shown in FIGURE 15.
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0.030-INCH
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MB CK

0.065-INCH
SPECIMEN

MB CK

LEGEND

MB: MAIN BANG
CK: CRACK

0.125-INCH
SPECIMEN

MB CK

Figure 17. Ultrasonic Response From Fatigue Cracks
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Upon comp]etion of the fabrication of the various test specimens,

ultrasonic tests were initiated to correlate the response of the natural

fatigue cracks with those of the artificial flaws. These tests were con-

ducted by determining the gain required to obtain a predetermined level of

scope amplitude with the transducer placed at a constant 6-inch distance

from the flaws. Several series of tests were conducted on each specimen to

achieve consistent readings, since transducer orientation and coupling caused

variances in response with respect to the gain values. The results of these

tests are summarized in TABLES 8, 9, and 10.

Table 8. Low-Range Thickness Specimens

0. 030-Inch Specimen and 0. 030-Inch Dogbone

Scope Gain Settings

Flaw Depth Test 1 Test 2 Test 3

Frequency 2. 25 2. 25 5. 0 Average Values

0.035 3.8 2.2 0.10 2.0
0.030 3.0 2. 6 0. 10 1. 9

0.025 3.8 1. 1 0. 10 2. 0

0.020 3.4 1. 9 0. 10 1.8
0.015 5.8 1.7 0. 16 2.6

0.010 8. 5 3.5 0. 25 4. 1

0. 005 4.0 16. 0 0. 89 7. 0
Fatigue crack

(F/C) 5. 1 - 0. 07 2. 6

The results of the individual test series were then averaged to eliminate,

to some degree, the variances. The average values were then plotted to

determine the artificial flaw size which equaled the natural fatigue crack

with respect to ultrasonic response. These graphs are shown in FIGURES 18,
19, and 20.

The artificial flaw sizes for each specimen thickness were then used

to generate a curve that would serve as a means of determining appropriate

artificial flaw depth for any specimen with a thickness between 0. 010 and

0. 130 inch. This final graph is shown in FIGURE 21.
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tbl .e, 9. Mid-Range Thickness Specimens

0. 098-Inch Plate and 0. 065-Inch Dogbone

Scope Gain Settings

Flaw Depth Test 1 Test 2 Test 3 Average

Frequency 5.0 5.0 5.0 Values

0.100 0. 10 0. 10 0.10 0. 10

0.090 0.10 0.10 0.10 0. 10

0.080 0. 13 0. 10 0. 10 0. 11

0.070 0. 11 0. 10 0. 10 0. 10

0.060 0. 15 0. 10 0. 10 0. 11

0.050 0.17 0.10 0.10 0. 12

0.040 0. 17 0. 10 0. 10 0. 12

0.030 0.36 0.11 0.10 0.18

0.020 0.18 0.18 0.26 0.21

0.010 0.38 0.30 0.26 0.31

F/C 0.16 0.15 0.20 0.17

Table 10. High-Range Thickness Specimens

0. 130-Inch Plate and 0. 116-Inch Dogbone

Scope Gain Settings

Flaw Depth Test 1 Test 2 Test 3
Average

Frequency 2.25 2.25 ,5..0 Values

0.130 0.20 0.16 0. 10 0.18

0.120 0.22 0.18 0. 10 0.17

0.110 0.34 0.21 0.10 0.21

0.100 0.22 0.15 0.10 0.19

0.090 0.36 0.16 0. 10 0.21

0.080 0.40 0.24 0.10 0.25

0.070 0.38 0.26 0. 10 0.25

0.060 0.38 0.36 0.10 0.28

0.050 0.40 0.52 0.10 0.34

0.040 0.42 0.56 0.10 0.36

0.030 0.45 0.74 0.10 0.43

0.020 0.43 0.93 0.13 0.49

0.010 0.92 1.23 0.14 0.86

F/C 0.56 0.75 0.08 0.29
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Figure 18. Ultrasonic Response Vs. Flaw Depth for Low-Range
Thickness Specimens
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Figure 19. Ultrasonic Response Vs. Flaw Depth for Mid-Range
Thickness Specimens
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Figure 2.0. Ultrasonic Response Vs. Flaw Depth for High-Range
Thickness Specimens
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Figure 21. Artificial Flaw Depth Vs. Specimen Thickness
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- I,.n ., :ei.c: of the ultrasonic testing of the specimens utilized
durii this task, destiuctive analysis was performed to verify the actual
size of the fatigue cracks. The dimensions of the cracks in the three speci-
mens are shown in TABLE 11. The shape and dimensions of the fatigue
cracks after fracture of the specimen are shown in FIGURES 22, 23 and 24.

Table 11. Actual Fatigue Crack Size

S.Specimen Crack Width Crack Width Crack
i. . ) (Front) (In. ) (Back) (In. ) Depth (In.)

0.116 0.515 - 0.071
0.065 0.405 0.106 0.065
0.030 0. 363 0. 262 0.030

ULTRASONIC TESTING

Initial Noise Test

Although shown in the study schedule as part of the Task 5 ultrasonic
testing, a serieS of initial noise tests were conducted as a supplement to
the Task 1 transducer evaluation on four surface wave transducers. The
objective of these tests was to determine if the background noise environment
had an adverse effect upon the ultrasonic response at any of the specific
frequencies at which the subject transducers operated.

These tests were conducted by attaching the appropriate ultrasonic
transducers to the test specimen, as shown in FIGURE 13, by the use of F88
CCP dental adhesive. The test specimen was subsequently suspended in the
reverberation chamber of the LTV acoustic system. A pink noise environ-
ment was then introduced into the chamber at levels of 140 db, 145 db, 150 db,
155 db, and 160 db. The spectrum input, as shown in Appendix A, at each of
these levels was monitored by a microphone mounted within the chamber.
The ultrasonic response obtainedfrom the first standing member in the path
of ultrasonic beam was recorded directly fromthe reflectoscope CRT pres-
entation through the use of a 35-mnm Mitchell camera with a time lapse
attachment and counter. The responses of the ultrasonic wave front, as
recorded from the CRT presentations, are shown in FIGURE 25. Monitoring
of the first standing member with the 10. 0 and 15. 0 MHz transducers could
not be achieved due to the inherent low transmittive power of these units.
However, the initial pulse of these transducers was monitored. No record
of the 15. 0 MHz transducer is available due to film processing difficulties;
however, visual observation of the results during testing were similar to
those of the 10. 0 MHz transducer.
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Roughness Test

A series of tests were conducted on the specimen shown in FIGURE 12
to determine the effect of various surface finishes upon the propagation of
ultrasonic surface waves. During these tests, the 2. 25 and 5. 0 MHz trans-
ducers were maintained at a constant 20-inch distance from the specimen
edge, which was used as the monitoring echo. The objective of the tests
was to establish the gain requirements necessary at each degree of finish
to achieve a predetermined amplitude response from the edge of the specimen.

The gain values obtained at both the 2. 25 and 5. 0 MHz frequencies are
shown in TABLE 12. The values obtained were averaged to allow graphic
presentation of the results, which are shown in FIGURE 26. As can be
seen from the graph, a direct relatioship between roughness and gain require-
ments could not be achieved. This was postulated to be the result of varying
coupling of the transducer to specimen surface. A more stable and consist-
ently repeatable signal could be obtained on the roughened finishes as com-
pared to the as-rolled and finer ones. The conclusions drawn from these
tests is that a surface finish of 100 rmicroinches RMS or less has only
minimal effects upon surface wave propagation.

Thickness Test

The effort conducted in support of this task was to establish the trans-
ducer type and frequency range appropriate for the various material thick-
nesses being evaluated during this study. As shown during the early testing
phases, the transducer types to be used on all the various thicknesses were
of the type that yielded a surface wave mode of ultrasonic propagation.
During the frequency optimization and flaw analysis tasks, data regarding
the appropriate frequencies for use on the various individual material
thicknesses was generated.

Table 12. Roughness Test Data-Surface Finish Versus Gain

Scope Gain Settings

2.25 MHz 5.0 MHz
Surface Average
Finish Test Test Test Test Test Test Gain
Value 1 2 3 4 5 6 Value

6 0.36 0.32 0. 13 0.88 0.43 0.08 0.37
1 0.54 0.45 0.20 0.99 0. 58 0. 53 0.55
2 0.54 0.36 0.18 0.60 0.53 0.42 0.44
3 0.30 0.20 0. 10 0.65 0.44 0.27 0.33
4 0.40 0.29 0.25 0.48 0.84 0.27 0.42
5 0.38 0.25 0.13 1.20 1.40 1.00 0.73
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Figure 25. Ultrasonic Signals During A High Acoustic Noise

Environment
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Figure 26. Gain Vs. Surface Finish-Average Values

The frequency optimization tests conducted in support of Task 1, the

results of which are shown in the matrix in TABLE 2, established the 2.25 and
5.0 MHz frequencies as the ranges that provided the best results among

those tested. Although both frequencies exhibited ample power and resolu-

tion capability for the material thicknesses being evaluated, the 5.0-MHz

transducer yielded a cleaner scope presentation and slightly better resolution

in the0. 032- and 0. 050-inch specimens. This fact was postulated as being a
result of the wavelength of the sound beam being propagated into the speci-

mens. It should be noted that either frequency range would have provided

the desired results; however, the 5. 0-MHz range was selected for use with

specimens less than 0.050-inch thick. It was felt this improved scope
presentation would be advantageous on the thinner specimens during the

standing member and final acoustic tests.

Standing Member Test

In order to determine the effect of standing members upon the ultra-

sonic surface waves, tests were conducted on two similarly configured test

specimens, one set with two vertical ribs and the other with five vertical

ribs. These test specimens are shown in FIGURES 11 and 9. The objective
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wasto determine the effect the ribs would have with respect to monitoring
the opposite edge of the test specimen using 2. 25 and 5. 0 MHz surface wave
transducers. The transducers were placed at two locations on each specimen,
on one end of the panel so the ribs stood in the path of beam propagation and
the other with the transducer positioned on the smooth surface opposite where
the ribs intersected the base material.

These tests revealed that regardless of whether or not the ribs were
in the path of the propagated sound beam, the edge of the specimen could be
located. Photos taken of the scope presentation of the echos obtained during
these tests are shown in FIGURES 27 and 28. As can be seen in the figures,
multiples resulting from the standing members would prove to be a major
obstacle to the detection of flaws in the specimens containing five ribs. The
specimens with two ribs did not represent as severe a problem since flaws
could be located. FIGURE 29 illustrates the major paths of ultrasonic
propagation that are hypothesized to exist in the two-ribbed specimen. Rib
radii, rib tops, and the specimen edge all provide permanent responses.
The photographs below the specimen drawing show the actual responses from
the rib and edge reflectors on a 0.09-inch-thick test specimen used in this
study. The photos were taken prior to flaw introduction in the specimen. It
could be concluded that standing members do represent a restricting factor
upon the usefulness of surface wave ultrasonics, the magnitude of the prob-
lem'being proportional to the number and location of the standing members.

Weld Specimen Tests

During the course of this study, an interest was shown as to the effect
of weldments upon ultrasonic surface waves. A test specimen of 2219 alumi-
num of 0. 250-inch thickness with a weld located at the centerline of the panel
was obtained for test purposes. Four artificial flaws of 0. 030-inch depth
were introduced into the specimen at various locations to provide different
flaw orientation with respect to the weld. This test specimen and the flaw
locations are shown in FIGURE 30. A series of tests were conducted using
a 2. 25 MHz transducer to evalute the propagation and detection capabilities
of surface waves on this weld specimen. In the first test, the transducer
was placed at an 8-inch distance from the parent metal flaw so that the weld
was in the path of ultrasonic propagation from the transducer to the flaw. In
the second test the transducer was placed at a 5-inch distance from the weld
and the longitudinal flaw in the weld was monitored. During the third test, _
the transducer was positioned on the weldment itself, which had been machined
to remove the majority of the weld reinforcement, and the transverse flaw
in the weld was monitored at a 7-inch distance. In the final test, the flaw
in the weld heat-effected zone was monitored by placing the transducer
parallel to the weld at a distance of 5 inches from the flaw. During all these
tests, the artificial flaws-were easily detected using surface waves and the
presence of the weld proved to have no adverse effects upon either the prop-
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Figure 27. Standing Member Tests (Two-Rib Specimens)
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Figure Z8. Standing Member Tests (Five-Rib Specimens)

- 51 - SD 72-SH-0001

j i' T la 1 7.



MO

K TRANSMITTED PULSES
4 ECHO RESPONSE

HIGH GAIN LOW GAIN

LEGEND

MB - MAIN BANG
RR - RIB RADIUS
RT - RIB TOP 0o u

o E - EDGE

MB RR RT RT E MB RT E

Figure 29. Hypothesized Ultrasonic Propagation Paths in Two-Ribbed
Test Specimen



Space Division
. North American Rockwell

9

0

I 2 - 4 6
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-53-

SD 72-SH-0001



Space Division
North American Rockwell

agation or the detection capabilities of the ultrasonic technique. The ultra-

sonic responses obtained from each of the flaws during these tests are

illustrated in FIGURE 31.

Acoustic Chamber Tests

Acoustic environmental testing was conducted in the same manner as

outlined in a previous section of this report. Three test specimens were

utilized to determine the effect of extreme acoustic noise on ultrasonic

flav. detection. Base plate thicknesses were 0.045, 0.065, and 0. 090 inch

respectively and each test specimen contained two standing members spaced
8 inches from each other. Flaws were machined into eact test specimen at

the location shown in FIGURE 32 to the following depths:

0. 045 specimen - 0. 030 inch

0. 065 specimen - 0. 040 inch

0. 090 specimen - 0. 049 inch

Transducers were then bonded to the test specimens utilizing

Lefkoweld 109 adhesive, as illustrated in FIGURE 33. Upon completion of

adhesive curing, the ultrasonic responses from the artificial flaws were

documented prior to acoustic testing. These ultrasonic responses are

shown"in FIGURE 34.

To facilitate the acoustic testing, each specimen was individually

suspended in the test chamber as shown in FIGURE 35. A test run for each

transducer was conducted with two-minute holds at each selected decibel

level. An accelerometer was bonded to each test specimen and Appendix B

shows the reaction of the test specimens to the acoustic environment. A

specially constructed microphone was suspended in the chamber to monitor

the noise being applied to the test specimens. The noise levels generated as

detected by the microphone are shown in Appendix C.

No effect of severe acoustic environments was noted upon the ability

of surface wave ultrasonic flaw detection techniques to detect or monitor

crack-like flaws in the test structure. The only noticeable effect on the

signal at all was a slight vibratory motion in the amplitude mode. FIG-

URES 36, 37, and 38 show individual scope patterns for each of the six runs

made indicating flaw location from ambient noise conditions to levels of

160 db. It should be noted that the markings below the CRT baseline in

FIGURES 36, 37, and 38 were used only as an aid during tle tests to locate

the flaw signals.

FIGURE 39 shows the test instrumentation used during the noise

te's ting.
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Figure 31. Ultrasonic Responses From Weld Specimen Flaws
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Figure 32. Acoustic Chamber Test Specimen
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Figure 33. Acoustic Chamber Test Specimen
With Transducers Bonded
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0. 045-Inch Ribbed Specimen (5.0 MHz)
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Figure 37. Ultrasonic Responses During Acoustic Tests of
0. 065-Inch Ribbed Specimen (2. 25 MHz)
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Figure 38. Ultrasonic Responses During Acoustic Tests of
0. 090-Inch Ribbed Specimen (2. 25 MHz)
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OPERATIONAL ASSESSMENT

Current space shuttle vehicle design baseline requirements are for

100 mission flights. The requirement for refurbishment, maintenance, and

system verification within a two-week span is the basis of the requirements

.fo," special ground support and on-board checkout equipment. Among the

available methods to accomplish this task are those of nondestructive evalua-

tion. Some of these techniques have been utilized previously on aircraft,

spacecraft, and launch vehicles. Presently recognized means of assessing

the integrity of structures and assemblies nondestructively include such

techniques as penetrants, radiography, C-scan ultrasonics, visual inspection,

and eddy currents.

This study identified three general categories of on-board ultrasonic

systems: (1) complete system, ,(Z) limited system, and (3) ground supported

system.

On-board ultrasonic checkout system is a proposed subsystem that

could be part of the overall space shuttle maintenance concept. The space

shuttle maintenance plan has been developed to establish, as applicable,

requirements and prospective implementation approaches for the conduct of

the design, development, and operations of the space shuttle program. The

following section is a summary of those aspects of this plan, as detailed in

NR SD report SD 71-106, which are pertinent to implementation of an

on-board ultrasonic checkout system. This Phase B shuttle effort was

conducted for the Manned Spacecraft Center.

The maintenance concept establishes a framework for development of

space shuttle maintenance capabilities. As it is refined, the concept

influences equipment design, defines the objectives of maintenance and

support planning actions, and provides a baseline for the acquisition of

maintenance resources.

Three levels of maintenance are defined. Level I maintenance activities

will be accomplished to process a postmission vehicle through safing, unload-

ing, and purging functions to the hangar maintenance area. Level II, the

secondary maintenance cycle, will be performed to repair a line-replaceable

unit (LRU) that has been replaced during turnaround maintenance. Level III
maintenance will be provided for extensive rework, repair, and refurbishment

of equipment requiring specialized skills, equipment, and facilities not
available at the operating site.
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The on-board ultrasonic checkout system could be part of the Level I

maintenance function. Nondestructive evaluation of critical structural

members could be acconmplished in support of Level I activities associated

with body structures and can be used to conduct flaw isolation operations

associated with structural components. For example, if a crack is dis-

covered by an on-board ultrasonic checkout, procedural steps such as

penetrant, ultrasonics, X-ray, etc., might be accomplished in progressive

steps to assure flaw detection.

SYSTEM DESCRIPTIONS

In order to evaluate on-board ultrasonics, a detailed design of a

postulated system should be available. Three general categories of on-board

ultrasonic systems are readily identified. A complete system would monitor

the majority of the shuttle structures. A limited system would monitor

selected critical structures. Both of these systems are envisioned as being

self-contained on board the shuttle vehicle. A ground-supported system

would monitor selected critical structure with the aid of ground support

equipment.

A common component of each of these systems would be the transducers

and coax cable. The weight of each individual transducer is expected to be

near 8 grams: the weight of the miniature coax cable is 4. 5 grams per foot.

Complete System

A complete system would monitor the majority of the structural

members. In order to minimize high-voltage switching problems, it is

desirable to use individual pulser modules for each transducer channel. A

multiplexer would be used to switch to a single channel receiver. Assuming

a structural checkout once every half hour, one ultrasonic receiver and proc-
essor would be necessary for approximately every 1800 receiver channels.

The data display could be either a real-time cockpit display or be stored on

the flight record for subsequent analysis. The block diagram shown in

FIGURE 40 represents a complete system with complete data display and

recording. Basic power consumption would be about 500 watts with an addi-
tional 1/4-watt per transducer channel. The 500 watts represent the

estimated sum of the total components. Allocations for the components are

260 watts for the pulser receiver, 20 watts for the multiplexer, and 250 watts

for the computer. The weight of the basic unit is expected to be near

25 pounds with an increase of 1/4-pound per transducer channel. Each appli-
cation of a transducer would have to be evaluated individually and configured.
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Limited System

A limited system would monitor selected critical structures. The

functional electronic processing would be similar to that for a complete

system except for having fewer channels. In either case, a multitude of

display techniques are possible. FIGURE 41 shows a block diagram for a

linmited system with historical data management only. The basic power and

weight consumption figures developed for the complete system would also

apply to a limited system. A limited system has specific weight advantages

over a complete system. However, the development risk is about the same

as that for a complete system.

Ground-Supported System

The ground-supported system would have only the transducers and

associated wiring on-board the shuttle vehicle, The ultrasonic transducers

would be bonded in place with associated wiring leading to external con-

nectors. The checkout system would then be interrogated by using associated

ground support equipment. No on-board power consumption would be

involved, and the weight of the system would be the lowest of the three sys-

tem concepts. The major disadvantages of the ground-supported system

are the labor requirements and time required to interrogate the system

during vehicle turnaround. FIGURE 42 shows a block diagram for a ground-

supported system. Development cost would be minimal since only standard

nondestructive instrumentation would be used. It then appears that the

ground-supported on-board system has definite weight and cost savings

advantages relative to the other two systems.

System Comparison

A qualitative analysis was performed on the three individual system

approaches and is presented in TABLE 13, The evaluation was made by

first identifying the primary attributes of the various approaches. A numeri-

cal grade between 1 and 10 was assigned to the various attributes, with the

high rating reflecting the most desirable condition, for each approach based

on the consensus of Space Division personnel who are involved in the analysis.

Weights were assigned to each attribute to reflect the relative importance.

The rating of each approach is then calculated by summing the attribute

rating times the weighting factor, over all attributes.

OPERATIONAL LIMITATIONS

An on-board ultrasonic checkout system would be best utilized to

monitor critical, highly stressed structural members. The monitoring of

tank welds in high pressure vessels and highly stressed stringers appears
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Table 13. Matrix Evaluation of On-Board Concepts

Relative Merit of Ultrasonic Feasibility Factors*':

On-Board Amount of NDT Relative
Ultrasonic Number of Electronic Power System System Merit
Concept Transducers Equipment Requirement Weight Reliability Cost Reliability Rating

Complete
system 2 1 2 2 8 1 8 30

Limited
system 8 5 6 6 3 7 2 63

GSE-

supported
system 6 7 10 8 5 9 4 85

Relative
Weight 1 1 2 2 1 3 1

z (n

*High rating reflects most desirable condition 0

0
C)
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most appropriate. Structurally, members with more then two ribs with a

spacing of less than 5 inches apart could not be monitored effectively. It

is not possible to monitor the area just adjacent to the reflected pulse from

the rib member. Hence, the near-side base of a rib could be monitored

while the far-side base could not be monitored. Holes, bolts, and other

structural members obstruct the line of sight. The majority of these limita-

tions can be overcome by using additional transducers, which points out the

major limitation of on-board ultrasonic monitoring' excessively large

numbers of transducers are necessary to completely monitor a complex

structur e.

Many factors influence the feasibility of installing an ultrasonic sys-

tem on board the orbiter. Present analysis indicates that it would be

impractical to monitor every structural member of the orbiter. This can

be seen from the analysis of a typical single structure. Consider the engine

support pedestal floor shown as a detailed drawing in FIGURE 43, as obtained

from blueprint No. VC70-3084, Aft Fuselage Structural Arrangement. As

can be seen from this figure, there are 19 longitudinal ribs protruding from

both the top and bottom surface. Axially, there are eight principal ribs or

partial ribs. Allowing for propagation over five ribs only and not trying to

gate rib spaces less than 6 inches apart, this structure would require

approximately 100 transducers to completely monitor the load-bearing ribs.

Even so, the corner of the joined ribs would have dead space left unmoni-

tored. This analysis then suggests that one should be selective as to the

areas monitored. These areas would have to be subjected to careful analysis

and probably prototype configuring of the structure.

The tests conducted within the confines of this study and the results

obtained from other NR programs have shown that ultrasonic techniques,

using various beam propagation modes and instrumentation, can be utilized

as an on-board structural monitoring system. Although present state-of-

the-art technology would allow installation of such a system, certain opera-

tional limitations would necessitate consideration. Some of these more

evident limitations are discussed in the following paragraphs.

A major potential limitation can be the configuration of the structure

to be monitored by the ultrasonic system. Specific physical characteristics

of the structure, such as standing members, holes or cutouts, rivets,

attached members, -etc., in the path of the ultrasonic beam can initiate

detrimental echos or complete beam reflection which can obliterate and/or

negate defect detection. The degree of this effect for each of these inde-

pendent physical characteristics depends upon the ultrasonic system's

capability and will vary with the location of the area being monitored and the

type of beam propagation mode utilized. An example would be the presence

of standing members located on the assembly. If transducer placement with
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Figure 43. Aft Fuselage Structural Arrangement
(Selected Portion)
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respect to the critical area to be monitored can be achieved so that the

standing members are not in the beam propagation path, the fact that the

standing members are present has no effect. If, however, it is necessary

to place the transducer at a location where the standing members are in the

path of the propagated ultrasonic beam, the degree of the effect will vary.

If the material is sufficiently thick to allow proper shear wave propagation,

the standing members will not be restrictive since the sound travels within

the material by reflecting from the top and bottom base surfaces and can

be passed by the ribs with no resultant effect by proper transducer to rib

distance and sound propagation angles within the material. If the structure

is so thin that surface waves are required, then the ribs can represent a

restrictive factor depending upon the location and number of the standing

members as discussed earlier in this report.

Another limiting factor is the present narrow beam transducers and

the importance of critical defect to transducer orientation. The use of

bonded-in-place, narrow beam transducers allows only small area coverage

since the beam spread is approximately 3 percent. This means that if large

area coverage is required, multiple sensors will be necessary. This

contributes to system weight and cost. This can be diminished somewhat

by using strip or mosaic transducers, which, although not necessarily

reducing transducer weight, will reduce the number of separate channels

and instrumentation since one mosaic transducer will cover the same area

that required three to four standard sensors. A related issue is that of

transducer to defect orientation since on-board systems are based upon the

operational mode of pulse-echo ultrasonics. Pulse-echo ultrasonics operate

on the principle of each sensor propagating the sound into the structure and

also receiving the resultant defect echos. The defect orientation becomes

critical when the long axis of each crack-like flaw varies from a perpendic-

ular plane with respect to the propagated sound. This will result in either

the sound passing by the defect and not initiating any reflection or the reflec-

tion angle may be such that the echo path will not lead back to the sensor.
The degree of effect upon on-board system consideration of these factors

are dependent on various issues. Analysis of structural loading data prior

to sensor placement can provide data regarding the type of defect and its

probable location and orientation within the areas deemed critical. This

type of analysis would allow placement of system sensors so that the highest
degree of detection sensitivity with fixed transducers could be achieved.
The application of multiple rotating sensors which sweep an area could pro-

vide a potential means of improvement in the area of narrow beam trans-
ducers and defect orientation. The use of this type of sensor requires
analysis of the sensor itself, drive mechanisms, and couplants.

It can be seen from the considerations shown above that-the use of
on-board monitoring will require an in-depth analysis of many factors prior
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to its implementation on a shuttle vehicle. The feasibility of using such a

system has been demonstrated for limited cases; however, many different
factors must be evaluated prior to its implementation. These include areas

such as:

(a) Structure to be monitored

(b) Specific critical areas within the structure

(c) Probable defects, critical size, and orientation

(d) System envolvement, i. e., in-flight, turnaround, etc.

(e) Sensor selection

(f) Sensor placement

(g) Instrumentation

(h) Data management

(i) Operational parameters

An analysis and evaluation of these factors are beyond the scope of
this study; however, such issues must be considered during the development
and implementation of an on-board monitoring system.

DATA MANAGEMENT

Although the data displayed in the tests described in this report were
oscilloscope "A" traces, this data can be gated and displayed digitally or
as a GO/NO-GO panel light. For a large nunmber of transducer channels, it
is possible for one GO/NO-GO panel light to monitor many channels. This
monitoring system may be compared with other display methods. Since the
pulser-receiver would be multiplexed over many transducer channels, a
panel light could just follow this sequencing. This would require an addi-
tional digital display indicating which channel was being monitored, In either
case, the information status is updated only as the transducer channel
multiplexer information is processed by the pulser-receiver. However, with
multiple channel monitoring, the status of all channels is readily observable
at any one time. In this sense, it is a monitoring real-time system. The
other system is best referred to as a sequencing real-time system. These.
two alternatives represent the most logical ways to integrate the on-board
ultrasonic system into a panel display.
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Three other alternatives exist for processing the data: (1) the data

could be stored on flight record tapes and be analyzed after the flight; (2)the

data could be telemetered, to earth for monitoring by an earth-located

monitoring station; (3) a limited on-board system could be deployed. In

this case, ultrasonic transducers would be bonded in-place with associated

wiring leading to external ports. The checkout system would then be inter-

rogated after landing by using associated ground support equipment. The

ground support equipment would include the pulser-receiver, gates, multi-

plexer, and an interpretation-computer.

COST OF AN ON-BOARD ULTRASONIC SYSTEM

In order to estimate the cost of an on-board ultrasonic system, a

detailed design of the system should be available. The principle cost param-

eter will be the number of transducers for a given type of system. The

principal cost can be divided into three categories: material costs, installa-

tion costs, and operational costs.

The basic material costs would involve the pulser receiver, multiplex

units, and computer interpreter for about $20, 000 for ten channels with an

increase of about $50 per channel. The transducers would cost about

$200 each.

It is estimated that the installation costs would be about two man-

hours per channel. The operational costs are highly dependent on the type

of system employed. A real-time system would not involve any major

operational cost while a limited or ground-supported system would cost

about five man-minutes for each channel each time the channel is interrogated.

Of course, support operations beyond these basic costs would be necessary

to support implementation.

Total cost estimating for a system may be approached from many

different ways. The previous section developed basic cost data based on

foreseeable costing. The general approach to space shuttle costing is based

on historical data of analogous functions. The data contained in "Program

Cost and Schedule Estimates Plan for Phase C/D, " SD 71-107, which is

part of the Phase B shuttle effort completed for the Manned Spacecraft

Center, provides a basis for such data. Working from the data contained

in this report, the following estimates of total implementation costs for an

on-board ultrasonic checkout system have been generated.

Cost estimates for the space shuttle are made in three categories.

The design, development, testing, and engineering costs (DDT&E) are a

nonrecurring cost based on past experiences in similar functional areas

(i. e., primary body structures, nose TPS, thrusters, etc.). The second
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category is that of production costs, which are a recurring cost. The break-
doWvn here is similarly made by functional elements as related to weight
estimates. The last category is that of operations costs, also a recurring
cost. The operations cost is derived as a detailed manpower estimate based
on historical data. Since no historical data exists for an on-board ultra-
sonic system, an estimate was made, based on as closely related functions
as possible. Consideration would suggest that the "instrumentations" function
would serve as the best model; the cost estimates for.the orbiter and booster
are shown below:

DDT&E Production Operations TOTAL

Orbiter $37.2 $4. 5 $2. 1 $43. 9
Avionics
Instrumentation
(millions of dollars)

Probably the best estimate we have on any cost figure is that for
production costs with respect to an on-board ultrasonic system. These costs
may be estimated to lie between $25, 000 and $200, 000 with the most probable
cost estimated to be $50, 000, based on approximately 100 sensors. This
then may be extrapolated to program costs based on typical instrumentation
costs:

DDT&E Production Operations TOTAL

On-Board $413.0 $50.0 $23.4 $486.4
Ultrasonic
Instrumentation
(thousands of
dollars)

SCHEDULE FOR IMPLEMENTATION OF ON-BOARD ULTRASONIC
SYSTEM

The schedule for implementation and operation of the ultrasonic NDE
system must follow a logical development order and must be compatible with
the overall shuttle schedule. A logical development plan is outlined in
FIGURE 44. The major milestones for shuttle would pace the on-board
ultrasonic checkout system development. By conmbining these data, a
schedule for on-board ultrasonic implementation was developed as illustrated
in TABLE 14.
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DETAILED
DEVELOPMENT

PLAN

ESTABLISH DEFINE
TRANSDUCER APPLICATION
SOURCEs AfeAREAS

DEFINE DESIGN
CRITERIA FOR
THE ON-BOARD
ULTRASONIC
CHECKOUT SYSTEM

DEFINE TOTALDEFINTOTAL OPERATIONAL AND
PROCUREMENT OP C
OF THE ULTRASONIC MC
CHECKOUT SYSTEM DEMON

S T R A T I O N

INSTALLATION
COMPLETE

CHECKOUT AND 1FIRST
OPERATIONAL OPERATIONAL
PLAN USE

Figure 44. Development Plan Logic

Table 14. Schedule for Implementation of
On-Board Ultrasonic Checkout System

Months After
Phase C/D

Activity Go-Ahead

Detailed development plan 3
Establish transducer source 6
Define design criteria for the on-board

ultrasonic system 8
Define the total procurement of the

ultrasonic checkout system 20
Operational and functional demonstration 26
Installation complete 45
Checkout and operational plan 47
First operational use 52
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STATE-OF- THE-ART/APPLICABLE

NDE METHODS

As a related effort in conjunction with the prime program being con-

ducted in support of this contract, it was required that the current state of

the art of a series of nondestructive evaluation methods be monitored.

Specifically, acoustic emission and the resonant vibration methods were to

Sb:followed. In-house programs being conducted at NR studying these

tcchniques are typical of how the state of the art is being advanced in these

methods. In addition, ultrasonics (acoustic spectroscopy), holographic

NDE, thermography, fibdr optics, and radiography are discussed. These

methods were mentioned in the Phase ii report of NASA Contract NAS10-7250,

"Methods of Assessing Structural Integrity for Space Shuttle Vehicles" as

being applicable in the near and intermediate term for shuttle use.

ACOUSTIC EMISSION

Noises from some materials subjected to various modes of deformation

have been heard casually for a long time. During the past 20 years, this

phenomenon has aroused much interest on the part of numerous investigators

who reported their perception of noises (acoustic emissions) emanating from

deforming specimens of rock salt and from the single crystals of several

metals.

Investigators immediately recognized the practical significance of a

diagnostic method that could detect the inception of internal damage and

monitor progressive events as they occur. The low-energy signals from

internal events are not easily detectable by other means; in most cases, no

other expedient exists. The capability to interpret messages from the

internal disturbances-however minute-can provide a means of assessing

damage done or of predicting incipient failure.

During the recent past, acoustic emission technology was investigated
for potential monitoring capabilities in such areas as:

1. Degradation by corrosion and stress corrosion

2. Pressure vessel structural. monitoring during proof.
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3. Feasibility of on-board monitoring of structural integrity

4. In-process welding control

It has been theorized and widely recognized that two types of acoustic

emission exist. The first is the high-frequency, low-amplitude, low-energy

emission generated during the deformation of materials. Continuous

emissions begin at the onset of plastic deformation and reach a peak rate

in the specimen's plastic region. Continuous emissions are associated with

microscopic'and submicroscopic events such as slips, twinnings, granular

reorientations, dislocations, and pile-ups. The second is the large-

amplitude burst-type of emission created by fracturing and realignments at

the leading edges of flaws. Burst types of emission are associated with

macroscopic failures and are estimated to have energy levels 1010 to 1014

times larger than those of continuous emissions.

If a structure containing a flaw is subjected to any stress (fatigue,

dynamic, static), the material in the vicinity of the flaw can undergo plastic

deformation because of localized high stresses even though the remainder

of the structure is well within the elastic design limit.

Dunegan, Harris, and Tatro state that the degree of damage or

criticality can be assessed from acoustic emission data by correlation with

previously established fracture toughness data in the following manner:

1. Acoustic emission as a function of the stress intensity factor for

the specific materials is determined. The results of several

tests with flaws of different sizes would generate an N-K plot

The thickness of material to be used in the final structure would

be most important; the value of the critical stress intensity

factor, K C , could also be determined in these tests by taking

the specimens all the way to failure.

2. The structure is acoustically monitored during initial loading to

obtain the value of the emission counts, Nt, corresponding to a

given load, F t .

3. The value of the stress intensity factor, Kt, corresponding to the

given load, F t , is obtained from the typical N-K curve by using

the value of Nt determined in step 2.

Fracture load can then be determined from the relationship
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F t  F C (fracture load)
t KC

This relationship results from the linear dependence of the stress intensity

factor on the applied load.

Thus, quantitative information on the initiation of crack growth and
the extent of c'rack extension can be calculated. In this manner, the current

structural integrity or remaining lifetime can be assessed.

Corrosion and Stress Corrosion

Tests on stressed specimens in a corrosive environment revealed the

feasibility of detecting stress corrosion cracking with an acoustic emission
system. Significant increase in acoustic stress wave's presaged impending
rapid degradation. Therefore, an acoustic emission system appears feasi-
ble for monitoring surface and structure degradation caused by corrosion.

Feasibility of On-Board Systems

Theory and mathematical calculations for an on-board acoustic emis-
sion monitoring system have been compiled. These calculations and the
preliminary testing indicate a strong potential for employing the method to
ensure structural integrity and to assess remaining service life.

Pressure-Vessel Monitoring

The development achieved to monitor the structure of pressure vessels
consisted of sensor development and frequency analysis of flaw signals and
extraneous noise signals at both room and cryogenic temperatures. The
sensor research and testing revealed that the resulting signals were directly
related to the resonant frequency of the sensors. The signal analysis,
together with the transducer testing, indicates that a system capable of
monitoring the structural capability is not only feasible but is extremely
practical when the sensor resonant frequency is matched with the proper
filter arrangement for the most advantageous signal-to-noise ratio.

ULTRASONICS

Ultrasonic efforts currently fall within three major areas: in-process,
on-board, and integral structures. In-process ultrasonics refers to those
techniques that evaluate the quality of hardware items simultaneously with
the processing sequence. The applicability for ultrasonic wave propagation
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to detect material iincUnsistencies or changes during forming, welding,

bonding, or other processes is feasible and has been demonstrated for some

processes.

On-board refers to a technique of bonding ultrasonic transducers to

structural assemblies for the purpose of defect analysis during the opera-

tional life of that hardware. Generation of ultrasonic waves outward away

from these transducers will seek out reflective interfaces created by defec-

tive material inconsistencies and return an ultrasonic warning signal of the

presence of that inconsistency by magnitude and location.

Integral structural ultrasonics refers to a technique of ultrasonic

application whereby a structural assembly is illuminated with ultrasonic

waves of a variety of modes and after illumination, additional instrumented

ultrasonic transducers operating as receivers detect and discriminate the
secondary ultrasonic radiation from those inconsistencies which are

generally in the form of spherical waves. This application sometimes is
referred to as "burst pulse, " "delta, " or "acoustic spectroscopy."

Acoustic spectroscopy is a nondestructive evaluation technique that has
has been designed to provide flaw detection within large areas (10 ft 2 ) at
extremely rapid rates. Normally, ultrasonic flaw detection is accomplished
by scanning a tmiansducer over the inspection area, which can be time-
consuming when looking for small flaws (2-4 ft/hr maximum). Acoustic
spectroscopy employs the principle of controlled ultrasonic wave propagation
from more than one stationary source and the analysis of the resultant

spectrum produced for flaw detection and location. This technology has
been devised by the Agrophysics Corporation (formerly the W. W. Dickenson
Co. ) of San Francisco, California.

Basically, the technique employs the transmission of high-powered
ultrasonic shear waves produced by burst pulsing. Computers are used to
control scanning and signal evaluation, which are achieved by triangulation
and spectrum analysis. This technique, if properly developed, could pro-
vide an in-place ultrasonic monitoring system capable of large homogeneous
area coverage with flaw detection results available almost simultaneously
with initial pulsing. Transducer location for relatively homogeneous areas
could be on 10-foot centers or greater. Transducer weights at the current
state of the art are measured in ounces and, with more development, could
be substantially less according to W. W. Dickenson.

Acoustic spectroscopy, with further development effort, could provide
a rapid assessment of structural integrity of shuttle structures in many
areas, from manufacturing through operations.
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HOLOGRAPHIC NDE

Holographic interferometry can locate structural anomalies by detect-
ing irregularities in surface displacement as a structure is subjected to
low-level loading. Holographic interferometry is predicated on the use of
a continuous-wave (CW) laser light source. When fringe control techniques
became available, they were incorporated into the laser holography system.
Efforts to achieve continuous-wave, off-the-table operation have been

concentrated on the double-reference-beam technique since technical litera-
ture reveals an ever-growing number of engineering applications.

The alternative approach to CW-laser holography, namely pulsed-
laser holography, has made significant progress this year when several
pulsed-laser holography systems have become commercially available.

CW-laser holography still has the advantage over pulsed-laser systems in
that it makes possible real-time observation. However, for the purpose of
making photographic records, double-exposure holography is normally used;
as a result, the advantages of the CW system become less pronounced.
Pulsed-laser holography seems to offer the quickest method of achieving
a shop inspection system because of the recent advancements.

For a continuous-wave, off-the-table system, higher power and a
more compact continuous wave laser, as well as improved film techniques,
2nust be developed. Recently, argon lasers became commercially available;
these lasers offer as much as ten times (one watt) the power output of the
available helium neon laser system used for the holographic system evalua-
tion. The helium neon lasers are limited in output to about 100 milliwatts.

The application of holographic nondestructive testing to candidate
structures has been under study for two years. To thin-skin structures
such as honeycomb, corrugated panels, Stresskin, etc., the following
equation is applicable:

d (1 - v 2 )

A1= 3 q

64E t

where

E is Young's Modulus of the facing sheet (along the plane surface)

v is the Poisson ratio of the sheet
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t is the thickness of the sheet

d is the diameter of the defect (minimum defect size)

I is the deflection of the defect's epicenter. For HNDT, this value
must be at least one-half the wave length of the laser beam

x 6328 A) and should be a minimum of about four times the

wavelength, in order to make practical application possible.

q is the forcing parameter

For internally loaded structures, q corresponds to the pressure dif-
ference across the membrane and is limited by the strength of the material.
The theoretical maximum can be. taken as 0. 8 times the yield strength of the
composite structure in flatwise tension testing. The meaning for thermal
or vibration loading is not completely clear, but is similarly limited.

In terms of the present state of the art, 50-mil-thick 7075 aluminum,
adhesively bonded to titanium core (1/2-inch void), represents a very con-
servative limit for high-conductivity materials; while a 16-mil titanium
facing sheet, diffusion-bonded to titanium core (1/4-inch void),, represents
a conservative limit for low-conductivity materials with little thermal
expansion mismatch. Both limits are to be construed with respect to
thermal loading. Extension to other candidate materials may be made on
the basis of relative proportionality by the formula

E t E t
1 1 2 2

4 2 4 (d2 q
d1 l - v1 2 v2

and the allowable minimum defect dimension. The symbols have the same
meaning as in the previous formula. The subscript 1 refers to a material
of a known holographic sensitivity. While the subscript 2 allows the unknown
sensitivity of a second structure to be calculated, based on the material
properties of the structure. The effective diameter of the defect, d, is
taken to be a measure of sensitivity of the holographic nondestructive testing.

Off-the-Table, Continuous-Wave Holography

Methods to achieve continuous wave, off-the-table holography were
centered around the basic premise of making the exposure time short enough
so that the random background vibration was stopped in time-action
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photography. ".o.-v:.,:, , ':-chieve a short exposure time, the light intensity
level at the film plateholder must be of sufficient level to make possible a
short exposure. Basically, two methods are available for raising the
intensity.. One method would be simply to use a laser of high enough power
to achieve this intensity. However, the highest-powered CW lasers (argon)
presently available are limited to approximately 1 watt, single mode,
equivalent to 1. O0 joule second. It is known from pulsed-laser holography,
also, that exposures of about 20 nanoseconds are required for a 3-joule rod.
Therefore, on a comparative basis, it can be seen that present CW lasers
are not powerful,.enough.

Another method would necessitate the use of lenses to increase light
intensity. A large F.resnel. lens placed between the object and the film plate-
holder is a basic concept being studied. The basic method of approach is
illustrated in FIGURE 45. The light intensification that can be achieved by
using this technique may be calculated on the basis of the area of light
collected, as shown in FIGURE 46. Here the increase in light intensity is
A1/A2, minus the reflected light from the lens. A practical value for Al
is several square feet while the limit for A 2 would be a few square inches.
A 2 is limited by the practical size of the hologram plate that can be viewed,
or about one-fourth of a 5- x 4-inch plate, which when projected back to
the viewing plane becomes one-half this value, or about 2-1/2 square inches.
With the use of an antireflecting coating, the light lost from the lens should
be about 10 percent or less. The result is an increase in light intensity of
about 100. With calculations based on the present exposure time of
one second for a light cone 12 inches in diameter from an 87-milliwatt laser,
exposure of about 10 milliseconds would be required.

It is not known how fast the exposure must be in order to stop the
random background motion. However, with a ten-fold increase in power
(aboit the limit of what is available now), exposures in the millisecond range
could be achieved. This status is far removed from the exposures of a
few hundred nanoseconds, which can be achieved with pulsed lasers. Hence,
at the present time, the pulsed laser systems are far superior to the CW
laser approach in the achievement of off-the-table holography.

THERMOGRAPHY

Thermographic nondestructive testing methods have been investigated
since the mid-1960's. Thermal techniques function on the principle of heat
energy flow for the flaw detection mechanism. Any discontinuity located in
the heat flow path will result in some differences in surface temperature.
This surface temperature differential can be detected by a variety of sensing
methods, such as infrared detectors, liquid crystals, infrared sensitive
photographic film, etc.
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Figure 45. Holography With Intensifier Lens
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Figure 46. Increased Intensity Film Lens
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Infrared Scanners

Infrared scanning detector systemns are comprised basically of three
elen ents: (1) an input optical system, (2) the infrared detector, and (3) the
data processing section. The optical portion of the system collects the
radiation obtained from the subject for filtering and focusing onto the sur-
face of the detector. The detector, which is the heart of the entire system,
converts this infrared energy into a form that can be monitored. Once the
infrared radiation has reached the detector and the resulting signal has
been generated, another system processes the signal for presentation in the
desired manner. In order to obtain an increased field-of-view, a scanning
mechanism is used in conjunction with the optic device. When a scanner is
located in the input optical section, the signal processing electronic s must
be synchronized with the scanning operation. Although the initial scanner
systems possessed advantages such as no contact with test part and large
area coverage, limitations existed because of slow scan speed, limited
detector selections and spectrum ranges, and limited data presentation
modes.

In recent years, with the advent of increased military and commercial
applications, significant improvements in the field of infrared technology
have been achieved. Among the major improvements are detectors with
increased sensitivity and spectral response, rapid scanning input optics,
and multiple data presentation methods.

Several infrared detector systems are now commercially available that
encompass the features that make them extremely attractive as potential
nondestructive testing systems. The units included the Barnes Engineering
Model T-101, AGA Corporation Model 680 Therm-lovision, and the Dynarad,
Inc., Model 201. A comparison of the various features of these units is
shown in TABLE 15.

Infrared Photography

Regular infrared photography is the technique of using a camera lens
to focus an infrared image onto an emulsion sensitized to infrared radiation.
The infrared image is produced as a negative record, and subsequently, is
reproduced as a positive print. The sensitivity region of infrared sensitive
film is approximately 700 to 900 mi; however, results have been obtained
at wavelengths out to approximately 1350 ml. Most infrared photographic
work is performed using reflected IR energy. Emitted IR energy can be
recorded on IR sensitive film if the temperature of the test object is in the
range of approximately 250 to 500 C (482 to 932 F). Below this temperature
range, the radiation is nonactive; above it, some of the radiation is in the
visible range.
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Based upon this data, it can be concluded that the use of infrared film

as a the rmal nondestructive test device is limited. The sensitivity of the

film for the detection of emitted IR energy is restricted to objects with

iemperatures above approximately 500 F. Some applications may exist for

the combination IR film and ultraviolet lighting method for inspection of

thin nonmetallic materials. In both cases, extensive evaluation tests will

be required to establish the detection capability and sensitivity limits of the

techniques.

Liquid Crystals

The liquid crystal thermographic technique has been shown as a feasi-

ble method of nondestructive testing in specific applications. Application

development of this technique has been conducted on various materials and

hardware configurations. Among the materials to which the technique has

been applied were an epoxy/polyimide honeycomb structures, aluminum

coldplate assemblies, nichrome wire heater elements, Haynes 188 Stresskin

panels, and diffusion-bonded columbium structures.

FIBER OPTICS

Optical devices have long been used for the inspection of aircraft and

aerospace structures. With the increased complexity and extended usage

of advanced space vehicles, the need for optical viewing of inaccessible

areas of such spacecraft is expected to become even greater. During the

past decade, many advancements have been made in the manufacture of

remote viewing optical devices as a result of demands in the field of medical

instrumentation. These new medical systems can be adapted to aerospace

applications and can provide improved viewing capability for assessing

structural integrity in normally inaccessible areas. Furthermore, the

coupling of these optical devices with sophisticated electronic devices has

resulted in many useful and unique means of data presentation and

documentation.

Although remote viewing optic devices, such as borescopes, have been

in use for many years, some inherent problems have been encountered with

these devices. Among the more significant problems are: (1) a limited

depth of field (focusing has to be exact to obtain a clear image); (2) the

image clarity and field-of-vision from small diameter scopes are limited;

and (3) the light intensity is not adequate.

An evaluation of commercially available optic systems has been con-

ducted to determine which equipment had the optimum potential for aerospace
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Infrared Coolant
Scanners and
Features Detector Capacity Focus Field-of- V

Barnes Indium 100 cc 10 inches 25 x 12. 5 d
Engineering antimonide Liquid to full field
T-101 nitrogen infinity
(-$25, 000) 4 hours 12.5 x 12. 5

continuous half field

operation

AGA Indium Liquid 0. 95 in. 10 x 10 deg
Thermovision antimonide nitrogen 3. 1 ft
Model 680 2 - 5. 6p 4 hours to additional
($27, 000) between infinity lenses

fills 25 x 25 deg
40 x 40 deg

Dynarad Indium 100 cc 16 inches 10 x 10 deg
Thermo-Imager antimonide Liquid to
Model 200 series nitrogen Infinity
($17,900) (Opt- 5 hours

HqCdTe) continuous
(Optical Detector operation
$6800)



Table

Applicable Minimum
Temp Detect

cus Field-of-View Frames per Second Range Temp Size and Weight Isc

ches 25 x 12.5 deg 4 frames per sec -20 C to 150 C Better than Head: Adju
full field 0. 2 C at 13-1/2 x 10 x 12 2.5

ty extendable to 30 C 57 lb of tol
12. 5 x 12. 5 deg 95 lines 300 C, 700 C tem
half field per frame Display: in in-i

10 x 13-1/2 x 21
33 lb

in. 10 x 10 deg 16 frames -30 C to 700 C Less than Head: Dual
t per sec in 10 0. 2 C at 7.9 x 9. 5 x 19. 7 singlh

additional sensitivity 30 C 30 lb varia
ty lenses 1600 lines steps width

25 x 25 deg per sec Display:
40 x 40 deg extendable up 17.7 x 7.9 x 20.8 Dual

to 2000 C 52 lb 30% c
selec

temp
rang(

:hes 10 x 10 deg 60 frames -20 C to 0.3 C at Head: Isoth
per sec 150 C 30 C 5. 5 x 6. 6 x 11 width

ty at 100 lines 9. 7 Ib 2.5 t'

of se:
30 frames Display: temp
per sec 10 x 13-1/2 x 21
at 200 lines 29 lb
($2000)

(tuning fork)
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le 15. Comparison of Infrared Scanners

Instantaneous

Isotherms Field Added Features

Adjustable 0. 1 deg External calibrator

2. 5 to 20% 1.7 millirads Polaroid scope camera

of total Light and sun filter

temp range Single-line A-trace

in image magnetic tape recorder

Dual or 1. 3 millirads Color monitor

single, Filter wheel (8)

variable Polaroid scope camera

width Magnetic tape recording
Interchangeable optics

Dual-I to

30% of
selected

temp

range

Isotherm 1. 7 millirads External calibration source

width Magnetic tape recorder

2. 5 to 20% Polaroid scope cameras

of selected Single-line trace

temp range multidetector systems
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applications. TABLE 16 compares the commercially available devices with
respect to specific attributes. The light transmission percentage, viewing
angle, and scope diameter and length are shown for nine different scopes.

Table 16. Comparison of Borescopes*

Light Transmission Viewing Angle Diameter
Borescope (percent) (deg) (mm)

ACvMI lateral 100 (std) 52 5. 2
ACMI foroblique 42 30 .4. 1
Sass and Wolf lateral 160 30 4. 5
Sass and Wolf foroblique 75 35 3. 5
Gardner lateral 110 47 5. 0
Drapier foroblique 30 28 4. 2
Drapier forward 30 23 4.2
Storz Hopkins lateral 200 70 4. 1
Storz Hopkins foroblique 170 70 4. 0

*:All lengths were approximately 30 centimeters (12 inches).

Larger diameters are necessary for longer length, because the total
amount of light that can be transmitted through an optical system is directly
proportional to the cross-sectional area of the light transmitting bundle.

As the comparison shows, the Storz Hopkins rod optic devices system
is the system possessing the optimum characteristics required for use on
aerospace structures. The Storz Hopkins design differs from conventional
borescopes in that rod lenses are used, an invention of Professor
H. H. Hopkins of the University of Reading, England. In contrast to previous
systems, the air spaces are replaced by glass, and the former glass lenses
by air spaces. The spaces between the rod-like glass elements act as air
lenses. With this arrangement, stray light is avoided and a much-increased
contrast is obtained. The extraordinary resolving power of this system is
illustrated by high contrast, which, even when the system is used extremely
close to the object, results in a very realistic image. The Hopkins tele-
scope has an angle-of-field of 90 degrees in air and produces no aberration,
even over this large field. In water, the angle-of-field becomes 70 degrees,
but no image errors are present. The high aperture of the rod lens system
allows a considerable increase in image brightness. For this reason, the
diameter of the telescope can be minimal, even with its fiber optic light
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guide, so that the manufacture of extremely small-diameter instruments

with good optical properties is possible. The optical system is well cor-

rected for color, and variations of color are realistically reproduced, both

in visual observation and also ii photography.

Another major advantage of the Storz Hopkins optic devices is its use

of a cold-light source for illumination of the area being investigated. Cold

light makes it possible to locate the light source external to the part being

examined. This generally means the elimination of any explosion hazard

or the possibility of damage from a hot incandescent light bulb on the

inserted scope. Also, with the light source located externally, less

maintenance and bulb replacement are necessary.

In addition to the investigation of optic devices, methods of document-

ing the images obtained with the optics, using closed-circuit television

systems, has been conducted. Several vidicon systems have been evaluated,

including Sony, RCA, RAM, and Unitron cameras. The Unitron camera

was found to be the smallest and most flexible. This camera will magnify

the small 1/4-inch eyepiece image of the optice device to fill a full-sized

monitor screen. This capability results from the low light characteristic

of the camera and its special lens. An average borescope has an equivalent

f stop of F40, which limits the types of cameras that can be employed to

only those sensitive to the lowest light level of the visible spectrum.

FIGURE 47 illustrates some of the television and camera systems evaluated.

RADIOGRAPHY

Radiographic nondestructive evaluation has been developed to a high

degree for flaw analysis of aerospace structures. New or recent develop-

ments in X-ray equipment itself have been directed towards miniaturization

of X-ray beads, better electrical and electronic support equipment, and

automation of the process itself. Probably the greatest strides have been

made in the fields of neutron radiography and radiographic image
enhancement.

Neutron radiography has been established as an inspection method for
the nondestructive testing of ordnance devices. The success of neutron

radiography in contributing to improved reliability for ordnance devices in
space vehicles has stimulated interest in developing this technique for
advanced space vehicles.

Significant improvements in photographic image enhancement techniques
have.been achieved in recent years. Probably the most widely publicized

effort related to the early photographs sent from space vehicles and moon
probes, which were reconstructed and enhanced with great success.
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Figure 47. Borescope CCTV Apparatus

Basically, the principle involved is that of reducing the variousdensities creating the image to forms that a computer can accept (digitize).

The computer can then sharpen the edges and reconstruct the enhanced
image. The computer can also, conceivably, measure the area of a flaw,
compare the measurement against a known standard, and make a decision-
based on acceptance data-regarding acceptability.

FIGURE 48 shows an early attempt at industrial radiographic
enhancement.

The four photographs of the sample radiograph were reconstructed in
the following modes:

1. Quadrant I (upper left), normal

2. Quadrant 2 (upper right), complement
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3. Quadrant 4 (lower left), normal with gamma

4. Quadrant 4 (lower right), complement with gamma

Although the quality of the results is certainly not startling, the pic-
tures do represent a necessary and significant early step in the image
enhancement of industrial radiographic film.

Figure 48. Radiographic Enhancement
(Courtsey Dicomed)
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RECOMME NDATIONS

ADDITIONAL STUDIES

Three additional studies are recommended that will provide KSC opera-
tions and maintainability engineers and technicians with some of the necessary

tools to achieve rapid vehicle turnaround. These studies are parallel efforts

to the current structural integrity program described in this report but.not
necessary logical follow-ons. They are designed to provide the feasibility
necessary to begin development of specific INDE methods, which will directly
aid vehicle turnaround.

Thermal Protection System Integrity

Certain conceptual studies have shown that thermographic nondestruc-

tive evaluation methods utilizing scanning cameras can provide quality data

for ablative thermal protection materials and structures. Assessment can
be rapid, data can be recorded, and information can be secured immediately
after severe thermal exposure. For materials protecting the basic structure
of a shuttle vehicle, quality data can conceivably be obtained immediately

before or after touchdown and prior to vehicle safing during the cool-down
period.

Proposed implementation of thermal techniques could involve a
stationary camera system by which the vehicle could pass. Alternately, a
movable camera system could be developed to assure complete coverage of
a stationary shuttle.

Concern for the quality of ablator materials used on the shuttle does
not presently involve any material containing a surface char layer. Only
those materials that are uncharred and appear similar to unexposed ablators
will be of concern to further vehicle operation. This material, which will
have been exposed to a thermal environment substantially less than those
that produce ablation, may appear similar to unexposed material but out-
gassing might have occurred at the elevated temperature, and the service
life of the ablator may have terminated.

A study should be conducted to achieve two basic goals. The first is
to develop the capability to scan an entire vehicle moving at high relative
speeds to a scanning system and to determine basic resolution and sensitivity
capabilities of such a system. The second is to characterize the IR response

-91-

SD 72-SH-0001



Space Division
North American Rockwell

from uncharred but thernially exposed materials and determine, nondestruc-
tively, the remaining service life of the ablator. Ultimately, upon successful
conclusion of these investigations, a total systems concept will evolve to
provide an analysis of TPS serviceability.

NDE for TPS Refurbishment

During replacement of ablator, and eventually reusable, external
insulation panels, rapid evaluation methods are necessary to determine
attachment integrity, especially when panels are attached by adhesive bonding

processes. Access to these areas will most likely be from the TPS surface,
which is normally a relatively porous nonconductive material. Studies to
date have shown that normal bond integrity evaluation devices such as ultra-
sonics have proven relatively ineffective with these structures and materials,
especially from the thermally exposed side. An evaluation program should
be conducted to determine those techniques that can effectively and efficiently
provide bond integrity information subsequent to field repair of the thermal
protection system. Such technologies as low-frequency ultrasonics, thermog-
raphy, and microwave analysis are strong candidates for evaluation and
s tudy.

Ultrasonic Particle Counters

Ultrasonic energy at relatively high frequencies has been used in the
laboratory and in some low sensitivity conmmercial systems to detect and
size contaminate particles in fluid systems. This emerging technology
should be developed to provide the sensitivity necessary to evaluate shuttle
fluid systems for contaminate particles on installed shuttle systems and in
the major subsystem configuration. Successful development of this method
could provide particle determinations without fluid sampling or line entry.

FOLLOW-ON EFFORT

Transducer Development

Development of surface and shear wave transducers for on-board
system considerations should be pursued. Present configurations of trans-
ducers provide very narrow-beam ultrasonic propagation, thereby limiting
areal coverage. Two approaches can be considered. The first would
investigate rotational possibilities for transducers to provide direction as
well as distance information concerning flaws. A radar or sonar analogy
can be utilized to illustrate this approach. The second approach would
hopefully evolve stationary transducers with wide-beam angle capability to
increase structure coverage. On-board ultrasonic systems for the shuttle
must incorporate transducer designs capable of large area coverage to
reduce the number of transducers required and the electronics necessary to
support the total system.
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Ultrasonic Triangulation and Computer Analysis

Follow-on effort must be a logical step ahead from the technology
position now being held. The further development and application of the

ultrasonic flaw detection method to specific structures and assemblies will

provide this step. Present effort has proven that one parameter, distance,

can be obtained in fairly complex structures. It is necessary to determine

methods to provide the other parameter, azimuth or direction, before the

actual systems development of the monitoring device can be conducted.

Using the techniques of surface wave propagation, multiplexing, adhesive

bonding, and other pertinent data already developed, a program to begin

actual development of the system concepts to real structural assemblies for

ultrasonic flaw location must be conducted. Many structures that were used

during the development of the CSM and S-II programs can be test structure

candidates for these further studies. Certain structural requirements that

have been established for space shuttle assemblies should be brought to bear

so that a representative workpiece can be selected for use. The design

requirements of the shuttle must be continually considered during the duration

of any resultant study by continual interface with shuttle design engineering

teams.

Shuttle Structure Ultrasonic Testing Using Multiplexing Methods

The above section establishes a tentative program to develop flaw

location methods utilizing triangulation and computer techniques much similar

to those being developed for the acoustic emission systems. One other

method that must be employed in order to aid in the reduction of the support-
ing electronics is that of multiplexing the ultrasonic signal to the selected

number of transducers to be installed on board the shuttle vehicle. A follow-

on program should be conducted to establish multiplexing techniques for

ultrasonic transducers that can ultimately provide design requirements for

the final on-board configuration.
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PRECEDING PAGE BLANK NOT FTLMED

GLOSSARY

A-SCAN. A data presentation method by which intelligence signals from

a single object located are displayed. As generally applied to pulse

echo ultrasonics, the horizontal and vertical sweeps are proportional

to time or distance and amplitude or magnitude respectively. Thus

the location and magnitude of acoustical interface are indicated as to

depth below the transducer.

GAIN. The level of amplification at which the receiving circuit in an

ultrasonic instrument is set. For the purposes of this study, gain

values were used as a comparative measure.

INITIAL PULSE (MAIN BANG). The first indication that may appear on the

screen depending upon the amount of sweep delay. This indication

represents the emission of ultrasonic energy from the crystal face.

RAYLEIGH WAVE. A wave that travels on or close to the surface and

readily follows the curvature of the part being examined. Reflections

occur only at sharp changes of direction of the surface.

SHEAR WAVE. A wave in which the particles of the medium vibrate in a

direction perpendicular to the direction of propagation.
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