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ABSTRACT: Internal pressure vessels were designed, filament wound of
carbon fibers and epoxy resin and tested to burst by two contractors,
Hercules, Incorporated, Cumberland, Maryland, and the Brunswick
Company, Lincoln, Nebraska. The fibers used were Thornel 400,
Thornel 75 and Hercules HTS. In addition, Hercules fabricated
additional vessels with their Type A fiber. Polymeric liners were
used, and all burst testing was done at room temperature. The
objective was to produce vessels with the highest attainable P^V/W
efficiencies. The Type A vessels by Hercules showed the highest
average efficiency: 2.56 x 10" cm. Next highest efficiency was with
Thornel 400 vessels by Hercules: 2.21 x 10° cm.

These values compare favorably with efficiency values from good
quality S-glass vessels, but strains averaged 0.97$ or less, which is
less than 1/3 the strain of S-glass vessels. Thus, the carbon fiber
vessels are strain compatible with some liner materials at cryogenic
temperatures, whereas the S-glass vessels generally are not. Effi-
ciencies of the carbon fiber vessels were up to 60$ higher than
values for present metal vessels. Use of the carbon fiber vessels
offers a significant weight savings potential for aerospace applica-
tions.
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CARBON FIBER INTERNAL PRESSURE VESSELS

The tests as reported herein were conducted to provide data leading
toward the potential use of carbon fiber composites in the construc-
tion of cryogenic tankage for spacecraft. The importance is that
such tankage would be lighter and would permit a greater payload on
the spacecraft.

This report covers Tasks VII and VIII, performed during the period
January - December 1972 under NASA Defense Purchase Request C-10360 B,
and is the fourth and last report in a series covering Tasks I - VIII.

The work was funded by the National Aeronautics and Space Administra-
tion, Lewis Research Center (NASA LeRC), Cleveland,, Ohio. The NASA
Project Manager was Mr. Raymond F. Lark of the Materials and Structures
Division.

The naming of companies or products in this report does not necessarily
constitute an endorsement by the U. S. Government.

ROBERT WILLIAMSON II
Captain, USN
Commander

CARL BOYARS
By direction

ii



UNCLASSIFIED
NOLTR 73-60

CONTENTS

Page

INTRODUCTION . . ' 1

REQUIREMENTS, REASON FOR THE WORK, AND CONTRACTORS 1

I. Requirements 1
II. Reason for the Work 3
III. Contractors 3

CONTRACTOR DESIGN & FABRICATION CONCEPTS 4

FIBER 6

FABRICATION 9

I. Mandrels 9

A. Hercules 9
B. Brunswick 9

II. Winding 9

A. Hercules 9
B. Brunswick . 10

III. Completed Vessel Characteristics 11
IV. Pressure Testing 11

RESULTS 12

DISCUSSION -. 15

I. Efficiency Values 15
II. Comparison of Design and Fabrication Concepts . . . . 15
III. Vessel Fracture Modes 15
IV. Vessel Strain 16

SUMMARY AND CONCLUSIONS 16

RECOMMENDATIONS 1?

REFERENCES 19

iii
UNCLASSIFIED



UNCLASSIFIED
NOLTR 73-60

ILLUSTRATIONS

Figure Title

1. Hercules Pressure Vessel Design
2. Brunswick Pressure Vessel Design
3.. Bruns.wick_In=.pland_Winding_Machine .
4. Hercules Carbon Fiber Reinforced Pressure Vessels
5. Hercules Carbon Fiber Reinforced Pressure Vessels
6. Hercules Vessel Ready for Testing
7. Brunswick Vessel Ready for Testing
8. Hercules Vessels After Pressure Testing
9. Hercules Vessels After Pressure Testing
10. Brunswick Vessels After Pressure Testing
11. Brunswick Vessels After Pressure Testing
12. Brunswick Vessel

Table Title Page

1. Summary of Work on Tasks I-VIII 2
2. Vessel Design and Fabrication Concepts 5
3. Vessel Design Parameters 7
4. Manufacturers' Stated Properties of Carbon Fibers . 8
5- Measurements Made for Vessel Testing 12
6. Vessel Pressure Testing Results 13
7. Summary of Average Pressure Testing Results . . . . 14

APPENDIX A A-l

APPENDIX B B-l

iv
UNCLASSIFIED



UNCLASSIFIED
NOLTR 73-60

This report is the fourth in a series by the Naval Ordnance
Laboratory (NOL) for the National Aeronautics and Space Administration
(NASA) on the use of carbon (or graphite) fiber composites for the
construction of pressurized containers for cryogenic liquids. The
three previous reports are references (a)-(c).. The NASA interest is
to save weight on spacecraft by replacing metal containers with
lighter weight filament wound containers. Glass filament wound con-
tainers have given high P^V/W efficiencies, but the working strains
of 2.% or more are too high (at cryogenic temperatures) for known
liner materials, which then rupture and allow gas seepage through
the thin filament-wound porous walls, reference (d). Carbon fiber
composites, with their high moduli and working strains of under 1$,
hold the potential for being more strain compatible with thin liner
materials and, therefore, attractive for light weight vessel construc-
tion.

This report is the last in this series and reports on the work
done in Tasks VII-VIII. Table 1 summarizes all of the work on
Tasks I-VIII. As noted in Table 1, the objective of the work reported
herein was to design, fabricate and test on contract a number of 20.3
cm diameter pressure vessels to demonstrate high P-̂ V/W efficiency
values. These vessels were similar to the vessels tested in Task II
of this work, reference (a), but in this case the state-of-the-art
of carbon fiber/epoxy vessels was significantly advanced since work
was conducted in Task II.

REQUIREMENTS, REASON FOR THE WORK, AND CONTRACTORS

I. Requirements

The requirements for the work were the following:

Each of two manufacturers shall filament wind a minimum of six
pressure vessels". The materials and quantities shall be the
following:

FIBER QUANTITY OF VESSELS

Thornel 400 2
Thome 1 75 2
Hercules HTS 2

RESIN

Epon 828 100 parts
Dodecenyl succinic anhydride 115• 9
Empol 1040 20
Benzyl dimethyl amine 1

Cure 2 hours
at 66°C

hours

1
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Table 1

SUMMARY OF WORK ON TASKS I-VIII

NASA
Task Authorization
— -and—Da-t e-——

Work Done Report

II

III

IV

V

VI

VII

VIII

DPR C-10360-B
27 Mar 67

Amend 1
19 Mar 69

Amend 2
17 Feb 69

Same as III

Same as III

Same as III

Amend 4
14 Jun 71

Amend 5
29 Sep 71

Conduct a preliminary mater-
ials investigation. Five
fibers, three surface
treatments, two resins.
Bars, NOL Rings.

Design & fabricate 12
vessels using two fibers,
one resin. Test at cryo-
genic temperatures. (Done
on contract to Aerojet-
General Corporation.)

Investigate effects of poly-
blend epoxy resins on com-
posite properties. One
fiber, seven resins. NOL
Rings, panels.

Further investigate effects
of polyblend resins on com-
posite properties. Four
fibers, four resins. Bars,
NOL Rings, flat plates.

Design, fabricate a minimum
of 12 vessels using three
fibers, one resin. Test at
room temperature. (Done on
contract.)

NOLTR 69-183,
(NASA CR-72652);
13 May 1970

NOLTR 70-195,
(NASA CR-72804);
9 Mar 1971

NOLTR 71-201,
(NASA CR-120899);
2 May 1972

This report;
NOLTR 73-60
(NASA CR-121138);
June, 1973
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The vessels shall be nominally 20.3 cm in diameter by 33 cm long,
with a nominal burst pressure of 1380 newtons/cm2 (2000 psi). Liners
shall be elastomeric, and all burst tests shall be performed at room
temperature. The boss opening shall be 15 to 25 percent of vessel
diameter. The winding mandrel shall be plaster, or equivalent.
Fiber content shall be 55 to 60 percent, by volume. Of main impor-
tance is the achievement of high P-̂ V/W efficiency values.

Items not stipulated and, therefore, at the discretion of the
manufacturers, were the following:

1. the type of winding - helical or in-plane;
2. a balanced (1:1 hoop:axial strain ratio) or unbalanced

design;
3. the design analysis, whether netting, finite element,

or other program;
4. the method of adding resin, whether as prepreg or wet

wind;
5. the fiber tension, winding speed, winding temperature,

and other processing variables.

II. Reason for the Work

This work on Tasks VII and VIII was a reasonable continuation
of the work that preceded it. As shown in Table 1, Tasks I, III,
IV, V, and VI all dealt with materials properties and gave information
about the effects of temperature on the properties of a number of
carbon fiber composites. These results were promising toward ultimate
use of these composites in vessels. Task II was the winding and
testing of vessels, but the quality of the fiber available then was
substandard by today's criteria, and in-plane winding was used with
a slip angle which resulted in fiber slippage and low burst pressures.
As a result, the Task II vessels had low efficiencies, and left
questions as to the best design and fabrication procedures.
Information on these was needed, and it was to this end that Tasks VII
and VIII were addressed.

III. Contractors

The two contractors selected to design, fabricate and test the
vessels were Hercules, Incorporated, Cumberland, Maryland, and the
Brunswick Company, Lincoln, Nebraska. The contractors were chosen
on the basis of all responses to reference (e). Contracting inform-
ation is as follows:

3
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CONTRACTOR NOL CONTRACT NO. DATE OF CONTRACT

Hercules N60921-72-C-0292 20 April 1972
Brunswick N60921-72-C-0291 20 April 1972

After contracting} Hercules requested that they be allowed to add
their Type A fiber and make three additional vessels at their expense.
_TJii s_re_que_s.fe_was_gr ante.d..

After the contractors had completed their work> each submitted
a report to NOL. Most of the data presented herein was extracted
from those reports. The Hercules report was the more extensive of
the two, and so this final report contains more design and fabrica-
tion data from Hercules than from Brunswick.

CONTRACTOR DESIGN & FABRICATION CONCEPTS

The freedom allowed the contractors in their tasks (see
Requirements) resulted in the contractors having considerable differ-
ences from each other in their design and fabrication concepts.
Table II presents some information on these concepts.

4
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Table II

VESSEL DESIGN AND FABRICATION CONCEPTS

1. Design analysis

2. Hoop/axial fiber stress
•ratio

3. Local reinforcement of dome/
cylinder intersection

4. Winding path

5. Mandrel coating

6. Resin impregnation of fiber

Hercules

Netting

1.30

Yes (some vessels)

Geodesic (helical)

Chlorobutyl rubber

HTS & Type A wet
wound. Others
preimpregnated on
subcontract.

Brunswick

Netting

1.41

No

In-plane

None - liner
added to ves-
sel after
winding.

Preimpregnated
on subcontract

These significant differences in the two procedures confirmed the
usefulness of having two competing contractors. At the end of the
program, the vessel results would then show the better procedure.
Details of the designs, including winding patterns, composite thick-
nesses, stresses, etc., -are shown in Table III.

Design analysis of the composite pressure vessel for both
companies was based upon netting analysis. Hercules stated that this
approach for simple geometric shapes such as axisymmetric vessels
loaded by internal pressure has been found to provide an acceptable
first order measure of vessel design parameters. The design approach
using netting analysis was to place enough low-angle axial wraps on
the structure to satisfy the axial load requirements, with overwrapped
hoop windings to resist applied hoop loads.

Netting analysis neglects the load carried by the resin and
allows fiber stresses to be determined entirely through the equili-
brium of forces. Netting theory can be quickly used to compare the
stress levels of elastically similar structures. Its ease of appli-
cation has made it a very useful tool in the preliminary design of
pressure vessels, since when coupled with a proper interpretation of
test data, netting theory can accurately predict the burst strength
of filament wound pressure vessels. The netting analysis dictated
slightly different dome contours for vessels made from each of the
different fibers, but for economy a single contour was used so that
only one mandrel shape would be needed by each contractor. The man-
drels deviated from the individual contours by 0.080 cm (0.031 inch)

UNCLASSIFIED
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at most, and were usually within .012 cm (0.005 inch). These slight
deviations are considered to have had a negligible effect on PV/W
values of the vessels.

The Hercules design used a type of reinforcement at the tangency
(dome to hoop) area which is not generally used. To add this rein-
forcement 3 a whole helical layer was wound on, then cut away in the
--cylindrical—section—to_within-2..-5-cm--of—the—tangeney—po-int-i—T-hi-s
left the tangency area and the dome with the remainder of the helical
layer to act as reinforcement. This reinforcement was used to
improve the burst pressure reproducibility of the vessels with HTS
and Type A fiber, as supported by Hercules data from previous work.
The reinforcement was not used with the vessels made with Thornel
fibers because benefits from such reinforcement are not realized
unless more than two helical layers are used. Figure 1 is a drawing-
of the Hercules vessel.

Brunswick used in-plane or polar winding with a wind angle of
9 degrees. Their machine was a "tumble" winder, with a stationary
fiber delivery system. Both contractors considered their fiber
delivery systems to be proprietary. Figure 2 is a drawing of the
Brunswick vessel.

FIBER

The carbon fiber was purchased by NASA and supplied to both
contractors by NOL except for the Type A which was supplied by
Hercules. Table IV gives manufacturers' data on the fibers. Approx-
imately 2.3 Kg (5 pounds) of each type of fiber (except Type A) were
supplied to each contractor. The Thornels were supplied as nominally
one-pound spools, and the HTS as half-pound spools. Appendix A is a
table which shows details of lot numbers, spool weights, etc. of the
fibers supplied.

6
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Table IV

MANUFACTURERS' STATED PROPERTIES OF CARBON FIBERS

Thornel Thornel HTS Type A
400 75

Tensile strength, 103n/cm2 293 262 242 min. 269 min.
1CP psi 425 380 350 min. 390 min.

Tensile modulus, lof n/cm2 23 54 25-29 19-23
10b psi 34 78 36-42 28-34

Elongation at break, % 1.2 0.5

Density, gm/cm3 1.78 1.80 1.73 1.8l

Yarn or tow cross-sectional
area 10~4 CnT 9.7 3.2 44.4 48.8

Yield, meters/gm 6.0 16.5 1.3 1.1

Filaments per end, yarn, or tow 2000 1440 10,000 10,000

8
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FABRICATION

I. Mandrels

A. Hercules

1. Hercules machined blocks of salt (sodium chloride) for the
cylindrical and dome sections, bonded them together, bonded in the
machined pole pieces, and coated the assemblies with chlorobutyl
rubber to produce their mandrels. The chlorobutyl rubber was applied
by a dip process, repeated until the rubber thickness was 0.050 cm.
The mandrel diameters, lengths, and weights were measured.

B. Brunswick

1. Brunswick cast sand with a water-soluble binder into molds
to produce their mandrels. The castings were machined to size, the
bosses bonded in, and the assemblies coated with a fluoropolymer to
prevent resin adhesion to the sand surface.

Appendix B gives more detailed information on the mandrel
fabrication for both contractors.

II. Winding

A. Hercules

1. Hercules used helical winding with a 23 degree wind angle
for the axial layers. As noted in the "Design", the local rein-
forcement was added by winding a complete axial layer, then carefully
cutting away the layer in the cylindrical section to within 2.5 cm
of the dome tangency point. Not all vessels had this reinforcement
layer. After completion of all winding, the vessels were placed in
ovens and the resins cured. The following table gives winding
information for"each Hercules vessel type:

Thornel Thornel HTS Type A
400 75

1. Resin addition prepreg prepreg wet wind wet wind
2. Local reinforcement no no yes yes
3. Winding tension, Kg 6 1.5 6 6

2. The low winding tension with the Thornel 75 fiber was
dictated by its low strand strength and the many fiber breaks
encountered with higher tensions. The yarn as off-spooled had many
splices, and these splices were stiff and also tended to breaR.

9
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3. The vessels, on cooldown, showed outer-surface wrinkling.
This was attributed to the softness of the warm resin and the mis-
match in thermal coefficients of the outer hoop layers compared to
everything inside of it, including helical layers and the mandrels.
No shrink tape was used.

4. After cooldown, the mandrels were washed out with water,
the vessels dried, then coated on the inside with Epon 946 resin for
-a—wa-t-e-r —b ar r ie r^—Aft e r ~we rghing7~the~~ve~s"s e±s~we~re~~re~a~dy~f or" ~te~s~t iSg~~.

B. Brunswick

1. Brunswick wound in-plane on a "tumble" winding machine.
Tensions were 3.6 Kg for the polar winds, and 4.1 and 4.5 Kg for the
first and second hoop layers, respectively. All fibers were pre-
impregnated with resin by a subcontractor. After winding, the
vessels were wrapped with shrink tape. The vessels with HTS and
Thornel 75 fiber had shrink tape in the polar direction only,
whereas the Thornel 400 vessels had polar and hoop layers of shrink
tape. Figure 3 shows a vessel with the shrink tape being applied.

2. After an oven cure, the vessels were cooled, the shrink
tape removed, the mandrels washed out with water, and the interior
of the vessels "slush" coated with several thin coats of Turco 5145
chem-mill masking. The vessels were then weighed and were ready for
test. Appendix B gives more information on vessel fabrication for
both contractors.

10
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III. Completed Vessel Characteristics

The completed vessels had the following sizes, weights and
volumes:

Avg Vessel
Composite
Wgt, gm

Avg Vessel
Outside
Dia., cm

Avg Vessel
Length,
cm

Avg Vessel
Interna.

Volume, liters

HERCULES

T-400
T-75
HTS
Type A

BRUNSWICK'

T-400
T-75
HTS

780
625
648
715

688
681
642

19.95
19.93
19.93
19-93

20.31
20.34
20.26

33.02
33.06
33-05
33.01

33.72
33-56
33.59

8.455
8.461
8.368
8.323

8.223
8.321
8.288

Figures 4 and 5 show Hercules vessels after fabrication.
Brunswick did not provide pictures of their vessels after fabrication.

IV. Pressure Testing

All vessels were tested by both contractors at room temperature
using hydrostatic internal pressure to burst. Electric strain gages
were bonded to the external surfaces of the vessels to show vessel
strain. Also measured were pressure, vessel temperature, and time.
Table V lists some of the equipment used in making the measurements.

11
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Table V

MEASUREMENTS MADE FOR VESSEL TESTING

HERCULES

_l...-Hy-d ro s-t at i c^
pressure -
no. of
sensors

2. Pressuriza-
tion rate

3. Electric
strain
gages

4. Recorder

5. Temperature

BLH PA-7 type - total 5
axial strain - dome
hoop strain - tangency
axial strain - tangency

hoop strain - center
axial strain - center

Long wire type - total 3
1) 10 cm long for axial

average
2) 18 cm long - to axial
tangent points

3) 33 cm long - pole
to pole

Honeywell Visicorder

Bonded-on resistance
temperature sensor

BRUNSWICK

7 n/cm /sec
(10 psi/sec)

BLH PA-7 type - one
belly band for hoop
strain average.

Micro Measurements
i-inch foil-total 2

1) axial) ±
hoop /

2) axial ) 2.5 cm
hoop J from center

Honeywell Visicorder

Surface pyrometer
prior to test

Figure 6 shows an instrumented Hercules vessel ready for pressure
testing. Figure 7 shows a similar Brunswick vessel.

RESULTS

The results of pressurizing the vessels to burst, along with
calculated efficiency values, are shown in Table VI.

12
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Table VI

VESSEL PRESSURE TESTING RESULTS

HERCULES Pressuri- Ult. Axial Ult. Hoop
Vessel zation Burst Failure• Fiber Fiber

Fiber No. Rate Pressure Mode • Stress Stress

n/cm /sec n/cm

T-400 NOL3
NOL4

T-75 NOL5
NOL6

HTS NOLI
NOL2

Type A GA6083
GA6084
GA6085

13-2
13.2
13.3
14.3
13.2
13-2
13.0
13.2
13.1

BRUNSWICK

T-400

T-75

HTS

1
7
8
3
4

i

17.3
17.3

7~6
8.3
§'38.3

1480
1580
932
607
773
1370
1240

103 n/cm2 103 n/cm2

1960
2050
833
273
1500
1640
2120
2190
2170

Combined
Combined
Dome
Dome

Combined
Combined
Combined
Combined
Combined

173
180

91-!22.8
175
191
229
236
235

Hoop
Combined
Hoop
Dome
Dome

Combined
Combined

131
141
82.8
63.5
80.7
145
131

202
211
106
26.9
193
210
251
259
257

184
197
117
89.7
114
205
185

10° cm

.14
,29
,16

2,
2,

0.373
2.03
2.11
50
55

2.64

1.71
1.94
1.13
0.787
0.955
1.75
1.69

A summary of average vessel performance results is shown in
Table VII.
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Table VII

SUMMARY OF AVERAGE PRESSURE TESTING RESULTS

HERCULES

Fiber
Avg
W/W

10b cm

T-400

T-75

HTS

Type A

BRUNSWICK

T-400

T-75

HTS

2.21

0.767

2.07

2.56

1.59

0.871

1.72

Avg Stress at Burst
As % of Ult. Fiber Stress Avg Strain at Burst

Axial Hoop, Axial Hoop-

60$

~20

70

80

27

53

77

87

0.58$

~o.07

o.4i

0.69

57'% 0.50$

38 0.14

74 -0.50

0.

-0.20

0.62

0.97

0.69$
0.16

0.61

The highest efficiency value was 2.56 x 10 n/cm , achieved by
Hercules with Type A fiber. Next highest were 2.21 and 2.07 x
10° n/cm2, with Thornel 400 and HTS, respectively, in vessels by
Hercules. Strains were all under 1 percent, with 0.97$ for Type A
fiber being the maximum. The values for the Thornel 75 vessels were
quite low for both manufacturers; all four vessels failed "prema-
turely" by blowing out pieces of the dome. The other vessels gener-
ally failed in the "combination" mode. In this mode, it is usually
considered that the hoop fibers failed first, and the failure then
propagated into the underlying axial fibers. This is the mode
that usually indicates the most evenly stress-balanced vessel, and
therefore the highest efficiency values. All vessels exhibited
brittle fracture, with the tested vessels usually ending up in
several pieces.

Figures 8 and 9 show Hercules vessels after testing,
and 11 show Brunswick vessels after testing.

Figures 10
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DISCUSSION

I. Efficiency Values

The best V°lume efficiency values (based on burst

strengths) in this work were reasonably high. The values of 2.56 x
10° cm for Type A and 2.21 x 10" cm for the Thornel 400 compare
favorably with values for good quality S-glass vessels of this size.
The fiber stresses for these highest efficiency vessels ranged from
70 to 87$ of the strengths of the fibers used, so that no large
additional increases in efficiency are possible with these fibers.

II. Comparison of Design and Fabrication Concepts

The Hercules efficiency values exceeded the Brunswick values by
10 to 20 percent. This may have come partly from Hercules' use of
helical winding, which they claim is more efficient, or from the dome
reinforcement which was used in two of the vessel types, or from the
other many small differences between the procedures of the two con-
tractors. Both contractors considered their fiber delivery systems
to be proprietary and did not allow observation of those systems.
Use of a shrink tape overwrap on the vessels during cure is a point
in controversy; in this case, Brunswick used it and Hercules didn't.
The Brunswick vessels, after cure and stripping of the shrink tape,
were seen sometimes to have some waviness in the hoop windings,
Figure 12. In the previous work by Aerojet (reference (a)), vacuum
bagging was used and produced sharp wrinkles in the vessel walls.
It was discontinued after use on several vessels. These waves and
wrinkles are undesirable and are to be avoided. The indication is
that vacuum bagging or shrink tape is not desirable. The best time
to put the proper amount of resin on the fiber and to position it
properly is at the time of winding. Any later pushing on the outside
of a curved (convex) shape is at the jeopardy of having excess fiber
present and causing wrinkling. This is especially true of high
modulus fibers, in which the winding tension may stretch the fibers
only 0.1$ or less, and for which there is therefore very little
elastic takeup of excess fiber.

However, it can be pointed out that in filament winding the
first layers to be applied also may become compressed by succeeding
layers on top, and these first layers may become wrinkled. This can
be minimized by proper programming of tension from inside to outside,
but perhaps not entirely avoided.

III. Vessel Fracture Modes

The carbon fiber vessels all displayed a brittle fracture made
which seems to be general to carbon fiber composites to date, but not
exclusive to these composites — the metal vessels now used in space-
craft sometimes fail in the same way. Glass fiber vessels, by
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contrast^ usually fail in a small local area and simply vent the
pressure without producing flying pieces. The problem of brittle
fracture was recognized early in the whole NASA task, and references
(b) and (c) detail results of efforts to increase the fracture
toughness of these composites. One system, consisting of HTS fiber
and ERLB 4617/methylene dianiline/CTBN rubber resin, looked quite
promising in that its fracture toughness went up markedly at cryogenic
jbemperatures as jXM]3ared_bo_- room_tjemp.e nature.. _ The-_othe r_comp o s i t e s-, -
by comparison, reduced in toughness at cryogenic temperatures. The
promising cryogenic system was not used in the work reported herein
because none of the tests were at cryogenic temperatures. That
system, in any future vessel tests at cryogenic temperature, would be
expected to be tougher than any of the other systems tested.

IV. Vessel Strain

The ultimate strain in the highest efficiency vessel was 0.97$.
This strain is only approximately 1/3 of that encountered in glass
fiber composites, but together with the strains caused by thermal
expansion coefficient differences still may be enough to cause resin
crazing or liner yielding of low strength thin metal liners. As
discussed in reference (a), the vessels when cooled from curing
temperatures to cryogenic temperatures may experience over 1 percent
resin tensile strain and 0.3$ metal liner tensile strain. If further
strains on subsequent pressurization exceed 0.5$j then crazing and
yielding could occur. These would be expected to have little or no
effect on short-term or low-cycle vessel life requirements.

SUMMARY AND CONCLUSIONS

1. A total of 16 carbon fiber internal pressure vessels were
designed, fabricated and tested by two contractors; nine by
Hercules, Incorporated, and seven by the Brunswick Corporation.
The intent of the work was for these contractors to take three types
of supplied fiber and use their design and fabrication techniques to
produce vessels with the highest P r e sf Volume efficiency values

that they could achieve. Hercules added, at their request and
expense, a fourth type of vessel made from Hercules Type A fiber.
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2. The following table summarizes the efficiency values
achieved:

Contractor Fiber Vessel Efficiency, 10 cm

Hercules Type A 2.56
Hercules Thornel 400 2.21
Hercules HTS 2.07
Brunswick HTS 1.72
Brunswick Thornel 400 1.59
Brunswick Thornel 75 0.87
Hercules Thornel 75 0.77

The highest values, 2.56 to 2.07 x 10 cm, are quite high, and
equal to values obtained with S-glass vessels of the same size.
Stresses in these vessels achieved 70 to 87 percent of the
manufacturers' values of strengths for the as-received fibers, so
that no large additional gains in vessel efficiencies are possible.

3. The higher P-̂ V/W values from the Hercules vessels are
assumed to be the result of the differences in their procedure from
the Brunswick procedure. Features used by Hercules on some or all of
their vessels include the following: helical winding pattern,
on-stream resin impregnation, dome and tangency reinforcement, and
no shrink tape. Brunswick used in-plane winding, resin preimpregna-
tion, no reinforcement and shrink tape. Both contractors used
proprietary fiber delivery systems.

4. All vessels failed by a brittle fracture mode. Previous
work in this program with epoxy-CTBN rubber (polyblend) resins
revealed one composite system to be quite promising because of its
high fracture toughness at cryogenic temperatures. That system was
not used for these vessels because these were tested at room
temperature.

5. Strains measured during burst testing ranged from 0.69 to
0.97 percent for the highest efficiency vessels. Calculations
indicate that for a vessel in cryogenic service, cooling to cryogenic
temperatures would impose additional strains on the metallic liner
due to the difference in the coefficient of thermal contraction
between the liner and composite materials. The total strain thus
imposed on a liner in a vessel used in cryogenic service would be
high enough (at an operating stress of 60-percent of composite
ultimate strength) to cause yielding of metal liners. The use of
a cryogenic adhesive for bonding the liner to the inside wall of the
vessel would however prevent liner buckling from occurring during
vessel depressurization. The cyclic life of a carbon fiber composite
vessel would accordingly be limited by the fatigue life characteris-
tics of the liner material. At room temperature service, however,
the strain of the liner/vessel (0.4l to 0.58-percent) at an operating
stress of 60 percent of composite ultimate strength is sufficiently

17
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low to operate high strength thin metallic liners (Inconel 718)
below their yield strength. Projected cyclic life characteristics
of such liners would be excellent. It is anticipated that such
liners would also be adhesively bonded to provide a greater margin of
reliability.

6. The intent of the work was achieved. High vessel efficiency
values., we.re _demons± rated .and—useful-fab ric at ion-in-fo-rmat ion was—shown—
in the procedure which resulted in vessels with the highest efficiency
values.

RECOMMENDATIONS

Based on the work performed in this program, the following
recommendations are presented:

1. Fabricate pressure vessels using the high
strength, high toughness composite identified
in Task III. This composite consists of

HTS carbon fiber

ERLB 461? - 100 parts

methylene dianiline - 46 parts

CTBN rubber - 10 parts

"polyblend" resin

Use thin metallic liners and test the vessels to
burst at cryogenic temperatures. This test
would show whether this tough system would
overcome the problem of brittle fracture when
the vessels burst.

2. Fabricate composites or vessels and expose to
simulated space craft service-type conditions.

18
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Shrink Tape Being Applied To Vessel After
Completion Of Filament Winding

FIG. 3 BRUNSWICK IN-PUNE WINDING MACHINE
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Thomel 400 Filament Wound/Epoxy Vessels

Thomel 75 Filament Wound/Epoxy Vessels

FIG. 4 HERCULES CARBON FIBER REINFORCED PRESSURE VESSELS
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HTS Filament Wound/Epoxy Vessels

Type A Filament Wound/Epoxy Vessels

FIG. 5 HERCULES CARBON FIBER REINFORCED PRESSURE VESSELS
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Instrumented Vessel In Test Stand Showing Showing Gages Attached

FIG. 6 HERCULES VESSEL READY FOR TESTING
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Instrumented Vessel In Test Stand Showing Strain Gages Attached

FIG. 7 BRUNSWICK VESSEL READY FOR TESTING
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Vessels Reinforced With Thomel 400 Fiber

Vessel Reinforced With Thomel 75 Fiber - Two Views

FIG. 8 HERCULES VESSELS AFTER PRESSURE TESTING
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Vessels Reinforced With HTS Fiber

Vessels Reinforced With Type A Fiber

FIG. 9 HERCULES VESSELS AFTER PRESSURE TESTING
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Vessels Reinforced With Trtornel 400 Fiber

FIG. 10 BRUNSWICK VESSELS AFTER PRESSURE TESTING
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Vessel Reinforced With HTS Fiber
(with attached label left from Army contract)

Vessel Reinforced With Thornel 75 Fiber

FIG. 11 BRUNSWICK VESSELS AFTER PRESSURE TESTING
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Showing Waviness In Hoop Winds

FIG. 12 BRUNSWICK VESSEL
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APPENDIX A

PROPERTIES OF SUPPLIED FIBER

The carbon fiber was supplied to both contractors by NOL
except for the Type A fiber used by Hercules. The following table
gives information on these fibers:

Fiber
Mfrs
Lot No.

H
I 0-
o o

,0000

a) CD
T3 -H
a5 £
^ -H
cis fe

--i|C\J
O 1^-
VD O
H on
J o

M

HTS 2-2/50
2-2/3
2-2/9
2-2/90
2-2/21

Mfrs Mfrs Fiber Fiber Assigned
Stated Strength Stated Modulus wgt Igth __ To

10̂ n/cm 10-^psi 10 n/cm 10 psi Kg meters

Thornel
400 TY301811

o 301812
302514
302511
302015

TY302013
300712
302012
293011
291715

Thornel
75 412310-1

4o8o4l-2
4o8o4l-l
407301-1
408021-1
406181-1
412170-1
103231-1
601061-1
408031-1

294
293
297
288
288

315
286
293
290
308

243
273
273
267
279
264
269
288
257
275

427
424
431
417
418

457
414
424
420
446

352
396
396
387
405
383
390
417
373
399

242 350
Minimum Minimum

26
26
23
24
23

23
23
25
24
23

55
51
51
53
53
50
54
53
50
50

25-29

37 0.464 8120
37 0.464 8.77
34 0.455 8017
35 0.441 7998
34 0.450 7993

34 0.459 8l44
34 0.445 8261
36 0.455 7975
35 0.441 8092
34 0.473 8167

79
74
74
77
77
73
78
77
73
73

o.4oo
0.459
0.468
o'.464
0.482
0.227
.491
.604
.472
.477

36-42 0.168 198
0.195 230
0.255 299
0.145 171
0.418 491

Hercules

Brunswick

Hercules

Brunswick

Hercules

A-l
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Mfrs Mfrs Mfrs Fiber Fiber Assigned
Fiber Lot No. Stated Strength Stated Modulus wgt Igth To

HTS 2 -2/79 A
2-2/21
2-2/21
2-2/40
2-2/56

- 2-2/irB
2-2/17
2-2/34
2-2/34
2-2/55
2-2/8A
2-2/39A
2-2/49
2-2/53

0.182
0.127
0.445
0.223
O.ll4
0.441
0.168
0.118
0.164
0.209
0.109
0.191
0.523
0.355

213
149
523
262
134
i>lb
198
139
192
245
128
224
614
416

Herculesii
ti
ti
M

Brunswickii
it
ii
ii . .
M
ii
ii
ii

A-2
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APPENDIX B

VESSEL DESIGN, MANDREL FABRICATION, AND VESSEL WINDING

I. Hercules

Design

1. A centerport opening of 4.763 cm diameter, or 23.4$ of the
chamber diameter, was chosen. The reasons were the following:

(1) a mandrel to accomodate this centerport size
was already available ;

(2) performance of the vessel was based on com-
posite weight only. Therefore, a refined
design of the centerport adaptors was not
needed;

(3) the dome contour and dome contained volumes
were functions of the fiber reversal radius
rather than the size of the centerport;

(4) over a range of 15 to 25 percent of the vessel
diameters, the 15$ port showed a 1.2$ gain in
PV/W over the 25$ port. This gain was consi-
dered to be negligible.

2. The choice of helical winding was for the following reasons

(1) a comparison of achievable burst pressures indicates
that the helical pattern would demonstrate a
3.2$ greater efficiency than the in-plane con-
figuration for the pressure vessel;

(2) the dome contours and filament winding paths for
the helical pattern design are based upon the geodesic
path definition that any filament path along the
surface of the vessel is the shortest distance
between any two points on the surface. This
pattern places the filaments in pure tension and
is the most stable winding geometry with little
or no chance of fiber slippage on the mandrel.

B-l
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II. Mandrel Fabrication

A. Pole Piece Preparation

1. Grit blast winding surfaces of the pole piece with 10 to
14 n/crrr (20 psig) air pressure and 100 Grit Aluminum Oxide.

—2-r—-After-grit blasting thoroughly, air blast the pole pieces
to remove all grit blasting material.

3- Apply one coat of primer to the grit blasted area of the
pole pieces and allow to air dry for 15 minutes minimum.

4. Apply one coat of adhesive to the primed area and allow
to air dry for 15 minutes minimum.

5. Record weight of each pole piece.

6. Package pole pieces in polyethylene bag for storage until
use.

B. Salt Mandrel Manufacture

1. Machine blocks of sodium chloride to form the desired
cylindrical section. Machine dome contour blocks and bond to the
cylindrical section.

C. Chlorobutyl Rubber Application

1. Assemble threaded rod attachment through pole pieces to
provide a handle for dipping the mandrel.

2. Mix chlorobutyl rubber with toluene to provide a solution.
The mixture should be covered when not in use to prevent toluene
evaporation.

3. Slowly immerse the bottle in the mix until the entire
bottle is covered. Slowly remove and hang on the drying rack letting
the excess mix drip back into the can. Remove air bubbles and allow
rubber to dry.

4. Repeat dipping operations to provide a vessel liner of
approximately 0.050 cm thickness.

5. Allow rubber liner to dry at 52° to 66°C.

6« After trimming rubber from pole pieces, units are stored
in polyethylene for protection.

B-2
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III. Vessel Winding

Measure and record mandrel diameter, length and weight.

Collect sample of fiber from each spool.

Assemble winding adapters to rubber lined mandrel and mount
in the Entec machine.

Clean mandrel winding surface with a trichloroethylene
dampened cloth.

Set resin cup temperature to 32 ±2°C.

Mix resin at room temperature using 125 grams of Epon 828,
145 grams of DSA, 25 grams of Empol 1040 and 1.25 grams of BDMA.
Fill preheated resin cup. Measure time after resin mixing and
change resin every three hours rechecking resin flow rate after
each change.

Turn on the counter and collect resin for 100 counts at a slow
pump rotation. Weigh and record in the M&IR. Mount a spool of HT
graphite tow on the back of the carriage, turn on the automatic pay
out system and feed into the special delivery system.

Set the tension to 5-9 Kg and adjust machine to wind the first
23° helix with 0.50 cm band width.

Coat the winding surface with a very thin coat of room tempera-
ture, resin mix. Weigh and record resin used. •

Turn on the revolution counter, circuit counter, the motor
switch to Reverse, and set the two counters on the delivery system
to zero.

Wind 23° helical until counters shut off. Then complete the
circuit to the headstock. Record the delivery counter readings and
reset to zero.

Wind hoop layer as shown in Drawing 60291S10002 with 0.635 cm
band width. Record the delivery counter readings and reset to zero.

Place helical cutting guide on cylindrical section of the
vessel. Wind second 23° helical layer for dome reinforcement and
cut out cylindrical portion of the helical layer 2.5 cm from dome
tangency point. Exercise care to not damage layers when cutting.
Weigh material removed.

Continue winding to complete vessel configuration.

Place in an air circulating oven and rotate.

B-3
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Gel for eight hours ±1 hour at 52 ±9°C oven air temperature3
check for air bubble protrusion and smooth down lightly every
half-hour.

Cure for two hours at 66 ±9°C followed by four hours at
149 ±9°C. Raising of temperature should be done over a 1/2 to
one-hour period uniformly. (Four hour cure ±1/4 hour.)

Cool slowly to room temperature. The unit may be removed from
the oven for cooling.

Remove winding tooling and weigh unit.

Wash out salt mandrel with warm water and dry the vessel
prior to taking final weight and measuring water volume.

Provide Epon 946 water barrier coat.

Clean up and prepare for hydrotest.

A. Winding Thornel Vessels

1. Thornel vessels were wound using the procedures detailed
above with the following exceptions:

(1) The resin applicator was removed.

(2) Bandwidth for helicals and hoops was 0.445 cm for
Thornel 400 and 0.382 cm for Thornel 75.

(3) The gel temperature application was eliminated.

(4) The Thornel 400 vessel consisted of two helical layers
and 2-| hoop layers.

(5) The Thornel 75 vessel consisted of two helical layers
and 2-| hoop layers.

(6) None of the Thornel vessels had dome reinforcement.

(7) Tension for Thornel 75 was from 1.4-1.8 Kg.
Tension for NOL 3 and 4 was 3.2 and 5.9 Kg,
respectively.

B-4
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IV. Brunswick

A. Mandrel Fabrication

1. Sand mandrels were cast in cylindrical sheet metal molds
with the polar bosses and wind axis in place. Each sand and water-
soluble binder mixture was oven cured, and following cure, the
metal sleeve molds were removed. The assemblies were then machined
to the final contour in a tracer lathe.

2. Following the sand machining operation, each polar boss
was removed from the assembly and prepared for rubber shear ply
installation. An uncured rubber spacer, (0.038 cm thick) was
installed over each boss. Upon completion of this operation, each
mandrel was covered with a thin FEP film layer to prevent the sand
mandrel from coming in direct contact with the impregnated roving.
The polar bosses were reinstalled on the mandrel and wind axis
assemblies. The mandrels were then ready for winding.

B. Vessel Winding

1. Each mandrel was installed in a "tumble" winding machine.
This winding machine has the advantage of a. stationary delivery
system which allows the tapes to remain in a single plane during
the winding operation. Prior to winding, pi-tape measurements were
recorded for the cylindrical regions of each mandrel.

2. Trial winding was required for each vessel to ensure that
all winding criteria could be achieved. The winding tensions in
each tape were achieved by varying the current in the magnetic drag
pullies positioned within the tape" delivery system. The tensioning
system allowed for a minimum amount of tension to be placed on the
tape package, while the winding tension for each tape was increased
in discrete steps as it passed over 20 cm diameter pullies arranged
on a vertical plate. The wind tensions used for each vessel, as
measured at the lead-off pulley, were set at 3.6 Kg for each polar
tape and 4.1 Kg and 4.5 Kg for'the first and second hoop layers
respectively.

3. Upon completion of each winding operation, the cylinder
diameter was again measured and recorded to give an indication of
the total composite wall thickness. Each vessel was then over-
wrapped with 1.3 cm wide shrink tape applied at a tension of 0.4 to
0.8 Kg. The HTS and Thornel 75 vessels had shrink tape applied in
the polar direction only, whereas all Thornel 400 vessels had both
polar and circumferential shrink tape coverage. Figure 2 shows
shrink tape being applied.

4. Each of the six vessels initially fabricated were placed in
an oven and cured according to the following cure cycle:

(1) Place in preheated oven at 66 ±6°C

(2) Raise oven temperature to 93 ±8°C in ̂  hour

B-5
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(3) Hold at 93 ±8°C for two hours

(4) Raise oven temperature to 1^9 ±8°C in i hour

(5) Hold at 149 ±8°C for four hours

(6) Slowly cool to 60°C maximum before removing vessel
f_r_om_ .O-V.en

It was found that the Thornel vessels were sufficiently soft
following mandrel wash-out to permit a slight relative displacement
of the polar boss through normal handling. The polar boss displace-
ment on one Thornel 400 vessel was so severe that the decision was
made to remake the Thornel 400 vessels with an extended cure cycle
to ensure that the resin system had cured sufficiently. The cure
cycle selected by Brunswick which was used for the remade vessels
was as follows:

(1) Place in preheated oven at 66°C

(2) Raise oven temperature to in ̂  hour

(3) Hold at 107 ±6°C for two hours

(4) Raise oven temperature to 163 in ̂  hour

(5) Hold at 163 ±6°C for four hours

(6) Raise oven temperature to 171°C in ̂  hour

(7) Hold at 171 ±6°C for four hours

(8) Set oven temperatures at 125°C for 1^ hours

(9) Set oven temperature at 93°C for 1^ hours

(10) Turn off oven, keep doors closed for 1^ hours

(11) Do not remove until surface temperature reaches
71°C or lower

It was found that the remade Thornel vessels were more rigid than
those initially fabricated; however, the composite was less rigid
than the Courtaulds HTS vessels which were fabricated with the
shorter cure cycles.

5- Following vessel cure, shrink tape removal and mandrel
wash-out, each vessel was subjected to a dimensional inspection.
The physical characteristics measured for each vessel are presented
in Table II.

6. Prior to vessel testing, liners were cast inside the vessels
by applying several thin coats of TURCO 51̂ 5 chem-mill masking.

B-6
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